ABSTRACT

Current military aircraft Liquid Oxygen (LOX) systems supply 99.5% gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentrations of 93-95% oxygen. This study compared the margin of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46,000, 52,000, 56,000, and 60,000 ft were achieved from respective base altitudes in 1-1.5 s decompressions. During each exposure subjects remained at the simulated peak altitude breathing either 100% or 94% O\textsubscript{2} with positive pressure for 60 s, followed by a rapid descent to 40,000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing oxygen concentration of 94% and ABO. Significant RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences. Considered with the physiologic data, an acceptable degree of hypoxia protection was met with both oxygen concentrations using TLSS at altitudes <60,000 ft for <60 s durations.

INTRODUCTION

In both the US Navy and the US Air Force, there is increasing interest in Molecular Sieve Oxygen Generation Systems (MSOGS) for their logistic and reliability advantages when compared to liquid oxygen supplied aircraft breathing systems. A limitation in the maximum oxygen concentration attainable with MSOGS, however, has motivated USN and USAF development communities to establish laboratory evidence of the acceptability of using reduced breathing oxygen throughout the altitude envelope of current aircraft oxygen systems.

Based upon a fairly well developed theory of respiratory gas exchange at altitude, our team of researchers concluded that there was no reason to expect adverse effects of MSOGS oxygen concentrations at normal cabin pressures. However, after a rapid loss of cabin pressure while flying at emergency ceiling altitudes needed further investigation. Especially, if a reduction of oxygen concentration is expected in the breathing gas supplied to the aircrew. We therefore, incorporated a rapid decompression (RD) profile in our study.

The first phase of research employed the current production oxygen system including: the CRU-73 dilution-demand breathing regulator and it's oxygen delivery/breathing pressure schedule; the MBU 12/P oxygen mask and HGU 55-P helmet. The RD profile was across a 5 psi differential, from 20,000 to 50,000 ft, and remained at peak altitude for 60 s. Results of this phase of research were reported elsewhere (Bomar, et. al, 1988; Holden, et. al, 1987; Nesthus, et. al, 1988; Nesthus and Schiflett, 1989; Wright, et. al, 1988; Wright, et. al, 1990).

During the second phase of study we used a developmental life support system designed to improve high altitude and high acceleration protection. The Tactical Life Support System (TLSS) included a modified CRU-73/TLSS dilution-demand oxygen regulator with an adjusted oxygen delivery and breathing pressure schedule. Also, a TLSS helmet, mask, and counterpressure jerkin-vest...
system was used to allow breathing gas
delivery at much higher positive
pressures needed for high altitude
protection.

Our altitude profile simulated loss
of cabin pressure while flying at
various potential emergency flight
ceilings. The profile incorporated a 5
psi differential RD similar to Phase I
research but we included 4 different
base-to-peak simulated altitudes seen in
Table I.

Both phases of study were conducted
in the hypobaric research chambers at
the USAF School of Aerospace Medicine
(USAFSAM), Brooks AFB, Texas.

Table I: Four base-to-peak, 5 psi
differential rapid decompression profile
pressures and simulated altitudes.

<table>
<thead>
<tr>
<th>Pressure (torr)</th>
<th>Altitude (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Peak</td>
<td>Base Peak</td>
</tr>
<tr>
<td>364.4 - 105.9</td>
<td>19,000 - 46,000</td>
</tr>
<tr>
<td>340.0 - 79.5</td>
<td>20,800 - 52,000</td>
</tr>
<tr>
<td>321.3 - 65.7</td>
<td>22,000 - 56,000</td>
</tr>
<tr>
<td>307.9 - 54.2</td>
<td>23,000 - 60,000</td>
</tr>
</tbody>
</table>

METHOD

Our subject population was comprised
of 17 chamber-qualified active duty male
volunteers from the USAFSAM Altitude
Panel. The voluntary fully informed
consent of the subjects used in this
research was obtained as required by AFR
169-3.

In addition to measuring a number of
physiologic parameters, discussed in
detail in the Phase I research
references, a computer-based unstable
tracking task from the Performance
Evaluation Device (PED) provided two
psychomotor measures (Systems Research
Laboratory, 1987). The tracking tasks' instability was based on an algorithm similar to that of the subcritical tracking task (Jex, 1967). RMS offset from center error and the number of boundary hits were the primary measures of tracking performance. Subjects were trained to perform the task while inside the chamber environment wearing the TLSS ensemble with most of the physical distractors in place. Sessions with high positive breathing pressures were also included.

Figure 1 shows a generic altitude
profile and time line for one
experimental RD session.

During a 1 hr 100% O2 prebreathe for
decompression sickness prevention, one
performance task warm-up and trials 1
and 2 were conducted. An ear and sinus
check and an abdominal gas check were
made before holding at the base
altitude. Pre-RD physiological
recordings and trials 3 and 4 were
completed. Prior to the RD, the
breathing gas mixture was switched from
100% oxygen to a pre-RD mixture of O2
representative of the CRU-73's scheduled
dilution mixture for each particular
base altitude. Subjects breathed this
mixture for 2-3 minutes for pulmonary
equilibration. The base altitude
breathing gas mixture and the peak
altitude oxygen condition for each
experimental trial was unknown to the
subject. After a final "ready" was
communicated, the subject was cautioned
to breath normally. Then the hypobaric
chamber was rapidly decompressed
(approximately 1 s) to a simulated peak
altitude of either 46,000 ft, 52,000 ft,
56,000 ft, or 60,000 ft. The positive
breathing pressure at 46,000 ft,
irrespective of the O2 condition, was 50
mmHg at the mask. Positive breathing
pressure at the remaining peak altitudes
was 70 mmHg. The subject, initiating
the "Peak" performance task trial ten
seconds after the RD, remained at that
altitude for 50 s more, whereupon the
chamber pressure was increased to a
40,000 ft equivalent (141.18 torr).
When the subject completed the unstable
tracking task a descent to ground level
was made. This procedure was repeated
for each O2 condition and peak altitude.

Figure 1: A generic altitude profile for
the EONS II rapid decompression study.

A mixed, random and fixed effects
design was followed. The fixed effects
included: two peak altitude oxygen
conditions--100% O2; and 94% O2; four
peak altitude conditions--46,000,
52,000, 56,000, and 60,000 ft; and three
trial levels--Ground, Base, and Peak.

Measures analyzed for this report
included: Root-Mean-Squared offset from
center (RMS) and boundary hits or
control losses for unstable tracking
performance; and one physiologic
parameter, oxyhemoglobin saturation
(SaO2).
RESULTS

Our overall design analysis revealed 3-way interactions (O₂-by-Level-by-Peak Altitude) for RMS tracking error, Boundary Hits (BHITS), and SaO₂. These results were anticipated. Separate analyses for O₂ and Peak Altitude were conducted and resulted in predominant Level effects for RMS error and SaO₂. The former was due primarily to the combined effects of positive breathing pressures delivered at the peak altitudes and potential hypoxia. No positive breathing pressure was delivered at ground and base levels. These results can be seen in Figure 2 for the 100% O₂ condition and in Figure 3 for the 94% O₂ condition.

The Level effect for SaO₂ was primarily due to high oxyhemoglobin saturations which occurred while breathing 100% O₂ during the ground and base level trials (prior to the RD) compared to high altitude desaturations which occurred at peak altitudes. This effect is seen in Figure 4.

The Level analysis revealed an O₂-by-Peak Altitude interaction which is clearly seen in Figure 5. Least Square mean t-tests showed that boundary hits for the 94% O₂ condition were greater at 52,000 ft compared to 56,000 or 60,000 ft.

Figure 2: Mean RMS error by Level and Peak Altitude for the 100% O₂ Condition.

Figure 3: Mean RMS error by Level and Peak Altitude for the 94% O₂ Condition.

Figure 4: Mean minimum SaO₂ percentage by Level and Peak Altitudes for the 100% and 94% O₂ Conditions.

Figure 5: Mean Boundary Hits for O₂ by Peak Altitude interaction.

Figures 6 and 7 are examples of additional physiologic data showing 5 s mean PₗO₂ values (with +/- standard error) 10 s before and 80 s after RDs to 60,000 ft for the 100% and 94% O₂ conditions, respectively. The figures show a rapid fall in PₗO₂ at the RD (vertical line in figures) followed by relatively stable values before the descent to 40,000 ft (at time 60 s in figures) as an increase in barometric pressure occurred. The values indicated subjects were exposed to compensatory levels of hypoxia as described in the
Physiological Training Pamphlet (Tables 4-3 and 4-5). Any performance deficit assumed at this level of hypoxia was confounded with the positive breathing pressures at peak altitudes and were probably diminished by the transient exposure (i.e., <60 s). The relatively high SaO2 values seen in Figure 4 at peak altitudes may also reflect the transient nature of the exposure.

The O2-by-Peak Altitude interaction for the boundary hits measure, as displayed in Figure 5, demonstrated the only evidence of a performance decrement with the 94% O2 condition compared to the 100% O2 condition. The elevated mean boundary hits found at 52,000 ft for the 94% condition were not fully understood. A thorough investigation of the data and various post-hoc tests did not help us explain this effect. No other performance differences were found between the 100% and 94% conditions.

CONCLUSIONS

We conclude that unstable tracking performance was not appreciably different for the two oxygen conditions compared. The combined effects of positive breathing pressure and possible hypoxia during the peak altitude trials affected unstable tracking performance by increasing RMS error. High breathing pressures were necessary for high altitude protection and were not present during the ground or base level trials. Overall, we believe the TLSS provided an adequate degree of protection against hypoxia for both oxygen conditions for durations less than 60 s at altitudes up to 60,000 ft as were studied in this phase of research.

ACKNOWLEDGEMENTS

We wish to express our sincere gratitude toward key members of the Crew Systems Branch of the Crew Technology Division including: Cols John Bomar, Jr. and Roger Stork, Lt Col Roberta Russell, Mr Ron Holden, Lts Catherine Wright and Rob O'Connor for all direction and support provided to the "cognitive performance" group during the two phases of "EONS" research. Additional thanks are extended to Ed Lee and Irma Baker of KRUG Life Sciences for their assistance in running most of the subjects during this second phase of research.

REFERENCES

