NASA Contractor Report 189603

Advanced Transport Operating System (ATOPS)
Color Displays Software Description
MicroVAX System

Christopher J. Slominski
Valerie E. Plyler
Richard W. Dickson

Computer Scliences Corporation
Hampton, Virginia

Prepared For

Langley Research Center
under Contract NAS1-19038
January 1992

(NASA-CR-IB?GO}) ADVANCED TRANSPORT N9 2-22395

OPERATING SYSTEM (ATOPS) COLOR DISPLAYS

SOFTWARE DESCRIPTION: MICROVAX SYSTE:SCL 010 uncl as
: - 266
{(Computer Sciences Corp-) P G3/06 0085166

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

INTRODUCTION

=
.

ooooooooooooooooooooooooooooooooooo

SYSTEM OVERVIEW
PROCESSES AND EXECUTABLE IMAGES
.1 IMAGE / MODULE SUMMARY
GLOBAL SECTIONS
INSPECTING GLOBAL VARIABLES WITH VIEW
STARTING AND STOPPING VAX DISPLAY SOFTWARE
CONDITION HANDLING
.1 TOPMS CONDITION HANDLER
.2 EXCEPTION LOG FILES

oooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooo

oooooooooooooooooooooo

NNDNDNONRNNNNNDNDNN
GO WNFE PO o

cccccccccccccccccc

I/0 COMMUNICATIONS
DSPHDL
DOUTIO
DISFIL

w
(e

ooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo

EXECUTIVE SOFTWARE
DSPFST
DP_LOAD

.............................
.......................................

.......................................
.....................................

ooooooooooooooooooooooooooooooooooooo

DATA RECORDING
DDASOT
DDSTAR

CHECK
DASDUMP
DASPRC
GITEM
NSNAP
OLDSNAP
SNAPDEL
SNAPDUMP
SNAPMOD
SNPRC
SYM SEARCH
UCASE
DISDAT
DSNAP
SNAPOUT

ooooooooooooooooooooooooooooooooooooooo

.....................................

......................................
.......................................
.......................................
.....................................
.....................................

....................................
.....................................

ooooooooooooooooooooooooooooooooooooooo
oo

oooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooo

NASA PFD SOFTWARE
NASA PFD PROCEDURES
AIRGAM
STAND OFF
CASMGR

= O

oooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooo

GUIDE tttittiteieiet et et it iiteeeennnenennn., 82
SCLXTK v ttttinten ettt ienennennnn,. 84
MSGMGR ottt tvitiet ittt in ittt e niae e, 85
PACK ttttteneen ittt ittt innennennennnann,. 88
PFD NASA ..ttt it ittt ennennannnnnn. 90
ALT _CNVRT tiitiit it ttetenineinennenn, 93
U 4) 94
SCREEN ..ttt ittt it tteinenn e, 101
SBXMGR vttt ittt it i e 102
SR i it e e e 103
LIMITS titeitentnennnnenentsernennnnennnnnnn. 105
UNPACK oottt ittt ittt it ienennnennnn. 106
WINDOW ottt ittt ettt it ittt enne ., 108
7.0 NAV DISPLAY SOFTWAREcviuennnnnnnnnenn.. 109
7.1 THE NAV BACKGROUND BUFFER ...uivverennennennn.... 115
7.2 NAV BACKGROUND UTILITIESviviuvninnennnn... 131
NAV_TEXT et et e, 132
NAV SYMBOL . etititnitneneceennnnnnennenennnnn. 133
BEG_SEG tttvvnntnintnneneneineneeeannnennnnan. 135
NAV LINE tontnittninienenieennannennnnnnnn. 136
NAV ARC oLttt ittt ieenannenennnnn, 137
L - 138
NAV LABEL e e e e, 139
END_SEG tttitimtmnnntnenennensneenenenennnnenn 140
7.3 NAV BACKGROUND PROCEDURESevnvnnennn.... 141
BOUNDS e i e, 142
AREAS e e 143
NEARPT et e 144
MAP AIRWAY o .ititittientiiiniennnenenennennnn 145
D O 146
NAME SIZE o .ittutnnnnennnennsnnnnnnenennennns. 147
s 148
NAVUPD ..ttt ittt ittt en i innennns. 150
BUSEMT ..t it i i et ettt e 151
0] 1) 152
AIRPRT ottt ittt it ittt tenennnennn. 154
N 155
NAVAID .ttt itinnnnnnenennnn, 156
NAVSMB ... i i i i e e 157
RADIAL o tiintiint it iit it ienennennennnnnss 158
RUNWAY ottt i i et ie e e 160
STRIPS ittt ittt ittt ettt it 161
g 163
P AN i i e et 164
LEG ot ttttitet ettt ittt et e 165
DM i e ittt e 166
TURN oottt it e ittt et teeeiannnnnn., 167
L0 S 168

7.4

[o ol o]
P
B o

10.

11.
11.

11.

11.
11.

= O

LIRS

NAV REAL-TIME PROCEDURES «.uvvevuvronnerennnnns 171
NAVEXC « v e eneemnesnneeannennneenneeennneeenn, 172
SELTRK « v v e e nnvemnseneeenneennusenuneeennnssn 174
NAVMLS + e e ee e eenaennneeneeeaneennseennnnennns 176
TRENDV e e e eneeeennesaeeaneennnennneeennans 177
RNGARC v v e e svaneenanneeraneeeaineeeennnnness 178
TBOX oo oo sovmenesssesosnsonesssosoassnsnsososs 179
ROTATE i it et e veesssssesosnsnassnssososssosess 180
PTHPOS « e e e v e e mneennnenneceanessnueenneeennns 181
TIMPOS =« eeevmnneesaneeeenneeesnnneeeannnnnns 183
LINE it vttt eeeesnosesenoessososnsnssonsecseas 185
TURN ¢ ot v o v eseecasonsssassosasssssossscasessss 186
PASSBY v e e e sane e e 187
INBRG c o v o vsecocsanoasacnsosssssasasasnsesassse 188
PTHLEG &t v ettt s osaascasssnsoossansnsasnsnsssess 189
FMTRBZL ¢t o eeoesoosossasaasssnsannsssassosonnos 190
ENGINE DISPLAY SOFTWAREccetotieronsnroononns 193
ENGINE PROCEDURES «vvevvvenuueanneeonnennnnennns 197
ENGEXC + e et eeeenneaanneeeananesanneeennnns ... 198
EPR F1 ouvvevnnnnennnnseennecenanneseannnnenn 201
EPR F2 weeveenennnnononosnenasnenneneneneuns 202
FEPRT « v e e vt eanseaneenneeneteanneeneeeannnsns 203
FTEST t et oeeessossosssssesssssssasssesscnsssssas 205
SYSTEM WARNING DISPLAY SOFTWARE ...evveennnnenns 207
SYSEXC v vevmneenneaaneenneenaeinneeanneannns 208
SPERRY PFD DISPLAY SOFTWARE ...t vitevoncannsonss 211
PEFDEXC t ittt e vsasoassessosessosassossnsssccsanaocs 212
TAKEOFF PERFORMANCE MONITORING SYSTEM (TOPMS) .. 215
PRETAKEQOFF BACKGROUND SOFTWAREcccctevennn 221
ACTRIM i it it ettt osnsaseaccscsssssssscnossscssos 223
AEROC « v e v eeneeeannnesaneeeeannseennnneenannns 224
ATMOS v v e enneemnseeeeaieeeaneaanseanneaannas 225
ENGINE « e e vt enneeennsseeenneeeaneannneannnsnn 226
LNGEM « e vueeeee e eeaaeee et estenneeenaneens 227
POLYET « e v eevueeenneaneeenneeansennesennnsnns 228
SIMEQA « v v e enveeenesneeenonenonnsonneenoneenns 229
PRETKE t it teeecssssstossansossssossesanensnsas 230
THROTS e v e eeneeenasnneeanneananennneaennssns 231
TOPMS REAL-TIME SOFTWAREcccccciceecocaccsns 233
23 0 % R) 235
TOPEXC + v v e e nssenneeaneennneennnennesennnssns 237
APLANE .t ittt v eensoosasaosoccssonasssssosssnsns 240
TOPMS OBJECT LIBRARY (TOPMS.OLB) «ovvvevevnennnns 241
TOPMS SIMULATION ..t eeteeseesosassnsssosonoensscssse 259

Appendices

A - I/O BUFFER USAGE ..t evveenrrennsas ettt e
B = VIEW COMMAND ENTRIES ...ttt iitnreeennennnnn,.
C - CREATING THE EXECUTABLE IMAGESt eeivnnennnn,.
D = GENERAL UTILITIES ...ttt it oteeeennnnnnenenen. . e
E - DISPLAY FORMAT FREEZE e ettt ettt e e

List of Figures

VIEW DISPLAY FORMAT ...t iiiitttnnnnrenennnnn.
PRIMARY FLIGHT DISPLAY FORMAT et
RUNWAY COORDINATE TRUNCATIONo0vuevrunn.
RUNWAY COORDINATE POINTS ..t tiiintttennnnnnnnnn.
NAVIGATION DISPLAY FORMAT (MAP MODE)
NAVIGATION DISPLAY FORMAT (PLAN MODE)
SAMPLE BACKGROUND FLIGHT PLAN .4 .vviivennnnnnn.
BACKGROUND BUFFER DATA FORMATc000vuuu..
ENGINE DISPLAY FORMAT ...ttt eennnnnsnnnnnnnnns
1.1 TOPMS DISPLAY FORMAT (TAKEOFF MODE)
1.2 TOPMS DISPLAY FORMAT (ABORT MODE) ..uvvvvevvnn...
1.3 “"ENABLE" WORD (TOPMS) ... ttiiiinnnrnnnennannnn.

B WNE W -

OrRrrrodadavddoooa

Section 1.0 INTRODUCTION

This document describes the software created for the
display MicroVAX computer used on the Advanced Transport
Operating System (ATOPS) project at the Langley Research
Center. The software was developed by Computer Sciences
Corporation (CSC) for NASA under contract NAS1-19038. This
document targets the software delivery of February 27, 1991
as a baseline system. Since a few items have been accepted
for the next delivery, they will also be included in this
document and noted as such.

The display MicroVAX computer is the host to the Sperry
microprocessor display system. The software residing in
that system is addressed by another document entitled:

Advanced Transport Operating System

COLOR DISPLAY SOFTWARE
DOCUMENTATION

Microprocessor System

The display host computer works in tandem with another
MicroVAX computer, referred to as the Flight Management and
Flight Controls computer (FM/FC). The document

FLIGHT MANAGEMENT / FLIGHT CONTROLS
SOFTWARE DOCUMENTATION

should be referenced for information about FM/FC software.
Throughout this document, descriptions of software
modules are presented in a standardized format. The basic
template is shown on the next page. At the top of the form
is a header block containing miscellaneous information about
the module. Next appears a one or two sentence synopsis
used as a quick reference stating the purpose of the module.
A detailed description follows which may be a small para-
graph to several pages in length. Global symbol references
are listed next. These are the subroutines and common
variables referenced by the particular module. Note that
passed parameter variables are not shown here. Passed
parameters are provided in the CALLING SEQUENCE portion of
the header information block. When an asterisk is appended
to the name of a data variable listed in the gloabl
reference section it denotes a memory location modified by

the module.

MODULE NAME: =
FILE NAME: =
PROCESS:
CALLED BY:,
CALLING SEQUENCE: cecer s

PURPOSE:

oooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooo

GLOBAL REFERENCES:

VARIABLES

ooooooooooooooooooooo

oooooooooooooooooooooooooooo

Section 2.0 SYSTEM OVERVIEW

The various sub-sections of the system overview briefly
describe the overall configuration of the displays host soft-
ware on the MicroVAX flight computer. The reader should be
familiar with the VAX/VMS operating system. Several important
key words are listed below. Detailed information about these
concepts is provided by the VAX/VMS reference manuals. 1In
particular "Introduction to VMS" and "Guide to Using VMS" are
good places to start.

DEC command language (DCL)

command files

processes

images

process priorities

global sections

exceptional conditions / condition signaling
condition handlers

Section 2.1 PROCESSES AND EXECUTABLE IMAGES

There are six executable images associated with the
displays host software. Three of them are utility programs
and three are displays applications programs. Their names
are given below with a brief description of their purposes.

(utilities)
DDSTAR manipulate data recording tables
SECTION install and remove global sections
VIEW monitor global variables

(displays applications)

DSPFST perform displays real-time calculations
DSPSLW perform displays background processing
DSPHDL perform system functions (timing, interrupts, I/0)

The environment created for the displays executable images
consists of four VAX processes. They are the initial process
created from the user login and three spawned sub-processes.
The utility programs run in the context of the login process.
Any one of the three may be activated from the terminal with
the RUN command. The other three images remain active
continuously under the context of their own sub-process.
Since the displays applications images are always active, the
VMS priority system determines how often the images actually
execute. DSPHDL and DSPFST are assigned priorities within
the VMS real-time range, 19 and 18 respectively. DSPSLW

uses the default round-robin priority of 4.

The three displays applications images each have a well
defined set of responsibilities. The remaining pages of this
section list the computations performed by DSPFST, DSPSLW,
and DSPHDL. The names of modules which make up each image
are also included.

PRECEDiG PAGE BLAKK NOT FILMED

74K Z CINTENTIORALLY B8N

Section 2.1.1

EXECUTABLE IMAGE:

-11-

IMAGE / MODULE SUMMARY

DSPFST

DSPFST is the displays real-time applications program.
The computations performed are repeated once every 50 milli-

seconds (20 times per second).

Its major function is the

generation of real-time display data for the Sperry micro-

processor color display system.

This includes the data for

all microprocessor formats, except the information created

for the navigation displays map background.

Other functions

include the formatting of variables for data recording and
the processing of inputs received from the microprocessor

system.

comprise DSPFST.

MODULE

DSPFST
DP_LOAD
MAPTBL
DDASOT
DSNAP
DUMPS
PROJECT
PFDEXC
SYSEXC
NAVEXC
SELTRK
NAVMLS
TRENDV
RNGARC
TBOX
ROTATE
PTHPOS
TIMPOS
LINE
TURN
PASSBY
INBRG
PTHLEG
FMTBZL
PFD_NASA
ALT_CNVRT
AIRGAM
STAND_OFF
WINDOW
STAR
LIMITS
RWYMGR
SCREEN

FILE

DSPFST.FOR
DSPFST.FOR
MAPTBL.MAR
DDASOT.MAR
DSNAP.FOR
DSNAP.FOR
PROJECT.FOR
PFDEXC.FOR
SYSEXC.FOR
NAVEXC.FOR
NAVEXC.FOR
NAVEXC.FOR
NAVEXC.FOR
NAVEXC.FOR
NAVEXC.FOR
NAVEXC.FOR
PTHPOS.FOR
PTHPOS.FOR
PTHPOS.FOR
PTHPOS.FOR
PTHPOS.FOR
PTHPOS.FOR
PTHPOS.FOR
FMTBZL.FOR

PFD_NASA.FOR
PFD_NASA.FOR

AIRGAM.FOR
AIRGAM.FOR
WINDOW.FOR
STAR.FOR

STAR.FOR

RWYMGR.FOR
RWYMGR.FOR

38D NN

The following is a list of program modules which

PURPOSE

Executive module
microprocessor identification
global section mapping tables
data recording

variable snapshots

variable snapshots

time-box positioning

Sperry PFD format

system warning format
navigation format: main
NAV: selected track

NAV: MLS airplane

NAV: trend vector

NAV: altitude range arc
NAV: time-box

NAV: coordinate rotations
NAV: time-box

NAV: time-box

NAV: time-box

NAV: time-box

NAV: time-box

NAV: time-box

NAV: time-box

NAV: bezel panel interface
Primary flight format: main
PFD: altitude scaling

PFD: aircraft/gamma symbols
PFD: standoff symbols

PFD: inner window symbols
PFD: waypoint star

PFD: waypoint star

PFD: perspective runway
PFD: perspective runway

PRECEDING PAGE BLANK NOT FILMED

-12-

PFDPK
CASMGR
MSGMGR
GUIDE
SCLXTK
ENGEXC
EPR_F1
EPR_F2
FFPRC
FTEST
TOPEXC
APLANE
SIMTOP
STPDIS
STPREF
'FNSERV
FILL
ASPDCO
EPRF
FINTER
RWYPRD
THCORF
XLIM
ANGL
ASSIGN
GET
GRID
LOCK
MAPCOM
MXV
POLAR
POSBTS
C_HDL
REPORT

REPORT CHECK

SHOW_TT
uve
SCOS
vCP

VDP

VMG

XYZ
BCDTIM

EXCEPTIONS

PFDPK.MAR
CASMGR.FOR
MSGMGR.FOR
GUIDE.FOR
GUIDE.FOR

ENGEXC.
ENGEXC.
ENGEXC.

FOR
FOR
FOR

FFPRC.FOR
FTEST.FOR

TOPEXC.
TOPEXC.
TOPEXC.
STPDIS.
.FOR

STPDIS

STPDIS.

FOR
FOR
FOR
FOR

FOR

PFD: binary packing

PFD: airspeed

PFD: warning messages
PFD: mode control panel interface
PFD: mode control scaling
Engine format: main

ENG: EPR limits

ENG: EPR limits

ENG: fuel flow

ENG: lab simulation

TOPMS format: main

TOP: aircraft dynamics
TOP: simulation

TOP: stopping distance
TOP: stopping distance

FILL.FOR
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB

TOP: servo response

TOP: I/0 memory formatting
TOP: airspeed conversion

TOP: EPR

TOP: throttle positioning

TOP: runway distance
TOP: thrust

TOP: value limiting
angular adjustment
logical names

Fortran address pointers

map coordinates

memory residency
global section mapping
matrix, vector product

X, Y, 2 to polar coordinates

map clipping
condition handling
condition handling
condition handling
condition handling
unit vector
sine/cosine

vector cross product
vector dot product
vector magnitude

polar to X, Y, 2 coordinates

decode system time
exception messages

13

EXECUTABLE IMAGE: DSPSLW

DSPSLW is the displays background processing program.
It executes in the spare time remaining after DSPHDL and
DSPFST have completed their real-time tasks in the 50 milli-
second frame. Each time DSPSLW completes its tasks it loops
back to start again, like the real-time images. However there
is no time constraint governing how fast it must complete one.
iteration of its computations. Its major function is the
creation of the display data for the navigation format map
background. Other functions include the TOPMS pretakeoff
calculations and the PFD status announcements. The following
is a list of the program modules which comprise DSPSLW.

MODULE FILE PURPOSE

DSPSLW DSPSLW.FOR executive module

PRN AST DSPSLW.FOR printer completion AST
LOG AST DSPSLW.FOR data log completion AST
SNAPOUT SNAPOUT.FOR data snap-shots

SBXMGR SBXMGR.FOR PFD status messages
MAPTBL MAPTBL.MAR global section mapping
NAVSLW NAVSLW.FOR map background executive
NAVUPD NAVSLW.FOR map background processing
BUSEFMT NAVSLW.FOR map background processing
OPTION OPTION.FOR map symbology

AIRPRT OPTION.FOR map airports

ARPSMB OPTION.FOR map airports

RUNWAY OPTION.FOR map runways

STRIPS OPTION.FOR map longitudinal strips
NAVAID OPTION.FOR map navaids

NAVSMB OPTION.FOR map navaids

RADIAL OCPTION.FOR map radials

PATHS PATHS.FOR map flight plan

PLAN PATHS.FOR map flight plan

LEG PATHS.FOR map flight plan

DMA PATHS.FOR map flight plan

TURN PATHS.FOR map flight plan

WPTXT PATHS.FOR map flight plan

BOUNDS BOUNDS.FOR map boundary areas

AREAS BOUNDS.FOR map boundary areas

NEARPT BOUNDS.FOR map boundary areas

TEXT TEXT.FOR map info lines

STORE TEXT.FOR map info lines

NAV UTL NAV_UTL.MAR map background data formatting
PROJECT PROJECT.FOR map position computations
MAP AIRWAY MAP AIRWAY.FOR map airways

GET XY MAP AIRWAY.FOR map airways

NAME SIZE MAP AIRWAY.FOR map airways
PRETKF PRETKF.FOR TOPMS pretakeoff main

-14-

TOP_HDL
ADBW2
ATMOS
ASPDCO
OLIMIT
ONED
SEARCH
RATE
THCORF
XLIM
DZONE
THSRVO
RWYPRD
FINTER
EPRF
THROTS
AEROC
ENGINE
POLYFT
SIMEQA
LNGFM
STPDIS
STPREF
FNSERV
ACTRIM
ANGL
ASSIGN
CLIP
POSBTS
FMTTIM
GET
GET_CHAR
GRID
LOCK
MAPCOM
OTS$FLOAT
POLAR
C_HDL
REPORT

REPORT CHECK

SHOW_TT
SCOS
uvC
BCDTIM

EXCEPTIONS

PRETKF .FOR
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS .OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
TOPMS.OLB
THROTS.FOR
AEROC.FOR
ENGTKF .FOR
POLYFT.FOR
POLYFT.FOR
LNG2D.FOR
STPDIS.FOR
STPDIS.FOR
STPDIS.FOR
ACTRIM.FOR
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB
UTIL.OLB

TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
TOPMS
angle

condition handler
integration
atmospheric parameters
airspeed conversion
open-end limiting
interpolation

table search

rate limiting
thrust

value limiting

dead zone

throttle response
runway distance
throttle position
EPR

throttle setting
aircraft lift/drag
engine model

curve fitting
solving equations
longitudinal axis moments
stopping distance
stopping distance
servo response
aircraft trimming
limiting

logical assignment

map clipping

map clipping

time formatting
Fortran pointer data
Fortran pointer data
map projections

memory residency
global section mapping
data formatting

X, Y,

Z to polar coordinates

condition handling
condition handling
condition handling
condition handling
sine/cosine

unit vector

system time conversion
exception messages

-15-

EXECUTABLE IMAGE: DSPHDL

DSPHDL is the displays executive program. It runs at
a priority higher than the other images, therefore it has
the ability to execute immediately whenever it needs to.
DSPHDL sits idle waiting for clock interrupts which occur
every ten milliseconds. A set of five interrupts make up
one complete 50 millisecond real-time frame. The major
functions for DSPHDL are performing system I/0 and signhaling
the real-time applications program (DSPFST) when to restart
a new 50 millisecond frame. It als¢o scales and formats I/O
data to the proper engineering units. The following is a
list of the program modules which comprise DSPHDL.

MODULE FILE PURPOSE

DSPHDL DSPHDL.MAR timing, DMA I/0, interrupts
DISFIL DISFIL.MAR input formatting

DOUTIO DOUTIO.MAR output formatting

HDL_MESG HDL MESG.MAR error messages

MAPTBL MAPTBL.MAR global section mapping table
ASSIGN UTIL.OLB logical unit assignment
LOCK UTIL.OLB memory residency

MAPCOM UTIL.OLB global section mapping

C HDL UTIL.OLB condition handling

REPORT UTIL.OLB condition handling

REPORT _CHECK UTIL.OLB condition handling

SHOW_TT UTIL.OLB condition handling

BCDTIM UTIL.OLB system time conversion

EXCEPTIONS UTIL.OLB exception messages

-17-

Section 2.2 GLOBAL SECTIONS

Global data variables are shared within the software
system through global sections. Global sections are the
fastest way a multiple process software configuration can
share data values.

Global sections are areas of physical memory which are
mapped into the virtual address space of several active
images. In the display flight software each global section
consists of one relocatable program section following the
standard definition of the VAX Fortran common block. The
displays host software uses ten global sections. All but
two, AADCOM and DISDAT, are defined as Fortran include files
which contain one common block definition. The include files
are needed to provide the global section templates to the
Fortran compiler when compiling the Fortran modules which
make up most of the displays host software. The other two
global sections are macro assembly language files which are
assembled directly to produce an object file containing global
symbol definitions for all common variables. The following
is a list of the global sections with a note on the type of
memory allocations contained within each.

AADCOM navigation data base

BIUCOM I/0 memory for SPERRY microprocessors
DISDAT default recording list

DISNAV input data from FM/FC MicroVAX
DLNCOM data link information

DSPCOM general displays variables

DSRCOM data recording

DTCCOM I/0 memory for aircraft DATAC bus
INPCOM formatted DATAC variables

TOPCOM TOPMS variables

Object files are created for each of the Fortran include
files by the VAX utility program BLKMAC. The Fortran compiler
is not used for this since the object modules it creates do
not define the individual variables of the common block as
global symbols. The global symbol definitions are necessary
to allow VAX macro assembly language modules efficient access
to global section variables. The file COMMON.FOR exists solely
for BLKMAC. This file is a Fortran "Block Data" module which
includes each of the global section template files and also
contains initialization statements for some of the global
section variables. BLKMAC reads this file and creates an
object file for each common block referenced within.

PRECEDING PAGE BLA{X NCT FILMED

BEGE__ [= INTENTIONALLY PLANK

18

The object files created by BLKMAC are linked into
the program SECTION which is used to create global sections.
SECTION is an interactive program that allows the user to
create, refresh, or delete the global sections. Global
sections must be created in memory before any of the display
flight software is started. Note that SECTION will issue
a warning when attempting to delete global sections which
are currently in use by applications software. The user may
choose to proceed with or abort the deletion. If the delete
is not aborted the VAX/VMS operating system removes the
sections from its global section table but does not free the
physical memory until the last image mapped to the sections
has exited. This in effect changes the global sections to
private sections.

Executable images gain access to the global sections
through a call to the utility library module MAPCOM on start-
up. MAPCOM grants read or read/write access to the various
global sections depending on predefined access privileges
encoded in the file MAPTBL.MAR. The utility program GLOBAL
is used to define the access privileges for each process.
GLOBAL creates the ".OPT" files and MAPTBL.MAR used in
linking each executable image.

.19

Section 2.3 INSPECTING GLOBAL VARIABLES WITH VIEW

The program VIEW is used to examine and modify variables
in the VAX global sections defined for flight software. To use
this utility the global sections must have been installed
previously using the utility SECTION. The VIEW display screen
contains two header lines and twenty lines for the placement
of variables (see the diagram on the next page). The first
header line contains the version number of VIEW, the flight
system identifier to which VIEW was linked, and the date of
the flight system generation. The second header line shows
which of the four available display pages is currently being
shown. The display lines each have the line number on the
left side of the display. When variables are placed on the
display line three additional fields are shown after the
line number. First the format code for the variable is
shown. This tells how many bytes of data comprise the
selected variable, and how the binary value is interpreted.
Next on the line is the value of the variable. The last
part of the display line is the descriptive label used to
identify what variable was placed on the line.

To start the program enter RUN VIEW on an account containing
a flight system. VIEW immediately prompts for a password. The
password is used to determine the read/write privilege that
VIEW grants to the various global sections. VIEW maintains
default privileges for users with no password. The default
entry into VIEW is gained by simply entering a carriage return
to the password prompt. The person responsible for the flight
system build selects the access to each global section for both
the default and password users. Refer to appendix B for
information on the VIEW commands.

20

VIEW [V5.1]: TDWR DISPLAYS 12-MAR-1991

Page 1

I.2 0 TOPMS
H.2 0020 ENABLE
F.4 -13.1027 ROLL

el el el ol e e
CO-JOUMBBWNFROWDIJoOU.&S WN R

3]
o

->ARRAY (16) /F=F.8/R=2/L=6

- FIGURE 2.1 -

-21-

Section 2.4 STARTING AND STOPPING VAX DISPLAY SOFTWARE

There are eleven files needed for a complete displays
host software system. These include the six executable
images described in section 2.1 and the following five files
used to manage the execution of the system.

RUN.COM

This command procedure is used to start the displays host
software. First it checks if an old set of log files are
open (see section 2.5) and closes them if necessary. The
utility program section is automatically run next to allow
the user to install or refresh the global sections. Finally
the sub-processes are spawned and exception log files opened
by calls to GO.COM. Note that the executable image for
DSPFST is run twice in RUN.COM. The first time it is run
the sub-process is spawned in total control of the user
terminal with the parent process placed in a wait state.
This must be done to allow an interactive I/0 session to
confirm system configuration. DSPFST then exits and returns
control to the parent process. The second time DSPFST is
spawned it is made a joint process allowing the parent
process to continue with control of the interactive terminal.

GO.COM

This command procedure opens the process exception log
file and starts the executable image. It is called once
for each of the three display software processes.

HALT.COM

This command procedure is used to properly terminate
the VAX display software. The first thing it does is close
the exception log files and delete all but the latest three
versions of each. Since the log files are process permanent
files, the logical end-of-file mark is forced to the physical
end-of-file. All three sub-processes are terminated with
the DCL STOP command. Finally the user is given the
opportunity to select automatic removal of the installed
global sections.

GBLNAME .DAT

This information file is used by the utility program
SECTION as a reference to the names of all defined global
sections. This file is also used when creating the software
system. Refer to appendix C for its role in the system
build.

-22-

SHOW LOG.COM

“This command procedure is used to review the current
exception log files while the system is active. Section
2.5 (condition handling) has complete information on the
log files.

Once logged into an account containing the afore-
mentioned files the user may start the displays software by
entering "QRUN" at the consocle terminal. The user is
immediately prompted by SECTION to choose between installing
the global sections or refreshing a previously installed set
of global sections. When this is complete a table iden-
tifying the current microprocessor configuration is printed
to the screen. This table is generated from information
received from the display system. The user must review the
format assignments to make sure the display system has
determined correctly in which processors the various formats
are loaded. If the information shown does not depict the
desired display format configuration the user is given the
opportunity to correct the problem and try again. Once all
the user interaction is complete the remaining processes are
spawned. Finally the utility program DDSTAR is automatic-
ally run to initialize the default data recording list. At
this point the standard DCL "$" prompt is issued and the
console terminal may be used for DCL commands and running
utility programs while the display host software executes.

~-23-

Section 2.5 CONDITION HANDLING

Numerous types of exceptional conditions may occur on
a VAX/VMS system. These can be both hardware and software
faults or traps which occur when the system detects a
programming error. Without outside intervention the VMS
operating system takes predefined actions through the
default system condition handler. User defined condition
handlers may be defined "further up the stack" to intercept
exceptions before they reach the system condition handler.
The displays software has defined a condition handler to
perform special operations for several commonly occurring
exceptions.

The system operator is notified of the occurrence of
exceptions in several ways. Each process has an exception
counter defined in one of the global sections (HDL_ERR,

FST ERR, SLW ERR). These variables contain the total

number of exceptions that have occurred in each process
since the system was started. The utility program VIEW can
be used to monitor the counters. For most exceptions an
explicit notification is given at the time it occurs. The
notification consists of a brief message sent to the system
console terminal and a detailed description of the exception
placed in the process’s log file (DSPFST.LOG, DSPHDL.LOG,
DSPSLW.LOG). To eliminate unnecessary I/0 the terminal and
log file notification will only be made once every fifteen
seconds for a repeated exception. A repeated exception must
have both the same error code and originate from the same
machine instruction.

The following is a list of the exceptional conditions
handled by the displays condition handler. Any other
exceptions signaled to the displays condition handler will
simply be resignaled to the the default system condition
handler after the terminal and log file notifications have
been posted.

(software traps from VMS math library)

MTH$_SQUROONEG - The square root of negative value error
forces the math library function return value to be zero.
No exception message is posted for this error.

MTH$_* - All other math library exceptions also force the
function return value to zero. Terminal and log file
notification are given for these.

-24-

(hardware faults)

SS$_FLTOVF_F
SS$_FLTDIV_F - These faults are modified to simulate their

SS

SS
SS
SS
SS

corresponding traps since continuation of the applications
software after the fault cannot be done. VMS resignals
the displays condition handler with the new trap. Note
that the exception counter will be incremented twice
because of this action.

$_ROPRAND - This fault occurs when floating point data
contains an illegal binary code. There is only one
undefined floating point bit pattern; the sign bit set
and all other bits clear (-0). The reserved operand is
changed to a value of zero and the instruction is re-
started.

(hardware traps)

$ FLTOVF
$-FLTDIV

$_INTDIV

$_INTOVF - These traps are reflected in the exception
counters and posted on the terminal and in the log file.
The applications software continues afterward with the
following instruction. Note that the integer overflow
exception currently cannot occur in the software since
the detection is disabled by the Fortan compiler switch
/NOCHECK.

25

Section 2.5.1 TOPMS CONDITION HANDLER

A special condition handler is defined during the
pretakeoff calculations performed in DSPSLW. This handler
(TOP_HDL) receives all signaled exceptions before the main
display software condition handler is activated. All normal
VMS exception conditions are resignaled to the standard
handler. When one of a few TOPMS related problems occurs a
non-standard condition code is signaled by TOPMS pretakeoff
software. When one of these errors is seen by the TOPMS
handler a stack unwind is implemented which forces DSPSLW to
return to the instruction immediately following the call to
the pretakeoff main module. A flag variable is also set
which invalidates the TOPMS display format.

-27-

Section 2.5.2 EXCEPTION LOG FILES

Exception messages are saved in log files defined for
each process (DSPHDL.LOG, DSPFST.LOG, DSPSLW.LOG). Inactive
log files may be viewed with DCL commands such as TYPE,
COPY, or PRINT. When the display software is executing the
active set of log files are accessed with the SHOW LOG.COM
command procedure. There are three forms available to use.

@SHOW _LOG <process_name>
@SHOW LOG <process_name> ALL
@SHOW LOG <process_name> SINCE

The "ALL" form will display on the user’s terminal all
exceptions posted in the file, which is empty when the
software system is started. The "SINCE" form shows the user
the exception messages posted since the last time the
particular log file was referenced by @SHOW LOG. The first
form is equivalent to the "SINCE" form. -

Each exception message on the log file consists of a
header with the current MicroVAX date and time, followed by
the aircraft Greenwich Mean Time (GMT). Next appears the
VMS exception message followed by a traceback of the call
frames.

PRECEDING PAGE RLANK NOT [AeED

1.4 Q!E NTENTIARBLLY LAY

-29-

Section 3.0 I/0 COMMUNICATIONS

In order for display application software (DSPFST,
DSPSLW, DDSTAR, etc.) to function correctly, real-time data
from external sources must be input, and processed data
must be output, in a synchronized manner. This is the
responsibility of the process DSPHDL.

DSPHDL initializes system resources to allow external
1/0, to schedule this external I/0, and to control the
subprocesses DSPFST and DSPSLW. DSPHDL also formats I/0O
data for/from these processes. The executable image
DSPHDL.EXE is activated either in the context of an
interactive user or the context of a subprocess of an
interactive user which has been created using the DCL SPAWN
command. Upon activation DSPHDL raises its priority into
the realtime region at level 19 which disables quantum
expiration context switching. DSPHDL will then use system
context to configure I/0 channels for DMA with external
devices (DATAC, BIU, FM/FC MicroVAX, etc). The subprocess
DSPFST will be synchronized into a 50 millisecond frame by
DSPHDL using an interrupt from the DATAC. The DATAC will
also supply a 10 millisecond clock for synchronization of
DMA I/0. This I/O data is formatted for use by the display
application software by DSPHDL.

B A8 e s PRECEDING PAGE BLANK NOT FILMED

30

MODULE NAME: DSPHDL

FILE NAME: DSPHDL.MAR
PROCESS: DSPHDL
CALLED BY: (Main Module)

CALLING SEQUENCE: RUN DSPHDL

PURPOSE:

Initializing system resources to allow external I/0, to
schedule this external I/0, and to control the subprocesses
DSPFST and DSPSLW.

DESCRIPTION:

This module is very intimately tied to, and has been
written around, the framework of the VAX/VMS internal arch-
itecture. As such, an understanding of VMS, in particular
those portions relating to virtual memory structure and the
internals of VMS I/0, will be required to follow the method-
ology used in the configuration of this system for DMA I/0.
This understanding may be obtained from the standard VMS
documentation set (in particular Programming Volume 8 -
Device Support, paying particular attention to the sections
mapping I/0 space and connecting to an interrupt vector) and
the text ’'VAX/VMS Internals and Data Structures’. This under-
standing is assumed in this discussion and in source code
comments. The module DSPHDL contains four functional parts.
These include:

1.) Initialization code

2.) Main loop processing

3.) Kernel mode routines used in initialization
4.) Connect to interrupt routines

The following describes each:

1.) 1Initialization code - This code performs the
following:

A.) Establish an error condition handler. See section
2.5 for details.

B.) Assign a channel to the default terminal so that
any error messages may be reported there. Also
assign a channel to the TXA5 serial port which is
used for packet radio link communication.

C.)

D.)

E.)

F.)

31

Declare an exit handler which will set process
priority back to level 4.

Set process priority to level 19. This puts the
process DSPHDL into the real time range and will
disable any quantum expiration context switching.
Lock PO process space into the working set by
calling LOCK. This will reduce the possibility of
page faulting during main loop execution.

Assign a channel number to each of the following
devices: ‘

a.) XAAQO - DATAC DRV1l

b.) XABO - Inter-Processor Link (IPL) DRV11l

c.) XADO Bus Interface Unit (BIU) DRV11

d.) KwWAQ0 - KwWvll
Call MAPCOM to map to the required global sections.

Use $CRMPSC to map to the physical addresses of the
I/0 registers for the DRV11l and KWV1l devices.

This will allow the process to reference physical
locations via virtual addresses.

Call kernel mode routines which compute the virtual
addresses of DMA buffer page table entries for use
in loading Q-bus adapter mapping registers during
the connect to interrupt start routines. These are
discussed in section 3 below.

Associate to common event flag cluster. These
event flags are used for synchronization of the
flight application processes.

Connect to interrupt vectors. A connect to inter-
rupt $QIO is executed for each of the three DRV1l
and the KWV1ll devices. This establishes connect
to interrupt init, start, interrupt service, and
cancel routines as discussed in detail in section
4,

Wait for first 50 millisecond interrupt, then
enable the 10 millisecond clock and start main
loop software.

-32-

2.

)

A.)

B.

a

b.

)

1.

2.

3

)

.)

Main loop processing. Main loop processing begins
by waiting for either a 10 or 50 millisecond inter-
rupt. Upon determining which interrupt occurred,
DSPHDL will either execute major or minor frame
processing for 50 and 10 millisecond interrupts,
respectively. Major and minor frame processing

is described below:

Major frame - Major frame processing begins after
a DATAC 50 millisecond attention interrupt. This
occurs in minor frame 4 several milliseconds before
the minor frame 0 interrupt. The minor frame

counter variable MFRAME is set to a -1 during this
interval. DSPHDL will, at the beginning of a major
frame:

.) Read 234 words of raw data from the DATAC SIR

via DRV1l into DTCCOM. This includes hexadecimal
SIR addresses 39 through 123.

) Format input data for use by display application
software, using DISFIL, into INPCOM, if the var-
iable freeze is not set.

Upon completion of I/0, DSPHDL will set event flag
64, enabling DSPFST to execute a frame.

Minor frame - There are five minor frames per
major frame (minor frame 0 thru 4). Minor frame
zero begins with the first 10 millisecond inter-
rupt after the 50 millisecond attention interrupt.
Each 10 millisecond interrupt will signal the
beginning of the next minor frame. DSPHDL will
perform the following processing at the beginning
of the specified minor frame:

) Minor frame 0 - No I/0 is performed here, as it

was done at the beginning of the major frame
(during the MFRAME = -1 interval).

Minor frame 1 - Nothing performed in this frame.

Minor frame 2 - Enable IPL interrupt for transfer
in frame 3.

3.

4.

)

)

-33-

4.,) Minor frame 3 - Output 181 words (176 words for
recorded data and FM/FC feedback data plus 5
words not used as a pad against corrupted data
possible at the start of a transfer) in OUTCOM
to the DATAC SIR. The corresponding hexadecimal
SIR addresses of valid data are from 550 to 5FF.
This data has been previously loaded by the
routine DOUTIO. Also during this frame the
FM/FC IPL transfer occurs, as initiated by an

FM/FC MicroVAX interrupt. The responding handshaking

software in the display MicroVAX resides in the IPL
Interrupt Service Routine (ISR). This hand-
shaking is as follows

a.) The wordcount for the IPL transfer is loaded
into the DRV11l data register by the FM/FC Micro-
VAX for reading by the display MicroVAX. As a
flag, this count is negated if the transfer does
not send the active navigation buffer. For
the active buffer the count is left positive.

b.) The address for the buffer to be received is
loaded into the display MicroVAX DRV11l buffer’s
address register.

c.) The transfer is initiated.

5.) Minor frame 4 - In this frame the BIU I/0 is

performed. This begins with the reception of
320 words of input data from the BIU being read
into the buffer BIU IN. Subsequent to this, 704
words are output from the buffer BIU OUT to the
BIO.

Kernel mode routines - These subroutines are called
from the initialization software with the S$CMKRNL
system service. This code must run in kernel mode
in order to reference the privileged registers

PR$ POBR (PO base register) and PR$_POLR (PO length
register). These registers are needed in order to
calculate the virtual address (in S0 space) of the
DMA buffer’s page table entry. This value is used
in loading the Unibus adapter mapping registers.

Connect to interrupt code - There is one connect to
interrupt $QIO per device. A connect to interrupt
$QI0 has four associated parts - initialization,
start, interrupt service, and cancel. These four
parts are doubly mapped both in process PO space
and in system S0 space allowing them to run in
system context. The role of each in this appli-
cation is described below:

-34-

A.)

B.)

C.)

D.)

Initialization - The only function this part has
at present is to store the system mapped address
of the device register block. While not used at
present, this could be used to control a device’s
registers from another device’s ISR, should the
need arise.

Start - The start routine is used to load the
Q-bus adapter mapping registers with the physical
address of the DMA buffer. This loading is
achieved using the system routine IOC$LOADUBAMAP,
which uses as input the virtual address of the
buffer’s page table entry (computed in the kernel
mode routines described above). Connect to inter-
rupt start routines normally run at IPL 6, but
since the allocation and loading of mapping reg-
isters requires an IPL of 8, the IPL is raised at
the beginning and then lowered back to 6 before
exiting.

Interrupt service routine - This code is executed
when an interrupt is delivered from the associated
device. Except for the BIU handshaking code de-
scribed above in the section on .minor frame 3, the
only function the ISR is used for at present is to
clear the device’s CSR and optionally set an event
flag. Whether an event flag is to be set after

an interrupt is specified as an input flag to the
connect to interrupt $QIO. Presently, the devices
which will set an event flag are the KWV1l (event
flag 4, the 10 millisecond clock) and the DATAC
DRV11l (event flag 5, the 50 millisecond attention
interrupt).

Cancel - This code is executed at the time of
process termination, and is used to release mapping
registers that had been allocated.

GLOBAL REFERENCES:

VARIABLES
FRAME *,
HSTCNT*
BIU_TO*
BIU_IN,
IPER CS

FUNCTIONS
DISFIL,

FRAMES*, MFRAME*, FREEZE, CNT50%, DSPST2*,

, HDL_ERR*, MS10ML*, MSSOML*, DTC_NRDY*,

, IPL_NZ*, IPL_NR*, DISNAV_BEG, ACT WPTS,
BIU_OUT, DTC_IN, DTC_OUT, IPER_WCR*, IPER BAR*,
R*, TPER DAT*

AND SUBROUTINES
DOUTIO, LOCK, MAPCOM, IOCSALOUBAMAPN,

IOCSLOADUBAMAP, IOCS$RELMAPREG

..35_

MODULE NAME: DOUTIO
FILE NAME: DOUTIO.MAR
PROCESS: DSPHDL
CALLED BY: DSPHDL

CALLING SEQUENCE: JSB DOUTIO

PURPOSE:
To format 50 millisecond output data from OUTCOM for

DMA to the DATAC SIR.

DESCRIPTION:

DOUTIO is called once per major frame just prior to
DATAC output. It is responsible for formatting and packing
data recording output data. Output data to be formatted is
read from OUTCOM. Variables to be recorded are specified
along with scale factors in the buffer table DASPAR. These
variables are scaled and placed in the buffer DASBF for
output.

GLOBAL REFERENCES:

VARIABLES
DASCAL, MXENT

ARRAYS
DASPAR, DASBF¥*

-36-

MODULE NAME: DISFIL
FILE NAME: DISFIL.MAR
PROCESS : DSPHDL
CALLED BY: DSPHDL

CALLING SEQUENCE: JSB DISFIL

PURPOSE:
To format 50 millisecond DATAC SIR DMA input data into

INPCOM.

DESCRIPTION:

DISFIL is called once per major frame immediately
following a large block input from the DATAC. It is respon-
sible for formatting raw input data into a form usable by
the display application software. DISFIL stores formatted
input data into INPCOM.

DISFIL uses the following programmer defined ‘macros:

1.) SMPLXF - Will scale, bias, and/or bit shift a 16 bit
input integer source operand as specified, convert to
floating point, and store the result at a destination
pointed to by RO.

2.) SMPLXB - Tests the specified bit of the source and
sets or clears the byte boolean pointed to by RO
conditionally.

3.) ASMPLX - Similar to SMPLXF with the addition of a
validity bit test preceding the conversion. The
result is stored at the address specified in RO.

4.) GSMPLX - Similar to ASMPLX but tailored for use in
formatting GPS raw input data.

5.) SBOOL1 - Tests the bit specified and if set will set
the boolean pointed to by RO. Otherwise the boolean
is cleared.

GLOBAL REFERENCES:

VARIABLES
DTC_IN, (All variables in common INPCOM) *

FUNCTIONS AND SUBROUTINES
OTSSPOWRR

-37-

Section 4.0 EXECUTIVE SOFTWARE

The three display VAX applications processes each
have main modules which are entered directly from VMS
when their respective executable images are started. The
executable image DSPHDL is covered in section #3 and will
not be mentioned again in this section. The processes
DSPFST and DSPSLW each have main modules which are
described on the following pages.

Main modules contain operations to setup and initialize
items which effect the entire process in which they reside.
They also serve as a caller of subroutines which perform the
actual display tasks required to drive the microprocessor
display system.

-38-

MODULE NAME: DSPFST
FILE NAME: DSPFST.FOR
PROCESS: DSPFST
CALLED BY: VMS

CALLING SEQUENCE: RUN DSPFST

PURPOSE:
DSPFST is the executive module for its process.

DESCRIPTION:

DSPFST is the main program module for the executable
image of the same name. VMS transfers control to the start
of this module when the RUN DSPFST command is performed.
There are two distinct sections in DSPFST. The first con-
sists of several operations performed once at the start of
the executable image. The second section consists of things,
which are repeated cyclically. Every 50 milliseconds a
sequence of operations are started. When the various tasks
are completed, DSPFST enters a wait state until the next
50 millisecond frame is announced.

At the start of the executable image, DSPFST forces all
the program image "pages" into memory. They are locked into
memory to reduce paging I/0 during image execution. The
loading and locking operation is performed by the utility
procedure LOCK. It is called by the VMS system procedure
SYSSCMEXEC (change mode to executive). This is done because
user mode does not have enough privilege to bring some of
the image’s pages into memory. The privileged pages are the
defined exception messages for the condition handler which
are normally only accessed in executive mode by the operating
system.

After page locking is complete the global sections are
mapped into the executable image’s virtual address space.
This 1s done with a call to the utility procedure MAPCOM.
MAPCOM is passed the name of the image (DSPFST) which is
used to determine which global sections will be mapped and
whether write privileges are to be granted.

If DSPFST is run in interactive mode (see section 2.4)
confirmation of display microprocessor formats is performed
followed by exiting the image. The module DP LOAD is called
to determine which display formats are loaded into the
various microprocessors. A summary is printed to the console
terminal and the system operator is prompted for confirmation
of its correctness.

When DSPFST is not run in interactive mode the remainder
of the startup operations are performed. First the user
defined condition handler is established into the initial
stack frame. Any exceptions occurring in the image DSPFST
will be intercepted on their way "up the stack™ to the
system condition handler. The standard output and error
devices are logically assigned to the processes log file
so exception messages may be saved in a file (see section
2.5).

-39-

The DAS recording tables are initialized to the default
recording list by automatically running the utility program
DDSTAR from DSPFST. Section #5 provides ample information
on data recording and the role DDSTAR plays.

The final thing done before entering the real-time
cyclical portion of the module is to connect to a set of
event flags in the operating system to be used for inter-
process signaling. The start of each new 50 millisecond
frame is denoted by the setting of event flag #64.

DSPFST uses the SYSSWAITFR system service to place
itself in a wait state until event flag #64 is set on. Once
this occurs DSPFST will execute over any processes of lesser
priority (all but DSPHDL). The major responsibility of
DSPFST during the 50 millisecond frame is calling procedures
which generate the data buffers used by the display micro-
processors. Data recording procedures are also called at
this time. In addition, several miscellaneous operations
are performed. They include the processing needed when
displays "freeze" has been requested (appendix B), and DSPFST
timing estimates. If event flag #64 is already set when
DSPFST completes the tasks required during the 50 millisecond
frame, a frame time overflow is noted by incrementing the
overflow counter (OVER).

GLOBAL REFERENCES:

VARIABLES
CNT CNTS50 COLDST* DISPST* DP_TEST* FMTSEL* FREEZE* FSTCNT*
FST ERR* HRSS IWSFLG LABFLG MAPUPD* MAXF* MFRAME NEWFILT¥*
OVER* TITLE TM ADR* TOINDX TOPMS*

ARRAYS
OUTDAT

FUNCTIONS AND SUBROUTINES
ASSIGN AWAS MGR C_HDL DDASOT DP_LOAD DSNAP ENGEXC FFPRC
FORSEXIT FTEST INSITU INSITU MGR LIBSESTABLISH LIBS$MOVCS
LIB$SSPAWN LIB$STOP LOCK MAPCOM NAVEXC PFDEXC PFD NASA
REC_ALERTS SYS$ASCEFC SYSSCLREF SYS$CMEXEC SYS$READEF
SYSSWAITFR SYSEXC TOPEXC

40

MODULE NAME: DP_LOAD

FILE NAME: DSPFST.FOR
PROCESS: DSPFST
CALLED BY: DSPFST
CALLING SEQUENCE: CALL DP_LOAD
PURPOSE:

To confirm the display microprocessor configuration.

DESCRIPTION:

DP_LOAD is called when the process DSPFST is first
started. It parses through the input buffer received from
the Sperry microprocessor system to determine which display
formats are loaded. This identification procedure is done
for the following reasons.

The position in the input buffer of bezel button inputs
from particular formats must be known by the host software.
(see appendix A for input buffer layout)

Navigation formats have custom map background data
created and sent destined to particular processors.

The system operator may verify the versions of formats
loaded by examination of the format checksums shown on the
display.

The process DSPHDL must already be active when DP LOAD is
called since it is responsible for performing the I/0 which
fills the microprocessor input buffer.

The first thing DP_LOAD does when called is to wait two
seconds. Even though the process DSPHDL is spawned before
DSPFST, DP_LOAD can sometimes be called before DSPHDL has
received the required inputs.

DP_LOAD steps through the input buffer examining the
return status location for DP11 through DP33. When a format
is loaded in a display microprocessor and operating properly
a unique numeric value is stored in the return status which
is used for identification purposes. DP_LOAD saves each
format’s ID and checksum to create the confirmation display
placed on the console terminal. There are two formats which
have special requirements, the Navigation format and the
Primary Flight format. The MicroVAX display software needs
to save the position where these formats return bezel button
status. Also the microprocessor sequence number (1-9) is
saved for Navigation formats so map background data may be
addressed directly to individual microprocessors.

-4]1-

When DP_LOAD has examined all nine return status
locations it prints its summary to the console terminal. A
prompt message is printed requiring the operator to accept
the information as correct or reject it. If accepted DP LOAD
simply returns. Otherwise a pause message is printed and
DP_LOAD waits for a keyboard entry from the operator which
instructs DP_LOAD to repeat the microprocessor verification
procedure.

GLOBAL REFERENCES:

VARIABLES
TDW_FOUND*

ARRAYS
INDAT PFDBZL*

RECORD ARRAYS
NVEMT *

FUNCTIONS AND SUBROUTINES
FOR$SCLOSE FORSOPEN GET_WORD LIBSSTOP OTSSCVT L TZ SYS$SSETIMR
SYSSWAITFR -

42.

MODULE NAME: DSPSLW
FILE NAME: DSPSLW.FOR
PROCESS: DSPSLW
CALLED BY: VMS

CALLING SEQUENCE: RUN DSPSLW

PURPOSE:
Serve as the executive module for its process.

DESCRIPTION:

DSPSLW is the main program module for the executable
image of the same name. VMS transfers control to the start
of this module when the RUN DSPSLW command is performed.
There are two distinct sections in DSPSLW. The first con-
sists of several operations performed once at the start of
the executable image. The second section consists of things
which are repeated cyclically. Each time it completes the
required tasks it jumps to the start and begins again.

At the start of the executable image, DSPSLW forces all
the program image "pages" into memory. They are locked into
memory to reduce paging I/0 during image execution. The
loading and locking operation is performed by the utility
procedure LOCK. It is called by the VMS system procedure
SYSSCMEXEC (change mode to executive). This is done because
user mode does not have enough privilege to bring some of
the image’s pages into memory. The privileged pages are the
defined exception messages for the condition handler which
are normally only accessed in executive mode by the operating
system.

After page locking is complete the global sections are
mapped into the executable image’s virtual address space.
This is done with a call to the utility procedure MAPCOM.
MAPCOM is passed the name of the image (DSPSLW) which is
used to determine which global sections will be mapped and
whether write privileges are to be granted.

Next the user defined condition handler is established
into the initial stack frame. Any exceptions occurring in
the image DSPFST will be intercepted on their way "up the
stack" to the system condition handler. The standard output
and error devices are logically assigned to the process’s
log file so exception messages may be saved in a file (see
section 2.5).

DSPSLW enters an "infinite loop" where it stays until
the process is stopped by external intervention. The main
function performed here is the creation of data involved
with the map background updates. This is done by the call
to NAVSLW. Other functions include the setting of Primary
Flight Display format status information, initiation of
TOPMS pretakeoff calculations, handling snap-shot data
outputs, and computing background timing estimates.

43

GLOBAL REFERENCES:

VARIABLES
CNT DATA LOG DAY* FRAMES HRSS MAGVAR ORGHDG* ORGLEN* PRINTER

PRN_ACTIVE RPTR RWYID* SLWCNT* SLW_ERR* SPTR TITLE TKFLEN
TM _ADR* TOPMS* TOPST*

ARRAYS
AIRPTS

FUNCTIONS AND SUBROUTINES
ASSIGN C_HDL DAY OF_YEAR GET REAL GET_WORD HARD COPY
LIBSESTABLISH LIBSSIGNAL LIB$STOP LOCK MAPCOM NAVSLW
PRETKF SBXMGR SNAPOUT SYSSASSIGN SYSS$CMEXEC

-44~

MODULE NAME: PRN AST
FILE NAME: DSPSLW.FOR
PROCESS: DSPSLW
CALLED BY: VMS

CALLING SEQUENCE: <AST module>

PURPOSE:
Printer completion AST.

DESCRIPTION:

This Asynchronous Trap procedure (AST) is called by
VMS when outputs to the system line printer have completed.
The flag PRN_ACTIVE is cleared to enable use of the printer
by other modules.

GLOBAL REFERENCES:

VARIABLES
PRN_ACTIVE*

45

MODULE NAME: LOG_AST

FILE NAME: DSPSLW.FOR
PROCESS: DSPSLW
CALLED BY: VMS

CALLING SEQUENCE: <AST module>
PURPOSE:

Log device completion AST.

DESCRIPTION:

This Asynchronous Trap procedure (AST) is called by
VMS when outputs to the system logging terminal have
completed. The flag LOG_ACTIVE is cleared to enable use of
the printer by other modules.

GLOBAL REFERENCES:

VARIABLES
LOG_ACTIVE*

47

Section 5.0 DATA RECORDING

There are five data recording modules which provide the
capability to record selected data on magnetic tape, paper,
and strip charts. The file DISDAT.MAR, linked with the
process DDSTAR, contains a default list of data items to be
recorded through the Data Acquisition System (DAS). It also
contains a group of alternate tables which provide lists of
variables to be plotted on the strip charts. DDSTAR is an
interactive program which permits the experimenter to modify
the data recording tables and to set up "snap" tables for
printing selected variables on the experimental systems line
printer. DDSTAR processes the recording list information
and stores addresses and scale factors for the DAS.

The module DSNAP works with tables generated through
DDSTAR. When a user specified condition is encountered,
DSNAP saves the associated set of data items. Subsequently,
the background module SNAPOUT prints the data values to the
line printer.

The subroutine DDASOT takes the data specified in the
DAS lists, formats it, and stores it in the 50 words of DAS
output memory. The strip chart data are also included in
the DDASOT output, which is routed to the onboard strip
charts by the DAS.

The output from DSNAP and the strip charts is available
in flight. The data stored on the DAS tape is available for
a "quick look" soon after the experimental flight is com-
pleted. DAS information is available over the long term for
more thorough data reduction and analysis.

% Ho | IRIERTIORALLY BLANS PRECEDING PAGE BLANK NOT FILMED

-48-

MODULE NAME: DDASOT
FILE NAME: DDASOT.MAR
PROCESS: DSPFST
CALLED BY: DSPFST

CALLING SEQUENCE: CALL DDASOT

PURPOSE:
To configure the alternate-tables to control the strip
chart recorders, and to reformat certain data for recording.

DESCRIPTION:

DDASOT first checks the NODAS boolean to determine
whether or not DDSTAR is modifying the recording tables, if
true it exits immediately. DDASOT then checks the globals
RECWD, RECWD1l, RECWD2, and RSWADR to determine which set of
alternate tables should be stored in the global DASPAR
parameter list for strip chart recordings. If RSWADR is
clear or if there is a boolean FALSE at the address
contained in RSWADR, then the "normal" table set specified
in RECWD1 is used, otherwise, RECWD2 is used. RECWD
contains the current configuration. If it does not match
the selected pattern, then a new set of alternate tables is
loaded into DASPAR. This will happen when the alternate
tables have been changed through DDSTAR and RECWD is set to
-1. The values in RECWD1l, RECWD2, and RSWADR are user
specified through task VIEW as follows:

RSWADR: USAGE

CLEAR = The primary set of alternate tables will be written
to the DASLST strip chart blocks. (RECWD1)

ADDRESS = The address of some discrete, such as MLSVAL, which
will, when TRUE, cause the secondary set of alternate
tables to be used. (RECWD2) (exercise extreme
caution when using this option, check with the system
administrator to ensure VIEW has the same virtual
addresses as DSPFST.)

RECWD1/RECWD2: BIT MAP

BITS 3,2,1,0: Value 0-7, Use Alt Tables 0-7 for Strip Blk 1.
Value 8-15 Reserved for future expansion.

BITS 7,6,5,4: Value 0-7, Use Alt Tables 0-7 for Strip Blk 2.
Value 8-15 Reserved for future expansion.

BITS 9,8 : Value 0-3, Use Atl Tables 8-11 for Strip Blk 3.
Value 4-15 Reserved for future expansion.

For a normal configuration of tables 0, 1, and 8,
RECWD1 would be set to 0010 hexadecimal. For a
secondary configuration of tables 4, 5, and 9, RECWD2
would be set to 0114 hexadecimal.

49

The most recent table configuration is recorded in
RECWD. If this does not match the selected pattern, then
the table addresses need to be changed. Otherwise, control
passes to the data processing code at label CONT. DDSTAR
selects recording table configuration 0010 hexadecimal by
default.

The alternate-table setup is done at label DOIT. As
appropriate, RECWD1l or RECWD2 is moved into RECWD as the new
configuration record. ALTPAR is the source of the new
tables. It is loaded by DDSTAR from DISDAT and/or from
user input. It consists of 12 tables with 8 entries per
table, 2 long-words per entry. The format and its
significance are:

LWORD1: Bits 31-25 Unused
" 24 ON denotes an 8 bit variable.
n 23:16 shift count (+ = Left), used to
position integer data for recording.
" 15 SET denotes NOT floating point data
" 14:0 Scale factor for the data.

NOTE: For a floating point variable, the entire longword is
a scale factor.

LWORD2: Address of the data.

The three required tables are identified and
transferred to the first 16 entries (8 x 3) in DASPAR,
the primary DAS recording list which includes both the
alternate tables and the rest of the data list for
recording. On a run where a table change has occurred,
DASOT terminates at this point.

On a nominal run, when the tables are static, DASOT
builds the packed discrete DISOUT and also calculates and
stores the current navigation position errors. The booleans
to be packed into DDISOT are listed locally at label DISLST.
The sign bit of each boolean is shifted left into a register
which, at the end, is shifted to place the bits at 0:9, and
moved into DDISOT. Then, LAT and LON are converted to 32
bit integer data and output as LATFIN and LONFIN.

GLOBAL REFERENCES:

VARIABLES
ALTDIF* ALTPAR DASPAR* DISOUT* GUID2D GUID3D GUID4D IDDLTC*
IDDLNC* LAT LATDIF* LONDIF* LONINS RECWD* RECWD1 RECWD2
RSWADR

50

MODULE NAME: DDSTAR (Displays DAS/Snap Access Routine)
FILE NAME: DDSTAR.FOR

PROCESS: DDSTAR

CALLED BY: A: DSPHDL (on cold start)

B: The User (manually)
CALLING SEQUENCE:

A. VAXHDL:
DS _PROC_NAME: .ASCID /DDSTAR/
$CREPRC_S IMAGE=DS_PROC_NAME, - ; DSTAR IMAGE NAME
- INPUT=TERM DESC, - + USE CREATING PROCESS’S
OUTPUT=TERM DES, - H I/0 DEVICE
BASPRI=#20, - ; PRIORITY 20 (RUNS NOW)
PRCNAM=DS_PROC_NAME ; SUBPROCESS NAME

B. Manually: RUN DDSTAR

PURPOSE:

A utility to transfer recording parameters for
the Data Acquisiton System (DAS), to accept interactive
modifications to the existing parameters, and to create
parameter tables for the DSNAP routine.

DESCRIPTION:

The primary function of DDSTAR is to load the tables
(DASPAR & ALTPAR) used by DDASOT to select and route data to
the Data Acquisition System (DAS) for recording on tape or
on the aircraft strip charts. This is done automatically
and transparently on system startup (cold start) when DDSTAR
is called by the I/0 handler (DSPHDL). 1In this case, DAS
processing is enabled for whatever data is defined in the
default DAS list, nominally DISDAT. This is an external
file included in the DDSTAR process which is documented
separately in this volume. (DDSTAR defines DISDAT as a
common block containing structured records which correspond
in format and quantity to the entries in DDATA and ATABL,
the 2 global data blocks in DISDAT.)

The secondary function of DDSTAR is to run
interactively and accept user input to modify the DAS list,
or to create or modify the snap tables. Snap tables (SCRIT)
do not pre-exist and can only be created through DDSTAR.
DDSTAR also provides a mechanism for saving/returning snap
tables, DAS changes, and alternate table changes to/from
disk storage.

51

The interactive routine is menu driven and generally
self explanatory. However, more detailed instructions will
be displayed at various points if the user selects tutorials
in response to the initial question and prompt: "Do you
want tutorials? Y/N."

There are up to 50 entries in the DDATA section of the
DAS list, each consisting of a name, address, and scale
factor. Entries may be changed, and/or new ones added up to
the limit. Entries 1 through 16 are used for the strip
chart parameters and are organized in two blocks of eight
entries each. Each of these blocks corresponds with 1 of
the 12 alternate tables which may be read into this area by
subroutine DDASOT. These alternate tables are maintained in
the lower section of DISDAT, in the global data block ATABL.
Tables zero through seven relate to blocks one or two. In
either mode of operation, the contents of DDATA and ATABL
are written to the global DASPAR and ALTPAR tables, respec-
tively, during the DAS dump routine.

When modifying the DAS list, the user will be required
to enter scale factors for each data item entered or
changed. These are explained in the DISDAT documentation in
this volume.

Up to eight snap tables may be created. The user
should be prepared to enter the name of the variable to be
used as the key for the snap, the value at which the snap
should occur, the range or "window" if an exact match is
not required, and the names of up to 15 variables to be
"snapped" to the printer when the snap occurs.

When the name of a variable 1s requested, DDSTAR will
recognize the name of any global variable in any global
section in the system. Local variables or local common
blocks cannot be referenced. Array elements can be
specified with the index in parentheses. A series of array
elements can be inserted as one entry by appending an
asterisk and count to the index. For example, XYZ(3*15)
will pick up element 3, plus the next 14, for a total of
15.

The use of the "bare" carriage return is consistent
throughout DDSTAR. It will terminate the current activity,
such as a series of data entries, and re-display the
previous menu. From any point in the program, three or four
carriage returns, at most, will bring control back to the
main SNAP/DAS option. There is no limit on the direction or
number of times the user may go back and forth through the
various sub-options.

Program exit may be selected in response to several
menus. However, at any point in the program a control-2
will cause an orderly exit. This is the usual method.

52.

The exit routine calls the dump routines for whichever
set of tables was modified during the session. For the DAS
and alternate tables, the dump routines first transfer the
recording parameters, then print a list of the tables on the
aircraft line printer. For the snap tables, it is only
necessary to print the list. During an automatic run,
nothing is printed. During the first manual run after cold
start, both the DAS and alternate tables will be printed,
whether modified or not. Otherwise, only the modified set
is printed.

The DDSTAR module includes 11 subroutines and calls one
external subroutine (SYM SEARCH).

GLOBAL REFERENCES:

VARIABLES
ALTDMP CHCNT COLDST DASDMP DDATE GETNAME* NOSNAP*
PRINTOUT RECWD1l* SNAPACT* SNAPDMP SNENT TERM TUTOR

FUNCTIONS AND SUBROUTINES
DASDUMP DASPRC FOR$CLOSE FORSDATE T DS FOR$OPEN MAPCOM

SNAPDUMP SNPRC

53.

MODULE NAME: CHECK

FILE NAME: DDSTAR.FOR

PROCESS: DDSTAR

CALLED BY: GITEM, NSNAP, OLDSNAP

CALLING SEQUENCE: CALL CHECK

PURPOSE:
To return the location in an input string of a ’/ (*)’

character sequence.

DESCRIPTION:

Check returns an index, relative to the beginning of a
character string, of the location of the left parenthesis
(LPAREN), asterisk (ASTER), and right parenthesis (RPAREN)
if they exist. The variables used by CHECK are located in a
local common area. These variables include CBUF, a 14 character
buffer containing the input string; CHCNT, a character count
which may include blanks; and LPAREN, ASTER and RPAREN which
were previously defined. 1In addition to the indices returned,
CHCNT will be updated to reflect the elimination of any embedded
blanks.

If the character string is not found, LPAREN, RPAREN, and
ASTER are set to zero and a return is made to the caller. An
error check is made to ensure that the left parenthesis occurs
- before the right parenthesis. If it does not, the following
message is displayed at the user’s terminal-

’ NO RIGHT PAREN ! TRY AGAIN'.

GLOBAL REFERENCES:

VARIABLES
ASTER* CBUF CHCNT* ERROR* LPAREN RPAREN

-54-

MODULE NAME: DASDUMP
FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: DDSTAR

CALLING SEQUENCE: CALL DASDUMP

PURPOSE:
To setup DASPAR for use by DDASOT and to print the
recording, snap, and alternate tables if requested.

DESCRIPTION:

If the DASDMP flag is true, the DAS recording parameters
are transferred to the DASPAR buffer from the temporary area
DDATA. Since this affects the data recording process, the NODAS
flag is set to inhibit data recording while DASPAR is being
modified. Likewise, if the ALTDMP flag is true the alternate
table data is transferred to the ALTPAR buffer.

If the PRINTOUT flag is set and DASDMP is true, the DAS
list will be printed. If the PRINTOUT flag is set and ALTDMP
is true, the alternate tables will be printed.

GLOBAL REFERENCES:

VARIABLES
ALTDMP DASDMP DDATE DNENT NNAME NODAS* PRINTOUT RECWD* TIME

RECORD ARRAYS
ALTPAR* ATABL DASPAR* DDATA

FUNCTIONS AND SUBROUTINES
FMTTIM FORSIMVBITS

55

MODULE NAME: DASPRC
FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: DDSTAR

CALLING SEQUENCE: CALL DASPRC

PURPOSE:
To serve as the controller for DAS and alternate table
processing.

DESCRIPTION:

This module serves as the user interface to DDSTAR for
all DAS and alternate table functions. Menus are dis-
played to the user from which the desired functions may be
selected. These functions include modifying the DAS 1list,
modifying the alternate tables, writing the DAS or alternate
table modifications to disk, reading the specified DAS or
alternate table modifications from disk, and printing the DAS
list and/or alternate tables.

The user supplies inputs in response to program prompts
once the desired function is selected. Error checking of inputs
is performed and informational messages are displayed to guide
the user through an interactive session.

GLOBAL REFERENCES:

VARIABLES
ACNT* ALTDMP* ALTFLG* CBUF CHCNT DASDMP* DASFLG* DCNT* DDATE
DNENT ERROR* GETDAS* GETOLD* ITNUM MAX* TABLE* TERM* TUTOR

RECORD ARRAYS
ASAV ATABL DDATA DSAV

FUNCTIONS AND SUBROUTINES
FORSCLOSE FORSOPEN GITEM UCASE

56

MODULE NAME: GITEM

FILE NAME: DDSTAR.FOR

PROCESS: DDSTAR

CALLED BY: DASPRC, NSNAP, SNAPMOD

CALLING SEQUENCE: CALL GITEM

PURPOSE:
To prompt the user for an item name and scale factors
as necessary.

DESCRIPTION:

This module serves as the user interface for the input
of any global variable, scale factor, or snap criteria data.
These data may be processed from user supplied interactive
inputs or previously saved changes recovered from a disk file.
For each global variable name specified, a call is made to
the ’SYM SEARCH’ module which searches the global symbol table
to ensure that it is a valid name. SYM SEARCH also returns the
variable address, type (real, integer,etc.), and length in bytes
which are used for creating the various recording tables or the
snap tables.

As with other DDSTAR modules, this one also provides prompts
and processes user supplied inputs. Error checking is performed
and messages displayed to guide the user as necessary. Limit
checking is performed on DAS entries and alternate table entries
(a max of 50 entries allowed for each for saving on disk).

GLOBAL REFERENCES:

VARIABLES
ACNT ADR ALTFLG ASTER CBUF CHCNT DASFLG DCNT DNENT* ERROR*
GETDAS* GETNAME GETOLD* ITNUM* LGTH LPAREN MAX REPEAT RPAREN
SDONE SMOD SNAPACT SNENT* TABLE TERM* TYP

ARRAYS
SNAME*

RECORD ARRAYS -
ASAV ATABL DDATA* DSAV* SCRIT*

FUNCTIONS AND SUBROUTINES
CHECK SYM SEARCH UCASE

-57-

MODULE NAME: NSNAP

FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: SNPRC

CALLING SEQUENCE: CALL NSNAP
Alternate entry point: CALL GETKEY

PURPOSE:
To create a new snap table or to replace the name and

criteria data for a key variable.

DESCRIPTION:
This module establishes a snap table by creating the
key variable as input by the user and also prompting the user
for the conditions under which the snap is to occur. A call is
made to ’/SYM SEARCH’ to search the global variable table for
the key variable to ensure that it is a valid name. As with
other DDSTAR modules, prompts are supplied and user inputs
processed in an interactive session. Error messages are
displayed as appropriate to guide the user through the session.
The alternate entry point, GETKEY, is used whenever the
user is modifying the key variable of an existing snap table.
Once this determination is made, the logic path is followed
as for the main entry point NSNAP.

GLOBAL REFERENCES:

VARIABLES
ADR CBUF CHCNT ERROR* ITNUM* LGTH LPAREN MAX* NNAME NNENT
RPAREN SDONE SNENT* TABLE* TERM* TUTOR TYP

ARRAYS
SNAME *

RECORD ARRAYS
SCRIT*

FUNCTIONS AND SUBROUTINES
CHECK GITEM SYM SEARCH UCASE

58

MODULE NAME: OLDSNAP
FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: SNPRC

CALLING SEQUENCE: CALL OLDSNAP

PURPOSE:
To read or write a snap table to or from a disk file.

DESCRIPTION:

If a file is to stored on disk, a test is made to ensure
that a snap has been defined, if not a message ’'NO SNAPS
DEFINED, NOTHING SAVED’ is displayed. If a snap has been
defined, the user is requested to enter a file name. Error
checking is performed for all I/0 operations and an appropriate
message is returned for any detected errors. A successful
write operation is announced by the message / SNAP TABLES SAVED
ON FILE filename’ where ‘filename’ is the user supplied name.

If a file is to be recovered from disk, the user is
requested to enter the desired file name. As for the store
function, error checking is performed for all I/0 operations
and appropriate messages returned for any detected error.

When the data have been read from disk, each entry is processed
as if it were entered from the keyboard. This ensures that
data requested from older versions of the flight software are
valid with the current version. Once again, an error message
will be displayed for any variable not found in the current
global symbol table. If no errors are detected, the message

' SNAP TABLES RECOVERED'’ is displayed on the user’s terminal.

GLOBAL REFERENCES:

VARIABLES
ADR CBUF CHCNT ERROR LGTH LPAREN RPAREN SNAPDMP* SNENT
SNPSAV* SRST* TYP

ARRAYS
SNAME

RECORD ARRAYS
SCRIT*

FUNCTIONS AND SUBROUTINES
CHECK FOR$CLOSE FORSOPEN SYM SEARCH

59

MODULE NAME: SNAPDEL
FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: SNPRC

CALLING SEQUENCE: CALL SNAPDEL

PURPOSE:
To delete a previously entered snap table.

DESCRIPTION:

This routine 1s used to delete a snap table from the
current working set of DDSTAR snap tables. It is not used
to delete previously saved snap tables from disk which may
be accomplished by using the appropriate VAX/VMS commands
(See VAX/VMS DCL Dictionary for details). The desired
snap table number for deletion is entered by the user prior
to this routine being called by SNPRC.

GLOBAL REFERENCES:

VARIABLES
DEL* SNENT*

ARRAYS
SNAME *

RECORD ARRAYS
SCRIT*

FUNCTIONS AND SUBROUTINES
FORSBITEST

-60-

MODULE NAME: SNAPDUMP
FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: DDSTAR, SNAPMOD
CALLING SEQUENCE: CALL SNAPDUMP (tnum, nent)
where: tnum - table number to dump (zero indicates

all tables are to be dumped)

nent - output parameter containing number of
entries found in the table.
(n/a when tnum is zero)

PURPOSE:
To print a copy of the selected snap table(s).

DESCRIPTION:

This routine displays the specified snap table at the
user’s terminal or all snap tables on the onboard line
printer if ’‘tnum’ is zero. It may be used to review snap
tables prior to flight or storing them on disk. It may also
be used to obtain a listing of the current working set of snap
tables for record keeping purposes.

GLOBAL REFERENCES:

VARIABLES
DDATE SNENT TIME

ARRAYS
SNAME

RECORD ARRAYS
SCRIT

FUNCTIONS AND SUBROUTINES
FMTTIM FORSBITEST

61

MODULE NAME: SNAPMOD
FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: SNPRC

CALLING SEQUENCE: CALL SNAPMOD

PURPOSE:
To modify an existing snap table.

DESCRIPTION:

This routine permits the user to modify a previously
completed snap table. The snap table to be modified is
entered by the user in response to a program prompt prior
to this routine being called by SNPRC. Modifications are
then made in response to program prompts which guide the user
through a session. Inputs are error checked and appropriate
messages displayed on the user’s terminal when errors are
detected. Any data in the snap table may be modified includ-
ing the key variable.

GLOBAL REFERENCES:

VARIABLES
CBUF CHCNT ERROR* GETNAME* ITNUM* MAX* MOD NNENT* SMOD*
TABLE* TERM*

ARRAYS
SNAME *

RECORD ARRAYS
SCRIT*

FUNCTIONS AND SUBROUTINES
GETKEY GITEM SNAPDUMP UCASE

-2~

MODULE NAME: SNPRC

FILE NAME: DDSTAR.FOR
PROCESS: DDSTAR
CALLED BY: DDSTAR

CALLING SEQUENCE: CALL SNPRC

PURPOSE:
To serve as the executive routine for all snap

processing.

DESCRIPTION:

SNPRC prompts the user for desired snap table actions
and calls the appropriate subroutines to accomplish them.
These actions include creating/modifying snap tables,
recovering snap tables from disk, and preserving snap tables
on disk.

GLOBAL REFERENCES:

VARIABLES
CHCNT DEL* MOD* NNENT* SNENT SNPSAV* TERM*

FUNCTIONS AND SUBROUTINES
NSNAP OLDSNAP SNAPDEL SNAPMOD

-63-

MODULE NAME : SYM SEARCH
FILE NAME: SYM SEARCH.FOR

PROCESS DDSTAR

CALLED BY: DDSTAR

CALLING SEQUENCE: CALL SYM SEARCH (SYMBOL, ADDRESS,FORM, SIZE)
PURPOSE :

To look-up information about a flight software global
variable.

DESCRIPTION:

The name of a flight software global wvariable is passed
as a character string, by descriptor, to SYM SEARCH as the
first calling parameter. The address, format, and byte
length associated with the variable are returned through the
remaining three call list parameters. When the symbolic
name is not found in the global symbol table, all the return
values are zeroed.

The global symbol table is a group of symbol infor-
mation packets having the following format.

Name length 1 byte
Name variable length
Address 4 bytes
format code 1 byte
memory length 1 byte

The format codes have the following meaning. The first two
both have the same machine data representation (floating
point). The utility process VIEW differentiates between
these by using floating exponential format to display
variables with a format code of "2".

floating point
floating point
signed integer
unsigned hexidecimal
ASCII

N Wk

The symbol search starts at the begining of the global
symbol table. Both the start address of the table and the
number of entries, a global constant, may not be accessed
directly from Fortran because of their definition. They are
accessed by SYM SEARCH by declaring them external procedures
and using the %LOC operator to obtain their value. The
utility functions GET _BYTE and GET_LONG are used to fetch
data from the table as it is searched. The library function

-64-

STRSCOMPARE is used to find a match in symbol names. Since
this function requires character string inputs, a descriptor
is constructed and passed to STRSCOMPARE to make the global

symbol table name appear as a character string.

GLOBAL REFERENCES:

VARIABLES
SYMNUM

ARRAYS
SYMTAB

FUNCTIONS AND SUBROUTINES
GET_BYTE GET_LONG STR$COMPARE

MODULE NAME:

FILE NAME:

PROCESS:

CALLED BY:

CALLING SEQUENCE:
where:

PURPOSE:

-65-

UCASE

DDSTAR.FOR

DDSTAR

DASPRC, GITEM, NSNAP, SNAPMOD

CALL UCASE (cbuf, chcnt)

cbuf - character buffer containing data

chcnt - number of characters to convert
to upper case

To convert lower case ASCII characters to upper case.

DESCRIPTION:

The input characters are tested to ensure that they
are in the range a - z and then converted to upper case if
they are. Otherwise the characters remain unchanged.

GLOBAL REFERENCES:

none

66

MODULE NAME: DISDAT

FILE NAME: DISDAT.MAR

PROCESS: DDSTAR

CALLED BY: None (Components are addressed by their

global names: ATABL, DDATA, DNENT)

PURPOSE:
To provide a list of data parameters for recording.

DESCRIPTION:

DISDAT is the component of the DDSTAR task which
contains the default list of data from the Displays computer
to be recorded by the Data Acquisition System (DAS). It
contains up to 50 names and corresponding scale factors. Of
these, the first 16 specify the output to the strip chart
recorders. There is also a group of 12 alternate tables
with eight entries each. Two of these may be selected
during flight to be read into the strip chart block entries
one through sixteen.

DISDAT consists of two functions and two global data
blocks. The data block DDATA contains space for 50 entries
and the block ATABL contains space for 12 tables of §
entries apiece. Entries are of the form:

1) .ASCII /ZHAT_FINE /
REAL ZHAT, 512.

2) .ASCII /YHAT COURSE /
INTEG YHAT, 2048.

3) .ASCII /EVENT7 /
INTEG HOLDM, 2048.,B

The ASCII name field may contain any 12 printable
characters or symbols except for a slash. The function REAL
will, at assembly time, convert and store the second line as
an address and a scale factor in floating point format. The
function INTEG does the same except that it stores the
address with a negative sign and, if there is a third
parameter such as in the third example, then the scale
factor is stored with negative magnitude. This indicates a
one-byte variable. When the file is ultimately processed by
DDSTAR, a positive address signifies that the variable is a
real number, a negative address that it is an integer, and a
negative scale factor that it is a boolean value.

The scale factor is a decimal number which determines
how the data will appear on a strip chart, either on the
aircraft or in the post-flight data reduction phase.
Starting from a value of zero at the centerline of the
chart, the scale is the number at which the needle will be

67

at the edge of the chart. When this limit is exceeded, the
recorder "wraps-around"; the needle jumps to one side or the
other and continues reflecting relative changes in the data.
Thus, aircraft altitude, scaled at 500.0, would wrap quickly
as the aircraft climbs or descends, but it would give a good
record of small changes from level flight. Scaled at its
maximum range, say 40,000 feet, the resolution of the
altitude plot would be very poor.

Scale factor determination must consider the
resolution available in the DAS and on the strip chart
recorders. The DAS records the most significant 16 bits of
data. The recorders can display only 12 bits, including the
sign bit. The on-board recorder displays the most
significant 12 bits. In post-flight analysis, the recorders
can display any 12 bit string in the word.

If data of large magnitude is scaled to display small
changes on the strip chart and if it is also necessary to
record it at its actual magnitude, then it can be recorded
twice. However, to permit post-flight reconstruction, the
scale factors must be determined such that there is an
overlap of significant bits. This can be done by relating
the scale factors to some power of 2, up to 2 ** 15, For
example:

REAL POSHAT+10,100. ; 53 ZHATF FEET
REAL POSHAT+10,204800. ; 54 ZHATC FEET

The 100 scale factor for ZHATF will produce good resolution
for small changes. At 100 * (2**11) the scale for ZHATC,
204800 feet, is slightly more than the maximum range of ZHAT
(32 miles) and it provides a 5 bit overlap in the 16 bit
words. Boolean data items are usually scaled at 2048, which
equates to full displacement of the needle.

The comment section of a DDATA line also requires
attention because some of the fields are parameters for one
of the data reduction programs (CALDAS). The line length
may not exceed 72 columns. The last word on the line
specifies the unit of measurement. This field may not
exceed 10 characters and it may not contain embedded blanks,
commas, or slashes. Left-leaning slashes and underlines are
acceptable. Any type of unit may be specified, but
discretes must be indicated by the word "discrete." 1In the
case of a "packed discrete," then those two words must be
present. Abbreviations are not acceptable.

The alternate tables are short versions of DDATA.
Tables O through 7 are for real or integer data. Tables 8
through 11 do not differ from tables 0 through 7. However,
there is a hardware strip chart recorder interface
limitation that requires these tables to contain only
booleans defined as integers (INTEG). Specifically DAS
channels 17-24 must contain only booleans for onboard strip
chart recording.

68

MODULE NAME: DSNAP

FILE NAME: DSNAP.FOR
PROCESS: DSPFST
CALLED BY: DSPFST
CALLING SEQUENCE: CALL DSNAP
PURPOSE:

To record snapshot values of user specified
variables according to user defined criteria.

DESCRIPTION:

The DSNAP routine records single-event values, called
snapshots, for selected variables and stores them in
SNAPBUF, in DSRCOM, for subsequent output to the line
printer by the SNAPOUT routine. There are 5 snapshot
criteria tables (SCRIT), each a structured record which
contains a key variable address, the criteria under which
that variable should cause a snapshot recording, and a list
of up to 15 addresses for the data to be sampled when the
snapshot occurs. (See the SCRIT table documentation in the
DSRCOM listing.) These tables are set up by the user
through the DDSTAR process.

DSNAP checks as many snap tables as have been defined
in DDSTAR (indicated by SNENT). First, the type of the key
variable is determined from the STYPE sub-field in the SCRIT
tables. Depending on whether the key is an integer, real or
single-byte, the current value is picked up through a call
to GET_WORD, GET_REAL, or GET_BYTE, respectively. All three
types are processed similarly. The specified criteria may
be that the current value be less than, equal to, or greater
than the threshold. 1If equality is specified, then a
"window" will also have been specified and some approxi-
mation of equality will be acceptable. If the specified
condition is met and a snap has not already been done for
this condition, then subroutine DUMP is called and the "SNAP
Done" bit is set in the type word. If a snap has been done
for the specified condition, then, if that condition is no
longer true, the "done" bit is cleared and that snap
re-enabled. Thus, only one report is generated each time
the condition is satisfied.

That single-byte key variables may be booleans or
single-byte integers is irrelevant; both possibilities are
checked as if they were integers. A FALSE condition is
recognized by a value of exactly zero, TRUE is the least
significant bit set. This could also be true for a single-
byte integer but the difference is significant only for
subroutine SNAPOUT to determine the labelling when the snap
is printed.

69

Subroutine DUMP first increments SPTR (modulo-4) to
tell SNAPOUT that a new snap has been recorded, then it
stores the number of the snap in the 16th entry of
SNAPBUF (n) .SDATA. Next, for as long as there is an address
(up to 15) in SCRIT(n).SLADR, the address list, it deter-
mines the type and byte count of each variable in the 1list,
collects the value at the address through calls to GET WORD,
GET REAL, or GET_BYTE, as appropriate, and finally stores
them as integers or real numbers in the first 15 entries of
SNAPRUF (n) .SDATA (or .SDATR). A flag is set to indicate
whether the variable is an integer or a real number, or else
that there was an error or the end of the 1list.

GLOBAL REFERENCES:

VARIABLES
NOSNAP RPTR* SNENT SPTR* SRST*

RECORD ARRAYS
SCRIT*

FUNCTIONS AND SUBROUTINES
DUMPS FORSBITEST GET BYTE GET REAL GET_WORD

-70-

MODULE NAME: SNAPOUT

FILE NAME: SNAPOUT.FOR
PROCESS: DSPSLW
CALLED BY: DSPSLW
CALLING SEQUENCE: CALL SNAPOUT
PURPOSE:

To format and print snapshot recordings on the
aircraft line printer.

DESCRIPTION:

SNAPOUT prints out snap data whenever new snapshots
have been added to the snap buffer (SNAPBUF (n) .SDATA) . The
global counter SPTR is set by the SNAP routine when a new
snap is stored. The global counter RPTR is set by the
SNAPOUT routine when the snap is printed. 1If the two
numbers do not agree, then one or more snap lists remain to
be printed and DSPSLW makes the call to SNAPOUT. Both
counters are modulo-4. SNAPOUT prints one list per call.

If a snap is to be printed, SNAPOUT first increments
the read counter RPTR and then formats a header line with
the snap number, the name, the time, and the snap criteria,
storing these in the output buffer OBUF. It then takes one
entry at a time from the snap buffer, checks the form
(integer, real or boolean), performs the necessary conver-
sions, and stores the ASCII value in the output buffer. It
repeats this for 5 entries per line, for 3 lines, or until
the buffer is empty.

Because SNAPOUT requires a change in the I/0 device,
printing must be synchronized at the executive level. The
flag PRN_ACTIVE is used to signal that I/0 is in progress
and the output is then initiated through a call to SYS$QIO.
Subroutine PRN AST, specified in the QIO statement, clears
PRN_ACTIVE when the I/0 is complete.

GLOBAL REFERENCES:

VARIABLES
PRINTER PRN_ACTIVE* RPTR

RECORD ARRAYS
SNAPBUF

FUNCTIONS AND SUBROUTINES
LIBSSIGNAL OTSS$CNVOUT OTS$CVT_L TI PRN_AST SYS$QIO

._'71_

Section 6.0 NASA PFD SOFTWARE

The PFD format shows the current aircraft attitude and
provides other critical "aircraft state" information to the
pilot. Refer to the PFD format drawing at the end of this
section.

The most outstanding section of the PFD format is the
rectangular area around the screen center that is topped by
a 106 degree arc segment. This area is referred to as the
PFD view window. Within the window a number of symbols
appear that depict aircraft roll, pitch, yaw, actual and
reference flight path angle, angle of attack, and track
angle information. Three dimensional representations of the
"TO" waypoint and the destination runway are displayed in
the window along with a flare guidance cue, radar altitude,
and alert messages.

Angular perspective in the window is provided by the
pitch grid and horizon ticks. The pitch grid has a double
solid line representing the horizon which separates the sky
from the ground, along with parallel grid bars spaced in 5
degree increments. Along the horizon line, tick marks are
spaced to show 10 degree steps of horizontal displacement.
The other window symbology is interpreted against the grid
and ticks to ascertain proper angular readings. The area
from the horizon line to the top of the view window is
raster filled in blue to easily distinguish the sky/ground
boundary formed by the horizon line. At the top of the
window along the arc is a roll scale which uses a triangular
pointer to designate current aircraft roll angle. The roll
angle read from the scale corresponds to the amount of rota-
tion applied to the horizon line within the view window.

On either side of the view window are gray raster filled
rectangular areas called the airspeed and altitude tapes.
They have tick marks and numeric values which can slide
vertically giving the appearance of a rolling measurement
tape.

The airspeed tape, on the left side of the view window,
has the current aircraft airspeed value in the blacked out
area at the center of the tape. A blue, amber, or green
pointer box may also appear at the appropriate spot on the
tape representing the current airspeed selection from the
pilot’s mode control panel. When airspeed is changing an
elongated arrow will grow from the tape center vertically
along the outside of the tape ticks and point to the
airspeed that will be reached in ten seconds at the current
rate of acceleration or deceleration. Also along the same
edge of the airspeed tape is a wedge marker that indicates
the upper airspeed suggested for the current aircraft flap
settings. Directly below the airspeed tape the selected
airspeed value, that corresponds to the airspeed pointer
box, is shown in either green or amber. The aircraft mach
number is shown above the airspeed tape when the value
exceeds 0.5.

72

On the right hand side of the view window is the alti-
tude tape. Similar to the airspeed tape, the current air-
plane altitude is shown in the blacked out area at the tape
center. Alongside the sliding altitude tape on the right
is the vertical speed scale. A yellow arrow grows from the
center indicating the rate of change in altitude in units
of thousands of feet per minute. A blue, amber, or green
pointer box may also appear on the altitude tape represen-
ting the selected altitude from the pilot’s mode control
panel. An amber or green triangular pointer which
represents the vertical profile of the aircraft’s flight
plan may also appear along the altitude tape edge. The
glideslope pointer and scale are shown just to the left of
the altitude tape when selected. These appear as a set of
deviation dots with a diamond shaped pointer. Included in
the pointer are the letters "GP" or "GS" standing for glide
path (MLS) or glideslope (ILS) respectively. The dots and
pointer may be green or amber. Immediately below the
altitude tape area is the barometric pressure setting from
the pilot’s control display unit (CDU). The selected
decision height value appears above the altitude tape.

The horizontal deviation indicators and scales are
presented below the PFD view window. Horizontal deviation
from the aircraft’s flight plan is shown by an amber or green
box pointer, entitled "HOR", placed above a deviation scale.
MLS azimuth or ILS localizer deviations are shown by a
triangular pointer placed directly below the HOR deviation
scale. The pointer indicates position relative to five
deviation "dots" which appear along the bottom edge of the
HOR scale. The pointer and dots may be shown in amber or
green.

The corners of the PFD display contain information
pertaining to the current control and guidance modes of the
airplane. The upper left corner shows the current control
and auto-throttle mode. The destination waypoint of the
flight plan is shown in the upper right corner. The
currently selected horizontal and vertical guidance modes
are shown in the lower left and right corners respectively.
Both armed and engaged modes are announced, color coded
in amber (armed) and green (engaged) .

The three upper right bezel panel buttons are active
on the PFD format. They are used to select the waypoint
star, perspective runway, and alert messages in order from
the top.

Only the right hand potentiometer, which controls the
value of the decision height, is used for the PFD format.

73

The interpretation of some of the symbology in the PFD
window is affected by the "Velocity Vector" mode. This
mode changes the orientation of the symbols within the
window. The display is considered in a velocity vector mode
when velocity control wheel steering (VCWS) or automatic
guidance with pilot selectable flight path angle (FPASEL)
is being flown. The current mode can be identified from
the display screen by viewing the "Gamma wedge" and "Air-
craft" symbology. In the velocity vector mode the gamma
wedge is a large stationary symbol, positioned at the screen
center. The small aircraft symbol moves relative to the
gamma wedge to depict angle of attack and drift angle. 1In
the standard mode a large aircraft symbol is fixed .8375
inches above screen center. Angle of attack and drift angle
are shown by the small moving gamma wedge. In either case
the pitch and flight path angle values associated with these
symbols can be read directly off the pitch grid. The ori-
entation of three items within the view window are affected
by velocity vector mode. They are the "Star Waypoint",
"Perspective Runway", and "Horizon Ticks" symbols. These
three objects all represent positions relative to the air-
craft body in the standard mode as follows.

STAR The 3D position of the next waypoint.

RUNWAY The 3D perspective outline of the destination
runway.

TICKS The angular displacement to the nearest ten

degree heading markers.

All three are representations of what would be seen through
the pilot’s view window. Since the airplane typically flies
in a direction slightly different from the direction pointed
to by the aircraft body, the use of the above mentioned sym-
bols is limited. When the aircraft is approaching a refer-
ence point, such as the runway, the nose of the airplane
usually will be pointing away from it because of drift angle
and angle of attack. Therefore the object will be displaced
from the center of the screen, corresponding to being off to
the side or top of the pilot’s view window. This problem is
rectified by the velocity vector mode. Instead of orienting
symbols relative to the direction indicated by the aircraft
body, they are aligned in the direction the aircraft is
moving (inertial axis).

-75-

VCWS TDAZ2?
AT CAS Ky

DH200

160~ —— — — 10087°

| J . -3

I [sp0f°

1 460 L | X | ~ :1

& h

Eﬂ% N— S

%; -~ o)

120~ : A

d [e

] Lo T _—-5@@”3

106 RA107 - 5

CAS 129 5595 T

LS R i Y ° MLS GP

AZ FLARE

PRIMARY FLIGHT DISPLAY

-figure 6.1~

@aﬁiﬂgﬁmwmm BIANK

PRECEDING PAGE BLANK NOT FILMED

gection 6.1

Ssixteen proc
display buff
chart lists
code language an

as utility

Refer

locations us

NASA PFD PROCEDURES

er data for th

the procedure names al

the mnemonic "PFD".

descriptions

procedures.

ﬁﬁﬁ%‘f7}ﬁ,%jﬁ¢u€H¢NﬁLLH41"‘

)

MODULE

AIRGAM
STAND_OFF

CASMGR

GUIDE
SCLXTK

MSGMGR
PACK

PFD_NASA
ALT_CNVRT

RWYMGR
SCREEN

SBXMGR

STAR
LIMITS

UNPACK

WINDOW

d relative size.
subroutines to another pro
their caller. The size provided is t
pPFD software m

emory usage.
to Appendix A to id
output buffer (OUTDAT) are useé
ed for this format are
The fo
for each of th

SOURCE

FORTRAN

FORTRAN

"FORTRAN

FORTRAN
VAX MACRO

FORTRAN

FORTRAN

FORTRAN

FORTRAN

VAX MACRO

FORTRAN

edures are dedicated to the c
e Nasa PFD format.
ong with their source
Those modules that serve
cedure are shown with
he percentage of total

SIZE

9%

2%
18%

12%
3%
16%

17%

3%
14%

2%
5%

reation of
The following

-77-

entify which locations in the
d by these modules.
tagged in the appendix by
1lowing pages include module

e sixteen NASA PFD software

Note that

PRECEDING PAGE BLANK NOT FILMED

-78-

MODULE NAME: ATRGAM
FILE NAME: ATRGAM.FOR
PROCESS: DSPFST
CALLED BY: PFD _NASA
CALLING SEQUENCE: CALL ATIRGAM
PURPOSE:

To compute the positions of the aircraft and gamma
wedges and their standoff symbols.

DESCRIPTION:

This module determines where the aircraft and gamma
wedge symbols are positioned and calls the procedure
STAND_OFF to perform the computations required for the
"stand off" portions of these symbols. The gamma wedges and
alrcraft symbol are oriented differently in velocity vector
mode (vvmode), and non-velocity vector mode. For a detailed
description of when velocity vector mode is active, consult
Section 6.0 in this document. If "vvmode" is active, the
gamma wedges are fixed at the screen center and the aircraft
symbol moves around the screen relative to the gamma wedges.
The aircraft X and Y positions are based on the rotated yaw
(BETAX) and rotated angle of attack (ALPHAX) wvalues respec-
tively, which are computed in the module PFD_NASA. The term
"rotated" means that these values are transformed into the
pitch axis.

The gamma wedge standoff symbol will appear in "vvmode"
if the pitch column is stabilized (indicating no new flight
path angle is being commanded), and the difference between
actual and commanded gamma is greater than 1.5 degrees. The
standoff symbol is a red dashed diamond, the same size as
the diamond in the middle of the gamma wedges. The standoff
symbol will be displaced directly above or below the gamma
wedges by the degree difference of actual and commanded
gamma. As the two values converge, the standoff symbol will
move closer to the gamma wedges until it is within the 1.5
degree range - at which time it will disappear.

When "vvmode" is not valid, the aircraft symbol be-
comes the fixed object on the screen. It is positioned at
.8375 inches above the center of the screen, which in effect
defines a new screen center. The gamma wedges will now move
relative to the aircraft, with its position based on the ro-
tated angle of attack and rotated yaw values.

There is also a standoff symbol for the aircraft. It
will appear if the attitude control wheel steering button
has been pressed on the pilot’s mode control panel, no pitch
column input is being received, and the difference between
actual and commanded pitch is greater than 1.5 degrees.

-79-

The aircraft standoff symbol is also composed of red dashed
lines, and resembles a "w". It is actually the same size
and shape of the middle section of the aircraft symbol. The
aircraft standoff symbol is displaced above or below the
aircraft by the actual and commanded pitch difference.

It should be noted that the moving aircraft and gamma
wedge symbols are limited to the sides, top, and bottom of
the PFD window, so that they will never disappear entirely
from the screen. Also, the standoff symbols are limited to
the top or bottom edge.

Although AIRGAM does not specify it, there are two sets
of aircraft and gamma wedge symbols for "vvmode" and "non-
vvmode". 1In "vvmode" the gamma wedges fixed at the screen
center are large, while the moving aircraft is smaller. 1In
"non-vvmode" the fixed aircraft is larger, and the moving
gamma wedges are smaller. The displays microprocessor soft-
ware is responsible for determining which set of symbols is
displayed.

GLOBAL REFERENCES:

VARIABLES
ACWS AIRCFX* AIRCFY* ALPHAX BETAX FPAPFD GAMC GAMMA MXALF

PITCH PITFLG RLLFLG STDOFF* VVMODE

FUNCTIONS AND SUBROUTINES
STAND OFF XLIM

-80-

MODULE NAME: STAND_OFF

FILE NAME: ATIRGAM.FOR

PROCESS: DSPFST

CALLED BY: AIRGAM

CALLING SEQUENCE: CALL STAND_OFF (FLAG, DELTA, INIT, BIAS)
PURPOSE:

To compute the "stand off" symbol offsets from the
gamma wedges or aircraft symbols.

DESCRIPTION:

STAND OFF is a utility subroutine called solely by the
procedure AIRGAM. Four values are passed in as formal
parameters. The first is a logical value which signals
when the proper conditions exist for a "stand off" symbol.
The next value is the angular difference between the actual
and commanded aircraft parameter being processed by AIRGAM.
This value is filtered with a half second time constant to
smooth transitions. When the filtered value is above 1.5
degrees the standoff symbol is enabled. A filter initial-
ization flag is the third parameter. The last parameter
passed to the module is a bias value which is added directly
to the computed stand off position. This is for the 5 degree
offset of the aircraft symbol used when not in a velocity
vector mode.

_81..

MODULE NAME: CASMGR
FILE NAME: CASMGR.FOR
PROCESS: DSPFST
CALLED BY: PFD NASA
CALLING SEQUENCE: CALL CASMGR
PURPOSE:
Compute data values associated with the PFD airspeed
tape.
DESCRIPTION:

The calibrated airspeed (CAS) tape is located on the
left side of the PFD format. The current aircraft airspeed
is shown in the window fixed in the center of the tape area.
The acceleration segment is a yellow arrow which starts at
the actual airspeed box and extends vertically to the
airspeed value which will be obtained in ten seconds at the
current rate of acceleration or deceleration. Reference
airspeed is depicted on the display in two ways. A pointer
box is placed along the airspeed tape at the position
corresponding to the desired value. Also the reference
airspeed value is shown under the tape.

CASMGR computes values for the acceleration segment
length, reference airspeed, and actual airspeed. The
fixed point binary values sent to the displays are scaled
to provide the resolution required for accurate presentation
on the PFD screen. Reference airspeed is obtained directly
from the value selected on the pilot’s mode control panel.
Aircraft calibrated airspeed is filtered to remove signal
noise and used as the display CAS value. A one second lag
filter is also applied to find the airspeed rate of change.
The display acceleration segment length is derived from the
alrspeed differential.

The color used for the display of the reference air-
speed is set in CASMGR. Logical values from the pilot’s
mode contol panel are tested to determine the correct
setting of the color index sent to the PFD format.

GLOBAL REFERENCES:
VARIABLES

ACCSEG* CAS CASACT* CASF CASFLG* CASREF* IASARM IASSEL
IASSUM

82

MODULE NAME: GUIDE
FILE NAME: GUIDE.FOR
PROCESS: DSPFST
CALLED BY: PFD NASA

CALLING SEQUENCE: CALL GUIDE

PURPOSE
Process PFD horizontal and vertical modes as dictated
by the pilot’s mode control panel.

DESCRIPTION:

This procedure serves as the interface between the PFD
format and the pilot’s mode control panel. The horizontal
and vertical guidance modes selected on the mode control
panel are reflected in various types of color coded PFD text
and symbology. The three light colors which may appear on
the mode control panel are blue, amber, and green. They
signify that the various modes are preselected, armed, or
engaged respectively. The associated PFD format symbology
follows the mode contol panel color coding to provide
clear correspondence between the cockpit readout devices.

GUIDE performs its processing in the five steps listed
below.

Process the engaged vertical axis mode
Process the armed vertical axis mode
Process the preselected vertical axis mode
Process the engaged horizontal axis mode
Process the armed horizontal axis mode

Note that there are not any preselected horizontal axis
modes.

The remainder of this module description shows the
various modes available in the horizontal and vertical
guidance axes. The PFD symbology affected by the guidance
modes is also included.

VERTICAL AXIS

GUIDANCE MODES
Auto land flare
Auto land glideslope (GPS)
Auto land glideslope (MLS)
Auto land glideslope (ILS)
Vertical path
Altitude selection
Flight path angle selection

-83-

PFD SYMBOLOGY
Glideslope bug and scale
Vertical path deviation pointer
Flight path angle reference bar
Selected altitude pointer box
Selected altitude readout
Vertical mode readout (both armed and engaged)

HORIZONTAL AXIS

GUIDANCE MODES
Auto land localizer (GPS)
Auto land localizer (MLS)
Auto land localizer (ILS)
Horizontal path
Track selection

PFD SYMBOLOGY
Localizer bug and scale
Horizontal path deviation pointer and scale
Horizontal mode readout (both armed and engaged)

GLOBAL REFERENCES:

VARIABLES
ALTARM ALTCOR ALTREF* ALTRFV* ALTSEL ALTSUM AUTO BETAH DLBS
DVBS ETAH FPABAR* FPAREF* FPASEL FPASUM FPDIAL* GPSM GSA
GSE GSREF* HER HORARM HORPTH HORREF* HRAD HRZARM* HRZENG

LAND LOCE LOCREF* MLSM PSTALT PSTFPA SELFPA TKSEL VDISC
VERARM VERPTH VRTARM* VRTENG VRTREF*

FUNCTIONS AND SUBROUTINES
ALT CNVRT SCLXTK

-84-

MODULE NAME: SCLXTK

FILE NAME: GUIDE.FOR

PROCESS: DSPFST

CALLED BY: GUIDE

CALLING SEQUENCE: INTEGER VALUE = SCLXTK/()
PURPOSE:

To compute the horizontal deviation pointer position.

DESCRIPTION:

SCLXTK determines the full scale width, in feet, of the
horizontal deviation indicator and computes the appropriate
position of the pointer. By default the horizontal deviation
scale represents 7,500 feet in either direction from the
center. When the aircraft is close enough to the touchdown
runway’s localizer shack the full scale width varies to
match a localizer angular deviation. At runway threshold
the width is 350 feet. The distance along the path where
the width reaches the 7,500 foot maximum is dependent on the
distance of the localizer shack to the runway threshold.
Once the scale width has been determined the horizontal
deviation pointer position is computed using the aircraft
cross~track value (XTK).

GLOBAL REFERENCES:

VARIABLES
ACTCNT DTOGO RWYLEN TOWPT XTK

ARRAYS
AIRPTS

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
XLIM

..85_

MODULE NAME: MSGMGR
FILE NAME: MSGMGR.FCR
PROCESS: DSPFST
CALLED BY: PFD NASA

CALLING SEQUENCE: CALL MSGMGR

PURPOQOSE:
To display messages to the screen alerting the pilot
that certain conditions exist.

DESCRIPTION:

MSGMGR contains the logic for the alert and warning
messages displayed on the PFD screen. The messages, each
of which consists of up to seven characters, are displayed
in the lower half of the PFD window in large yellow letters.
MSGMGR 1is executed twenty times per second, but only three
messages may appear in one second. Therefore, every seventh
iteration a valid warning or alert message may be shown.

The text is displayed for its one-third second time frame.
Priorities are given to the alert and warning indicators.
The three valid messages with the highest priority are
displayed in the three time slots available in one second.
Each second conditions are re-checked, and again the three
valid messages of highest priority are shown, so that some
indicators which are also valid may not appear. On the
other hand when there is no text to be displayed that area
of the PFD is blanked.

A priority has been given to the messages such that
warning indicators are output before alert indicators. The
priority of warning text is as follows: 'AOA’, ’'FLAPS/,
'GEAR’, 'D/H’', 'OM’, 'MM’, and 'LNK MSG’ in that order. The
priority for alert text is: /ALERT’, ’'CLIMB’ or ’'DESCEND’,
"TUNRL’ or ’‘TURNR’. All of the messages except ’'AOA’
require that the message bezel be pressed on before they are
displayed. The ’'AOA’ message will automatically appear in
red when the maximum alpha currently computed by the flight
controls software is exceeded and ground speed is greater
than 64 knots.

The warning indicator ’‘FLAPS’ has the second highest
pricrity. It may be shown in either red or yellow. A red
message indicates that either the flap handle positions for
the forward and aft flight decks do not agree, or the flap
settings are outside the structural limits of the airplane
at the current airspeed. A yellow message will appear if
the flaps are not set correctly for the current airspeed,
or if the flaps are set at 40 and the airplane weight is
greater than 95,000 pounds. Only the ’'AOA’ and ’'FLAPS’ text
can appear in red, all other messages are shown in yellow.

-86-

The next two indicators processed are the gear and de-
cision height warnings. If the runway bezel has been press-
ed on, and the flaps are set higher than 15, and the landing
gear is not locked down, the text ’GEAR’ is flashed. This
message indicates to the pilot that the landing gear needs
to be lowered. The warning 'D/H’ appears when the radar
altitude moves within the 30 foot range above the decision
height, provided that the decision height is above 45 feet.
The text ’'D/H’ is displayed for ten seconds.

Outer markers and mid markers are both physical posi-
tions on the ground located near runways, and are used by
the pilot on runway approaches to verify his position. The
text 'OM’ or’MM’ is displayed when the airplane passes over
one of the markers, and its radio signal has been sensed.

The lowest priority warning message is 'LNK MSG’. This
message indicates that a data uplink has been received, and
is a cue to the pilot to check the data link display for the
uplinked information.

The next set of indicators is the alert messages.

They have lower priority than the warning messages, so that
if all three time slots within one second have been filled
already, no alert messages will be shown even if they are
valid. Alert messages appear when the airplane is close to
the next waypoint and they describe what general direction
the airplane will take after it passes the waypoint. The
actual logic to display alert indicators is: the alert flag
must be on (it comes on ten seconds before the next waypoint
and goes off after reaching it), the runway is not being
shown, and the approaching waypoint is not the last one.

The text 'ALERT’ has highest priority among the alert
messages. The ’‘CLIMB’ indicator is valid if the airplane
altitude increases by 10 feet on the next flight path leg,
and ’'DESCEND’ is valid if it decreases by 10 feet. The
"TURNL’ indicator is true if the airplane turns to the left
more than 2 degrees on the next leg, and 'TURNR’ is true if
it turns to the right more than 2 degrees. If there is a
time slot available and alert messages are valid, ‘ALERT’
will always appear. The other alert messages are shown if
there is room to show all that are valid. In other words,
if ALERT/CLIMB/TURNL are all true but only two time slots
are available, 'ALERT’ only is shown because 'CLIMB’ does
not by itself adequately describe the next flight path leg.
Also, once it has been determined that there is enough slots
to show a complete set of alert messages, all warning mes-
sages are suppressed for the rest of that second (because
warnings have higher priority and may interrupt the alert
message being shown) to allow the alert messages to be dis-

played.

-87-

GLOBAL REFERENCES:

VARIABLES
ACTCNT AEEF ALRTFG* CASF DECHT DLINK FLG FLAP FLAP LIMITS

FLPPLC GRPOS HORPTH HRAD MIDMRK MSGBZL MXALF NAV64K OUTMRK
RWYBZL RWYVLD TOWPT VERPTH WEIGHT WPTALR

RECORD ARRAYS
ACT WPTS

-88-

MODULE NAME: PACK

FILE NAME: PFDPK.MAR
PROCESS: DSPFST
CALLED BY: PFD NASA

CALLING SEQUENCE: CALL PACK

PURPOSE:
To pack boolean values into one discrete word and
send it along with the decision height value to the PFD

format.

DESCRIPTION:

This procedure stores four items into the display
output buffer for transmission to the PFD format. Twelve
boolean values are packed as one bit discretes into a word
of the display buffer. Three display buffer words are
packed with twelve nibble (four bits) fields. The bit and
nibble assignments are shown below.

PACKED DISCRETE WORD
BIT VARIABLE DESCRPTION

0 IATTV Attitude valid
1 VVMODE Velocity vector mode
2 ALTHLD Altitude hold mode
3 STRVLD Waypoint star valid
4 TRKBGF Track bug flag
5 RWYVLD Perspective runway valid
6 ALTRFV Altitude referenve valid
7 HRV Radar altitude wvalid
8 CAsV Calibrated airspeed valid
9 CALTV Altitude wvalid
10 FMTVLD PFD format valid (constant on)
11 TKSEL OR PSTTKA OR HORPTH Horizontal guidance valid
NIBBLE WORD #1
CTRLMD Control mode index
AUTHMD Auto throttle mode index
RLLFLG Roll command detent index
PITFLG Pitch command detent index
NIBBLE WORD #2
RWYFLG Perspective runway approach index
CASFLG Selected CAS color index
HRZENG Engaged horizontal mode index
HRZARM Armed horizontal mode index

NIBBLE WORD #3
VRTENG Engaged vertical mode index
VRTARM Armed vertical mode index
FPABAR Flight path angle bar color index
ALRTFG Alert message index

-89-

The digital value of the right bezel panel potentiometer is
fetched from the display input buffer to compute decision
height. The address contained in PFDBZL points to the input
buffer area corresponding to the pilot’s PFD. The range of
values obtained from the pot is OFFFH (all the way left) to
0000H (all the way right). The raw pot values are trans-
lated into decision height values (feet) by the equation:

DH = .243956 * (4095 - POT_VAL)

The ’'ones’ digit is forced to zero to give decision height
in increments of 10 feet. Note that a POT_VAL of OFFFH
produces a result of -30 feet. In actuality negative values
are not obtained because none of the potentiometers provided
ever reach the full 12 bit range. Typically the digitized
value obtained from the pots on any DU bezel panel will only
be 0F70H when turned completely to the left. This value
corresponds to a decision height of zero feet.

GLOBAL REFERENCES:

VARIABLES
RWYVLD STRVLD TRKBGF VVMODE FMTVLD CASV HRV MACHV LOCVLD
CALTV IATTV PFDBZL

ARRAYS
OUTDAT*

..90_

MODULE NAME: PFD NASA
FILE NAME: PFD NASA.FOR
PROCESS: DSPFST
CALLED BY: DSPFST

CALLING SEQUENCE: CALL PFD NASA

PURPOSE:
To serve as the display MicroVAX executive module to
the NASA primary flight display format.

DESCRIPTION:

This module is the executive procedure for the NASA
primary flight display format. Several small PFD compu-
tations are performed directly within this module, while
individual procedures are called to handle larger operations
associated with the PFD format.

Setting the logical value of the waypoint alert flag
is the first operation performed. The flag is set when
the aircraft is within ten seconds of the destination
waypoint (straight leg or DMA turn), or the inbound
tangent point (non-DMA turn), while traversing the active
flight plan. The aircraft must be within 500 feet of the
horizontal flight plan profile to be considered on the
flight plan.

Four memory locations in the microprocessor output
buffer are filled next. These are the actual roll,
commanded roll, actual altitude, and vertical speed. they
are computed from the flight controls variables ROLL, DROLL,
ALTCOR, and HDCF respectively. The two roll variables are
simply scaled and stored as fixed point values. The
altitude is converted to a sign adjusted fixed point value
by the function ALT_CNVRT. The fixed point vertical speed
sent to the PFD is an exponential scaling of the altitude
rate from flight controls. The screen units of length, in
one-thousandths inches, for the altitude rate arrow is
produced as follows.

(809.47353 * HDCF) ** .65

The flight control variables PDCOL and WHLINP are
tested to determine the "out-of-detent" status of the
pilot’s side arm controller. Display buffer indices are
set to indicate when roll and pitch commands are in
progress.

The orientation of the display screen depends on modes
of guidance used by the aircraft. The display screen is
oriented along the aircraft "velocity vector" when the air-
craft is flying velocity control wheel steering (VCWS) or
automatic guidance with a manually selectable flight path
angle (FPASEL). The introduction to this section describes
this concept in more detail. The flag VVMODE is set to true
or false by PFD_NASA to indicate which orientation will be
used.

-091-

The variables FPAPFD and THETA PFD represent the flight
path angle and pitch angle used by the PFD format. The
table below shows the settings of these variables under
various conditions.

Condition FPAPFD set to

. VCWS Commanded flight path angle from control column.
FPASEL Selected flight path angle from AGCS mode
control panel.
OTHER Actual flight path angle quickened by the rate
of change of pitch.

Condition THETA_ PFD set to

ACWS Commanded pitch from control column.
OTHER Actual pitch angle.

The display of "Angle of Attack™ and "Yaw" are then
calculated by the equations:

FPAPFD - THETA PFD
TRACK - HEADING

AOA
YAW

tn

These values are translated into the aircraft body axis
by performing a coordinate transformation with the air-
craft roll angle. The following is a summary of how the
values described above are used in the positioning of the
"Gamma Wedge" and "Aircraft" symbols. Note some of the
operations mentioned take place in the routine AIRGAM.

In Velocity Vector mode:
The Gamma Wedge symbol is fixed at the center of the

display screen.

The center of the Pitch grid background is displaced
from the Gamma Wedge by FPAPFD. Therefore the Gamma
appears at the correct pitch grid marker.

The Aircraft symbol is drawn relative to the Gamma
wedge by using the transformed angle of attack and yaw.

Not in Velocity Vector mode:
The Aircraft symbol is fixed at a position .8375 inches

above screen center.

The center of the Pitch grid background is displaced from
the Aircraft symbol by THETA PFD. Therefore the aircraft
symbol appears at the correct pitch grid marker.

The Gamma Wedge is drawn relative to the Aircraft symbol
by using the transformed angle of attack and yaw.

-92-

Two transformation matrices are created in PFD NASA for
use by other procedures. The first is the TL2B matrix which
transforms a 3D vector from geographic to aircraft body
coordinates. The second, TB2E, changes body to velocity
vector coordinates. See the descriptions of the procedures
STAR and RWYMGR for more information on the use of these
matrices.

Finally, nine PFD format procedures are called to
generate the data for the PFD format in the microprocessor
system.

GLOBAL REFERENCES:

VARIABLES
ACTALT* ACTROLL* ACWS ALPHAX ALTCOR AUTO BETAX CALPX CBETX
CROLL DROLL DTOGO FPAPFD GAMC GAMMA GSFPS GUID2D HDCF HDGF
HDOT* NAV64K PDCOL PITCH PITCH_Y* PITFLG* RLLFLG* ROLL
SALPX SBETX SKYPTR* SROLL TOWPT TRKF VCWS VVMODE WHLINP
WPTALR* XTK

ARRAYS
TB2E* TL2B*

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
AIRGAM ALT_ CNVRT ANGL CASMGR GUIDE MSGMGR MTHS$SSIGN PACK
RWYMGR SCOSD STAR UNPACK WINDOW

-93-

MODULE NAME: ALT CNVRT
FILE NAME: PFD NASA.FOR
PROCESS: DSPFST
CALLED BY: PFD NASA

CALLING SEQUENCE: INT:VALUE = ALT CNVRT (FP_ALTITUDE)

PURPOSE:
To return the fixed point altitude for the micro-
processor display output buffer.

DESCRIPTION:

Altitude values, in feet, for the aircraft can reach
above the maximum binary word value possible (32,767). The
MicroVAX uses floating point data to work with altitudes to
avoid problems. However, floating point altitude values
above 32,767 will cause VAX conversion errors when refor-
matted to 16 bit integers for transmission to the displays.
The function ALT CNVRT alleviates this problem by converting
the floating point altitude to a 32 bit longword integer
and saving only the lower 16 bits. No MicroVAX conversion
error occurs, however high altitudes become the binary
equivalent of large negative numbers. This is accounted for
by the PFD format itself. The "high altitude" values are
treated as unsigned 16 bit integers by the microprocessors
software.

94

MODULE NAME: RWYMGR

FILE NAME: RWYMGR.FOR
PROCESS: DSPFST
CALLED BY: PFD NASA
CALLING SEQUENCE: CALL RWYMGR
PURPOSE:

To compute the screen coordinates of the perspective
runway PFD symbology.

DESCRIPTION:

A number of conditions must be met before the perspec-
tive runway symbology will be shown on the PFD format.
These include:

Runway selected on PFD bezel panel.

- Destination runway defined on active flight plan.

. Airplane is within the ILS zone defined around runway
approach.

. Aircraft heading differs from runway heading by less
than 40 degrees.
Altitude above runway is less than 2,500 feet,

The computation of runway parameters proceeds when all the
above conditions are met.

Four different coordinate systems are employed by RWYMGR
while performing the calculations. They are defined as
follows:

GEOGRAPHIC: X - NORTH Y - EAST Z - UP

RUNWAY: X - RWY CENTER LINE Y - RWY THRESHOLD LINE
Z - UP

BODY: X - ALONG BODY Y - THROUGH WINGS 2 - THROUGH
BODY, PERPENDICULAR TO WINGS

INERTIAL: BODY AXES ROTATED BY (TRACK - HEADING) AND
(FLIGHT PATH ANGLE - PITCH)

First the position of the aircraft relative to the
runway threshold point is computed. The values obtained
represent a distance vector with each element of the vector
representing the distance between the aircraft center of
gravity and the runway threshold point, projected onto the
geographic reference axes.

95

The geographic distance vector is transformed to the
runway frame of reference. The "X" component of the new
vector is used to perform a "Psuedo-clip" operation on the
runway coordinates. Performing 3D clip calculations for
each vector used to draw the runway is very time consuming.
An approximation using the "X" component of the runway
referenced distance vector is used instead. The idea behind
the "psuedo-clip" approximation is to throw away some of the
runway as the airplane approaches. The amount to throw away
is determined from the "X" and "Z" components of the runway
reference distance vector (see figure 6.2 at the end of this
description). This technique requires that the aircraft is
approaching the runway down the centerline with small pitch
and yaw angles. When these criteria are not met the runway
coordinates, after transformation to the body frame of
reference, may cause one of two problems. If too much
runway is truncated the front of the runway may disappear
on the screen instead of running below the bottom edge of
the view screen. A worse situation occurs when not enough
is truncated. The points that are transformed behind the
aircraft center of gravity actually are reflected back ahead
of the airplane. This will appear as spurious lines being
drawn onto the display screen. Note the conditions
governing the display of the runway symbology (mentioned
above) along with standard flight procedures around the
touchdown runway make the runway truncation a valid
procedure.

A transformation matrix is created which changes run-
way coordinates to body reference. The global matrix TL2B
(Transform Local to Body) is adjusted by runway heading to
make the new transformation matrix. The local procedure
SCREEN will use this matrix when performing its computa-
tions.

Figure 6.3, at the end of this module description,
shows eight points representing the outline of the runway in
the runway coordinate system. These points are sent to the
local procedure SCREEN for transformation. The coordinates
for each point are shown in the following table.

POINT (X)...COORDINATES (feet)...(Y)
1 0 (or truncation point) -100
2 length of actual runway -100
3 length of actual runway 100
4 0 (or truncation point) 100
5 -6076 (or truncation point) 0
6 1.0E+10 (infinity) 0
7 1000 (or not shown) -100
8 1000 (or not shown) 100

-96-

The "2" value for all points is implicity defined as runway

elevation. Note that the threshold and touchdown lines need
not be drawn when the truncate point advances past them.

The index RWY_INDEX is used to pass this information to the

display system.

RWY INDEX ACTION
0 Draw threshold and touchdown lines
1 Draw touchdown line
2 Draw neither line

The procedure SCREEN is called to compute the X and Y
screen coordinates, in one-thousandths inches, for the
runway points. The screen coordinate values are sent to the
display processors as 16 bit fixed point integers. The
values sent during an approach to the runway vary by such a
large amount that a single scale factor value for the
coordinates could not be chosen. Instead the coordinates
are scaled dependent on the largest value created by the
procedure SCREEN. All values are multiplied by the computed
scale factor before conversion to integer format takes
place. The scale factor used is also sent to the display
system, via the output buffer, for proper interpretation of
the coordinate values sent.

GLOBAL REFERENCES:

VARIABLES
ALTCOR COSRH DLATFT DLONFT DLT ALT DLT RWY X DLT RWY Y* HDGF
ILSZON INT_SCALE* LAT LON RWYBZL RWYFLG RWYHDG RWYLAT RWYLEN
RWYLON RWYVLD* RYELEV SINRH TRKF VVMODE

ARRAYS
AIRPTS OUTDAT* RWY TO BDY* TL2B

FUNCTIONS AND SUBROUTINES
ANGL SCREEN

INIOd
0T0HS3YHL NOTLYINNYL
AYMNNY AEMNNY
. LN3NOJUO0D
ﬂ WX — =
LN3NOJUOD Pl
” N " \\\\\

0000000000000000 %vv WX, = RCRALL T INNOWY NOI1UJINNYL

:N »”

NOTLUINMNJdL J41GNTJdH00T AGMNOY

-figure 6.2-

-99-

+X
6
?
2 3
_ -~ TOUCHDOUN POINT
/’
///’
//
- THRESHOLD POINT 1S ORIGIN
_ - _ .~ OF COORDINATES IN RUNUAY
? = 8 - FRAME OF REFERENCE
’/
///
d//
1 = q +Y
(]
S

RUNWAY COORDINARTE POINTS

-figure 6.3-

am 9% _INTENONALLY BLANG

PRECEDING PAGE BLARK NOT FILMED

-101-

MODULE NAME: SCREEN
FILE NAME: RWYMGR.FOR
PROCESS: DSPFST
CALLED BY: RWYMGR

CALLING SEQUENCE: CALL SCREEN(RWY_X,RWY_Y,SCR X,SCR_Y)

PURPOSE:
To compute screen unit coordinates on the PFD format
for the perspective runway symbology.

DESCRIPTION:

The procedure screen receives the X and Y offsets of
runway points as its first two calling parameters. These
are values in feet in the runway coordinate system, centered
on the runway threshold line. The position of the runway
point relative to the aircraft is found by adding the air-
craft offsets computed by RWYMGR (DLT_RWY_X and DLT_ RWY Y).

A vector is made that changes the coordinates origin
from the runway threshold to the airplane position. This
vector is transformed from the runway frame of reference to
the airplane body frame. If a velocity vector mode of
flight is in use the body coordinates are transformed to the
system oriented in the airplane inertial frame of reference.
The tangent of the pilot observation angles (up/down, left/
right) are found by the ratio of the Z and Y coordinates
with the depth coordinate (X). The PFD screen coordinates,
in one-thousandths inches, are returned to RWYMGR through
the last two calling parameters.

GLOBAL REFERENCES:

VARIABLES
DLT ALT DLT_RWY X DLT RWY Y RWYVLD* VVMODE

ARRAYS
RWY TO BDY TB2E

FUNCTIONS AND SUBROUTINES
MXV

S PRI ST EaY L~
PRECEDGWS PAGE yt Rk s Pl pED

00

{ BHRR Gun ikt JiaNE

-102-

MODULE NAME: SBXMGR
FILE NAME: SBXMGR.FOR
PROCESS: DSPSLW
CALLED BY: DSPSLW

CALLING SEQUENCE: CALL SBXMGR

PURPOSE:

To control and output to the PFD information concerning
aircraft autothrottle and control modes, the ’TO’ waypoint,
and the current mach.

DESCRIPTION:

The upper left corner of the PFD is reserved for
information concerning the aircraft’s control and auto-
throttle modes. The text "AUTO", "VCWS", or "ACWS" may be
displayed in the control mode slot (which is the line
directly above the autothrottle text line) depending on the
current flight state. If the aircraft is flying auto-
throttle then the following text can be shown in the auto-
throttle mode slot: "AT CAS" for autothrottle selected, or
"AT 4D" when flying four dimensional guidance. For both
modes, if the conditions are not met to display text then
the slots remain blank.

The "to" waypoint name will appear in the upper right
corner of the PFD whenever two dimensional guidance is
possible. The name consists of five characters, and is
retrieved from the active guidance buffer. When 2D guidance
is not possible the area will be blanked.

SBXMGR also stores the current mach value in the dis-
play output buffer. It will appear above the airspeed tape
on the PFD screen when it is .5 or greater. Mach is scaled
by one thousand to provide three digits of accuracy on the
display.

GLOBAL REFERENCES:

VARIABLES
ACWS AUTHMD* AUTO CTRLMD* GUID2D IASSEL MACH PFD MACH*
PFD _TO _WPT* TIMPTH TOWPT VCWS -

RECORD ARRAYS
ACT WPTS

-103-

MODULE NAME: STAR

FILE NAME: STAR.FOR
PROCESS: DSPFST
CALLED BY: PFD NASA
CALLING SEQUENCE: CALL STAR
PURPOSE:

To compute the screen coordinates and zoom factor for
the waypoint "Star" symbol of the PFD format.

DESCRIPTION:

The waypoint "STAR" symbol on the PFD depicts a three
dimensional representation of the current position of the
destination waypoint on the active flight plan. When the
pilot maneuvers the aircraft so that the track and flight
path angle symbology lie on the STAR symbol, the aircraft is
flying directly to the next waypoint on the flight plan.

The size of the STAR remains constant, until the aircraft is
close to the waypoint. Then the STAR zooms, to simulate a
3-D effect until the waypoint is reached.

First logical comparisons are made to determine if the
proper conditions exist for displaying the STAR symbol.

The following criteria must be true to proceed with the
necessary calculations.

A valid 3-D flight plan exists (altitudes for each
waypoint exist)

The "STAR" bezel button on the PFD display has been
pressed.

The ’'TO’ waypoint is not the last waypoint on the
active flight plan.

The size of the STAR is sent to the display processor
as a 16 bit integer scale factor named STARZM. The value
represents the ratio of the original STAR size times 1024.
For example, a value of 1024 for STARZM means display the
normal sized STAR (1 * 1024). If a STAR 5.25 times as large
as the normal size is desired, STARZM would be set to 5376
(5.25 * 1024). When the aircraft is within 3,500 feet the
STAR will start to zoom (10 seconds before arrival at 210
knots). The amount of zoom is proportional to the air-
craft’s distance from the ’TO’ waypoint. The STAR will grow
to 20 times its original size before it is removed from the
display screen until a new ’'TO’ waypoint can be shown.

-104-

The position of the STAR on the PFD format represents
the track and flight path angle required to reach the ’To’
waypoint from the current position of the aircraft. This
only corresponds to flight plan guidance when the current
position of the aircraft is on the flight plan. The bearing
to the destination waypoint is found using earth centered
vectors pointing to both the aircraft position and the ’TO’
waypoint. The normal vector to the plane formed by the
earth centered vectors is compared to an "absolute west"
vector to produce the desired bearing. Desired flight path
angle is found using the distance to the destination waypoint
and the altitude differential between the positions. The
screen positions are found by rotating the angular values
into the roll axis of the PFD horizon line and scaling the
values to screen units (one-thousandths inches).

If the coordinates of the STAR symbol lie outside of
the PFD view window, the coordinates are clipped so the STAR
symbol is pegged to the side of the window by the subroutine
LIMITS.

GLOBAL REFERENCES:

VARIABLES
ACTCNT ALTCOR CLON CROLL DTOGO FPAPFD GAMX GAMY GUID3D LAT
LON SLON SROLL STARX STARY STARZM* STRBZL STRVLD* TK TOWPT
VVMODE

ARRAYS
AIRPTS

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
ANGL LIMITS MTHSASIN MTH$ATAN MTHS$SATAN2 VCP VDP VMG XYZ

-105-

MODULE NAME: LIMITS

FILE NAME: STAR.FOR

PROCESS: DSPFST

CALLED BY: STAR

CALLING SEQUENCE: CALL LIMITS (XPOS,YPOS,XLIM,YLIM)
PURPOSE:

To force the waypoint STAR within the boundaries of the
PFD viewing window.

DESCRIPTION:

The first two calling parameters to LIMITS contain the
computed offsets from the screen center of the waypoint STAR
symbol. The values are limited to fall within the PFD view-
port and returned in the last two calling parameters.

The limiting operation consists of calculations which
determine the intersection of a line from the screen center
to the STAR, and the viewport boundary. Tests are made to
determine where the intersection will occur; viewport sides,
bottom, or within the arc at the top. For the sides and
pottom, which are either constant X or Y lines, the
intersection is found from the fixed coordinate value at the
boundary and the slope of the line. The arc intersection
is more difficult. Both the slope of the STAR line and the
arc radius are used as follows.

XLIM
YLIM

+/- SQRT (ARC_RAD**2 / (SLOPE**2 + 1))
SLOPE * XLIM

Note that the "+/-" means XLIM will follow the sign of the
original unlimited X coordinate.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
MTHS$SSIGN MTHS$SQRT

-106-

MODULE NAME: UNPACK

FILE NAME: PFDPK.MAR
PROCESS: DSPFST
CALLED BY: PFD NASA
CALLING SEQUENCE: CALL UNPACK
PURPOSE:

To process packed discrete words.

DESCRIPTION:

UNPACK starts by creating individual boolean variables
for each bit of the packed discrete word FCFLGS, which is a
32 bit longword received from the FM/FC MicroVAX computer,
The following is a list of the seventeen logical byte
variables formed from the individual bits of FCFLGS. Note
that the variable ALTHLD is logically negated when unpacked
from FCFLGS. '

LOGICAL BIT DESCRIPTION

LOCE 0 localizer engage
ACWS 1 ACWS mode

VCWS 2 VCWS mode

AUTO 3 AUTO mode

LAND 4 LAND mode

MLSV 5 MLS valid

GEAR 6 gear flag

MLSM 7 MLS mode engaged
DVBS 8 vertical beam sensed
DLBS 9 lateral beam sensed
LANDR 10 land armed

GSE 11 glide slope engaged
TDSP 12 track dial spin

MXALF 13 AOA exceeded

ALTHLD 14 altitude hold of vcws
AEEF 15 aft flight deck engaged
GPSM 16 GPS guidance selected

The 16 buttons on the PFD display bezel panel each con-
trol one bit in a microprocessor input word. A bit is /1’
while the button is depressed, otherwise it is ’0’. The
packed word containing the 16 bezel bits is sent to the host
computer in the 320 word transmission buffer. UNPACK uses
the addresses saved in the PFDBZL array to fetch the bezel
words for both the pilot and co-pilot PFD formats. The
bits are "one-shotted" to make long button presses appear as
a one frame press. The memory word, OUTDAT (680), is used to
keep the current state of each bezel button. Each time a
press is detected the corresponding bit in OUTDAT (680) is
toggled to the alternate state. This gives the effect of
press to enable function, press again to disable function.
Only the three bezel buttons on the upper right side of the
display screen are used for the PFD format. Their usage 1is

listed below.
C2

-107-

LOGICAL BIT DESCRIPTION

STRBZL 0 bezel panel STAR select
RWYBZL 1 bezel panel perspective runway select
MSGBZL 2 bezel panel alert message select

The current state of the PFD bezel buttons is also sent
back to the PFD since OUTDAT (680) is part of the buffer that
is transmitted to the display system.

GLOBAL REFERENCES:

VARIABLES
LOCE* ACWS* VCWS* AUTO* LAND* MLSV* GEAR* MLSM* DVBS*

DLBS* LANDR* GSE* TDSP* MXALF* ALTHLD* AEEF* GPSM*
STRBZL* RWYBZL* MSGBZL* FCFLGS

ARRAYS
PFDBZL

-108-

MODULE NAME: WINDOW
FILE NAME: WINDOW.FOR
PROCESS: DSPFST
CALLED BY: PFD NASA

CALLING SEQUENCE: CALL WINDOW

PURPOSE:
Compute position data for symbology used within the
PFD format viewing window.

DESCRIPTION:

This procedure sends information to the PFD for four
different symbols. These are the horizon ticks, desired
track marker, track hold indicator, and the flare guidance
cue.

The horizon ticks are a set of tick marks appearing at
ten degree intervals along the horizon line of the PFD
format. Depending on mode of operation, the center of the
PFD view window 1s either the aircraft’s current track or
heading. Tick marks are all placed at even ten degree units
of bearing. The offset to the first tick is computed by
WINDOW, in one-thousandths inches, and stored in the micro-
processor display buffer.

The desired track "T" bar rides along the top edge of

the PFD horizon line. The bar is placed at the position
corresponding to either the flight plan desired track, or
the selected track from the pilot’s mode control panel.
When the horizontal path guidance is engaged the desired
track of the flight plan is stored by WINDOW. Since the
mode panel selected track is always stored by navigation
display modules, WINDOW does not need to do so.

When track hold mode of Velocity Control Wheel Steering
(VCWS) 1is engaged the commanded track “bananas" are shown on
the lower edge of the PFD horizon line. Their position is
obtained by scaling the offset value created in the flight
controls software.

The last item processed by WINDOW is the flare guidance
cue. The screen position of the cue, in one-thousandths
inches, is computed when VCWS mode is engaged and radar
altitude is less than either selected decision height or
200 feet. The computed position is proportional to radar
altitude. The guidance cue will meet the PFD horizon line
when altitude above the runway is zero. The rate that the
cue approaches the horizon line is .05 degrees per foot of
altitude.

GLOBAL REFERENCES:

VARIABLES
DECHT DSRTK FLARE* HDGF HORPTH HORTCK* HRAD MAGVAR
NOMTRK* PITCHY TKBUGX* TRKBG TRKBGEF* TRKF VCWS VVMCDE

FUNCTIONS AND SUBROUTINES X
ANGL MTHS$AMOD ,

-109-

Section 7.0 NAV DISPLAY SOFTWARE

The navigation display shows the position of the air-
plane relative to ground positions and terrain features.
Figures 7.1 and 7.2 at the end of this section depict
typical NAV display configurations for the two available map
background orientations (Map and Plan modes). The map
orientation is a selectable feature controlled by a bezel
button.

The airplane chevron in Map mode is fixed 1.25 inches
below the screen center and the symbology is displayed in a
"track up" orientation. This means that the airplane’s
current track is always the center of the compass arc at the
top of the display.

In Plan mode some other reference point, typically a
waypoint, is used for the fixed position 1.25 inches below
screen center. All other map background symbology is dis-
played in a "north up" orientation. The airplane chevron
symbol moves about the display in this mode.

The NAV format screen is divided into three distinct
areas. The major one is the airplane and map background
features area. The second is the flight information area at
the top of the display above the compass arc. The vertical
deviation scale area is the third. The three areas exist in
both Map and Plan modes. The compass arc, which forms a
partition between background and flight information areas in
Map mode, is not shown in Plan mode however.

The flight information area contains wind speed and
direction information in the upper left corner in Map mode.
Just a north pointer is displayed there in Plan mode. The
right hand side of this area has four lines of flight infor-
mation text. The following describes the information
present on each line.

#1 "TO’ waypoint information. Includes destination
waypoint name and distance from present airplane
position. Also the current Greenwich Mean Time is
shown at the end of the line.

$#2 Bezel selection indicators. Three letter mnemonics
appear when bezel buttons have been used to select
the map options; airports, navaids, time box, or
altitude range arc.

#3 Like line #2, mnemonics are shown when terrain
features, ground reference points, or the boundaries
of restricted regions have been selected.

-110-

#4 Guidance and navigation modes. Aircraft modes
include 2D/3D/4D guidance, track select, altitude
hold, flight path angle select, and air speed
select. The aircraft navigation modes are shown
at the end of the line.

The aircraft and map background area shows the air-
craft’s present position along with selected reference
points. The orientation of the symbology depends on which
of the two modes is selected from the bezel panel. Flight
plans are displayed as a series of straight and curved line
segments with four point star symbols designating specific
waypoints. The aircraft chevron has the current ground speed
and altitude appended to the bottom when in Map mode. A
list of the symbols that can appear in the Map background
area follows in the next sections. The symbology appearing
in this area is masked from the other two NAV format areas.
However the masking is only performed for the vertical
deviation area when the vertical deviation scale is present
on the display.

The altitude profile of the aircraft is shown via the
vertical deviation scale. This scale appears in the lower
right hand corner of the display screen when appropriate
conditions arise. A rectangular mask around the scale keeps
background features from interfering when the vertical
deviation scale is present.

The NAV format uses twelve of the sixteen buttons
provided on the bezel panel of a DU. Neither of the two
potentiometer dials is used. The following table describes
the function of each NAV format bezel button. The naming
conventions are: L - left hand set, R - right hand set,

(1 through 8) - button number with one being the top.

L1 not used

L2 not used

L3 not used

L4 Terrain features option
L5 GRPs option

L6 not used

L7 ADIZ boundaries option

L8 Map/Plan mode toggle

R1 MLS select/deselect

R2 Airports option

R3 Navigational aids option
R4 Time box option

R5 Altitude range arc option
R6 Path waypoint information option
R7 Zoom out (scale change)

R8 Zoom in (scale change)

~-111-

3NM->HS204 14:52
MAG APT NVD ARC
MTN GRP
IAS FPA 100

2D

NAVIGATION DISPLAY FORMAT
(MAP MODE)

-figure 7.1-

-113-

INM->NS2@04 14:52
APT
BND
20 IRS FPA 10D

NAVIGATION DISPLAY FORMAT
(PLAN MODE)

-figure 7.2-

PRECEDING PAGE BLANK NOT FILMED

: POITO M TONA R 7V 3, o -
: =4~m1¥15;:¢3d7tﬂtrﬁﬂéaii AN

-115-

Section 7.1 THE NAV BACKGROUND BUFFER

The background data buffer is the first 400 words of
the 704 word buffer sent to the Sperry display system from
the host computer. Appendix A gives the layouts of the 1/0
buffers. The background data occurs in varying amounts
depending on the position of the aircraft on the chosen
route, and contains information on the reference points and
flight plan. Unlike the rest of the data sent to the micro-
processor system, the background data is a variable length
stream, up to 800 words, of information which cannot be
identified by its I/0 buffer position. Interpretation of
the data must be performed with a sequential parsing,
starting at the first location. Special code words are used
within the data stream to identify what type of background
information follows.

Each NAV format loaded into a display processor may
have unique background data. However the same 400 word data
area is used by all NAV formats, therefore they must take
turns using the background data buffer. Actually many of
the 704 word data buffers read from the host computer
contain no new data in the background area since background
updates occur infrequently (every five seconds, after a NAV
bezel button selection, or following a flight plan
modification).

A word of data, "OUTDAT(599)" in Appendix A, is used to
control the use of the background buffer. The meaning of
the bits in the Map Control word are as follows:

BITS DESCRIPTION

0-3 Display processor identifier code.
4 Part two update flag.

5-7 Unused.

8-15 Update sequence number.

The display processor identifier code is a number that
designates the processor which should use this data. The
next chart gives the code values used for the various
processors.

CODE DEU # DP #
1 1 1
2 1 2
3 1 3
4 2 1
5 2 2
7 3 1
8 3 2
9 3 3

PRECEDING PAGE oUANK NOT FILMED

BEX_ (/Y NTENTIONALLY BLANS

-116-

The part two flag informs the NAV format that the background
buffer is to be considered a continuation of the last one
received. This gives the ability to send 800 words of
background data to a NAV format in two consecutive updates.
The sequence number informs the NAV format that the data in
the background buffer is new data. This number increments
every time a new background buffer is created. This allows
the NAV format to distinguish between new data designated
for it and old data that has been in the buffer for a while.

All data within the background buffer is stored in
groups of 2 or more words. The first word of the group is
always a "group identifier word" having the group ID label,
class, and word count. The diagrams at the end of this
section show the various formats of background data words.
Bits zero through two of the group ID word are used for the
label. Presently only the following five of the possible
eight group types are used.

LABEL USAGE
0 Control group
1 Text group
2 Symbol group
3 Rotatable symbol group
4 Line segment group

The class code, bits three through seven, is used to
differentiate between variants of the given group. The
upper eight bits of the group ID word are the word count.
The value in this byte is the total words associated with
the particular data group following the ID word.

The control group is used to set up map display soft-
ware prior to the processing of the remaining background
data. Two classes exist in this group; start of transmission
(SOT) data and mode controls. The SOT class is always the
first data in the background buffer. The total number of
words used in the buffer for the entire background update is
stored along with the map sequence index. The index is used
to pick the correct map center displacement out of the array
of four sent from the host computer. Four map center values
exist because up to four independent NAV formats may run
simultaneously. The second class, mode controls, sets map
scale, enables selectable symbology (weather radar, time box,
range arc), and chooses map orientation (track up/north up). .

The text group controls the placement of ASCII data on
the four available text lines appearing at the upper right
corner of the NAV format. The class value selects which
line data is written to.

-117-

Reference position symbols are placed on the display
by symbol group entries. The data for this group contains
the north and east displacements from the map center and
optional descriptive text to be shown with the symbol. The
type of symbol (DME, GRP, AIRFIELD ...) is selected by the
class code.

Symbols which require a particular orientation on the
display screen are handled by the rotatable symbol group.
The bearing and length (for runway only) is stored in the
data group in addition to the position and text data.

The final group currently used is the line segment
group. The class field of this group’s ID word sets the
line type and color for the following sequence of data. The
two words after the identifier word are the north/east
position values from map center for the line segment initial
point. The remaining data in this group occurs in blocks of
two or more words and is very similar to the group technique
described above. Each block contains one element of the
connected line/path segments being created. The first word
of these blocks is the path element ID, containing the
element type and word count. The element types are line,
arc, on path waypoint, and off path waypoint. The line
element commands a line to be drawn from the last path
position to the position designated by the north/east
coordinates provided. The arc type gives the subtended
angle, initial inbound angle, and the arc radius. The on
path waypoint element places a waypoint symbol at the last
defined path position. Off path waypoints have their own
north/east coordinates for placement.

The symbology created from the background data is
repositioned on the display screen every 50 milliseconds by
the airplane position and track data received from the I/O
buffer. This allows the airplane to move smoothly over the
map data. The only requirement is that the background be
updated at a fast enough rate so that the display screen
always covers the area defined by the background.

A sample background data buffer is shown below. The
values shown are the binary words presented in hexidecimal
format. The data produces a simple flight plan consisting
of two straight segments, one arc segment, and a waypoint
symbol entitled "COLIN". Text data for lines #1 and #4 also
appear in the data. The diagram on the following page
shows the path drawn from this data. Note the overlap of
the physical viewing window which allows displacing the
background from the physical screen center as the airplane
flies.

-118-

0100 ; SOT.
0039 ; 57 words background update.

0108 ; controls.
0001 scale is 5NM radius.

~e

line segments - 18 words.
initial position: 4.606 inches east
4.871 inches north.

1204
11FE
1307
0200
FFF2
FFE3
0301
5977
F61D
9F11
0503
F298
F1E9
4F43
494C
204E
0200
1307
ED81

draw line to:
.014 inches west
.029 inches south.
draw arc with:
125.8 degree turn
2.531 inch radius (left turn)
-136.3 degree inbound bearing.
place off path wpt at:
3.432 inches west
3.607 inches south
text: "COLIN "

draw line to:
4.871 inches east
4.735 inches south.

We Ne Ve Mo Mo We Ne Ne Ne Ne Mo Ve Ne Ne N Vo Ne We w,

text line #1.
" JINM->COLIN 12:32 ",

0AQ1
2020
4E37
2D4D
433E
4C4F
4E49
2020
3231
333A
2032

MO Ne N4 Ny Ny My N N Ne N N,

text line #4.
"3D IAS IXX .

0A19
4433
2020
4149
2053
2020
2020
2020
2020
5849
2058

Ve Ne e Mo Ne Ne Ne Ne Ne N N,

-119-

®

CLIPPING WINDOW
» VIEWING WINDOW

: COLIN

SAMPLE PATH DATA
-figure 7.3-

BACKGROUND BUFFER LAYOUT

Buffer consists of 5 data groups:

Label Title
0 Control Group
1 Text Group
2 Symbol Group
3 Rotatable Symbol Group
4 Line Segment Group

Group ldentifier words always precede data belonging to a specific group.

Group |dentifier Word:

[woro count [cLass | Lase |

8 bits S bits 3 pbits
where:
word count = * of words in data group following identifier.
Class = {dentifies subgroup items, line types,
colors, etc.
Label = group number O - 4 listed above.

Notes on units for following pages:

-- all distance values : 1/1000th inches.
-- all angular values: (degrees/180) * 2**15.
-- all text: standard ASCII codes in consecutive byte order.

-figure 7.4-

B D IR SR TR T R T
Mﬂﬂu%uuimg; Cinss

-121-

PRECEDING PAGE BLANK NOT FILMED

LABEL O

CONTROL GROUP:

SOT

-

0 0o |

L1,0f

BUFFER COUNT |

Scale Range

0]
1

2
3
4
5

LABEL 1

UN —- O

LABEL 2

OCONTND N~ O

(nm)
2
S
10
20
40
80

TEXT GROUP

CLASS

Text line |
Text line 2
Text line 3
Text line 4

SYMBOL GROUP

CLASS

Mountain (Cv ignored)

Obstruction (Cv ignored)
Non-directional Beacon (Cv ignored)
VORTAC (Cv ON = tuned)

VOR (Cv ON = tuned)

DME/TACAN (Cv ON = tuned)
Airfield (Cv ignored)

GRP (Cv ignored)

Marker Beacon (Cv ignored)
waypoint (Cv ON = provisional)

B) A& mrine

-123-

MODE CONTROL

L [+ To |
—SCALE

L Aelelel & |
WX —1 L_ PLAN MODE

ALT ARC TBOX

[count | ciass |

|

1N

ITEXT

/Color var

iant (Cv)

COUNT | §cLass |

2

EAST POS

|
|
]

1N

ITEXT

r
r
1 NORTH POS
r
r

74

PRECEDING PAGE BLANK

NOT FILMED

0.
1

PATH SUBGROUP 1D:
Position
Arc

2. Wpt (on path)

3.

Q.Lﬁ_mmzmmx BLANK

wpt (off path)

-125-

B

ITEXT

PRECEDING PAGE BLANK NO7

LABEL 3 ROTATABLE SYMBOLS GROUP
CLASS [comwt [cass | 3]
0 AIRFIELD (Length ignored) [EAST POS |
11 Runway
2. SRP (Length ignored) r NORTH POS]
[BEARING)
[LENGTH |
[X N J
LABEL 4 LINE SEGMENT GROUP
COLOR
LINE COLOR “’
0: White 4 Red [cowt Lty
1. Green 5. Cyan
2 Blue 6: Magenta l EAST POS J
3. Amber 7 Yellow
| NORTH POS B
LINE TYPE
0: Solid
o [couwr | D |
2. Dash oo
3. Dot/Dash ™ our] = l
[N N

T FILMED

-127-

ID 0. Position [D count | 0 1
| EAST POS |
[NORTH POS |
l | 1
soe ITExT
[| | 4
1D 1: Arc | | | |
[ANGLE |
[RADIUS]
| BEARING |
ID 2. WPT (ON) [0 cowt | 2 |
| l | 7
esee ITExT
L l 4 4
ID 3 WPT (OFF) [o cowr | 3 |
| EAST POS)
| NORTH POS B
[|
eoe ITEXT
l |4

ﬂl__[éz_éﬁ_m iLi DONALLY BLAN

PRECEDING PAGE BLANK NOT FILMED

-129-

D 4 TEXT [0 count | 4]
| | 1 7
eeoe ITexT
L l |

WEE_/2E porvmosany BUANT PRECEDING PAGE BLANK NOT MLMED

-131-

Section 7.2 NAV BACKGROUND UTILITIES

The data stored in the Navigation format background
puffer is created by calls to a set of utility procedures.
All the modules described in section 7.3 make calls to these
utilities to place graphic information into the map back-
ground. The set of procedures is small, totaling only four
percent of all navigation format software.

There are two categories of NAV background utilities.
The first group contains procedures which are called to
create NAV symbology independent of other utility calls.
The second group of procedures are called in sets. Each
set starts with a BEG_SEG call and is terminated by a
END SEG call. The NAV background utility procedures are
1isted below. Detailed module descriptions are provided
on the following pages.

Group #1
NAV_TEXT
NAV_SYMBOL

Group #2
BEG_SEG
NAV LINE
NAV_ARC
NAV_WPT
NAV_LABEL
END_ SEG

oy | D0 MIERRuR S SRECEDING PAG

£ BLANK NOT FILMED

-132-

MODULE NAME: NAV_TEXT

FILE NAME: NAV UTL.MAR

CALLING SEQUENCE: CALL NAV_TEXT (LINE ID,COUNT, TEXT)
PURPOSE:

To store textual data for NAV format information lines.

DESCRIPTION:
The navigation format has four lines of textual infor-

mation appearing in the upper right corner. Any of these
lines can be updated with a call to NAV TEXT. The first
calling parameter for NAV_TEXT is the line identification
number, from one to four. Next is the text character count
followed by the actual buffer containing the ASCII text.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-133-

MODULE NAME: NAV_SYMBOL
FILE NAME: NAV_UTL.MAR
CALLING SEQUENCE: CALL NAV_SYMBOL (CLASS, X, Y, CNT, TEXT)
CALL NAV SYMBOL (CLASS,X,Y,BRG, LEN,CNT, TEXT)

PURPCSE:
To place NAV format reference symbols on the display.

DESCRIPTION:

Navigation format symbols are placed on the display
screen by calls to NAV_SYMBOL. The desired symbol is
requested within the parameter list by using predefined
names from the file CONSTANT.INC. The position of the
symbol is passed as the X (east) and Y (north) offsets from
the map background screen center (in feet). Each symbol
optionally may have label text written alongside on the
display screen. The character count and actual ASCII text
are passed as the last two parameters. Note that commas
must remain in the calling sequence when optional parameters
are excluded.

The two different calling sequences pertain to the two
categories of symbols available; non-rotatable and
rotatable. The rotatable group uses the second calling
sequence, which has bearing and length. This type of symbol
maintains its orientation within the map background. Non-
rotatable symbols do not rotate with the map background.
Their orientation stays fixed relative to the display
screen. The various types of symbols are shown below.

ROTATABLE GROUP

MNEMONIC DESCRIPTION

FLDRWY airfield with runway line
RWY runway

SRP selected reference point

NON-ROTATABLE GROUP

MNEMONIC DESCRIPTION

MOUNT mountain

OBSTR obstruction

BEACON radio beacon

VORTAC VOR/TAC antennae

VOR VOR antennae

DME DME antennae

AIRFLD airfield

GRP ground reference point
MARKER outer/middle marker

WPT waypoint

-134-

Note that within the rotatable group only the runway symbol
uses the length parameter.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-135-

MODULE NAME: BEG_SEG
FILE NAME: NAV _UTL.MAR
CALLING SEQUENCE: CALL BEG SEG(COLOR_TYPE,X,Y)

PURPQOSE:
To initiate a NAV background drawing sequence.

DESCRIPTION:

Navigation format drawing sequences are started with
calls to BEG_SEG. Two items are associated with an entire
drawing sequence; line type and initial position. These are
set from the parameters passed to BEG_SEG. The color and
line type are passed as a code value in the first parameter.
The list below shows the predefined names, found in
CONSTANT.INC, which are used to select the desired type.
Note that the passed parameter is actually the sum of the
color code and line type.

COLOR CODES

WHITE GREEN BLUE AMBER RED CYAN MAGENTA YELLOW
LINE TYPES
SOLID DASH DOT DOTDSH

Starting position of the drawing sequence is provided
in the last two parameters. These represent the X (east)
and Y (north) offsets from map background screen center
(in feet).

After BEG_SEG has been called, no other map background
utilities except NAV_LINE, NAV ARC, NAV_WPT, and NAV_LABEL
may be called until an END_SEG call is made.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-136-

MODULE NAME: NAV_LINE
FILE NAME: NAV_UTL.MAR
CALLING SEQUENCE: CALL NAV_LINE (X, Y,COUNT, TEXT)

PURPOSE:
To draw a line on the NAV display.

DESCRIPTION:

Lines are drawn as part of the map background by calls
to NAV _LINE. This procedure may only be called as part of
a map background drawing sequence which is initiated with a
call to BEG_SEG.

The line drawn on the display starts at the last
position made in the drawing sequence and terminates at the
position specified in the parameter list. The first two
values in the parameter list specify the X (east) and Y
(north) offsets from the map background screen center {in
feet). A text label may optionally be specified in the
calling sequence. The number of characters is specified
first, followed by the buffer containing the actual ASCIT
text. The text is positioned at the endpoint of the line
segment. Note that commas must be supplied when option
parameters are omitted.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-137-

MODULE NAME: NAV_ARC

FILE NAME: NAV_UTL.MAR

CALLING SEQUENCE: CALL NAV_ARC(ANG,RAD,BRNG,CNT,TEXT)
PURPOSE:

To generate arc segments for the NAV format display.

DESCRIPTION:

Arc segments are drawn as part of the map background by
calls to NAV_ARC. This procedure may only be called as part
of a map background drawing sequence which is initiated with
a call to BEG_SEG.

The arc segment drawn on the display starts at the last
position made in the drawing sequence. Three parameters are
required to draw an arc segment. The first is the number of
degrees of arc to draw. Next the radius of the arc is
supplied, in feet. Note that the turn direction is estab-
lished by the radius parameter. A negative value means a
left turn and a positive value is used for a right turn.

The third parameter is the compass bearing of the inbound
tangent to the arc.

A text label may optionally be specified in the calling
sequence. The number of characters is specified first (CNT),
followed by the buffer containing the actual ASCII text
(TEXT). The text is placed at the endpoint of the arc
segment. Note that commas must be supplied when option
parameters are omitted.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-138-

MODULE NAME: NAV_WPT
FILE NAME: NAV_UTL.MAR
CALLING SEQUENCE: CALL NAV WPT (CNT, TEXT)

CALL NAV:WPT(X,Y,CNT,TEXT)

PURPOSE:
To store path waypoint symbols in the map background.

DESCRIPTION:

Path waypoint symbols are drawn as part of the map
background by calls to NAV_WPT. This procedure may only be
called as part of a map background drawing sequence which is
initiated with a call to BEG_SEG.

A path waypoint may be placed at the last position
established in the drawing sequence using the first calling
format shown above. The path waypoint may be positioned
independently by using the second format which has the X
(east) and Y (north) offsets from the map background screen
center (in feet). Note that the established drawing
sequence screen position is not updated when a positioned
path waypoint is entered into the map background.

A text label may optionally be specified in the calling
sequence. The number of characters is specified first,
followed by the buffer containing the actual ASCII text.

The text is placed at the lower right side of the waypoint
symbol. Note that commas must be supplied when optional
parameters are omitted.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-139-

MODULE NAME: NAV_LABEL
FILE NAME: NAV_UTL.MAR
CALLING SEQUENCE: CALL NAV_LABEL (CNT, TEXT)

PURPOSE:
To store text labels into the map background.

DESCRIPTION:

Text labels may be placed at the current position in
the drawing sequence by calling NAV_LABEL. This procedure
may only be called as part of a map " background drawing
sequence which is initiated with a call to BEG_SEG. The
character count and text buffer containing ASCII codes are
supplied in the calling parameter list.

GLOBAL REFERENCES:

VARIABLES
NAVPTR*

ARRAYS
NAVDAT*

-140-

MODULE NAME: END SEG

FILE NAME: NAV UTL.MAR
CALLING SEQUENCE: CALL END_SEG
PURPOSE:

To terminate a map background drawing sequence.

DESCRIPTION:
Each time a BEG_SEG call is made, followed by other

map background drawing sequence calls, a matching call to
END_ SEG must be made to complete the data packets stored in
the background buffer. Any number of BEG SEG/END SEG pairs
may be stored into the map background buffer. -

GLOBAL REFERENCES:

VARIABLES
NAVPTR

ARRAYS
NAVDAT*

-141-

Section 7.3 NAV BACKGROUND PROCEDURES

Twenty five procedures are dedicated to the creation of
display buffer data for the NAV format background buffer.
The following chart lists the procedure names along with
their source code language and relative size. Those modules
that serve as utility subroutines to another procedure are
shown with their caller. The size provided is the percen-
tage of total NAV software memory usage.

Refer to Appendix A to identify which locations in the
output buffer (OUTDAT) are used by these modules. Note that
locations used for this format are tagged in the appendix by
the mnemonic "NAV". The following pages include module
descriptions for each of the twenty five procedures.

MODULE SOURCE SIZE

BOUNDS FORTRAN 5%
AREAS
NEARPT

MAP_ AIRWAY FORTRAN 4%
GET XY
NAME SIZE

NAVSLW FORTRAN 6%
NAVUPD
BUSFMT

OPTION FORTRAN 27%
AIRPRT
ARPSMB
RUNWAY
STRIPS
NAVAID
NAVSMB
RADTIAL

PATHS FORTRAN 18%
PLAN

LEG

DMA

TURN

WPTEXT

TEXT FORTRAN 8%
STORE

-142-

MODULE NAME: BOUNDS

FILE NAME: BOUNDS.FOR
PROCESS: DSPSLW

CALLED BY: NAVSLW

CALLING SEQUENCE: CALL BOUNDS (MAP ID)
PURPOSE:

To draw boundaries for the coastal air defense iden-
tification zones (CADIZ), air defense identification zones
(ADIZ), and the restricted areas.

DESCRIPTION:

This module is the main driver for the navigation
display’s boundaries. There are three types of zones that
can be shown on the NAV display when the boundary bezel
button is selected. Included is NASA restricted areas, air
defense, and coastal defense zones. Data for the boundary
lines is stored in the system data base (AADCOM). The
procedure "AREAS" is called with the address of a zone type
and the color/line type for the display. Note the address
is advanced by two to move past the start word for each zone

type.

GLOBAL REFERENCES:

VARIABLES
ADZPTR CDZPTR RESPTR

RECORD ARRAYS
NVMODE

FUNCTIONS AND SUBROUTINES
AREAS

-143-

MODULE NAME: AREAS

FILE NAME: BOUNDS.FOR
PROCESS: DSPSLW
CALLED BY: BOUNDS

CALLING SEQUENCE: CALL AREAS (ADDRESS, COLOR)

PURPOSE:
To create NAV background boundary lines.

DESCRIPTION:

This procedure is passed the address of a boundary area
and the desired line color/type code. The boundary area
consists of a six character name followed by a series of
latitude and longitude pairs. A zero word terminator marks
the end of the area. The subroutine GRID converts the
latitude/longitude values to north/east coordinates relative
to the current map background screen center. Clipping at
the screen boundaries is performed on each line formed by
two sets of lat/lon values. Because of clipping, one
boundary made from connected line segments may be broken
into many disjoint sections. The map background utility
procedures, described in section 7.2, are called to create
display data for the various boundary lines processed. The
boundary label is placed at the line end-point nearest the
screen center. This position is found by the procedure
NEARPT.

GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT NVLAT NVLON RIGHT TOP

FUNCTIONS AND SUBROUTINES
BEG_SEG CLIP END_SEG GET_REAL GET_WORD GRID NAV_LINE
NEARPT : o -

-144-

MODULE NAME: NEARPT
FILE NAME: BOUNDS.FOR
PROCESS: DSPSLW
CALLED BY: AREAS

CALLING SEQUENCE: CALL NEARPT (PTR, LABEL, TOTAL)

PURPOSE:
To select a vector end-point for boundary labeling.

DESCRIPTION:

This procedure steps through the latitude and longitude
pairs stored for map boundary lines. The first item in the
calling parameter list is the address of the boundary in the
system database. Two items are returned to the caller. The
total number of latitude/longitude pairs is returned along
with the index of the point selected to receive the boundary
label. The selected end-point is the one closest to the map
background screen center. An approximation is used to find
the distance from screen center. The absolute value of the
latitude and longitude difference between the end-point and
screen center are summed. This process usually selects a
good place for the boundary label with little processing
expense.,

GLOBAL REFERENCES:

VARIABLES
NVLAT NVLON

FUNCTIONS AND SUBROUTINES
GET REAL

-145-

MODULE NAME: MAP AIRWAY
FILE NAME: MAP_AIRWAY.FOR
PROCESS: DSPSLW

CALLED BY: OPTION

CALLING SEQUENCE: CALL MAP_AIRWAY

PURPOSE: :
To draw selected airways on the map display.

DESCRIPTION: :

This procedure generates the map background display
data for airways. When an airway is called up on the "NAV
data" page of the pilot’s control display unit (CDU), the
database address is sent to the display MicroVAX. The
portions of the airway which fall within the map clip window
are sent as waypoint symbols and line segments. Clipping
may break the airway into several disjoint segments in the
map background buffer.

MAP AIRWAY steps through the waypoint addresses stored
at the airway address in the system database (AADCOM) . A
zeroc terminator word marks the end of waypoint addresses in
the database. The procedure GET_ XY is called to compute
the X (east) and Y (north) offsets from the map background
screen center (in feet). The utility CLIP is then called
to determine the portion of the line segments, formed by
adjacent waypoints, that falls within the viewing window.
The map background utility procedures, described in section
7.2, are called to generate the line and waypoint symbols
in the background buffer. The names of the waypoints are
stored with the waypoint symbols for identification.

GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT RIGHT TOP

ARRAYS
LOKWPT

FUNCTIONS AND SUBROUTINES
BEG SEG CLIP END_SEG GET_WORD GET_XY NAME SIZE NAV_LINE

NAV_WPT

-146-

MODULE NAME: GET_XY
FILE NAME: MAP AIRWAY.FOR

PROCESS: DSPSLW

CALLED BY: MAP_AIRWAY

CALLING SEQUENCE: CALL GET_XY (PTR,WPT PTR,X,Y)
PURPOSE:

To compute airway waypoint positions.

DESCRIPTION:

This procedure is called with an address pointer to
airway data stored in the system database. The waypoint
address pointed to is fetched and returned as the second
item in the calling parameter list. The waypoint address is
then used to fetch the latitude and longitude of the way-
point. The procedure GRID is called to convert the latitude
and longitude to X (east) and Y (north) offsets from the map
background screen center (in feet). The computed values are
returned to the caller through the last two calling param-
eters.

GLOBAL REFERENCES:

VARIABLES
NVLAT NVLON

FUNCTIONS AND SUBROUTINES
GET_LONG GET REAL GRID

-147-

MODULE NAME: NAME SIZE

FILE NAME: MAP ATRWAY.FOR

PROCESS: DSPSLW

CALLED BY: MAP AIRWAY

CALLING SEQUENCE: LENGTH = NAME SIZE (POINTER)
PURPOSE:

To determine waypoint name length.

DESCRIPTION:

Different types of waypoints in the system database
have different name lengths. Navigation aids use three
character names, airfields have four, and geographic
reference points have five letters in their names. This
module is passed a pointer to a waypoint in the system
database. It determines the type of waypoint and returns to
the caller the length of the name stored at that address.

The waypoint type 1s determined by the format defined
for the system database. This is described in detail in
the flight management documentation, in the CDU section.
When the fourth byte at the waypoint address is negative,
the waypoint is a navigation aid. When the fifth byte is a
blank character, its an airfield. Otherwise the waypoint is
a geographic reference point.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
GET_BYTE

-148-

MODULE NAME: NAVSLW

FILE NAME: NAVSLW.FOR
PROCESS: DSPSLW
CALLED BY: DSPSLW
CALLING SEQUENCE: CALL NAVSLW
PURPOSE:

To control the NAV background updating for the various
NAV formats running in the display system.

DESCRIPTION:

'This is the main procedure for the generation of NAV
display background data. The Sperry microprocessor system
may have from one to four NAV formats loaded and running.
Each format has unique background data requirements. When
the background of a NAV format needs to be updated the
corresponding update flag, UPD(l) through UPD(4), is set by
one of the routines FMTBZL or NAVEXC. Section 7.1 describes
the format of the map background buffer.

The same 400 word output buffer is sent to the display
microprocessors to update any of the NAV formats running in
the system. However the amount of data generated for a
single NAV format may be up to 800 words. A two step map
background update will occur when more than 400 words of
data are generated. It is the job of NAVSLW to control the
use of the map background buffer, restricting its use to
alleviate conflicts. The buffer is not available to other
NAV formats while an update is in progress.

The task DSPSLW, which contains NAVSLW, runs at the
lowest priority in the display MicroVAX (see section 2.1).
This means that NAVSLW does not run in a fixed time frame,
but runs whenever spare time is available. Since all I1/0
is performed in the main 50 millisecond frame, NAVSLW must
perform synchronization steps to assure data integrity.
Without the proper control two problems would occur. The
data could be transmitted to the display system before the
background buffer is finished, or the changes to the buffer
for another NAV format could start before the last one was
transmitted. The first potential problem is solved by the
"Map Control Word" described in section 7.1. This word is
not set until the background buffer is ready to go. Even
when the high priority I/0 task interrupts the execution of
NAVSLW and sends the incomplete buffer, no NAV format will
try to use the data until a valid Map Control Word has been
set. The problem of changing the data in the buffer before
transmission is eliminated by requiring that two increments
of the fifty millisecond counter have occurred between
background updates. This assures that the transmission has
been done at least once. Two increments are used, instead
of one, because the I/0 takes place during the last 10

-149-

milliseconds of the 50 millisecond frame (frame #4) . The
task DSPSLW may gain control of the system before that point
if no other tasks require the system. In this case the
frame counter would have incremented but the completed
puffer would not have been transmitted. Waiting two frames
eliminates that possibility.

NAVSLW starts by checking if the background buffer is
available (BWAIT). If it is unavailable it returns, unless
the two frame wait has expired. When the wait is complete
the Map Control Word is cleared so any new update requests
can use the background buffer, unless the second half of a
two part buffer needs to be sent. BUSFMT is called to
process the second part after the timer expires and the
original data block was greater than 400 words.

When the map background buffer is available, the
background update request flags for the NAV formats are
tested to determine when an update is needed. The update
process will start for the first map which has an update
flag set. Other NAV formats must wait until the background
buffer is available before their update request will be
serviced. A background update consists of calls to the
subroutines NAVUPD and BUSFMT. The responsibility of NAVUPD
is to create background data designated for a particular NAV
format. The generated data is saved in an 800 word scratch
puffer called NAVDAT. The new data is then set up in the
map background output buffer (OUTDAT) by calling BUSFMT.

The map control word is managed by BUSFMT also.

While stepping through the update request flags for
each map, NAVSLW checks the map orientation status in the
map mode structure (NVMODE). If any of the active maps is
in the "North-up" mode a flag bit is set in one of the words
(DISPST) sent to the FM/FC MicroVAX computer. When a map is
in "North-up" mode, the LEGS page of the CDU shows special
tags to allow the flight crew to step through the flight
plan.

GLOBAL REFERENCES:

VARIABLES
BKWAIT* CNT50 DISPST* DOUBLE FSAVE

ARRAYS
MAPID* UPD

RECORD ARRAYS
NVMODE

FUNCTIONS AND SUBROUTINES
BUSFMT NAVUPD

-150-

MODULE NAME: NAVUPD

FILE NAME: NAVSLW.FOR

PROCESS: DSPSLW

CALLED BY: NAVSLW

CALLING SEQUENCE: CALL NAVUPD (MAP INDEX)
PURPOSE:

To create data for map background updates.

DESCRIPTION:

This procedure is called when one of the map background
update requests has been granted. The index of the selected
map is passed as the sole calling parameter. The function
of NAVUPD is to oversee the creation of the background data
for the selected map.

Several variables are setup for use by the various
background display modules. This includes the feet to
screen units (one thousandths inches) conversion factor,
map clip window boundaries, and map center position.

The first four words of the background buffer contain
the start of transmission group (SOT) and the mode control
group (see section 7.1). The first word is the SOT header
and the second is the SOT word count, which is filled in by
BUSFMT after all the data is generated. The third and
fourth words are the control group header and mode control
bits respectively. The mode control bits are set from the
map control structure which reflects the current status of
the map bezel panel buttons. The remainder of the data
buffer is created by calls to PATHS, BOUNDS, TEXT, and
OPTION.

GLOBAL REFERENCES:

VARIABLES
BOTTOM* LAT LATCEN LEFT LON LONCEN NAVPTR* NVLAT* NVLON*
NVUNIT* RIGHT TOP*

ARRAYS
NAVDAT

RECORD ARRAYS
NVFMT NVMODE

FUNCTIONS AND SUBROUTINES
BOUNDS OPTION PATHS TEXT

-151-

MODULE NAME: BUSFMT

FILE NAME: NAVSLW.FOR

PROCESS: DSPSLW

CALLED BY: NAVSLW

CALLING SEQUENCE: CALL BUSFMT (MAP INDEX)
PURPOSE:

To store map background data in the background output
areas for transmission to the microprocessor displays.

DESCRIPTION:

This procedure moves the completed map background data
to the background output buffer and sets the proper codes
in the map control word to enable acceptance of the data
from the designated map format microprocessor. The Start
of Transmission (SOT) count within the buffer is set at this
time (see section 7.1). The upper two bits of the SOT count
are set to the index (1-4) of the map being updated. This
index allows the selected navigation format to choose the
correct map center displacement from the list stored in the
output buffer (by NAVEXC).

The map control word is part of the I/0 memory sent to
the microprocessor display system twenty times each second.
The bit fields used control the usage of the map background
puffer by individual map formats. The upper byte of the
control word is a sequence byte. Each time a new background
puffer is completed this byte is incremented to signal the
navigation formats that fresh data is available. The first
four bits of the lower byte of the map control word
designate which of the maps should be the recipient of the
newly created background puffer. A code value is placed in
the four bits which is the sequence number of the micro-
processor containing the destination navigation format. The
second nibble of the lower byte is used to flag the selected
navigation format that the set of data is the second part of
a two piece background buffer.

GLOBAL REFERENCES:

VARIABLES
BKWAIT* CNT50 DOUBLE* FSAVE* NAVPTR

ARRAYS
MAPID* NAVDAT OUTDAT*

RECORD ARRAYS
NVEMT

-152-

MODULE NAME: OPTION

FILE NAME: OPTION.FOR

PROCESS: DSPSLW

CALLED BY: DSPSLW

CALLING SEQUENCE: CALL OPTION (NAV ID)
PURPOSE:

Controls the processing of map background data for
airports, GRPs, navigation aids, terrain features, origin
and destination airports and runways, tuned navaids, and
look-up reference points.

DESCRIPTION:

OPTION acts as an executive for processing a large
subset of map background information. It calls a number of
smaller modules to process specific types of information.
OPTION and its set of called procedures are responsible for
producing background buffer data for bezel selected features
(airports, GRPs, navaids, terrain features), look-up refer-
ence points, origin and destination airport information, and
reference point information selected via the CDU Fix pages.

Up to four unique NAV formats are allowed in the
current display system setup. Since each NAV may select
different map scales and bezels, it is necessary for OPTION
to know what the selections are for the map it is currently
processing. The input parameter NAV_ID provides this infor-
mation.

One of the responsibilities of this procedure is to
produce the data necessary to display a symbol selected on
the Nav Data page. The array LOKWPT provides an address
into the navigation database for the information requested,
and an index indicating the type of symbol to display,
respectively. The following table lists the possible values
of LOKWPT(2) and the type of symbol it produces.

LOKWPT (2) symbol
1 navaid
2 airfield
3 GRP
5 waypoint series

The last entry in the table refers to a series of waypoints
that can be included in the flight plan. The module

MAP AIRWAY produces the data necessary to display the set
of waypoints.

OPTION calls AIRPRT to process origin and destination
airports and runways, and calls STRIPS to process the bezel
selected information for airports, terrain, navaids, and
GRPs. OPTION also determines if the tuned navaids, DME 2
and DME 3 are selected, and if so calls NAVAID which will
store the appropriate data in the background buffer.

-153-

The last thing done in this procedure is to look for
any reference points selected on the CDU Fix pages. A
maximum of two fixes can be selected. FEach element of the
array FIXWRD corresponds to one of the fixes that can be
chosen, and contains information about the fix. The least
significant bit of each word indicates whether a fix has
been selected. RADIAL is called to process the Fix page
selections.

Module descriptions for routines mentioned above
(AIRPRT, STRIPS, NAVAID, RADIAL, MAP_AIRWAY) can also be
found in this section, and should be referenced if more
detailed information is desired on what they do.

GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT NVAD2A NVAD3A NVID NVLAT NVLON RIGHT SCALE*

TDWR_LAT TDWR_LON TOP

ARRAYS
FIXWRD LOKWPT

RECORD ARRAYS
NVMODE

FUNCTIONS AND SUBROUTINES
AIRPRT GET REAL GET_WORD GRID MAP_AIRWAY NAVAID NAVSMB
NAV_SYMBOL POSBTS RADIAL STRIPS

-154-

MODULE NAME: AIRPRT

FILE NAME: OPTION.FOR
PROCESS: DSPSLW
CALLED BY: OPTION
CALLING SEQUENCE: CALL AIRPRT
PURPOSE:

Controls the processing of the origin and destination
airports and runways, and also look-up runways.

DESCRIPTION:

Most of the processing done in this routine is based on
the values found in the array AIRPTS. This array contains
addresses into the navigation database for information
concerning origin, provisional destination, and active
destination airports and runways. It is arranged as
follows.

airfield runway
origin AIRPTS (1,1) AIRPTS (2,1)
provisional dest AIRPTS(1,2) AIRPTS (2,2)
active dest AIRPTS (1, 3) AIRPTS (2, 3)

Runway symbols are shown on map scales of 2, 5, 10, and
20 nautical miles if a non-zero address exists in the proper
AIRPTS location for the runway requested. If an address is
found, RUNWAY is called to pack the appropriate data into
the map background buffer. When a valid runway address does
not exist, ARPSMB is called to process an alrport symbol
instead. Origin and destination airports or runways are
always shown. Provisional destination airport information
is processed if the addresses for provisional and active
destination airfields in AIRPTS differ from each other. On
map scales of 40 and 80 nautical miles airport symbols only
are displayed.

Runways may be looked-up via the CDU. An address into
the navigation database for the runway information requested
is stored in the array element LOKWPT(1l). As described
above, look-up runways are processed by the routine RUNWAY,
and are only shown on lower map scales.

GLOBAL REFERENCES:

VARIABLES
SCALE

ARRAYS
AIRPTS LOKWPT

FUNCTIONS AND SUBROUTINES
ARPSMB RUNWAY

-155-

MODULE NAME: ARPSMB

FILE NAME: OPTION.FOR

PROCESS: DSPSLW

CALLED BY: AIRPRT

CALLING SEQUENCE: CALL ARPSMB (ARPT ADDR)
PURPOSE:

Processes the data required to display an airfield.

DESCRIPTION:

ARPSMB accepts as input an address in the navigation
database where information about an airfield to be displayed
is stored. If the address is valid (non-zero), the latitude
and longitude is fetched. The utility routines GRID and
POSBTS convert the positions into screen coordinates, and
determine if the airfield lies within the view screen. If
so, the runway azimuth is retrieved as well. The procedure
NAV_SYMBOL will pack the information gotten from the data-
pase, along with a four character name it fetches, into the
map background buffer. For more information about

NAV_SYMBOL refer to section 7.2.
GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT NVLAT NVLON RIGHT TOP

FUNCTIONS AND SUBROUTINES
GET_REAL GRID NAV_SYMBOL POSBTS

-156-

MODULE NAME: NAVAID

FILE NAME: OPTION.DOC
PROCESS: DSPSLW

CALLED BY: OPTION, STRIPS

CALLING SEQUENCE: CALL NAVAID (TUNE_FLG,NAVAID_ADDR)

PURPOSE:
Processes the data necessary to display a navaid.

DESCRIPTION:

This procedure calls the utility routines required to
store information in the map background buffer for a
requested navaid. Inputs passed in are a flag indicating
tune status, and an address into the navigation database for
information concerning the navaid. A navaid will be
displayed if any one of the following conditions exist: the
navaid is tuned, the map scale is 40 nautical miles or less,
or it is a high altitude navaid. A bit in one of the
database words fetched indicates high altitude status.

Calls to GRID and POSBTS are made to determine if the navaid
is within the viewing screen. 1If it is, NAVSMB is called to
determine the appropriate symbol to display (there are three
types), and the color (tuned and non-tuned navaids are
different colors). The latitude and longitude positions,
navaid classification, and a three-character name are stored
in the background buffer.

NAVAID may be called in one of two ways: to process a
single tuned navaid, or to process from the database the
entire set of navaids within a particular longitudinal strip.

GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT NVLAT NVLON RIGHT SCALE TOP

FUNCTIONS AND SUBROUTINES
GET_REAL GET _WORD GRID NAVSMB NAV SYMBOL POSBTS

-157-

MODULE NAME: NAVSMB

FILE NAME: OPTION.FOR

PROCESS: DSPSLW

CALLED BY: OPTION, NAVAID, RADIAL

CALLING SEQUENCE: CALL NAVSMB (TUNE FLG,TYPE,CLASS)
PURPQOSE:

Determines the type of navaid symbol to display.

DESCRIPTION:

Three types of navigation aids (Navaids) may be shown
on the map. They are: VORs, VORTACs, and non-directional
beacons. As input to this routine, a data word fetched from
the area of the navigation database containing information
about the navaid being processed is sent to NAVSMB in the
form of the parameter TYPE. Certain bits of this word are
checked to determine which one of the three types is to be
displayed. Also, navaids may be tuned or non-tuned, which
on the screen will result in different color symbols being
shown. Tuned Navaids are depicted in green, non-tuned are
white. The input parameter TUNE FLG indicates the approp-
riate state. CLASS is an output parameter which contains
the result of the processing done by NAVSMB, which is a
single word indicating navaid type and tuned status.

-158-

MODULE NAME: RADIAL
FILE NAME: OPTION.FOR
PROCESS: DSPSLW
CALLED BY: OPTION

CALLING SEQUENCE: CALL RADIAL (INDEX)

PURPOSE:
Processes the data required to draw radials through,
or a circle around, a selected reference point.

DESCRIPTION:

This procedure processes information entered on the
CDU Fix pages. By means of the Fix page, a reference point
may be displayed on the map with radials drawn through it
at bearings selected on the CDU page. Also, a circle can
be drawn around the point at a fixed radius in nautical
miles. The CDU Fix page allows for up to two fixes to be
selected. The input parameter to RADIAL is an index indi-
cating which fix is being processed.

Certain global variables contain information used in
drawing the selected reference point (SRP) symbology.

Bits in the variable FIXWRD indicate whether the fix is
active, how many bearings have been entered, and what type
of SRP has been chosen. FIXADD contains the address into
the navigation database of the SRP information. If a circle
around the SRP has been requested on the Fix page, FIXCIR
contains the radius entered in nautical miles.

The basic SRP symbol consists of a fixed size circle
drawn around a selected reference point, with two radials
extending from the edge of the circle in opposite directions
at a bearing entered on the Fix page. Up to four bearings
can be selected for a particular fix. A SRP symbol will be
displayed for each bearing requested, which means that up to
four SRP symbols may overlay the same reference point.

Three types of reference points may be selected on the
Fix page. They are navaids, airports, and GRPs. Using
FIXADD, the reference point’s position is fetched from the
database. The position must be within the screen viewing
area before the SRP symbology can be processed. The utility
procedures GRID and POSBTS are used to determine this, and
also to convert the lat/lon position to screen coordinates.
NAV_SYMBOL is called to pack the SRP data into the back-
ground buffer.

The Fix page also allows for a circle to be drawn, at
a selected radius, around a reference point. FIXCIR con-
tains the entered radius value. The map background utility
routines BEG_SEG, NAV_ARC, and ENG_SEG produce the buffer
data necessary to display the circle. For more information
about these modules, and NAV SYMBOL, reference section 7.2.

-159-

GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT MAGVAR NVLAT NVLON RIGHT TOQOP

ARRAYS
FIXADD FIXCIR FIXRAD FIXWRD

FUNCTIONS AND SUBROUTINES
ANGL BEG SEG END SEG GET REAL GET_WORD GRID NAVSMB NAV_ARC

NAV_SYMBOL POSBTS

-160-

MODULE NAME: RUNWAY

FILE NAME: OPTION.FOR

PROCESS: DSPSLW

CALLED BY: AIRPRT

CALLING SEQUENCE: CALL RUNWAY (TYPE,RWY_ADDR,ARPT_ADDR)
PURPOSE:

Processes the data for the origin, destination, and
look-up runways, and also the runway centerline.

DESCRIPTION:

RUNWAY is responsible for retrieving information about
a requested runway from the navigation database, and calling
the utility routines necessary to store the data in the map
background buffer. Inputs to this routine are: a flag
indicating runway type, a database address for the runway,
and a database address for the runway’s airfield
respectively.

Using the runway address, the latitude and longitude
position, runway length, and azimuth, are fetched. The
utility routines GRID and POSBTS are called to convert the
threshold position to screen coordinates, and to determine
if it lies within the view screen. If it does, NAV SYMBOL
is called to pack the position, azimuth, length, and runway
tag into the background buffer (see section 7.2 for more
information about NAV_SYMBOL. The input parameter TYPE is
used in figuring the proper tag to display. A two-character
tag corresponding to the runway number is displayed for a
look-up runway, while origin and destination runways are
tagged with a four-character name identifying the runway’s
airfield. The input parameter containing the airfield’s
address is used to retrieve the airfield name from the
database.

Origin and destination runways will have a centerline
drawn in addition to the symbol. The centerline is a fixed
10 nautical mile length, and is drawn as a green dotted
line. It is clipped at the screen edge if necessary. The
utility routines BEG_SEG, NAV_LINE, and END SEG put the
centerline data into the background buffer. Section 7.2
describes these modules in more detail.

GLOBAL REFERENCES:

VARIABLES
BOTTOM LEFT NVLAT NVLON RIGHT TOP

FUNCTIONS AND SUBROUTINES
BEG_SEG CLIP END_ SEG GET_REAL GRID NAV_LINE NAV_SYMBOL
POSBTS SCOSD

~161-

MODULE NAME: STRIPS
FILE NAME: OPTION.FOR
PROCESS: DSPSLW
CALLED BY: OPTION

CALLING SEQUENCE: CALL STRIPS

PURPOSE:

Searches for and processes the longitudinal strip
information in the navigation database corresponding to the
region currently mapped by the NAV format.

DESCRIPTION:

Most of the information contained in the database is
arranged in groups of longitudinal strips. A strip is
bounded by a pair of longitudinal values which differ by
two degrees (for example, 76 through 78 degrees longitude).
Within it are sets of data for the airports, GRPs, navalds,
terrain features, among other things, found in that region.
This routine determines which strips of data lie inside the
view screen, and processes any data requested within that
strip.

STRIPS sequentially examines all the longitude pairs
in the database. The utility routine GRID determines if a
particular pair is within the screen area. If it is, then
the airfield, navaid, terrain, and GRP data for that strip
is processed if the corresponding bezel has been pressed on.
Each strip has address pointers for the four data types,
which are used in referencing the appropriate database
location.

The rest of this module description assumes that a
particular strip has been determined to be inside the view-
ing area, and the bezel for the feature being described is
on. The procedures GRID and POSBTS determine if the lati-
tude and longitude position of the individual members of
each data feature are within screen limits. The map back-
ground utility routine NAV SYMBOL packs up the information
necessary to display a symbol into the background buffer.
For more information on NAV SYMBOL refer to section 7.2.

The first data feature processed in STRIPS is airports.
To display an airfield the latitude and longitude position
is required, and also a four-character airfield name.

Navaids are processed next. The NAV routines NAVAID
and NAVSMB are called to do that. Their module descrip-
tions, also found in this section, explain in detail the
types of navaids that exist, the conditions under which
they are shown, and the information required by the NAV
format to display them.

There are two types of terrain features: obstructions
and mountains. The mountain bezel activates both. Mountain
and obstruction information is grouped together in the

-162-

database. The most significant bit in the first data word
for an individual symbol is used to differentiate between
the two. 1If the bit is set, an obstruction is processed,
otherwise a mountain. Obstructions are only shown on map
scales of 20 nautical miles or less. A lat/lon position
converted to screen units and a tag indicating the obstruc-
tion’s height in feet, are packed into the buffer. For
mountains, a position and a tag representing the mountain’s
height in hundreds of feet are packed.

The last data feature processed in STRIPS is GRPs.
GRPs are not shown on the 80 nautical mile map scale, and
only high altitude GRPs are displayed at 20 and 40 nautical
miles. A specific bit set in the first word from the GRP’s
data area indicates that it is a high altitude GRP. A
screen position, and a five-character name are packed into
the map background buffer.

GLOBAL REFERENCES:

VARIABLES
BOTTOM IBPTR LEFT NVID NVLAT NVLON RIGHT SCALE TOP

RECORD ARRAYS
NVMODE

FUNCTIONS AND SUBROUTINES
GET_CHAR GET_LONG GET_REAL GET_WORD GRID LIBS$SKPC NAVAID
NAV_SYMBOL POSBTS

-163-

MODULE NAME: PATHS

FILE NAME: PATHS.FOR

PROCESS: DSPSLW

CALLED BY: NAVUPD

CALLING SEQUENCE: CALL PATHS (MAP INDEX)
PURPOSE:

To initiate the generation of flight plan displays.

DESCRIPTION:

This module creates flight plan data for the naviga-
tion display format. This includes the provisional and
active flight plans, when generated by the FM/FC MicroVAX
computer from flight crew entries on the CDU. The module
PLAN is called to draw a series of connected flight plan
elements (straight line and arc segments). Only one call to
PLAN is needed to create the map background data for the
active flight plan since the active path is always one
connected piece. The provisional path may be a set of
disjoint path segments, separated by "Route Discontinuities"
on the pilot’s CDU. The provisional flight plan is parsed
by PATHS to identify each separate flight plan section. A
separate call to PLAN is made for each section found.

GLOBAL REFERENCES:

VARIABLES
ACTCNT MODCNT PMODE TXTMOD*

RECORD ARRAYS
ACT WPTS MOD WPTS NVMODE

FUNCTIONS AND SUBROUTINES
PLAN

-164-

MODULE NAME: PLAN

FILE NAME: PATHS.FOR

PROCESS: DSPSLW

CALLED BY: PATHS

CALLING SEQUENCE: CALL PLAN(WAYPOINTS, COUNT, TYPE)
PURPOSE:

To generate map background data for a flight plan
segment.

DESCRIPTION:

This procedure is called to draw flight plan paths.

The buffer containing the flight plan waypoints is passed
as the first calling parameter. The number of waypoints
contained in the buffer is the second parameter and the
type of flight plan, active or provisional, is third.

PLAN makes calls to the utility GRID to convert
latitude and longitude coordinates to X (east) and Y (north)
offsets from map background screen center (in feet). Then
one of three subroutines is called to create path data,
dependent on the type of flight plan leg being processed.

If the current waypoint is a DMA turn entry point, LEG is
called to draw the straight line approach. If the current
waypoint is an exit to a DMA turn, the module DMA is called
to generate the DMA arc. Otherwise a straight line segment
will be drawn unless the "pass-by" distance at the waypoint
as shown at the current map scale is greater than .1 inches.
In this situation the procedure TURN is called to create the
"pass-by" turn segment.

When a flight plan is made up of only one waypoint,
PLAN tests for positioning within the clipping window and
if valid, calls NAV_SYMBOL to store the waypoint symbol.

GLOBAL REFERENCES:

VARIABLES
ACTCNT BOTTOM I* LEFT MODCNT NEWSEG NVLAT NVLON NVUNIT
RIGHT TOP X2 Y2

ARRAYS
AIRPTS TDAT X* Y*

FUNCTIONS AND SUBROUTINES
DMA END_SEG GRID LEG NAV_SYMBOL POSBTS TURN WPTXT

-165-

MODULE NAME: LEG

FILE NAME: PATHS.FOR
PROCESS: DSPSLW
CALLED BY: PLAN, TURN

'CALLING SEQUENCE: CALL LEG(WAYPOINTS,COLOR, TEXT FLAG)

PURPOSE:
To create a straight line segment of a flight plan.

DESCRIPTION:

This subroutine calls map background utility procedures
to form a straight path segment with waypoint symbols.
First the procedure CLIP is called to trim the path leg to
the display window boundaries. If the end of the line is
clipped the current background drawing sequence is terminated
by calling END_SEG. The global flag NEWSEG is set to
indicate that a BEG_SEG call must be made before any more
path segments are placed in the background buffer.

when the leg endpoint is within the clip window, the
module WPTXT is called to format the waypoint label for the
leg endpoint. The utility procedure NAV_WPT is called to
store the waypoint symbol and its label in the background
puffer. When LEG is called with the NEWSEG flag on, the
labeled waypoint symbol for the beginning point of the line
is stored if it falls within the clipping region.

GLOBAL REFERENCES:

VARIABLES
BOTTOM I LEFT NEWSEG* RIGHT TOP

ARRAYS
TDAT X ¥

FUNCTIONS AND SUBROUTINES
BEG_SEG CLIP END_SEG NAV_LINE NAV_WPT WPTXT

-166-

MODULE NAME: DMA

FILE NAME: PATHS.FOR

PROCESS: DSPSLW

CALLED BY: PLAN

CALLING SEQUENCE: CALL DMA (WAYPOINTS, COLOR)
PURPOSE:

To create a DMA turn segment of a flight plan.

DESCRIPTION:

This subroutine calls map background utility procedures
to form a DMA turn path segment with waypoint symbols.,
First the procedure CLIP is called to determine if the
entire turn segment is outside the clipping region. 1If it
is, the current background buffer drawing sequence is
terminated by calling END_SEG and the global flag NEWSEG is
set to indicate that a BEG_SEG call must be made before any
more path segments are placed in the background buffer. If
any of the arc falls within the clipping region the entire
turn segment is added to the current drawing sequence.

This is done because segment clipping is only performed on
straight lines.

The background utility NAV ARC is called to store the
arc segment in the background buffer. The turn angle, arc
radius, and inbound bearing parameters passed to NAV ARC
are all obtained from the waypoint buffer. Note that the
bearing found in the waypoint buffer for DMA turn segments
is actually perpendicular to the inbound tangent point.
Ninety degrees must be added or subtracted depending on the
turn direction (left or right from inbound course) .

When the arc endpoint is within the clip window, the
module WPTXT is called to format the waypoint label for the
arc endpoint. The utility procedure NAV WPT is called to
store the waypoint symbol and its label In the background
buffer. When DMA is called with the NEWSEG flag on, the
labeled waypoint symbol for the beginning point of the arc
is stored if it falls within the clipping region.

GLOBAL REFERENCES:

VARIABLES
BOTTOM I LEFT NEWSEG* RIGHT TOP

ARRAYS
TDAT X Y

FUNCTIONS AND SUBROQUTINES
ANGL BEG_SEG CLIP END_SEG NAV ARC NAV _WPT WPTXT

-167-

MODULE NAME: TURN

FILE NAME: PATHS.FOR
PROCESS: DSPSLW
CALLED BY: PLAN

CALLING SEQUENCE: CALL TURN (WAYPOINTS,COLOR)

PURPOSE:
To create a turn segment for a flight plan.

DESCRIPTION:

This subroutine calls map background utility procedures
to form an arc path segment with the "pass-by" waypoint
symbol. TURN calls the utility procedure PROJECT to find
the inbound and outbound tangent points which define the
start and endpoints of the arc segment. Waypoint symbols
are not placed at these points. One waypoint symbol is
positioned off the arc at the intersection of the imaginary
inbound and outbound tangent lines. A straight leg is
drawn to the inbound tangent point. The display data for
this leg is generated by calling the procedure LEG.

The procedure CLIP is called to determine if the entire turn
segment is outside the clipping region. 1If it is, the
current background buffer drawing sequence is terminated by
calling END_SEG and the global flag NEWSEG is set to
indicate that a BEG_SEG call must be made before any more
path segments are placed in the background buffer. If any
of the arc falls within the clipping region the entire turn
segment is added to the current drawing sequence. This is
done because segment clipping is only performed on straight
lines.

The background utility NAV ARC is called to store the
arc segment in the background buffer. The turn angle, arc
radius, and inbound bearing parameters passed to NAV ARC
are all obtained from the waypoint buffer. -

When the arc segment is within the clip window, the
module WPTXT is called to format the label text for the
"pass-by" waypoint. The utility procedure NAV WPT is called
to store the waypoint symbol, its position, and its label in
the background buffer.

GLOBAL REFERENCES:

VARIABLES
BOTTOM I LEFT NEWSEG* NVLAT NVLON RIGHT TOP X2 Y2

ARRAYS
TDAT X Y

FUNCTIONS AND SUBROUTINES
BEG_SEG CLIP END_ SEG GRID LEG MTH$ATAND2 NAV_ARC NAV_WPT
PROJECT WPTXT

-168-

MODULE NAME: WPTXT

FILE NAME: PATHS.FOR

PROCESS: DSPSLW

CALLED BY: PLAN, LEG, DMA, TURN

CALLING SEQUENCE: CALL WPTXT (INDEX,WAYPOINTS, COUNT)

PURPOSE:
To format waypoint labels for the flight plan.

DESCRIPTION:

This procedure is called with a waypoint buffer and the
corresponding index designating which waypoint within the
buffer is being processed. Label text is generated in the
global buffer TDAT and the number of characters created for
the label is returned in the last calling parameter. The
extent of the label depends on the global index TXTMOD. The
following chart describes what is included in the waypoint
label for the possible values of TXTMOD,.

TXTMOD LABEL GENERATION
0 Include waypoint name only.
1 Include waypoint name, assigned altitude and ground
speed.
2 If current waypoint is the "TO’ waypoint of the

active flight plan, process as TXTMOD = 0. Otherwise
no label is generated.

3 If current waypoint is the ’‘TO’ waypoint of the
active flight plan, process as TXTMOD = 1. Otherwise
no label is generated.

When altitude and speed values are included in the label,
waypoint buffer flags are tested to determine when actual
values have been assigned. The label text will have dashes
instead of digits when no value is assigned.

GLOBAL REFERENCES:

VARIABLES
TDAT* TOWPT TXTMOD

FUNCTIONS AND SUBROUTINES
OTSSCVT L TI

-169-

MODULE NAME: TEXT
FILE NAME: TEXT.FOR
PROCESS: DSPSLW
CALLED BY: NAVUFD

CALLING SEQUENCE: CALL TEXT (MAP_ INDEX)

PURPOSE:
To update map background text lines.

DESCRIPTION:

The Navigation display format allows the display of four
lines of text data, 19 characters per line, in the upper
right hand corner of the display screen. The text data is
supplied through the map background buffer (see section
7.1). The sole calling parameter to TEXT is the index of
the navigation format currently being updated.

The module TEXT builds a buffer of up to 19 characters,
and uses the map background utility procedure NAV_TEXT to
place the text in the background buffer. Shown below is a
1ist of the items included on each display line.

LINE #1
ITEM CONDITIONS
distance to go when active flight plan exists
'TO’ wpt name when active flight plan exists
time of day always
LINE #2
ITEM CONDITIONS
airport indicator 'ARPT’ bezel selected
navaid indicator 'NVD’ bezel selected
time box indicator 'BOX’ bezel selected
range arc indicator "ARC’ bezel selected
LINE #3
ITEM CONDITIONS
terrain indicator 'MTN/OBSTR’ bezel selected
GRP indicator "GRP’ bezel selected
boundary indicator 'BNDS’ bezel selected
LINE #4
ITEM CONDITIONS
2D/3D/4D when auto guidance engaged
TRK indicator auto-track select mode engaged
ALT indicator auto-altitude hold mode engaged
IAS indicator auto throttle engaged
FPA indicator auto-flight path angle engaged

navigation mode always

-170-

GLOBAL REFERENCES:

VARIABLES
ALTSEL AWAS_BITS DATA TM DAY DTOGO FE3 FPASEL GUID2D
HORPTH HRAD BHR IASSEL NAV TAS TASVLD TIME TIMPTH

TKSEL TOWPT VERPTH

ARRAYS
AWAS_DATA

RECORD ARRAYS
ACT_WPTS NVMODE

FUNCTIONS AND SUBROUTINES
FMTTIM NAV_TEXT OTSSCVT_L TI OTSS$SFLOAT STORE

-171-

Section 7.4 NAV REAL-TIME PROCEDURES

This section is devoted to the modules that create
navigation format real-time data. All the navigation
format symbology, except the map background, is updated
twenty times per second. The procedures described in
this section format and store data into the microprocessor
output buffer at this update rate.

The following chart lists the procedure names along
with their source code language and relative size. Those
modules that serve as utility subroutines to another
procedure are shown with their caller. The size provided is
the percentage of total NAV software memory usage.

Refer to Appendix A to identify which locations in the
output buffer (OUTDAT) are used by these modules. Note that
locations used for this format are tagged in the appendix by
the mnemonic "NAV". The following pages include module
descriptions for each of the fifteen procedures.

MODULE SOURCE SIZE
FMTBZL FORTRAN 2%

NAVEXC FORTRAN 12%
SELTRK

NAVMLS

TRENDV

RNGARC

TBOX

ROTATE

PTHPOS FORTRAN 12%
TIMPOS

LINE

TURN

PASSBY

INBRG

PTHLEG

-172-

MODULE NAME: NAVEXC
FILE NAME: NAVEXC.FOR
PROCESS: DSPFST
CALLED BY: DSPFST

CALLING SEQUENCE: CALL NAVEXC

PURPOSE:
To serve as the main procedure for navigation format

real-time processing.

DESCRIPTION:

This procedure initiates all the computations performed
for the navigation format real-time symbology. Most of the
processing is performed by the modules called from NAVEXC,
however several items are handled directly within NAVEXC.
The following modules are called to create and store data
into the microprocessor output buffer.

FMTBZL process bezel button inputs

SELTRK create data for selected track lines
NAVMLS create data for MLS airplane position
TRENDV create data for the aircraft trend vector
RNGARC create data for the altitude range arc
TBOX create data for time box positioning

The first "in-line" processing performed by NAVEXC is
the setting of map background update requests. The FM/FC
MicroVAX computer can command updates of all map backgrounds
by setting the global flag MAPUPD. This is done when new
background data has been generated by CDU software or an
update timer expires (5 seconds). The timer is used so the
aircraft never can fly too far within the current map
background to expose the clipped edge. When MAPUPD is set
NAVEXC determines how many of the four possible map back-
grounds are actually in use. The update request flags for
each one is set on to notify map background procedures in
DSPSLW to perform the updates.

A set of variables is filtered to produce smooth
movement of navigation format symbology. 1Included are wind
speed, wind direction, aircraft track, and aircraft heading.
The rate of change, sine, and cosine of the filtered track
are computed also.

Several microprocessor output buffer locations are
filled next. Values are scaled and stored as fixed point
16 bit integers for true track, magnetic track, heading,
wind speed, wind direction, and ground speed. Two words of
the microprocessor output buffer are reserved for validity
bits used for the navigation format. The corresponding bits
for true track, magnetic track, heading, wind, ground speed,
and aircraft position are always set valid. One other bit
of these words can be set by NAVEXC when GPS mode is valid.
The modules called by NAVEXC set other validity bits in
these words.

-173-

Each navigation format running in the microprocessor
system requires information about where the aircraft has
moved since its last map background update. The offset
from each map background center position to the current
aircraft position is computed and stored in the output
buffer for the microprocessors. They are stored as an array
of X (east) and Y (north) offsets in one-~thousandths inches.
Each time a navigation format has its map background updated
the map center and scale are saved to allow the background
positioning described above.

GLOBAL REFERENCES:

VARIABLES
BCKWRD COSTRK DOUBLE GPSM GSFPS HDGF HDGTRU LAT LON MAGVAR

MAPUPD MAPWRD MLSV NVGS* NVHDG* NVLAT NVLON NVMTRK* NVTRK*
NVUNIT NVWD* NVWS* PSTTKA SINTRK TK TKSEL TOP TRKF VLD1l*

VLD2* WD WS

ARRAYS
APE* APN* MAPLN* MAPLT* RANGE* UNITS* UPD*

RECORD ARRAYS
NVFMT

FUNCTIONS AND SUBROUTINES
ANGL FMTBZL GRID NAVMLS POSBTS RNGARC SCOSD SELTRK TBOX

TRENDV

-174-

MODULE NAME: SELTRK

FILE NAME: NAVEXC.FOR

PROCESS: DSPFST

CALLED BY: NAVEXC

CALLING SEQUENCE: CALL SELTRK(TRACK RATE)
PURPOSE:

To store data for the selected track lines of the
navigation display format.

DESCRIPTION:

This procedure processes items associated with the
selected track angle from the pilot’s mode control panel.
It is only called when a track angle is either selected
or preselected. Four symbols are controlled by this
procedure.

SELECTED TRACK BUG - Shown on compass whenever selected
track is wvalid.

TRACK LINE - Line connecting airplane and track bug shown
when track error greater than one degree or the track dial
spin discrete is set.

OFFSET VECTOR - Track line indicating selected track
intercept point starting from offset ahead of airplane
position. Shown when track line on and bit "0" of TKBITS is
manually set.

EXTENDED TREND VECTOR - Same as OFFSET VECTOR but shown as
an extension to the NAV trend vector. Bit "1v of TKBITS is
used to manually select it.

SELTRK first stores the selected track value and valid
bit into microprocessor output memory. Then the computa-
tions for either the OFFSET VECTOR or the EXTENDED TREND
VECTOR are performed.

The OFFSET VECTOR intercept point along the aircraft’s
"straight ahead" line is computed from the equation below.
The offset vector extends from this point across the screen
at the bearing of the selected track. The 16 bit fixed
point value sent to the navigation format is converted to
nautical miles and scaled by 128 for higher resolution.

AHEAD = GS * GS * TAN(.5 * DEL TRK) / (G * TAN (BANK_ANG))

AHEAD: distance ahead (feet)

GS: ground speed (feet/sec)

DEL TRK: difference between actual and commanded track
BANR;ANG: nominal bank angle fixed at 25 degrees

-175-

The amount of time required to complete a desired turn
is computed and the corresponding position along the trend
vector is used to draw the EXTENDED TREND VECTOR. The
equation for the time needed is shown below.

TIME = DEL TRK / (2 * TRK_RATE)

TIME: time in seconds
DEL TRK: difference between actual and commanded track
TRK_RATE: rate of change of actual track

Note that the factor of "2" in the equation is used since
the track rate variable used by the displays MicroVAX is the
number of degrees of change in one half second. The 16 bit
fixed point value sent to the navigation format is scaled by
256 for greater resolution.

GLOBAL REFERENCES:

VARIABLES
GSFPS MAGVAR NVDT* NVOFS* NVSLTK* TDSP TKASUM TKBITS TKREL
VLD1* VLD2Z2*

FUNCTIONS AND SUBROUTINES
ANGL MTHSTAN

~176-

MODULE NAME: NAVMLS
FILE NAME: NAVEXC.FOR
PROCESS: DSPFST
CALLED BY: NAVEXC

CALLING SEQUENCE: CALL NAVMLS

PURPOSE:
To perform computations for the MLS airplane symbol

of the navigation format.

DESCRIPTION:

This procedure is called by NAVEXC when the Microwave
Landing System (MLS) has been determined valid. A bit is
set in the navigation format discrete word to indicate MLS
valid. 1If MLS mode is engaged another bit is set in the
discrete word for the display format. If MLS mode is not
engaged the position of the MLS aircraft, as indicated by
the MLS beam, is used to compute the offset from the aircraft
position derived from the current navigation mode. The
subroutine GRID computes the north and east offset in feet.
ROTATE is called to convert these coordinates into navigation
format "track-up" X and Y screen coordinates in feet. The
values are then converted to nautical miles and scaled by
a factor of 2048 for resolution.

When the MLS airplane position deviates from the desired
flight plan position by more than 50 feet vertically and
500 feet horizontally another discrete word bit is set to
command a MLS aircraft symbol color change.

GLOBAL REFERENCES:

VARIABLES
ALTCOR HER LAT LON MLSALT MLSLAT MLSLON MLSM MLSX* MLSY*
VLD2* XTK

FUNCTIONS AND SUBROUTINES
GRID ROTATE

-177-

MODULE NAME: TRENDV
FILE NAME: NAVEXC.FOR
PROCESS: DSPFEST
CALLED BY: NAVEXC

CALLING SEQUENCE: CALL TRENDV

PURPOSE:
To compute trend vector parameters for the navigation

format.

DESCRIPTION:

Two items are stored by TRENDV into the microprocessor
output buffer for the navigation format trend vector. The
aircraft’s cross-track acceleration and the ratio of cross-
track acceleration with ground speed. They are scaled by
factors of 512 and 65536 respectively for resolution when
converted to the 16 bit fixed point values sent to the
navigation format.

The cross-track acceleration used comes from one of
two sources. If in a control-wheel steering mode the
current roll command is used to compute the cross-track
acceleration as follows.

CROSS_TRACK_ACC = G * TAN(COMMANDED_ROLL)
The constant "G" above is the gravitational acceleration
value. 1In other modes the cross-track acceleration measured

by flight controls is used. This value is filtered before
use to provide smooth movement of the trend vector.

GLOBAL REFERENCES:

VARIABLES
ACWS DROLL GSFPS NVACN* VCWS XTACC XTKGS*

FUNCTIONS AND SUBROUTINES
MTHSTAN

-178-

MODULE NAME: RNGARC

FILE NAME: NAVEXC.FOR
PROCESS: DSPFST
CALLED BY: NAVEXC
CALLING SEQUENCE: CALL RNGARC
PURPOSE:

To perform computations for the altitude range arc of
the navigation format.

DESCRIPTION:

Altitude range logic is performed by a sequence of
events starting in the flight management MicroVAX computer.
When the flight crew has selected a new altitude via the
AGCS mode control panel, the altitude attained flag is made
false (ALTATT). This flag is sent to the display Microvax
computer in the block of data transferred across the inter-
processor I/0 link. The range to the intercept point of the
desired altitude is computed by RNGARC until the difference
between commanded and actual altitude is less than 5 feet.
At this time the desired altitude is considered attained,
but the variable ALTATT can not be set directly since it
arrives at the display MicroVAX as input. Instead a bit in
a packed discrete word that is sent to the flight management
MicroVAX through the DATAC bus is set. This bit informs the
flight management MicroVAX to set ALTATT to true.

The distance to the point where the altitude will be
attained is computed differently depending on the current
guidance mode of the aircraft. When the Current guidance
mode maintains a commanded flight path angle, all but
attitude control-wheel Steering, the distance is computed
as follows.

DISTANCE = (SELECTED_ ALT - ACTUAL ALT) / TAN(COMMANDED_FPA)

Otherwise the current measured rate of change in altitude is
used with the aircraft’s ground speed as shown below.

DISTANCE = SPEED * (SELECTED ALT - ACTUAL ALT) / ALT RATE

The computed distance is converted from feet to
nautical miles and scaled by a factor of 128 for greater
resolution. It is stored as a 16 bit fixed point value in
the microprocessor output buffer.

GLOBAL REFERENCES:

VARIABLES
ALTATT ALTCOR ALTRNG* ALTSUM AUTO DISPST* GAMC GSFPS HDCF
VCWS

FUNCTIONS AND SUBROUTINES
MTHS TAND

-179-

MODULE NAME: TBOX

FILE NAME: NAVEXC.FOR
PROCESS: DSPFST
CALLED BY: NAVEXC

CALLING SEQUENCE: CALL TBOX

PURPOSE:
To intiate position computations for Time Box and
Bubbles symbology of the navigation format.

DESCRIPTION:

This procedure stores the position and orientation data
for the Time Box and the three Bubbles. Each of the four
items is processed the same, with calls to PTHPOS. A
reference time is passed to PTHPOS for each of the four
items. The data returned is stored into the array of
locations in the microprocessor output buffer starting at
OUTDAT (603) .

The reference time used is the sum of two time offsets.
Since the system time (TIME) has a resolution of one second,
the fractional part of the current time is maintained by
TROX. Added to this fraction is 0, 30, 60, or 90 seconds
for each of the four time box items, which are always
separated by 30 seconds in time.

GLOBAL REFERENCES:

VARIABLES
TIME

ARRAYS
OUTDAT*

FUNCTIONS AND SUBROUTINES
PTHPOS

-180-

MODULE NAME: ROTATE

FILE NAME: NAVEXC.FOR

PROCESS: DSPFST

CALLED BY: NAVMLS, PTHPOS

CALLING SEQUENCE: CALL ROTATE (NORTH, EAST, X, Y)
PURPOSE:

To perform coordinate system rotations.

DESCRIPTION:

This procedure converts a pair of position coordinates
in the North/East frame of reference to values in the
navigation format’s "track-up" frame of reference. The
equations used are shown below.

SCREEN_X
SCREEN_Y

EAST * COS(TRACK) - NORTH * SIN(TRACK)
EAST * SIN(TRACK) + NORTH * COS (TRACK)

GLOBAL REFERENCES:

VARIABLES
COSTRK SINTRK

-181-

MODULE NAME: PTHPOS
FILE NAME: PTHPOS.FOR
PROCESS: DSPFST
CALLED BY: TBOX

CALLING SEQUENCE: CALL PTHPOS (TIME, X, Y, BEARING)

PURPOSE:
To compute values associated with the Time Box symbology

of the navigation format.

DESCRIPTION:

This procedure computes the X and Y coordinates of a
point on the active flight plan, defined for time guidance,
that corresponds to a reference time passed as the first
parameter. The reference time is an offset in seconds from
the aircraft time stored in the variable TIME. The returned
position values are in terms of feet from the current air-
craft position. Also returned is an orientation angle which
represents the flight plan bearing at the reference position.
All three computed values are relative to a "track-up"
display orientation. Therefore X is a cross-track distance,
Y is an along-track distance, and BEARING is the angular
difference from the aircraft’s true track value.

PTHPOS positions the Time Box symbology at the air-
craft, with the current track, when no flight plan exists
(GUID2D is off). 1If a flight plan exists but has not been
defined for time guidance (GUID4D is off), the position of
the first waypoint on the flight plan is returned with the
bearing of the first leg of the path.

When the active flight plan is defined for time guid-
ance the procedure PTHLEG is called. It returns an index
into the active waypoint buffer pointing to the first way-
point which has a planned time of arrival greater than the
reference time. This waypoint and the one before it form
a time reference path leg containing the desired reference
position. The difference between the reference time and the
beginning waypoint of the chosen path leg is also returned.
This time represents the amount of time elapsed since the
Time Box (or Bubble) has passed the first waypoint of the
flight plan leg selected by PTHLEG. Note that PTHPOS
returns the position of the first flight plan waypoint when
the reference time is earlier than the beginning waypoint
of the path.

The reference position is found on the reference leg by
the procedure TIMPOS. This module returns a north and east
offset (in feet) of the time reference position relative to
the selected reference waypoint on the leg. One exception
to this is when the reference leg is a staight leg (LEGFLG
= TRUE). In this case the position values returned from
TIMPOS are latitude and longitude coordinates. TIMPOS also
returns the orientation bearing of the reference position.

-182-

The last thing performed by PTHPOS is the computation
of screen offsets, in feet, of the time reference position
from the current aircraft location. The utility procedure
GRID is called to compute the north and east distances from
the airplane to the time reference waypoint. The north and
east offsets to the time reference position on the selected
path leg are added to the reference waypoint positions.
Finally the procedure ROTATE is called to convert the north
and east coordinates to values relative to the "track-up"

map coordinate system.
GLOBAL REFERENCES:

VARIABLES
ACTCNT GUID2D GUID4D LAT LEGFLG LON TRKF

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
ANGL GRID INBRG PTHLEG ROTATE TIMPOS

-183-

MODULE NAME: TIMPOS
FILE NAME: PTHPOS.FOR
PROCESS: DSPFST
CALLED BY: PTHPOS

CALLING SEQUENCE: CALL TIMPOS (INDEX,DT,DN,DE, BRNG)

PURPOSE:
To compute a time reference position on the active

flight plan.

DESCRIPTION:

This procedure computes displacement coordinates from a
selected waypoint to a flight plan position corresponding to
the time reference in the calling parameter list. The first
calling parameter is the index within the waypoint buffer of
the end waypoint of the path leg containing the time refer-
ence position. The second parameter is the amount of time
elapsed between the first waypoint of the path leg and the
time reference position. TIMPOS returns the north and east
offsets from the reference waypoint and the tangential path
bearing at the time reference position.

First the distance between the "from" waypoint and the
time reference position is calculated using the time dis-
placement between the locations. To do this the planned
acceleration along the path leg is computed as follows.

ACC = (SPEED2 - SPEED1) / LEG“TIME
Then the distance is derived as shown below.

DISTANCE = SPEED1 * DT + .5 * ACC * DT * DT

ACC: nominal leg acceleration (ft/sec/sec)

SPEED1: planned ground speed at beginning waypoint
(ft/sec)

SPEED2: planned ground speed at ending waypoint
(ft/sec)

LEG TIME: time alloted to fly entire leg of path (sec)

DISTANCE: distance between "from" waypoint and reference
position (feet)

DT: time between "from" waypoint and reference
position (sec)

Depending on the type of path leg being processed, one
of the modules TURN, LINE, or PASSBY will be called to
compute the values of the offset coordinates and the bearing
associated with the time reference position. The module
TURN is called when the reference leg is a DMA turn. In
this case the reference waypoint is switched from the end

o

-184-

waypoint to the beginning waypoint to make the computations
easier. When entering a standard turn by the destination
waypoint the module PASSBY is called. Note that the leg
will be considered a straight leg unless the standard turn
is significant (arc length greater than 1200 feet). If the
reference position falls within the exit area of a signif-
icant standard turn past the beginning waypoint, the
reference waypoint is switched to the "from" waypoint and
PASSBY is called. In all other situations the module LINE
is called to process the straight leg segment.

GLOBAL REFERENCES:

VARIABLES
LEGFLG*

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
LINE PASSBY TURN

-185-

MODULE NAME: LINE

FILE NAME: PTHPOS.FOR
PROCESS: DSPFST
CALLED BY: TIMPOS

CALLING SEQUENCE: CALL LINE(INDEX,DST, RLAT, RLON, BRNG)

PURPOSE:
To locate the time reference position on a staight

path leg.

DESCRIPTION:
This module uses the position of the reference way-

point, identified by the passed parameter INDEX, and the
distance from the ’'FROM’ waypoint on the reference leg (DST)
to compute the offset coordinates and orientation bearing
to the time reference position on straight leg segments.
Unless the ’'TO’ waypoint of the leg is a DMA turn entry
point, the leg distance is adjusted to compensate for the
standard turn by the 'TO’ waypoint. One half the arc length
is replaced by the distance from the tangent point to the
'TO’ waypoint position. The distance between the time
reference position to the end waypoint of the leg is found
by subtracting the distance passed to LINE from the total
leg distance. This value is passed to the utility procedure
PROJECT to compute the time reference position’s latitude
and longitude using the leg waypoints and displacement from
the ’TO’ waypoint.

GLOBAL REFERENCES:

VARIABLES
LEGFLG*

RECORD ARRAYS
ACT_WPTS

FUNCTIONS AND SUBROUTINES
INBRG PROJECT

-186-

MODULE NAME: TURN

FILE NAME: PTHPOS.FOR
PROCESS: DSPFST

CALLED BY: TIMPOS, PASSBY

CALLING SEQUENCE: CALL TURN (INDEX,DST,DN,DE, BRNG, DME)

PURPOSE:
To locate the time reference position on a turn
segment.

DESCRIPTION:

This module uses the position of the reference way-
point, identified by the passed parameter INDEX, and the
distance from the "from" waypoint on the reference leg (DST)
to compute the offset coordinates and orientation bearing
to the time reference position on turn segments. The
offsets and bearing are returned through the calling param-
eter list. The last parameter passed to TURN identifies
turn segments which are defined as DMA arc path legs.

The distance from the turn start to the reference
position is used with the turn radius to determine the
subtented angle (radians) to the reference position as
follows.

ANGLE = ARC_DISTANCE / TURN_RADIUS

The subtended angle is combined with the inbound bearing and
turn radius to compute the offsets to the time reference
position and the tangential bearing at that point. The
inbound bearing is passed to TURN when called by the module
PASSBY (DME_FLG=FALSE). Otherwise the function INBRG is
used to find the DMA turn inbound bearing.

ANGLE/2 - IN_BEARING + (180 +/- 90)
2 * SIN(ANGLE/2) * TURN_RADIUS

ang
len

NORTH = len * SIN(ang)

EAST = len * COS(ang)

TANGENT BEARING = IN BEARING +/- ANGLE

("+/-": + for left turn, - for right turn)
GLOBAL REFERENCES:

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
INBRG MTHS$SSIND SCOSD

-187-

MODULE NAME: PASSBY
FILE NAME: PTHPOS.FOR
PROCESS: DSPFEFST
CALLED BY: TIMPOS

CALLING SEQUENCE: CALL PASSBY (INDEX,DST,DN,DE, BRNG)

PURPOSE:
To locate the time reference position on a standard

turn segment (not DME arc).

DESCRIPTION:

This module uses the position of the reference way-
point, identified by the passed parameter INDEX, and the
distance from the "from" waypoint on the reference leg (DST)
to compute the offset coordinates and orientation bearing
to the time reference position on turn segments. The
offsets and bearing are returned through the calling param-
eter list.

Standard turns do not have waypoints at the beginning
and ending of the arc segment. The latitude and longitude
of the inbound tangent point of the turn must be found to
use in the computation of the time reference position. The
utility procedure PROJECT is called to compute the tangent
point position from the positions of the 'FROM’ and ’TO’
waypoints and the distance to tangent value stored in the
waypoint buffer. Once the start of the turn position has
been established, the procedure TURN is called to compute
the time reference position relative to the turn start
point. The module GRID is then called to compute the north
and east offsets from the turn tangent point to the ’TO'
waypoint. These offsets are added to the values returned
by TURN to produce the final time reference offset values
relative to the reference waypoint.

GLOBAL REFERENCES:

RECORD ARRAYS
ACT WPTS

FUNCTIONS AND SUBROUTINES
GRID MTHSATANDZ PROJECT TURN

-188-

MODULE NAME: INBRG

FILE NAME: PTHPOS.FOR

PROCESS: DSPFST

CALLED BY: PTHPOS, LINE, TURN
CALLING SEQUENCE: BEARING = INBRG (INDEX)
PURPOSE:

To produce the inbound bearing to a flight plan
waypoint.

DESCRIPTION:

This function returns the inbound bearing to a waypoint
on the active flight plan. For waypoints that are not DMA
turn entry points, the bearing is fetched directly from the
waypoint buffer. For DMA entry waypoints the buffer value
is the bearing from the turn center to the entry waypoint.
Ninety degrees is either added or subtracted to the waypoint
buffer bearing as an adjustment. Addition is used for right
turns, subtraction for left turns.

GLOBAL REFERENCES:

RECORD ARRAYS
ACT_WPTS

FUNCTIONS AND SUBROUTINES
ANGL

~-189-

MODULE NAME: PTHLEG

FILE NAME: PTHPOS.FOR

PROCESS: DSPFST

CALLED BY: PTHPOS

CALLING SEQUENCE: CALL PTHLEG(T_REF, INDEX,T_OFF)
PURPOSE:

To identify the flight plan leg containing the time
reference position for Time Box positioning.

DESCRIPTION:

This procedure is called to find the flight plan leg
containing the time reference position corresponding to
either the Time Box or one of the Bubbles. A time offset is
passed as the first calling parameter. This value is added
to the aircraft GMT to produce the arrival time at the
desired reference position. The arrival times at the end
waypoint of each leg on the active flight plan are tested
until one greater than the reference time is found. The
index of the waypoint within the flight plan buffer is
returned through the parameter list. Also returned is the
time displacement between the reference time and the arrival
time stored at the beginning waypoint of the selected path
leg.

GLOBAL REFERENCES:

VARIABLES
ACTCNT TIME

RECORD ARRAYS
ACT WPTS

-190-

MODULE NAME: FMTBZL
FILE NAME: FMTBZL.FOR
PROCESS: DSPFST
CALLED BY: NAVEXC

CALLING SEQUENCE: CALL FMTBZL

PURPOSE:
To process navigation format bezel button inputs.

DESCRIPTION:

This module processes the navigation display bezel
panel inputs. One 16 bit word is received from the display
containing bits corresponding to the 16 buttons on the
display unit bezel panel. Up to four navigation formats may
be active, so a word from input memory for each is examined.
The address of each input word is stored in the structure
"NVFMT (I) .BZPTR". The following chart shows the usage of
the various bezel buttons.

BIT BUTTON OPTION

0 R1 MLS select

1 R2 Airports option

2 R3 Navaid option

3 R4 Time Box option

4 RS Altitude Range Arc option

5 R6 Path waypoint information cycle
6 R7 Zoom out map

7 R8 Zoom in map

8 L1 Weather radar select

9 L2

10 L3

11 L4 Terrain features option

12 L5 Ground reference point option
13 L6

14 L7 Boundaries option

15 L8 Track up / north up toggle

The input words are processed in a loop for each of the
navigation formats in use. The individual discrete words
are "one-shotted" to make a button press appear to occur for
just one 50 millisecond processing frame. If any selections
in the word are made, the map background update flag for the
corresponding navigation format is set on. The individual
bits within the word are processed next. When the MLS
select is on, a bit in word (DISPST) sent to the flight
management MicroVAX through the DATAC is set. All other bit
selections are reflected in the navigation format mode
structure (NVMODE). Note that a copy of this structure is
kept for each of the four navigation formats.

GLOBAL REFERENCES:

VARIABLES
DISPST* TDW_TRGT*

ARRAYS
UPD*

RECORD ARRAYS
NVFMT NVMODE*

FUNCTIONS AND SUBROUTINES
GET_WORD

-191-

-193-

Section 8.0 ENGINE DISPLAY SOFTWARE

The ENG format provides a graphic representation of
quantities associated with the aircraft engines. The format
is split into two distinct sections; simulated engine gauges
on the left and numeric displays on the right. Refer to the
figure 8.1 for the engine format layout.

The gauges are displayed as four sets of pairs,
situated side by side. Each set depicts the same engine
parameter, but pertaining to the left and right engines. A
gauge has a digital readout, an arc section representing the
valid range of values for the particular quantity, and a
radial pointer positioned along the arc at the appropriate
location for the current value of the gquantity. The four
engine parameters shown in this manner are the engine pres-
sure ratio, N1 RPM percentage, exhaust gas temperature, and
fuel flow rate.

The right hand section of the display screen has
numeric values of engine quantities displayed within rectan-
gular boxes. Four miscellaneous items, left/right thrust
reverser armed messages, total air temperature, and aircraft
gross weight, are also shown in this section. The engine
oil pressure, temperature, and quantity along with the N2
ratio are shown in left and right pairs. The amount of fuel
remaining is given for the left, right, and center tanks
along with the total amount of the three tanks.

This format does not utilize any of the bezel panel
buttons or potentiometers.

EEER_[7 2 INTENTIONALLY BLARK PRECEDING PAGE BLANK NOT FILMED

-195-

ENGINE DISPLAY FORMAT

IREV_ARM| [REV ARM]|
80 .80
—0IL—
00 00
EPR P
g2 | T 76
. 0.0 8.0 2.8 Q| 3.8
N1 , Ne——
0.0 0.0
290 2380 FUEL
C 6820
EGT
L 9050 R 9139
Qoo P00 TFQ 25000
TAT 15.8 C
FF GUW 85000
-figure 8.1-

PRECEDING PAGE BLANK NOT FiLMED

‘m_ﬁi_JNTLNHONALLY BLANK

-197-

Section 8.1 ENGINE PROCEDURES

There are five procedures dedicated to creating the
output buffer data needed to display the engine format.
The following chart lists the procedures along with the
source code language and relative size. Those modules
that serve as utility subroutines to another procedure are
shown with their caller. The size is the percentage of
total ENG software memory usage.

Refer to Appendix A to identify the memory locations
in the output buffer (OUTDAT) that are used by the engine
routines. The mnemonic "ENG" identifies those locations.
Descriptions of the engine modules appear on the following
pages.

MODULE SOURCE SIZE
ENGEXC FORTRAN 67%
EPR F1 FORTRAN
EPR F2 FORTRAN
FFPRC FORTRAN 21%
FTEST FORTRAN 12%

PRECEDING PAGE BLANK
BEE_[TC renmamaly et ans NOT FILMED

-198-

MODULE NAME: ENGEXC
FILE NAME: ENGEXC.FOR
PROCESS: DSPFST
CALLED BY: DSPFST

CALLING SEQUENCE: CALL ENGEXC

PURPOSE:
To scale and store the engine format’s parameters as
integers in the display output buffer.

DESCRIPTION:

ENGEXC manages the processing of the data used as input
parameters to the engine display format, and stores it into
the display output buffer. Floating point data is scaled
and stored as integers. Some of the engine parameters have
values for both the left and right engines. These param-
eters are shown next.

Engine pressure ratio

Engine exhaust gas temperature
Engine N1

Engine fuel flow

Engine o0il pressure

Engine o0il temperature

Engine o0il quantity

Engine N2

Engine thrust reversers armed

Many of the parameters mentioned above have fixed
warning limit and caution values. They are also scaled and
stored in the output buffer. The fixed values are as
follows.

Exhaust gas temperature limit (570 deg)
Exhaust gas temperature caution (535 deg)
Engine N1 limit (100.1 %)
Engine N1 caution (94.0 %)
Engine o0il pressure lower limit (35 psi)
Engine 0il pressure upper limit (55 psi)
Engine oil temperature limit (157 deg)
Engine o0il quantity limit (1.0 gal)
Engine N2 limit (100.0 %)

The engine pressure ratio (EPR) warning limit is fixed
at 2.0 when the airplane is travelling less than 64 knots,
otherwise the limit is determined via lookup tables. There
are two sets of tables: one for cruise limits (flaps set at
zero), and the other for takeoff limits (flaps non-zero) .
The functions EPR_F1 and EPR F2 perform the table lookups
based on current air temperature and altitude. The EPR
caution value is set to the EPR limit value minus 0.2.

-199-

To display the fuel quantities for the left, center,
and right fuel tanks requires extra processing. The algo-
rithm used is based on the premise that fuel is drawn from
the center tank until less than 100 pounds remains, then it
is drawn from the left and right tanks equally. The left
and right tanks are initialized to 9050 and 9130 pounds re-
spectively. The center fuel tank display will show the dif-
ference between the total fuel quantity and these two values.
When the center tank display reaches 100 pounds, it will
freeze at that value and fuel will be siphoned from the left
and right tanks. The 80 pound difference between the two
tanks remains as fuel is drawn equally from them.

The engine N1 and N2 percentages for both the left and
right engines are also displayed on the engine format. The
percentages indicate the ratio of the rate of change of the
N1 and N2 counters to the maximum rate of change. A 70 unit
per second rate of change in the counter corresponds to a
100% N1 or N2 value. Since the N1 and N2 counters change
rather slowly, they are sampled only every .5 seconds. This
slower rate allows for more accuracy. The sampled values
minus the last counter values will yield the units changed.
The ratio of these differences to the maximum 35 units per
half-second rate will be the percentage displayed. Finally,
the N1 and N2 percentages are filtered, scaled, and stored
as integers into the display output buffer.

The left and right engine thrust reverser messages are
shown on the upper right side of the engine format. They
will be displayed when the thrust reversers have been armed.
ENGEXC checks the two discretes which indicate whether they
have been armed, and sets bits in one of the packed discrete
words if they are.

Another discrete word bit is set if the aft flight deck
is engaged. This bit serves as a flag to the microprocessor
code to disallow the EPR radials from turning red when they
enter the warning zone while the aft flight deck is engaged.
This code was implemented to suppress red warning indica-
tions during takeoff.

All of the engine output parameters discussed above are
assumed to have valid values. The bits in the packed dis-
crete words used by the engine format, indicating that these
parameters are valid, are always set on.

GLOBAL REFERENCES:

VARIABLES
AEEF AP WEIGHT* EGTL EGTR EGT_CAUTION* EGT_LEFT*
EGT LIMIT* EGT RIGHT* ENG_REVERSERS* ENG_VALID_1*
ENG_VALID 2* ENG_VALID 3* EOPRSL EOPRSR EPR1 EPR2
EPR_CAUTION* EPR_LEFT* EPR LIMIT EPR RIGHT* FF5LF FF5RF
FLAP FLOW LEFT* FLOW RIGHT* FTFQ FUEL_LEVEL_APU*

-200-

FUEL LEVEL LEFT* FUEL_LEVEL RIGHT* HBARO LREV N1 CAUTION*
N1 _LIMIT* N2 LIMIT* NAV64K OIL LEVEL LEFT* OIL LEVEL LIMIT*
OIL_LEVEL RIGHT* PRESSURE _HIGH* PRESSURE LEFT* -
PRESSURE LOW* PRESSURE_RIGHT* RREV SYS WARN WORD TAT
TEMP_LEFT* TEMP_LIMIT* TEMP_RIGHT* TOTAL AIR TEMP* WEIGHT

ARRAYS
ENG_DATA FUQTY OUTDAT*

FUNCTIONS AND SUBROUTINES
EPR_F1 EPR F2

-201-

MODULE NAME: EPR F1

FILE NAME: ENGEXC.FOR
PROCESS: DSPFST

CALLED BY: ENGEXC

CALLING SEQUENCE: EPR F1 (TAT, HBARO)
PURPOSE:

To find the appropriate flight manual maximum cruise
EPR, given the current air temperature and altitude.

DESCRIPTION:

This function determines the maximum cruise EPR (engine
pressure ratio) setting from the flight manual. There are
two EPR values looked up in this function. One EPR value is
obtained by using the current air temperature as a reference
into a table of EPR values that is arranged according to
temperature intervals. A second EPR value is fetched using
altitude as the reference into a table based on altitude
intervals. The lower of the two values looked up is used as
the maximum cruise EPR setting.

-202-

MODULE NAME: EPR_F2

FILE NAME: ENGEXC.FOR
PROCESS: DSPFST

CALLED BY: DSPFST

CALLING SEQUENCE: EPR F2 (TAT, HBARO)
PURPOSE:

To find the appropriate flight manual maximum takeoff
EPR, given the current air temperature and altitude.

DESCRIPTION:

This function determines the maximum takeoff EPR
(engine pressure ratio) setting from the flight manual.
There are two EPR values looked-up in this function. One
EPR value is obtained by using the current air temperature
as a reference into a table of EPR values that is arranged
according to temperature intervals. A second EPR value is
fetched using altitude as the reference into a table based
on altitude intervals. The lower of the two values looked
up is used as the maximum takeoff EPR setting.

-203-

MODULE NAME: FFPRC
FILE NAME: FFPRC.FOR
PROCESS: DSPFST
CALLED BY: DSPFST

CALLING SEQUENCE: CALL FFPRC

PURPOSE:
To calculate fuel consumption, remaining fuel quantity,
and aircraft total weight.

DESCRIPTION:

FFPRC requires a manual entry of aircraft gross weight
(GRWGT) to initiate processing. If GRWGT is set to zero,
processing is bypassed. Otherwise, GRWGT is compared to
the previous value and if a new entry has been made then
initialization processing takes place. A change in GRWGT
prompts a full initialization, which begins by saving the
new gross weight in I _WEIGHT, computing the aircraft empty
weight (E WEIGHT) as GRWGT minus the measured total fuel
quantity (TFQ), setting the FUELUP discrete and zeroing the
total fuel used (TFU). Several variables used in measuring
and filtering the fuel flow are then computed. KDEN and KTF
are computed as the product of the user adjustable nominal
fuel density (FDEN) and the constants KKDEN and KKTF
respectively. KDEN and KTF are used by the FINPT subroutine
of DISFIL to produce the FU vector (lbs of fuel used in the
last sample period for each engine and the APU) from the
fuel temperature and fuel meter inputs. The fuel flow
filter constant (KT) is computed from the user adjustable
time constant (TAUFF). The fuel quantity filter constant
(TAUFQ) and the lb/sample to lb/hour conversion factor (SF)
are computed from the user selectable sample interval
(MXITER). Finally, the interaction count (ITER) is set to
the negative of MXITER, FTFQ is set to the measured fuel
quantity (TFQ) and DELTA F (the difference between TFQ and
FTFQ) is set to zero.

Normal processing begins by incrementing ITER. This
counter was initialized to -MXITER, which is the signal
for FINPT to initialize itself. Subsequently, FINPT takes
a set of readings each time ITER becomes zero. FFPRC pro-
cesses these readings when ITER + 1 = 1, i.e., later in the
same major frame. Total fuel used (TFU) is then computed as
the integral of the sum of the FU vector. The filtered
total fuel remaining (FTFQ) is then computed in a complemen-
tary filter driven by FU and corrected by TFQ with a 30
second time constant. Aircraft weight is then set to the
sum of E WEIGHT and FTFQ, and FU is rescaled to fuel flow in
lbs/hr for display.

-204-

Finally, the filtered fuel flow quantities for left
and right engines and the APU are computed from FU. When
ITER becomes equal to MXITER, it is reset to zero, which
reinitializes the cycle.

GLOBAL REFERENCES:
VARIABLES

FDEN FF5AF* FFS5LF* FFS5RF* FTFQ FUELUP* GRWGT ITER* KDEN*
KT KTF* MXITER TAUFF TFQ TFU* WEIGHT*

ARRAYS
FuU

FUNCTIONS AND SUBROUTINES
MTHSEXP

-205-

MODULE NAME: FTEST

FILE NAME: FTEST.FOR
PROCESS: DSPFST
CALLED BY: DSPFST
CALLING SEQUENCE: CALL FTEST
PURPOSE:

To simulate some of the engine parameters needed to
drive the engine display format.

DESCRIPTION:

some of the aircraft inputs used by the engine display
software are not provided by the real-time flight simulation
in the Experimental Avionics Systems Integration Laboratory
(EASILY) Lab. The engine parameters affected by the lack of
these inputs are: total fuel quantity, airplane weight,
left and right engine fuel flows, and left and right engine
N1 and N2 percentages. FTEST was created to simulate these
values in the EASILY testing environment only. The calcu-
lations to simulate the parameters are based on the average
EPR value between the left and right engines, so that the
affected engine values will change along with a change in
EPR. However, no attempt has been made to make these
simulated values accurate, and should not be viewed as
the actual values that would be displayed under the same
conditions in-flight. The purpose is merely to make the
engine parameters listed above seem reasonable when testing
in the EASILY.

FTEST is called by DSPFST only when the boolean LABFLG
has been set.

GLOBAL REFERENCES:
VARIABLES

EPR1 EPR2 FFS5LF FFS5RF* FTFQ GRWGT N1LEFT N1RGHT* N2LEFT*
N2RGHT* WEIGHT*

-207-

Section 9.0 SYSTEM WARNING DISPLAY SOFTWARE

uired to drive this format is created by
only gg: gigiegige, SYSEXC. A description of this procedure
is included on the following page. Refer to Appendix A to
to find the locations in the dlsplay ouEpgt buffer (QUTDA?;
used by this format. The mnemonic "SYS" 1is used to identify
buffer words used by the system warning format.

PRECEDING PAGE BLANK NOT FILMED

o200 NTENTIONALLY prave

-208-

MODULE NAME: SYSEXC

FILE NAME: SYSEXC.FOR
PROCESS: DSPFST
CALLED BY: DSPFST
CALLING SEQUENCE: CALL SYSEXC
PURPOSE:

To process data and store in the output buffer the
inputs needed by the System Warning format to display
warning messages, and information on flap setting and gear
position.

DESCRIPTION:

One of the duties of the system warning format is to
display valid system messages. SYSEXC scans a series of
discrete words whose bits correspond individually to a set
of predefined messages available to be displayed. When a
bit has been set, the appropriate text is shown. System
warning messages fall into three categories: warning,
caution, and special. The following table indicates the
available messages for each type.

warning: "RFD DISENGAGED"

caution: "STB OUT OF TRM"
"SPD BRK NO ARM"
"FLAP LIMIT"

"THROTTLE LIMIT"
"SPD BRKS SYNC"
"AILERON LIMIT"
"ELEVATOR LIMIT"
"RUDDER LIMIT"
"SPD BRK ARM"

special: "NAV 2 TUNING"
"DME 2 TUNING"
"COMM TUNING"

Also, SYSEXC checks to see if the flaps are moving by
comparing the filtered actual flap position to the flap
handle position. 1If the two values vary by a specified
tolerance value, SYSEXC sets the appropriate bit in the
display output buffer to indicate that the flaps are moving.
The tolerance will be either .25 degrees for flap handle
positions below 5, or 15% of the flap handle value for flap
settings 5 or greater. SYSEXC also scales the value of the
flap position to a Standard Angle Format (SAF) and stores
the scaled position in the proper place in the display
output buffer.

-209-

Lastly, SYSEXC performs some logic to determine what
type of symbology should be shown to describe the position
of each gear (nose gear, right gear, left gear). Different
symbology is displayed, depending upon which bits are set in
the display output buffer. The following chart describes
which symbology is displayed for the nose gear given the
following combinations of bit settings in the buffer word

OQUTDAT (698) .

BITS 4 3 2 1 0 SYMBOL
0 0 1 1 0 GREEN /DN’
0 0 1 0 1 WHITE 'UPp’/
0 0 0 1 0 RED DOWN ARROW
1 0 0 0 0 YELLOW DOWN ARROW
0 0 0 0 1 RED UP ARROW
0 1 0 0 0 YELLOW UP ARROW
ALL OTHER COMBINATIONS RED X’

(Right and left gear symbology is displayed under the same
bit patterns, but a different range of bits: bits 5-9 of
OUTDAT (698) representing the left gear, and bits 10-14
representing the right gear.)

The following combinations of discrete values, repre-
senting the sensor data received from the airplane, yield
the indicated symbols for the nose gear display.

GUPCMD GDNCMD NGRRED NGRDN

gear up gear down nose gear nose

commanded commanded not gear SYMBOL

locked down
F T F T GREEN ' DN’
T F F F WHITE 'UP’
F T F F RED DOWN ARROW
F T T T RED DOWN ARROW
F T T F YELLOW DOWN ARROW
T F F T RED UP ARROW
T F T T/F YELLOW UP ARROW
ALL OTHER COMBINATIONS RED rx?

The same symbology would be displayed for right and left
gear with the substitution of the following booleans as the
last two items in the table above:

LEFT - LGRRED, LGRDN
RIGHT - RGRRED, GRGDN

-210-

GLOBAL REFERENCES:

VARIABLES

AILCMO ELVCMO FLAP FLPPLC FLPPOS GDNCMD GEAR WORD GRPOS*
GUPCMD INBD LEFT FLAP* LGRDN LGRRED NAV VLD 2 NGRDN NGRRED
OUTBD RCOMT RCTRLD RGRDN RGRRED RIGHT FLAP RNAV2T RUDCMO
RXPDRT SPBPLC SPDARM SPDNAR STBTRM SYS 1* SYs 2* sys 3
SYS_4* SYS_7* SYS 8* THRPLC

-211-

Section 10.0 SPERRY PFD SOFTWARE

The Primary Flight Display designed by Sperry requires
a small amount of processing in the host computer. Only
one module, PFDEXC, creates data specifically for this for-
mat. Appendix A shows the display output buffer locations
dedicated to the Sperry PFD format. The mnemonic "F1" is
used to refer to this format. The next page contains a
description of PFDEXC.

-212-

MODULE NAME: PFDEXC

FILE NAME: PFDEXC.FOR
PROCESS: DSPFST
CALLED BY: DSPFST
CALLING SEQUENCE: CALL PFDEXC
PURPOSE:

To process and store in the NAV background buffer the
parameters required by the Sperry PFD format.

DESCRIPTION:

The following aircraft parameters are required by the
Sperry PFD format only. They are scaled and stored as
integers in the displays output buffer (QUTDAT).

Sea level barometric pressure setting
Aircraft pitch angle

Rate of change in altitude

Vertical guidance deviation
Horizontal guidance deviation

This is not a complete set of the parameters referenced
however. Some aircraft inputs used by the Sperry PFD have
already been made available in the 704 word displays buffer
by other formats which share the values.

Certain parameters used are always assumed to have
valid values. The valids always turned on by PFDEXC are:

attitude valid

altitude wvalid

vertical speed valid
vertical deviation valid
lateral deviation valid

These valids correspond to bits set in the Sperry PFD
discrete word PFD_VALID, also sent to the microprocessor
via the output buffer.

PFDEXC does some processing for its airspeed display.
If the current airspeed value is valid, bits in PFD VALID
are immediately set on corresponding to the airspeed
valid, and airspeed limit valid.

The airspeed limit value is determined by PFDEXC.
Fixed airspeed limits exist in a local data table for flap
settings of 0, 1, 2, 5, 10, 15, 25, 30, and 40 - with the
exception that the limit value for flaps 0 will be one of
two values depending on whether the gear is down or up.
Using the current flap position, an index into the table is
figured, and interpolation is used, to compute the appro-
priate airspeed limit wvalue.

One final bit of processing done for the airspeed dis-
play is to set on a valid bit in PFD_VALID when an airspeed
has been selected on the pilot’s CDU.

-213-

PFDEXC does some processing for the altitude display
as well. If the current radar altitude value is valid, an
appropriate bit in the valid word is set on, and the radar
altitude value is scaled and stored in the displays output
puffer. Also, a valid bit is set on in PFD_VALID when an
altitude has been selected on the pilot’s CDU.

GLOBAL REFERENCES:

VARIABLES
ALTSEL BARSET BETAH CASV ETAH FLAP FLPPOS GEAR HDCF HRAD

HRV TASSEL PFD_BARO_SET* PFD_CASLMT* PFD_HDOT*
PFD HOR DEV* PFD_HRAD* PFD_PTTCH* PFD_VALID* PFD_VER DEV*
PITCH SYS_7 -

-215-

Section 11.0 TAKEOFF PERFORMANCE MONITORING SYSTEM (TOPMS)

The Takeoff Performance Monitoring System display
format is used only during the takeoff phase of flight. A
drawing of the format can be found on the following page.
The TOPMS format provides critical takeoff information to
the pilot, and allows the pilot to monitor the performance
of the aircraft during the takeoff roll. It visually shows
where along the runway the airplane should reach the V1
(decision speed) and VR (rotate speed) positions. The TOPMS
software also performs computations to determine an appro-
priate takeoff advisory status, which the pilot may use in
determining whether to complete the takeoff or abort it.
The advisory status has four possible states, "must abort",
"must takeoff", a warning state, and a state indicating
everything is within normal range. :

The TOPMS display has two modes, takeoff and abort.
Different amounts of information are provided depending on
the mode - although the runway symbol and identifier, speed
value, and aircraft symbol will be shown regardless. Note
that the speed value will be airspeed in takeoff mode, and
ground speed in abort mode. The abort mode display is the
simpler of the two. There are two critical symbols shown
during the abort. One is the symbol indicating where the
aircraft will stop along the runway if maximum braking is
used (not including reverse thrust). It is comprised of
a circle with a star in the middle. The second critical
symbol (shaped like a football) represents where the stop
point will be at the current level of braking.

The takeoff mode display contains a lot more informa-
tion than the abort mode. The parameters always displayed
in this mode are as follows.

flight manual EPR setting
v1l, V2, VR speeds

aircraft position on runway
wind speed, direction
takeoff advisory status
engine performance bars
takeoff roll limit

Under certain conditions the stop point using maximum
braking is shown too. Figures 11.1 and 11.2 depict the
takeoff and abort modes of the TOPMS display format.

The TOPMS software is divided into two parts, the
pretakeoff segment and the real-time segment. The pre-
takeoff software generates a takeoff profile based on CDU
entries made by the pilot. The profile will be used to
compare to the actual performance of the airplane during
takeoff. The real-time software computes the actual takeoff

WS_A/4 WNmomaLy o . PRECEDING PAGE BLANK NOT FILMED

-216-

performance, and stores the required data into the displays
output buffer that will generate the real-time takeoff (or
abort) display. Both the pretakeoff and real-time software
segments and their associated modules are discussed in

sections 11.1 and 11.2. These sections should be referred
to for a more detailed software description.

-3

-217-

EPR 1.95
V2 133

127

125

Takeoff Performance Monitoring System
(takeoff mode)

-figure 11.1-

-219-

22

Takeoff Performance Monitoring System
(abort mode)

-figure 11.2-

£ DING PAGE BLANK NOT FILMED
mE A8 INENTIONALLY BLANs PRECE

-221-

Section 11.1 PRETAKEOFF BACKGROUND SOFTWARE

The pretakeoff calculations for the Takeoff Performance
Monitoring System (TOPMS) are performed to provide a bench-
mark for the TOPMS real-time software. A takeoff profile is
generated using aircraft parameters and the local ambient
conditions. The actual takeoff performance can be compared
to the pretakeoff profile to create advisory information for
the aircraft flight crew.

The TOPMS pretakeoff procedures execute after several
CDU entries have been completed by the flight crew. These
entries are shown below.

AIRFIELD/RUNWAY ROUTE page.
ATIRCRAFT WEIGHT PERFORMANCE page.
FLAP SELECTION TAKEOFF page.
TEMPERATURE TAKEOFF page.
AIRCRAFT CG TAKEOFF page

WIND SPEED/DIRECTION TAKEOFF page

RUNWAY FRICTION TAKEOFF page; default to .015

RUNWAY START OFFSET TAKEOFF pagé; default to 200 feet
RUNWAY LENGTH TAKEOFF page; default to database value

From these entries CDU software computes the stabilizer trim
position, decision speed (V1), rotate speed (VR), and second
segment climb speed (V2). The CDU values are all sent to
the display MicroVAX computer through the interprocessor I/0
link for use by the TOPMS pretakeoff modules. In addition
the pretakeoff modules use the pressure altitude, obtained
from the aircraft DATAC sensor bus, as a final external
input parameter.

The flag TOPMS is used to control the sequence of
events involved in the pretakeoff calculations. When it is
set to "1" the module PRETKF is called by the background
software executive DSPSLW. When the computations are
complete the flag is set to "2" to indicate that the com-
puted values are ready for the real-time TOPMS software.

The following list describes the parameters that are created
for use by the real-time TOPMS modules.

0220 mntionaisy s PRECEDING PAGE BLANK NOT FILMED

-222-

RWYV1 Runway distance required to reach V1.

RWYVR Runway distance required to reach VR.

ROLLIM Runway distance to the takeoff roll limit

COEF () Polynomial coefficients for the takeoff profile

which provides expected acceleration as a
function of true airspeed.

Nine procedures are dedicated to the TOPMS pretakeoff
calculations. The following chart lists the procedure names
along with their source code language and relative size.
Those modules that serve as utility subroutines to another
procedure are shown with their caller. The size provided is
the percentage of total pretakeoff software memory usage,
excluding utility modules from TOPMS.OLB. The following
pages include module descriptions for each of the nine
procedures. The information provided is limited since
much of this software was extracted from portions of the
NASA’s Boeing 737 aircraft simulator program. More detailed
information may be obtained from the people responsible
for maintaining the simulation.

MODULE SOURCE SIZE
ACTRIM FORTRAN 5%
AEROC FORTRAN 8%
ATMOS FORTRAN 1%
ENGINE FORTRAN 9%
LNGFM FORTRAN 9%
POLYFT FORTRAN 7%
SIMEQA
PRETKF FORTRAN 60%

THROTS FORTRAN 2%

-223-

MODULE NAME: ACTRIM
FILE NAME: ACTRIM.FOR
PROCESS: DSPSLW
CALLED BY: PRETKF

CALLING SEQUENCE: CALL ACTRIM(X,Y, ICTRIM, YTOL, IFLAG)

PURPOSE:
To compute initial aircraft trim positions.

DESCRIPTION:

This procedure is used to compute aircraft trim values
for pitch angle, and altitude of the center of gravity above
the runway. Initial pitch and altitude values are passed as
the "X" vector in the calling parameter list. The "Y"
vector contains the landing gear weight distribution param-
eters for the current aircraft center of gravity, weight,
and airplane body orientation. These arrays are used in the
solving of matrix equations to produce static trim values.
ACTRIM proceeds until the columns of the simultaneous
equations matrix are forced close to zero. The tolerance
value YTOL is used to determine when convergence has been
detected. If divergence is detected the module returns with
an error status in IFLAG. ACTRIM may be called iteratively
from PRETKF in an attempt to gain acceptable trim values.
The flag ICTRIM is set to force an initialization pass in
ACTRIM the first time it is called.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
SIMEQA

-224-

MODULE NAME: AEROC

FILE NAME: AEROC.FOR

PROCESS: DSPSLW

CALLED BY: PRETKF

CALLING SEQUENCE: CALL AEROC (ALPDEG, FLAG)
PURPOSE:

To generate parameters for aeronautical derivatives.

DESCRIPTION:

This procedure is called to compute many aircraft aero-
nautical derivatives which are a function of angle of attack,
center of gravity, and flap setting. The angle of attack
value is passed as a calling parameter while the other
inputs are global common variables. When the first pass
variable (FLAG) is set, all derivative variables are set to
the appropriate values. On subsequent calls to AEROC many
of the variables do not need to be set again. This is done
because these derivatives are dependent on flap setting and
aircraft CG, which are static for one execution of the
pretakeoff calculations. When FLAG is not set only those
derivatives which are dependent on the current angle of
attack are computed.

GLOBAL REFERENCES:

VARIABLES
CDBAS* CG CLAL* CLALD* CLBAS* CLDE* CLDS* CLGM* CLNZ* CLO*
CLQ* CMAL* CMALD* CMBAS* CMDEM* CMDSM* CMFAC* CMGE* CMGM*
CMNZ* CMO* CMQ* DCDG* DCDGE* DCLG* DCLGE* DCMG* DLCLTR*
FGEL* FKA* GEARF* TOFLPS

FUNCTIONS AND SUBROUTINES
LIBSSIGNAL ONED

-225-

MODULE NAME: ATMOS

FILE NAME: ATMOS.FOR
PROCESS: DSPSLW
CALLED BY: PRETKF
CALLING SEQUENCE: CALL ATMOS
PURPOSE:

To compute atmospheric parameters.

DESCRIPTION:

This subroutine uses pressure altitude and temperature
to calculate temperature ratio, pressure ratio, speed of
sound, and air density.

INPUTS:

PALT pressure altitude in feet

SOAT temperature in degrees Celsius
QUTPUTS:

THTAMB ambient temperature ratio

DLTAMB ambient pressure ratio

A speed of sound in FT/SEC

RHO density in SLUGS/CU.FT

RTEMP ambient temperature in degrees Rankine

GLOBAL REFERENCES:

VARIABLES
A* ALT PRE DLTAMB RHO* RTEMP SOAT THTAMB

FUNCTIONS AND SUBROUTINES
MTHSSQRT

-226-

MODULE NAME: ENGINE

FILE NAME: ENGTKF .FOR

PROCESS: DSPSLW

CALLED BY: PRETKF

CALLING SEQUENCE: CALL ENGINE (DTH, THRUST, EPR, SPD)
PURPOSE:

To perform engine modeling computations.

DESCRIPTION:

This procedure performs computations which model the
dynamics of the JT8D-7 aircraft engine. ENGINE is passed
throttle position and airspeed as calling parameters. When
the global simulation time variable "T" is zero all the
engine parameters are initialized to their idle values. The
airspeed, throttle position, and ambient atmospheric con-
ditions are used to calculate the engine thrust and pressure
ratio, which are returned to the caller in the parameter
list.

GLOBAL REFERENCES:

VARIABLES
A ALT PRE DLTAMB T THTAMB

FUNCTIONS AND SUBROUTINES
DZONE OLIMIT ONED RATE THCORF XLIM

-227-

MODULE NAME: LNGFM
FILE NAME: LNG2D.FOR
PROCESS: DSPSLW
CALLED BY: PRETKF

CALLING SEQUENCE: CALL LNGFM(OPERATE)

PURPOSE:
To compute the landing gear forces and moments.

DESCRIPTION: .
This procedure computes landing gear forces and moments
for the left, right, and nose gear struts. The sole input
parameter is used as an initialization flag. All computed
values are returned through global common memory locations.

GLOBAL REFERENCES:

VARIABLES
ALTR CG COSTHE HDOT LGLB* LGMB* LGNB* LGXB* LGYB* LGZB*
MUROL SINTHE SQLMG* SQNG* SQRMG* THEDOT TPALT

FUNCTIONS AND SUBROUTINES
ONED XLIM

~228-

MODULE NAME: POLYFT

FILE NAME: POLYFT.FOR

PROCESS: DSPSLW

CALLED BY: PRETKF

CALLING SEQUENCE: CALL POLYFT (X, Y,NPTS, COEF)
PURPOSE:

To perform polynomial curve fitting.

DESCRIPTION:

This subroutine performs a polynomial curve fit on
the X-Y data sets which are passed as calling parameters.
A polynomial of order "NPOLY" is fitted minimizing the
sum of the squared error.

INPUTS

X (NPTS) independent variable array

Y (NPTS) dependent variable array

NPTS number of sets of data points

NPOLY order of polynomial (included constant)
QUTPUTS

COEF (NPOLY+1) polynomial coefficients

The computed coefficients generate the solution to the
following polynomial equation.

Y = COEF (0) + COEF(1l) [X**1 + COEF(2) [X**2 +
...... + COEF (NPOLY) [X**NPOLY

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
SIMEQA

-229-

MODULE NAME: SIMEQA

FILE NAME: POLYFT.FOR

PROCESS: DSPSLW

CALLED BY: POLYFT, ACTRIM
CALLING SEQUENCE: CALL SIMEQA(B, N, C)
PURPOSE:

To solve a system of linear equations.

DESCRIPTION:

This subroutine uses matrix reduction to solve a system
of linear equations. The parameter "N" is the number of rows
in the matrix "B" and the number of elements in the vector
"C" .

GLOBAL REFERENCES:
none

-230-

MODULE NAME: PRETKF

FILE NAME: PRETKF.FOR
PROCESS: DSPSLW
CALLED BY: DSPSLW
CALLING SEQUENCE: CALL PRETKF
PURPOSE:

To perform TOPMS pretakeoff calculations.

DESCRIPTION:

This procedure is the main module for the TOPMS pre-
takeoff calculations. It performs internal simulations of
the takeoff roll using the ambient conditions provided by
the aircraft sensors and the flight crew CDU entries. Two
complete simulations are made using different coefficients
of runway friction (.04, .005). Each run is a simulated
45 seconds of takeoff roll with 3900 data samples of airspeed
and acceleration saved. At the end of a run the sampled
data is passed to a curve fitting subroutine to produce a
third order polynomial which approximates the airspeed
versus acceleration profile of the data points. After both
simulation runs are complete, the flight crew friction
estimate entered on the CDU is used to interpolate a final
set of polynomial coefficients from those created for the
upper and lower runway friction values. These values are
used to generate the remaining pretakeoff outputs described
in the start of this section.

GLOBAL REFERENCES:

VARIABLES
A ALPHA ALT ALTR* ALT_PRE ARMSPB* ATOBRK* CD CDBAS CG CL
CLAL CLALD CLBAS CLDE CLDS CLGM CLNZ CLO CLQ CMAL CMALD
CMBAS CMDEM CMDSM CMFAC CMGE CMGM CMNZ CMO CMQ COSALP
COSPHI* COSTHE DCDFSP* DCDG DCDGE DCDGSP* DCLFSP* DCLG
DCLGE DCLGSP* DCMG DELA* DELE DELR* DLCLTR DTHROT* EPRC
FGEL FKA GEARF HDOT* LGMB LGXB LGZB MUBC* MUROL* MURWY
ORGHDG ORGLEN PB* PBDOT* PHI PHIDOT* QB QBDOT* RB* RBDOT*
RHO ROLARM* ROLLIM* RWYV1 RWYVR* SINALP SINPHI* SINTHE
SOAT SQLMG SQONG SQRMG T THEDOT* THETA THRIDL* THRST*
TOFLPS TOSTAB TOWD TOWS TPALT UB UBDOT V1 V1STOP VB*
VBDOT* VR VWK WB WBDOT WEIGHT WGHT_PRE YTOL

ARRAYS
ALTVEC* COEF* COEFS QBVEC* THVEC* UBVEC* WBVEC*

FUNCTIONS AND SUBROUTINES
ACTRIM ADBWZ AEROC ASPDCO ATMOS ENGINE LIBS$ESTABLISH
LIBSSIGNAL LNGFM MTH$ASIN MTHS$SCOS MTHS$SIN MTHS$SSQRT MTHSTAN
ONED POLYFT RWYPRD STPDIS THROTS THSRVO TOP_HDL

-231-

MODULE NAME: THROTS

FILE NAME: THROTS.FOR

PROCESS: DSPSLW

CALLED BY: PRETKF

CALLING SEQUENCE: CALL THROTS (TEMP, PALT, EPRC,DTHC,DTH14)
PURPOSE:

To find the recommended takeoff EPR and the throttle
setting required to reach that value.

DESCRIPTION:

This subroutine picks the EPR value recommended by the
B-737 flight manual for the given ambient temperature and
pressure altitude based on the tabulation on page #3 (4B-1)
of the flight manual for 737-1LT dated JAN 5/70.

The throttle setting needed to achieve this EPR under
static conditions is then calculated by an iterative process
using a relationship between commanded EPR, throttle setting
and engine inlet stagnation temperature. This relationship
was obtained from the JT8D-7 engine model as developed by
Dave Williams.

INPUTS
TEMP ambient temperature in degrees Celsius
PALT pressure altitude in feet
OUTPUTS
EPRC EPR to be commanded
DTHC throttle setting needed to achieve EPRC (degrees)
DTH14 throttle setting for an EPR=1.4

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
FINTER

-233-

Section 11.2 TOPMS REAL-TIME SOFTWARE

The TOPMS real-time software generates the data needed
to drive the real-time takeoff display. This software com-
putes the actual performance of the airplane during takeoff,
which will be compared to the takeoff profile generated
during the pretakeoff segment of the TOPMS software. The
real-time software handles both the takeoff and abort mode
displays.

Three procedures are dedicated to the TOPMS real-time
calculations. The following chart lists the procedure names
along with their source code language and relative size.
Those modules that serve as utility subroutines to another
procedure are shown with their caller. The size provided is
the percentage of total pretakeoff software memory usage, ex-
cluding utility modules from TOPMS.OLB. The following pages
include module descriptions for each of the three procedures.

MODULE SOURCE SIZE
TOPEXC FORTRAN 87%
APLANE

FILL FORTRAN 13%

The real-time computations start only after the pretakeoff
software has completed successfully. The global variable
"TOPMS" is used as an index to coordinate processing. When
the index contains a value of 2 or 3 then real-time calcula-
tions are computed. TOPEXC is the TOPMS real-time executive,
and is called twenty times per second. The subroutine FILL
is called at the end of each pass of TOPEXC. FILL scales,
converts, packs, and stores the TOPMS data required by the
display format into the output buffer - including parameters
computed by the pretakeoff segment.

Another global variable "ENABLE" is important to the
real-time software. Bit settings within the lower byte of
this word control some of the software processing in TOPEXC.
A detailed description of the individual bits and their
significance can be found at the end of section 11.

To produce the real-time TOPMS display certain values
must be constantly updated. A list of those parameters are
as follows.

airplane position on runway
measured airspeed in takeoff mode
distance to V1 in feet

distance to VR in feet

engine performance indicators

'2% 141 P AN
W22 Wik vaty s PRECEDING PAGE BLANK NOT FILMED

-234-

takeoff advisory status

mode switch (takeoff to abort)
stop distance w/current braking
stop distance w/max braking
ground speed in abort mode

Note that the current EPR settings are required by the
TOPMS format also, but since they are stored in the output
buffer by the engine format executive ENGEXC, TOPEXC does
not need to process and store those values too.

-235-

MODULE NAME: FILL
FILE NAME: FILL.FOR
PROCESS: DSPFST
CALLED BY: TOPEXC

CALLING SEQUENCE: CALL FILL

PURPOSE:
To store in the displays output buffer the data
required by the TOPMS format.

DESCRIPTION:

This routine performs the scaling and storing of TOPMS
related data into the displays buffer OUTDAT. It also sets
flags as necessary to help regulate the proper execution of
the TOPMS software, which includes signaling the completion
of a run.

The global variable "TOPMS" is used as an index to
indicate what phase of TOPMS processing is currently being
performed. The TOPMS format will continue to be displayed
while the real-time TOPMS software in TOPEXC is being

processed (index 2 or 3). However, in all other cases -
TOPMS format deselected (index 0), pre-takeoff calculations
underway (index 1), and end of run flagged (index 4) - the

uppermost bit in the displays status word DISPST will be
cleared. This word sent back to the FM/FC computer will
cause the appropriate flags to be set which will turn off
the TOPMS format.

One particular buffer word (OUTDAT index 619) is used
to pack TOPMS related flags and indices. Flags are repre-
sented as certain bits within the word. Individual bits
will be set on if any of the following conditions exist.

bit condition

0 no pretakeoff computation errors

1 left engine not failed

2 right engine not failed

5 takeoff mode (off is abort mode)

6 left or right bleeds are off

7 TOPMS, actual flap setting not same

Bits 3-4 of the packed word contain a two bit index (values
of 0 to 3) for the takeoff advisory status. The advisory
status determines what type of symbol will be displayed at
the end of the runway (i.e. green "must go" bar, yellow
caution triangle, the red "must stop" sign, or no symbol for
normal conditions).

Some of the TOPMS parameters are updated and stored in
the output buffer every frame, while others only need to be
stored one time per run. Values constantly updated are:

-236-

airplane position along runway

min stop distance w/max braking

stop distance w/current braking
measured airspeed in takeoff mode
ground speed in abort mode

distance to VR in ft ... (as long as VR
distance to V1 in ft ... not exceeded)

TOPMS values that are computed before the run starts and
never change for the course of the run, need to be stored in
the output buffer only once. These values include:

wind speed

wind direction - runway heading
runway length

target EPR for takeoff roll

V2 speed

roll limit line position

VR position on runway

VR speed

V1 speed

runway number

FILL updates the TOPMS phase index variable "TOPMS", when

it begins storing the values only packed once per run. This
indicates the end of the first pass initialization process.
The routine TOPEXC will use this flag to bypass its first
pass calculations from thereon.

GLOBAL REFERENCES:

VARIABLES
CASM DISPST* DISTP EPRC FLAP GSFPS LENGFL ORGHDG ORGLEN
RENGFL ROLLIM RWY2V1 RWY2VR RWYID RWYVR STATUS STOPD STOPE
TKOFF TOFLPS TOINDX TOPMS* TOPOS TOPST TOWD TOWS V1 V2 VR
BLEEDL BLEEDR

ARRAYS
OUTDAT*

FUNCTIONS AND SUBROUTINES
ANGL

=237~

MODULE NAME: TOPEXC
FILE NAME: TOPEXC.FOR
PROCESS: DSPFST
CALLED BY: DSPFST

CALLING SEQUENCE: CALL TOPEXC

PURPOSE:
Serves as the executive for the real-time portion of

the TOPMS experiment.

DESCRIPTION:

TOPEXC is the real-time executive for the TOPMS soft-
ware, and most of the actual real-time processing takes
place in this subroutine. The purpose of TOPEXC is to check
the airplane’s progress during the takeoff roll. It con-
stantly refigures aircraft position in terms of the runway
already used up, and what is additionally needed to achieve
rotation speed. This routine monitors engine health,
acceleration performance, computes distances in feet re-
quired to reach V1 (decision speed) and VR (rotate speed)
in feet, calculates the distances required to stop, and
outputs a takeoff advisory status.

TOPEXC is called by DSPFST twenty times per second if
the TOPMS format is on. However, no real-time processing
takes place within TOPEXC until the pretakeoff software has
completed successfully. The first pass through the sub-
routine body performs initializations for the takeoff run.
When the software sequence variable "TOPMS" has a value of
three, then the continuous real-time segment is underway,
and continues for the course of the run. Among the things
done during the initialization process is to call APLANE
to make sure the flaps are set at either 1, 5, or 15. If
they are not, the TOPMS sequence index is set to "end of
run" (TOPMS = 4). Another situation that will cause the run
to terminate, and is checked for at the beginning of each
TOPEXC pass, is if the difference between the runway heading
and aircraft true heading is more than 25 degrees.

Certain bits within the global variable "ENABLE" affect
TOPEXC'’s processing. ENABLE provides the capability to
select among a small set of options that allow some control
over how the run will be conducted. Bits can be set in
ENABLE, using the VIEW utility, prior to the ,start of a run.
If set, the uppermost bit will cause the TOPMS internal
simulation software to activate, and the body of TOPEXC to
be bypassed. Bit 3 determines whether a pitch attitude
correction is computed into the along track acceleration.
Bit 1 controls the internal wind update. Bit 0 enabled will
will cause a ground speed bias to be figured. Bit 2 selects
the failure count for a performance failure to be either 5
consecutive frames or 8. Bits 4 and 5 determine the early
on "must go" advisory distance. Figure 11.3, at the end of
section 11, presents a graphic representation of all the
ENABLE bit settings.

-238-

TOPEXC activates and uses two time counters during
its processing. These counters are referenced throughout
the subroutine to determine when specific processing should
take place. One is the real-time TOPMS software clock
(RTIME) which is started when the EPR’s are advanced beyond
1.4 and the ground speed is greater than 5 ft/sec. The
other clock, XSTIME, is activated at the actual start of the
run which will be when the following conditions are met:
the EPR’s are greater than 1.4, throttles have been steady
for at least 3 seconds, and the real-time clock XSTIME has
has been going for at least 10 seconds. Once XSTIME has
begun counting, the takeoff run is underway.

During the course of the run, the distance travelled,
the distances to reach V1 and VR, and also the amount of
runway required to stop, are constantly recomputed. Two
one-time updates that occur during the run affect the vV1l, VR,
and stop distance calculations. Approximately two seconds
after the run starts the runway friction coefficient (XMU)
and the scheduled performance basis (COEF) are re-updated
based on the current takeoff run conditions. They are
initially computed during the pretakeoff segment. The other
update that occurs is a wind update. It takes place when
the airspeed exceeds 68 knots. The wind model can be dis-
abled using the ENABLE word.

Two important tasks of the real-time software are to
monitor engine health and acceleration performance. The
TOPMS display format is designed to signal engine and per-
formance failures. To determine if a failure has occurred,
actual engine parameters are compared to predicted ones.
TOPEXC computes predicted EPR and acceleration values. If
the difference between the actual and predicted values
differ by more than their allowable limit a specified number
of consecutive iterations, then an engine failure (EPR’s), or
a performance failure (acceleration) is flagged. :

There are two stop distances computed by TOPEXC. 'one
is the distance required to stop using the present level of
deceleration (STOPE), and the other is the stop distance
using maximum braking (STOPD). The former is always figured
regardless of mode, while the latter is calculated only in
abort mode. Abort mode is entered when the throttles are
pulled back below 1.4 after the run has already begun.

One other responsiblity of this subroutine is to output
a takeoff advisory, which is used as an indication of the
takeoff situation. The advisory information is displayed on
the TOPMS format at the end of the runway, and comes in one
of four forms: a red stop sign warning, a yellow caution
triangle (early on "must go" condition), a green "must go"
bar, or no symbol at all for normal conditions. The follow-
ing chart describes the situations that will cause each of
the advisory indicators to be displayed.

-239-

Red Stop Sign
(1) VR point beyond roll limit line
(2) left and right engine failures
(3) one engine failure +

airspeed below V1
(4) acceleration performance failure

Yellow Early-On "Must Go" Triangle
(1) one engine failure +

airspeed beyond V1 +

not enough rwy to stop

Green "Must Go" Bar

(1) one engine failure +
airspeed beyond V1 +
not enough rwy to stop

(2) not enough rwy to stop

No Symbol

(1) VR point before roll limit line +
no performance failures +
no engine failures +
enough rwy to stop

The last thing TOPEXC does before exiting is to call
the subroutine FILL, which will pack the TOPMS data into the
output buffer for shipment to the display microprocessors.

GLOBAL REFERENCES:

VARIABLES
A ACCLF BDXACC CAS CASM CD CL DISTP DLTAMB DTHROT* ENABLE
EPR1 EPR2 EPRPL EPRPR GSFPS GSPD GSPD1 HDGTRU LENGFL
MAGVAR MURWY ORGHDG ORGLEN PITCH RENGFL RHO ROLLIM RWY2V1*
RWY2VR RWYV1 RWYVR SOAT STATUS* STOPD STOPE* THROTL THROTR
THRST TKOFF TOPMS* TOPOS TOPST TRKACC V1 VR VWK WEIGHT XMU

ARRAYS
COEF* COEFS

FUNCTIONS AND SUBROUTINES
ANGL APLANE ASPDCO EPRF FILL FINTER MTHSCOS MTHS$SIN RWYPRD
SIMTOP STPDIS THCORF

-240-

MODULE NAME: APLANE

FILE NAME: TOPEXC.FOR
PROCESS: DSPFST
CALLED BY: TOPEXC
CALLING SEQUENCE: CALL APLANE
PURPOSE:

To determine the coefficients of 1ift and drag
associated with a given flap setting.

DESCRIPTION:

APLANE is called during the first pass initialization
phase of TOPEXC, provided that there were no pretakeoff
computation errors. APLANE is responsible for figuring the
appropriate coefficients of lift and drag for a particular
flap setting. There are only three valid flap settings for
a takeoff run: one, five, and fifteen. Any other flap
setting will cause APLANE to set the software index flag
"TOPMS" to four, which signals end of run. To determine
the lift and drag coefficients the appropriate stabilizer
setting must be identified first. Using the center of
gravity position, table look-ups and interpolation are per-
formed to figure the stabilizer setting.

Besides the coefficients, the rate of change of 1lift
and drag due to the front spoilers and ground spoilers is
also identified. These will be fixed values based on which
of the three settings the flaps are positioned at.

GLOBAL REFERENCES:

VARIABLES
CD* CG CL* DCDFSP* DCDGSP* DCLFSP* DCLGSP* TOFLPS TOPMS*

-241-

Section 11.3 TOPMS OBJECT LIBRARY (TOPMS.OLB)

Their are seventeen subroutines on the TOPMS utility
library TOPMS.OLB. Three of them are subroutines used only
by other utility library modules (STPREF FNSERV SEARCH).
The following pages give a brief summary of the modules on

this library.

-242-

MODULE NAME: ADBW2
FILE NAME: PROCS.FOR
CALLING SEQUENCE: CALL ADBW2 (STATE VECTOR)

PURPOSE:
To perform state vector integration.

DESCRIPTION:

This utility performs integration to produce the
current value of a simulated signal. A three element input
array is passed as the sole calling parameter. The array
elements are used as follows.

STATE_VECTOR(1) : This element contains the last value of
the signal. The new value computed from integration is
returned in this element.

STATE_VECTOR(2) : This element contains the current rate that
the signal changes in one second.

STATE_VECTOR(3) : This element contains the previous frames
value for STATE VECTOR(2).

The integration performed by this procedure is done 20 times
per second of simulated time. The equation used to compute
the new signal is given below.

SIGNAL = LAST SIGNAL + .05 * (1.5 * RATE - 0.5 LAST RATE)
Note that ADBWZ2 automatically places the current rate into
the last rate element before returning to the caller.

GLOBAL REFERENCES:
none

-243-

MODULE NAME: ASPDCO

FILE NAME: PROCS .FOR

CALLING SEQUENCE: CALL ASPDCO (SPEED, TYPE)
PURPOSE:

To convert between airspeed types.

DESCRIPTION:

This procedure is passed an airspeed (knots) and a
conversion type code. A type code of "0" requests con-
version from true airspeed to calibrated airspeed and a
type of "1" is passed for the conversion back.

GLOBAL REFERENCES:

VARIABLES
DLTAMB THTAMB

FUNCTIONS AND SUBROUTINES
MTHS$SIGN MTHSSQRT

-244-

MODULE NAME: DZONE
FILE NAME: PROCS.FOR
CALLING SEQUENCE: VALUE = DZONE (SIG, LOW, HIGH)

PURPOSE:
To perform a dead-zone adjustment.

DESCRIPTION:

This utility function is called to force a dead-zone
about zero on an input signal. The first calling parameter
is the signal value. The remaining parameters are the dead-
zone boundaries. The resulting value is the amount the
input signal is outside of the dead-zone. If the input is
within the dead-zone a zero value is returned.

GLOBAL REFERENCES:
none

-245-

MODULE NAME: EPRF
FILE NAME: PROCS.FOR
CALLING SEQUENCE: EPR = EPRF (THROTTLE, TEMPERATURE)

PURPOSE:
To compute EPR values.

DESCRIPTION:

This utility function is called to compute an estimated
engine pressure ratio (EPR) from the throttle setting and
the engine inlet stagnation temperature.

GLOBAL REFERENCES:
none

-246-

MODULE NAME: FINTER

FILE NAME: PROCS.FOR

CALLING SEQUENCE: CALL FINTER(EPR, OAT, THROTTLE)
PURPOSE:

To compute throttle setting for desired EPR.

DESCRIPTION:

This utility is passed a desired engine pressure ratio
(EPR) and the outside air temperature (Deg C) to compute
the throttle setting required. An iterative algorithm
using the function EPRF is implemented.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
EPRF LIBS$SIGNAL

-247-

MODULE NAME: FNSERV

FILE NAME: STPDIS.FOR

CALLING SEQUENCE: POS = FNSERV (RATE, COMMAND,ACTUAL, LIMIT)
PURPOSE:

To model servo response for control inputs.

DESCRIPTION:

This subroutine models servo response to control
commands. The first calling parameter is the exponential
servo response constant used in filtering equations. The
commanded value is passed along with the current actual
position. The last parameter is a rate limit which is the
maximum amount the new position may differ from the last.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
MTHS$SIGN

-248-

MODULE NAME: OLIMIT
FILE NAME: PROCS.FOR
CALLING SEQUENCE: VALUE = OLIMIT (VALUE, LOW, HIGH)

PURPOSE:
To perform value limiting.

DESCRIPTION:

This utility function limits an input value to the
supplied boundary values. The resulting number will always
be within the range LOW - HIGH, not including the boundary
values. A tolerance of 1.0E-9 from the supplied range is
always enforced.

GLOBAL REFERENCES:
none

-249-

MODULE NAME: ONED ‘
FILE NAME: PROCS.FOR
CALLING SEQUENCE: VALUE = ONED(X, X _TABLE, INT_TABLE)

PURPOSE:
To perform one dimensional interpolation.

DESCRIPTION:

This utility function is passed a sample value "X" and
a table of possible values for the sampled value "X TABLE".
The interval containing X in X _table is located and used
to compute the interpolation value for the parallel interval
in the interpolation table "INT_TABLE".

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
SEARCH

~-250-

MODULE NAME: RATE
FILE NAME: PROCS.FOR
CALLING SEQUENCE: VALUE = RATE (NEW, OLD, HIGH, LOW)

PURPOSE:
To perform rate limiting.

DESCRIPTION:

This utility procedure returns the NEW value from the
parameter list unless the change from the previous value
exceeds the rate limits supplied. Note that the rate limits
are in UNITS/SECOND, but the utility assumes the time
differential between the sampled OLD and NEW is .05 seconds.
Note that the global time variable "T" from the pretakeoff
simulation is checked for initialization time (0.0). When
the simulation time has not started the NEW values is always
returned without rate limiting.

GLOBAL REFERENCES:

VARIABLES
T

FUNCTIONS AND SUBROUTINES
XLIM

-251-

MODULE NAME: RWYPRD
FILE NAME: PROCS.FOR
CALLING SEQUENCE:- DISTANCE = RWYPRD (V_START,V FINAL,V WIND)

PURPOSE:
To compute runway distances covered.

DESCRIPTION:

This utility function returns the predicted runway
distance traveled while accelerating between two airspeeds.
Both airspeeds (true/knots) are supplied in the calling
parameters along with the "along runway" component of the
wind speed (knots).

The total distance traveled is found by a ten iteration
summation of distances covered in acceleration steps. The
pretakeoff acceleration versus airspeed polynomial is used
to predict the acceleration at each step.

GLOBAL REFERENCES:

ARRAYS
COEF

-252-

MODULE NAME: SEARCH

FILE NAME: PROCS.FOR

CALLING SEQUENCE: INDEX = SEARCH (VALUE, TABLE)
PURPOSE:

To perform table searching for interpolation modules.

DESCRIPTION:

This utility function is called by the interpolation
utilities ONED and TWOD to locate the interval within a
table where a supplied value falls. Note that since no
table length is passed, the last interval of the table must
be large enough to contain any possible search key value.

GLOBAL REFERENCES:
none

-253-

MODULE NAME: STPDIS
FILE NAME: STPDIS.FOR
CALLING SEQUENCE: DIST = STPDIS(V_O,MU,WEIGHT,V_WIND,TK_OFF)

PURPOSE:
To compute runway stopping distances.

DESCRIPTION:
This function computes the distance required to stop the

aircraft. This is done by iteratively simulating the abort
process with a fixed time step (.25 seconds). The inputs
are described below.

CALLING PARAMETERS

v 0 current true airspeed (FT/SEC)
MU rolling coefficient of friction
WEIGHT aircraft weight (POUNDS)
V WIND wind speed (FT/SEC)
TK_OFF takeoff / abort mode flag

GLOBAL INPUTS
CL coefficient of lift
CD coefficient of drag
DCLFSP change in CL due to forward spoilers
DCDFSP change in CD due to forward spoilers
DCLGSP change in CL due to ground spoilers
DCDGSP change in CD due to ground spoilers
RHO air density (SLUGS/CU FT)
THRIDL idle thrust (POUNDS)
DTHROT current throttle position (DEGREES)

The simulation performed models the forces involved
in stopping the aircraft. Performance of the aircraft is
modeled for .25 second intervals until the initial speed has
been driven to zero. The aircraft deceleration is computed
from thrust, lift, drag, weight, and runway friction.
Thrust and drag values are computed from the modeling of
reaction time in retarding the throttles and deploying the
spoilers. |

GLOBAL REFERENCES:

VARIABLES
CD CL DCDFSP DCDGSP DCLFSP DCLGSP DTHROT FSPREF GSPREF RHO
THRIDL THRST TMREF

FUNCTIONS AND SUBROUTINES
FNSERV STPREF

-254-

MODULE NAME: STPREF
FILE NAME: STPDIS.FOR
CALLING SEQUENCE: CALL STPREF (TK_OFF)

PURPOSE:
To model throttle and spoiler usage in stopping.

DESCRIPTION:

This procedure is called solely by the utility STPDIS.
It computes the initial positions of throttles, forward
spoilers, and ground spoilers. When in takeoff mode, TK OFF
equal TRUE, the spoilers are assumed retracted and the
throttles are set to takeoff position. Once a takeoff abort
has started however the entire response time involved is
reduced because these actions start when the abort is
initiated. After a certain amount of time into the abort
phase the throttles and spoilers will be considered com-
pletely in their abort positions.

The reference values for the positions are returned to
STPDIS through the global variables FSPREF, GSPREF, and
TMREF .

GLOBAL REFERENCES:

VARIABLES
FSPREF* GSPREF* TMREF*

FUNCTIONS AND SUBROUTINES
FNSERV

-255~-

MODULE NAME: THCORF

FILE NAME: PROCS.FOR

CALLING SEQUENCE: THRUST = THCORF (MACH, EPR)
PURPOSE:

To calculate engine thrust.

DESCRIPTION:

This utility function is called to calculate sea-level
engine thrust from mach number and engine pressure ratio.
For current pressure altitude adjustment the returned value
must be multiplied by DLTAMB, which is a global variable
computed by ATMOS.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
XLIM

-256-

MODULE NAME: THSRVO
FILE NAME: PROCS.FOR
CALLING SEQUENCE: CALL THSRVO (COMMAND, POSITION)

PURPOSE:
To compute the aft flight deck throttle servo response.

DESCRIPTION:

This utility procedure is called to compute the aft
flight deck throttle servo position. The calling parameters
are the desired and current throttle positions respectively.
The actual position of the servo is returned through the
second parameter. The effect of this module is to lag the
response to the command by filtering the differential
between commanded and actual positions. The total amount
the servo may respond in one frame is also rate limited.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
MTHS$SIGN

-257-

MODULE NAME: TWOD
FILE NAME: PROCS.FOR
CALLING SEQUENCE: VALUE = TWOD (X, XST,Y,YST,NX,FST)

PURPOSE:
To perform two dimensional interpolation.

DESCRIPTION:

This utility function is used to interpolate table
values dependent on two input values. This can be thought
of as identifying the proper position between four points of
a grid and interpolating into a corresponding value grid.

The first pair of calling parameters is the first
dependent variable and its corresponding table of possible
values. The next pair are used likewise for the second
dependent variable. The two dimensional table of values is
passed as the last calling parameter. Note that the number
of rows "NX" in the two dimensional value matrix is passed
for Fortran’s addressing requirements.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
SEARCH

-258-

MODULE NAME: XLIM
FILE NAME: PROCS.FOR
CALLING SEQUENCE: VALUE = XLIM(VALUE, LOW,HIGH)

PURPOSE:
To perform range limiting.

DESCRIPTION:

This utility function is called to limit an input value
to a range of specified values. The upper and lower bound-
aries are passed as calling parameters.

GLOBAL REFERENCES:
none

-259-

Section 11.4 TOPMS SIMULATION

The TOPMS display format may be driven for the purpose
of demonstration by an internal simulation. The global
variable ENABLE is manually modified using the VIEW utility
to select the simulation. Note that the standard pilot CDU
entries into the flight management computer are made as
usual.

The high order four bits of ENABLE are used for the
TOPMS simulation. Refer to figure 11.3 at the end of
section 11 for the definition of the TOPMS ENABLE bits.

The following page contains a module description for
the single routine responsible for creating the TOPMS
simulation.

-260-

MODULE NAME: SIMTOP

FILE NAME: TOPEXC.FOR
PROCESS: DSPFST

CALLED BY: TOPEXC

CALLING SEQUENCE: CALL SIMTOP (PERFLG)
PURPOSE:

To simulate TOPMS variables for demonstration.

DESCRIPTION:

This procedure is called by TOPEXC when the simulation
selection bit in the ENABLE word is set. It is called just
before TOPMS processing begins to overwrite external input
variables which are used by TOPEXC. The TOPMS performance
failure flag is passed to SIMTOP to assist in determining
engine failure situations.

GLOBAL REFERENCES:

VARIABLES
BDXACC BLEEDL* BLEEDR* CAS DTHROT ENABLE EPR1* EPR2* EPRC
FLAP* GSFPS* HDGTRU* MAGVAR ORGHDG PITCH* THROTL* THROTR*
TOFLPS TOPMS* V1 VR VWK

ARRAYS
COEF

FUNCTIONS AND SUBROUTINES
ASPDCO

BIT(S)

4-5

6-7

12-15

-261-

"ENABLE" WORD (TOPMS)

1514 13 12 11 10 9 8 7 6 5§ 4 3 2 1 0

81288 Sls

HEEE HHEEHHHEE
USAGE

Set to sample stationary ground speed from IRS to create a ground speed bias
term.

Set to disable the TOPMS internal wind update.

Used to determine the consecutive failure count needed to flag a performance
error. When set the count is 8 frames, otherwise 5 frames. Note when the
count is set to 8, performance failure checking will also occur after the aircraft

reaches rotate speed (VR).

Set to remove pitch attitude correction to body mounted acceleration (X-axis)
in the computation of along runway acceleration.

Two-bit value selects overlap distance for "early on” of must-go advisory.
00 — 0 feet 01 — 500 feet 10 — 1000 feet 11 — 1500 feet

Throttle position override bits.
01 — copy right into left 10 — copy left into nght

TOPMS internal simulation bits.
15: enable simulation
12: freeze simulation
13-14: 00 — standard run 01 — poor performance
10 — engine out at 100kt 11 — engjne out at V1

-figure 11.3-

-263-

Appendix A I/0 BUFFER USAGE

Display data is sent to the microprocessor system in a
704 word contiguous block. Except for the Navigation dis-
play format’s background buffer (first 400 words), specific
locations within the data block have assigned contents. The
following pages contain the information on the allocation of
the data buffer. The first chart shows a composite usage
layout for all six display formats. The ranges of memory
used by the various formats is shown by assigning the byte
offset values to ID mnemonics (NAV: Navigation Display;

PFD: Primary Flight Display; ENG: Engine Display; SY¥YS:
System warning display; Fl: Sperry Primary Display TOP:
TOPMS display). The remaing pages have charts for each
individual format, breaking down the I/0 memory usage by
specific variables. Note that the memory allocations for
NAV and TOP overlay each other. This is because these
display formats are mutually exclusive. The same micro-
processor contains both formats, with only one active at
a time.

The offset and size values in the charts are in terms of
bytes. The index column contains the index into a word array
used by the host computer. When a "+" is shown by the index
the data actually resides on an odd byte boundary.

Following the I/0 layouts is a detailed description of
the various packed words contained in the charts.

PRECEDING PAGE BLARNK NOT FILMED

A4
PRI INTTNTINNALLY BULANK

-264-

MEMORY USAGE FOR ALL FORMATS

OFFSET

0 - 801

802 - 1005
1006 - 1007
1008 - 1079
1080 - 1081
1082 - 1085
1086 - 1089
1090 - 1091
1092 - 1097
1098 - 1099
1100 - 1103
1104 - 1107
1108 - 1169
1170 - 1179
1180 - 1181
1182 - 1187
1188 - 1189
1190 - 1193
1194 - 1195
1196 - 1201
1202 - 1203
1204 - 1207
1208 - 1241
1242 - 1247
1248 - 1255
1256 - 1263
1264 - 1267
1268 - 1271
1272 - 1275
1276 - 1343
1344 - 1345
1346 - 1347
1348 - 1351
1352 - 1355
1356 - 1357
1358 - 1359
1360 - 1361
1362 - 1363
1364 - 1365
1366 - 1369
1370 - 1373
1374 - 1375
1376 - 1377
1378 - 1379

1380

- 1381

SIZE

802
204
2

~J
N

ANEBNANEFEADBDLONGN L LN
o N

NNRONBBNNNONNE BN BB S 0D WS N

INDEX

1

402
504
505
541
542
544
546
547
550
551
553
555
586
591
592
595
596
598
599
602
603
605
622
625
629
633
635
637
639
673
674
675
677
679
680
681
682
683
684
686
688
689
690
691

ID

NAV

ENG

Fl

F1
PFD
Fl

SYS
ENG

PFD
NAV
PFD
NAV
PFD
NAV
PFD
NAV
NAV
NAV

PFD
PFD
PFD
PFD
PFD
PFD

PFD

NAV
PFD
PFD
PFD
PFD
TOP

SYS
PFD
PFD
PFD

Fl

NAV
NAV
NAV
NAV

TOP

F1

NAV

NAV

SYS
Fl

NAV
NAV
NAV
ENG

F1
Fl
NAV
F1l

SYS F1

SYS F1
SYS

TOP ENG SYS F1

1382
1384
1396
1402
1404
1406

1383
1395
1401
1403
1405
1407

NN DN

692
693
699
702
703
704

NAV
SYS
ENG
ENG
NAV
NAV

TOP

SYS

SYS F1l
SYS

-265-

-266-

MEMORY

OFFSET

1090 -
1180 -
1188 -
1194 -
1202 -
1256 -
1258 -
1260 -
1262 -
1264 -
1266 -
1268 -
1270 -
1272 -
1274 -
1276 -
1278 -
1280 -
1282 -
1284 -
1286 -
1288 -
1290 -
1292 -
1294 -
1296 -
1298 -
1300 -
1302 -
1304 -
1306 -
1308 -
1310 -
1312 -
1314 -
1316 -
1318 -
1320 -
1322 -
1324 -
1326 -
1328 -
1330 -
1332 -
1334 -

ALLOCATION FOR PFD

1091
1181
1189
1195
1203
1257
1259
1261
1263
1265
1267
1269
1271
1273
1275
1277
1279
1281
1283
1285
1287
1289
1291
1293
1295
1297
1299
1301
1303
1305
1307
1309
1311
1313
1315
1317
1319
1321
1323
1325
1327
1329
1331
1333
1339

SIZE

O\l\)f\)NNl\)l\)I\)NNI\)NNI\)NNNNNNNNNNNNNI\)I\)NNNNNNI\)NNI\)NI\)N!\)NI\)

INDEX

546
591
595
598
602
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

VARIABLE

RADAR ALT
TRK_DIAL
TRU_HDG
TRU TRK
MAG_TRK
ACC_SEGMENT
STANDOFF
AIRCRAFT X
AIRCRAFT_Y
ACT CAS
CAS_REF
DEC_HT

FPA DIAL
VRT REF
GS_REF
HOR_TICK CTR
HOR X

MACH

PITCH Y
LOC X

RWY X1

RWY Y1

RWY X2

RWY Y2

RWY X3

RWY Y3

RWY X4

RWY Y4

RWY X5

RWY Y5

RWY X6

RWY Y6

RWY X7

RWY Y7

RWY X8

RWY Y8

RWY SCALE
PTH TRK
FLARE
STAR X
STAR_Y
STAR_ZOOM
FPA REF
TRACK_BUG_X
TO WPT

UNITS

FEET * 6.5536
DEG * 182.0444
DEG * 182.0444
DEG * 182.0444
DEG * 182.0444
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
KNOTS * 64
KNOTS * 64
FEET

DEG * 10

FEET

FEET

INCHES * 1000
INCHES * 1000
RATIO * 1000

INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000
INCHES * 1000

(0-1) * 16384
DEG * 182.0444
INCHES * 1000

INCHES * 1000
INCHES * 1000
(1-20) * 1024
INCHES * 1000
INCHES * 1000
ASCIC

1340
1342
1344
1348
1350
1358
1360
1362
1364
1376
1378
1380

1341
1343
1345
1349
1351
1359
1361
1363
1365
1377
1379
1381

NN

671
672
673
675
676
680
681
682
683
689
690
691

NIBBLES 1
NIBBLES_2
NIBBLES_3
DISCRETES
SKY PTR
ACT ROLL
ACT_ALT
HDOT

ALT REF
FLAP UP
HOST CNT
BARO_SET

PACKED WORD
PACKED WORD
PACKED WORD
PACKED WORD
DEG * 182.0444
DEG * 182.0444
FEET

INCHES * 1000
FEET

KNOTS * 65.536
SECONDS * 20
INCHES * 100

-267-

-268-

MEMORY ALLOCATION FOR NAV

OFFSET

0 - 799

800 - 801
1180 - 1181
1182 - 1183
1184 - 1185
1186 - 1187
1188 - 1189
11980 - 1191
1192 - 1193
1194 - 1195
1196 - 1197
1198 - 1199
1200 - 1201
1202 - 1203
1204 - 1205
1206 - 1207
1208 - 1209
1210 - 1227
1228 - 1229
1230 - 1231
1232 - 1239
1240 - 1247
1272 - 1273
1274 - 1275
1344 - 1345
1356 - 1357
1360 - 1361
1362 - 1363
1364 - 1365
1378 - 1379
1382 - 1383
1404 - 1405

1406

- 1407

SIZE

800

NN NONNNNONNOCONNFRFNNRNNNNNNNNNONONONNONNN

INDEX

1

401
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
615
616
617
621
637
638
673
679
681
682
683
690
692
703
704

VARIABLE

BCKGND BUF
LINK_CMD
SEL_TRK
ALT RANGE

XTK GS RATIO

AC_NORM
TRU_HDG
WIND SPD
WIND DIR
TRU_TRK
MAP_WORD
MLS_ X
MLS_Y
MAG_TRK
BOX_X
BOX_Y
BOX_HDG
BUB_COORDS
TANG_TIMEI
OFF_VECTOR
AP _EAST

AP NORTH
VRT_REF
GS_REF
NIBBLE3
GS_FPS

ALT ACTUAL

HDOT SEGMENT
REF_ALT VALUE

HOST_CNT
FMT_1ID

DISC_WORD11
DISC_WORD12

UNITS

BACKGROUND DATA
reserved

DEG * 182.0444
NAUT. MILES * 128
(1/SEC) * 65536
(FT/SEC/SEC) * 512
DEG * 182.0444
KNOTS

DEG * 182.0444
DEG * 182.0444
PACKED WORD

NAUT., MILES * 2048
NAUT. MILES * 2048
DEG * 182.0444
FEET / 32

FEET / 32

DEG * 182.0444
3-(X,Y,HDG)

SEC * 256

NAUT. MILES * 128
4- (INCHES * 1000)
4- (INCHES * 1000)
FEET

FEET

PACKED WORD
(FT/SEC) * 32
FEET

INCHES * 1000
FEET

SECONDS * 20

2, 1

PACKED WORD
PACKED WORD

MEMORY
OFFSET

1208 -
1210 -
1212 -
1214 -
1216 -
1218 -
1220 -
1222 -
1224 -
1226 -
1228 -
1230 -
1232 -
1234 -
1236 -
1238 -
1240 -
1366 -
1368 -
1378 -
1382 -

ALLOCATION FOR TOP

1209
1211
1213
1215
1217
1219
1221
1223
1225
1227
1229
1231
1233
1235
1237
1239
1241
1367
1369
1379
1383

SIZE

MOV DN

INDEX

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
684
685
690
692

VARIABLE

SPEED
WIND_SPD
WIND DIR
RWY LEN
PLANE

EPR

V2
ROLL_LIMIT
VR1
VR2_POS
VR2_VAL
DSPEED_POS
DSPEED_VAL
STAR
PACK_WORD
EYE

RWY ID
EPR1

EPR2
HOST_CNT
FMT_ID

-269-

UNITS

KNOTS

KNOTS

DEG * 182.0444
FEET

FEET

RATIO * 8192
KNOTS

FEET

FEET

FEET

KNOTS

FEET

KNOTS

FEET

PACKED WORD
FEET

ASCII

RATIO * 8192
RATIO * 8192
SECONDS * 20
2, 7

-270-

MEMORY

OFFSET

1006 -
1108 -
1110 -
1112 -
1114 -
1116 -
1118 -
1120 -
1122 -
1124 -
1126 -
1128 -
1130 -
1132 -
1134 -
1136 -
1138 -
1140 -
1142 -
1144 -
1146 -
1148 -
1150 -
1152 -
1154 -
1156 -
1158 -
1160 -
1162 -
1164 -
1166 -
1168 -
1366 -
1368 -
1378 -~
1396 -
1398 -
1400 -
1402 -

ALLOCATION FOR ENG

1007
1109
1111
1113
1115
1117
1119
1121
1123
1125
1127
1129
1131
1133
1135
1137
1139
1141
1143
1145
1147
1149
1151
1153
1155
1157
1159
1161
1163
1165
1167
1169
1367
1369
1379
1397
1399
1401
1403

SIZE

NNNNNNNI\)I\)Nl\)l\)l\)I\)NNNNNNNNNNNNNNNNNNNNNNNNN

INDEX

504
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
684
685
690
699
700
701
702

VARIABLE

SWITCH
ENG_EPRLIM
ENG_EPRCAU
ENG_EPRCOM
ENG N1 L
ENG_N1 R
ENG N1LIM
ENG_N1CAU
ENG_EGT L
ENG_EGT R
ENG_EGTLIM
ENG_EGTCAU
ENG FF L
ENG_FF R
ENG_EOP L
ENG_EOP_R
ENG_EOLLIM
ENG_EOULIM
ENG_EOT L
ENG_EOT R
ENG_EOTLIM
ENG_EOQ L
ENG_EOQ R
ENG_EOQLIM
ENG N2 L
ENG_N2 R
ENG_N2LIM
ENG_LFUELQ
ENG_RFUELQ
ENG_CFUELQ
ENG_TAT
ENG_GW
ENG_EPR L
ENG_EPR R
HOST CNT
DISC_WORD7
DISC_WORDS
DISC_WORD9
DISC_WORD10

UNITS

reserved
RATIO * 8192
RATIO * 8192
RATIO * 8192
% * 163.84

% * 163.84

% * 163.84

% * 163.84

DEG-C * 32.768
DEG-C * 32.768
DEG-C * 32.768
DEG-C * 32.768
* 1.6384
* 1.6384

(LB/HR)
(LB/HR)
PSI * 163.84
PSI * 163.84
PSI * 163.84
PSI * 163.84
DEG-C *

DEG-C *

% * 163.84
% * 163.84
% * 163.84
POUNDS

POUNDS

POUNDS

DEG~-C * 128
POUNDS *
RATIO * 8192
RATIO * 8192
SECONDS * 20
PACKED WORD
PACKED WORD
PACKED WORD
PACKED WORD

91.022
DEG-C * 91.022
91.022
GALLONS * 3276.
GALLONS * 3276.
GALLONS * 3276,

.125

oo 0o o

-271-

MEMORY ALLOCATION FOR SYS

OFFSET SIZE INDEX VARIABLE UNITS
1100 - 1101 2 551 SYS_LFLAP DEG * 182.0444
1102 - 1103 2 552 SYS_RFLAP DEG * 182.0444
1356 - 1357 2 679 GS_FPS (FT/SEC) * 32
1360 - 1361 2 681 PFD_ALT FEET

1364 - 1365 2 683 PFD_SELALT FEET

1366 - 1367 2 684 ENG_EPR L RATIO * 8192
1368 - 1369 2 685 ENG_EPR R RATIO * 8192
1374 - 1375 2 688 PFD_VSPD (FT/SEC) * 49.152
1378 - 1379 2 690 HOST_CNT SECONDS * 20
1384 - 1385 2 693 DISC_WORDL PACKED WORD
1386 - 1387 2 694 DISC_WORD2 PACKED WORD
1388 - 1389 2 695 DISC_WORD3 PACKED WORD
1390 - 1391 2 696 DISC_WORD4 PACKED WORD
1392 - 1393 2 697 DISC_WORD5 PACKED WORD
1394 - 1395 2 698 DISC_WORD6 PACKED WORD
1396 - 1397 2 699 DISC_WORD7 PACKED WORD
1398 - 1399 2 700 DISC_WORDS PACKED WORD
1400 - 1401 2 701 DISC_WORD9 PACKED WORD
1404 - 1405 2 703 DISC_WORD11 PACKED WORD
1406 - 1407 2 704 DISC_WORD12 PACKED WORD

~272-

MEMORY ALLOCATION FOR F1

OFFSET SIZE INDEX VARIABLE UNITS

1080 - 1081 2 541 PFD PITCH DEG * 182.0444
1086 - 1087 2 544 PFD_VDVDAT FEET * 9.6
1088 - 1089 2 545 PFD_ XLDDAT FEET * 9.6
1090 - 1091 2 546 RADDAT FEET * 6.5536
1092 - 1093 2 547 PFD_ SPDDAT knots * 500
1094 - 1095 2 548 PITCMDCP DEG * 182.0444
1096 - 1097 2 549 ROLCMDCP DEG * 182.0444
1264 - 1265 2 633 IASDAT KNOTS * 64
1266 - 1267 2 634 ASTDAT KNOTS * 64
1358 - 1359 2 680 PFD_ROLL DEG * 182.0444
1360 - 1361 2 681 ALTITUDE FEET

1364 - 1365 2 683 PFD_ASELDAT FEET

1374 - 1375 2 688 VSPDAT (FT/SEC) * 49.152
1376 - 1377 2 689 VMODAT KNOTS * 65.536
1378 - 1379 2 690 HOST_CNT SECONDS * 20
1380 - 1381 2 691 BAROSET INCHES * 100
1404 - 1405 2 703 DISC_WORD11 PACKED WORD

-273-

PACKED WORD DESCRIPTIONS

INDEX BIT(S) USAGE

!
=
[6)]

map background contol word (Section 7.1)
TOPMS format valid

left engine o.k.

right engine o.k.

takeoff advisory status

flap set error

left or right bleeds off

control mode index

throttle mode index

roll controller detent status
pitch controller detent status

3 perspective runway approach index

7 reference CAS color code

-11 engaged horizontal mode index
-1

3

1599
619

|
RN

671

NI

|
=
wn

672

5 armed horizontal mode index
engaed vertical mode index

-7 armed vertical mode index

8-11 flight path angle bar color code

12-15 alert message index

673

BORPOBORPROMDONVNWNRF OO
1
=W

675

attitude wvalid

velocity vector mode enabled
altitude hold sub-mode valid
star symbol valid

track bug symbol wvalid
runway symbol valid
reference altitude valid
radar altitude valid
airspeed valid

altitude valid

PFD format valid

track select valid

rfdiu disengaged

-4 reserved

RFD Nav #2 tuning

DME #2 tuning

RFD com tuning 1 & 2

-6 reserved

stabilizer out of trim
15 reserved

-9 reserved

0 speed brake-do not arm

reserved

693

694

695

FoOoOooJOoO-JdoaaRPRORP YOI WNRFO
= O

[y
Y
i
=
w

-274-

696

697
698

699

700

701

I
—
w

OWOJOAUNDWNRPOOFFAANOMBWNEHO
I O

el oy Ty
BWN RO

1
(e w

= O |

NN WNFOJOANNBWNRRONROANKRO

flap
throt

placard
tle placard

speed brake placard

ailer
eleva
rudde
reser
anti-
reser

on cam out

tor cam out

r cam out

ved

skid inoperative
ved

reserved

nose
nose
nose
nose
nose
left
left
left
left
left
right
right
right
right
right
left
right
reser

gear up
gear down
gear locked
gear up to down
gear down to up
gear up
gear down
gear locked
gear up to down
gear down to up
gear up
gear down
gear locked
gear up to down
gear down to up
flap moving
flap moving
ved

speed brake armed

reser
left
right
left
left
left
left
left
left
left
left
right
right
right
right
right
right
right
right

ved
reverser armed
reverser armed
EPR valid
N1l valid
EGT valid
fuel flow valid
0il pressure valid
0il temperature valid
oil quantity valid
N2 valid
EPR wvalid
N1 valid
EGT valid
fuel flow valid
0il pressure valid
oil temperature valid
0il quantity valid
N2 valid

702

703

704

WO~ WNEHO

(.
NE O

EPR limit wvalid

EPR caution valid

EPR command valid

N1 limit wvalid

N1 caution valid

EGT limit valid

EGT caution valid

oil pressure limit valid
oil temperature limit wvalid
0oil quantity limit valid
N2 limit wvalid

left fuel quantity wvalid
right fuel quantity valid
center fuel quantity valid
total air temperature valid
gross weight wvalid
attitude valid

airspeed valid

selected airspeed valid
airspeed limit wvalid
altitude valid

selected altitude valid
vertical speed valid
vertical deviation valid
lateral deviation valid
radar altitude valid
reserved

true heading valid

true track valid

selected track valid
track line valid

MLS mode engaged

MLS mode valid

GPS mode valid

wind valid

left flap valid

right flap valid

MLS airplane color variant
ground speed valid
position valid

magnetic track wvalid

-275-

~276~-

INDAT (N)

LOJOaUOULSH WP
o
|
=
[6,]

DESCRIPTION

DP11 FORMAT ID/STATUS

DP11 LEFT POT VALUE

DP11 RIGHT POT VALUE

DP11 BEZEL DISCRETE WORD

DP11 DP ID FOUND BY FORMAT FROM DISCRETES
DP11 DEU ID FOUND BY FORMAT FROM DISCRETES
DP11 FORMAT CHECKSUM

DP11 FORMAT SPARE TIME APPROXIMATION (msec)
DP11 FORMAT TIME FRAME OVERFLOW COUNT

DP11 FORMAT TO DP4 I/O INTERFACE MISSES
DP12 FORMAT ID/STATUS

DP12 LEFT POT VALUE

DP12 RIGHT POT VALUE

DP12 BEZEL DISCRETE WORD

DP12 DP ID FOUND BY FORMAT FROM DISCRETES
DP12 DEU ID FOUND BY FORMAT FROM DISCRETES
DP12 FORMAT CHECKSUM

DP12 FORMAT SPARE TIME APPROXIMATION (msec)
DP12 FORMAT TIME FRAME OVERFLOW COQUNT

DP12 FORMAT TO DP4 I/0 INTERFACE MISSES
DP13 FORMAT ID/STATUS

DP13 LEFT POT VALUE

DP13 RIGHT POT VALUE

DP13 BEZEL DISCRETE WORD

DP13 DP ID FOUND BY FORMAT FROM DISCRETES
DP13 DEU ID FOUND BY FORMAT FROM DISCRETES
DP13 FORMAT CHECKSUM

DP13 FORMAT SPARE TIME APPROXIMATION (msec)
DP13 FORMAT TIME FRAME OVERFLOW COUNT

DP13 FORMAT TO DP4 I/0 INTERFACE MISSES
DP21 FORMAT ID/STATUS

DP21 LEFT POT VALUE

DP21 RIGHT POT VALUE

DP21 BEZEL DISCRETE WORD

DP21 DP ID FOUND BY FORMAT FROM DISCRETES
DP21 DEU ID FOUND BY FORMAT FROM DISCRETES
DP21 FORMAT CHECKSUM

DP21 FORMAT SPARE TIME APPROXIMATION (msec)
DP21 FORMAT TIME FRAME OVERFLOW COUNT

DP21 FORMAT TO DP4 I/0 INTERFACE MISSES

106
129
130
131
132

133:
133:

134
135
136
137
138
193
194
195
196

197:
197:

198
199
200
201
202
225
226
227
228

229:
229:

230
231
232
233
234
257
258
259
260

261:
261:

262
263
264
265
266
289

- 128

- 192

- 224

- 256

- 288

DP22
DP22
DP22
DP22
DP22
DP22
DP22
DP22
DP22
DP22

DP31
DP31
DP31
DP31
DP31
DP31
DP31
DP31
DP31
DP31

DP32
DP32
DP32
DP32
DP32
DP32
DP32
DP32
DP32
DP32

DP33
DP33
DP33
DP33
DP33
DP33
DP33
DP33
DP33
DP33

FORMAT ID/STATUS

LEFT POT VALUE

RIGHT POT VALUE

BEZEL DISCRETE WORD

DP ID FOUND BY FORMAT FROM DISCRETES
DEU ID FOUND BY FORMAT FROM DISCRETES
FORMAT CHECKSUM

FORMAT SPARE TIME APPROXIMATION (msec)
FORMAT TIME FRAME OVERFLOW COUNT
FORMAT TO DP4 I/O INTERFACE MISSES

FORMAT ID/STATUS

LEFT POT VALUE

RIGHT POT VALUE

BEZEL DISCRETE WORD

DP ID FOUND BY FORMAT FROM DISCRETES
DEU ID FOUND BY FORMAT FROM DISCRETES
FORMAT CHECKSUM

FORMAT SPARE TIME APPROXIMATION (msec)
FORMAT TIME FRAME OVERFLOW COUNT
FORMAT TO DP4 I/0 INTERFACE MISSES

FORMAT ID/STATUS

LEFT POT VALUE

RIGHT POT VALUE

BEZEL DISCRETE WOCRD

DP ID FOUND BY FORMAT FROM DISCRETES
DEU ID FOUND BY FORMAT FROM DISCRETES
FORMAT CHECKSUM

FORMAT SPARE TIME APPROXIMATION (msec)
FORMAT TIME FRAME OVERFLOW COUNT
FORMAT TO DP4 I/0 INTERFACE MISSES

FORMAT ID/STATUS

LEFT POT VALUE

RIGHT POT VALUE

BEZEL DISCRETE WORD

DP ID FOUND BY FORMAT FROM DISCRETES
DEU ID FOUND BY FORMAT FROM DISCRETES
FORMAT CHECKSUM

FORMAT SPARE TIME APPROXIMATION (msec)
FORMAT TIME FRAME OVERFLOW COUNT
FORMAT TO DP4 I/O INTERFACE MISSES

BIU REAL TIME INTERRUPT COUNT

-277-

-278-

290 COUNT OF PASSES THROUGH BIU MAIN LOOP

291 BIU HIGH-SPEED BUS TRANSMITTER TIMEOUT COUNTER
292 COUNTER OF DEU RESPONSE FAILURES

293 BIU HSB RECEPTIONS WITH WRONG NUMBER OF BYTES
294 HSB CRC ERROR COUNTER

295 DISCRETE INDICATING BIU ROUTINES EXECUTED

296 NUMBER OF BIU REINITIALIZATIONS AFTER POWER ON
297 NUMBER OF BIU HARDWARE RESETS SINCE POWER ON

298 NUMBER OF UNEXPECTED INTERRUPTS IN THE BIU

299 HSB SECONDARY ADDRESS (DESTINATION OF FRAME)

300 HSB PRIMARY ADDRESS (FILTERS INCOMING FRAMES)
301 BIU HARDWARE INPUT DISCRETE

302 NORDEN TO BIU INPUT COUNTER

303 BIU TO NORDEN QUTPUT COUNTER

304 NUMBER OF TIMEOUTS DURING INPUT FROM DR11 TO BIU
305 NUMBER OF TIMEOUTS DURING OUTPUT FROM BIU TO DR11
306 CONTENTS OF DR11 ADDRESS REGISTER

307 BIU TIMEOQOUT COUNTER (CLEARED EACH FRAME)

308 NO DR11 ACTIVITY COUNTER

309 - 311 DP14 GENERAL PURPOSE STATUS WORDS

312 - 314 DP24 GENERAL PURPOSE STATUS WORDS

315 - 317 DP34 GENERAL PURPOSE STATUS WORDS

318 UNEXPECTED DR11 WRITE COMMAND COUNTER
319 UNEXPECTED DR11 READ COMMAND COUNTER
320

-279-

Appendix B VIEW COMMAND ENTRIES

When entering commands to VIEW the entered text is shown
below the last display line. The prompt "->" is shown while
VIEW is accepting input. While the VIEW prompt is displayed
the values of the variables on the display lines are not
updated. This "freezes" the state of all displayed variables
at the time input was started. To perform a value "freeze"
when no actual entries need to be made, enter a blank space
to get into update hold. A carriage return will send a null
command to VIEW which will return to standard update mode.

The following pages contain a description of the commands
available for VIEW users. When the complete format of a command
is given, optional parts are delimited by square brackets.

The last page of this section contains examples of VIEW
commands with a brief description of the actions performed.

** Displaying Variables **

Flight software global variables may be placed on the
VIEW display screen by entering their name followed by one
or more options. The general format of this command is
shown below.

<name> [([+ln)] [/L=n[/I]] [/F=al[.n]] [/R=n] [/D=a] [/S=n]

The various options are used to override default actions
from VIEW.

SUBSCRIPT / OFFSET

A numeric value may be entered, enclosed in parentheses,
immediately following the symbol name. VIEW interprets the
number in one of two ways. If the entered value is an unsigned
constant then the value is treated as an array index. VIEW uses
the index to determine which of several consecutive data items
should be displayed. When the value is preceeded by a "+" or "-"
sign the value will be used as a direct byte offset from the
address associated with the variable’s name. When no subscript
is supplied the base address of the entered variable is used.
Note that entering "(1)" or " (+0)" after a variable shows the
identical memory location as is seen when the variable’s name is
entered by itself.

-280-

/L

This switch is used to select the line on the display screen
(1-20) where the variable will be placed. The default is the
first line after the last used line. When the /L option is used
any variable already show on the chosen line will be erased. 1If
the new variable is to be inserted at the line the /I switch
must be used in conjunction with /L. When the /I is used
the variables on the rest of the display page are moved down
to make room for the new entry. Note that variables at the
bottom of the display page will be pushed of the end of the

page.

/F

This switch is used to override the default format stored in
the VIEW symbol table. There are two parts to this switch; The
format type and the format length. The format length indicates
how many bytes of memory belong to the variable and the format
type defines how the data at that location is interpreted. The
following table shows the five format types and their valid

data lengths.

FORMAT LENGTH DESCRIPTION

F 4,8 floating point format

E 4,8 exponential floating point

I 1,2,4 signed decimal fixed point

H 1,2,4 unsigned hexadecimal fixed point
A 1 -8 ASCII text

Note the byte length defaults to 4 when not supplied.

/R

The repeat count is used to display a group of consecutive
memory locations each having the same data format. The default
repeat count is one, which shows the symbolic address location
only.

/D

This switch overrides the default description label placed
alongside an entered variable. VIEW uses the entered variable
name as the label by default. Any ASCII text string may be used,
up to 14 characters long.

-281-

/S

This switch defines the number of lines to be used for an
update sequence of the selected variable. An update sequence
shows the last "n" sampled values of the chosen variable. For
each update cycle of VIEW only one line in the update sequence is
changed to reflect the most recent sample of the variable. When
the line is updated a two digit hexadecimal sequence number is
appended to the end of line. The sequence number is used to
denote which line within the update sequence was updated last.
On the next update cycle the next line within the sequence is
changed. Past values of the variable remain on the screen on
the other lines of the update sequence. Note that only one
update sequence may be in effect at a time.

** Modifying Variables **

A value may be stored into a variable which is shown on
the VIEW display line by specifying the line number and the
desired value. The entered value must be appropriate for the
format used to display the variable. The format of the command
is as follows.

#<line>=<value> [/R=n]

Note that variables on several consecutive display lines may be
modified by using the /R switch to supply the count.

** Deleting Display Lines **

This command is used to remove a variable from the VIEW
display. The format of the command is as follows.

-<line> [/C] ([/R=n])

The /R switch is used when several consecutive lines must be
removed. If it is desired that the variables following the
deleted lines should be moved up to fill the vacated space the
compress switch (/C) is entered. To remove all the variables
from the display use "-*",.

-282-

** Changing Pages **

VIEW has four display pages consisting of twenty lines
each. Simply enter the desired page number, no <CR> necessary,
to get to the desired one. Note that entering the current
page number is a convenient way to erase unwanted output
showing on the CRT screen.

** Creating Command Sets **

A sequence of VIEW commands may be saved on a file for use
at a later time. To enable command logging enter

\<file>

where <file> is the name of the disk file where the VIEW
commands are to be stored. To disable logging the "\" is
entered again with no file name appended. Note the standard
VIEW prompt "->" is changed to ">>" when command logging is
enabled. Erroneous VIEW entries, which cause the display of an
error diagnostic, will not be added to the command log.

There is one VIEW command which is valid only while logging

is enabled. The "." command places a pause into the command set
file. Later when the command set is executed the stream of VIEW
commands will be interrupted at the point where the "." was

entered. Two options exist for continuing from a pause during
command set execution. An <esc> entry terminates the command
set, returning VIEW to standard update mode. Any other key
stroke will cause VIEW to continue on with the remainder of
the command set.

Built in command sets can be created from a command log
file by using the program VIEW SET. To use the program enter

RUN UTL:VIEW SET

on the software development VAX. The SETUP.MAR file linked
with VIEW can be modified by this menu driven program. After
exiting VIEW_SET the SETUP.MAR file must be assembled and a
new VIEW.EXE must be created using the linker.

-283-

** Predefined Command Sets **

An entire set of VIEW commands may be executed by using
a predefined command set. The format of the command is as
follows.

@n or @<file>

When the @n form is used one of the built-in command sets is
executed. To get a directory of all the built-in command

sets enter Q0. To execute a built in command set type the "@"
command followed by the number of the desired command set. A
command set that exists on a file is executed by following the
"@" command by the name of the file containing the set of VIEW
commands. In either case the commands are executed as if they
were entered manually in the order saved in the command set.

** Symbolic Name Directory **

The names of global variables which VIEW has stored in its
symbol table may be displayed on the CRT screen with this
command. The format of the command is as follows.

?<pattern>

All variables that match the entered pattern are shown, in
alphabetic order. The wildcard characters "*" and "$%" may

be used in the pattern. The "*" means any characters may fit
in the entered position, including none at all. The "%" symbol
can represent exactly one character position.

** Exiting View **

Enter “Z to stop the program and save the state of the
display pages. "QUIT" exits VIEW freeing all display lines.
Since a ~“Z exit reserves a block of VAX memory for storage of
page configuration, the QUIT should be used at the end of a
session.

** Obtaining Help **

Enter "HELP" to produce a page of command reference text.
Any key stroke will return the display to the standard VIEW

page.

-284-

VIEW command examples

COMMAND

PITCH

LIST(4) /L=6/R=3/F=H.2

#4=17.51
-15
-1/rR=3/C
@4

@ [-])COMMANDS.LOG

\ [-]COMMANDS. LOG
\

?25*1

?R%%%

RESULT

Places the variable PITCH on the next
available display line using the format
stored in the VIEW symbol table.

Places three elements of the array LIST,
starting with the fourth element, onto
display lines 6 - 8. The data format is
two byte hexadecimal representation.

Changes the global memory associated
with the variable on line #4 to 17.51.
The format used on the display would
need to be either "F" or "E".

Remove from the display the variable
shown on line #15.

-Remove the variables on lines 1 - 3,

moving the rest of the displayed
variables up to fill the empty lines.

Execute the fourth built in command set.

Execute the command set stored in the
specified file.

Log VIEW commands on the specified file.
Terminate command logging.

Display all global variable names which
start with "S" and end with "1".

Display all four letter global variable
names which start with "R".

-285-

Appendix C CREATING THE EXECUTABLE IMAGES

The following files are provided with the source code
files in a delivery set. These files are used in the
generation of the display executable images.

BUILD.COM Builds all images using following ".COM" files

DDSTAR.COM Linker commands for building DDSTAR.EXE
DSPFST.COM Linker commands for building DSPFST.EXE
DSPHDL.COM Linker commands for building DSPHDL.EXE
DSPSLW.COM Linker commands for building DSPSLW.EXE
SECTION.COM Linker commands for building SECTION.EXE

VIEW.COM Linker commands for building VIEW.EXE
DSPFST.OPT Linker options for DSPFST.EXE

DSPHDL.OPT Linker options for DSPHDL.EXE

DSPSLW.OPT Linker options for DSPSLW.EXE

OPT.OPT Linker options for all executable images

SECTION.OPT Linker options for SECTION.EXE and VIEW.EXE

MAPTBL.MAR Global section mapping table for DSPFST,
DSPHDL, DSPSLW

PASS.MAR Global section mapping associated with
VIEW password entries.

COMMON.FOR Fortran "Block Data" module for BLKMAC

GBLNAME .DAT Contains names of all images and global
sections for use by the utilities GLOBAL and
SECTION.

Several command procedures and utility programs exist for
maintenance of the display software. Users must have the
following commands in their LOGIN.COM file.

DEFINE UTL DUBO:[CSC.CJS.CMS]/JOB
@UTL:SET_UP

The executable programs have been defined as DCL commands,
therefore they are accessed by simply entering their names
(CMS_SYSTEM, GLOBAL, BLKMAC). The command files are acti-
vated by prefixing "@QUTL:" to the file name.

CMS SYSTEM.EXE Accesses source file delivery sets

GLOBAL.EXE Interactive program for global section
linkage

BLKMAC.EXE Creates object modules for global data

MACALL.COM Assembles macro source files

FORALL.COM Compiles Fortran source files

FTN.COM Compiles individual Fortran source file.

-286-

The first step in creating the executable images is the
generation of VMS object modules from the source code files
described in this document. The VMS Fortran compiler and
Macro assembler are used to create object modules for ".FOR"
and ".MAR" files respectively. Object files for the global
data modules, ".INC" files with Fortran COMMON definitions,
are generated with the utility program BLKMAC. One source
file, COMMON.FOR, is provided to BLKMAC as input. The file
is a Fortran "Block Data" module, containing INCLUDE state-
ments for each of the ".INC" files containing common blocks.
Also data initialization statements for the global variables
appear in COMMON.FOR. BLKMAC creates one object module for
each COMMON statement encountered in the input stream. The
file name will have the same name as the Fortran common
block. Two VMS command files were designed to facilitate the
generation of object modules.

@QUTL:MACALL
QUTL:FORALL

The first command assembles all VAX macro source files on an
account. The second command both compiles all Fortran files
on the account and automatically executes BLKMAC to compile
global data specification files.

The next step is the creation of global section access
files. These files are used by the VMS linker and by the
executable images to determine the global section access
allowed for the individual executable images. The VMS
command GLOBAL_SECTIONS (GLOBAL for short) is executed to
interactively select the global section usage for each of
the applications images. This command gets the names of all
the images and global sections from the file GBLNAME.DAT,
which must exist on the current default directory. 1Infor-
mation about read and write access to the various global
sections must be provided for each executable image. This
information is used to generate the ".OPT" files and the
VAX macro file MAPTBL.MAR. Also the user is prompted for
VIEW passwords. When all password entries are complete,
information about the global section access privileges for
each password must be provided. The file PASS.MAR is
created from this information. When GLOBAL is finished the
two ".MAR" files must be assembled as follows.

GLOBAL
<interactive session>
MAC PASS,MAPTBL

The last step for the creation of the executable images
is Linking. All the required linking is performed by using
the build command file provided.

@BUILD

-287-

Appendix D GENERAL UTILITIES

A group of general purpose utility procedures are used
by display software. All but one reside in the utility
library UTIL.OLB. The following is a list of the modules
used from the library. The description of these modules is
provided in the flight software utilities reference manual.

Condition Handling
C_HDL EXCEPTIONS REPORT REPORT_CHECK SHOW_TT

Data Formatting
BCDTIM FMTTIM OTSS$FLOAT

Mathematics
ANGL MXV POLAR SCOS UVC VCP VDP VMG XYZ

Map projection
CLIP GRID POSBTS

Miscellaneous
ASSIGN GET GET_CHAR LOCK MAPCOM

The utility procedure PROJECT is not part of the utility
library. Its description is provided on the following page.

~288-

MODULE NAME: PROJECT

FILE NAME: PROJECT.FOR

PROCESS: DSPFST, DSPSLW

CALLED BY: TURN, LINE, PASSBY

CALLING SEQUENCE: CALL PROJECT (WPTS, I,DIST,RLAT, RLON)
PURPOSE:

To compute a position between waypoints.

DESCRIPTION:

This utility procedure is called to find the latitude
and longitude of a point on the "great circle" arc connect-
ing two waypoints. The first three items in the parameter
list are inputs to PROJECT, while the last two are outputs.
The first input parameter is one of the waypoint buffers,
either the active (ACT WPTS) or the provisional (MOD_WPTS) .
The index into the waypoint buffer of the end waypoint of
the leg being processed is passed next. The last input
parameter is the distance, in feet, to the desired position
from the end waypoint. The values returned through the
remaining parameters in the calling list are the latitude
and longitude of the desired position.

Figure D.1 on the following page shows how the position
of the desired point is found. The values given are A, a,
R, and the unit vectors for the arc end points.

GLOBAL REFERENCES:

FUNCTIONS AND SUBROUTINES
UVC POLAR

-289-
"GREAT CIRCLE" ARC

POSITION CALCULATION

® =A/R ¢ =aR {Subtended angles}

sin(¢)
sin(@) cos (¢) + sin(9) - sin(p) cos@)

d/D= B= {Chord ratio }

? =P /1\32 +(1-B)/1% {direction vector}

/1\3 = _i_ ' Unit Vector
|7l

' A
LATITUDE = ARCSIN (Px)

LONGITUDE = ARCTANGENT(-/ﬁy ,’1‘>Z)

-figure D.1-

-291-

Appendix E DISPLAY FORMAT "FREEZE"

The global variable FREEZE is used to stop portions of
the display software while the display processes are active.
This technique is used for debugging display formats and
customizing display screen appearance for photograph
sessions. The utility VIEW is used to manually modify the
variable FREEZE. By default the variable is set to zero for
normal display software operation. Note that the variable
will be automatically cleared if the flight management flag
LABFLG is not set on. Shown below are the values that may
be placed in FREEZE with VIEW, and their effect on the VAX
display software.

FREEZE = 1

No DATAC or interprocessor link I/O is performed. This
freezes the current sensor and FM/FC inputs at their
current values. Display microprocessor I/0 is performed
as usual.

DISFIL and FFPRC are not called. This eliminates the
intermediate processing of input variables.

Map background requests are generated regularly. This is
normally performed by the FM/FC update request MAPUPD,
which is no longer received. This is done since the
navigation format require fresh map backgrounds at least
every 15 seconds.

FREEZE = 3
Everything from FREEZE = 1.

Display applications software is not executed, except map
background generation modules. This means the display
microprocessor output buffer remains frozen with the last
values sent to the formats.

When FREEZE is set to either value, the utility VIEW
may be used to manually modify VAX display variables which
effect the display formats in the microprocessors. With
FREEZE = 1 the inputs to the applications modules are
changed with VIEW. These modules will then perform their
computations on the input variables and format the display
microprocessor output buffer. When using FREEZE = 3, the
display microprocessor output buffer must be modified
directly with VIEW. The advantage of the first setting is
the user can work in engineering units such as feet and

PAGE 290 NTURTenatty Ay
GGk ATO WTLUTNALLY PLASK pReCEDING PAGE BLANK NOT FILMED

-292-

degrees and does not need to know the format of the display
output buffer. The setting of "3" is used when it is more
convenient to modify the output buffer directly, or the
active applications software produces undesirable results.
This happens in the case of display outputs that are the
differential of input signals. Since inputs are frozen at
their last value, the differential becomes zero, which will
be stored by an applications module into the display output
buffer when FREEZE = 1.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubhc reporhing burden for this coliection of INfOrMation s Cstimated 1o average 1 hour per response. including the time for reviewing instructions, searching existing data sources,
Jathering and maintmning the data needed, and completing and reviewing the (olies tion of intormation Send comments re?ardmg this burden estimate or any other aspect of this
Collection of intarmation, IncAuding suggestions 1or reducing this burden. t) Washinglon tHeadquariees Services, Directorate for information Operations and Reports, 1215 jetterson

Davis Highway, Suite 1204, Achngton, VA 22202-4302, and 10 the Ottice of Management and Budget, Paperwaork Reduction Project (0704-0188), Washington, DC 20503,
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 1992 Contractor Report
4. TITLE AND SUBTITLE Advanced Transport Operating S.ystem 5. FUNDING NUMBERS
(ATOPS)Color Displays Software Description - C NAS1-19038

MicroVAX System

6. AUTHOR(S)
Christopher J. Slominski
Valerie E. Plyler
Richard W. Dickson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

WU 505-64-13-11

Computer Sciences Corporation
3217 North Armistead Avenue
Hampton, Virginia 23666-1379

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Langley Research Center NASA CR-189603
Hampton, Virginia 23665-5225

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dr. James R. Schiess (COTR)
Robert A. Kudlinski

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Cateqory 06

13. ABSTRACT (Maximum 200 words)

This document describes the software created for the Display MicroVAX computer used for the
Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research
Vehicle (TSRV). The software delivery of February 27, 1991, known as the “baseline display
system”, is the one described in this document. Throughout this publication, module descriptions
are presented in a standardized format which contains module purpose, calling sequence, detailed
description and global references. The global references section includes subroutines, functions
and common variables referenced by a particular module.

The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains
eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigaton Display,
System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Electronic Flight Instrumentation System Glass Cockpit 293
Primary Flight Display Multifunction Display] 16. PRICE CODE
Mavigation Display Flight Display Software Al3
77 SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |[20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified uL

Standard Form 298 (Rev 2-89)
Prescnibed by ANSI Std 239-18
298-102

NSN 7540-01-280-5500

