Hybrid Rocket Propulsion for Sounding Rocket Applications

NASA OSSA
November 12, 1991

HYBRID ROCKET TECHNOLOGY

• Why Hybrid Rocket Technology?
• HyFlyer Sounding Rocket
Why Hybrid Rocket Technology?

- Hybrid Rocket Fundamentals
- Hybrid Characteristics
- Hybrid Advantages

Hybrid Rocket Fundamentals

- Solid Hydrocarbon Fuel (e.g., PBD) and Liquid Oxidizer (e.g., LOx)
- Combustion Process
 - Driven by Flow of Oxidizer over Fuel Surface
- Fuel/Oxidizer Separation
 - Safe
 - Throttleable

H-225K Hybrid Motor
Hybrid Characteristics

- Safe - Cannot Explode
 - No Intimate Mixing of Fuel and Oxidizer
 - Combustion Process is Diffusion Limited
- Throttleable
 - Thrust Proportional to Oxidizer Flowrate
- Scaleable
 - Thrust Scales with Internal Surface Area and Oxidizer Mass Flux
- Environmentally Clean
 - Fuel Selection and High Flame Temperature Result in Clean Exhaust Products

Hybrid Advantages

- High Performance
- Low Cost Due to Fundamental Safety
- Low Cost Due to the Nature of Hybrids
- Low Risk
- Flexible
American Rocket Company - HyFlyer Sounding Rocket Program

Hybrid Advantages

High Performance

- I_{sp} is Equivalent to LOX/Hydrocarbon Engines (e.g. Saturn V F-1 1st Stage Engine)--10-15% Higher than Solid Motors
- Throttleability Increases Payload to Orbit

![Graph showing specific impulse for hybrid, solid, and liquid rocket motors.](image)

Low Cost Due to Fundamental Safety

- Safe Technology Reduces Costs in All Phases of Development, Production and Operations
- No Remote/Automated Production Facilities Required
- Anomalous Events Do NOT Destroy Test Facilities or Launch Pads
- No Restrictions on Personnel Activity In Any Phase of Development, Production or Operations
- No Special Handling or Transportation Requirements
- Lower Insurance Costs in All Phases
Hybrid Advantages

Low Cost Due to the Nature of Hybrids

- Low Production Costs
 - Reduced Complexity
 - Few Critical Tolerances
 - Short Production Cycle (weeks)
 - Low Production Facilities Costs
- Low Materials Costs
 - No Strategic Materials
 - Multiple Commercial Sources
 - Many Material Options
- Low Operations Cost
 - Reduced Manpower Requirements
 - Reduced Inspection Requirements

Low Risk

- Non-Explosive Therefore No Catastrophic Detonations
- Command Shutdown In the Event of Problems Affords Safe Abort
- Safe Engine Idle Allows Engine Verification Prior to Full Thrust
- Insensitive to Environmental Conditions
- Robust Combustion Cycle
 - Resistant to Manufacturing Defects
 - Self-Damping
- Safety = Less Complexity = High Reliability
- No Uninsurable Liability
- No Hazardous Materials and Clean Exhaust = No Environmental Risk
American Rocket Company - HyFlyer Sounding Rocket Program

Hybrid Advantages

- **Flexible**
 - Rapid Response to Customer Requirements
 - Simple Designs Allows Product Customization
 - Short Development Cycle (Months)
 - Facilitization
 - Commercial Production Facilities and Short Lead Time Parts
 Permits Buildup of Production Capability to Match Demand
 - Surge Capability
 - No Specialized Manufacturing Equipment
 - No Long Lead Time Items
 - No Strategic Materials

Why Haven't Hybrids Been Used Before?

- Initial Difficulty in Maintaining Stable Hybrid Combustion
- Early Focus on "Performance At Any Cost"
 - Designs Optimized for Maximum I_{sp}
 - Military ICBM Requirements Drove All Initial Designs
- Initial Emphasis on Solids Based on System Readiness
 - ICBM Requirement
- Liquids Developed Intensively For Apollo Program
- Larger Database on Solids and Liquids Made Hybrids
 Higher Risk Option for Later Programs
- Large Investment in Facilities to Produce and Test Solids
 and Liquids Supported Predisposition to Those Technologies
American Rocket Company - HyFlyer Sounding Rocket Program

The HyFlyer Suborbital Vehicle

- Provides 11 Minutes of Microgravity Time for a Joust-class Payload
- Based on AMROC H-1500 Liquid Oxygen/Polybutadiene Hybrid Rocket Motor
- In Development to Validate H-1500 Motor for Use in Aquila Orbital Vehicle

HyFlyer Mission Profile
American Rocket Company - HyFlyer Sounding Rocket Program

HyFlyer Performance

- Micro-G Time (min)
- Altitude (nm)

![Graph showing HyFlyer performance](image)

HyFlyer Comparitive Performance

APOGEE PERFORMANCE COMPARISON

![Comparison graph of HyFlyer and other rockets](image)
American Rocket Company - HyFlyer Sounding Rocket Program

Sounding Rocket Fleet

<table>
<thead>
<tr>
<th>Name</th>
<th>Diameter (in)</th>
<th>Height (ft)</th>
<th>Payload Capacity (kg)</th>
<th>Max Altitude (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Black</td>
<td>30</td>
<td>120</td>
<td>150 - 500</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Prospector</td>
<td>35</td>
<td>135</td>
<td>150 - 500</td>
<td>1 - 2</td>
</tr>
<tr>
<td>SRI</td>
<td>30</td>
<td>120</td>
<td>150 - 500</td>
<td>1 - 2</td>
</tr>
<tr>
<td>AMROC SEPT</td>
<td>50</td>
<td>175</td>
<td>200 - 2500</td>
<td>2 - 3</td>
</tr>
<tr>
<td>OSC Standard</td>
<td>25</td>
<td>100</td>
<td>100 - 500</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Broad Black</td>
<td>15</td>
<td>60</td>
<td>500 - 1000</td>
<td>1 - 2</td>
</tr>
<tr>
<td>HyFlyer</td>
<td>85</td>
<td>350</td>
<td>750 - 7270</td>
<td>3 - 7</td>
</tr>
</tbody>
</table>

HyFlyer Summary

- AMROC's HyFlyer is the Mac Truck of Sounding Rockets
- Unique Heavy Lift Capability - 8 Tons!
- 72" Diameter Booster - Large Payload Volume Available
- Developed to Validate Hybrid Propulsion For AMROC's Orbital Vehicle - Aquila
- Available Late 1993
- Estimated Launch Cost = $3.5M