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FOREWORD

NASA CR 3254 is published in two parts. Part 1 contains sections 1 through 5.
Part 2 contains sections 6 through 17, and appendices 1 through 13. The table of contents,
including a listing of figures and tables, is repeated in each part.
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SUMHARY

The PAN AIR system was written in the CFT (CRAY Fortran) language except
for a few CAL (CRAY Assembly Language) subprograms in the libraries.
Structured programming techniques were used to provide code documentation and
maintainability. The operating system is COS (CRAY Operating System).

The system is comprised of a data base management system, a program
1ibrary, an execution control module and eleven separate FORTRAN technical
modules. Each module calculates part of the posed PAN AIR problem. The data
base manager is used to communicate between modules and within modules. The
technical modules must be run in a prescribed fashion for each PAN AIR
problem. In order to ease the problem of supplying the many JCL statements
required to execute the modules, the JCL statements are created by
procedures.

In this volume, an overview of the PAN AIR software is given in section
1.0. Sections 2.0 through 12.0 describe the individual moduTes and contain
information describing program structure, functional decomposition, data base
communication, subroutine contents, program tree structure, data base
structure and details of those major algorithms used in the module which are
not straightforward and not described elsewhere. Sections 13, 14 and 15
describe the PAN AIR Library Software (PALIB), the use of the Scientific Data
Management System (SDMS), and the operating system dependant features of SDMS
respectively. Section 16 contains the Software Glossary followed by a list of
references. Each section is designed to lead the reader through the main
structural code. It is not intended to be a detailed description of a module
since the structured code and comments provide this information.

Most of thi§ document has not changed from the previous version. Unlike
previous versions, however, this document covers only version 3.0 of PAN AIR.
The major changes are summarized below by section.

Section 1  System overview descriptions and program statistics now apply
strictly to version 3.0.

Section 2 Major portions of the code in the MEC module, which generate Cyber
control cards, are not executed. The routines are referenced but
no longer described.

Section 3 An additional overlay (5,2) was added to the DIP module to
interpret streamline and offbody directives.

Section 4 Appendix 4-M more closely describes the way the code selects
boundary conditions.

Section 5 This is a complete rewrite of the description of the MAG moaule.

Section 8 In the sixth overlay, GPQTY, was rewritten to implement new edge
splines.

Section 12 This is a new section to aia in maintaining the FDP module.

xxxi
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Section

Section

Section

Section

Section

14

15

16
17

This section completely describes only the PAN AIR Library
routines used by version 3.0.

The reprint of the Boeing Cyber SDMS User's Manual is prefaced by
comments which make it applicable to the CRAY version.

This is a new section that identifies the requirements for
converting SDMS to another machine.

Some CRAY terms were added to this glossary.

The CRAY Operating System Manual was added as a reference.

The tree structure diagrams and master definition 1istings have been
moved to the installation tape. They were previously printed in Appendix A
and D of each of the sections. There are cross references in the Maintenance
Document and the installation instructions.

The authors wish to thank Dr. Emilio J. Zeppa, Dr. John Wai and Dr.
Kenneth W. Sidwell of the Boeing Company and Dr. Alfred E. Magnus formerly of

the Boeing company for their efforts in reviewing and/or preparing portions of

this document. The authors also wish to extend their appreciation to Bonnie
J. Jones, Mary A. Kellie, Kathleen J. Christianson and Particia S. Bradley of
the Boeing Company for their assistance in typing.
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1.0 PAN AIR SOFTWARE SYSTEM

" 1.1 INTRODUCTION

This section introduces the PAN AIR software system. The major
components are the 11 program modules, a database management system, a library
of subprograms and the operating system. The components of the system are
described in some detail and their relation to one another is explained. The
use of the various charts which appear in later sections (e.g., the
functional-decomposition charts, data-flow charts, etc.) is illustrated. The
CPU, memory and I/0 resources required by PAN AIR are detailed. A summary of
the PAN AIR Modules is presented in Appendix 1-A, and an overview of the
database management is presented in Appendix 1-B. Finally,
software-maintenance procedures are outlined in Paragraph 1.5.

1.2 SYSTEM OVERVIEW

The PAN AIR software system consists of several parts. Figure 1.1
illustrates these parts and their overall relationship to one another.
User-supplied JCL (Job Control Language) statements activate the operating
system by invoking special PAN AIR JCL procedures which execute the
appropriate PAN AIR modules in sequence. The MEC (Module Execution Control)
module is always executed to define certain properties of any databases
created by the modules. These databases are generated using the Scientific
Data Management System (SDMS). The DIP (Data Input Processor) module is
always executed, since it processes all input data for all other modules. In
addition, all modules call a subroutine Tibrary, PALIB, to perform certain
common tasks. During installation of the PAN AIR software system at a user's
computer site, the special program DDP (Data Definition Processor) is used to
define the structure of each database. This latter procedure is subsequently
performed only yhen a database structure must be modified. (See paragraphs
1.3.3 and 1.5.3

1.2.1 Program Modules and Databases

The ten program modules, the MEC module and the databases generated by
the modules are illustrated in Figure 1.2. The purpose of each module is also
defined.  The implied execution sequence is for a typical PAN AIR problem.

1.2.2 PAN AIR System Execution Flow

The normal sequence of operation for the PAN AIR software system is
displayed in Figure 1.3 and the deck arrangement for PAN AIR execution is
shown in Figure 1.5, User-supplied control statements invoke special PAN AIR
JCL procedures which -execute the modules in the proper seguence and usually
generate the user directives for MEC. The user input-data module DIP is then
executed. From then on, module after module is executed in sequence.
Databases are created and used for internal data-storage and for communication
between modules. Printed output is always generated by the MEC and DIP
modules. Other printed output is obtained from the DQG, PDP, FDP, CDP and PPP
modules if requested by the user through DIP input. The PPP modufe also
generates a plot file on disk if_requested.

1
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1.2.3 Database Manager

The Scientific Data Management System (SDMS) is a set of CFT (CRAY
FORTRAN) and CAL (CRAY Assembly Language) subroutines (the SDMS Library) which
are employed in the PAN AIR system to perform nearly all disk I/0 (i.e., it
replaces FORTRAN I1/0). Unlike FORTRAN I/0, SDMS forces the user to design the
database before the design of the various modules that access it. Thus,
structuring the data in a logical sense early in the design cycle will support
the design of a well-structured module. This section is an introduction to
the concepts and structures of SDMS.

, The major collection of data in SDMS is the database. Each database is
described by an input file called a Master Definition file, which describes
the data within the database.

A database is a collection of more basic quantities called datasets.
Datasets are analogous to files, and are defined in the Master Definition by
names containing up to 20 characters.

Each dataset consists of one or more element sets. Element sets are
similar to records, and are distinguished from one another by the values of a
set of data-items called keys. A keyset is the collection of up to ten
data-items where values distinguish one element from another. An element set
consists of a collection of scalars, variable-length or fixed-length vectors
in any combination. Each is described in the Master Definition by a name
containing up to 20 characters.

, Figure 1.4 illustrates an example of a Master Definition file for a =
database. Each module in the PAN AIR system creates one or more databases to

be used for temporary storage or for data communication between modules. The

Master Definition file is discussed in paragraph 1.4.3.3.

A database can be created after creating a Master Definition file using
DDP (Data Definition Processor). The database is created by a sequence of
calls to routines in the SDMS Library. First, subroutine ISDMS (Initialize
SDMS) is called to define areas in CM (Central Memory) which will be used to
store buffer arrays required by SDMS. Then, subroutine DBOPEN (Database Open)
is called to create four unblocked physical disk-files, which hold all of the
database information. In PAN AIR, the routine PAOPEN (in PALIB) orchestrates

the call the DBOPEN.

Communication channels between the program and the database are defined
by SDMS maps. A map sets up a correspondence between the program variables
(FORTRAN name for a quantity) and the elements (SDMS names for the quantities)
of a dataset as defined in the Master Definition file for the database. There
are two kinds of maps: static maps and dynamic maps. In a static map,
program variables are put in an exact correspondence with data items
(elements) in the database. In a dynamic map, the data items on the database
which are to be transferred are mentioned, but the program variables are left
unspecified until the I/0 operation is executed. PAN AIR uses both dynamic
and static maps. A map may mention any subset of the data items and must
always mention all data items which are part of the keyset of the dataset.
Appendix 1-B, which gives an example of how to use SDMS to access a PAN AIR
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database and illustrates a static- and a dynamic-map definition. A call to
subroutine DSMAP (Define Dataset Map) initiates the map-definition process.
This call contains as jts arguments the name associated with the map, the name
of the dataset which the map refers to, and the name of the database which
contains the dataset. The map is established by calling SVMAP (Static
Variable Map) to define a static map and/or DVMAP (Dynamic Variable Map) to
define a dynamic map. A maximum of 10 calls to SVMAP may be made, but on]g
one call to DVMAP is permitted in a map definition. The arguments of SVMA

are first the program (FORTRAN) variable-name which will contain the data, and
then (in a 20H (Hollerith) field) the SDMS element name of the corresponding
data item in the dataset. The arguments of DVMAP are simply the names of the
data items in the dataset (also in a 20H field). After all correspondence has
been defined, the map is terminated by calling subroutine ENDMAP. A total of
32 maps may be defined for each database which is opened.

Having defined the correspondence between program variables and data
items in the database, the I/0 operations are executed by calling one of
several other subroutines: e.g., ESGET, ESPUT, ESREP, and ESPOR. These
subroutines are described as follows.

ESGET will "get" data from the database. Its calling sequence contains
first the name of the map which is to be used during the transfer, and then
the 1ist of program variables which are to receive data from the dynamic part
of the map (if any) are present. During its execution, data items on the disk
are read into a buffer established by the SDMS routines, and those data items
which were mentioned in the map are transferred to the locations of the
program variables. Fixed-length vectors are always fully transferred into the
same number of sequential memory locations according to their lengths.
Variable-length vectors only fill the space corresponding to their length.
(Note: when using variable-length vectors in an SDMS database, if the vector
is mentioned in a map, the data item containing its length must also be
mentioned in the same map.)

ESPUT, ESREP and ESPOR have an argument structure which is the same for
ESGET, but with ESPUT, data is transferred from the program variables out to
the disk. ESPUT is used to write an element set of a dataset the first time.
If the data items are to be changed, one must call ESREP to replace the
existing element set with a new one. If one is uncertain about whether a
given element set.has already been written, but one sti1l wishes the current
variables to replace what might be on the disk, a call to ESPOR ("put or
replace") will perform the task. If ESPUT is called with reference to an
already existing element set, an error flag is set, and no data transfer
occurs. Similarly, if ESREP is called and the indicated element set does not
exist, an error flag is set, and no data transfers occur.

After all required I/0 has been performed, the database must be closed
to guarantee the validity of all data which has been written to the database.
This 1s accomplished by calling subroutine DBCLOS with the database name as
itngEEggent. In PAN AIR, the routine PACLOS (in PALIB) orchestrates the call
to .

For further information regarding SDMS, the reader is advised to consult
Section 14 (SDMS Reference Manual) of this document. An example of the use of
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SDMS routines in a FORTRAN program is shown in Appendix 1-B. Some discussions
of SDMS 1/0 efficiency are also presented there.

1.3 System Components

The PAN AIR software system consists of several components: the JCL
statements to execute a PAN AIR run, a set of input statements for the DIP
module, the Master Definition files of the databases used by the various
modules, the PAN AIR modules and the actual databases generated by the
modules. These components are defined in detail in other sections of this
document or in the PAN AIR User's Manual (Ref. 2).

1.3.1 JCL Cards for Initiation of PAN AIR

Version 3.0 of PAN AIR is meant to be executed on the CRAY series of
computers. The standard CRAY operating system (COS) JCL supports a very
powerful procedure capability. This capability has been exploited to enable
users to more easily run PAN AIR and manipulate PAN AIR databases. In fact,
the COS operating system can automatically generate the input for MEC, To
invoke this capability, the user must first access a library named PAPROCS
that contains the PAN AIR procedures. The following JCL will do this:

For an operating system (such as NASA Ames) in which users are
permitted to keep permanent files on the CRAY disks:

ACCESS(DN=TEMP,PDN=PAPROCS, ID=PANAIR)
COPYD(I=TEMP,0=$PROC)
RELEASE (DN=TEMP)

For an installation in which datasets must be stored on the front end
computer system, the FETCH command must be used., For the Boeing
EKS/VSP system it would take the form:

FETCH(DN=$PROC,GDN=PAPROCS ,UN=PANAIR)

After PAPROCS has been accessed, the user may immediately begin to run PAN
AIR. This is done by invoking one of the procedures FINDPF (for "FIND
POTENTIAL FLOW"), FINDSU (for "FIND SOLUTION UPDTE"), FINDICU (for “FIND IC
UPDATE") and FINDPPU (for "FIND POST PROCESSING UPDATE"). These four
procedures can generate the input for MEC automatically.

For a description of PAPROCS, the PAN AIR procedures for the CRAY, see
Section 5.2.5 of the User's Manual.

While the documentation of PAPROCS in this User's Manual (especially
Section 5.2.5.1) should be sufficient for most users, others may wish for more
detailed information and/or may wish to modify a copy of PAPROCS for their own

urposes. The latter may be done by following the instructions in Section
.2.5.5.

NOTE: The Version 3.0 does not generate a MECCC file (MEC control card

file). The FINDPF, FINDICU, FINDPPU and FINDSU procedures perform
the function that MECCC in the previous Cyber versions performed.

1.4
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1.3.2 Data Input

The input data required by the PAN AIR software system consists of two
sections. The module MEC, which defines the names and IDs of the PAN AIR
databases and their Master Definitions, needs a set of input statements.
These are typically generated by the PAN AIR procedures. Some maintenance
activities may require the user to specify the input directives for MEC. For
example, PAN AIR can be directed to use a different Master Definition dataset
without modifying the standard. When the new Master Definition has been
tested, it can be given the standard name. The module DIP processes input
statements for the remaining modules. This data specifies the geometry, flow
properties and output options required for the problem. The data input stream
1s depicted in Figure 1.5. Detailed discussion of the MEC and DIP input-data
specifications are given in the PAN AIR User's Manual, (Reference 2).

1.3.3 Databases

As mentioned previously, a database manager, SDMS, is used in the PAN AIR
software system. The modules communicate among themselves through the use of
the databases. SDMS databases are also used to facilitate internal
communication between submodules of a module. Two steps are required for
generating a database; one, the creation of a Master Definition of all data to
be contained in a database; and two, the creation of the databases by the
respective modules by calling the appropriate SDMS subroutine (DBOPEN). An
example of the usage of the database manager is given in Appendix 1-B.

The creation of a Master Definition of a database occurs during system
installation or revision. The Master Definition is then used over and over
again. The creation process is separate from a PAN AIR run and s initiated
by use of a separate program called DDP. The resulting Master Definition is
then stored as part of the PAN AIR software. The reader is referred to
Appendix 1-B and the Scientific Data Management System (SDMS) User's Reference
Manual, Section 14 of this document. Revision of a Master Definition is
possible and the procedure to do so is described.

Access (reading and writing) to the databases is accomplished within each
module using a library named SDMSLIB. Capabilities include creation of maps
or pointers from program variables to Master Definition variables, and
transmitting information to and from the database. The reader is referred to
Appendix 1-B and the PAN AIR User's Manual (Reference 2) for more details.

The Master Definitions for eaéh module are detailed in Appendix D of
Sections 2 through 12 in this document.

1.3.4 PAN AIR Modules

The functions of each of the PAN AIR modules is illustrated in Figure
1.2. In Appendix 1-A a summary of each module is given. The reader 1§
referred to the PAN AIR User's Manual (Reference 2), and Sections 2 through 12
of this document for more details on each module.
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1.3.4.1 PAN AIR System External Interfaces

The only external data-interfaces for the PAN AIR system are
user-requested plot files produced by the FDP and PPP modules. Because of the
variety of plotting devices and their software, the plot files consists of
labels and data in one general format. Special user-supplied processing
programs are required for the user to interface with local plotting equipment.

1.3.4.2 PAN AIR System Internal Interfaces

The internal interfaces between PAN AIR modules occur only with the
databases created by the modules. Some modules use non SDMS datasets for
internal communication but all data transfer between modules uses an SDMS data
base. Table 1.2 summarizes the data interaction during a PAN AIR run in which
every module is used. The column on the left names the various modules in the
order of use. The top row gives the database names. As one reads from top to
bottom, each row gives the status of each database for each module. The PAN
AIR system automatically releases unneeded databases (status 4 in the table)
unless the user intervenes with a directive to MEC to save any or all of them
(see Section 6 of the PAN AIR User's Manual for details).

1.3.4.3 Sizing and Timing Estimates

The computer CPU time required varies greatly from problem to problem.
Even for a given problem, the time may vary depending on the output options
selected by the user. In general, the CPU time required varies as a quadratic
function of the number of panels in the configuration. Actual CPU times
required in the PAN AIR validation cases are given in Table 1.3. The cases
considered are described in the PAN AIR Case Manual (Reference 4). The
quadratic effect becomes more evident for cases larger than case 3.-

The 1/0 resource requirements vary greatly from problem to problem and
from module to module. The MEC and DIP modules require relatively constant
amounts. The modules DQG, MAG, MDG, RMS vary as a quadratic function of the
number of panels. The module RHS varies linearly with the number of panels.
The modules PDP, FDP, CDP, and PPP vary in proportion to the number of output
options requested by the user. Table 1.4 summarizes the 1/0 volume
requirements for the PAN AIR validation cases detailed in Reference 6, the
Case Manual. Table 1.5 summarizes the I/0 frequency requirements.

Version 3.0 can be run within one million words of memory on the CRAY.
The size of each module and the approximate requirements for compilation

are given in Table 1.6. Note that the module DQG requires significantly more
resources than the other modules.

1.3.4.4 Software Design Consideration

Structured FORTRAN coding principles were used throughout the PAN AIR
software system. This approach results in a documented modular set of code,
and it encourages analysts to provide comments to explain what the code is
accomplishing. Structured coding does not guarantee well documented programs,
but it does ensure modular and readable code.
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The structured approach does aid program maintenance. Experience during
the PAN AIR system validation process showed that a person familiar with the
system could delve into a program, find and correct errors without the aid of
the programmer who wrote the original code.

The PAN AIR software was originally designed for the Control Data 7600,
6600, Cyber 175 computer systems and then converted to the CRAY. A1l programs
were compiled under CFT or CAL. The non-ANSI FORTRAN statements listed in
Table 1.7 were used as sparingly as possible. The DECODE and ENCODE functions
were used only in the MEC module. Masking operations were used in MEC, DIP,
MAG and the PAN AIR Library. CAL code was restricted to the SDMS code and the
PAN AIR Library. The routines in the PAN AIR library using CAL are listed in
Table 1.8.

1.4 A Guide to Module Interpretation

The Maintenance document was designed to be used in conjunction with the
information contained in the preface and code of each program and/or
subprogram. The Maintenance document and the installation tape contain
functional decomposition charts, database-communication charts, tree diagrams,
subprogram definitions, and database Master Definitions. Each program or
subprogram contains a decomposition level, purpose and/or method, glossary,
communication-vehicle description, labeled common-blocks descriptions and
design code which correspond to program statements. The structure of a
program or subprogram is illustrated in Figure 1.6. The use and
interpretation of these components is described as follows.

1.4.1 Functional Decomposition and Structure

The functional-decomposition chart gives a complete overview of what a
particular overlay of a module accomplishes. Consider the
functional-decomposition chart of the MEC module (Appendix 2-B, Section 2 of
this document). One can easily see, for example, that overlay (1,0), calied
READUD at the B level, consists of three main portions. The B.C decomposition
portion, namely PREXEC is the most complicated, but the structure and the
tasks performed are clear. One should also note that if a subprogram is used,
the name of the routine appears, as does the decomposition level. For
example, the decomposition level B:C:B-L corresponds to subprogram
DBASE. One can compare the functional decomposition to the program 1isting
and find a direct correspondence to the code and structure of the code. In
the code, the decomposition level of a particular section would typically
appear at the right in column 55 and would also indicate the name of a
subprogram, if one is used at that level. For example, if one looks at level
B.C.C.A, the subprogram LODREC is used. The code decomposition would read
(A=PALIB=LCDREC) with the upper level at MEC.B.C.C. This would indicate "that
the routine LODREC is in the PAN AIR Library and is used in MEC module at
level B.C.C.A. If a routine is used at more than one level, then the symbol
.LIB is attached to the end of the unique portion of the decomposition level
of that routine. Hence, B.C.C.A.LIB indicates that the routine with this
decomposition is used at different Tevels below the level B.C.C.A.

The tree diagrams in Appendix A of each section give another complete
overview of a module and its subprograms and are very useful for tracing the
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path of a formal parameter of a subprogram back to its calling programs.

Also, if one modifies a_subprogram, one can determine what other subprograms =
may be affected. Finally, if COMMON is used for data communication, the

calling program will almost always include the common blocks used in its
subprogram.

The alphabetical 1ist of subprograms and the associated abbreviated
functional description in Appendix B of each section can be used in
conjunction with the tree diagram (Appendix A of each section) to gain another
view of the structure and purpose of a module.

1.4.2 Preface of Modules and Subprograms

The preface of each program and subprogram (see Figure 1.6) contains the
upper decomposition-level, the purpose (if the title of the routine is not
self-explanatory), a method (algorithm) if appropriate, and
communication-vehicle descriptions which give an overview of the
input/output. Any labeled common-blocks of data used for input or output are
1isted. Formal parameters of subprograms are also indicated.

1.4.3 Data Flow

Labeled common, database input/output and formal parameters of subprograms
are major vehicles used for data communication within modules and between
modules. Only the modules FDP and PPP write a disk file without the use of
the database manager. They can produce plot information file for
post-processing.

q

Internal communication refers to data flow within a module., The various
modules use labeled common and formal subprogram parameters for internal
communication. Sometimes temporary databases are also used for intermediate
data storage if the volume of data exceeds central-memory Timits.

External communication refers to data flow between modules. The database
manager is used for this purpose.

Methods to analyze data communications will now be described in some
detail. There are three kinds of data flow within the typical PAN AIR
module: (1) data flow from a database to the program, (2) data flow from one
part of the program to another and (3) data flow from the program to a
database.

The first and third kinds of data flow intimately involve the use of SDMS
maps (Paragraph 1.2.3 and Appendix 1-B). To aid in the process of tracing
data flow, each module-maintenance section includes three related
database-communication-charts. The first form of the chart lists in
alphabetical order, for each overlay of the module, the databases and datasets
which are accessed in that overlay. Corresponding to each dataset there 1is
1isted the name of the map which sets up the correspondence between data items
in the dataset and program variables. Also listed is the common block(s) in
which the mapped program variables lie, if applicable, and the name of the
subroutine in which the map is defined. The second form of the chart contains
the same information but it is arranged with the map names in alphabetical
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order. The third form of the charts repeats the same information but has it
ordered alphabetically by common-block name. The use of these charts is
illustrated in Paragraph 1.4.3.3.

To allow speedy tracing of the second kind of data fiow, several
documentation devices have been incorporated in the coding of the modules.
Chief among these is the glossary.

The glossary of each program or subprogram 1ists all those FORTRAN
variables which are used in the program for input, output or as auxilary
parameters. Each variable is flagged with an I for input or an 0 for output.
A1l formal parameters (arguments of a subprogram) are so indicated by an
"F.P." flag. If the variable appears in a labeled common block, the name of
the block is listed. Finally, a short definition of the variables is also
given when appropriate.

1.4.3.1 Formal Parameters

The analysis of formal parameters for internal communication is
straightforward. The glossary identifies and defines these parameters. The
tree diagram can be used to relate the parameter to other programs and
subprograms.

1.4.3.2 Labeled Common

Labeled common is used for internal communication between subprograms
and calling program/subprograms. The glossary defines the input/output
variables and indicates in which labeled common-block the variables reside.

If a labeled common-block is mentioned, one can lTook at the data-group section
of the code (See Figure 1.6) and find a definition of the variables contained
in the block.

The section of code in the Preface of each program called COMMUNICATION
VEHICLES can also be used to find common blocks which are used for
input/output.

1.4.3.3 Database Communication

The various modules use databases to pass data to other modules and,
sometimes, for temporary scratch storage. Usually, labeled common is used to
store data obtained from a database. Unlabeled common, usually called blank
common, is also used to hold data until it is transferred to a database., The
source code calls subroutines from the SDMS library to accomplish these data
transfers.

A means is available to analyze or trace data from labeled common to a
database, if such a correspondence exists. The data communication charts in
conjunction with the glossaries and the database map-definitions are the
available analysis tools. An example of the analysis is presented using part
of the DQG code.

Suppose that we wish to find out what happens to the user-defined abutment
data (PAN AIR User's Manual, Reference 2) as it is transferred from the DIP
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database, through the DQG module, and then to the DQG database. Figures 1.7
and 1.8 show relevant excerpts from the DIP module Master Definition (Section
3, Appendix 3-D) and the DQG module Master Definition (Section 4, Appendix
4-D). Both databases contain dataset USER-ABUT which contains information
about user-defined abutments. Examination of the first form of the database
communication-chart for module DQG (Fig. 1.9) shows that the DIP database is
used in the. first overlay (1,0) of DQG. Further, within that overlay, dataset
USER-ABUT on the DIP database is connected with program variables in the
/ABUT/ common block of DQG by means of a map named USABIN. This map is
defined in the subroutine DIPDAT of the DQG module.

Examination of the map USABIN in subroutine DIPDAT (See the following
ara%raphs which discuss Figure 1.13a) shows that the keyset data-item
'ABUT-INDEX" is mapped dynamically and the other data items are mapped
statically to program variables NBRNAB, POSABT, SMOOAB and the array USABUT.
In the glossary of the subroutine DIPDAT (Fig. 1.10) we find that these
variables are all located in common block /ABUT/. At the beginning of the
subroutine DIPDAT, we find the common-block contents described (Fig. 1.11).
Here NBRNAB is the number of networks in the abutment and that the array
USABUT contains information which identifies the network, the edge, and the
corner points marking the start and end of the abutments. Figure 4.5
(Structure and Data Flow of DQG Overlay (1,0)) in Section 4 of this document
shows that the dataset is read from the DIP database by the DQG module in
subroutine DIPDAT,

Thus far, we have traced the data from the DIP database into the DQG
program. We can now examine how the data gets to the DQG database. Figure
4.5 (Section 4) shows that the DQG module generated dataset USER-ABUT is
written to the DQG database within the same overlay. We already know that the
program variables which contains the data resides in the common block /ABUT/.
If we look at the third form of the database communication-chart (Fig. 1.12)
we find that there is a map called USABIN which maps data from common block
/ABUT/ to the dataset USER-ABUT on the DQG database. As mentioned above, this
map is defined in subroutine DIPDAT of the DQG moaule. Examination of the
maps in subroutine DIPDAT (Fig. 1.13) shows that the program variables NBRNAB,
SMOOAB and the array USABUT are mapped onto data items (elements) in the two
USER-ABUT datasets and we see that some items do not seem to appear on the LQG
database (i.e., "POS-FLAG") while some items are "longer" than they were (the
array USABUT (I,J) is filled only for J=1,4 by the map to the DIP database,
while the map to the DQG database connects to the full array USABUT (I,J), J
1,6). Yet other items have one-to-one correspondence in both databases,
(e.g., NO-NET-ABUT in the DIP database and NMBR-NETWK-IN-ABUT in the DQG
database). This is not a surprising result if we examine the short
description of the subroutine DIPDAT in Paragraph 4.4.2 of Section 4.

Subroutine DIPDAT reads data from the DIP database and copies it to the
DQG database, sometimes changing its form to better suit DQG's requirements.
Clearly, the array USABUT has undergone some transformation and a detailed
examination of the code and comments in DIPDAT clarifies what has occurred.
Looking through the code in subroutine DIPDAT, we find a call to ESGET with
the map name "USABIN". This is where the data enters the DQG program. Now,
after the data is available, if the plane-of-symmetry flag is set, the number
of networks in the abutment is increased by one and the new network edge is
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Tabeled by defining the éntry of USABUT(NBRNAB,1) = -POSABT. This explains
why the plane of symmetry flag is not present in the DQG dataset. Further,
the USABUT(I,3) and USABUT(I,4) entries are stored as ISTART and IEND in the
program. The glossary of DIPDAT describes these as the start and end
corner-points of an abutment in the counter-clockwise sequential-index system
(Appendix 4-F). These are passed to a subroutine EDGLAT. The call is
commented by "COMPUTE COARSE LATTICE INDICES FOR START AND END POINT" and the
preface of EDGLAT indicates its function is to transform the counter-clockwise
indexing scheme along a network edge to the coarse grid lattice-indexing
scheme. Immediately after the call to EDGLAT, a call is made to ESPUT with
the USABUT map name. This writes the abutment data to the LQG database.

From this analysis we can see that the user-defined abutment is read from
the DIP database with the data stored in a particular fashion; the data is
then transcribed into a form which DQG finds more useful and is written to the
DQG database. Thus, we have traced the data and have observed its
transformations. Figure 1.14 summarizes the analysis of the data flow.

If more detail is required concerning the transformations, then we must
make use of the glossary of subroutine EDGLAT of the DQG module to find the
correspondence between the local variables as they appear in the subroutine
EDGLAT and the variables which appear in the call to EDGLAT in subroutine
DIPDAT. The glossary of EDGLAT identifies which of the formal arguments are
input and which are output. Examination of the code defines precisely the
form of the transformation.

The database Master Definitions also can be used to relate program
variables to database element names. Usually, the correspondence between
variable names and element names is placed after a § appearing at the _
right-hand side of the Master Definition. Therefore, once a variable name 1is
attached to a database name using the glossary and the data communication
chart, the correspondence between program-variable names and element names can
usually be found using the Master Definition (sometimes, as in Figure 1.8, the
FORTRAN variable names are not given). For example, in Figure 1.7 the
variable names IABUT is mapped into the element name ABUT-INDEX of the DIP
database dataset named USER-ABUT.

The Master Definitions can be obtained by executing the UPDATE tool with the
Master Definition Program-Library provided on the installation tape.

1.5 Maintenance of PAN AIR Software

The continued maintenance of both source code and documentation is
absolutely necessary to improve and insure the integrity of a large
software-system such as PAN AIR. Several tools are available to aid the
maintenance process.

1.5.1 UPDATE Feature

The PAN AIR software was developed using the UPDATE software-management
program. Using this tool, a program-library file is created; then
corrections, additions, deletions, etc. are easily made to the library. A
running history of changes is an output of the UPDATE program. Details of
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using this feature are to be found in the UPDATE Reference Manual., Each
module in the PAN AIR system is maintained as a separate Program Library
(PL). In addition there is a separate PL for the routines in the PAN AIR
Library and the SDMS Library. The PL for SDMS includes both the routines for
SDMSLIB and the program DDP.

The creation of an absolute program for each PAN AIR module is
straightforward. The UPDATE program can be used to generate a COMPILE file,
which is then compiled. This generates a file of relocatable binaries. Then
the LDR feature of the operating system can be used to link the relocatable
binaries with the PAN AIR libraries to generate the absolute file.

It is strongly recormmended that the UPDATE program (or one similar in
function) be used in the future to maintain the PAN AIR software system.
Configuration control of a large software system mandates that changes to a
dataset be reproducible., An UPDATE modification set can first be tested and
then later applied to the controlled version of the code. The effects of the
modification set may be undone at a later time. By saving modification sets,
there is a precise definition of the changes from version to version.

1.5.2 Common Data Blocks

The PAN AIR software system relies heavily on the use of labeled
common-blocks. This condition was the result of using the SDMS database
manager which is executed most effectively using labeled common.

Each labeled comon-biock is used many times with the various subprograms
and modules. If a modification was made to one block of one subprogram
without making the same changes in the same block used elsewhere, the PAN AIR

software would no longer function correctly.

Fortunately, the UPDATE feature can also be used to maintain each common

block. Each block is placed in a COMDECK and becomes part of the program
Tibrary (PL) of a module. If a change is made to a common block, the UPDATE
feature automatically makes the change in all subprograms and programs using

the modified labeled common block.

1.5.3 Master Definition Modification and Maintenance

Modification of a module may require a change to the Master Definition of
a database. For example, a new element or collections of elements, callea
datasets, may be added or deleted. The modification process is quite
straightforward.

Each Master Definition is stored as an UPDATE deck on a Master Definition
Program Library (MDFPL). The deck is changed and the new version is written
to the COMPILE file. The old Master Definition is then purged and the program
DDP (stored with the PAN AIR software system) is run using the COMPILE file
produced by the UPDATE execution as input to the program. This process will
result in a new Master Definition containing the changes made previously.
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1.5.4 Document Maintenance

Program modifications may require revisions to be made to the supporting
documents, of References 1, 2 and 3. In particular, the
functional-decomposition charts, tree diagrams, data-communication charts,
Master Definitions and text of each section of this document may have to be
modified. At each major computer-installation, a utility program to produce
tree diagrams is usually available. This tool could be used to produce a new
tree-diagram if the subprogram linkage is modified. If the Master Definition
of a database is changed, a new listing is automatically produced by the DDP
utility program of the PAN AIR software.

The functional-decomposition chart of each section of this document must
be modified if a subprogram is changed. Most computer installations have a
software utility-program which extracts the structure of pseudocode of a
program. The extraction process is keyed upon finding a "C" in column 1 of a
program listing and/or other key words or symbols. The PAN AIR code was
developed using "C", "C.", "CP", "CPE", "GLOSSARY", "DATA GROUPS" as key words
to separate sections of comments and code. If such a software tool is
available, it could be used to an advantage to modify the
functional-decomposition charts of this document.
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Location

.14

NASA AMES
AEDC
NCSC

Table 1.71- PAN AIR Installation Considerations

Operating
System
CoS 1.14
cos 1.14
C0S 1.12

Computer

Hardware

CRAY X-MP
CRAY X-MP
CRAY 1

Front End
Computer
Cyber and Vax

Amdahl
Cyber
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Table 1.2 - Module and Database Interactions

Using
Module Database Name
DIP DQG MAK RMS RHS MDG PDP CDP

DIP 1 o o0 0 0 0 0 O
DQG 2 1 0 0 0 0 0 0
MAG 2 2 1 0 0 0 0 0
RMS 0 0 2 1 0 0 0 0
RHS 2 2 2 4 1 0 0 0
MDG 2 3 4 0 4 1 0 0
PDP 2 0 0 0 2 1 0
FDP 2 0 0 0 2 0 0
cop 2 0 0 0 0 4 0 1
PPP 4 4 0 0 0 0 4 4

Codes for Databases

0 - Not used or created

1 - Created

2 - Used

3 - Not needed thereafter unless PPP was requested or a save directive has
been issued.

4 - Not needed thereafter unless requested for a save
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Table 1.3 - Validation Case CPU Time Requirement

(NASA AMES CRAY X-MP)

Cumulative CPU Execution Requirements X-MP (Sec)

After

Module Case 1
MEC 0.2411
DIP 0.4760
DQG 1.7998
MAG 2.4605
RMS 2.6413
RHS 3.1715
MDG 4.3120
PDP 5.1179
cop 5.7290
FDP 5.8903
PPP 6.5467

Case 2
0.2472
0.5301
3.3792
6.9902
7.2486

10.0269

14,5731

16.3864

17.4047

17.5910 -

18.2493

Case 3
0.3097
1.5773

61.5878

176.3091

202.3822

212.1791

239.4363

243.3971

257.9595

252.5155

254.9603

Case 6

42

Table 1.4 - Validation Case I/0 Volume Requirements

Cumulative Disk Sectors Moved

After

Module Case 1
MEC 683
DIP 1274
DQG 2663
MAG 3497
RMS 3929
RHS 4712
MDG 6442
PDP 7154
cop 7784
FDP 8330
PPP 9021

Lase 2

684
1281
2989
4411
5023
6116
8672
9608

10406
11030
11766

Case 3
702
1540
23573
47519
62297
69575
82315
84390
85993
87307
88409

.2646
.7674
13.
40.
.3715
45,
58.
62.
67.
67.
68.

4035
3996

5931
3829
8354
0223
3297
3105

Case b

686
1301
5551

11833
13956
16500
22407
23637
24702

25580
26406

(

ﬁ:
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Table 1.5 - Validation Case I/0 Frequency Requirements

Cumulative I/0 Requests

After

Module Case 1
MEC 112
DIP 245
DQG 648
MAG 847
RMS 947
RHS 1162
MDG 1560
PDP 1727
cop 1874
FDP 1966
PPP 2110

Case 2

113

247

801
1185
1293
1528
2036
2218
2379
2476
2630

Case 3

114
345

' 18558

23407
24727
27625
32674
33445
34156
34315
34527

Case 6

114

250
2905
4394
4593

5002
6604

6796
7160
7279
7440

17



Module
MEC
pIP
DQG
MAG
RMS
RHS
MDG
PDP

FDP
COP

PPP

Table 1.6 - Module Size and Compilation Time

Lines

8,630
42,555
79,253
24,887

2,659
11,161
28,635
23,006
20,820
19,540
17,492

Statements

1,982
7,734
15,532
4,442
449
2,074
5,648
3,967
5,009
3,638
2,522

Compilation Time (Seconds)

.7293
3.1778
8.4553
2.8676

.2139

. 9896
2.7902
2.1710
3.0672

2.0957
1.5384

d
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Table 1.7 - Non-ANSI FORTRAN CODE USAGE

OVERLAY

PROGRAM (INPUT,QUTPUT,...)

DATA arrays

variable = 3H XXX o (Hollerith constants)
J.AND.K,J.OR.K (Masking)

Array referenced with fewer subscripts than in DIMENSION

FORMAT( 3HXXXA10) (No field separator)
78 (Octal constant)
DECODE function

ENCODE function

Mixed mode arithmetic and comparisons

nLf (Left justified Hollerith)

Equivalencing of arrays

.19
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Table 1.8 - CAL CODE USAGE

BITSLGN
BIT$LOC
BIT$MSK
CAB
GETT
MXMACA
PAC
PUTT
REDUCR
STRMOY
UNPAC
ZERO

«



SYSTEM
JCL
DIRECTIVES/DATA
— EXECUTIVE
JcL /
| 0/ LOCAL MEC
MEC DIRECTIVES |
DIP PAN AIR TECHNICAL MODULES PAN AIR
3> ———
DIRECTIVES TECHNICAL
DIP | DQG | MAG | RMS | RHS | MDG [ POP | CDP | FDP | PPP LIBRARY
(PALIB)
DATA MANAGER
SOMSLIB | dDstallation ] oDP

DATA

BASES

- Figure 1.1 - PAN AIR Software System
1.21



MODULES

MEC

MAG

MDG

PDP

cop

FOP

PPP

DATA BASES

—p[ OUTPUT
DATA

~ G

Figure 1.2 - Program Modules and Data Bases

1.22

MODULES AND THEIR PURPOSE

C

MEC generates control cards for problem
DIP interprets user input
DQG generates panel defining quantities plus data

for control points, boundary conditions and
singularities

AlC MAG creates Aerodynamic Influence
Coefficients
Unknown Singularity Portion

AIC MAG creates Aerodynamic Influence
Coefficients

Known Singularity Portion
IC MAG computes Influence Coefficients
RMS Decomposes AIC unknown

RHS processes singularities and boundary condition
data

MDG finds average potential , velocity and normal

mass flux at control and grid points plus DQG =
geometry

PDP computes potential, velocity, mass flux,
and pressures for selected surfaces

CDP computes forces and moments accumulated over
portions of congifuration

FDP computes potential, velocity, mass flux and
and pressures at locations off configuration and

along streamlines

PPP selects data formatted for external display
processing

(



DIRECTIVES

PAN AIR

JCL

PROCEDURES

0/S

PPP

cop

FDP

ppp |
FILE

g -t

MEC

SOMS DATA BASES

PRINTED
QUTPUT

POP

| -

MDG

RHS,

S

w

PRINTED OUTPUT
FROM MODULES

UPON REQUEST

USER
INPUT DATA

DQG L

MAG

RMS

Figure 1.3 - PAN AIR Data Flow
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MASTER DEFINITION MDFILE
DATASET FILE-NUMBER-1
KEY SET

REC-IND-1
REC-IND-2

END
ELEMENT SET

INTEGER-VAR-1
SCALAR-VAR-1

I
R
VECTOR-VAR-1 3 R
VAR-LENG-VECTOR-T INTEGER-1 R

END
END DATASET

L9 U0 U0 €5 00 G U 09 U5 U OO O ON 5 U OF OTET OF GHOA U8 L9 8 U8 U109 OO OO

END MASTER DEFINITION

Figure 1.4 - Example of Master Definition Structure in SDMS
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User Supplied JCL

(Limited set of control statements
to invoke special PAN AIR
procedures)

(CRAY end of file)

Dip Input Data
(User Input Data Defining Problem)

(CRAY end of dataset)

Figure 1.5 - Deck arrangement for PAN AIR Execution
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NAME : name - short title
DECOMP:  program decomposition
DESIGNER:  name, date, company
PROGRAMMER: name, date, company

[PURPOSE:  test] PREFACE
[METHOD:  test] '
INPUT DATA:

OUTPUT DATA:
[ARGUMENT LIST:]
[GLOSSARY]

DATA GROUPS i.e., common blks
TYPE DECLARATICNS SPECIFICATION STATEMENTS
DATA STATEMENTS

INITIALIZATION
TASK 1 (A)
SUB-TASK 1 (AA)
SUB-TASK 2 (AB) BODY
TASK 2 (B)
SUB-TASK 1 (BA)
SUb-TASK 2 (BB)
ERROR PROCESSING

5000 serjes - input
6000 series - output FORMATS
8000 series - errors

1.26

Figure 1.6 - Program/Subprogram Structure
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$
DATASET USER-ABUT

iUSER DEFINED ABUTMENT
KEY SET $
$ IABUT =
ABUT-INDEX I § ABUTMENT INDEX NUMBER.

$ RANGE IS 1 TO NO-USER-ABUT
$ VALUE IN DATASET NAMED NETWORK-DATA
$ON THIS (DIP) DATABASE.

END

ELEMENT SET

NONEAB =

NO-NET-ABUT I NUMBER OF NETWORKS IN ABUTMENT

NETIND =
LIST OF NETWORKS IN ABUTMENT.
ENTRIES REFLECT INPUT ORDER.

NETWK-LIST NO-NET-ABUT I

EDGNO =

EDGE-NMBR  NO-NET-ABUT I EDGE OF NETWORK IN ABUTMENT

STRTPT = :
I § STARTING EDGE POINT NUMBER FOR
NETWORK EDGE.

STRT-PT NO-NET-ABUT

ENDPT =
ENDING EDGE POINT NUMBER FOR
NETWORK EDGE.

END-PT NO-NET-ABUT I

ABUPQS =
I $ PLANE OF SYMMETRY FLAG.
ALLOWABLE OPTIONS ARE:
0 = NO PLANES OF SYMMETRY
1 = FIRST PLANE OF SYMMETRY
2 = SECOND PLANE OF SYMMETRY
3 = BOTH PLANES OF SYMMETRY

POS-FLAG

nwuwn

EDGTRE =

EDGE TREATMENT FLAG.

ALLOWABLE OPTIONS ARE:
0 = STANDARD ABUTMENT
1 = SMOOTH ABUTMENT

EDGE-TREAT i [

END

O 69 U9 O N 69 O U ON OO O U O O Y OOV O Y N O Y 9 O PO AU OO T U N OO

END DATASET
Figure 1.7 - Excerpt from DIP Master Definition
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DATASET USER-ABUT

.28

KEY SET
INDEX

ELEMENT SET

NMBR-NETWK-IN-ABUT

NETWK-ID

EDGE-NMBR
STRT-CRNR-PT-NMBR-1
STRT-CRNR-PT-J
END-CRNR-PT-NMBR-1
END-CRNR-PT-J

SMOOTH-ABUT-FLAG

END DATASET

i USER DEFINED ABUTMENT -
$
$
I $ I
$
$
$
$
$
I § I
$
$ NUMBER OF NETWORKS WHOSE EDGES
§ MAKE UP THE ABUTMENT
NMBR-NETWK-IN-ABUT I $
NMBR-NETWK-IN-ABUT I $
NMBR-NETWK-IN-ABUT I §
NMBR-NETWK-IN-ABUT I §
NMBR-NETWK - IN-ABUT I $
NMBR-NETNK;IN-ABUT I $
$ THESE ARE THE NETWORK EDGES WHICH MAKE
$ UP THE ABUTMENT. g
T $
$ o
$ -
$
$
$
Figure 1.8 - Excerpt from DQG Master Definition
-



DATABASE

MEC

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

* DIP

DQG
DQG
DQG

DQG
DQG

DQG
DQG

DATASET NAME

DATA-BASE-HEADER

CLOS-COND
COEF-GEN-BC
GLOBAL
GLOBAL-PRINTS
NETWN-BDC
NETWN-SPEC
PANEL-COORDS

- TANG-VEC

USER-ABUT

CLASS-5-BC-DATA
CLOSURE-DATA-IN
GLOBAL

NETWK-BNDRY-CONDN-

IN
NETWK-SPEC

PANEL -CORNER-COORDS

USER-ABUT

Figure 1.9 - DQG Database Communication Chart,

MAP_NAME

IDS

DIPCLOSDAT

CGBCMP
GLOBAL-EN
PRINT-OPT
NETBDC
NETMAP
PAN-COR-PI
TVECTCOEFF
USABIN

CLASS 5
CLOSDIN
GLOB-DYN

BCDATIN
NETMAP

COORDS-GEN
USABUT

PROGRAM/

COMMON BLOCK  SUBROUTINE
/RUNIDS/ OPENER
/GENBCD/ BNDYIN
/GENBCD/ BNDYIN
/GLOBAL/ DIPDAT
Dynamic DIPDAT
/NETBDC/ BNDYIN
/NETWN/ DIPDAT
/COORDS/ DIPDAT
/GENBCD/ BNDYIN
/ABUT/ DIPDAT
/NBCDIN/ BNDYIN
/CLOSUR/ BNDYIN
/GLOBAL/ DIPDAY
Dynamic

/NSCDIN/ BNDYIN
/MESWN/ DIPDAT
Dynamic DIPDAT
/ABUT/ DIPDAT

First Form for (1,0) OVERLAY

.29
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NAME

C.LCLASS
C.LENGTH
C.MACH
C.MESH
C.MVCOMP
C.NABUT
C.NBRCP
C.NBRHS
C.NBRNAB
C.NBRNET
C.NBRPOS
C.NBRSNG
C.NCOL
C.NETCTR
C.NETID
C.NETORD
C.NGAPNL
C.NIAB
C.NLRCLS
C . NMBROW
C.NNETOT
C.NPT
C.OMMINF
C.POSABT
C.POSFLG
C.POSLOC
C.POSNRM
C.PRTOPT
C.RCLASS
C.RORG
C.RUNTYP
C.RVEC
C.SECMET
C.SLDF
C. SMOOAB
C.SNGTYP
C.SOLID
C.SPFLG
C.SUPSUB
C.TRDMET
C.TRNGTL
C.UNIF
C.UPDATN
C.USABUT
C.WAKSOL
C.WEABUT

. TYPE ORIGIN

USAGE

e =t XD T XD X et X bed bt T XS et DX e et XD KD e e X Rt e e e e T O e e e et e e e O e

/NETWK/

/GLOBAL/
/NETWK/
/NETWK/
/GLOBAL/
/GLOBAL/

/ABUT/

/GLOBAL/
/GLOBAL/
/GLOBAL/

/NETWK/

/GLOBAL/
/GLOBAL/
/GLOBAL/

/COORDS/
/GLOBAL/

/GLOBAL/
/ABUT/
/NETWK/
/GLOBAL/
/GLOBAL/
/PRNTOP/
/NETWK/

/GLOBAL/

/GLOBAL/
/NETWK/
/ABUT/
/NETWK/

/NETWK/
/GLOBAL/
/GLOBAL/
/NETWK/

/NETWK/
/ABUT/
/NETWK
/ABUT

I/0

170
1/0
1/0
1/0
1/0
1/0

1/0
1/0
1/0

1/0
I
I

I

1/0
1/0
I/0

1/0

I/0
1/0
I/0
I/0
1/0
170
1/0
1/0
1/0

I/0
1/0
[/0

1/0
I/0
1/0
I/0

I

DESCRIPTION

LENGTH OF ARRAY OF COLUMN OF CORNER POINTS

NUMBER OF SOLUTIONS
I/0

UPPER LIMIT ON CORNER POINT COLUMNS

UPPER LIMIT OF USER SPECIFIED ABUTMENTS

NUMBER OF LEFT/RIGHT CLASS 4 BC

NUMBER OF POINTS IN NETWORK EDGE SEGMENT
I

(

ORIGIN FOR ROTATIONAL ONSET FLOW
AXIS FOR ROTATIONAL ONSET FLOW

170
SOLUTION IDENTIFIER

UNIFORM ONSET FLOW

I/0
1/0
0

Figure 1.10 - Portion of Glossary of Subroutine DIPDAT of the DQG Module
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OO0 OO0 000
L] . - - - L[] - - - L] « e - L] - L] - - 3 . - - .

WEABUT(J,1) CONSISTENT ABUTMENT DESCRIPTION
J FROM 1 TO 15 NETWORKS IN ABUTMENT
(J,1) - NETWORK INDEX :
EDGE INDEX
START CORNER POINT INDEX-I
(J,4) - START CORNER POINT INDEX-J
(J,5) - END CORNER POINT INDEX-I
(J,6) - END CORNER POINT INDEX-J
NBRNAB NUMBER OF NETWORKS IN ABUTMENT

(J,2)
(4,3)

t

POSABT Plane of symmetry (POS) flag indicating
that the POS is part of an abutment
Value = 0 if no POS

1 if 1st POS

2 if 2nd POS

USABUT(I,J) USER ABURMENT DESCRIPTION
SEE DESCRIPTION OF WEABUT ARRAY

SMOOAB SMOOTH ABUTMENT FLAG

GAPSET FLAG INDICATING GAP-PANELS ADDED
TO ABUTMENT.

COMMON /ABUT/IABUT(20,8),WEABUT(5,6),NBRNAB
1,IESABT(6),NUMBER(5),ASSINF(5,3,3),QTRCRD(5,3,3),
2TWEABUT(10,6) ,EDGPOS(4),USABUT(5,6),DSMTCH(3,2),
3SMOOAB ,POSABT,GAPSET

INTEGER POSABT,GAPSET

INTEGER WEABUR, TWEBUT,EDGPOS,USABUT ,SMOOAB,DSMTCH

Figure 1.11 - Excerpt from Common Block /ABUT/in Subroutine
DIPDAT of the DQG Module
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COMMON PROGRAM/ e

BLOCK DATABASE MAP NAME DATASET NAME SUBROUTINE =@
JRUINDS/ MEC 1DS DATA-BASE-HEADER OPENER
JABUT/  DIP USABIN USER-ABUT DIPDAT
/COORDS/ DIP PAN-COR-PT PANEL-COORDS DIPDAT
Dynamic  DIP PRINT-OPT GLOBAL-PRINTS DIPDAT
/GENBCD/ DIP DIPCLOSDAT CLOS-COND BNDYIN
JGENBCD DIP . CGBCMP COEF-GEN-BC BNDYIN
/GENBCD/ DIP TVECTCOEFF TANG-VEC BNDY IN
/GLOBAL/ DIP GLOBAL-IN GLOBAL DIPDAT
/NETBDC/ DIP NETBDC NETWK-BDC BNDY IN
JNETWK/  DIP NETMAP NETWK-SPEC DIPDAT
JABUT/  DQG DIPDAT USABUT USER-ABUT
/CLOSUR/ DQG CLOSDIN CLOSURE-DATA-IN BNDYIN
Dynamic  DQG COORDS-GEN PANEL-CORNER-COORDS  DIPDAT
/GLOBAL/ DQG GLOB-DYN GLOBAL DIPDAT
/NBCDIN/ DQG CLASS5 CLASS-5-BC-DATA BNDYIN
JNBCDIN/ DQG BCDATIN NETWK-BNDRY-CONDN-IN BNDYIN
/NETWK/  DQG NETMAP NETWK-SPEC DIPDAT

Figure 1.12 - DQG Database Communication Chart, Third Form for
(1,0) Overlay =
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(a) MAP FROM DIP DATABASE TO DQG MODULE

BEGIN MAP USABIN

CALL DSMAP(10HUSABIN , COHUSER-ABUT ,DIPDBD)

DEFINE STATIC MAP

CALL SVMAP (NBRNAB »20HNO-NET-ABUT
USABUT(1,1) ,OHNETWK-LIST
USABUT(1,2) » 20HEDGE -NMBR ,
USABUT(1,3) »20HSTRT-PT s
USABUT(1,4) s 2OHEND-PT ,
POSABT - ,20HPOS-FLAG ’
SMOOAB s 20HEDGE-TREAT s

DEFINE DYNAMIC MAP
CALL DVMAP(20HABUT-INDEX )

END OF MAP
CALL ENDMAP

(b) MAP FROM DQG DATA BASE TO DQG MODULE

BEGIN MAP USABUT :
CALL DSMAP (10HUSABUT »20HUSER-ABUT .DQGDBD)

DEFINE STATIC MAP
CALL DVMAP(20HINDEX )

CALL SYMAP(NBRNAB »2O0HNMBR-NETWK -IN-ABUT

USABUT(1,1) s 20HNETWK-ID R
USABUT(1,2) » 2OHEDGE -NMBR s
USABUT(1,3) ,20HSTRT-CRNR-PT-NMBR-1 s
USABUT(1,4) s 20HSTRT-CRNR-PT-J ;
USABUT(1,5) ,20HEND-CRNR-PT-NMBR-1 s
USABUT(1,6) s 2OHEND-CRNR-PT-J

SMOOAB ,20HSMOOTH-ABUT-FLAG )

END OF MAP

CALL ENDMAP
BEGIN MAP GLOB-DYN

Figure 1.13 - Maps of dataset USER-ABUT from DIP and
DQG Data Bases to DQG Module
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1.13(b)

DIP
MASTER
DEFINITION

|

DQG DATA BASE
COMMUNICATION CHART
FIRST FORM

SDMS MAP FROM DIP
DATA BASE, SUBROUTINE
DIPDAT OF DQG MODULE

GLOSSARY OF SUBROUTINE
DIPDAT OF DQG MODULE

COMMON BLOCK/ABUT/
DESCRIPTION

DQG DATA BASE
COMMUNICATION CHART
THIRD FORM

SDMS MAP FROM DQG
DATABASE TO SUBROUTINE
DIPDAT OF DQG MODULE
DQJ'

MASTER

DEFINITION

Figure 1.14 - Summary of Example Data Flow Analysis

DATA FLOW
WITHIN PROGRAM DQG

A4

M
SDMS %
"USABIN" ESGET
SDMS ‘MAP DIPDAT
"USABUT"
M ESPUT

DIP

DATA BASE

ESGET
OPERATION

PROCESS
ABUTMENT
INFORMATION

ESPUT =
OPERATION -
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OPERATION
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APPENDIX 1-A SUMMARY OF PAN AIR MODULES

1-A.1






1-A.1 MEC - Module Execution Control

(

MEC creates a temporary database named, MEC for use by other PAN AIR
modules. It contains database information on databases used or created by the
other modules. Run identification is also processed and stored in the
databasg. Codes are set to indicate whether databases are used, in existence
or saved.

User directives for modifying the database information table are processed
by MEC and appropriate modifications to the MEC database are made.

1-A.2 DIP - Data Input Processor

1-A.2.1 Purpose

The DIP module reads user input data which describes the PAN AIR problem
and stores the data on the DIP database.

1-A.2.2 Tasks Performed

Following the execution of the MEC module, the DIP module accesses the MEC
database to read the type of PAN AIR problem to be run. From this dataset,
DIP can determine whether a new or updated database is to be created from the
inputs. The possible options, described in detail in Section 4.3.2 of ‘
Reference 2, are as follows:

1. Creation run - no preexisting database. -

~ 2. Post processing run - use existing database and update only
directives to it.

3. - Right-hand-side update-run - use existing database and update only
"solution data."

4. IC update run - use existing database and update geometric data.

The input data is read in free field format from card images. Each card
image s read, printed and processed. The data is organized and stored on the
DIP database. The initial input data for DIP should contain global data to
described the boundary value problem and global defaults, network data to
describe the surface definition and boundary conditions, and the geometric
edge matching data to describe network edge matching. The above data
(original or updated) is required for solving a potential flow solution.

The post processing input data for DIP may contain post-solution
calculation cases and database output directives. Both of these types of data
require a preexisting DIP database plus the results of a potential flow
solution on the database produced by the MDG module.

1-A.3
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1-A.3 DQG - Defining Quantities Generator —

1-A.3.1 Purpose

The Defining Quantities Generator computes and defines a large number of
intermediate quantities required for solution of the potential flow problem.
These quantities fall into three classes: control data, geometrical data and
boundary condition data.

The control data consists of indices of all singularity parameters and
control points in the configuration as well as an indication of those
singularity parameters that are "known" and those singularity parameters and
control points that are "null" (not used to solve the problem).

The geometrical data includes descriptions of network abutments and
abutment intersections, the coefficients of the source and doublet splines
that define the singularity strengths over the surfaces of the networks and
those geometrical properties of panels which are required to compute the AIC
matrix in module MAG.

The boundary condition data processing includes assignment of user
specified boundary conditions as well as automatic imposition of doublet
matching conditions at network boundaries.

A11 of the data are stored on the DQG database. A small amount of printed
data is available to the user through selection of certain print options in
the input to DIP.

DQG also analyzes the configuration for many types of errors which may
lead to an erroneous or singular solution and produces diagnostic information
that the user might use to correct his input to DIP.

1-A.3.2 Tasks Performed

The basic tasks of DQG are performed in the six primary overlays of DQG.
(A seventh primary overlay performs some useful but perfunctory communication
to the user.) In the first overlay, data from the DIP database is read,
copied and (in some cases) transcribed onto the DQG database. In the second,
the data associated with individual networks are defined. Also included are
error checks on network size and indexing of singularity parameters and
control points. The third overlay of DQG deals with the inter-relationship of
networks with each other: abutments and abutment intersections. User defined
abutments are imposed and a search is made for any additional abutments in the
configuration. A determination is made of network edges and corner points
where doublet matching boundary conditions will be imposed. If additional
paneling is required to fill in gaps between network edges, gap filling panels
are generated. Also network overlaps are found, if any, and diagnostics are
given as printed output. The fourth overlay assigns the appropriate number
and type of boundary conditions at each control point in the configuration.
The fifth overlay constructs source and doublet spline vectors for networks.
The sixth overlay computes panel geometrical data, assembles spline matrices
describing source and doublet strength over the surface of the panel and
computes the moments of source and doublet strength over the surface of the

(
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panel. The seventh overlay produces printed output of control point data and
boundary condition data.

1-A.4 MAG - Matrix Generator

1-A.4.1 Purpose

The Matrix Generator module uses output from the DQG database to generate
influence coefficients, incorporate symmetry constraints, assemble the
influence coefficient (IC) matrix, and perform operations related to the
transformation of the boundary value problem into systems of simultaneous
linear equations.

1-A.4.2 Tasks Performed

The singularity and control point data from DQG are grouped into
categories of updatable and non-updatable. In addition, the singularity data
is further divided into known and unknown partitions. The new grouping of
data is put into two directories relating DQG data and MAG data. The
directories are stored in the MAK database. A number of matrices are formed
from the DQG data. First, the panel geometry specifications and the
reformatted control point data are obtained from the DQG and MAK databases
respectively. The panel influence coefficients (PIC) are then formed from
complex computations defined in Section 4.2.2 of the PAN AIR Theory Document
(Reference 1). These PIC matrices are symmetrized to form the entries of the
IC matrices. These IC matrices are stored temporarily. Next, the IC matrices
in required row form (up to 5000 words long) are produced. The aerodynamic
influence coefficients (AIC) are then constructed from the boundary conditions
sRecified by DQG and the IC matrices. The AIC matrices which correspond to
the known and unknown singularities are stored in the MAK database. Finally,
the influence coefficients (IC's) needed by the MDG module are transferred
from the temporarty database to the MAK database.

1-A.5 RMS - Real Matrix Solver

1-A.5.1 Purpose

The Real Matrix Solver (RMS) module decomposes the partition of the AIC
matrix associated with the unknown singularity parameters.

1-A.5.2 Tasks Performed

The RMS matrix solution subroutines operate on the matrices in "blocked
partitioned format." The major tasks of RMS are to block and decompose the
AIC matrices into upper and lower triangular matrices and pivot terms for use
in the solution process in the RHS module.

1-A.6 RHS Right-Hand-Side Generator

1-A.6.1 Purpose

The RHS creates the right-hand-side equality constraiﬁts for the linear
system of equations defining the aerodynamic problem. The constraints are

1-A.5



formed from the boundry conditions and other known quantities. The module —
also obtains the solutions to the linear system for each control point by A4
forward and backward substitution with the decomposed AIC matric obtained from

the RMS module.

1-A.6.2 Tasks Performed

The constraint data for the right-hand-side is obtained from the DIP
database and transformed into a usable form by RHS. The transformed
constraint data is then stored in a temporary database.

The RHS module also generates the symmetrized right-hand-side matrix
consisting of two partitions; those for the known AIC elements and those for
the unknown. Using matrix partition algebra and backward substitution on the
decomposed AIC matrix, all singularity parameters from all solutions are found.

1-A.7 MDG - Minimal Data Generator

1-A.7.1 Purpose

The Minimal Data Generator module is the primary interface of the upstream
PAN AIR modules, DIP, DQG, MAG and RHS, with the post processing PAN AIR
Modules, PDP and CDP. It reads geometry, influence coefficient, and
singlarity data to generate a minimal database of information at control point
and panel grid point locations. This data, used by PDP and CDP, consists of
geometric information and basic flow quantities: source and doublet
singularities, average potential, average mass flux, and in specific B
instances, average velocity in three components. All basic flow quantities L=
are stored on the MDG database for all solutions and (if planes of symmetry
are present) for all distinct images. (See PAN AIR Theory Document, Sections
5.7.2 and K.1 (Reference 1)).

The minimal database generated by MDG enables PDP and CDP to process data
without accessing the DQG, MAK, and RHS databases and have that data available
in a convenient format at either control points or panel grid points for a
given image and solution.

A-7.1.2 Tasks Performed

MDG opens and checks the condition of the databases from DQG, MAG, and RHS
to assure that other upstream modules have executed without errors, It forms
the MDG permanent database for the global, network-spec, and solution data
sets. For each network, the control points are determined for each panel.

The control point and grid point geommtry is output to the MDG database.

The IC-matrices from MAK and the singularities from RHS are postmultiplied to
form control point values of average potential, mass flux and velocity in
three components if specified by the user. Singularities are reformatted
uniformly and unsymmetrized.

‘Using spline vectors created by DQG, singularity values are obtained at
nine defining grid points and five defining grid points for doublet and source
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singularities respectively on each panel. _Subpane1 splines are used to
calculate singularity values at control points.

At control point lTocations where IC values were not calculated, values are
calculated from the boundary conditions. If IC's were calculated, the mass
flux is calculated from the inner product of these velocities and the control
point conormal. The values of average potential, mass flux, velocity, if
specified, and singularities at control points are placed on the MDG database.

Potential splines, similar to DQG doublet analysis splines, are calculated
to produce values of flow quantities at grid points from values at control
points. The same quantities output at control points are output at grid
points on each network. :

1-A.8 PDP - Point Data Processor

1-A.8.1 Purpose

The Point Data Processor module is designed to compute flow quantities on
configuration body and wake surfaces. These surface flow quantities consist
of perturbation and ‘total potential, perturbation and total velocities,
perturbation, total and normal mass flux, pressure coefficients and local Mach
numbers for isentropic, linear, second-order, reduced second order and slender
body approximations.’

Each of these computed data items is printed out and/or stored on a
permanent database for Tater retrieval as selected by the user. The PDP
database is generated only if database storage is requested by the user.

The user options are available to PDP in the DIP database. These consists
of computation options for potential, velocity, velocity correction and
computation schemes, pressure coefficient and local Mach numbers.

The user has the option of requesting a printed output of the computed
quantities for each case.

1-A.8.2 Tasks Performed

The configuration geometry and a minimal set of velocity data
(perturbation velocities at points computed from the AIC matrices and the
Tocal incremental onset flow velocities etc.) are available to PDP in the MDG
database. PDP computes the average and difference velocities at user selected
point types for each selected network, image and solutions and uses these data
to compute the perturbation and total velocities on each selected surface.

The velocities are corrected by PDP by the user selected correction schemes
and are then used to compute pressure coefficients and 1ocal Mach numbers for
the selected rules (isentropic, linear, second order, reduced second order and
slender body). Details of the computation of surface flow properties can be
found in Section N of the PAN AIR Theory Document {Reference 1).

These flow quantites are written to the output file and/or to the PDP
database for later retrieval by the PPP module.
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1-A.9 FDP - Fie]d”Data Processor

1-A.8.1 Purpose

The Field Data Processor module is designed to compute flow quantities at
designated points off the configuration body and along streamlines in the flow
field. These flow quantities consist of perturnation and total potential,
perturbation and total velocity, perturbation and total mass flux, and
pressure coefficients and local Mach numbers for isentropic, linear, second
order, reduced second order and slender body approximations. Arc length and
time of traversal are to additional flow quantities associated with
streamlines.

Each of these computed data items is printed out and/or written to a plot
file for later retrieval as selected by the user. The FDP plot file is
generated only if requested by the user.

The user options are available to FDP in the DIP database. These consists
of computation options for potential, velocity, velocity correction and
computation schemes, pressure coefficient and lTocal Mach numbers.

The user has the option of requesting a printed output of the computed
quantities for each case.

1-A.9.2 Tasks Performed

The panel defining quantities and the singularity solutions are available
to FDP in the MDG data base. For a point off the configuration surface, FDP
uses that data to compute the perturbation and total velocity for selected
solutions. The velocity is corrected by FDP according to user selected
correction schemes and is then used to compute pressure coefficients and local
Mach numbers for the selected rules (isentropic, 1inear, second order, reduced
second order and slender body). To compute the points along a velocity or
mass flux streamline, FDP uses a predictor-corrector method of integration. A
more detailed explanation can be found in appendix P of the PAN AIR Theory
Document (Reference 1).

¢

These flow quantites are written to the output file and/or to the FDP plot
file.

1-A.10 CDP - Configuration Data Processor

1-A.10.1 Purpose

~ The Configuration Data Processor is designed to compute forces and moments
on configuration body and wake surfaces. The computed forces and moments are
printed out and/or stored in a permanent database for later retrieval as
selected by the user. The CDP permanent database is generated only is it is
requested by the user.

The user options for CDP are obtained from the DIP database and the
configuration geomtry and other minimal data are obtained from the MDG
database.

¢
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1-A,10.2 Tasks Performed

The Configuration Data Processor obtains the processed user input from the
DIP database. These consists of lists of user selected networks, solutions,
axis systems and configuration options for forces and moments.

The user has the option of requesting printed output and/or storage in the
CDP database of the computed force and moment data for each case of options.

The configuration geometry and a minimal set of velocity data are
available from the MDG database. The CDP module computes the average and
difference velocities on the points of each panel, corrects these velocities
according to the user selected correction schemes, and computes the selected
pressure coefficients from the velocity in a user-selected preferred
direction. These pressure coefficieints are used to compute forces and
moments on each panel. The edge forces and the corresponding moments are also
computed on user selected network edges.

The computed forces and moments are transformed to user selected axis
systems (a maximum of 4) and printed out and/or stored in the CDP database for
later retrieval by the user with the PPP module.

The CDP module allows the user to sum forces and moments for all panels in
a column, for all columns in a network and for all networks in a
configuration. A configuration consists of all selected networks for a
particular case. In addition the user may request to sum or accumulate forces
and moments for selected configurations of a PAN AIR run.

1-A.11 PPP - Print/Plot Processor

1-A.11.1 Purpose

The Print Plot Processor module extracts user selected information from
selected PAN AIR databases and prepares the data in a format suitable for
processing by plot programs external to PAN AIR.

1-A.11.2 Tasks Performed

The PPP module extracts user selected data from the DQG, PDP and CDP
databases and reformats the information for use in preparing plot files. The
data are selected from a menu consisting of geometry data from DQG, point data
from PDP, and configuration data from CDP. -
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APPENDIX 1-B Example of How to Use SDMS
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1-B.1 SDMS Example Program

The PAN AIR user, with specific needs not satisfied by the standard PAN
AIR output options, may obtain additional information from the permanent
databases created during a PAN AIR run. A simple FORTRAN program prepared by
the user performs this task. This example illustrates the correct procedure
to use to generate such a program.

In this example, the data identified by SDMS names (elements) is loaded
into Fortran variables as indicated below:

SDMS Name Fortran - Map Dataset Name

NMBER-ACT-NETWK NBRNET GLOBAL-MAP GLOBAL
NETWK-ORDER NETORD GLOBAL -MAP GLOBAL
TOTAL-EDGE-LENGTH EDGLEN EDGE-LENG NETWK-SPEC

The FORTRAN program performs the I/0 transfers from the database to
central memory by calling the same SDMSLIB subroutines which PAN AIR uses to
perform similar operations. The SDMS routines needed to read data from the
database are listed below. AlT1 of these may be loaded by following the -
control procedures outlined below. A more detailed discussion of SDMS
routines may be found in Section 14 of this document.

Subroutine Table
Name Action

DBCLOS Closes the Database

~ DBOPEN Opens the Database

DSMAP Initiates Map definition

DVMAP Defines Dynamic Map

ENDMAP Terminates Map definition

ESGET Gets a specified element set at a specified dataset from the
database

1SDMS Initiates SDMS tables

SYMAP Defines static map

PROGRAM EXAMPL(INPUT,OUTPUT)
PURPOSE
THIS PROGRAM IS AN EXAMPLE OF THE USE OF SDMS ROUTINES
TO TRANSFER DATA FROM A DATABASE TO CENTRAL MEMORY

THIS PROGRAM READS THE DQG DATABASE.

OOOOOO OO0

DATA GROUP LOCAL  DIMENSIONED DATA
DIMENSION NETORD(100),EDGLEN(4)
DIMENSION DBN(3)

DIMENSION IWSA(2000)

DATA INFIL/5LINPUT/,IUTFIL/6LOUTPUT/
DATA IWSA(1) / 1/
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INITIALIZE SDMS TABLES
CALL ISDMS({IWSA(1),IWSA(2000))

READ DATABASE DESCRIPTION FROM INPUT FILE
READ (INFIL,5000)(DBN(I),I=1,3)
READ (INFIL,5000) DBPW

IF BLANK NAMES, THEN SET DEFAULT VALUES
IF (DBN(2).EQ.TH ) DBN(2)=0
IF (DBN(3).EQ.TH ) DBN(3)=0
IF (DBPW.EQ.TH ) DBPW=0

ENDIFC e
OPEN DATABASE :
CALL DBOPEN({DBN(1),9HPERMANENT,DBPQ,3HOLD)

DEFINE MAP TO GLOBAL DATASET OF DQG DATABASE
TO FIND NUMBER AND ORDER OF ACTIVE NETWORKS

~ CALL DSMAP(10HGLOBAL -MAP,20HGLOBAL

DEFINE STATIC MAP
CALL SVMAP(NBRNET,20HNMBER-ACT-NETWK s
NETORD(1) ,20HNETWK-ORDER )

TERMINATE MAP
CALL ENDMAP

DEFINE MAP TO NETWK-SPEC DATASET OF DQG DATABASE
TO FIND EDGE LENGTHS OF NETWORKS
CALL DSMAP(10HEDGE-LENG ,20HNETWK-SPEC

DEFINE STATIC MAP FOR EDGE LENGTH
CALL SVMAP(EDGLEN(1),20HTOTAL-EDGE-LENGTH )

TERMINATE MAP
CALL ENDMAP

NOTE IN THE ABOVE MAP A STATIC MAP WAS USED FOR THE
DATA ITEMS WHILE A DYNAMIC MAP WAS USED FOR THE KEY
SET DATA. THIS IS NOT REQUIRED, EITHER METHOD OF
MAPPING MAY BE USED FOR EITHER-DATA OR KEY SET
INFORMATION. HOWEVER, WE RECOMMEND THE APPROACH
AS ABOVE. B

GET NUMBER OF NETWORKS AND ORDER

CALL ESGET(10HNBRNET

WRITE LABELS AT TOP OF PAGE
WRITE (IUTFIL,6000)
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FOR EACH ACTIVE NETWORK DO
DO 100 IN=1,NBRNET
INET=NETORD(IN)

GET EDGE LENGTH DATA
CALL ESGET(10HEDGE-LENG ,INET)

WRITE NETWORK INDEX AND EDGE LENGTHS
WRITE (IUTFIL,6001) IN,INET, EDGLEN(I), I=1,4)

ENDDO ON NETWORKS
700 CONTINUE

CLOSE DATABASE
CALL DBCLOS(DBD(1))

EXIT
5000 FORMAT (8A10)
6000 FORMAT(1H1,7X,3HIN,6X,4HINET,2X,12HEDGE LENGTHS)

6001 FORMAT (5X,15,5%,15,4(2X,IPE10.3))
C END
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1-B.2 Efficiency Considerations and SDMS S —

The Scientific Data Management System (SDMS) used in PAN AIR provides a
powerful mechanism for storage and classification of scientific data. Through
its use of English descriptions of data elements it allows data
classifications which are easily understood. The dataset construction allows
grouping of data items in ways which reflect actual use or application instead
of ways which force an artifical grouping (e.g., all scalars stored in one
fashion, vectors in another).

When SDMS is used to solve complex problems which involve many I/0 .
operations, as in the PAN AIR system, some special consideration needs to be
given to SDMS usage to avoid undue I/0 cost. To understand these
considerations it is necessary to know a little more about the internal
operations of SDMS. '

An SDMS database consists of four files. The first file is a copy of the
Master Definition file and is used to generate maps. The second file contains
indexing information (pointers) which describe where on the third and fourth
files a particular element set is to be found. The third file contains all of
the random access data. The fourth file contains all of the sequential access
data. R T IR

A two Tevel pointer system is used in SDMS. The top level pointer array
indicates which of several second level pointer arrays contains the disk
address of the required data. Each SDMS buffer can store a pointer array.

One buffer will hold the top level pointer array. Second level pointer arrays
can reside 1n the remaining buffers. When an SDMS operation is performed =
(e.g. an ESGET), if all of the pointer information is already in core, only

one disk access is made to obtain the data. If the second level pointer array

is not in core, SDMS reads the second file to obtain the second level pointer

required and then reads the third file to obtain the data. The second level

pointer array fills any buffer that is empty. If none are available and no

write operations have occurred, the second level pointer array overwrites the

oldest full buffer. If there have been some write operations, the oldest

pointer data in the buffer is written to the database before the new second

level pointer data is read in. A similar process occurs if the top level

pointer array required is not in core.

Several disk accesses may be required for each SDMS operation. If a small
number of available SDMS buffers forces the top and second level pointer
arrays to be swapped in from the disk, then up to five accesses may be
required for a single SDMS operation. Increasing the number of SDMS buffers
can decrease the number of disk accesses per SDMS operation.

If four buffers are available to hold 16dex1ng data, there can be at most
two SDMS operations to two different datasets within a loop unless multiple
disk accesses per SDMS operation can be tolerated.

Fig. 1-B.1 shows an example of inefficient use of SDMS(assuming four
available buffers). Within the inner loop there are SDMS requests to five .
different datasets. The first two "GET" operations fill the buffers. The
REPLACE of the Singularity-Map dataset occurs efficiently (one disk access for

w
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the operation) but the next REPLACE overwrites the indexing information for
the CONTROL-POINTS data, even though the next operation is the replacement of
that same dataset. Overall this loop structure yields four data accesses per
SDMS operation.

Fig. 1-B.2 shows a more efficient approach. The CONTROL-POINT DATASET,
the BOUNDARY-CONDITION DATASET and the RIGHT-HAND SIDE dataset have been
combined into one dataset, the BOUNDARY CONDITION/CONTROL POINT dataset. The
replacement.of the SINGULARITY MAP dataset has been removed to a separate loop
of its own. There are only two different datasets which are accessed in the
inner loop. Thus on the average there will be between 1 and 2 disk accesses
per SDMS operation. This restructuring of the data and control logic will
save a factor of 3 in (1/0) cost over the approach in Fig. 1-B.1.

By far the most efficient I/0 operations with random access files occur
when the random access data is transferred in a sequential fashion. SMDS has
a key set system which indexes elements sets within a dataset. If the element
sets are stored in an order in which the last key set index changes most
rapidly, this will minimize accesses to the pointer file. If the data are
read in a similar order this will also reduce I/0 cost. In Fig. 1-B.3 the key
set structure is shown for the BOUNDARY CONDITION/CONTROL POINT dataset.

Since the panel row index (number of panels in a column) is the inner loop in
Fig. 1-B.2, this random access data is being read and written in a sequential
manner.
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FOR E o o
ACH NETWORK DO 7
GET NETWORK DATASET

FOR EACH PANEL COLUMN DO
GET COLUMN OF COORDINATES DATASET .

GET COLUMN OF COORDINATES DATASET

FOR EACH PANEL IN COLUMN DO
GET CONTROL-POINT DATASET

(COMPUTE CONTROL POINT DATA)
GET SINGULARITY-MAP DATASET

(MODIFY DATA)
REPLACE SINGULARITY-MAP DATASET

REPLACE SINGULARITY-SPEC DATASET

(ASSIGN BOUNDARY CONDITIONS)

REPLACE CONTROL-POINT DATASET o
PUT BOUNDARY CONDITION DATASET '

PUT RIGHT-HAND-SIDE DATASET

ENDDO ON PANELS ON COLUMN
ENDDO ON COLUMNS OF PANELS
ENDDO ON NETKORKS
EXIT

Figure 1-B.1 - Inefficient use of SDMS.
Average of four disk accesses per SDMS operation.

(
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FOR EACH NETWORK DO
GET NETWORK DATASET

FOR EACH COLUMN OF PANELS DO
GET A COLUMN OF COORDINATES DATASET

GET A COLUMN OE COORDINATES DATASET

FOR EACH PANEL IN THE COLUMN DO
GET BOUNDARY CONDITION/CONTROL POINT DATASET

(COMPUTE CONTROL POINT DATA)
GET SINGULARITY-MAP DATASETS

(MODIFY DATA)
REPLACE SINGULARITY-MAP DATASET

(ASSIGN BOUNDARY CONDITIONS)
REPLACE BOUNDARY-CONDITION/CONTROL PQINT DATASET

ENDDO OF PANELS IN COLUMN
ENDDO ON COLUMNS OF PANELS
ENDDO ON NETWORKS

FOR EACH SINGULARITY PARAMETER DO
GET SINGULARITY-MAP DATASET

REPLACE SINGULARITY-SPEC DATASET

ENDDO ON SINGULAIRTY PARAMETERS
EXIT

Figure 1-B.2 - A More Efficient Approach to the Problem of Figure 1
A maximum of two disk accesses per SDMS operation

1-B.9



1-B.10

DATASET BOUND-COND/CONT-PT
KEY SET
NETWORK-INDEX
PANEL-COLUMN
PANEL-ROW
END
ELEMENT SET

END

Fig. 1-B.3 Key Set for Example in Figure 1-B.2
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2.0 MODULE EXECUTION CONTROL( MEC) MODULE

2.1 INTRODUCTION

A temporary data base is created by the MEC module for use by the other
PAN AIR modules. The data base contains the names, accounts, disk set names,
passwords and status of all permanent and temporary data bases used by the
other PAN AIR modules. These data base parameters can be modified by means of
user supplied data base directives described in Paragraph 6.4 of Reference 2.

The MEC module consists of a top level program with main overlays. The
first overlay reads all the user directives. The data base directives are
grocessed first and the data base information table is updated as directed.

he executive directives used for problem identification are then processed
and stored for future use by the third overlay. The second overlay displays
the data base information table and actually stores this data in the MEC data
base on disk. The third overlay, which previously generated control cards for
Cyber computers, is not invoked.

2.2 MEC OVERVIEW
2.2.1 Purpose of MEC

Originally MEC was intended to generate control cards for the Cyber
versions. This function is not used by version 3.0. It has been replaced by
CRAY JCL procedures. The remaining task for MEC is the accumulation of
information about PAN AIR data bases.

2.2.2 MEC Input/Qutput Data

The MEC input data includes the data base directives discussed in
garagraph 2.1. The MEC directives are described in Paragraph 6.5 of Reference

The printed output from MEC consists of the data base information
table. This table contains the same information which is stored in the data
base. An example of the MEC output can be found in Paragraph 8.5 of Reference
2.

2.2.3 Data Base Interface

The MEC module creates a temporary data base which is used by the other
PAN AIR modules. The data base contains run identification information, data
base information for the other PAN AIR modules and status of the other data
bases. The data base information consists of data base default names, actual
data base names, user numbers, set names, user id's, Master Definition names,
user names for the Master Definition, set names for the Master Definition,
user ID names for the Master Definition and passwords. The data base status
information includes items such as permanent or temporary, existing or not
existing and used or not used during a PAN AIR run.

The DIP module is the only other PAN AIR module which writes on the MEC
data base. It passes back to MEC the problem identification information and
the user identification information.
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2.3 MODULE DESCRIPTION

The high level aspects of the MEC module design is described in this
section. The lower level functions are described in Paragraph 2.4. The
functional decomposition of MEC is illustrated in Appendix 2-B.

2.3.1 Overall Structure

The overall structure of MEC is depicted in Figure 2.1.

2.3.2 Overlay Descriptions

2.3.2.1 MEC Overlay (0,0)

The top level dverlay initializes the data base and other parameters.
The module then calls upon the second level overlays READUD and GENDB.
Overlay READUD processes the user input directives. The data base information
table and the data base are created in the overlay GENDB.

2.3.2.2 READUD Overlay (1,0)

The second level overlay READUD reads all the user directives. The data
base directives are processed by the third level overlay (1,1) in PRDATA. The
executive directives for solving a PAN AIR problem are processed in the other
third level overlay (1,2) PREXEC.

2.3.2.3 PRDATA Overlay (1,1) -

The third level overlay PRDATA processes the data base user directives.
The available user directives are defined in Paragraph 6.4 of the PAN AIR
User's Manual (Ref. 1). Such things as names, user accounts, disk set names,
user identification and data base status may be changed. An in-core data base
information table is used to store the old and new information.

2.3.2.4 PREXEC Overlay (1,2)

The third level overlay PREXEC processes the executive user directives
defined in Paragraph 6.5 of Reference 2. The executive directives refer to
standard and non-standard PAN AIR Problem definitions. The commands are
stored in-core in a table.

2.3.2.5 GENDB Overlay (2,0)

The second level overlay GENDB displays the data base information in
printed form and also stores the table data in the MEC temporary data base for
use by the other modules.

2,3.2.6 GENCC Overlay (3,0)

The overlay generated control cards for Cyber versions of PAN AIR. It
resides in MEC but it is not invoked.
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2.3.3 MEC Data Base

A temporary data base named MEC is created by MEC module. The Master
Definition for this data base is described in Appendix 2-D.

2.3.4 MEC Interfaces

2.3.4.1 System Interfaces

The MEC module is accessed by JCL procedures.

2.3.4.2 External Interfaces

The MEC data base is used by all other PAN AIR modules. MEC and DIP are
the only modules which write on the MEC data base. The problem identification
(PID), and user identification (UID), are the only variables affected.

2.3.4.3 ‘Internal Interfaces

The interfaces between the overlays and the subprograms is defined by a
tree structure diagram in Appendix 2-A.

2.3.5 Data Flow

The flow of execution is depicted in Figure 2.2. During execution data
flows between overlays, subprograms, data bases and disk files. Figure 2.2
depicts this activity in a general way. Detailed data flow information can be
found by consulting the glossaries of those programs/subprograms which are of
interest. Also, Appendix 2-C has been included to aid analysis_of data flow
between MEC and its temporary data base. Section 1, Paragraph 1.4 of this
document can be consulted for more detailed information of the use of the
tools available for analysis of data flow.

2.4, LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions
(hierarchial structure) of the overlays and their subprograms and gives the
purpose of each subroutine.

2.4.1 Functional Decomposition

See Appendix 2-B for a description of the MEC functional decompositign.
Section 1, Paragraph 1.4.1 of this document can be consulted for more detailed
information of the use of the functional decompositions.

2.4.2 Subroutine Descriptions

The subroutines used in the MEC module are described below. Also refer
to the tree structure in Appendix 2-A. The subroutines called by GENCC are
included with PAN AIR but are not invoked by version 3.0. They are not
described below.
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2.4

APPEND

Appends a three character or less suffix to the default name of
one or more data bases.

DBASE
— Updates the in-core data base information table as prescribed by
the user directives for data base modification.

DISBIT
Displays the data base information table in printed form.

KEEP
Processes user directives indicating which data bases should be
kept for Tater PAN AIR problems..

KEYCHK
Selects a portion of an input character string to determine the
key portion of the string. The length of the extraction is either
three or four leading characters for the PAN AIR software.

PLIMIT
Processes PL directive for setting print limits for PAN AIR modules

PRCHEC
“Processes the user directive for a data check. The output is used
by CHECK to create control cards (CDC computers only).

STATDB
Alters data base type from PAN AIR default to user specified
PERM/TEMP status.

STRWRD ;
Stores a designated entry into the data base information table.

WRITDB
—  Transfers the entries from the iq-core data base information table
to the MEC data base stored on disk.



MEC
TOP LEVEL
OVERLAY(0,0)

Initialize

. User and Call
Directive
Inputs other Overlays ‘
NOT INVOKED
o
Y 2 Y
OVERLAY(1,0) OVERLAY(2,0) OVERLAY(3,0)
READUD GENDB GENCC
Read and Write Generate
Process all and Display Control Card
Directive Data Data Base File
OVERLAY(1,1)| |[OVERLAY(1,2) o MEC Control ((::::Zrm
PRDATA PREXEC Data Card
%-—_——ﬂ ==a Base File
Process Process Usen ~—— ~————
Data Base Executive Y
Directives Directives
. Data Base

Figure 2:1 - MEC Structure

Information

2.5



Initial
Control Cards

Y

System Procedure

Figure 2.2 - Data Execution Flow

i

Called
MEC
Executes
un . READUD
dentificationf--cc-e... .
nformation Executes
(Data PRDATA Data Base 7\‘_
Base  freeeeeees » ----- Informatior.
[Directives Executes Table 73
Executive | - PREXEC | Directive
Directives Directives "] Table i
. t ;
— GENDB ;
MEC [ ” N Executes [ oTTTTTT )
DATA
BASE



APPENDIX 2-A TREE STRUCTURE

The tree structure diagram of the MEC module has been deleted from this
document. It is, however, available on the installation tape.
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APPENDIX 2-B MEC FUNCTIONAL DECOMPOSITION
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MEC - Module Execution Control

A MEC (0 0) Overlay Initialize MEC Execution
PRGEG - Initialize Program Printout
B ISDMS - Initialize SDMD Execution

B READUD-OVERLAY (1,0) - Read User Directives and Store
A Initialize READUD
B LOADREC - Read a record from Input Card File
A - If End of File, Set Error Flag and Abort
B - STRMOV - Extract Keyword
C Process Input Record
A - Store Run Identification if Present
B - PRDATA OVERLAY {1,1) - Process Data Base Directives if
"DATA" is keyword
A LOADREC - Read Input Record Determine Input Errors
and Extract Keyword if Present
Record Data Bases to be Saved if "KEEP" is
- Present Keyword
C STRWRD - Record Data Bases to be Dropped if
"RELEASE" is Present Keyword
D APPEND - Add Suffix to Data Base Name if "APPEND"
is Present Keyword
E STRWRD - Record Data Base User's Account if "UN" is
Present Keyword
STRWRD - Record Data Base ID if "UID" is Present
Keyword
STRWRD - Record Data Base Set Names of "SET" i
Present Keyword
STRWRD - Record Master Definition User Account if
"MUN" is Present Keyword
I STRWRD - Record Master Definition ID if "MUID" is
Present Keyword
J STRWRD - Record Master Defintion Set Name if "MEET"
is Present Keyword
K STRWRD - Record Password for Data Bases if "PW" is
Current Keyword
L DBASE - Determine Name and Location of Single Data
Base for "DBASE" Keyword
M STATDB - Alter status of selected data bases to

B KEEP

T 4 M

permanent

N STATDB - Alter status of selected data bases to
temporary

0 - Indicate End of Data Base Directives if
"END" is Keyword

P - Diagnose Unrecogn1zab1e Directive and
Abort "RUN"

Q - Diagnose and take error exit, if number of

errors in input exceeds program limit

C PREXEC OVERLAY (1,2) - Process all EXEC Directives if
"EXEC" is Keyword

A LOADREC - Read Input Record
B KEYCHK - Determine Keyword

2-B.3
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C If Keyword is FIND, Determine which Type

A If "POTENTIAL" is Present, Store Executive
Type as POTENTIAL

B If IC "UPDATE" is Present, Store Executive
Type as IC

c If "SOLUTION" is Present, Store Executive
Type as SOLUTION

D If 'POST' is present, store execution type
as post processing

E Diagnose Unrecognizable Directive if Detected

D If "FIELD" or "PLOT" are Present, Store in
Executive Parameters

E If Keyword is "RUN", Process and Store Module
Information

F IF Keyword is "DROP", Process and Store Purge
Data Base Information

G If Keyword is "MOUNT", Store Dismount Disk
Command Information

H If Keyword is "DISMOUNT", Store Dismount Disk
Command Information

I If Keyword is "CC=", Store Control Card Image
Information

J If Keyword is "ERROR", Store EXIT Parameters if
Present

0 If Keywpord is "INPUT", Store File Name

K If Keyword is "END", Record End of EXEC Directives

L Diagnose Unrecongizable Directives if Present

M Diagnose too many Directives

N Diagnose too many Errors on Input

D PRCHEC - Process Data Check Directive if Present

A - Initialize Data Check Options ]
B - If "DQG" is Requested, Record Via Switch
o - If "PLOTS" are requested, Record Via Switch

E Store SYSTEM Card Parameters if Present for Boeing, Ames,
Langley or WPAFB computer installations

F If Keyword is "END", Indicate No More PAN AIR Directives Exist

G If Too Many Input Errors Were Recorded, Print Diagnostic and
Abort Run

GENCC OVERLAY (3,0) - Generate JCL Control Cards for Requested PAN AIR
Prob1em)(This code was previously used for Cyber computers and is not
invoked

GENDB OVERLAY (2,0) - Define MEC Data Base Table
A DIST - Display MEC Data Base Table
B WRITDB - Write the Data Base Table on the MEC Data Base

PRGEND - Terminate the Execution of the MEC Module

¢



APPENDIX 2-C DATA BASE COMMUNICATIONS CHART

The Data Base Communications Chart is presented in three forms. The
first form has a column order of Data Base, Dataset Name, Map Name, Common
Block, and Program/Subroutine. The second form has a column order of Data
Base, Map Name, Dataset Name, Common Block, and Program/Subroutine. The third
form has a column order of Common Block, Data Base, Map Name, Dataset Name,
and Program/Subroutine. Thus a person can get a cross reference on a data
element by knowing either the Dataset Name, Map Name or Common Block. .
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DATA " COMMON  PROGRAM/

BASE DATASET-NAME MAP NAME BLOCK SUBROUTINE

MEC DATA-BASE-HEADER DBHED /MECDB/  WRITDB

MEC DATA-BASE-LOCATION DBLOC /MECDB/  WRITDB
SECOND FORM

DATA COMMON PROGRAM/

BASE MAP NAME DATASET-NAME BLOCK SUBROUTINE

MEC DBHED DATA-BASE-HEADER /MECDB/  WRITDB

MEC DBLOC DATA-BASE-LOCATION /MECDB/ WRITDB
THIRD FORM

COMMON DATA PROGRAM/

BLOCK BASE DATASET-NAME MAP NAME SUBROUTINE

/MECDB/ MEC DATA-BASE-HEADER DBHED WRITDB

/MECDB/ MEC DATA-BASE-LOCATION DBLOC WRITDB

PRECEDING PAGE BLANK NOT FILMED PAGE 2L o % INTENTIONALLY BtANY

FIRST FORM
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APPENDIX 2-D MASTER DEFINITION

The data base master definition listing of the MEC module has been
deleted from this document. It is produced from the PAN AIR tape during
installation.

2-D.1
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3.0 DATA INPUT PROCESSOR (DIP) MODULE

3.1 INTRODUCTION

The DIP module is the input processor for the PAN AIR system. It reads
user supplied PAN AIR directives, collects them into related groups of data
and stores them on the DIP database for use by other modules in the PAN AIR
system, DIP also provides some diagnostic information to the user on the
output file. Most of the contents of DIP deals with the recognition of
alphanumeric data and the consequent storage of the data. DIP has two modes
of operation. The first mode of operation is invoked to define a new
problem. The second mode of operation involves an "update" or change in the
parameters describing a previously executed problem. User supplied directives
to module MEC (see Paragraph 6.3 of Reference 2) determine the mode of DIP
operation.

3.2 DIP OVERVIEW
3.2.1 Purpose of DIP

The DIP module reads the user's description of the problem and stores it
for use by other modules. The DIP module consists of a top level program
which calls from two to seven primary overlays. The first primary overlay
performs the module initialization function. The second primary overlay reads
and loads the global data. The third primary overlay reads and Toads the
network data. The fourth primary overlay reads and loads the geometric edge
matching data. The fifth primary overlay reads and loads the flow properties
calculation data. The sixth primary overlay reads and loads the data printout
directives. The seventh primary overlay performs the module termination
function. A1l PAN AIR input data, except execution control directives, are
read by the DIP module. The data is checked for accuracy and loaded into the
DIP data base for use by subsequent modules.

3.2.2 DIP Input/Output Data

The DIP module receives input from three sources. The first is the MEC
data base which provides DIP with problem identification, user identification
and run mode. The run mode will indicate that DIP is either to generate a new
data base or use an old data base. The second source of input is the old DIP
data base if this is an update or follow-on run. The final source of input is
the user supplied input data for DIP.

The DIP module produces a printout of each input record (card) read,
followed by any diagnostics associated with the record. The printed output
also contains a summary of the global data, a list of the solutions and a
summary of the networks. ' )

3.2.3 Data Base Interface

The DIP module creates/updates a DIP data base which is used by the
other PAN AIR modules. This data base contains the flow regime data,
configuration data, a list of networks plus individual network data, and a
1ist of solutions plus individual solution data. It also contains the DIP
global defaults, flow properties data, PAN AIR module print flags, and data
printout directives.
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The DIP module also writes the problem identification and user
identification on the MEC data base. =

3.3 MODULE DESCRIPTION

3.3.1 Overall Structure

The main overlays of DIP are briefly summarized in this paragraph.
Lower level subroutines are described in Paragraph 3.4, The DIP functional
decomposition and a chart of the subroutine tree diagram are presented in
Appendices 3-B and 3-A, respectively. The overall structure of DIP is
depicted in Figure 3.1. '

3.3.2 Overlay Descriptions

3.3.2.1 DIP Overlay (0,0)

The top level overlay initializes the data base and default parameters
by calling Overlay (1,0) (Program INITIL). The module then responds to input
data, calling overlays GLOBDP, NETWDP, GEOMDP, FLOWDP, and PPPDIR. The global
data is processed by GLOBDP, the network data is processed by NETWDP, the
geometric edge matching data is processed by GEOMDP, the flow properties data
is processed by FLOWDP and the data printout directives are processed by
PPPDIR. At the completion of input data, the module calls overlay FINIS.

3.3.2.2 INITIL Overlay (1,0)

The second level overlay INITIL (Figure 3.2) opens the data base and .
reads the data base header and the run options., The DIP data base is then A4
checked and opened. If the MEC run options indicate an update run, INITIL
reads the global level data sets from the DIP data base into core,

3.3.2.3 GLOBDP Overlay {2,0)

The second level overlay GLOBDP (Figure 3.3) is called in response to a

"BEGIN GLOBAL DATA" input record. It processes all of the global data input
by the user. Data transmitted to the DIP data base consists of header data,

global defaults, and global prints. Data transmitted to the MEC data base is
header data.

3.3.2.4 NETWDP Overlay (3,0)

The second level overlay NETWDP (Figure 3.4) is called in response to a
“BEGIN NETWORK DATA" input record. It processes all of the network data input
by the user. Data transmitted to the data base consists of individual network
data for panel coordinates and constraints. .

3.3.2.5 GEOMDP Overlay (4,0)

The second level overlay GEOMDP (Figure 3.5) is called in response to a
"BEGIN GEOMETRIC EDGE MATCHING" input record. It processes the edge matching
(abutment) data. Data transmitted to the data base consists of the user -
defined abutments.
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3.3.2.6 FLOWDP Overlay (5,0)

The second Tevel overlay FLOWDP (Figure 3.6) is called in response to a
"BEGIN FLOW PROPERTIES CALCULATIONS DATA" input record. Surface flow
properties are processed by the third level overlay SURFLO. Forces and
moments are processed by the third lTevel overlay FORMOM.

3.3.2.7 SURFLO Overlay (5,1)

The third level overlay SURFLO (Figure 3.6) is called in response to a
"SURFACE FLOW PROPERTIES" input record. :

3.3.2.8 FFDATA Overlay (5,2)

The third level overlay FFDATA (Figure 3.6) is called in response to a
"FIELD FLOW PROPERTIES" input record.

3.3.2.9 FORMOM Overlay (5,3)

The third level overlay FORMOM (Figure 3.6) is called in response to a
"FORCES AND MOMENTS" input record.

3.3.2.10 PPPDIR Overlay (6,0)

The second level overlay PPPDIR (Figure 3.7) is called in response to a
"BEGIN PRINT PLOT" input record. The data group processed by this overlay
specifies point options for the Print/Plot Processor (PPP) module. Geometry
print options are processed by the third level overlay PPGEOM. Flow
properties at points print options are processed by the third Tevel overlay
PPPOIN. Force and moment data for surface configurations is processed by the
third level overlay PPCONF.

3.3.2.11 PPGEOM Overlay (6,1)

The third level overlay PPGEOM (Figure 3.7) is called in response to a
"GEOMETRY DATA" input record. The input record set processed by this overlay
specifies the print files that PPP will create from DQG data.

3.3.2.12 PPPOIN Overlay (6,2)

The third overlay PPPOIN (Figure 3.7) is called in response to a "POINT
DATA" input record. The input record set processed by this overlay specifies
the print files that PPP will create from PDP data.

3.3.2.13 PPCONF Overlay (6,3)

The third level overlay PPCONF (Figure 3.7) is called in response to a
CONFIGURATION DATA" input record. The input record set processed by this
overlay specifies the print files that PPP will create from CDP data.

3.3.2.14 FINIS Overlay (7,0)

The second level overlay FINIS (Figure 3.8) is called in response to a
END PROBLEM" input record or an END-OF-FILE mark on the input file. This
overlay writes the global and global flow data sets to the DIP data base and
closes the DIP data base. It then closes the MEC data base.

3.3
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3.3.3 DIP Data Base
DIP creates one permanent data base. The Master Definition is described

in Appendix 3-D.

3.3.4 DIP Interfaces

3.3.4.1 System Interfaces

The DIP module is accessed through MEC by user control cards and a
system procedure. This interface is described in Sections 1.0 and 2.0 of this
document,

3.3.4.2 External Interfaces

The DIP data base is used by all other modules. DIP is the only module
which can write on the DIP data base. DIP also writes on the MEC data base.

The problem identification (PID), and user identification (UID), are the only
variables affected.

3.3.4.3 Internal Interfaces

The interfaces between the overlays and the subprograms are defined by a
tree structure diagram in Appendix 3-A.

3.3.5 Data Flow

The flow of execution is depicted in Figure 3.9. During execution, data
flows between overlays, subprograms and data bases via labeled common blocks.
Figure 3.9 illustrates this activity in a general way. Detailed data flow
information can be found by consulting Figures 3.2 through 3.8, Appendix 3-C
(Data Base Communications Chart) , and the glossaries of the
programs/subroutines which are of interest. ;

3.4 LOWER LEVEL FUNCTIONS

The following paragraphs describe the general structure and purpose of
the overlays and their subprograms.

3.4.1 Functional Decomposition

See Appendix 3-B for a description of the DIP decomposition.

3.4.2 Subroutine Descriptions

3.4.2.1 Subroutines from GLOBDP - Overlay (2,0)

ADDE

Processes the “ADDED MASS COEFFICIENTS" input record. This record
may contain a moment reference point, but CDP apparently does not
use it.

The input data is loaded into DIP data set GLOBAL-FLOW-PROP.

3.4
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AMCGLR

CHEC

CONF

GLDAPR

Generates the 6 solutions required for added mass coefficient
calculations by CDP, checks Mach number and checks for symmetric
planes of symmetry. The generated data is loaded into DIP data
set GLOBAL.,

Processes the -"CHECKOUT PRINTS" input record. This record
contains a parameter list of one or more abbreviated module names,
each followed by its own list of integer print options. The input
options are loaded into DIP data set GLOBAL-PRINTS.

Processes the "CONFIGURATION" input record. This record contains
the configuration and flow symmetry data. The input options are
loaded into DIP data set GLOBAL.

GLOOPT

Transforms the WM (magnitude of rotational flow) and WDC
(direction cosines of axis of rotation) into the rotational flow
vector for all new solutions.

Prints the global data, including new solutions, if the DIP global
data print flag is set true. This flag is set in CHEC in response
to DIP option"“3."

GLOSOL

Processes the solution update parameter on the "BEGIN GLOBAL DATA"
input record. The options are:

NEW (DEFAULT) - no updates.

REPLACE - purge solution data from previous
run(s).

UPDATE - old solution data can be selectively

updated. No new solutions may be
defined. Solution idents remain
fixed.

Processes the option 2 input records for global solution data.
This option introduces data by columns. An example is:

ALPHA = .2 , .3, .5
The input data is loaded into DIP data set GLOBAL.
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IDCNCY

Checks for missing input for Problem ID, User ID, configuration
symmetry and flow regime data. Load default values for all
missing items just 1isted. This routine is only called during a
creation run. None of the above items are updatable. The
defaults are written into the DIP data set GLOBAL.

MACH

Processes the flow regime definition record. This record defines
the freestream Mach number and the direction of compressibility
effects. Angles are input in degrees. Examples:

MACH 2.0, CBETA = .05
2.0

MACH

1.2, CALPHA =
1.2, CALPHA =

Parameter defaults:
MACH = 0., CALPHA = 0., CBETA = Q.
The input data is loaded into DIP data set GLOBAL.
OP1DAT

Processes the option 1 data input records for global solutions.
This option introduces data by rows. Examples:

.2 SOL-1
.3 SOL-2
.5 SOL-3

See OP1HED for headers.
The input data is loaded into DIP data set GLOBAL.

OP1HED

Processes the option 1 header input record(s) for global
solutions. This option introduces data by rows. Example:

" ALPHA SID —
See OP1DAT for data.
The input data is loaded into DIP data set GLOBAL.
PIDUID

Processes the "PID" and "UID" record types. Examples:

= THIS IS A SAMPLE PROBLEM ID-
THIS IS A SAMPLE USER ID

~ PID
uID

The input data is loaded into DIP and MEC data sets
DATA-BASE-HEADER.
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RVPFIL

Provides reference velocity for pressure defaults and ratio of
specific heats defaults for solutions, when necessary.

The input data is Toaded into DIP data set GLOBAL-DEFAULTS.
SOLFIL

Provides default solution data as required. If no solutions were
defined (creation run only), generate a single solution with the
values indicated below. Parameter defaults for solution data:

ALPHA BETA UIN WM WDC WCP  SID
0. 0. 1. 0. 0.,1.,0. 0.,0.,0. (2
i bltank
words)

SOLTRN
Transforms the alpha, beta and unif (magnitude of uniform onset flow)

into the uniform onset flow vector for all new solutions.
The results are loaded into DIP data set GLOBAL,

3.4,2.2 Subroutines from NETWDP - Overlay (3,0)

BCSTEC

Checks user inputs and load defaults when required for the following
types of network data:
" Supplement record duplication checks;
Boundary condition class and subclass input;
Method of velocity computation;
Singularity types;
Edge control point data;
Closure input for edges;
No doublet edge matching; and
Adjacent edge check for control point edges.

BOUN

Processes the Boundary Condition Specification record for networks.
Examples:

BOUNDARY CONDITION
BOUNDARY CONDITION

OVERALL , 1, 3
LOCAL , 1, 4

The class and subclass data is loaded into DIP data set NETWK-SPEC.

CBC123
Defines defaulted general boundary condition coefficients for classes

1, 2, and 3. Check user inputs of specified flows for classes 2 and
3. Check user inputs of tangent vectors for class 3.
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CHKBC4

Checks user inputs of constraint data for a boundary condition class
4 problem.

CHKBC5

Checks user inputs to determine if the boundary condition coefficient

terms for RHS tangential (term indices 15 and 30) have been
specified. If user did not input these terms, define default term

with a value of -1 for first and second equations.

CLDATA
Processes the values for the closure edge boundary condition data set

for a network. The closure values may appear as a floating point
value, an array of values, or as indexed input. Indexed input starts

with a left paren as follows:

(row, column) = value

CLOS

Processes the closure edge boundary condition data set for a
network. It recognizes the following record types:

TERM =

i
i

SOLUTIONS =

values

This routine is responsibile for loading data into DIP data sets
CLOS-COND and NETWK-BDC.

COEF

Processes the coefficients of general boundary condition equation
data set for a network. It recognizes the following record types:

TERM =
SOLUTIONS =
POINTS =

values

This routine is responsible for loading data into DIP data sets
COEF-GEN-BC and NETWK-BDC.

(
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GRID

Processes the network grid point data which follows the network ID
record. Each point is defined in triplet form (X, Y, Z) and must not
spill across record boundaries. Each data set contains one complete
grid column.

The data is loaded into DIP data set PANEL-COORDS.

LOCA

Processes the local incremental onset flow data set for a network.
It recognizes the following record types:

TERM =
INPUT-IMAGES =
SOLUTIONS =
POINTS =
values

This routine is responsible for loading data into DIP data sets
LOCAL-FLOW and NETWK-BDC.

METH

Processes the "METHOD OF VELOCITY COMPUTATION" record for network
data. Examples:

METHOD OF VELOCITY COMPUTATION = LOWER-SURFACE-STAGNATION
The data is loaded into DIP data set NETWK-SPEC.
NDELDR

Loads general network data defaults in response to the network
jdentifier record. A1l defaults may be over-written by user inputs.

NECDWR

Writes following network control data sets to DIP data base:

NETWK-SPEC
NETWK-BDC
NETWORK-UPDATE-CODES

NEDAPP

Prints network data for all known networks, including input order
number, user label, status (NEW, REPLACED, UPDATED, DELETED, or oLD),
boundary condition class and subclass, singularity types, and grid
point row and column counts.
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NETIDS

IsoTates the network ID (if any) found in the parameter list of the
network identifier record.

NETOPT

Process the option parameter at the end of the network record. The
options are:

DELETE
SOLUTION (IC)
REPLACE

NEW (Default)

NETWID

Recognizes network data records. Examples:

STORE VIC MATRIX

STORE LOCAL INCREMENTAL ONSET FLOW
DELETE REFLECTION IN PLANE QF SYMMETRY
WAKE FLOW PROPERTIES TAG

TRIANGULAR PANEL TOLERANCE =

UPDATE TAG =

BOUNDARY CONDITION =

METHOD OF VELOCITY COMPUTATION =
SINGULARITY TYPES = SA _ DA

EDGE CONTROL POINT LOCATIONS =

NO DOUBLET EDGE MATCHING =

CLOSURE EDGE CONDITION

COEFFICIENTS OF GENERAL BOUNDARY CONDITION EQUATION

TANGENT VECTORS FOR DESIGN
SPECIFIED FLOW =ooieo o
LOCAL INCREMENTAL ONSET FLOW
NETWORK

NODOUB

Processes the "NO DOUBLET EDGE MATCHING" record for network data.
Examples:

NO DOUBLET EDGE MATCHING

2, 4
1

NO DOUBLET EDGE MATCHING
The data is loaded into DIP data set NETWK-SPEC.

NOPCHK
Processes the network option for update runs., This option is
specified or defaulted in the parameters 1ist of the network
identifier record. The option was decoded by routine NETOPT. Also
loads network ID for new networks. The ID is loaded into DIP data
set GLOBAL. o ' )
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SING
Processes the "SINGULARITY- TYPES" record for network data. Examples:

SINGULARITY TYPES = NOS, NOD
SING = SA, DA
SING = sD1, DDI
SING = DW1
SING = DW2

The data is loaded into DIP data set NETWK-SPEC.

SPEC

Processes the specified flow data set for a network. The following
record types are recognized:

TERM =
INPUT-IMAGES =
SOLUTIONS =
POINTS =
values

This routine is responsible for loading data into DIP data sets
NETWK-BDC and SPEC-FLOW. '

TANG

Processes tangent vectors for design data set for a network. It
recognizes the following record types:

TERM =
UNALTERED
SOLUTIONS =
POINTS =
values

This routine is resbonsib]e for loading data into DIP data sets
NETWK-BDC and TANG-VEC.

UPDA
Processes the “UPDATE TAG" record for network data. Examples:
UPDATE TAG =1, 2, 3, &
UPDATE TAG
UPDATE TAG = 1

The data is loaded into DIP data set NETWK-SPEC.



3.4.2.3 Subroutines from GEQOMDP - OVerlay (4,0)

ABNEID

Processes the abutment definition records parameter list, The 1list
included the network ID's and their whole or partial edges which form
the abutment. Each network ID must be preceded by an equal sign
(=). Examples:
ABUTMENT NETWORK-NO-2, 2, 1,
NETWORK-NO-5, 4, ENT
4

7 ’
ABUT=2, 2, ]9 5=53 4!

The data is loaded into DIP data set USER-ABUT.

ABUT

3.4.

Recognizes the abutment definition record. It also processes the
supplement records for planes of symmetry and smooth edge treatment.

Examples:
ABUTMENT =7 , 4
PLANE = SECOND

SMOOTH EDGE TREATMENT

The data is loaded into DIP data set USER-ABUT.

2.4 Subroutine from FLOWDP - Overlay (5,0)

FLWOPT

3.4.

Processes the post solution update option on the "BEGIN FLOW
PROPERTIES CALCULATION = option" input record. The options are:

NEW (Default) / A1l new cases
REPLACE / Purge old, all new cases
UPDATE / Update old, add new cases

2.5 Subroutines from SURFLO - Overlay (5,7)

FPPOIN

3.12

Processes the calculation point locations record for surface flow
properties calculations. Examples:

POINTS = CENTER-CONTROL-POINTS
POINTS = EDGE-CONTROL-POINTS
POINTS = ADDITIONAL-CONTROL-POINTS
POINTS = ALL-CONTROL-POINTS

POINTS = GRID

The data 1s loaded into DIP data set SURF-FLOW.
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SFDELO

Checks surface flow case record type counts -to determine if there is
any duplication of same, or a missing surface flow properties
record. Also load default values for any missing record types.

3.4.2.6 Subroutines from FFDATA - Overlay (5,2)

CVRTVC

Translates velocity correction requests from an input record form to
an output database specification form.

CVTPDR

Translates print and database requests from their input form to their
output form,

FFDEFA

Uses the defaults for any record in a field flow properties case that
has not been specified. If the record cannot be defaulted then the
user is warned and the case is dropped.

FFINIT

Initializes the labeled common blocks which describe the allowable
record syntax and parameter values. It also maps the record type to
the posiition in a labeled common block where its parameter values
are stored. )

- FFOREQ

Processes the parameters specified in the PRINTOUT or DTA BASE
records. It reads the compressed 1ist of option selections (by
number of keyword) and produces a full option 1ist whose set entries

correspond to selected options.

FFSOL

Processes the SOLUTION record by transfering the solution number
directly to a local array and by interpreting the solution number
from the solution name and transfering it to a local array.

LISPAC
Converts a 1ist of options selected and not selected to a packed list
of only those options selected. It can extract two types of packed
1ists. It does not do word packing.

LOOKUP

Finds the occurance(s) of an item in a list of items.



MARKRC

Records the occurance of a record type and warns if that record type e
was previously specified.
OBCASE
Controls the handling of off body case records.
0BCLOS .
Replaces unspecified records in an off body case with their defau1t§,
converts the input specifications to a form suitable for the Field
Data Processor to user, and writes the data to the DIP data base.
OBOPEN
Initializes the defaults for an off body case. For a standard run,
thses defaults will include global defaults. For an update run,
these defaults will be the values for the previous case.
OFLOAD
Transfers a numerical (integer or real) list of parameters in an
input record to a local array.
PDRCVT
Translates print and data base requests from their output form to L=
their input form.
REPARS
Reads and parses the next valid record in the input stream.
SLCASE
- Controls the handling of streamline case records.
SLCLOS
Replaces unspecified records in a streamline case with their
defaults, converts the input specifications to a form suitable for
the Field Data Processor to use, and writes the data to the DIP data
base.
SLOPEN
Initializes the defaults for a streamline case. For a standard run,
these defaults will include global defaults., For an update run, '
these defaults will be the values for the previous case.
VCHECK
Checks the validity of the current input record by compariﬁg it with =

the allowable forms of syntax and values defined by several labeled



common areas initialize by FFINIT.

3.4,2.7 Subroutines from FORMOM - Overlay (5,3)

FMACCU

Processes the "ACCUMULATE" record from the forces and moments data
subgroup of the flow properties data group.

FMACDE

Processes the parameter defaults for the forces and moments
"ACCUMULATE" record. The data is loaded into DIP data set SURF-FAM,

FMACPL

Processes the parameter list for the forces and moments “ACCUMULATE"
record. The data is loaded into the DIP data set SURF-FAM.

FMASDL

Loads the defaults for user selected axis systems. The data is
loaded into DIP data set SURF-FAM.

FMASPS

Processes the parameter list on the AXIS SYSTEM record. The data is
loaded into DIP data set SURF-FAM.,

FMAXSY

Processes the AXIS SYSTEMS record from the forces and moments data
subgroup of the flow properties data group.

FMCASE

Processes forces and moments “CASE" records plus 14 supplement record
types. The supplement record types are:

NETWORKS-IMAGES

EDGE FORCE CALCULATION

MOMENT AXIS

LOCAL REFERENCE PARAMETERS
SURFACE SELECTION

SELECTION OF VELOCITY COMPUTATION
COMPUTATION OPTION FOR PRESSURES
VELOCITY CORRECTIONS

PRESSURE COEFFICIENTS RULES
RATIO OF SPECIFIC HEATS
REFERENCE VELOCITY FOR PRESSURE
LOCAL PRINTOUT

LOCAL DATA BASE

ACCUMULATE



FMEDFO

Processes the EDGE FORCE CALCULATION record from the forces and
moments data subgroup of the flow properties data group. The data is
loaded into DIP data set SURF-FAM,

FMGLDE
Initializes supplement (global) record type counts and load global
defaults for the forces and moments data subgroup. The default data
is loaded into the DIP data set SURF-FAM.

FMLODE

Checks inputs and load defaults as required for case level data in
the forces and moments subgroup. The data is loaded into DIP data

set SURF-FAM.
FMLOIN

Initializes case level defaults and parameter values. The default
data is loaded into DIP data set SURF-FAM,

FMMDAX

Processes the MOMENT AXIS record from the forces and moments subgroup
of the flow properties data group. The default data is loaded into
DIP data set SURF-FAM.

FMSURF

Processes the SURFACE SELECTION record from the forces and moments
data subgroup of the flow properties data group. The data is loaded
into the DIP data set SURF-FAM.

3.4.2.8 Subroutine from PPGEOM - Overlay (6,1)

NETDQG

Processes the network ID 1ist on the NETWORKS record for the PPP
"GEOMETRY DATA" group. The data is loaded into DIP data set
GEOM-PRINT-PLOT.

3.4.2.9 Subroutines from PPPOIN - Overlay (6,2)

NETPDP

Processes the network ID 1ist and corresponding images on the
NETWORK-IMAGES record for the PPP "PQOINT DATA" group. The data is
loaded into DIP data set POINT-PRINT-PLOT.

PPARAY

Processes the "ARRAY" record for PPP "POINT DATA". This record
indicates grid direction (rows or columns) and point type (control or
grid). The data is loaded into DIP data set POINT-PRINT-PLOT.

A4



3.4,2.10 Subroutine from PPCONF - Overlay (6,3)

NETCDP

Processes the network ID 1ist and corresponding images plus panel
and/or column-sum options on the NETWORK-IMAGES record for the PPP
CONFIGURATION DATA group. The data is loaded into DIP data set
CONFIG-PRINT-PLOT.

3.4.2,11 Subroutine from FINIS - Overlay (7,0)

AMCFLR

Responds to an "ADDED MASS COEFFICIENTS" input record at time of DIP
termination. Wake networks are eliminated. CDP cases are updated to
reflect the 6 new Added Mass Coefficients onset flows (SOLUTIONS).
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APPENDIX 3-A TREE STRUCTURE

The tree structure diagram of the DIP module has been deleted from this
document. It is, however, available on the installation tape.

3-A.1
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APPENDIX 3-B DIP FUNCTIONAL DECOMPOSITION
The functional decomposition of the DIP module is presented here, The

decomposition labels are given in the order of their execution and therefore
may not be alphabetic.

3-B.1






DIP (0,0) Overlay -

I

PRECEDING PAGE BLANK NOT FILMED

DIP - Data Input Processor

- Program initialization

H PRGBEG
ISDMS

LODREC

JB

JC

Begin DIP execution

Initialize SDMS

Read input record

Load first two key words, if any.
If input file empty, terminate run.

INITIL (1,0) Overlay - Initialize for input data processing

DBOPEN
DSMAP,
ESGET
CHPADB
PAOPEN
DSMAP
ESGET

Mmoo O @

G
AA

Open MEC data base.

Define MEC maps and read MEC header data and MEC
run options (update flags).

Check DIP data base - if bad, terminate run,
Open DIP data base.

Define DIP maps for DIP global level datasets

If run options indicate an update run, read DIP
global Tevel datasets.

Initialize key global parameters

If errors occurred in INITIL, terminate DIP.

GLOBDP (2,0) Overlay - Read, write, check and load global input

W GLOOPT
B LODREC

V  OP1DAT
C PIDUID

D CONF
E MACH

FOPTHED

X GLOSOL

G FPVALU
H SURF

I SETFLG
J SETFLG

A SELE

data, if first two key words are B E G I N
GLOBAL. -
Process global option flag on BEGIN GLOBAL DATA
record
Read next input record.
Load first two key words, if any.
Load option 1 solution data, if present. .
Process problem ID or user ID record if first key
word is P I Dor U 1D.
Process configuration record, if first key word is
CONFIGURATION.
Process flow regime data record, if first key word
isMACHor CALPHAOrCBETA.
Process option 1 solution header record if first
key word is ALPHAoOrBETAorUINForWM
or WDCorWCP or$SIDandnoparameter 1ist
delimeter exists. -
Process option 2 solution data record if first key
word is ALPHAorBETAorUINFoOrWMor
WDCorWCPorS I'Dand is folTowed by a
parameter 1ist.
Process geometric network edge matching tolerance
record, if first key word is GEOME TR I C,
Process surface selection record, if first key
word is SURF AC E.
Process store vic matrix record when first two key
words are STORE V1IC,
Process store Tocal onset flow for computation of
pressure record, if first two key words are
STORE LOCAL
Process selection of velocity computation record,
if first key word is SELECT I ON.

3-B.3

aaet 3~ Do Aienionaniy BLANK



3-B.4

Mmoo v ¢ & X2 ™ A X o

-

- O @ 3> N - N

L) — 0N <

CoMP
VELO
PRES
REFE
REFE
CHEC
ADDE
IDCNCY
SOLFIL

AMCGLR

RVPFIL

CLDAPR
SOLTRN

SA
SB
thru
SD

DSMAP
LODREC

NETWID
NETOPT
NETIDS
NOPCHK
NDELDR
GRID
LODREC
A
SETFLG

SETFLG

PLAN
SETFLG

REP
ESPUT

Process computat1ona1 option for pressure record,
if first key word is COMPUTATION, L=
Process velocity corrections record, if first key

word is VELOCITY,

Process pressure coefficient rule record, if first

word is PRES S URE,

Process reference velocity for pressure record, if
first key word is REF ERENCE,

Process ratio of spec1Tﬁc heats record, if first

key word is RAT I O.

Process checkout prints record, if first key word
isCHECKOUT.

Process added mass coefficients record, if first

key word is AD D E D.

Check need of defaults for problem ID, user 1D,

configuration and field flow data.

Check need of default solution data.

Generate 6 solutions required for added mass

coefficient calculations.

Check need to fill reference velocity for
pressures list,

Check need to print new solutions.

Transform input solution data to vectors.

Compute first, second and third handy matrices.

Write global 1eve1 data to data base.

- Write header data to MEC data base.

- Write header data, global defaults

and global prints to DIP data base. ~
NETWDP (3,0) Overlay - Read, write, check and load network input
data, if first two key words are BE G I N
NETWORK,
Define maps for individual network datasets.
Read input record.
Load first two key words, if any.
Process network 1D record if first key word is
NETWORK.
Process network record update parameter option, if
any.
Process network record ID, if any.
Check network update option.
Load network defaults.
Read network grid data.
Read input record.
Load first two key words.
Process store vic matrix records, if first two key
words are STORE YV IC,
Process store local onset flow for computation of
pressure record, if first two key words are
STORE LOCAL.
Process delete reflection in plane of symmetry
record, if first key word is D EL E T E.
Process wake flow properties tag record, if first
key word is W A K E. o
Process tr1angu1ar - panel tolerance record, if L 4

FPYALU

first key word is TRIANGULAR.



UPDA
BOUN
METH
SING
EDGE
NODOUB
CLOS

A

SPEC

= Process update tag record, if first key word is
UPDATE.
- Process boundary conditions record, if first key
word isBOUNDARY,
-  Process method of velocity computation record, if
first key word is ME T H 0 D.
- Process singularity types record, if first key
word is SINGULARITY,
-  Process edge control point locations record, if
first key word isEDGE.
Process no doublet edge matching record, if first
key word is N O.
Process closure edge condition data, if first key
- word is CLOSURE.
EDGE Process the identifier and locator

parameters on the closure edge condition
record.

NBDORT - Read next record, load key word, identify,
and check order of input.

BDTERM - Process term, ID, if key word is
TERM

SOLSFP - Process solutions list, if key word is S O L
U.

CLDATA - Process closure data values, if first key

word is a numeric,
- Process coefficients of general boundary condition
equation data, if first key word is
COEFFICIENTS,

NBDORT ~ = Read next record, load key word, identify,
and check order of input.

BDTERM - Process term 1D, if key word is
TERM

SOLSFP - Process solutions list, if key word is SO L
U,

NEPOIN - Process control point locations record, if
key word is PO I N T,

NEDATA - Process coefficient data values, after a

control point locations record.
Process tangent vectors for design data, if first key
word is TANGENT.
NBDORT - Read next record, load key word, identify,
and check order of input. :

BDTERM - Process term ID, if key word is T E R M.

- Set flag to suppress scaling of vectors to
unit length, if key word is UNALTERE
D.

SOLSFP - Process solutions 1ist, if key word is S O L
UTIONS,

NEPCIN - Process control point locations record, if
key word is PO I N T,

NEDATA - Process tangent data values or a method of
computation flag record after a control
point locations record.

- Process specified flow data, if first key word is

SPECIFIED.

3-B.5



m m oo

@ M m

AC
AD

AE
AF
AG
AH

NBDORT

BDTERM
INPTUM

SOLSFP
NEPOIN
NEDATA
ESGET

- Read next record, load key word, identify,
and check order of input. 1=
- Process term ID, if key word is T E R M,
- Process input or images options, if key word
is INPUT.
- Process solutions 1ist, if key word is SO L
UTIONS.
- Process control point locations record, if
key word is P O I N T.
- Process specified flow data values after a
control point locations record,
Read existing boundary ¢ondition
" coefficients data from dataset NETWK-BDC

- Process local incremental onset flow data, if first
key word isLOC AL,

NBDORT

BDTERM
INPUIM

SOLSFP
NEPOIN
NEDATA

BCSTEC

CBC123

CHKBC4
CHKBCS
NECDWR
NEDAPR

Read next record, load key word, dentify,
and check order of input.

- Process term ID, if key word is T E R M,

- Protess input or image options, if key word
is INPUT,

- Process solutions list, if key word is S O L

UTIONS. -0

- Process control point locations record, if

key word is PO I N T,

- Process local incremental onset flow
values after a control point locations
record.

If key word is B EG I Nor END, set network
complete flag. T
Perform network checks.

- If not a solution update, check user
inputs for current network.

- Check data for boundary condition 1, 2

or 3.

Check data for boundary condition 4.
Check data for boundary condition 5.
Write network control data to data base.
Print summary of networks data, if
networks data complete flag set,

D GEOMDP (4,0) Overlay - Read, write check and load geometric edge

A DSMAP

B LODREC
BB

C ABUT
A
B

3-B.6

ABENID

~matching data, if first two key words are B

EGIN GEOMETRIC, -
Define network dimensions and use abutment data
maps.
Read a record from input.
- Load first two key words, if any.
Process abutment record, if first key word is
ABUTMENT.
- Tnitiaiize and update parameters.

- Process parameter list of abutment

definition record.



(

E

m o

b

d
thru
M
N

FLOWDP (5,

A FLOWPT
B LODREC

C SURFLO (5,1) Overlay -

s w] 0 =

= X

«»v XN

(el |

LODREC
PLAN

SETFLG

ESPOR
0) Overlay -

- Read a record from input.

- Load first two key words, if any.

- Process planes of symmetry record,
if first key word is PLANE S,

- Process smooth edge treatment
record, if first key word is
SMOQTH.

When first key word is ABUTMENT

or BEGI Nor END, test

current abutment data.

- Write user abutment on data base.

Read, write, check and load flow

properties calculations data, if first

two key words are BEGIN F L OW.

- Process the post solution update option on BEGIN
FLOW record. :
- Read a record from input and load first two key

words.,

DSMAP
FPCASE

LODREC -
NETWIM -

SOLSFP

FPPOIN
SURF -

SELE -
comp -

REFE -
REFE -

SFPRDB
SFPRDB

B SFOULD

Process surface flow properties, if
first two key words are SURF ACE
FLON. T

Define surface flow properties data maps

Process case name on "SURFACE FLOW"

record.

Initialize output array and supplement

record counts,

Read a record from input.

Load first two key words, if any. ,

Process network images list record, if

first key word is NETWORK -

IMAGES. -

- Process solutions list records, if
first key word is
SOLUTIONS.

- Process control points record, if
first key word is P O I N T.

Process surface seélection record, if

first key word is SURF ACE and

second key word is not F L O W,

Process selection of velocity

computation record, if first key word

isSELECTION,

Process computation option for

pressures record, if first key word is

COMPUTATION,

Process ratio of specific heats record,

if first key word is RA T 1 0.

Process reference velocity for pressure

record, if first key word is

REFERENCE,

Process printout/database record,

if first key word is PRINTOUT

or DATA,

- Process parameters 1ist of
printout/data base record.
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3-B.8

E FFDATA
A

C LODREC - Read a record from input. .
E - Load first two key words, if any. L=/
F PRES - Process pressure coefficient rules
record, if first key word is
PRESSURE,
G VELO . - Process velocity corrections
record, if first key word is
VELOCITY.
I SFOUCL - Load output array with pressure
and velocity data.
SFDELO - Load defaults for current surface
‘ flow properties calculation case.
FPDAWR - Write current surface flow
properties calculation case to
data base.
(5,2) Overlay - Process field flow properties if first
: two key words are F T ELD FLON
Perform field flow initialization. -
A Define maps
B FFINIT - Initialize labeled common areas
C Process field flow subgroup identifier
REPARS - Read and parse a valid input record
A LODREC - Read and parse the next input record
B VCHECK - Check the validity of that input record
A Check for valid record type
B Check for valid record sequence
C Check for valid record syntax
Interpret off body case specifications -
A OBOPEN - Initialize processing for an off body
case :
A Initialize default data with global defaults
B  Retrieve case identifier
C Add a new case on an update run
D Use an old case on an update run
E Add a new case on a standard run
B OBCASE - Process off body case records
A REPARS - Read and parse a valid input record
(see EEB)
B FFSOL - Process solution record
€ Process point list header record
D Process point list record
E  Process grid definition record
F  Process grid limits record
G Process grid plane density record
H Process pressure computation record
1 Process ratio of specific heats record
J Process reference velocity record
K FFOREQ - Process print request record
L  Process velocity correction print record
M Process pressure rule print record
N FFOREQ - Process data base request record
0 Process velocity correction data base record
P  Process pressure rule data base record
A4



D

E

A
B

C 0BCLOS - Complete processing for an off body case

A
B
c

FFDEFA - Usé available defaults on unspecified
records

Convert data in input form to output form to match

dataset specifications

Write data to database

Interpret streamline case specifications
A SLOPEN - Initialize processing for a streamline

B
C

case
Initialize default data with global defaults
Retrieve case identifier
Add a new case on an update run
Use an old case on an update run
Add a new case on a standard run .

LCASE - Process streamline case records

REPARS - Rea? an parse a valid input record (see
EEB

FFSOL - Process solution record

Process step size record

Process number of integrations record

Process integration error record

Process streamline direction record

Process streamline type record

Process streamline limits record

Process print frequency record

Process starting points header record

Process starting points list record

Process pressure computation record

Process ratio of specific heats record

FFOREQ - Process print request record

Process velocity correction print record

Process pressure rule print record

FFOREQ - Process database request record

Process velocity correction data base record

Process pressure rule database record

LCLOS = Complete processing for a stream11ne

case
FFDEFA - Use available defaults on unspecified
records
Convert data in input form to output form to match
dataset specifications
Write data to database

Replace global flow properties dataset
F FORMOM (5,3) Overlay - Process forces and moments data, if

DSMAP

FMGLDE
LODREC
FMREPA

FMAXSY

f1rst key word is FORCE S,

Define surface Torces and moments
data map.

- Initialize forces and moments
global values.

- Read a record from input and Tload
first two key words.

- Process references parameters
record, if first key word is
REFERENCE,

- Process axis systems record, if
first key word is A X 1 S.
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Civt

SOLSFP

FMPRDA

FMPRDA

FMPDCK

FMCASE

B FPCASE

C FMLOIN

D LODREC
D

E NETWIM

F FMEDFO

G FMMOAX

H FMREPA

I FMSURF

J SELE

K ComP

L VELO

M PRES

N REFE

0 REFE

P FMPRDA

Q FMPRDA

R FMACCY

Process solutions list record, if
first key word is <7
SOLUTIONS.

Process pr1ntout/data base record
if first key word is
PRINTOUT or DATA.
Check/Toad global printout/data
base options.

Process case record, if first key
word is C ASE.

Process case record parameter list.
Initialize local variables.

Read a record from input.

- Load first two key words.
Process networks images list
record, if first key word is
NETWORKS-IMAGES.
Frocess edge force calculations
record, if first key word is
EDGE

Process moment axis record, if
first key word isMOMENT,
Process local reference parameters
record, if first two key words are
LOCAL REFERENCE.
Process surface selection record,
if first key word is SURF AC E,
Process selection of velocity S
computation record, if first key - A4
word is SELECTION. ,
Process computation option for
pressures record, if first key
word iSs COMPUTATION,
Process velocity corrections
record, if first key word is
VELOCITY.

Process pressure coefficient rules
record, if first key word is
PRESSURE.

Process ratio of specific heats
record, if first key word if

RATIO,

Process reference velocity for
pressure record, if first key word
isSREFERENCE,

Process local printout/local data
base record, if first two key
words are L OC AL
PRINTOUT orLOCAL
DATRE.

Process accumulate record, if
first key word is
ACCUMULATE.



S - End of case processing.
SA FMPDCK - Check/load local printout/data
: base options, if first key word is
SURFACE,orBEGIN,or
TNDorCASE.

SB  FMLODE -  Toad defaults.

T FPDAWR - Write dataset SURF-FAM to data
base.

U - Set forces and moments done flag,

if first key word is
SURFACE,orBEGINoOF

END.”
W - Generate a pure accumulation case,
X if any accumulations in previous
data.
XA FPDAWR - grite dataset SURF-FAM to data
ase,

- Set flow complete flag, if first
key word is BEGIN or END.
PPPDIR (6,0) Overlay - Read, write, check and Toad data base
directives.
C LODREC - Read a record from input.
D - Load first two key words, if any.
E PPGEOM (6,1) Overlay - Process geometry data record set, if
first key word is GEOME TR Y.
A DSMAP - Define geometry PPP data maps.
B , - Initialize,
C - Load default network count,
D Read next record, load key word,
identify, and check order of input.
Process networks record, if key word is
NETWORKS.
F PPPOIN (6,2) Overlay - Process point data record set, if first
key word is PO I NT,
DSMAP - Define point PPP data map.
- Initialize.
- Load defaults.
PPPORT - Read next record, load key word,
identify and check order on input.
PPCASE - Process case record and load lower
level defaults, if key word is C A S E.
SOLSFP - Process solutions 1ist record and load
lower level defaults, if key word is §
QLUTIONS,
H NETPDP - Process surface record and load lower
level defaults, if key word is Y
RFACE.
Process array record, if key word is A
RRAY.

PPPORT

F NETDQG

OO

@ M

I PPARAY

G PPCONF (6,3) Overlay - Process configuration data record set,
if first key word is
CONFIGURATION,

DSMAP - Define configuration PPP data maps.

- Initialize.
- Load defaults.

O
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PPPORT
PPCASE
SOLSFP

NETCDP

- Set
EN

ESPOR
PACLOS
PREGEND
AMCFLR

PPP complete
DI
FINIS (7,0) Overlay -

Read next record, load key word,
identify and check order of input.
Process case record and load lower

level defaults, if key word is C A S E.

Process solutions 1ist record and load
Tower level defaults, if key word is S
OLUTIONS,

Process surface record, if key word is
SURFACE.
flag, if key word is BEGI N or

Conclude input data processing
Write global data to data base.

Close DIP and MEC data bases.
End DIP execution,

Delete wake networks and update
solution 1ists for CDP cases

(response to added mass record).

(
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APPENDIX 3-C DATA BASE COMMUNICATIONS CHART

The Data Base Communications Chart is presented in three forms. Each form is
alphabetized by columns, from left to right. The first form has a column
order of Data Base, Dataset Name, Map Name, Common Block, and
Program/Subroutine. The second form has a column order of Data Base, Map
Name, Dataset Name, Common Block, and Program/ Subroutine. The third form has
a column order of Common Block, Data Base, Map Name, Dataset Name, and
Program/Subroutine. Thus a person can get a cross reference on a data element
by knowing either the Dataset Name, Map Name or Common Biock name.

3-C.1
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~ DATA
BASE

DIP
DIP
DIP
DIP
DIP
DIP

DIP
DIP

DIP
DIP
DIP
DIP
DIP

DIP
DIP
DIP
DIP

DIP
S DIP
DIP
DIP
DIP
DIP
DIP
MEC
MEC

DATASET NAME

CLOS-COND
COEF-GEN-BC
CONFIG-PRINT-PLOT
DATA-BASE-HEADER
GEOM-PRINT-PLOT
GLOBAL

GLOBAL -DB-0UTPUT
GLOBAL-DEFAULTS
GLOBAL -FLOW-PROP
GLOBAL-PRINTS
LOCAL-FLOW
NETWK-BDC
NETWK-SPEC

NETWORK-UPDATE-CODES

OFFBODY-OPTIONS
PANEL-COORDS
PANEL -COORDS

POINT-PRINT-PLOT
SPEC-FLOW

STREAML INE-OPTIONS
SURF -F AM

SURF-FLOW

TANG-VEC

USER-ABUT
DATA-BASE-HEADER
MACRO-OPTIONS -

PRECEDING PAGE BLANK NOT rILNED

FIRST FORM

MAP NAME

DIP-CLOS
DIP-COEF
DIP-CONF
DIP-HEADER
DIP-GEQOM
DIP-GLOGLO

DIP-GLODBO
DIP-GLODEF

DIP-GLOFLO
DIP-GLOPRI
DIP-LOCF

DIP-NETBDC
DIP-NETSPC

DIP-NETWUD

DIP-0BCOUT
DIP-NETDIM
DIP-PANCRD

DIP-POIN
DIP-SPEC
DIP-SLCOUT
DIP-SURFAM
DIP-SURDAT
DIP-TANV
DIP-USEABU
MEC-HEADER
MEC-RUNCPT

COMMON
BLOCK

/NETABC/
/NETABC/
/CONFDA/
/HEADER/
/GEOMDA/
/GLOBAL/
/DQGPAR/
/NETDAT/
/SOLDAT/
/GLOPPP/
/GLODEF/
/GLOFLO/
/GLOPRI/
/NETABC/
/NETBDC/
/NETSPC/

/NETWUD/
/OBCOUT/
/NETDIM/
/PANCRD/
/NETABC/
/POINDA/
/NETABC/
/SLCOUT/
/SURFAM/
/SURDAT/
/NETABC/
/USEABU/
/HEADER/
/RUNOPT/

PROGRAM/

SUBROUTINE

NETWDP
NETWDP
PPCONF
INITIL
PPGEOM
INITIL

PPPDIR
INITIL
INITIL
INITIL
NETWDP
INITIL
INITIL
NETWDP
INITIL
FFDATA
GEOMDP
GRID

PPPOIN
NETWDP
FFDATA
FORMOM
SURFLO
NETWDP
GEOMDP
INITIAL
INITIL
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DATA
BASE

DIP
DIP
DIP
DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP
DIP

DIP

DIP
DIP

DIP

DIP
DIP

DIP
DIP

DIP
DIP
DIP
MEC
MEC

3-C.4

MAP NAME

DIP-CLOS
DIP-COEF
DIP-CONF
DIP-GEOM
DIP-GLOGLO

DIP-GLODBO
DIP-GLODEF
DIP-GLOFLO
DIP-GLOPRI
DIP-HEADER
DIP-LOCF

DIP-NETBDC
DIP-NETDIM
DIP-NETSPC

DIP-NETWUD
DIP-0BCOUT
DIP-PANCRD

DIP-POIN
DIP-SLCOUT
DIP-SPEC
DIP-SURFAM
DIP-SURDAT
DIP-TANV
DIP-USEABU
MEC-HEADER
MEC-RUNOPT

SECOND FORM

DATASET NAME

CLOS-COND
COEF-GEN-BC

CONF IG-PRINT-PLOT
GEOM-PRINT-PLOT
GLOBAL

GLOBAL-DB-OQUTPUT
GLOBAL-DEFAULTS
GLOBAL-FLOW-PROP
GLOBAL-PRINTS
DATA-BASE-HEADER
LOCAL-FLOW
NETWK-BDC
PANEL-COORDS
NETWK-SPEC

NETWORK-UPDATE-CODES
OFFBODY-OPTIONS
PANEL-COORDS

POINT-PRINT-PLOT
STREAMLINE-OPTIONS
SPEC-FLOW

SURF-FAM

SURF-FLOW

TANG-VEC

USER-ABUT
DATA~BASE-HEADER
MACRO-OPTIONS

COMMON
BLOCK
/NETABC/
/NETABC/
/CONFDA/
/GEOMDA/
/GLOBAL/
/DQGPAR/
/NETDAT/
/SOLDAT/
/GLOPPP/
/GLODEF/
/GLOFLO/
/GLOPRI/
/HEADER/
/NETABC/
/NETBDC/
/NETDIM/
/NETSPC/

/NETWUD/
/0BCOUT/
/PANCRD/
/NETABC /
/POINDA/
/SLCOUT/
/NETABC/
/SURFAM/
/SURDAT/
/NETABC/
/USEABU/
/HEADER/
/RUNOPT/

PROGRAM/

SUBROUTINE

NETWDP
NETWDP
PPCONF
PPGEOM
INITIL

PPPDIR
INITIL
INITIL
INITIL
INITIL
NETWDP
INITIL
GEQOMDP
INITIL
NETWDP
INITIL
FFDATA
GRID

PPPOIN
FFDATA
NETWDP
FORMOM
SURFLO
NETWDP
GEOMDP
INITIL
INITIL



COMMON
BLOCK

—

/CONFDA/
/DAGPAR/
/GEOMDA/
/GLOBAL/
/GLODEF/
/GLOFLO/

/GLOPPP/
/GLOPRI/
/HEADER/
/NETABC/
/NETABC/
/NETABC/

/NETABC/
/NETABC/

/NETABC/

/NETBDC/

/NETDAT/
/NETDIM/

/NETSPC/

/NETWUD/
/0BCOUT/
/PANCRD/
/POINDA/
/RUNOPT/
/SLCOUT/
/SOLDAT/
/SURDAT/
/SURFAM/
/USEABU/

/HEADER/

DATA
BASE

DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP
DIP

DIP
DIP

DIP

DIP

DIP
DIP

DIP
DIP
DIP
DIP

DIP
DIP

DIP
DIP
DIP
MEC

THIRD FORM

MAP NAME

DIP-CONF

See /GLOBAL/

DIP-GEOM

DIP-GLOGLO
DIP-GLODEF
DIP-GLOFLO
DIP-GLODBO
DIP-GLOPRI
DIP-HEADER
DIP-CLOS

DIP-COEF
DIP-LOCF

DIP-PANCRD
DIP-SPEC

DIP-TANV

DIP-NETBDC

See /GLOBAL/

DIP-NETDIM
DIP-NETSPC

DIP-NETWUD

DIP-0BCOUT
DIP-PANCRD
DIP-POIN

MEC-RUNCPT
DIP=-SLCOUT

See /GLOBAL/

DIP-SURFLO
DIP-SURFAM
DIP-USEABU
MEC-HEADER

DATASET NAME

CONFIG-PRINT-PLOT
GEOM-PRINT-PLOT
GLOBAL
GLOBAL-DEFAULTS
GLOBAL-FLOW-PROP
GLOBAL-DB-QUTPUT
GLOBAL-PRINTS
DATA-BASE-HEADER
CLOS-COND
COEF-GEN-BC
LOCAL-FLOW

PANEL-COORDS
SPEC-FLOW

TANG-VEC

NETWK-BDC

PANEL-COORDS
NETWK-SPEC

NETWORK-UPDATE-CODES
OFFBODY-OPTIONS
PANEL-COORDS
POINT-PRINT-PLOT

MACRO-OPTIONS
STREAMLINE-OPTIONS

SURF-FLOW
SURF -FAM
USER-ABUT
DATA-BASE-HEADER

PROGRAM/
SUBROUTINE

PPPCONF

PPPGEOM
INITIL
INITIL
INITIL
PPPDIR
INITIL
INITIL
NETWDP
VALUE
NETWDP
VALUE
NETWDP
VALUE
GRID
NETWDP
VALUE
NETWDP
NEDATA
VALUE
INITIL
GLOOPT
NETWDP
NECDWR

GEOMDP
ABNEID
NETWDP
NECDWR
NEDAPR
NOPCHK
INITIL
NECDWR
FFDATA
GRID

PPPOIN
PPPORT
INITIL
FFDATA

SURFLO
FPDAWR
FORMOM
FPDAWR
GEOMDP
ABUT

INITIL
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APPENDIX 3-D MASTER DEFINITION

The data base master definition listing of the DIP module has been deleted
from this document. It is produced from the PAN AIR tape during installation.
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4.0 DEFINING QUANTITIES GENERATOR (DQG) MODULE

4.1 Introduction

The Defining Quantities Generator (DQG) is a stand alone program which

is a module of the PAN AIR system. DQG performs many tasks which, from a
general point of view, translate the definition of the configuration and flow
properties in terms which are convenient to a user into a definition which is
more mathematically tractable. DQG also performs a number of convenience
operations (such as automatically indexing control points and singularity
parameters and automatically defining abutments) and performs a comprehensive
analysis of the problem for errors in the configuration which might lead to a
singular or invalid solution.

4.2 DQG OVERVIEW
4.2.1 PURPOSE OF DQG

The problem of finding the flow around a body of arbitrary shape is
reduced by PANAIR to the problem of solving a large system of linear
equations viz., [AIC] [x] = [b]. This is done by approximating the surface of
the body by flat rectanguar and/or triangular panels. For each panel two
unknown singularity parameters are introduced. Once these parameters [A] are
found, the solution to the original problem can be constructed.

DQG performs a variety of calculations to provide data necessary for the
construction of the AIC matrix. These calculations are associated with four
classes of data: network data, abutment data, control point data and panel
data. With regard to network data, DQG indexes control points and singularity
parameters in the network and assures that panels in the network are large
enough to allow accurate calculation and that panels do not have excessive
aspect ratios (less than 10,000). For more details see PAN AIR User's
Document, Section B.1.3 (Reference 2). The relationships between networks are
defined by the abutment data. This data defines where alternate boundary
conditions must be imposed to assure doublet continuity across network
boundaries. The control point data defines which user-defined boundary
condition or alternate boundary condition is imposed at control points and
provides geometrical data (tangent and normal to surface) required for the
evaluation of the boundary condition. The panel data includes geometrical
properties of the panel and a description of how the source and doublet
distribution on the panel surface depends on surrounding singularity
parameters. Also included in the panel data are certain integrated moments of
source and doublet strength evaluated over the surface of the panel. These
are employed by MAG to more efficiently determine the panel influence on
control points which are not too near the panel.

While computing the required quantities, DQG constantly evaluates the
results for conditions that might produce a singular or incorrect solution.
More than seventy irregular conditions are noted by fifty-nine error messages
and sixteen warning messages. In addition the user may require DQG to produce
printed output which can be evaluated by the knowledgeable user to assure that
not only will the data produced by DQG produce a solution, but the solution
will be the solution to the problem the user thinks he has defined. (See the
PAN AIR User's Manual, Section 7, record G.17 (Reference 2) and Section 8 of
the same document.)
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4.2.2 DQG Input/Output Data

Input to DQG occurs only through the SDMS database system (see Section
1 and Section 13 of this document). DQG reads databases created by the MEC
and DIP modules. The MEC database contains information concerning the names
of files which contain the databases which DQG requires or will generate. The
DIP database contains the user's description of the problem. The information’
which DQG reads from the DIP database may be classified as global
configuration data (such as Mach number, direction of flow, symmetry
properties of the problem), network data (singularity types of networks,
boundary conditions which the user wishes to impose, coordinates of points in
the network) and abutment data, if any is supplied (a description of how the
networks connect together to form the configuration). DQG also reads
information on the DIP database which defines what types of printed output the
user has requested from DQG.

DQG offers a number of output options which may be selected by the user
through data provided to DIP.

The default output consists of a general description of the status of
DIP and DQG data bases, timing statements at the end of each overlay, and a
description of some global and network properties of the problem at the end of
execution. In addition fatal errors encountered during execution produce
diagnostic messages. A small number of mandatory warning messages are also
produced when a questionable situation arises. No more than ten fatal error
messages are permitted to accumulate before execution stops. There is no
“1imit to the number of warning messages. A complete list of error and warning
messages is provided in Appendix 4-E. The PAN AIR User's Manual Section 8
(Reference 2) discusses the interpretation of the error and warning messages.

Additional warning messages are printed as situations arise if the user
has specified that warning messages are desired. There is no restriction on
the number of warning messages that are produced.

Either the coarse grid coordinate of the networks (corner point
coordinates) or the fine grid coordinates of the network (corner, edge
midpoint and center point coordinates) or both are printed as the user
requests. Those network edges which are collapsed have the corner point
coordinates flagged to indicate the DQG modified the collapsed edge points to
assure that they all had identical coordinates.

DQG may print descriptions of gap filling panels which have been added.
Included in this printout are the corner points of the gap filling panels, the
edges of the networks to which they are attached, and whether they are
triangular gap filling panels.

A description of empty space abutments or of all abutments may be
produced. Besides indicating how the networks are joined together, this
output also describes which network edges and corner points will be assigned
doublet or source matching boundary conditions to replace those which are
specified by the user.

4.2
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Control point and boundary condition data may be printed at the end of
execution if the user requests. The control point data include global index
and network and fine grid Tattice indices of the control point as well as it's
hypothetical location, normal vector and boundary condition characterization.
The boundary condition data includes all of the indexing information of the
control point data and lists all non-vanishing cofficients for the left hand
side of the boundary condition equation.

In addition to the above, DQG may be compiled from its program library
with diagnostic print statements inserted automatically. A description of how
to accomplish this is given in Appendix 4-F.

Appendix 4-G contains an example of output obtained from DQG execution.

Section 8.1 of the PAN AIR User's Manual (Reference 2) discusses the
interpretation of the DQG output.

4.2.3 Database Interface

Module DQG reads input data from databases created by MEC and DIP. The
MEC database provides database names, account numbers, database status, date
of execution and other similar information. The DIP database contains the
user's description of the problem.

DQG creates a single database during its execution. The database
provides a description of the user's problem in a form that the other PAN AIR
modules can easily process. The information is used by the MAG, RHS, MDG. and
PPP modules. :

The DQG database master definition is described in Appendix 4-D. (See
Section 1 of this document for an introduction to SDMS).

4.3 MODULE DESCRIPTION

The main overlays and subroutines of DQG are briefly summarized in this
section. Estimates of the core requirements and execution time requirements
of the overlays of DQG are also provided. Lower level subroutines are
described in secton 4.4. A tree diagram of the calling relationships of the
subroutines in DQG may be found in Appendix 4-A. The DQG functional
decomposition is contained in Appendix 4-B.

Figure 4.1 contains a simplified configuration which illustrates the
concepts of panel, network and abutment. Singularity parameters are defined
to be located on networks. These parameters are related to perturbations in
the flow field. The values of the singularity parameters are determined by
imposing boundary conditions at selected points on the network called control
points. DQG translates fairly simple geometric data into mathematical
descriptions of the boundary conditions and singularity parameters.

4.3.1 Overall Structure

The overall structure of DQG is described in Figures 4.2, 4.3 and 4.4.
The figures also provide some indication of data flow during DQG execution.
The data flow aspects of the figures is discussed in paragraph 4.3.5.
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The seven primary overlays of DQG are indicated as rectangular blocks in
Figure 4.2. Two primary overlays ( the (3,0) and (5,0) overlays) are divided
into six and two secondary overlays respectively as is indicated in the
figure. The dotted 1ine connecting the main (0,0) overlay with the seven
primary overlays indicates that the (0,0) overlay causes each one of the
primary overlays to be loaded and executed. Besides the overlay index (e.g.
(1,0)) the figure also gives the name of the main program in the overlay (for
the (1,0) overlay it is OPENER). Below this there is a short summary of the
operations which the overlay performs. The solid lines in the figure indicate
the flow of data from the program to the disk files that make up the DQG
database and from the MEC, DIP and DQG database files into the program. Note
for example that the MEC and DIP databases are read only in the (1,0) overlay
and that DQG never writes on either one of them. All other input and output
for DQG occurs from or to the DQG database or to the printed output file.

Note that the output to the printed output file is not shown in the figure.
A1l overlays of DQG produce some printed outputs.

Figures 4.3 and 4.4 provide a similar overview of the structure and data
flow for the secondary overlays of the (3,0) and (5,0) overlays respectively.

4.3.2 Overlay Descriptions

This paragraph describes the major functions which are performed in each
primary and secondary overlay of DQG. Paragraph 4.3.5 discusses data flow in
the program.

4.3.2.1 OPENER Overlay (1,0)

This overlay obtains input data from the MEC and DIP databases and
copies data required to solve the problem onto the DQG databases. Certain
data are transformed into a form consistent with efficient processing and some
useful data is derived from the basic parameters describing the problem.
Figure 4.5 illustrates the main subroutine structure for the (1,0) overlay of
DQG. The main program OPENER opens the DIP and MEC databases and creates an
empty DQG database. There is only one major subroutine in the overlay. It is
called DIPDAT and copies data from the DIP database onto the DQG database.

4.3.2.2 NETDEF Overlay (2,0)

The second overlay checks that the networks satisfy certain required
properties and provides a global index for all control points and singularity
parameters in the problem. Indexing schemes used in DQG are described more
fully in Appendix 4-F. Figure 4.6 illustrates the main subroutines for the
(2,0) overlay of DQG. The main program in the overlay is NETDEF. It calls a
sequence of subroutines which perform the varied tasks of the overlay. Three
main tasks are performed. They may be roughly characterized by the terms
geometrical tasks, indexing tasks and output operations. The geometrical
tasks are discussed first.

Subroutine DFEDGE defines the coordinates of the corner points on the
perimeter of the network. EDGCHK computes the length of the edges to check
for collapsed edges (see PAN AIR Theory Manual, Section 1.4 of Appendix D
(Reference 1) and the PAN AIR User's Manual Section B.1l(Reference 2)). INDCTR
computes the coordinates of a point that is at the indicial center of the
network. Subroutine TRICHK checks each panel in the network for both aspect
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ratio and triangularity. (No interior panel of a network is permitted to be
triangular.) Subroutine FINGRD defines the fine grid coordinates of the
network from the panel corner point coordinates and writes them in the
FINE-GRID-COORDS dataset.

The indexing tasks are performed by SINGDF (and the subroutines it
calls) and by CONTPT. SINGDF defines a unique index for every source and
doublet parameter in the configuration. The exact indexing schemes are
discussed in Appendix 4-H of this manual. This subroutine also labels
singularity parameters that Tie on a collapsed network edge as "null", i.e.,
they do not contribute any effects to the flow. Control point indexing is
performed by the subroutine CONTPT. Note that control points are always
defined for a network at the same locations (all panel center points, the four
network corner points and the edge midpoints on the perimeter of the network)
even though, for example, on a wake network, all control points located at
panel centers do not have any boundary conditions (see PAN AIR User's Manual,
Section B.3.4 (Reference 2) and the PAN AIR Theory Document, Appendix G
(Reference 1)). This is done to allow consistent processing of flow data in
post processing. The final function performed by the (2,0) overlay is to
print the coordinates of all of the corner points and/or fine grid points in
the network if requested by the user. Subroutine PRTNET performs this task.

4.3.2.3 EDGDEF Overlay (3,0)

The (3,0) overlay calls the secondary overlays (3,1) through (3,6).
These programs perform an analysis of abutments in the configuration. At the
end of the analysis a complete description of the abutments is printed at the
user's request. .

4.3.2.4 PRABUT Overlay (3,1)

This program lists the abutments defined by the user in a more complete
form than the user provides to DIP. It initiates the automatic abutment
search by describing all pairwise abutments which have not been described
already by the user. A detailed description of the automatic abutment search
is given in Appendix 4-I. Figure 4.7 illustrates the main subroutines in the
overlay. First USEABT is called. This subroutine reads the user defined
abutments data and fills in any missing information. For example, the user
can specify only the network and edge index for all the networks in the
abutment. In this case USEABT defines the coarse grid lattice indices which
correspond to the start and end points of each network edge in the abutment
and adds these coarse grid lattice indices to the abutment data. After all
user abutment data is processed, a Tower level subroutine (not illustrated)
prepares a list of network edge segments which the user has not defined to
take part in an abutment. Then in NETABT the automatic abutment search
begins. Each edge segment which has not been described by the user is
examined to see if any of the other such segments lie near it (see PAN AIR
Theory Document, Section 3 of Appendix F (Reference 1)). Subroutine EDGLST
prepares a preliminary 1ist of all network edges which 1ie somewhat close to
the edge in question. The remainder of PRABUT defines all pairwise abutment
descriptions in which each segment takes part. This process is discussed more
fully in Appendix 4-1I.
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4.3.2.5 ABTMNT Overlay (3,2)

Overlay (3,2) completes the automatic abutment search. This procedure
is described in Appendix 4-1. After the search is over, all abutments are
checked to assure that they satisfy certain rules. Warning and error messages
are produced as questionable or erroneous situations arise. Figure 4.8
i1lustrates the major subroutines in the (3,2) overlay. Subroutines ABXPND,
CONABT and SEARCH complete the automatic abutment search. This process is
discussed fully in Appendix 4-I. Subroutine EDGPRP defines some additional
data that is required to characterize abutments (labelling of matching edges,
etc.). Subroutine CHECK examines all network abutments to see that they
conform to the appropriate set of rules concerning abutments (see PAN AIR
User's Manual, Section B.3.6 (Reference 2)).

4.3.2.6 GAPSIZ Overlay (3,3)

This overlay computes gap sizes for all of the network abutments. The
gap size for a panel and a network edge is the greatest of the distances from
the panel to the closer point on all other network edges which take part in
the abutment.

4.3.2.7 MATCH Overlay (3,4)

Program MATCH determines which edges and corner points will be used to
impose doublet and source matching boundary conditions. Figure 4.9
illustrates the main subroutine structure of the (3,4) overlay. Subroutine
EMATCH determines which network edge among those that form an abutment will be
used to impose doublet matching boundary conditions at the abutment (see PAN
AIR Theory Document, Section 5.3 (Reference 1)). In an abutment where a wake
has been assigned voritcity matching, EMATCH will find a doublet analysis edge
on which to place the actual boundary condition. EMATCH also defines those
edges and corner points where source matching boundary conditions are
required. Subroutine INTRSC analyzes the configuration for abutment
intersections using a technique from graph theory. This is discussed more
fully in Appendix 4-J. Subroutine ASSIGN examines each abutment intersection
and assigns an appropriate number of corner points to insure doublet matching
at the abutment intersection. :

4.3.2.8 GAPPNL Overlay (3,5)

This program adds gap filling panels between network edges which have
been declared to form an abutment by the user but which 1ie further apart from
one another than the global tolerance distance. A description of how gap
filling panels are constructed is given in the PAN AIR Theory Document,
section 6 of Appendix F (Reference 1) and Appendix 4-L of this document.
Figure 4.10 illustrates the subroutines in this overlay. The main program
GAPPNL searches the abutment related data for abutments where the gap size
exceeds the tolerance distance. The edges of network which make up such an
abutment are parameterized by subroutine PRMEDG (see the PAN AIR Theory
Document, Section 5 of Appendix F (Reference 1)). Subroutine DEFPNL defines
the data required to describe the gap filling panel (see Appendix 4-L).
Subroutine POSPNL defines gap filling panels for abutments with planes of
symmetry and which have gaps larger that the tolerance distance.
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4.3.2.9 ADCPSG Uverlay (3,6)

ADCPSG adds additional control points and doublet singularity parameters
at panel corner points where an abutment begins or ends, if the corner point
is not one of the four network corner points. This program also sets up a
description of matching edges and corner points in a form which is usable by
the fourth overlay (subroutine MTCHPT) and defines the extra hypothetical
Jocations for the matching points (subroutine XHLOC)(see PAN AIR Theory
Document, Appendix G (Reference 1)). Figure 4.11 illustrates the subroutine
structure of the overlay.

4.3.2.10 BNDYDF Overlay (4,0)

This overlay defines geometrical data required at each control point and
selects the appropriate number and type of boundary condition to impose at the
point from those supplied by the user and those supplied by DQG. A detailed
description of what this overlay produces is described in the PAN AIR Theory
Document, Appendices G and H (Reference 1). Figure 4.12 illustrates the major
subroutines in the overlay. GETBC obtains the boundary conditions for the
control points in the network. Subroutine CENTCP defines geometric data and
boundary condition coefficients for the generalized boundary condition
equation (see PAN AIR Theory Document, Section 5.4 (Reference 1)) and
subroutine EDGECP defines similar data for corner and edge midpoint control
points.

4.3.2.11 TOPSPL Overlay (5,0)

This overlay calls the (5,1) and (5,2) overlays in sequence.

4.3.2.12 SAEDGS Overlay (5,1)

This overlay computes doublet spline vectors at points along the edges
of networks which form a smooth abutment. A detailed discussion of this
process occurs in Appendix 4-K of this document. Figure 4.13 shows the major
subroutines in the (5,1) overlay. Subroutine PTSFIL obtains coordinates of
the corner points in the vicinity of the smooth abutments (See Appendix 4-K).
SNGFIL obtains the singularity parameter indices for doublet singularities
located at center points near the smooth abutment. Subroutine PARMSA
parameterizes the smooth abutment (see PAN AIR Theory Document, Section 1.2 of
Appendix I and Appendix F (Reference 1)). Subroutine COARSP defines the outer
spline vectors at each corner point and edge midpoint along the smooth edge
(see Appendix 4-K and the PAN AIR Theory Document, Section 1 of Appendix I
(Reference 1)). Subroutine FINESP defines the outer spline vector for points
on the finer edge in terms of the splines along the coarse edge and the
parameterization of the abutment. The details of this process are discussed
in Appendix 4-K of this document and in the PAN AIR Theory Document, Appendix
I (Reference 1).

4.3.2.13 SPLINR Overlay (5,2)

This program computes source and doublet spline vectors for all points
which do not fall on the edge of a smooth abutment. The details of this
procedure are provided in the PAN AIR Theory Document, Section 1 of Appendix I
(Reference 1) and in Appendix 4-1 of this document . Figure 4.14 illustrates
the main subroutines in the (5,2) overlay. ANALS computes the outer spline

4.7



vectors for source analysis networks. ANALD computes the outer spline vectors
for doublet analysis networks. DSGN1S and DSGN1D compute the outer spline
vectors for source design and doublet design networks. Subroutine WAKGAP
defines the outer spline vectors for wake networks and for gap filling

panels. Appendix 4-K discusses the spline operations in greater detail. See

also the PAN AIR Theory Document, Sections 1 and 2 of Appendix I (Reference 1).

4,3.2.14 PANDEF Overlay (6,0)

The sixth overlay computes and assembles the panel defining quantities
required by MAG for the construction of the AIC matrix. These include
geonetrical properties (areas, normal gectors aBd tangents, computed in
GEOMQU), the outer spline matrices, [B>] and [BY], and subpanel spline
matrices, [SPSPLS] and (spspLD], computed in SDSPLM, (see PAN AIR Theory
Document, Sections 1, 2, and 3 of Appendix I (Reference 1)) and the far field
moments, computed in FFMOM, (PAN AIR Theory Document, Section 4 of Appendix I
(Reference 1)) for each network panel and each gap filling panel. Subroutine
PANDEF collects all the information, computes discontinuous source spline
vectors, and writes out the data as the PANEL-SPEC dataset. Figure 4.15
illustrates the main subroutines of this overlay.

4,3.2.15 SUMMRY Overlay (7,0)

The (7,0) overlay program SUMMRY transcribes some information on the
GLOBAL and NETWK-SPEC datasets and re-writes the datasets to the DQG
database. The other routines in this overlay read either the NETWK-SPEC
dataset or the BNDRY-CONDN-SPEC dataset in order to produce the requested
printed summary of network, control point and boundary condition properties.

4.3.3 Module Database

The master definition of the DQG database are given in Appendix 4-D.
The dataset names and contents are described in detail. The database
communication charts (See Section 1) may be found in Appendix 4-C.

4.3.4 Data Interfaces'

4.3.4.1 System Interfaces

Figure 4.2 through 4.4 illustrate the internal and external interfaces
between the module and the MEC, DIP and DQG databases. The DQG database is
used by modules MAG, RHS and HMDG. :

4.3.4.2 Subprogram Interfaces

A tree diagram of all routines in DQG s given in Appendix 4-A. This
shows the interrelaticonships among the subroutines which make up DQG. Each
subroutine is briefly described in Section 4.4.2.

4,3.5 Data Flow in DQG

Figures 4.5 to 4.16 illustrate the data flow for the major sections of
DQG. They will aid the discussion in the following paragraphs.

4.8
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After opening the DIP database and creating the DQG database the first
overlay calls DIPDAT. Global, network data and abutment data are copied onto
the DQG database. Then the boundary conditions are transcribed and written to
the DQG database. The transcription is the major task of this overlay. DIP
provides information on how many boundary conditions have been specified by
the user in the NETWK-BDC dataset. Each coefficient is obtained from the
COEF-GEN-BC dataset and the TANG-VEC dataset. The coefficients might be for
the whole network, for only center, edge-mid-point or corner control points in
the network or for only one control point in the network. 0QG requires that
all coefficients for one control point are grouped together. Data for network
wise NETWK-BNDY-CONDN-IN dataset and is keyed by point type (center, edge
mid-point or corner point). Point-by-point specification of boundary
conditions is stored by CLASS-5-BC-DATA and is keyed by fine-grid lattice
index of the point (See Appendix 4-H). The transcription operation consists
of reading a non-zero coefficient from the DIP database, reading the current
DQG dataset for the control point, copying the additional coefficient to the
output array and writing a modified version of the DQG dataset. This is a
somewhat costly [/0 operation if point-by-point boundary conditions are
specified, i.e., if the user chooses Class 5 boundary condition specifications.

In the second overlay (Figure 4.6) networks are checked for short edges
and triangular panels, an EDGE-POINT-COORDS dataset is created which contains
the corner points on the network edges sequenced in a counter clockwise
direction when looking at the "upper" surface around the network perimeter,
and singularity parameters and control points are indexed. (See Appendix 4-H
for details concerning indexing schems used in DQG.)

Two complimentary datasets are created by subroutine SINGDF. One is
called SINGULARITY-MAP and the other is called SINGULARITY-SPEC. The
SINGULARITY-MAP dataset allows one to find the index of a singularity
parameter given information about its location in the network. The
SINGULARITY-SPEC dataset gives information about where a singularity parameter
is located in the network given its index. The CONTROL-PT-SPEC dataset is
created by the CONTPT subroutine.

In the third overlay (Figure 4.7) user defined abutments are created by
USEABT. The subroutine reads the user description from the dataset USER-ABUT
and writes the data to the ABUTMENT-SPEC dataset. The SEARCH-LIST dataset
specifies those networks which the user has not defined to form abutments.

The SPECIAL-POINTS dataset defines which corner points on a network form start
or end points of the abutment. Subroutine EDGLST reads the NETWK-SPEC and the
EDGE-PT-COORDS datasets in order to decide which edges lie sufficiently close
to another edge that they might form an abutment. The main program PRABUT
reads the EDGE-POINTS-COORDS and the NETWK-SPEC datasets. Subroutine NETABT
reads SEARCH-LIST to define the pairwise abutment data. This data is written
to the database as the IABUT dataset. In the (3,2) overlay (Figure 4.8),
subroutine ABXPND reads the IABUT dataset and expands the pairwise abutment
description to form the expanded abutment description (see Appendix 4-1).

This data is stored on the database in the ABUT-KEYS and EXPANDED-ABUTMENT
datasets.
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Subroutine CONABT reads the expanded abutment descriptions, contracts
them to form the abutment description (see Appendix 4-1) and writes the
abutment data to the ABUTMENT-SPEC dataset. After all abutments are :
processed, subroutine SEARCH reads the abutment descriptions and writes out
the SEARCH-LIST dataset again. This dataset is used later by subroutine
MTABUT (not illustrated) to define the empty space abutments. Subroutine
CHECK reads the ABUTMENT-SPEC dataset and checks that the abutments satisfy
certain rules. Occasionally the subroutine modifies some of the abutment data
(when the rules have been violated) and must re-write the ABUTMENT-SPEC
dataset. CHECK also labels singularity parameters which lie on a smooth
abutment as null. Thus it reads the SINGULARITY-MAP dataset and re-writes the
information contained in it as both the SINGULARITY-MAP and SINGULARITY-SPEC
datasets after it sets a flag indicating that the singularity parameter is
null. It also reads, sets a flag and re-writes a SPECIAL-POINTS dataset to
indicate to the fourth overlay that those control points on the smooth edge
are also null, i.e., that they do not have any boundary conditions to impose
at them.

In the (3,4) overlay, (Figure 4-9) the main program MATCH reads the
ABUTMENT-SPEC and EMPTY-SPACE-ABUT DATASETS and re-writes them after the edge
matching data has been defined by EMATCH. Subroutine EMATCH reads the
NETWK-SPEC dataset to determine the edge types of networks which might make
up and abutment.

Subroutine INTRSC reads the ABUTMENT-SPEC and EMPTY-SPACE-ABUT datasets
and generates the INTERSECTION dataset. This describes the abutment
intersections in the problem. The INTERSECTION dataset is read by subroutine
ASSIGN. A decision is made as to which corner point is assigned to impose
doublet matching and the appropriate abutment data is read from the database.
The data is re-written after setting the proper matching corner point flag.

In the (3,5) overlay GAPPNL reads the abutment data and checks the gap
sizes stored in th GAP-SIZE dataset. The GAP-SIZE dataset had been defined
in the (3,3) overlay. If gap filling panels are defined for the abutment, a
flag is set and the abutment data is re-written to the database. Also a
GAP-PANEL dataset is created which describes the gap filling panel.

In the (3,6) overlay (Figure 4.11) subroutine ADCPSG reads the
SPECIAL-POINTS dataset and, by noting where abutments start or end at places
other than at the corner of a network, adds extra singularity parameters and
control points. It writes CONTROL-PT-SPEC datasets, SINGULARITY-MAP datasets
and SINGULARITY-SPEC datasets. Subroutine MTCHPT reads the abutment data
(ABUTMENT-SPEC) and the SPECIAL-POINTS datasets, transfers the matching
information from the abutment data to the SPECIAL-POINTS dataset and re-writes
the SPECIAL-POINTS dataset. Subroutine XHLOC reads the abutment data, edge
point coordinates and the network data and determines the coordinates of the
extra hypothetical locations of control points along an abutment. See PAN AIR
Theory Document Section 5.4.1 (Reference 1). This data is written as the
EXTRA-HYPO-LOC dataset.

The data flow in the (4,0) overlay (Figure 4.12) is fairly simple. The
NETWK-SPEC dataset is read by BNDYDF as is the coordinates of the corner
points (PANEL-CORNER-COORDS). Boundary conditions are read from either
NETWK-BNDY-IN or CLASS5-BC-IN datasets by subroutine GETBC. The
CONTROL-PT-SPEC dataset is read by CENTCP and EDGECP to obtain the control
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point index. After all the required data is assembled, the CONTROL-PT-SPEC,
BNDRY-CONDN-SPEC and B-POINTER datasets are written. These summarize all of
the boundary condition information for the control point. Note from Figure
4.12 that the subroutine EDGECP additionally reads the SPECIAL-POINTS dataset
to obtain information about where to impose matching boundary conditions.

Note also that some additional I/0 occurs if there are any known singularity
parameters. If some boundary conditions lead to known singularity parameters,
a lower level subroutine in the fourth overlay reads the SINGULARITY-MAP
dataset, sets the appropriate known singularity flag and re-writes the data as
both the SINGULARITY-MAP and SINGULARITY-SPEC datasets.

In the (5,1) overlay (Figure 4.13), the main program reads the
ABUTMENT-SPEC dataset to find a smooth abutment. Subroutine PTSFIL obtains
the required corner point coordinates from the PANEL-CORNER-COORDS dataset and
subroutine SNGFIL obtains the required singularity parameter indices from the
SINGULARITY-MAP dataset. The edges are parameterized by subroutine PARMSA,
which reads the EDGE-POINT-COORDS dataset. Subroutine COARSP computes the
outer spline vectors and writes them as the B-SPLINE-DOUBLET dataset. This
process requires reading some previously computed outer spline data as well
as the NETWK-SPEC dataset. Also an INTERIOR-SPLINE dataset jis written. It
is used in the (5,2) overlay to prevent a dependence of doublet strength on
too many doublet parameters (see Appendix 4-K and the PAN AIR Theory Document,
Section 1 of Appendix I (Reference 1)). Subroutine FINESP reads the doublet
spline data for the coarse edge, computes the doublet spline for the fine edge
and writes it as an additional element set of the B-SPLINE-DOUBLET dataset.

The I/0 in the (5,2) overlay (Figure 4.14) for each major subroutine is
very similar to the others. Coordinate data (PANEL-CORNER-COURDS and
EDGE-POINT-COORDS), singularity parameter indices (SINGULARITY-MAP dataset)
and surrounding spline vectors (B-SPLINE-DOUBLET or B-SPLINE-SOURCE datasets)
are read, the new spline vector is computed and the vector is written to the
B-SPLINE-DOUBELT or B-SPLINE-SOURCE dataset.

In the (6,0) overlay (Figure 4.15) network data, panel corner
coordinates and gap panel data is read by the main program PANDEF. Subroutine
GEOMQU reads the GAP-SIZE dataset to compute the gap size to panel size
ratio. SPLINM reads the source and doublet spline vectors for the nine panel
defining points and assembles them into the outer spline matrix. After all
panel data are computed, PANDEF computes discontinuous source splines and
writes the data as the MAG-PANEL-SPEC, MDG-PANEL-SPEC and PANEL-SING datasets.

The (7,0) overlay program SUMMRY transcribes some information on the
GLOBAL and NETWK-SPEC datasets and re-writes the datasets to the DQG
database. The other routines in this overlay read either the NETWK-SPEC
dataset or the BNDRY-CUNDN-SPEC dataset in order to produce the requested
printed summary of network, control point and boundary condition properties.

This completes the execution of DQG.

4.4 LOWER LEVEL FUNCTIONS

The following paragraphs present the functional decompositions of the
overlays and their subprograms and gives the purpose of each subroutine.
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4.4.1 Functional Decomposition

DQG functional decomposition is given in Appendix 4-B. -

4.4.2 Subroutine Descriptions

The subroutines used in DQG are described below.

ABASGN
Sets matching doublet flag in ABUTMENT-SPEC or EMPTY-SPACE-ABUT dataset
for imposition of matching boundary condition at corner point of
network. In this fashion it assigns a matching corner point to the
abutment (See Appendix 4-J).

ABXPND
Constructs expanded abutment descriptions from the pairwise abutment
descriptions (See Appendix 4-I).

AINV
Constructs the inverse of the reference coordinate to local subpanel
coordinate transformation (i.e., it computes the subpanel local to
reference coordinate transformation.) See PAN AIR Theory Document,
Appendix E, Section E.3 (Reference 1).

ANALD
Top level routine for the computation of doublet spline vectors for
doublet analysis networks. .

ANALS , .
Top level routine for the computation of source spline vectors for
source analysis networks.

(

ANDFW ,
Top level routine for the computation of forward weighted doublet
analysis network splines. This subroutine is a copy of ANALD.

ASGNBC
Assigns boundary conditions to control points from user-specified
boundary conditions and DQG generated conditions.

ASGNM
Defines boundary condition coefficients and arrays to impose source,
doublet or vorticity matching boundary conditions; if closure conditions
are specified, calls routine to define closure data.

ASGNU

Defines boundary condition coefficients and arrays from user-specified
boundary conditions.

ASSIGN
Sets up the data needed for the selection and assignment of matching
corner points to abutments which form an abutment intersection (See
Appendix 4-J).

BMDYIN
Creates boundary condition dataset from class and subclass data or
term-by-term data provided by DIP. =

|
d\\

(
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CBLFFHM
Computes doublet cross product far field moments. See PAN AIR Theory
Document, Section 4 of Appendix I (Reference 1).

CCPFN
Selects index of corner point on finer network edge which is closest to
specified point on coarser edge. Used to generate smooth abutment
splines (see Appendix 4-K of this document).

CCPGEO
Computes geometric properties of corner control points. See PAN AIR
Theory Document, Appendix G (Reference 1).

CENTCP
Creates CONTROL-PT-SPEC and BNDRY-CONDN-SPEC datasets for center control
points by computing geometric properties and assigning boundary
conditions to the point. See PAN AIR Theory Document, Appendix G and
Appendix H (Reference 1).

CENTER 7 -
Computes coordinates of center point of panels when performing smooth
abutment spline calculations.

CHECK
Checks all network abutments to assure that they do not violate certain
rules (See PAN AIR User's Document Section 3.5 of Appendix B (Reference
2)).

CHOOSE
Chooses boundary conditions from user specified and DQG specified
boundary conditions to assign to control points.

CHKPOS
Checks that networks which lie on a plane of symmetry totally lie on a
plane of symmetry. See PAN AIR Theory Document, Section 1.4 of Appendix
K, and PAN AIR User's Document Sec. B.1.3 (Reference 2).

CLOSTR
Creates a DQG database CLOSURE-IN dataset containing all of the values
of the closure coefficient required from the DIP input which is in the
form of one coefficient value per dataset.

CNCPBC
Assigns center control point boundary conditions.

COARSP
Top level routine for computation of smooth abutment spline vectors
along coarser edge of smooth abutment.

COLAPS
Collapses coordinates of a short network edge to a single point.

COLCPT
Sets up an array required to assure that the assignment of corner points
to abutments to assure doublet matching at abutment intersections is
performed correctly when the intersection includes the collapsed edge of
a network (See Appendix 4-J).
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DATANL

CONABT

Contracts the expanded abutment description to form an abutment

description (See Appendix 4-1).

CONTPT

Indexes control points in a network (See Appendix 4-H).

COPYBC

Copies value of single boundary condition coefficient from data supplied
by DIP to array of boundary condition coefficients used by DQG.

CPANAL

Computes spline vector for corner point on the edge of a doublet
analysis network.

CPCSEL

Selects indices of adjacent corner points on coarser edge of a smooth
abutment which spans specified point on finer edge (See Appendix 4-K of
this document).

CPDSGN

Computes spline vector for corner points on the edge of a doublet design
I network.

C13QTR

Computes the coordinates of a point one-gquarter and three-quarters of
the way along an edge segment of an abutment (See appendix 4-I).-

Selects surrounding points at which doublet singularity parameters are
located to use in computing a doublet spline vector for a specified
point. See Appendix 4-K of this document and the PAN AIR Theory
Document, Section 1 of Appendix I (Reference 1).

DATS13

Selects surrounding points at which source singularity parameters are
located to use in computing a source spline vector for a specified
point. See Appendix 4-K of this document and the PAN AIR Theory
Document, Section 1 of Appendix I (Reference 1).

DBLFFM
' Computes the doublet for field moment integrals for a panel.

DCSASP
Computes discontinuous outer splines for source analysis networks.

DEFLSQ
Defines coordinate and spline vector at specified point for use in
computing spline vectors at points on a smooth abutment.

DEFPNL

Defines geometrical data required to create a gap filling panel (See
Appendix 4-L).
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DEGOUT
Copies degenerate boundary condition to output array for case of network
which lies on a plane of symmetry.

DEGPRP
Defines boundary condition data for degenerate case of a network which
lies wholly on a plane of symmetry.

DFEDGE
Creates EDGE-POINT-COORDS dataset in which corner point coordinates of

points on a network edge and adjacent to a network edge are listed in a
sequence which corresponds to traversing the network edge in a counter
clockwise direction.

DIPDAT
“Reads data from the DIP database and writes datasets on the DQG
database, sometimes changing or combining the data into a form which DQG
requires.

DISTQT
Computes the distances from the one-quarter and three-quarter points of
a network edge segment to the one-quarter and three quarter points of a
reference network edge segment. Used in the automatic abutment search
procedure (See Appendix 4-1).

DQGOUT
Copies DQG boundary condition to output array.

DSCT
Determines how many DIP boundary condition related datasets must be read
by DQG to define the complete boundary condition arrays.

DSGN1D
Top level routine for the computation of doublet spline vectors for
doublet design I networks.

DSGN1S
Top level routine for the computation of source spline vectors for
source design I networks.

DSGN2D
Dummy routine in case design II doublet capabilities are added to PAN
AIR.

DSGN2S
Top level routine for the computation of source design II spline vectors.

DTENSR
Computes D tensor for computation of far field moments. (See PAN AIR
Theory Document, Section 1 of Appendix I (Reference 1)).

ECPGEQD

Computes geometric properties of edge control points. (See PAN AIR
Theory Document, Appendix G (Reference 1)). :
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EDGCAL
Computes average panel length and minimum panel length along edge of
network.

EDGCHK

Decides whether a network edge satisfies the conditions which require it
to collapse. (See PAN AIR User's Document, Section 3.2.2 (Reference 2),

and PAN AIR Theory Document, Section 1.3 of Appendix D (Reference 1)).

EDGCLS
Reads closure boundary conditions, adds required geometrical information
and writes a closure dataset.

EDGECP

Controls processing of corner point and edge midpoint control points.
Causes geometric properties to be computed and boundary conditions to be
defined for control points on network edges.

EDGLAT

Transforms counter-clockwise-sense- sequential index of corner point on
a network edge to coarse lattice indices of point (See Appendix 4-H).

EDGLS

Computes quadratic one-dimensional fit to four points. Used for
computation of doublet edge spline for non-matching edges of design
networks.

EDGLST

Prepares a 1ist of edge candidates for a pairwise abutment (See Appendix
4-1).

EDGPRP

Computes and defines properties of network edge segments which make up
an abutment, such as upstream factor, matching/non-matching flag and
supersonic factor. See Appendix 4-1 and 4-J and the PAN AIR Theory
Document, Section 4 of Appendix F (Reference 1).

EDGSGQ

Defines edge segments of a network edge which will be fit by a quadratic
one dimensional spline. See Appendix 4-K and the PAN AIR Theory
Document, Section 1.2.5 of Appendix I (Reference 1).

EMATCH

Sets matching source, doublet and vorticity flags in Abutment-Spec or
Empty-Space-Abut datasets for imposition of matching boundary conditions
at edge midpoints along edge segment in abutment. See Appendix 4-J and
the PAN AIR Theory Document, Section 4 of Appendix F (Reference 1).

EMDSGN

Computes spline vectors at edge midpoints along non-matching edges of
doublet design I networks.

FFMOM
Computes basic far field moments and calls routines which compute
source, doublet and doublet cross product moments. See PAN AIR Theory
Document, Section 4 of Appendix I (Reference 1).
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FINESP
Computes spline vectors on the finer edge of a smooth abutment. See
Appendix 4-K.

F INGRD
Computes fine grid coordinates for a network.

FLIND

Computes fine grid lattice indices for points on network edges which
form part of a smooth abutment.

GAMVEC S
Computes the gamma vector (described in PAN AIR Theory Document, Section
1.5 of Appendix I (Reference 1) which is used to construct the edge
spline for non-matching edges of doublet design networks.

GAPSPL
Defines spline vectors for gap filling panels. See Appendix 4-L.

GEOMQU
Controls computation of geometric data which are written to the
Panel-Spec dataset.

GETBC
Obtains user's boundary condition coefficients for control points from
the DQG data base.

GISTYP
Determines -the symmetry type for a particular boundary condition.

INDCTR
Defines the coordinate of the indicial center of a network.

INTERN
Writes a simplified spline vector for use in splining calculations for
points on the interior of a network which lie close to an edge which is
part of a smooth abutment. This assures that the spline is carried over
to the adjacent network across the smooth boundary without producing a
panel doublet spline matrix which depends on too many singularity
parameters. See Appendix 4-K.

INTRSC
Defines connections between corner points at abutment intersections and
then finds all abutment intersections in the entire configuration. See
Appendix 4-J.

KAPVYEC
Defines the Kappa vectors used to compute subpanel doublet spline
matrices. See PAN AIR Theory Document, Section 2.2.2 of Appendix I
(Reference 1).

KNOWSP ,
Defines known singularity parameters for control points which have known
source or known doublet characteristics. See PAN AIR Theory Document,
Appendix H (Reference 1).
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LATBC
Defines fine grid lattice indices for control points when the user has
defined point-by-point boundary condition specifications for a network.
See PAil AIR User's Manual Sections 7.4 and B.3.1 (Reference 2).

LATEDG
Transforms coarse lattice indices of corner point at edge of network to
counter-clockwise-sense-sequential index around the edge. See Appendix
4-H and the inverse routine EDGLAT.

LATIND
Computes fine grid lattice index from coarse lattice indices and point
type (corner, center edge mid-point row and edge mid-point column). See

Appendix 4-H.

L0C2D
Computes a local two dimensional coordinate system for use in computing
doublet splines on the edge of a network which forms part of a smooth
abutment.

LSQDAT
Defines coordinate of a point and index of singularity parameter located
there for use in computing doublet and source splines at points on a
network interior.

MAPB ,
Defines SDMS maps used in the (2,0) overlay of DQG.

MDCP '
Finds the most distant center point adjacent to the corner point on the
finer edge of a smooth abutment which is closest to a specified edge
mid-point on the coarser edge. See Appendix 4-K.

MDPLSG ,
~ Computes minimum distance from a point to a line segment.

Mopec I o ,
Modifies boundary conditions on superinclined panels and subpanels. See
PAN AIR Theory Document, Section 2.1 of Appendix H (Reference 1).

MPPARM
Sets flags indicating to MAG which of the VIC, VIC * N¢ or (VICyk,
VICy, VIC,) need to be computed and/or saved for use by MOG.

MTABUT o
Defines empty space abutments at all network edge segments which do not
take part fn network abutments.

MTCHPT
Reads matching flags from abutment data and sets flags in SPECIAL-POINTS
dataset which indicates the 4th overlay which control points will
receive matching boundary conditions.

NBCLAS

Determines number of boundary conditions user has imposed at control
point and the boundary condition class of the user input.

4.18
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NETABT

Searches the network edges, finds edges which abut and defines the
pairwise abutment data.

NTEDGA

Controls computation of doublet edge spline on analysis-type edges of
networks.

NTEDGD
Controls computation of doublet edge spline on non-matching edges of
design networks.

NTRLST :
Defines abutment intersections. See Appendix 4-J.

ONDFCT '
Computes a one-dimensional source spline for one column or one row
networks.

PARMSA

Controls parametrization of network edge segments which take part in a
smooth abutment. See Appendix 4-K.

PANGED
Computes geometrical data associated with a panel.

PANPRJ
Project reference coordinates to local panel c¢oordinates.

PANSIZ

Computes panel size for panels on network edges and compares them with
the gap size.

PANSUB

Computes source and doublet panel sub-splines for use in intermediate
field PIC computations in MAG. See PAN AIR Theory Document, Section 3
of Appendix I (Reference 1).

PBCDAT
Prints boundary condition data at all control points in tne
configuration. See Appendix 4-H.

PCPDAT

Points control point data at all control points in the configuration.
See Appendix 4-H.

PGNDAT
Points global and network properties of the problem. See Appendix 4-H.

POINT
Computes the coordinates of the specified center point, edge midpoint or
. corner point from the columns of corner point coordinates which are
available in core. Used in the computation of spline vectors at network
interiors.
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POSPNL
Constructs gap filling panels at network edges which abut a plane of
syrmetry, see Appendix 4-L and the PAN AIR Theory Document, Appendix F
(Reference 1).

(

PRMEDG
Parameterizes a network edge segment. See PAN AIR Theory Document,
Section 6 of Appendix F (Reference 1).

PRTNET
Prints network corner point coordinates and fine grid coordinates as
requested by the user. See PAN AIR User's Document, Section 7.3
(Reference 2). :

PTSFIL
Fills arrays of coordinates that are required to compute smooth abutment
splines. See Appendix 4-K.

Q1DFIT
Computes a quadratic one dimensional fit to three one-dimensional
coordinates.

SALSQC
Controls computation of doublet splines at corner points on a network
edge which takes part in a smooth abutment. See Appendix 4-K.

SALSQE
Controls computation of doublet splines at edge midpoints on a network
edge which takes part in a smooth abutment. See Appendix 4-K.

(

SDSPLHM
Assembles source or doublet spline matrix from spline vectors obtained
from the DQG database.

SEARCH ,
Defines segments of network edges which have not already been included
as part of a network abutment. See Appendix 4-I.

SEDGCL
Redefines source spline vectors on the collapsed edge of a network. See
Appendix 4-K.

SELECT
Chooses a corner point for assignment to an abutment in order to impose
doublet matching at an abutment intersection. This subroutine is not
used in PAN AIR Version I. See Appendix 4-J.

SINGDF T : :
Controls the process of assigning indices to singularity parameters of
networks. See Appendix 4-H.

IP
T Computes the trace of the inner product of the D tensor with a specified
segment of the far field moment matrix, that is, the shifted inner
product of the tensors. See PAN AIR Theory Document, Section 4 of

Appendix I (Reference 1).
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SNGDA
Indexes singularity parameters on analysis edges of networks. See PAN
AIR Theory Document, Section 1 of Appendix D (Reference 1) and Appendix
4-H of this document.

SNGDD2
Indexes singularity parameters on edges of source design II networks.
See Appendix 4-H.

SNGDW1
Indexes singularity parameters on matching edge of doublet wake I
network. See-PAN AIR Theory Document, Section 1 of Appendix D
(Reference 1) and Appendix 4-H of_this docunent.

SNGDW2 .
Indexes singularity parameter on matching edge of doublet wake II
network. See Appendix 4-H and the PAN AIR Theory Document, Section 1 of
Appendix D (Reference 1).

SNGDEX
Computes or obtains from the database the singularity index of a
singularity parameter located at the specified point. Used for spline
computations.

SNGDFW ,
Generates the singularity parameters for the edges of a forward weighted
doublet analysis network.

SNGF IL _
Fills array with indices of singularity parameters which are required to
compute doublet splines at a smooth abutment. See Appendix 4-K.

SNGHUL
Defines null singularity parameters on coliapsed edges of networks. See
PAN AIR Theory Document, Section 1.4 of Appendix D (Reference 1).

SNGPAN
Indexes singularity parameters on network interiors. See Appendix 4-H.

SNGSD1
Indexes singularity parameters on edges of doublet design I networks.
See Appendix 4-H.

" SNGSD2
Indexes singularity parameters on edges of source design II networks.
See Appendix 4-H.

SPLA
Obtains data, computes doublet spline and assembles spline vector for
specified point on the interior of a network. See Appendix 4-K.

SPLINM . S
Controls computation and assembly of source and doublet spline matrices,
subpanel spline matrices and panel-wide subspline matrices.
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SPLTRN
Computes coordinate of specified point in local two dimensional
coordinate system for use in computation of spline.

¢

SRCFFHM
Computes source far field moments. See PAN AIR Theory Document, Section
4 of Appendix I (Reference 1).

SSIP
Computes scaled shifted inner product of D-tensor with basic far field
moment. See paragraph 4.4.2 SIP and PAN AIR Theory Document, Section 4
of Appendix I (Reference 1). .

SSP13
Obtains data computes source spline and assembles spline vector for
specified point. See Appendix 4-K.

SUBGEQ
Computes geometric data for subpanels.

SUBSPL
Computes subpanel spline matrix. See PAN AIR Theory Document, Section
4.2.1, Section 5.5 and Section 2 of Appendix I (Reference 1).

SYMFFM

Symmetrizes far field moments. See PAN AIR Theory Document, Section 4
of Appendix I (Reference 1).

TANGOP - N L~
Computes tangent vector at control point according to user option. See
PAN AIR User's Manual, Section 7.4 (Reference 2).

TRICHK
Checks panel in networks for short edges which indicate panel is
triangular.

UNISPL
Defines unit spline vector. See Appendix 4-K.

UPDOWN
Calculates upstream downstream parameters. See Appendix 4-J.3

USEABT
Defines abutments according to user specification. See Appendix 4-I,
and the PAN AIR User's Document, Section B.3.5 (Reference 2).

USROUT
Copies user boundary condition data to output array.

VECUNM
Assembles spline matrix from spline vectors.

VECUNV o
Assembles spline vectors from coefficients of constrained least squares
fit and spline vectors of points used in fit. W
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XHLOC
Computes extra hypothetical locations of control points which are used
to match source, doublet or vorticity strength. See PAN AIR Theory
Document, Appendix G (Reference 1).

XIETAV
Computes a Tocal two dimensional coordinate system for use in computing
splines at points on the interior of a network. See Appendix 4-K and
the PAN AIR Theory Document, Section 1.2.3 of Appendix I (Reference 1).

XSCRIB
Transcribes DIP boundary condition coefficients (stored one per dataset)
into a form required by DQG (all coefficients for one control point in
one dataset). : '

XTEND
Computes the first four rows of the extension matrix for source design
I1 networks. See PAN AIR Theory Document, Section 2.1.3 of Appendix I.

WAKGAP
Computes spline vectors for wake networks and calls routine which
defines spline vectors for gap filling panels.

WTLSQ
Defines upstream weighting coefficient for computing source and doublet
splines. See Appendix 4-K and PAN AIR Theory Document, Section 1.2.4 of
Appendix I (Reference 1).
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APPENDIX 4-A TREE STRUCTURE

The tree structure diagram of the DQG module has been deleted from this
document. It is, however, available on the installation tape.

4-A.1
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APPENDIX 4-B
FUNCTIONAL DECOMPOSITION OF DQG

This appendix describes the functional decomposition of DQG, that is, an
outline form of the modular structure of DQG organized by task. Where a
particular task is realized as a subroutine or subroutines in DQG, the
subroutine name is listed in parentheses after the textual description of the
operations which are performed. It is important to note that the execution
sequence of each of the levels of a modular decomposition is not necessarily
in accordance with the alphabetical order of the outline form. The control
structure of the program (which is described in the comments within the
particular subroutine) determines the execution sequence of the submodules.
The alphabetical 1isting of the submodules is merely a listing device to guide
the reader to particular sections of the code.
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4-B.1

Functional Decomposition of DQG

A. Open Database and Transfer Data from DIP database to DQG Database.

(OPENER)

A.

C.

PRECEDING PAGE BLANK NOT FILMED

[Overlay (1,0)]

Retrieve Information from MEC Database
A. Open the MEC Datbase (DBOPEN)
B. Define the SDMS Map (DSMAP /DVMAP /ENDMAP)

C

. Get the Run, User and Problem ID's (ESGET)
D. Check the file for the Databases (CHPADB)

E. Close the MEC Database (DBCLOS)

Transfer Data from DIP to DQG Database (DIPDAT)

A

. Define SDMS Maps (DSMAP/DVMAP/SVMAP/ENDMAP)
B. Get the Global Data (ESGET)

C. Get Network Data and Transform
D. Process User Abutment Information (BNDYIN)
E. Process Boundary Condition Information

mooOoa >

Define Additional SDMS Maps (DSMAP /DVMAP /SVMAP /ENDMAP )
Get Network Data (ESGET)
Clear Boundary Condition Arrays
Define Class One BC Data
Transcribe BC Data (XSCRIB)
A. Initialize
Modify Counter with Smear Option (DSCT)
Define User Class and Number of BC (NBCLAS)
Get DIP Database Data (ESGET)
Clear BC Arrays (ZERO)
Compute Lattice Indices for BC Data (LATBC)
Copy BC Data to OQutput Array (COPYBC)
Write BC Data to DQG Database (ESPOR)
anscribe Closure Data (CLOSTR) )

GomMmmMmo O
L] - - - 3 -

Define Lattice Increments
Define Lattice Indices
Clear Closure Arrays
Define Panel Indices

Fill Array Indices

Get Data from DIP (ESGET)
Define Scale Coefficients
Get Index of Value Array

R IO TTMOO®E >
.

Write Data to Database (ESPUT)

Close Database (PACLOS)

BAGE 4-B.L ENHDNALLY

Add Contributions to Mass FLux and Source Terms

Define Number of Parallel and Perpendicular Panels

4-B.3
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B. Compute Network Defining Quantities (NETDEF) [Overlay (2,0)]

A. Open Database and Define Maps

A.
B.

Open DQG Database (PAOPEN)
Define Maps (MAPB)

B. Get Network Data

C. Define Edge Point Coordinates (DFEDGE)

A.

m o (@]
. . .

L]

TMMOO @I O MM
.

Initialize

Get Column of Points (ESGET)

Store Corner Points for Edge Four and those Adjacent to Edge
Four in Reverse Order

Store First and Second Corner Points for Edge One and its
Adjacent Row

Store Last and Next to Last Corner Points for Edge Three and its
Adjacent Row (Reverse Order)

Store Corner Points for Edge Two and those AdJacent to Edge Two
Write Edge Point Coordinates to Database (ESPUT)

heck Network Edges (EDGCHK)

Calculate Network Edge Length (EDGCAL)
Diagnose Collapsing Edge Error

Collapse the Network Edge (COLAPS)

Diagnose Collapsing Edge Error

Write Changed Coordinates to Database (ESREP)
Diagnose Adjacent Collapsed Edge Errors

E. Find Indicial Center of Network (INDCTR)

F. Get a Columns of Corner Points (ESGET)

G. Extract Panel Corner Points
H

. Check for Triangular Panels and High Aspects Ratio (TRICHK)

I. Find Fine Grid Coordinates (FINGRD)

J. Place Fine Grid Points on Database (ESPUT)

K. Define Singularity Indices (SINGDF)

A.

4-8.4

Establish Network Wide Variables
A. Extract from Common Blocks NETWK and SINGLR
B. Set to Default Values

Generate Singularity Specifications for A1l Network Panels
{SINGPAN)

Generate Singularity Specifications for Doublet Network Edges
A. Doublet Analysis Edges (SNGDA)

Doublet Design I Edges (SNGSD1)

. Doublet Design Il Edges (SNGSD2

. Doublet Wake I Edges (SNGDW1)

. Doublet Wake II Edges (SNGDW2)

Forward Weighted Doublet Analysis Edges (SNGDFW)

mMMmo O W@
., -

C-=

I
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D. Generate Singularity Specifications for Source Network Edges
A. Source Design I Edges (SNGSD1)
B. Source Design II Edges (SNGSD2)

E. Nullify Singularities at Collapsed Edges (SNGNUL)

Index Control Points (CONTPT)

Replace NETWK-SPEC Data Set (ESREP)

Print Requested Network Data (PRTNET)

4-B.5



C. Compute Edge Defining Quantities (EDGDEF) [Overlay (3,0)]

A.

4-B,6

Find Pairwise Abutments and Define User Abutments (PRABUT) -
[Overlay (3,1)]

A.

Define User Abutments (USEABT)

o M mo O m >
L]

Initialize Abutment Counters

Get User Abutment Data (ESGET)

Define Reference Network

Define Whole Edge to be in Abutment

Find Closest Corner Point to Start/End Point of Reference
Edge

Write Abutment Data to Database (ESPUT)

Define Total Number of Abutments

Define Search List for Automatic and Empty Space Abutment
Search (SEARCH)

Get Network Data (ESGET)

Setup Blank Common Storage (INITIR,STARTR)

Get Edge Point Coordinates (ESGET)

A.

— IO TmMOoOOo
. .

‘Search for Network Abutment (NETABT)

Get Search List for Current Reference Edge (ESGET)
Define Candidate Edges (EDGLST)

Define Search Pointers

Compute Minimum Distance from Point to Line Segment
Determine Nearby Segment Found

Start a New Pairwise Abutment

Extend an old Abutment

Terminate the Abutment

Determine Plane of Symmetry Abutment

(

Delete Blank Common Storage (DELETR)
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B. Construct Abutments and Check Rules (ABUTMNT) [Overlay (3,2)]

A.

Generate Expanded List of Abutments (ABXPND)

A‘
B.
c.
D.

Make List of Pairwise Abutments in Which Network Takes Part
Sequence Corner Point Indices

Define Expanded Abutment Arrays

Add Plane of Symmetry to Expanded Abutment Arrays

Contract Expanded Abutments to Form Abutment Description (CONABT)

. L] . »

o o o o

R ITOMOUMAaO me
.

.

Get Expanded Abutment Data (ESGET)

Find a Reference Edge

Compute Quarter and Three Quarter Point Coordinates (C13QTR)
Computer Distance Between Quarter Points (DISTQT)

Add Network Edge to Abutment

Compute Distance from Quarter Points to Plane of Symmetry
Add Plane of Symmetry to Abutment

Copy Network Edges to Output Array

Copy Plane to Symmetry to Output Array

Clear Associated Information

Write Abutment Data (ESPUT)

Get Abutment Data (ESGET)

Compute Associated Edge Properties (EDGPRP)

Replace Abutment Data (ESREP)

Define Search List for Empty Space Abutments (SEARCH)

Check Abutment Rules (ESGET)

A.
B.
C.
D.
E.

Get Abutment Data (ESGET)

Check Smooth Abutment Rules

Define Null Singularity Rules

Count Number of Matching Edges

Check Plane of Symmetry Rules (CHKPOS)

4-B.7



4-B.8

Compute Gap Sizes (GAPSIZ) [Overlay (3,3)]

A.
B.
C.
D.

Initialize

Get Abutment Data (ESGET)

Define Start and End Pointers

Define Two Panel Corner Points

Find Closest Point on Second Edge to Panel Point on First Edge
Find Minimum Distance to Closest Line Segment

Define Gap Size as Maximum of Minimum Distances

Write Gap Size to Database (ESPUT)

Define Empty Space Abutments (MTABUT)

Get Abutment Data (ESGET)

Compute Edge and Point Properties (EDGPRP)
Replace Abutment Data (ESREP)

Define Empty Space Abutment

Write Empty Space Abutment

i



Assign Matching Data to Edges (MATCH) [Overlay (3,4)]

A.
B.

Get Abutment Data (ESGET)

Assign Network Edge to Abutment (EMATCH)

A'

Mmoo O

Get Network Data (ESGET)

Count Matching Edge

Find Leading Edge of Most Downstream Edge Which is also a
Supersonic Edge

Choose Finest Network

Diagnose Fatal Error )

Diagnose Matching Doublet Pointer for Empty Space Abutment

Replace Abutment Data (ESREP)

Define Abutment Intersections (INTRSC)

o:ﬂmcom)z

Get Abutment Data (ESGET)

Extend the Abutment List

Extend the Corner Point Map

Extend the Connection List

Sequence Connections by Downstream Parameter
Initialize Arrays for Intersection Description
Assign Entries to Intersection List (NTRLST)

A. Determine Corner Point Indices from Connection Data
Define New Intersection List

Define Intersection Index N

. Add to 01d Intersection List

Combine Intersections

. Change Sign of Abutment Index for Closed Loop
. Define Number of Intersections

I Mmoo
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Assign Corner Points for Doublet Matching (ASSIGN)

*

TrMOMmMMMoO >
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Get Intersection Data (ESGET)

Count Distinct Abutments

Count Distinct Corner Points and Sequence Them
Diagnose Error in Intersection Data
Initialize Assignment Counter

Prepare Data Needed for Assignment

Choose Corner Point for Assignment (ABTINT)
Assign Corner Points to Abutments (ABASGN)
A, Define Abutment Index

B. Get Abutment Data (ESGET)

C. Define Matching Data

D. Increment Number Assigned

4-B.9
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Add Gap Filling Panels (GAPPNL) [Overlay (3,5)]

A.
B.

X [
L *

B

Get Abutment Data (ESGET) e
Define Panel Limits
Define Shift Index for Panel
Define Panel Index
Set Indicator for Gap Size Exceeded
Initialize Gap Panel Construction
Parameterize the Edge (PRMEDG)
Merge and Sequence Parameterizations
Define Gap Panel for Network Edges (DEFPNL)
A. Initialize
. Compute Four Coordinates from a Pair of Parameterizations
C. Compute Gap Panel Edge Lengths and Count Number of Short
Edges )
D. Define Gap Panel Data
E. Write Gap Panel Element Set (ESPUT)
F. Error Exit
Define Gap Filling Panel for Plane of Symmetry (POSPNL)
A. Find Plane of Symmetry Reference -
B. Get Coordinate Data (ESGET) -
C. gegine Start and End Points and Lattice Indices of First
oint
D. Define Gap Panel Corner Points
E., Define Gap Panel Data
F. Count Number of Short Edges
G. Write Gap Panel Element Set (ESPUT)
H.  Diagnose Error



Add Extra Singularities and Control Points (ADCPSG) [Overlay (3,6)]

A.
B.
C.
D.

Get Network Data (ESGET)

Increment Number of Control Points

Assign Control Point Index

Add Extra Singularity Parameter

Replace Special Points Dataset (ESREP)

Assign Extra Hypothetical Locations (XHLOC)

A.
B.
cl
D

Get Abutment Data (ESGET)

Compute Extra Hypothetical Location for Corner Point
Parameterize Network Edge Segment (PRMEDG)

Define Extra Hypothetical Locations for Edge Midpoints

Define Flags for Matching Boundary Conditions

OHOMMO 0O
« .

Get Abutment Data (ESGET)

Count Number of Planes of Symmetry in Abutment

Count Distinct Matching Pointers

Find Edge Segment for Matching

Assign Matching Condition

Replace Special Points Dataset (ESREP)

Define Special Points Dataset for Collapsed Edges

. Define First and Last Points for Each Edge

. Get Special Points Dataset (ESGET)

Check if Matching Pointer Set for Null Control Point

. ngine Value for Opposite Corner Point on Collapsed
ge

Replace Special Points Dataset (ESREP)

Define Special Points Dataset for Collapsed Edge

Define Matching Value for Point

Write Special Point Database for Collapsed Edge (ESPUT)

o0 W >
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Compute Control Point and Boundary Condition Data (BNDYDF) [Overlay

A. Open Database and Define Maps (PAOPEN,DSMAP)
B. Get Network Data (ESGET)

C. Get Network-Wide Boundary Conditions (GETBC)
A. Get BC Data (ESGET)
B. Compute Average and Difference Coefficients
C. Check for Nearly Vanishing Coefficients

D. Determine Number of Boundary Conditions Required
E. Copy Second Columns of Corner Points to First Column

F. Compute Center Control Point Data (CENTCP)
A. Compute BC Data
B. Compute Geomtric Data )
C. Assign Boundary Conditions (ASGNBC)
A. Prepare User Boundary Conditions (ASGNU)
A. Initialize Characterization
B. Redefine BC Coefficients .
C. Define C and D Vectors
D. Assign Characterizations and Sequence User BC by
Hierarchy
B. Assign Matching BC (ASGNM)
A. Test Point for Closure Point .
B. Define Vanishing C and D Vectors (ZERO) 4
C. Test Point for Closure Point
D. Test Point for Source Matching Point
C. Choose Required Boundary Conditions (CHOOSE)
A. Clear Output Array (ZERO)
B. Initialize BC Pointers
C. Copy DQG BC Data to Output Array (DQGOUT)
D. Copy User BC Data to Output Array (USROUT)
E. Copy Degenerate Data to Output Array (DEGOUT)
F. Add Default BC if Insufficient BC Assigned
. Define MAG and PDP Parameters (MPPARM)
. Prepare Degenerate BC Data (DEGPRP)
. Clear Number of DQG Boundary Conditions
. Define Known Singularities (KNOWSP)
D. Replace Control Point Dataset (ESREP)
E. Write Boundary Condition Dataset (ESPUT)

ommo



Compute Boundary Condition Data for Edge (EDGECP)

A.
B.
C.

aoOmmo
¢« o o

H.

Get Coordinates (ESGET)

Get Network Wide BC (GETBC)

Compute Geometric Information for Corner Points (CCPGED)

. Define Panel Points

. Define Subpanel on Which Point Lies

. Compute Normal and Conormal

. Compute Recession Vector

Define Control Point Location

-Compute Tangent Vector (TANGOP)

Define Remaining Geometric Data

Copy BC Data into User BC Array

A. Copy Data

B. Check for Superinclined Subpanel and Modify
Boundary Conditions (MODBC)

Assign Boundary Conditions to Point (ASGNBC)

Replace Control Point Dataset (ESREP)

Write Boundary Condition Datasets (ESPUT)

Compute Geometric Data for Edge Midpoints (ECPGEO)

. Define Panel Points

Compute Normal and Conormal Vector

Compute Recession Vector

Compute Tangent Vector (TANGOP)

. Define Miscellaneous Geometric Data

. Check for Superinclined Subpanel and Modify Boundary

Conditions (MODBC)
Compute the Kutta Tangent Vector

TOOTMMUO O
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Close batabase (PACLOS)
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Choose Source and Doublet Splines (TOPSPL) [Overlay (5,0)]
Compute Smooth Abutment Splines (SAEDGS) [Overlay (5,1)]
Open Database and Define Maps (PAOPEN,DSMAP)

Get Abutment Data (ESGET)

Choose Closest Network

Parametrize Smooth Abutment (PARAMSA)

Get Coordinates for Smooth Edge (PTSFIL)

Get Singularity Parameter Indices (SNGFIL)

Define Spline Vectors for Coarse Edge

A.

A.

B.
C.
D.
E.
F.
G

A,

B.

L2 >

—XMOTMoO
.

Define Unit Spline Vectors at End Points (UNISPL)

Define Spline Data for Corner Points (SALSQG)

. Initialize Counter

. Find Closest Corner Point on Fine Network (CCPFN)

. Define Least Squares Data (DEFLSQ)

. Define and Write Internal S?Iine Vector (INTERN)

. Define Local Two Dimensional Coordinate System
(Loc2D)

. Computer Transformtion to Local Two Dimensional
Coordinate System (SPLTRN)

G. Compute Weights for Fit (WTLSQ)

Define Lattice Indices for Point (FLIND)

Perform Constrained Least Squares Fit (CQLSF)

Diagnose Error

Print Warning for Poor Fit

Accumulate Spline Vector (VECUNV)

Write Spline Vector to Database (ESPUT)

Define Spline Vector for Edge Midpoint )SALSQE)

A. Initialize Counter

B. Find Closest Corner Point on Fine Network (CCPFN)

C. Find Most Distant Center Point Adjacent to

Closeset Corner Point (MDCP)

D. Define Least Squares Data (DEFLSQ)

E. Define and Write Internal Spline Vector (INTERN)

F. Define Local Two Dimensional Coordinate System

G

H

| Mmoo w3

(Loc2p)

. Compute Transformation to Local Two Dimensional
Coordinate System (SPLTRN)

. Compute Weights (WTLSQ)

Define Spline Vector for Fine Edge (FINESP)

AO
B.
C.
D.
E.

Choose Corner Points on Coarse Edge (CPCSFL)
Compute One Dimensional Quadratic Fit (QIDFIT)
Accumulate Spline Vector (VECUNV)

Compute Internal Spline Data

Write Spline Vector

Close Database (PACLOS)



Compute Spline Vectors for Network (SPLINR) [Overlay (5,2)]
Open Database and Define Maps {PAOPEN,DSMAP)

Get Network Data (ESGET)

Compute Source Analysis Spline Vectors (ANALS)
Initialize

Define and Write Unit Spline Vectors (UNISPL)

Get Arrays of Coordinates

Compute Lattice Indices of Point (LATIND)

Compute Least Squares Spline for Point (SSP13)

A.
B.
C.

B
C'
D
E

A.

A.

MMmOo O
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Compute Least Squares Data for Point (DATS13)

. Initialize

. Check for One Dimensional Fit

. Increment Counter

Define Least Squares Data for Point (LSQDAT)
Define Xi and Eta Vectors (XIETAV)

. Compute Coordinate Transformation (SPLTRN)
. Compute Weights (WTLSQ)

H. Perform One Dimensional Fit

Perform Bilinear Fit (CQLSF)

Diagnose Spline Error

Print Warning Message

Accumulate Spline Vector (VECUNY)

Write Spline Vector (ESPUT)

OMMmoOmE
*

Compute Spline Vectors for Source Design Network
Compute Fine Grid Lattice Indices

Define Unit Spline Vector (UNISPL)

Define Spline Vector.

Get Singularity Index for Point (SNGDEX)
Write Spline Vector (ESPUT)

A.
B.
C.
D.
E.

Compute Doublet Analysis Spline Vectors (ANALD)
Initialize
Calculate Edge Spline Vectors

A.
B.

C.
D.
E.

.

nm o0

L

Define Coarse Lattice Indices
Define Lattice Indices for Point (LATIND)
Define Unit Spline Vectors (UNISPL)

" Define Lattice Indices for Last Corner Point on

Edge

Write Spline Vector for Point (ESPUT)

Perform Analysis Edge Spline (NTEDGA)

A. Get Edge Coordinates (ESGET)

B. Find Edge Segments for Quadratic Fit (EDGSGQ)

C. Define Spline Vectors for Additional Corner
Points

D. Compute Spline Vectors for Corner Points
(CPANAL)

E. Compute Spline Vectors for Edge Midpoints

F Define Spline Vectors for Collapsed Edge

Define.Unit Spline Vectors at Center Points (UNISPL)
Get Array of Corner Points (ESGET)
Compute Lattice Indices of Point (LATIND)

4‘8.1 5
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Compute Spline Vector for Point (SPLA)
A. Compute Least Squares Data for Surrounding Points

(DATANL)

A.
B.
C.

T TIMOo

Mmoo w
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*

Initialize

Define Lattice Indices

Increment Counter

Define Least Squares Data for Point (LSQDAT)
Define Infinite Weight for Point

Define Xi and Eta Vectors (XIETAV)

Compute Coordinate Transformation (SPLTRN)
Define Weights (WTSLQ)

. Perform Constrained Least Squares Fit (CQLSF)
Diagnose Error

Print Warning for Poor Fit

Accumulate Spline Vector (VECUNV)

Write Spline Vector (ESPUT)

Compute Doublet Design Spline Vectors (DSGN1D)
A, Initialize Limit Arrays

B. Compute Network Edge Spline Vectors

Define Lattice Indices for Point (LATIND)
Define Unit Spline Vector for Point (UNISPL)
Define Lattice Indices for Last Point on Edge
Write Spline Vector for Point

Perform Analysis Edge Spline (NTEDGA)

Perform Design Edge Spline (NTEDGD)

A.

MmO O

C.

D.

E.

F.
A.
B.
C.

A.
B.

OO W

Cu+— T am
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Initialize

Get Edge Coordinates (ESGET)

Find Edge Segments for Quadratic Fit (EDGSGQ)

Define Unit Spline Vector for Extra Points

E. Compute Start/End Points for Segment
(LATEDG)

Parametrize the Segment (PRMEDG)

Compute Intermediate Spline Vector for Edge

Midpoints (GAMVEC)

Define Lattice Indices (EDGLAT)

Compute Corner Point Spline Yector (CPDSGN)

Compute Edge Midpoints Spline Vectors

(EMDSGN)

Define Fine Grid Lattice Indices

Define and Write Unit Spline Vectors (UNISPL)
Get Arrays of Corner Points

Compute Spline Vectors for Specified Point

Compute Lattice Indices (LATIND)

Define Shifts and Limits

Compute Spline Vector (SPLA)

Compute Wake or Gap Panel Spline Vectors (WAKGAP)

A. Define Corner Point Lattice Indices

B. Calculate Wake I Edge Spline

Find Matching Edge

Define Unit Spline Vector for Corner Points

-
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C. Perform Edge Spline for Matching Edge (NTEDGA)
Calculate Wake II Edge Spline

Diagnose Error

Define Spline Vectors for Interior of Wake Network
Define Spline Vectors for Gap Filling Panels (GAPSPL)
A. Get Spline Vector for Point (ESGET)

B. Define Network Data

. Compute Lattice Indices (LATIND)

Compute Geomtric Weight Matrix

. Define Weight Vector

. Accumulate Spline Vector (VECUNV)

. Write Spline Vector to Datbase (ESPUT)

OMMOO
L]

Compute Forward Weighted Doublet Analysis Splines (ANDFW)

A.
B.

mo
-

Initilize o

Calculate Edge Spline Vectors

A. Define Coarse Lattice Indices

B. Define Lattice Indices for Point (LATIND)

C. Define Unit Spline Vectors (UNISPL)

D. Eefine Lattice Indices for Last Corner Point on

dge

Write Spline Vector for Point (ESPUT)

Perform Analysis Edge Spline (NTEDGA)

A. Get Edge Coordinates (ESGET)

B. Find Edge Segments for Quadratic Fit (EDGSGQ)

C. Define Spline Vectors for Additional Corner
Points

D. Compute Spline Vectors for Corner Points
(CPANAL) )

E. Compute Spline Vectors for Edge Midpoints

F. Define Spline Vectors for Collapsed Edge

Define Unit Spline Vectors at Center Points (UNISPL)

Get Array of Corner Points (ESGET)

Compute Lattice Indices of Point (LATIND)

mm
o o

4-8.17



F.

4-B.18

Compute Panel Defining Quantities (PANDEF) [Overlay (6,0)]
Open Database, Define Maps and Get Data for Network
Compute Geometric Quantities (GEOMQU)

A.
B.

A.
B.

E

A.

B.
cl

Compute Panel Defining Points

Compute Panel Geometric Data (PANGEO)

A. (Not Used)

B. Compute Normal and Conormal Vector

C. Compute Panel Diameter and Radius

D. Define Panel Updatability

E. Compute Skewness Parameters .

F. Compute Projected Area of Panel and Subpanels

G. Compute Average Plane Corner Point Coordinates
Compute Subpanel Geometric Data (SUBGEO)

A. Compute Origin of Subpanel Coordinate System

B. Compute Normal and Conormal Yectors

C. Compute Transformation to Subpanel Coordinate System
D. Compute Subpanel Points in Subpanel Coordinate System
E. Compute In-Plane Side Normals

F. Define Zero Value for Data (Error Exit)

Compute Gap Size to Panel Size Ratio (PANSIZ)

A. Initialize

B. Compute Unit Normal to Panel Edge

C. Define Vector from Center to Edge Midpoint

D. Compute Inner Product of Vectors (VIP)

E. Get Gap Size for Panel (ESGET)

F. Compute Gap Size to Panel Size Ratio

G. Replace GAP SIZE Dataset (ESREP)

Compute Edge Normal in Subpanel Eight Coordinate System

A;semb1e Spline Matrices (SPLINM)

Construct Outer Spline Matrix (SDSPLM)

A, (Not Used)

B. Initialize Counter

C. Obtain Spline Vector (ESGET or DCSASP)

D. Accumulate Spline Vector to Form Matrix (VECUNM)

E. Clear Spline Matrix (ZERO)

Construct Least Squares Defining Point Vectors

Construct Subpanel Spline Matrix (SUBSPL)

A. Construct the Geometric Matrix

B. Invert the Geometric Matrix (JORDAN)

C. Assemble the Extension Matrix

D. Tu]t;ply the Inverse Geomertric and Extension Matrices
CAB

E. Define Zero Subpanel Spline Matrices (ZERO)

Construct Kappa Vectors (KAPVEC):

A. Clear Kappa Vectors

B. Define Skewness Factors

C. Compute Kappa Vectors for Subpanels

D. Scale All Kappa Vectors

Construct Panel Subspline Matrix

A. Transform Point to Subpanel Eight Coordinate System

B. Define Weights According to Singularity Type

C. Compute Constrained Quadratic Least Squares Fit (CQLSF)

D. Define Zero Matrix (ZERO)

Write Fatal Error

Define Singularity Indices for Panel

¢
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Compute Far Field Moments (FFMOM)
A. Compute Basic Far Field Moments
A. Initialize to Zero (ZERO)
B. Define Points
C. Compgte Normal Distance from Origin to Line Segment
(VIP
Compute Moments Along Line Segment
Compute G(M,N) Along Line Segment
. Accumulate Basic Far Field Moment Contributions
ompute Source Far Field Moments (SRCFFM)
Initialize to Zero (ZERO)
Define D Tensor (DTENSR)
Compute Monopole Term
Compute Dipole Term
Compute Quadrupole Term
Accumulate Contributions
Symmetrize Far Field Moments (SYMFFM)
mpute Doublet Far Field Moments (DBLFFM)
Initialize to Zero (ZERQ)
Define D Tensor (DTENSR)
Compute Monopole Term
Compute Dipole Term
Compute Quadrupole Term
Accumulate Contributions _
Symmetrize Far Field Moments (SYMFFM)

aoTmmo
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Summarize Execution (SUMMRY)

A.

B.

Print Global and Network Summary (PGNDAT)
A. Print Header at Top of Page .

B. Write Global Data to Output File

C. Get Network Data (ESGET)

D. Write Network Data to Output File

Transform Data Representation

A. Get Network Data (ESGET)

B, Redefine Singularity Type

C. Redefine Edge Type

D. Replace Network Data (ESREP)

Print Control Point Data (PCPDAT)

A. Initialize

B. Get Data (ESGET)

C. Increment Counter

D. Print Header

E. Compute and Write Data to Output File

Print Boundary Condition Data

A. Get Data (ESGET)

B. Increment Counter

C. Print Header

D. Compute and Write Data to Output File

Close Database (PACLOS)
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Summarize DQG Operations (SUMMRY) [Overlay (7,0)]

Open Database (PAOPEN)

Define Maps (DSMAP,SVMAP,DUMAP)

End Maps (ENDMAP)

Replace Global Data (ESREP)

Print Global and Network Data (PGNDAT)
Print Control Point Data (PCPDAT)
Print Boundary Condition Data (PBCDAT)
Close Database (PACLOS)

(
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APPENDIX 4-C
DATA BASE COMMUNICATIONS CHART

Tables 4-C.1 through 4-C.3 describe the data flow within DQG., The
"Eiprst Form" chart (Table 4-C.1) 1ists the dataset name in alphabetical order
by overlay with its corresponding map names used within the overlay and with
the destination of the data, usually a common block. Table 4-C.2 is the
"Second Form" of the chart. It contains the same information but has it
listed under Map Name in alphabetical order. Table 4-C.3 Tists the common
blocks in alphabetical order by overlay and shows to which dataset the
information within the block connects. In the column Tabelled COMMON BLOCK
the word “Dynamic" sometimes appears. In this case the data is not
transferred to a common block but is transferred to whatever variables are
mentined in the 1/0 transfer call to ESGET, ESPUT or ESPOR. See Section 13 of
this document.
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Table 4-C.1

DATABASE DATASET-NAME
MEC DATA-BASE-HEADER
MEC MACRO-OPTIONS
DIP CLOS-COND
DIP COEF-GEN-BC
DIP GLOBAL
DIP GLOBAL-PRINTS
DIP NETWK-BDC
DIP NETWK-SPEC
DIP PANEL-COORDS
DIP TANG-VEC
DIP USER-ABUT
DQG CLASS-5-BC-DATA
DQG CLOSURE-DATA-IN
DQG GLOBAL .
DQG NETWK-BNDRY-CONDN-IN
DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS
DQG USER-ABUT

DATABASE DATASET-NAME
DQG CONTROL-PT-SPEC
DQG EDGE-POINT-COORDS
DQG FINE-GRID-COORDS
DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS
DQG SINGULARITY-MAP
DQG SINGULAIRTY-SPEC
DQG SINGULARITY-SPEC

PRECEDING PAGE BLANK NOT FILMED

Data Flow for DQG First Form

Overlay (1,0)

MAP NAME ~ COMMON BLOCK
IDS /RUINDS/
RUNOPT Tocal
DIPCLOSDAT  /GENBCD/
CGBCMP /GENBCD/
GLOBAL-IN /GLOBAL/
PRINT-OPT Dynamic
NETBDC /NETBDC/
NETMAP /NETWK/
PAN-COR-PT /COORDS/
TVECTCOEFF /GENBCD/
USABIN /ABUT/

CLASS /NBCDIN/
CLOSDIN /CLOSUR/
GLOB-DYN /GLOBAL/,Dynamic
BCDATIN /NBCDIN/
NETMAP /NETWK/
COORDS-GEN Dynamic
USABUAT /ABUT/

Overlay (2,0)

MAP NAME

CNTRLPS
EDGPTS
FCNCORDS
NETMAP
CORNCOORDS
SINGMAP
SINGSPC
SINGSPEC

COMMON BLOCK

/CPGEOM/
Dynamic
Dynamic
/NETWK/
Dynamic
/SINGLR/
/SINGLR/
Dynamic

OPENER
OPENER

BNDYIN
BNDYIN
DIPDAT
DIPDAT
BNDYIN
DIPDAT
DIPDAT
BNDYIN
DIPDAT

BNYDIN
BNDYIN
DIPDAT
BNDYIN
DIPDAT
DIPDAT
DIPDAT

MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
MAPB

SUBROUTINE

SUBROUTINE

4-C.3
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Overlay (3,0)

DATABASE DATASET-NAME MAP NAME
DQG ABUTMENT-KEYS ABUTMENTS
DQG ABUTMENT-SPEC ABUTMENT
DQG CONTROL-PT-SPEC CTLDEXMAP
DQG CONTROL-PT-SPEC CTLSPECDYN
DQG EDGE-POINT-COORDS EDGPTS
DQG EMPTY-SPACE-ABUTMENTS ESABUTMNT
DQG EXPANDED-ABUTMENT EXPABUT

- DQG EXTRA-HYPO-LOC XHLOCCP
DQG GAP-PANEL GAPPANEL
DQG GAP-SIZE GAPSIZE
DQG I-ABUT IABUTMAP
DQG INTERSECTION CONNECTION
DQG NETWK-SPEC NETMAP
DQG NETWK-SPEC NETWKS
DQG PANEL -CORNER-COORDS COORDS-GEN
DQG SEARCH-LIST SEARCHLIST
DQG SINGULARITY-MAP SINGMAP
DQG SINGULARITY-SPEC SINGSPC
DQG SINGULARITY-SPEC SINGSPEC
DQG SPECIAL-POINTS SPECIALPT
DQG USER-ABUT USABUT

Overlay (4,0)

DATABASE DATASET-NAME MAP NAME
DQG BNDRY-CONDY-SPEC BNDRY
DQG B-POINTER BPOINT
DQG CLASS-5-BC-DATA CLASSS
DQG CLASS~5-BC-DATA XCLASS5D
DQG CLOSURE CLOSURE
DQG CLOSURE-DATA-IN CLOSDIN
DQG CONTROL-PT-SPEC CNTRLPT
DQG CONTROL-PT-SPEC CTLDEXMAP
DQG CONTROL-PT-SPEC INDCTLMP
DQG NETWK-BNDRY-CONDY-IN  BCDATIN
DQG NETWK-SPEC NETMAP
DQG PANEL-CORNER-COORDS COORDS-GEN
DQG SINGULARITY-MAP SINGMAP
DQG SINGULARITY-SPEC SINGMAP
DQG SPECIAL-POINTS SPECIALPT

4-C.4

COMMON BLOCK SUBROUTINE
Dynamic ABUTMNT
/ABUT/ EDGECP
Dynamic ZHLOC
Dynamic ADCPSG
Dynamic EDGDEF
/ABUT/ EDGDEF
/EXPAND/ EDGDEF
Local XHLOC
/GAPANL/ GAPPNL
Dynamic EDGDEF
/ABUT/ EDGDEF
/MATCHD/ MATCH
/NETWK/ EDGDEF
Dynamic EDGDEF
Dynamic ABUTMNT
/LIST/ EDGDEF
/SINGLR/ EDGDEF
/SINGLR/ EDGDEF
Dynamic EDGDEF
/SPECPT/ EDGDEF
/ABUT/ EDGDEF
COMMON BLOCK SUBROUTINE
/BCDOUT/ BNDYDF
/BCDOUT/ BNDYDF
/NBCDIN/ BNDYDF
/XBCDIN/ BNDYDF
/CLOSUR/ BNDYDF
/CLOSUR/ BNDYDF
/CPGEOM/ BNDYDF
Dynamic BNDYDF
Dynamic BNDYDF
/NBCDIN/ BNDYDF
/NETWK/ BNDYDF
Dynamic BNDYDF
/SINGLR/ BNDYDF
Dynamic BNDYDF
/SPECPT/ BNDYDF



DATABASE DATASET-NAME

DQG ABUTMENT-SPEC
DQG ABUTMENT-SPEC
DQG B-SPLINE-SOURCE
DQG B-SPLINE-SOURCE
DQG B-SPLINE-DOUBLET
DQG B-SPLINE-DOUBELT
DQG B-SPLINE-DOUBLET
DQG B-SPLINE-DOUBLET
DQG EDGE-POINT-COORDS
DQG EDGE-POINT-COORDS
08G GAPPANEL
DQG INTERIOR-SPLINE
DQG INTERIOR-SPLINE
DQG NETWK-SPEC
DQG NETWK-SPEC
DQG PANEL-CORNER-COORDS
DQG PANEL-CORNER-COORDS
DQG SINGULARITY-MAP
DQG SINGULARITY-MAP
DQG SPECIAL~-POINTS
DATABASE DATASET-NAME
DQG B-SPLINE-DBL
DQG BSPLINE-SRC
DQG GAP-PANEL
DQG GAP-SIZE
DQG MAG-PANEL-SPEC
DQG MDG-PANEL-SPEC
DQG NETWK-SPEC
DQG PANEL~CORNER-COORDS
DQG PANEL-CORNER-COORDS
DQG PANEL-SING
DQG PANEL-SPEC
DATABASE DATASET-NAME
DQG BNDRY-CONDN-SPEC
DQG BNDRY-CONDN-SPEC
DQG DATA-BASE-HEADER
DQG GLOBAL
DQG NETWK-SPEC
DQG SPECIAL-POINTS

Overlay (5,0)

MAP NAME COMMON BLOCK
ABUTMENT /ABUT/
ABUTMENT /ABUT/
SPLINE-SRC Dynamic
SSPLINE /SPLINE/
DSPLINE /SPLINE/
DSPLINE /SPLINE/
SPLINE-DBL Dynamic
SPLINE-DBL Dynamic
EDGPTS Dynamic
EDGPTS Dynamic
GAP-PANEL /GAPAN/
INTSPLMP Dynamic
INTSPLMP Dynamic
NETMAP /NETWK/
NETMAP /NETWK/
COORDS-GEN Dynamic
COORDS-GEN Dynamic
SINGMAP /SINGLR/
SINGMAP /SINGLR/
SPECALPT /SPECPT/

Overlay (6,0)

MAP NAME
SPLINE-DBL

SPLINE-SRC
GAPPANEL
GAPSIZE
MAGPSPEC

MDGPSPEC

NETMAP
COORDS-GEN

CORNCOORDS

PANSING
PANSPEC

Overlay (7,0)

MAP NAME

BCOUTDATA
CTLOUTDATA
DBHEADER
GLOB-DYN
NETMAP
SPECIALPT

COMMON BLOCK

Dynamic
Dynamic
/GAPANL/
Dynamic
/PANEL/
/SPLINE/
/PANEL/
/FFM/
/NETHK/
Dynamic
/COORDS/
/SPLINE/

~ /FFM/

/PANEL/
/SPLINE/

DATA

Dynamic
Dynamic
Dynamic
/GLOBAL ,Dynamic

- /NETWK/

/SPECPT/

SUBROUTINE

SAEDGS
SPLTPR
SPLINR
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SPLINR

SUBROUTINE

PANDEF
PANDEF
PANDEF
PANDEF
PANDEF

PANDEF

PANDEF
PANDEF
PANDEF
PANDEF
PANDEF

SUBROUTINE

PBCDAT
PCPDAT
SUMMRY
SUMMRY

SUMMRY
SUMMRY
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Table 4-C,2 Data Flow for DQG

Second Form

Overlay (1,0)

NETWK-BNDRY-CONDN-IN

PANEL -CORNER-COORDS

Overlay (2,0)

DATABASE MAP NAME DATASET-NAME
MEC IDS DATA-BASE-HEADER
MEC RUNOPT MACRO-OPTIONS
DIP CGBCMP COEF-GEN-BC
DIP DIPCLOSDAT CLOS-COND
DIP GLOBAL-IN GLOBAL
DIP NETBDC NETWK-BDC
DIP NETMAP NETWK-SPEC
DIP PAN-COR-PT PANEL-COORDS
DIP PRINT-OPT GLONAL-PRINTS
DIP TVECTCOEFF TANG-VEC
DIP USABIN USER-ABUT
DQG BCDATIN
DQG CLASS CLASS-5-BC-DATA
DQG CLOSDIN CLOSURE-DATA-IN
DQG COORDS-GEN
DQG GLOB-DYN GLOBAL
DQG NETMAP NETWK-SPEC
DQG USABUAT USER-ABUT
DATABASE MAP NAME DATASET-NAME
DQG CORNCOORDS
DQG CNTRLPS CONTROL-PT-SPEC
DQG EDGPTS EDGE-POINT-COORDS
DQG FCNCORDS FINE-GRID-COORDS
DQG NETMAP NETWK-SPEC
DQG SINGMAP SINGULARITY-MAP
DQG SINGSPC SINGULARITY-SPEC
DQG SINGSPEC SINGULARITY-SPEC

4-C.6

PANEL-CORNER-COORDS

COMMON BLOCK SUBROUTINE
/RUINDS/ OPENER
Tocal OPENER
/GENBCD/ BNDYIN
/GENBCD/ BNDYIN
/GLOBAL/ DIPDAT
/NETBDC/ BNDYIN
/NETWK/ DIPDAT
/COORDS/ DIPDAT
DIPDAT
/GENBCD/ BNDYIN
DIPDAT
/NISCDIN/ BNDYIN
/NBCDIN/ BNYDIN
/CLOSUR/ BNDYIN
Dynamic DIPDAT
/GLOBAL/,Dynamic DIPDAT
/NETWK/ DIPDAT
DIPDAT .
COMMON BLOCK SUBROUTINE
Dynamic MAPB
/CPGEOM/ MAPB
Dynamic MAPB
Dynamic MAPB
/NETWK/ MAPB
/SENCLR/ MAPB
/SINGLR/ MAPB
Dynamic MAPB

¢



DATABASE MAP NAME

DQG ABUTMENT
DQG ABUTMENTS
DQG CONNECTION
DQG COORDS-GEN
DQG CTLDEXMAP
DQG CTLSPECDYN
DQG EDGPTS

DQG ESABUTMNT
DQG EXPABUT
DQG GAPPANEL
DQG GAPSIZE
DQG IABUTMAP
DQG NETMAP

DQG NETWKS

DQG SEARCHLIST
DQG SINGMAP
DQG SINGSPC
DQG SINGSPEC
DQG SPECIALPT
DQG USABUT

DQG XHLOCCP

DATABASE MAP NAME

DQG BCDATIP

DQG BNDRY
DQG BPOINT
DQG CLASSS

DQG CLOSDIN
DQG CLOSURE
DQG COORDS~-GEN
DQG CNTRLPT
DQG CTLDEXMAP
DQG INDCTLMP
DQG NETMAP
DQG SINGMAP
DQG SINGMAP
DQG SPECIALIS
DQG XCLASS5D

Overlay (3,0)

DATASET-NAME

ABUTMENT-SPEC
ABUTMENT-KEYS
INTERSECTION

PANEL -CORNER-COORDS
CONTROL-PT-SPEC
CONTROL-PT-SPEC
EDGE-POINT-COORDS
EMPTY-SPACE-ABUTMENTS
EXPANDED-ABUTMENT
GAP-PANEL

GAP-SIZE

I-ABUT

 NETWK-SPEC

NETWK-SPEC
SEARCH-LIST
SINGULARITY-MAP
SINGULARITY-SPEC
SINGULARITY-SPEC
SPECTAL-POINTS
USER-ABUT
EXTRA-HYPO-LOC

Overlay (4,0)

DATASET-NAME

NETWK -BNDRY-CONDY-IN
BNDRY-CONDY-SPEC
B-POINTER
CLASS-5-BC-DATA
CLOSURE-DATA-IN
CLOSURE

PANEL -CORNER-COORDS
CONTROL-PT-SPEC
CONTROL-PT-SPEC
CONTROL-PT-SPEC
NETWK-SPEC
SINGULARITY-MAP
SINGULARITY-SPEC
SPECIAL-POINTS
CLASS-5-BC-DATA

COMMON BLOCK  SUBROUTINE
/ABUT/ EDGECP
Dynamic ABUTMNT
/MATCHD/ MATCH
Dynamic ABUTMNT
Dynamic ZHLOC -
Dynamic ADCPSG
Dynamic EDGDEF
JEXPAND/ EDGDEF
JEXPAND/ EDGDEF
/GAPANL/ GAPPNL
Dynamic EDGDEF
/ABUT/ EDGDEF
/NETWK/ EDGDEF
Dynamic EDGDEF
/LIST/ EDGDEF
/SINGLR/ EDGDEF
/SINGLR/ EDGDEF
Dynamic EDGDEF
/SPECPT/ EDGDEF
/ABUT/ EDGDEF
Local XHLOC
COMMON BLOCK  SUBROUTINE
/NBCDIN/ BNDYDF
/BCDOUT/ BNDYDR
/BCDOUT/ BNDYDF
/NBCDIN/ BNDYDF
/CLOSUR/ BNDYDF
/CLOSUR/ BNDYDF
Dynamic BNDYDF
/CPGEQOM/ BNDYDF
Dynamic BNDYDF
Dynamic BNDYDF
/NETWK/ BNDYDF
/SINGLR/ BNDYDF
Dynamic BNDYDF
/SPECPT/ BNDYDF
/XBCDIN/ BNDYDF
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DATABASE MAP NAME -

DQG ABUTMENT
DQG ABUTMENT
DQG COORDS-GEN
DQG COORDS-GEN
DQG DSPLINE
DQG DSPLINE
DQG EDGEPTS
DQG EDGEpts
DQG GAP-PANEL
DQG INTSPLMP
DQG INTSPLMP

DQG  NETMAP
DQG  NETMAP
DQG  SCPGMAP
DQG  SLPGMAP
DQG  SPECALPT

DQG SPLINE-DBL
DQG SPLINE-DBL

DQG SPLINE-SRC
DQG SSPLINE

DATABASE MAP NAME
DQG  COORDS-GEP
DQG  CORNCOORDS
DQG  GAPFILE
DQG  GAPPANEL

DQG MAGPSPEC

DQG MDGPSPEC

DQG NETMAP

DQG PANSINF
DQG PANSPEC
DQG  SPLINE-DBL
DQG SPLINE-SRL

DATABASE MAP NAME

DQG BCOUTDATA
DQG CTLOUTDATA
0QG DBHEADER
DQG GLOB-DYN
DQG NETMAP

DQG SPECIALPT
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Overlay (5,0)

DATASET-NAME

ABUTMENT-SPEC
ABUTMENT-SPEC
PANEL -CORNER-CORDS
PANEL -CORNER-CORDS
B-SPLINE-DOUBLET
B-SPLINE-DOUBLET
EDGE-POINT-COORDS
EDGE-POINT-CORDS
GAPPANEL
INTERCOR-SPLINE
INTERCOR-SPLINE
NETWK-SPEC

NETWK -SPEC
SINGULARITY-MAP
SINGULARITY-MAP
SPECTAL-POINTS
B-SPLINE-DOUBLET
B-SPLINE-DOUBLET
B-SPLINE-SOURCE
B-SPLINE-SOURCE

Qverlay (6,0)

DATASET-NAME

PANEL-CORNER-COORDS
PANEL-CORNER-COORDS
GAP-FILE

GAP-PANEL
MAG-PANEL-SPEC

MDG-PANEL-SPEC

NETWK-SPEC
PANEL-SING
PANEL-SPEC
B-SPLINE-DOUBLET
B-SPLINE-SOURCE

Overlay (7,0)

SUBROUTINE

DATASET-NAME

BNDRY-CONDN-SPEC
BNDRY-CONDN-SPEC
DATA-BASE-HEADER
GLOBAL
NETWK-SPEC
SPECTAL-POINTS

COMMON BLOCK
/ABUT/ SAEDGS
/ABUT/ SPLTPR
Dynamic SAEDGS
Dynamic SPLINR
/SPLINE/ SAEDGS
/SPLINE/ SPLINR
Dynamic SAEDGS
Dynamic SPLINR
/GAPAN/ SPLINR
Dynamic SAEDGS
Dynamic SPLINR
/NETWK/ SAEDGS
/NETWK/ SPLINR
/SENGLR/ SAEDGS
/SENGLR/ SPLINR
/SPECPT/ SPLINR
Dynamic SAEDGS
Dynamic SPLINR
SPLINR
SPLINR
COMMON BLOCK SUBROUTINE
Dynamic PANDEF
/COORDS/ PANDEF
Dynamic PANDEF
/GAPANL/ PANDEF
/PANEL/ PANDEF
/SPLINE/
/PANEL/ PANDEF
JFFM/
/NETWK/ PANDEF
/SPLINE/ PANDEF
JFFM/ PANDEF
Dynamic PANDEF
Dynamic PANDEF
/PANEL/
/SPLINE/
COMMON BLOCK SUBROUTINE
Dynamic PBCDAT
Dynamic PCPDAT
Dynamic SUMMRY
/GLOBAL,Dynamic  SUMMRY
/NETWK/ SUMMRY
/SPECPT/ SUMMRY
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COMMON BLOCK

Tocal
/RUINDS/

/ABUT/
/COORDS/
Dynamic
/GENBCD/
/GENBCD/
/GENBCD/
/GLOBAL/
/NETBDC/
/NETWK/

/ABUT/

Dynamic

/CLOSUR/
/GLOBAL/,Dynamic
/NBCDIN/

/NETWK/
/NISCDIN/

COMMON BLOCK

Dynamic
Dynamic
Dynamic
Dynamic
/CPGEOM/
/NETWK/
/SINCLR/
/SINGLR/

Table 4-C.3 Data Flow for DQG

Third Form

Overlay (1,0)

DATABASE MAP NAME
MEC RUNOPT
MEC IDS
DIP USABIN
DIP PAN-COR-PT
DIP PRINT-OPT
DIP DIPCLOSDAT
DIP TVECTCOEFF
DIP CGBCMP
DIP GLOBAL-IN
DIP NETBCD
DIP NETMAP
DQG USABUAT
DQG COORDS-GEN
DQG CLOSDIN
DQG GLOB-DYN
DQG CLASS
DQG NETMAP
DQG BCDATIN
Overlay (2,0)
DATABASE MAP NAME
DQG CORNCOORDS
DQG EDGOTS
DQG FCNCORDS
DQG SINGSPEC
DQG CNTRLPS
DQG NETMAP
DQG SINGMAP
DQG SINGSPC

DATASET-NAME

MACRO-OPTIONS
DATA-BASE-HEADE

USER-ABUT
PANEL-COORDS
GLOBAL-PRINTS
CLOS-COND
TANG-VEC
COEF-GEN-BC
GLOBAL
NETWK-BDC
NETWK-SPEC

USER-ABUt

PANEL-CORNER-COORDS

CLOSURE-DATA-IN
GLOBAL
CLASS-S~BC-DATA
NETWK-SPEC

NETWK-BNDRY-CONDN-IN

DATASET-NAME
PANEL-CORNER-COORDS

EDGE-POINT-COORDS
FINE-GRID-COORDS
SINGULARITY-SPEC
CONTROL-PT-SPEC
NETWK-SPEC
SINGULARITY-MAP
SINGULARITY-SPEC

SUBROUTINE

OPENER
OPENER

DIPDAT
DIPDAT
DIPDAT
BNDYIN
BNDYIN
BNDYIN
DIPDAT
BNDYIN
DIPDAT

DIPDAT
DIPDAT
BNDYIN
DIPDAT
BNYDIN
DIPDAT
BNDYIN

SUBROUTINE

MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
MAPB
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Overlay (3,0)

COMMON BLOCK DATABASE MAP NAME

/ABUT/
/ABUT/
/ABUT/
/ABUT/
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
/EXPAND/
/GAPANL/
JLIST/
Local
/MATCHD/
/NETWK/
/SPECPT/
/SINGLR/
/SINGLR/

DQG
DQG
DQG
.DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG

ABUTMENT
ESABUTMNT
IABUTMAP
USABUT
ABUTMENTS
COORDS-GEN
CTLDEXMAP
CTLSPECDYN
EDGPTS
GAPSIZE
NETWKS
SINGSPEC
EXPABUT
GAPPANEL
SEARCHLIST
XHLOCCP
CONNECTION
NETMAP
SPECIALPT
SINGMAP
SINGSPC

DATASET-NAME

ABUTMENT-SPEC
EMPTY-SPACE-ABUTMENTS
I-ABUT

USER-ABUT
ABUTMENT-KEYS
PANEL-CORNER-COORDS
CONTROL-PT-SPEC
CONTROL-PT-SPEC
EDGE-POINT-COORDS
GAP-SIZE
NETWK-SPEC
SINGULARITY-SPEC
EXPANDED-ABUTMENT
GAP-PANEL
SEARCH-LIST
EXTRA-HYPO-LOC
INTERSECTION
NETWK-SPEC
SPECIAL-POINTS
SINGULARITY-MAP
SINGULARITY-SPEC

Overlay (4,0)

MAP NAME

COMMON BLOCK DATABASE

/BCDOUT/ DQG BNDRY
/BCDOUT/ DQG BPOINT
/CLOSUR/ DQG CLOSURE
/CLOSUR/ DQG CLOSDIN
/CPGEOM/ DQG CNTRLPT
Dynamic DQG CTLDEXMAP
Dynamic DQG INDCTLMP
Dynamic DQG COORDS-GEN
Dynamic DQG SINGMAP
/NBCDIN/ DQG BCDATIP
/NBCDIN/ DQG CLASSS
/NETWK/ DQG NETMAP
/SINGLR/ DQG SINGMAP
/SPECPT/ DQG SPECIALIS
/XBCDIN/ DQG
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XCLASS5D

DATASET-NAME

BNDRY-CONDY-SPEC
B-POINTER

CLOSURE
CLOSURE-DATA-IN
CONTROL-PT-SPEC
CONTROL-PT-SPEC
CONTROL-PT-SPEC
PANEL-CORNER-COORDS
SINGULARITY-SPEC
NETWK-BNDRY-CONDY-TY
CLASS-5-BC-DATA
NETWK-SPEC
SINGULARITY-MAP
SPECIAL-POINTS
CLASS-S-BC-DATA

SUBROUTINE

EDGECP
EDGDEF
EDGDEF
EDGDEF
ABUTMNT
ABUTMNT
ZHLOC
ADCPSG
EDGDEF
EDGDEF
EDGDEF
EDGDEF
EDGDEF
GAPPNL
EDGDEF
XHLOC
MATCH
EDGDEF
EDGDEF
EDGDEF
EDGDEF

SUBROUTINE

BNDYDR
BNDYDF
BNDYDF
BNDYDF
BNDYDF
BNDYDF
BNDYDF
BNDYDF
BNDYDF
BNDLYDF
BNDYDF
BNDYDF
BNDYDF
BNDYDF
BNDYDF
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COMMON BLOCK DATABASE MAP NAME

Overlay (5,0)

/ABUT/
/ABUT/
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Dynamic
Bynamic
GAPAN/
/NETWK/
/NETWK/
/SENGLR/
/SENGLR/
/SPECPT/
/SPLINE/
/SPLINE/
/SPLINE/

DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG

COMMON BLOCK DATABASE

DATASET-NAME

ABUTMENT ABUTMENT-SPEC
ABUTMENT ABUTMENT-SPEC
COORDS-GEN PANEL-CORNER-COOQRDS

COORDS-GEN PANEL-CORNER-COORDS
SPLINE-SCR B-SPLINE-SOURCE
SPLINE-DBL B-SPLINE-DOUBLET
SPLINE-DJL B-SPLINE-DOUBLET
EDGPTS EDGE-POINT-COORDS
EDGPTS EDGE-POINT-COORDS
INTSPLMP INTERCOR-SPLINE
INTSPLMP INTERCOR-SPLINE
GAP-PANEL GAPPANEL

NETMAP NETWK-SPEC

NETMAP NETWK-SPEC
SCPGMAP SINGULARITY-MAP
SLPGMAP SINGULARITY-MAP
SPECALPT SPECIAL-POINTS
SSPLINE B-SPLINE-SOURCE
DSPLINE B-SPLINE-DOUBLET
DSPLINE B-SPLINE-DOUBLET

Overlay (6,0)

/COORDS/
Dynamic
Dynamic
Dynamic
Dynamic
JFFM/
/FFM/
/GAPANL/
/NETWK/
/PANEL/
/PANEL/
/PANEL/
/SPLINE/
/SPLINE/
/SPLINE/

COMMON BLOCK

Dynamic

Dynamic

Dynamic

/GLOBAL /Dynamic
/NETWK/
/SPECPT/

DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG
DQG

DQG
DQG
DQG
DQG

MAP NAME DATASET-NAME
CORNCOORDS PANEL-CORNER-COORDS
COORDS-GET PANEL-CORNER-COORDS
GAPFILE GAP-FILE

SPLINE-DBL B-SPLINE-DOUBLET
SPLINE-SRL B-SPLINE-SOURCE
MDGPSPEC MDG-PANEL-SPEC
PANSPEC PANEL-SPEC

GAPPANEL GAP-PANEL

NETMAP NETWK-SPEC
MAGPSPEC MAG-PANEL-SPEC
MDGPSPEC MDG-PANEL-SPEC
MAGPSPEC MAG-PANEL-SPEC
PANSING PANEL-SING

Overlay (7,0)

DATABASE MAP NAME

DQG
DQG
DQG
DQG
DQG
DQG

BCOUTDATA
CTLOUTDATA
DBHEADER
GLOB-DYN
NETWK
SPECIALPT

DATASET-NAME

BNDRY-CONDN-SPEC
BNDRY-CONDN-SPEC
DATA-BASE-HEADER
GLOBAL
NETWK-SPEC
SPECIAL-POINTS

SAEDGS
SPLTPR
SAEDGS
SPLINR
SPLINR
SPLINR
SAEDGS
SAEDGS
SPLINR
SAEDGS
SPLINR
SPLINR
SAEDGS
SPLINR
SAEDGS
SPLINR
SPLINR
SPLINR
SAEDGS
SPLINR

PANDEF
PANDEF
PANDEF
PANDEF

PANDEF
PANDEF

PANDEF
PANDEF
PANDEF

PANDEF
PANDEF
PANDEF
PANDEF

PBCDAT

PCPDAT
SUMMRY

SUMMRY
SUMMRY
SUMMRY

SUBROUTINE

SUBROUTINE

SUBROUTINE
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APPENDIX 4-D MASTER DEFINITION

The data base master definition listing of the DQG module has been

deleted from this document.
instailation.

It is produced from the PAN AIR tape during

4-D.1
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APPENDIX 4-E
ERROR MESSAGES IN DQG
The following pages list the messages that accompany all diagnosed

errors in DQG. Section 8. of the PAN AIR User's Manual (Reference 2)
discusses interpretation of the messages and suggests causes and remedies.
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PROGRAM OPENER

~ wxxxdokk FATAL ERROR
RUN,PROBLEM, AND USER IDS NOT FOUND
ON THE MEC DATABASE

SUBROUTINE DIPDAT

*%**k*x**x% ERROR

NO NETWORKS DEFINED
*kkkkkkk ERROR
ZERO LENGTH ABUTMENT

USER ABUTMENT INDEX 3
NETWORK EDG% START Pg END Pg
1

*%xk*x***x ERROR

INVALID SOURCE/DOUBLET TYPE FROM DIP
NETWORK UPPER-WING
SOURCE TYPE 1 DOUBLET TYPE 9

SUBROUTINE NETDEF .

#kkxxkrk FATAL ERROR
1 COLUMN OR 1 ROW SOURCE DESIGN II
NETWORK ENCOUNTERED. NETWORK NO = 4
EXECUTION WILL BE TERMINATED,
*xkkkkxk THE FATAL ERROR LIMIT OF 10 WAS EXCEEDED.

N’
EXECUTION WILL BE TERMINATED
SUBROUTINE DFEDGE
skkdwdekk FATAL ERROR
NETWORK 3 COLUMN 1 OF CORNER
POINTS NOT AVAILABLE ON DATABASE.
SUBROUTINE EDGCHK
Hkdkwkkk FATAL ERROR o
NETWORK (UPPER-WING) EDGE 3
SOURCE DESIGN I NETWORK CAN NOT HAVE A COLLAPSED EDGE.
#xkkkwkk FATAL ERROR -
NETWORK (UPPER-WING) EDGE 3
SOURCE DESIGN II NETWORK CAN NOT HAVE A COLLAPSED EDGE.
*kkkwkx FATAL ERROR
NETWORK (UPPER-WING ) EDGE 4
AVERAGE PANEL LENGTH EXCEEDS TOLERANCE
BUT THE MINIMUM DOES NOT. THE EDGE
CANNOT BE COLLAPSED.
wedkiokrrx FATAL ERROR
TWO ADJACENT EDGES HAVE ZERO LENGTH.
o NETWORK UPPER-WING EDGES 1 2
_ .

4-£.3
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*kkkkkkk

*ohkkkkokk

Jodek ko dokok

Jdedkedek kok ok

* kx * %

ok dodkokkkk

Jkk kK kkk

Kk kkkkkk

*%kkkkkk

Kokkkk ok okk

4"E04

SUBROUTINE SNGPAN

FATAL ERROR '
SINGULARITY TYPE NOT FOUND FOR NETWORK 3

SUBROUTINE TRICHK

FATAL ERROR

INTERIOR PANEL IS TRIANGULAR

NETWORK UPPER-WING PANEL COLUMN 5 AND ROW
FATAL ERROR

ZERO DENOMINATOR FOR ASPECT RATIO OF '

NETWORK UPPER-WING PANEL COLUMN 1 AND ROW
FATAL ERROR

ASPECT RATIO = 0,6934E+06

NETWORK UPPER-WING PANEL COLUMN 3 AND ROW.
WARNING

ASPECT RATIO = 0.6394E+04

NETWORK UPPER-WING ) PANEL COLUMN 3 AND ROW

SUBROUTINE SEARCH

ERROR
ERRONEQUS USER ABUTMENT DATA -
OVERLAPPING ABUTMENTS = ) S
NETWORK UPPER-WING EDGE 3

OVERLAP FROM COLUMN 3 ROW 1

TO COLUMN 7 ROW 1
SUBROUTINE EDGLST '

WARNING
TOO MANY NEARBY NETWORK EDGES
SOME ABUTMENTS MAY BE MISSED
NETWORK FIN EDGE 1

PROGRAM PRABUT

ERROR

INSUFFICIENT CORE MEMORY FOR AUTOMATIC ABUTMENT SEARCH
NUMBER OF EXTRA CORE MEMORY NEEDED 738

OR APPROXMATELY 2000 OCTAL

ERROR ,
ERROR IN REQUESTING BLANK COMMON IN SUB PRABUT

ERROR NUMBER 2
SUBROUTINE USEABT

ERROR
ERRONEOUS USER ABUTMENT DATA
USER ABUTMENT NUMBER 3
NETWORK EDGE START-X START-Y END-X
1 5 1 1 7
2 3 7 1 7

END-Y

|

I
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*kkkkkhkkk

~

*kkkkkkk

*kkkkkkk

*kkKkkkkk

%k Kk kdkkk

ERROR
NETWORK EDGES TO FAR APART FOR ABUTMENT

USER ABUTMENT NUMBER 4 ]
NETWORK EDGE START-X START-Y END-X END-Y
1 1 1 1 3 1
5 1 6 1 1 1

2 TH NETWORK EDGE IN LIST GT 1.357E+15
FROM FIRST NETWORK EDGE IN LIST

ERROR
KUTTA TANGENT IS NOT PERPENDICULAR TO PLANE-OF-SYMMETRY NORMAL
NETWORK EDGE DQGCP POS
3 4 37 1
ERROR
ABUTMENT POINTS NOT ON NETWORK EDGE
USER ABUTMENT NUMBER 7
NETWORK EDGE START-X START-Y END-X END-Y
3 1 3 3 5 7
NUMBER OF ROWS IN NETWORK = 5
NUMBER OF COLUMNS IN NETWORK = 7
ERROR

ERRONEQUS USER ABUTMENT DATA
ZERO LENGTH ABUTMENT

USER ABUTMENT NUMBER 8
NETWORK EDGE START-X START-Y END-X END-Y
7 2 5 1 5 1
ERROR

ERRONEOUS USER ABUTMENT DATA
COLLAPSED EDGE IN ABUTMENT

USER ABUTMENT NUMBER 3
NETWORK EDGE START-X START-Y END-X END-Y
1 5 1 1 7 1
2 3 7 1 7 7

ZERO LENGTH ABUTMENT
SUBROUTINE ABXPND

*kkkkkk* ERROR

TOO MANY NETWORK EDGES IN AN ABUTMENT
THIS MAY ARISE EITHER FROM HAVING TOO
MANY NETWORK EDGES COMING TOGETHER IN
A SINGLE ABUTMENT OR FROM THE SAME
NETWORK EDGES TAKING PART IN TOO MANY
ABUTMENTS.

NETWORK EDGE

— QWO WM —
PO — = P S () =d N et

—t
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*hkkkkkk

Jekdkkkkdk

*kkkkkkk

*kkkkkkk

* Kk kkkdkkk

Kk kkkkkk

*kkkkkkk
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SUBROUTINE CHECK

ERROR
UPDATABLE NETWORK EDGE ABUTTING
A NONUPDATABLE NETWORK EDGE
ABUTMENT INDEX 3
NETWORK EDGE START-X START-Y END-X
1 1 1 1 5
2 3 3 3 1
UPDATABLE FLAG 1 0
WARNING
UPDATABLE NETWORK EDGE ABUTTING
A NONUPDATABLE NETWORK EDGE
ABUTMENT INDEX 3
NETWORK EDGE START-X START-Y END-X
1 1 1 1 5
2 3 3 3 1
UPDATABLE FLAG 1 0
WARNING )

MORE THAN TWO NETWORKS IN SMOOTH ABUTMENT,
SMOOTH ABUTMENT TREATED AS NORMAL ABUTMENT.

ABUTMENT INDEX 4
NETWORK EDGE START-X START-Y END-X
1 2 4 1 4
2 1 1 1 4
3 2 5 1 5
WARNING
SMOOTH ABUTMENT DEFINED WITH DESIGN NETWORK
SMOOTH ABUTMENT TREATED AS NORMAL ABUTMENT.
ABUTMENT INDEX 7 :
NETWORK EDGE START-X START-Y END-X
4 1 1 1 6
5 1 6 1 1
ERROR
ERRONEQOUS ABUTMENT DATA
EDGE OUT OF RANGE
ABUTMENT INDEX 8
NETWORK EDGE START-X START-Y END-X
3 5 3 3 1
4 1 1 1 3
ERROR :
MORE THAN ONE MATCHING EDGE IN ABUTMENT
ABUTMENT INDEX 9
NETWORK EDGE START-X START-Y END-X
5 1 1 1 7
6 1 1 1 3
WARNING :

MATCHING EDGE ABUTS A PLANE OF SYMMETRY.
RESULTS DEPEND UPON THE CONFIGURATION.

THE AIC MATRIX MAY BE UNDER CONSTRAINED,
OVER-CONSTRAINED, SINGULAR OR REASONABLY

CORRECT,

BUT PROCESSING WILL CONTINUE AND A
SOLUTION WILL BE ATTEMPTED
DOUBLET MATCHING IMPOSED AT ABUTMENT.

OTHER ERRORS MAY BE TRIGGERED

END-Y

END-Y

END-Y

END-Y
1
1



*kkkkkkk WARN ING
NETWORK HAS TOO FEW PANELS FOR SMOOTH ABUTMENT

ABUTMENT INDEX 9 )
NETWORK EDGE START-X START-Y END-X
5 1 1 1 7
6 1 1 1 3

INDEX OF SMALL NETWORK 5
*xxkkkxx WARNING
VELOCITY OPTIONS NOT COMPATIBLE

ABUTMENT INDEX ,
NETWORK ~ EDGE  START-X  START-Y  END-X

5 1 1 1 7
6 1 1 1 3
VELOCITY COMP METHODS 1 2

SUBROUTINE CHKPOS

*k*xkxk* ERROR

NETWORK ENCOUNTERED WHICH PARTIALLY LIES

ON A PLANE OF SYMMETRY.
NETWORK PLANER-BODY PLANE OF SYMMETRY
NUMBER OF POINTS OFF P-0-$ 20
NUMBER OF POINTS ON P-0-$ 10

*xxkkxk*x WARNING

NETWORK ENCOUNTERED WHICH PARTIALLY LIES

ON A PLANE OF SYMMETRY.
NETWORK PLANER-BODY PLANE OF SYMMETRY
NUMBER OF POINTS OFF P-0-S 20 .
NUMBER OF POINTS ON P-0-S 10

SUBROUTINE CONABT

*xkkkk*% ERROR
TOO MANY NETWORKS IN ABUTMENT

NET#ORK EDG% ,7START-¥ START-¥ END-
2 ] 6 1
3 1 4 1
4 1 1 1
5 1 7 1
6 1 8 1

*xkxkkx* WARNING
AUTOMATIC ABUTMENT SEARCH FINDS
EMPTY SPACE ABUTMENT IN MIDDLE OF
NETWORK EDGE. CHECK EMPTY SPACE
ABUTMENT DESCRIPTIONS IF USER
DID NOT SPECIFY THE ABUTMENT.

NETWORK EDGE START-X  START-Y  END-
1 1

1 1

X
5

END-Y

END-

END-Y
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SUBROUTINE GAPSIZE

*dkkkkkxx ERROR
PROGRAM ERROR. ZERO LENGTH ABUTMENT.

ABUTMENT NUMBER 1
NETWORK  EDGE START-X START-Y END-X
1 1 1 1 1
2 2 3 1 3

SUBROUTINE ABASGN

*%kxkkx* FRROR
NO MATCHING ASSIGNMENT POSSIBLE -
INTERSECTION NUMBER 10
ABUTMENT INDEX 33
NETWORK EDGE START-X START-Y END-X
1 1 1 1. 8
2 1 8 1 1
CORNER POINT MAP INDEX 73
NETWORK  EDGE START-X START-Y END-X
1 2 8 1

SUBROUTINE ASSIGN

*kkdkkkx ERROR

ONLY ONE ABUTMENT IN AN INTERSECTION
INTERSECTION NUMBER 3
WITH ABUTMENTS
2
*kkkkxkk*x ERROR
NORMAL VECTOR NOT PERPENDICULAR TO P-0-S
FOR A NETWORK THAT LIES ON P-0-3
NETWORK 3 COLUMN 1 ROW 1
NORMAL VECTOR  8.782E-01  0,000E+00  0.000E+00
V DOT N 0.000e+00 o
k%kk*x*k** ERROR
' INSUFFICIENT NUMBER OF CORNER POINTS ASSIGNED
TO IMPOSE DOUBLET MATCHING.

INTERSECTION NUMBER 6
NUMBER ASSIGNED 1
NUMBER REQUIRED 2
WITH ABUTMENTS

14 4 7

A PROGRAM ERROR HAS OCCURRED DQG IS ABORTED.
Tk NARNING [ R e T ETIILAES Ll IINCITEEIIell ool
INSUFFICIENT NUMBER OF CORNER POINTS ASSIGNED
TO IMPOSE DOUBLET MATCHING.

INTERSECTION NUMBER 7
NUMBER ASSIGNED 1
NUMBER REQUIRED 2

WITH ABUTMENTS
2005 6 1002
SEE TABLE 8-17 OF PAN AIR USER"S MANUAL.
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*kkkkkkk FRROR

TOO MANY ABUTMENTS IN AN INTERSECTION
INTERSECTION NUMBER N
WITH ABUTMENTS
1 2 2003 2004 6 7 2008 9 n 17

SUBROUTINE EMATCH

*k*kxkk** ERROR

MORE THAN ONE MATCHING EDGE IN ABUTMENT

ABUTMENT 3
NUMBER OF MATCHING EDGES 2
EDGE POINTERS 1 2
NETWORK EDGE START=-X START-Y END-X END-Y
1 1 1 1 7 : 1
2 1 1 1 6 1

*kxkxkkx WARNING
NO DOUBLET MATCHING AT NETWORK EDGE

ABUTMENT INDEX 9
NETWORK EDGE START-X START-Y END-X END-Y
10 4 1 1 1 7
1 2 3 1 3 7

SUBROUTINE INTRSC

*dekkkkkk ERROR

MISSING ABUTMENTS IN PILOT CODE CONNECTION
FOR CORNER POINT ON NETWORK 9 COLUMN 1 ROW
CORNER POINT LABEL 9001011 ABUTMENTS 4 14

SUBROUTINE NTRLST

**kx*x%%*x ERROR

TOO MANY ABUTMENTS INTERSECT
INTERSECTION NUMBER 5
ABUTMENT cp cp
1 1
2 2
3 3
4 3
30 53
3] 1

W PAPpwWwMN

SUBROUTINE GAPPNL

*kxkkkk* FRROR

PROGRAM ERROR. ZERO LENGTH ABUTMENT,
ABUTMENT NUMBER 1 , B
NETWORK  EDGE  START-X  START-Y  END-X  END-Y
1 1 1 1 1 1
2 1 1 1 3 1

21

11
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SUBROUTINE DEFPNL

*Kk*kkkkk ERROR

FACTOR FOR GAP PANEL .GT. 1.0
NUMERATOR= 1.000E+00 DENOMINATOR= 1.000E-01
ABUTMENTS INDEX= 5
POINT INDEX= 13
NETWORK LOOP INDEX= 1
T12 ARRAY INDEX= 7
T(I,1) ARRAY
0.000E00 1.000E-01 1.000E+00
T(I,2)ARRAY
0.000E+00 1.000E+01 1.000E+00
T12(1) ARRAY
0.000E+00 1.000E-01 1.000E+00 1,000E+01 1.000E+Q0
*xkxx**x* ERROR
PROGRAM ERROR
ABNORMAL LOOP TERMINATION

ABUTMENT INDEX= 4
POINT INDEX= 1
NETWORK LOOP INDEX= 2

T(I,1) ARRAY
0.000E+00 1,000E+00
T(1,2) ARRAY
0.000E+00 0.000E+00
T12(1) ARRAY
0.000E+00 0.00CE+00 0.000E+00 1.000E+00
T12 ARRAY INDEX= 8

SUBROUTINE POSPNL

xkxkxxkk WARNING
GAP FILLING PANELS REQUIRED AT
ABUTMENT WITH NETWORK EDGE AND
TWO PLANES OF SYMMETRY. THIS
SITUATION IS BEYOND CURRENT
CAPABILITIES OF DQG.
SITUATION OCCURS FOR ABUTMENT 7

SUBROUTINE ASGNU

Kk kkkkkk ERROR

MACH INCLINED PANEL AND/OR SUBPANEL
NETWORK FIN
PANEL COLUMN 3
PANEL ROW 6
NORMAL-CONORMAL INNER PRODUCT 1,378E-13

4-E.10
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Jekkkkok kok ERROR

VANISHINGLY SMALL INNER AND OUTER SUBPANELS

NETWORK WING

EDGE 2
CORNER PT COLUMN 8
CORNER PT ROW 1
SUBPANEL NUMBER 2
PT 1.000E-11  2.000E-11

0.000E 00 8.

*kkkkkkkx FRROR

NON-CONVEX PANEL WITH CORNER

CLOSE TO PANEL CENTER POINT.
NETWORK WING

EDGE 3

CORNER PT COLUMN 5
CORNER PT ROW 3
SUBPANEL NUMBER 3
2+SKEW(1)+SKEW(2)

SUBROUTINE CCPGEO

kkkkkkkkx ERROR

3.000E-11  1.000E-11
0. 0.000E-11
0. 0.

POINT

1.000E-03

TANGENT VECTOR PROJECTION TO PANEL
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE.

NETWORK WING

EDGE 4

CORNER PT COLUMN 1
CORNER PT ROW 7
SUBPANEL 4

TANGENT VECTOR UPPER

*kxkkkk*k ERROR

TANGENT VECTOR MAGNITUDE TOO SMALL

NETWORK WING

EDGE 1

CORNER PT COLUMN 3
CORNER PT ROW 1
SUBPANEL 1

TANGENT VECTOR RHS

SUBROUTINE CENTCP

*kkkkkkk FRROR

TANGENT VECTOR PROJECTION TO PANEL
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE

NETWORK UPPER-WING

PANEL COLUMN 3
PANEL ROW 2
USER CLASS

TANGENT VECTOR UPPER

4-E. 1



SUBROUTINE CHOOSE &

*kkkkkk*k ERROR

TANGENT VECTOR MAGNITUDE TOO SMALL
NETWORK LOWER-WING

PANEL COLUMN 4
PANEL ROW 1
USER CLASS

TANGENT VECTOR AVERAGE

*kkkkxxk ERROR
INSUFFICIENT NUMBER OF USER-SPECIFIED BOUNDARY CONDITIONS

NETWORK UPPER-WING

PANEL COLUMN . 3

PANEL ROW 1

TOTAL NUMBER OF BOUNDARY CONDITIONS REQUIRED 2
*kkkkxkx WARNING

INSUFFICIENT NUMBER OF USER-SPECIFIED BOUNDARY CONDITIONS

PROGRAM WILL ADD BOUNDARY CONDITION OF ZERO

PERTUBATION MASS FLUX, IF THIS BOUNDARY

CONDITION IS UNSATISFACTORY, THE USER MUST ADD

A BOUNDARY CONDITION FOR THIS PANEL BY

INVOKING CLASS FIVE BOUNDARY CONDITIONS INPUT

TO MODULE DIP FOR THIS NETWORK, IF THIS IS

A WAKE NETWORK, NO USER ACTION IS ADVISED.

IF THIS NETWORK LIES ON A PLANE OF SYMMETRY.

BE SURE AT LEAST ONE BOUNDARY CONDITION IS

OF THE FORM NORMAL MASS FLUX, POTENTIAL OR <

TANGENTIAL VELOCITY (ALL AVERAGE QUANTITIES).

NETWORK RIGHT-WAKE

PANEL COLUMN 1

PANEL ROW 1

TOTAL NUMBER OF BOUNDARY CONDITIONS REQUIRED 2

SUBROUTINE ECPGEO

dekkkkkkk ERROR _
TANGENT VECTOR PROJECTION TO PANEL
IS LESS THAN HALF OF TANGENT VECTOR MAGNITUDE
NETWORK MID-WING

CORNER PT COLUMN 3
CORNER PT ROW 1
SUBPANEL NUMBER 5

TANGENT VECTOR DIFFERENCE

*kkkkkkk FRROR

TANGENT VECTOR MAGNITUDE TOO SMALL
NETWORK MIDWING

CORNER PT COLUMN 5
CORNER PT ROMW 1
SUBPANEL NUMBER 5

TANGENT VECTOR DIFFERENCE

¢
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K%k dkkkk

Jekdkkkkkk

Kk kkkkkk

*kkkkkkk

* Kk kkkkkk

Kk kkkkkk

SUBROUTINE GETBC

ERROR
NO USER-SPECIFIED BOUNDARY CONDITIONS
NETWORK OUTER-WING
FINE GRID COLUMN INDEX 2
FINE GRID ROW INDEX 3

SUBROUTINE SPLTRN
ERROR

INCORRECT SELECTION OF XI-ETA VECTORS.
PROGRAM ERROR

XI ETA ZETA POINT PO VECTOR
0.000E+00  1.414E-01 0.000E+00 3.786E+01  3.681E+01  1.050E+
0. 3.735e-01 O. 4,138E+00 3.147E+00  9.990E-
0. 0. 0. 1.791E+01  1.790E+01  1.000E-

SUBROUTINE CPCSEL

ERROR
PROGRAM ERROR.
POINT NUMBER 5 6 4 CORNER PT T-VALUE-1.368E-01

SUBROUTINE PTSFIL

ERROR .
ERRONEQUS ABUTMENT DESCRIPTION
ABUTMENT ARRAY 1 5 1 1 7 1

SUBROUTINE SNGFIL

ERROR
ERRONEQUS ABUTMENT DESCRIPTION
ABUTMENT ARRAY 1 5 1 1 7 1

SUBROUTINE CPDSGN

ERROR
PROGRAM/DATA ERROR. , ,
ZERO DENOMINATOR FOR CORNER POINT WEIGHT
IN DOUBLET DESIGN EDGE SPLINE.
NETWORK MID-WING
EDGE
CORNER POINT NUMBER 1
DISTANCES TO ADJACENT EDGE MIDPOINTS
1.472E-21
4.216E-21
5.688E-21
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SUBROUTINE "NTEDGA

**kkkk**k ERROR

PROGRAM ERROR.
INCORRECT CALLING ARGUMENT FOR EDGE INDEX

NETWORK UPPER-TAIL
EDGE 7

SUBROUTINE ONDFIT

*kkkkkkx ERROR

PROGRAM ERROR

SINGULAR ONE DIMENSIONAL FIT
NETWORK NUMBER 3
LATTICE INDEX-X 4
LATTICE INDEX-Y 6

SUBROUTINE POINT

*xkkxkkkx ERROR -+ , :
REQUIRED POINT COORDINATE NOT IN COR
NETWORK INDEX 7 :
LATTICE INDEX-X 8
LATTICE INDEX-Y 6
COLUMNS IN CORE
4 5 6 7 8

SUBROUTINE SPLA

*kkkkkkx FRROR

SINGULAR LEAST SQUARES FIT
NETWORK WING-TIP
LATTICE INDEX-X 7
LATTICE INDEX-Y 3
DEVIATION FROM UNITY 1.337E+00
*kkkxkxx WARNING
POOR LEAST SQUARES FIT.
NETWORK WING-TIP
LATTICE INDEX-X 7
LATTICE INDEX-Y 5
DEVIATION FROM UNITY  5,369E-07

SUBROUTINE SSP13

*k*kxkxk FRROR

SINGULAR LEAST SQUARES FIT
NETWORK LOWER-WING
LATTICE INDEX-X 2
LATTICE INDEX-Y 3

CHISQUARE= 2,471E+10
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J Jokde ke de ke NARNING
POOR LEAST SQUARES FIT.
NETWORK LOWER-WING
LATTICE INDEX-X 1
LATTICE INDEX-Y 4
CHISQUARE= 4,149E+02

SUBROUTINE WAKGAP

**k*kxkk* ERROR

ERROR IN CALLING ARGUMENTS

WAKE SPLINE CALL FOR NON-WAKE NETWORK
NETWORK PRE-WAKE-WING-EDGE
DOUBLET TYPE DA

SUBROUTINE CBLFFM

*kkkkkk* ERROR

SINGULAR INVERSE FOR SUBPANEL XFM MATRIX
DUE TO INVALID MACH NUMBER
ONE MINUS MACH NUMBER SQUARED = 3.791E-16

SUBROUTINE DBLFFM

*kkkkkkkx ERROR

SINGULAR INVERSE FOR SUBPANEL XFM MATRIX
DUE TO INVALID MACH NUMBER
ONE MINUS MACH NUMBER SQUARED = 3.799E-16

SUBROUTINE PANGEOQ

*kkxkkx* ERROR

MACH-INCLINED PANEL DISCOVERED
NETWORK UPPER-PLATE
PANEL COLUMN 3
PANEL ROW 5
*% KKk dkkkk WARNING
CRITICALLY INCLINED PANEL DISCOVERED
NETWORK UPPER-PLATE
PANEL COLUMN 3
PANEL ROW 6 7
ANGLE WITH RESPECT TO MACH CONE = -3.697E-03
Yok e dekekkk NARNING
NON-CONVEX PANEL DISCOVERED
NETWORK UPPER-PLATE
PANEL COLUMN 7
PANEL ROW 3
*kk Kk kkk NARNING
NEARLY NON-CONVEX PANEL DISCOVERED .
NETWORK
PANEL COLUMN 7
PANEL ROW 4
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*hkkkkkkk WARNING
SUBPANEL AREA SET TO ZERO (BY PANGEO), SUBPANEL =
NETWORK RIGHT-TOP-WING
PANEL COLUMN 2
PANEL ROW 2

SUBROUTINE PANSIZ

*kkkkkkk FRROR

PANEL SIZE VANISHES
NETWORK WING
EDGE 3
PANEL INDEX ALONG EDGE 6
(CLOCKWISE DIRECTION)
*kkxkxkx WARNING
GAP SIZE EXCEEDS PANEL SIZE
NETWORK BODY
EDGE 1
PANEL INDEX ALONG EDGE 9
GAPSIZE/PANEL SIZE = 3.691E+00

SUBROUTINE PANSUB

*kkkkkkk FRROR

LEAST SQUARES ERROR IN PANEL SUBSPLINE

NETWORK BODY

PANEL COLUMN 9

- PANEL ROW 6
xxxkkxkx WARNING

POOR LEAST SQUARES FIT IN PANEL SUBSPLINE
NETWORK BODY '
PANEL COLUMN 7
PANEL ROW 6

SUBROUTINE SPLINM

**%kk*xkk ERROR

PANEL DEPENDENT ON TOO MANY PARAMETERS
NETWORK MID-BODY
PANEL COLUMN 1
PANEL ROW 3
NUMBER OF SOURCE PARAMETERS = 10
NUMBER OF DOUBLET PARAMETERS = 22
*xkkkkxk ERROR o
SINGULAR SOURCE SUBPANEL SPLINE MATRIX
NETWORK MID-BODY
PANEL COLUMN 1
PANEL ROW 4
SUBPANEL NUMBER 5
*xkkxkx* ERROR
SINGULAR DOUBLET SUBPANEL SPLINE MATRIX
NETWORK MID-BODY
PANEL COLUMN 5
PANEL ROW 8
SUBPANEL NUMBER 6

4-E.16
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SUBROUTINE SRCFFM

K%k kk kkk ERROR

SINGULAR INVERSE FOR MATRIX
DUE TO INVALID MACH NUMBER,
ONE MINUS MACH NUMBER SQUARED = 6,425E-18

SUBROUTINE SUBGEO

*kkxkk%* ERROR

MACH INCLINED SUBPANEL DISCOVERED
NETWORK TAIL
PANEL COLUMN 9
PANEL ROMW 3
SUBPANEL INDEX 7

*kkkkkkk NARNING

CRITICALLY INCLINED SUBPANEL DISCOVERED
NETWORK TAIL
PANEL COLUMN 6
PANEL ROW 3
SUBPANEL INDEX 1

ANGLE WITH RESPECT TO MACH CONE = -3.769E-04
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APPENDIX 4-F
ADDITIONAL DIAGNOSTIC OUTPUT

During maintenance activities, additional diagnostic output may be
desired from DQG. This may be to investigate code errors or to better
understand the analysis of a particularly complex configuration by tailoring
the output for that configuration. If the DEFINE directive is available with
the UPDATE program then DQG can be instrumented with additional output code in
an efficient and straightforward manner. The redundancies of adding output
code in several routines can be reduced and the original code can also be left
unaffected. The general approach is outlined below.

First, all changes to the DQG program 1ibrary should be surrounded by an
IF directive as shown below.

*IF DEF,DIAGNOS

(additional output code)
*ENDIF

When DQG is updated prior to compilation with *DEFINE DIAGNOS, the output code
will be instrumented. If DQG is updated without the DEFINE directive, the
compiled code remains the same.

Second, two special COMDECKs are called from every routine in DQG. They
are DECLAR and ENDECL. Changes (enclosed by IF-ENDIF directives) to these
common blocks will be propagated to every DQG routine that is recompiled.

This assumes that the DEFINE directive was used. Only specification
statements should be placed in DECLAR. ENDECL may contain any data statements
followed by executable statements. The executable statements at the end of
ENDECL will be executed immediately upon entry to the subroutine. As an
additional aid the name of each subroutine is data loaded into the local
variable SUBNAM.
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APPENDIX 4-G
SAMPLE OUTPUT FROM DQG

‘ An example and a discussion of the output from DQG is contained in the
PAN AIR User's Manual, Section 8 (Reference 2).
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APPENDIX 4-H

INDEXING SCHEMES IN DQG
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4-H.0 Introduction

Indexing schemes are a basic part of DQG. Data organization and pattern
recognition or identification are its essence. Most algorithms in DQG depend
upon the availability of one or several indexing systems.

This section describes the important indexing schemes used in DQG.

4-H.1 The Panel.

The basic geometrical unit in PAN AIR is the panel. A panel {shown in
Figure 4-H.1) is an arbitrarily shaped quadrilateral. It is defined by its
four corner points. These are indexed in a counter clockwise sense (when
viewed from above the upper surface) as shown in the figure. Five additional
derived points are indexed. They are the four edge mid-points of the panel
and the center point of the panel. The set of nine points define eight
triangular subpanels. The subpanels are indexed as shown in Figure 4-H.2.
Figure 4-H.3 shows the numbering scheme for the points in the subpanel. These
indexing schemes are used primarily in the sixth overlay of D(QG.

4-H.2 The Network.

Collections of panels make up a network. Networks are defined by a set of
rectangularly indexed corner points. Figure 4-H.4 shows the upper surface of
a network and the manner in which the previously discussed panel indexing fits
into the network.

The location of a corner point'in the network is defined by a bair of
coarse grid lattice indices (Figure 4-H.5). These are a pair of indices which
indicate the position of the point in terms of a two dimensional lattice of
points.

Adding edge midpoints and center points to the panels in a network defines
the fine grid of points (Figure 4-H.6). These are referenced by the fine grid
lattice indices. These are similar to the coarse grid lattice indices. Note
that center points have (even, even) lattice indices, column edge midpoints
have (even, odd) lattice indices, row edge midpoints have (odd, even) Tattice
indices, and corner panels have (odd, odd) indices in the fine grid lattice

coordinate system. In fact, if (IC, JC) are the coarse grid lattice indices

of a corner point, the fine grid indices of the point are (2I.-1, ZJC-l). On
the perimeter of the network, the corner points are also refe?red to~“by a
sequential point index in a counterclockwise sense. Figure 4-H.7 illustrates
the edge indexing. Subroutines LATEDG and EDGLAT are used to transform coarse
grid lattice indices to sequential edge indices (LATEDG) and vice versa
(EDGLAT). There is also a lattice indexing system for panels. Figure 4-H.8
shows the panel lattice indices of panels in the network. This lattice
indexing system is used mostly for internal processing. Error or warning
messages sometimes list panel column and panel row as an aid in identifying
where in the network the problem has occurred. These column and row indices
correspond to the panel lattice indexing coordinate system.

4-H03
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4-H.3 Control Points.

Control points are located at every panel center point, at every edge
midpoint on a network edge, and at every corner point on a network edge which
is either a start point or an end point of an abutment. These last points
include at least the four network corner points.

Starting with the first network in the processing sequence, the control
points at panel centers are indexed first. Then the first corner point on the
first edge is assigned an index followed by an assignment to every edge
midpoint on the edge. This proceeds around the network in a counterclockwise
direction. After all networks have been processed, any additional control
points which were added because an abutment began or ended in the middle of an
edge receive an index. Figure 4-H.9 illustrates the indexing scheme.

4-H.4 Singularity Parameters.

Singularity parameters (x3, 3D) are located at different places in a
network depending on the source and doublet type of the network. The scheme
used for assigning a global index to singularity parameters follows the
general schere of the control point indexing (see Appendix 4-H, Section
4-H.3). The varying locations of singularity parameters introduces some
complications. See PAN AIR Theory Document, Section D.l (Reference 1).

The process of indexing singularity parameters is synonomous with creating
the SINGULARITY-MAP and SINGULARITY-SPEC datasets in the DQG database. These
datasets (see Appendix 4-D) contain information about where in the network the
singularity lies, whether it is a source or a doublet parameter and whether it
is a known singularity.

¢

The general approach is to Toop over panels and assign an index first to a
source parameter (if any) and then to a doublet parameter (if any). Any
singularity parameters that are on an edge of the network are not indexed at
this time. After the loop on panels ends, singularity parameters on the edges
are indexed. First doublet parameters on the four edges are indexed in a
counter clockwise sense. Then source parameters are indexed.

In Figure 4-H.14 it is clear that two singularity parameters are assigned
to each center point in the network since there are two indices associated
with each center point in the network. There is only one singularity
parameter located at the edge midpoints on the perimeter of the network and
only one parameter at each of the four network corner points. By examining
Table 4-H.1 we can see that singularity parameters 1 and 2 are source and
doublet parameters respectively, which (from Figure 4-H.14) are located at the
center point of the panel in the lower left corner of the network.

Figures 4-H.10 to 4-H.28 illustrate the indexing scheme for all
combinations of networks. (Since singularities locations for Doublet Forward
Weighted networks are identical to those of Doublet Analysis networks separate
figures are not given for doublet forward weighted networks.) Tables 4-H.1 to
4-H.12 label the indices as source or doublet for the dual networks in Figures
4-H.14 to 4-H.28.

=4
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4-H.5 Some Useful Conversions.

Several different indexing schemes can be employed to describe the same
quantity. Often a need arises to convert from one indexing system to
another. This section provides a list of a number of algorithms which define
these conversions:

Coarse grid lattice indices denoted by (IC,J ) to fine grid lattice indices

o
(Ic’ Jc) > (21c—1, 2Jc-1)
Panel lattice, panel point to fine grid lattice indices
- - +
(Ip, Jp), Np > (21p 1, 2Jp 1) (Ix(Np), Iy(Np))

where the panel index and the corresponding lattice index within the panel
(Ix(Np),Iy(Np)) may have the following values

—
—

Np I y Np I y
1 0 0 5 1 0
2 2 0 6 2 1
3 2 2 7 1 2
4 0 2 8 0 1
9 1 1

Coarse grid indices to sequential counter clockwise edge index (Refer to
Figures 4-H.5 and 4-H.7)

(I ,Jd.) » I Edge 1
¢ ¢ Jg Edge 2
NC-IC+1 tEdge 3
NR-JC+1 Edge 4

where NC = number of corner point columns and
NR = number of corner point rows.
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Source Analysis/Doublet Analysis Network (Figure 4-H.14)
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Table 4-H.1

Source/Doublet Parameters for

Index

36
37
38
39
40

S/D
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Index

71
72
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74
75
76
77

S/D
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Table 4-H.2 Source/Doublet Parameters for
Source Design I/Doublet Analysis Network (Figure 4-H.15)

Index S/D Index S/D Index S/D
1 D 36 S 71 . D
2 D 37 D 72 D
3 D 38 S 73 S
4 D 39 D 74 S
5 D 40 D 75 S
6 S 41 S 76 S
7 D 42 D 77 S
8 S 43 S 78 S
9 D 44 D 79 S

10 S 45 S 80 S
11 D 46 D 81 N
12 D 47 D 82 S
13 S 48 D 83 S
14 D 49 D 84 S
15 S 50 D 85 S
16 D 51 D 86 S
17 S 52 D 87 S
18 D 53 D 88 S
19 D 54 D 89 S
20 S 55 D 90 S
21 D 56 D 91 S
22 S 57 D 92 S
23 D 58 D 93 S
24 S 59 D 94 S
25 D 60. D
26 D 61 D
27 S 62 D
28 D 63 D
29 S 64 D
30 D 65 D
31 S 66 D
32 D 67 D
33 D 68 D
34 S 69 D
35 D 70 D
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Table 4-H.3 Source/Doublet Parameters for
Source Analysis/Doublet Design I Network (Figure 4-H.16)

Index S/D Index S/D
1 S 36 S
2 S 37 D
3 S 38 S
4 S 39 D
5 S 40 S
6 S 41 S
7 D 42 D
8 S 43 S
9 D 44 D

10 S 45 S
11 D 46 D
12 S 47 D
13 S 48 D
14 D 49 D
15 S 50 D
16 D 51 D
17 S Y D
18 A 53 D
19 S 54 D
20 S 55 D
21 D 56 D
22 S 57 D
23 D 58 D
24 S 59 D
25 D 60 D
26 S 61 D
27 S 62 D
28 D 63 D
29 S 64 D
30 D 65 D
31 S 66 D
32 D 67 D
33 S 68 D
34 S 69 D
35 D 70 D
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Table 4-H.4 Source/Doublet Parameters for
Source Design I/Doublet Design I Network (Figure 4-H.17)

Index S/D Index S/D Index 5/D
1 S 36 D 71 S
2 D 37 D 72 S
3 S 38 D 73 S
4 D 39 D 74 S
5 S 40 D 75 S
6 D 41 D 76 S
7 S 42 D 77 S
8 D 43 D 78 S
9 S 44 D 79 S

10 D 45 D 80 S
11 S 46 D 81 S
12 D 47 D 82 )
13 S 48 D
14 D 49 D
15 S 50 D
16 D 51 D
17 S 52 D
18 D 53 D
19 S 54 D
20 D 55 D
21 S 56 D
22 D 57 D
23 S 58 D
24 D 59 D
25 S 60 D
26 D 61 S
27 S 62 S
28 D 63 S
29 S 64 S
30 D 65 S
31 S 66 S
32 D 67 S
33 S 68 S
34 D 69 S
35 S 70 S
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Table 4-H.5 Source/Doublet Parameters for
Source Analysis/Doublet Wake I Network (Figure 4-H.20)
Index S/D Index S/D
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Table 4-H.6 Source/Doublet Parameters for
Source Analysis/Doublet Wake II Network (Figure 4-H.21)

Index S/D
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Table 4-H.7 Source/Doublet Parameters for
Source Design I/Doublet Wake I Network (Figure 4-H.22)

Index S/D Index S/D
36 S
37 S
38 S
39 S
40 S
41 S
42 S
43 S
44 S
45 S
46 S
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Table 4-H.8 Source/Doublet Parameters for
Source Design I/Doublet Wake II Network (Figure 4-H.23)
Index S/D Index S/D
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Table 4-H.9 Source/Doublet Parameters for
Source Design I1/Doublet Analysis (Figure 4-H.25)

Index

S/D
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76
77
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Table 4-H.10 Source/Doublet Parameter for
Source Design II/Doublet Design I Network (Figure 4-H.26)

Index S/D Index S/0 Index S/D
1 S 36 S 71 S
2 S 37 D 72 S
3 S 38 S 73 S
4 S 39 D 74 S
5 D 40 D 75 S
6 S 41 0 76 S
7 D 42 D 77 S
8 S 43 D
9 D 44 D

10 S 45 D
11 D 46 D
12 S 47 D
13 D 48 D
14 S 49 D
15 D 50 D
16 S 51 D
17 D 52 D
18 S 53 D
19 D 54 D
20 S 55 D
21 D 56 D
22 S 57- D
23 D 58 D
24 S 59 D
25 D 60 D
26 S 61 D
27 D 62 D
28 S 63 0
29 D 64 S
30 S 65 S
31 D 66 )
32 S 67 S
33 D 68 S
34 S 69 S
35 D 70 S
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Table 4-H.11 Source/Doublet Parameters for
Source Design II/Doublet Wake I (Figure 4-H.27)

S/V Index S/D
36 S
37 S
38 S
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Table 4-H.12 Source/Doublet Parameters for
Source .Design II/Doublet Wake II (Figure 4-H.28)

Index S/D
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APPENDIX 4-1
AUTOMATIC ABUTMENT SEARCH






4-1.1 General Discussion.

DQG offers an option to the user that greatly simplifies the tedious job
of specifying abutments, that is, describing which network edges meet. DQG
will search the configuration geometry for places where the distance between
network edges is less than some specified tolerance distance and will define
abutments there. This appendix describes the process which DQG employs to
identify abutments. The automatic abutment search is performed in the (3,1)
and (3,2) overlays of DQG.

Figure 4-1.1 shows a configuration consisting of five networks. There are
two kinds of abutments: network edge abutments and empty space abutments.
Network edges which meet other network edges or planes of symmetry are called
network edge abutments. Empty space abutments are those places where a
network edge does not meet another network edge or plane of symmetry. In the
figure there are six network edge abutments (Al through A6) and eight empty
space abutments (E1 through E8).

The automatic definition of abutments occurs in three stages. First, all
relations of the form “network A, edge N from point B to point C Ties near
network D, edge P" are established, These are called pairwise abutment
descriptions. In the second stage, all such descriptions for one network edge
are examined and a 1ist of all network edges which a particular segment of the
one edge lies near is compiled. This is called the expanded abutment
description. The final process consists of contracting the expanded
description. In this procedure, start and énd points of different network
edges in the abutment are defined consistently and the abutment assembly is
transferred to an output array (the WEABUT or IESABT array for network or
empty space abutments) and written as the ABUTMENT-SPEC or EMPTY-SPACE-ABUT

datasets.

The user has the option of completely specifying all abutments or
specifying part of them and allowing DQG to find the rest or of allowing DQG
to find them all. Any abutments specified by the user are not disturbed by
the automatic search,

4-1,2 Data Representations.

An understanding of the content and structure of certain arrays is
required to understand the manipulations of the automatic abutment search. In
this section the arrays are defined.

The IABUT(8) array contans the pairwise abutment description. The first
six entries define the edge segment (as in IESABT). The seventh and eighth
entries are the network and edge of the other network which the segment lies
near.

The IXPAND array contains the expanded abutment description. This is a
list of all network edges which 1ie near one another. It is closely related
to the abutment description in the array WEABUT (see below), except that it
might contain several network abutments. It is dimensioned 10 by 6. The first
index ranges over network edge segments which take part in an

4-1.3
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abutment. The values of the second index indicate (1) network index, (2) edge
index, (3) and (4) start point column and row indices (coarse grid lattice
indices) and (5) and (6) stop point column and row indices (coarse grid
1atti§e indices). This structure is similar to that of the array WEABUT (see
below).

The WEABUT d4rray is a 5 by 6 array which contains the abutment description
for network abutments, (that is , abutments which involve two or more network
edges, or one network edge and a plane of symmetry). A maximum of five
network edge segments are permitted in the abutment. The first index of the
array ranges over the network edge segments in the abutment. The second index
ranges from 1 to 6 and describes the network edge segmenet. WEABUT(I,1)
contains the network index of the Ith network in the abutment, WEABUT(I,2)
contains the edge index, WEABUT(I,3) and WEABUT(I,4) contain the coarse grid
column and row indices of the start point of the edge segment, and WEABUT(I,5)
and WEABUT(I,6) contain the coarse grid column and row indices of the end
point of the edge segment. :

ISRCH is called the search 1ist, It describes the portion of a particular
network edge which has not been defined by the user to form an abutment. It
is a two dimensional array which is dimensioned 20 by 4. The first index
ranges over individual edge segments along a single network edge (a network
edge may take part in up to twenty separate network or empty space
abutments). The second index ranges from 1 to 4 and defines the column and
row indices of the start and of the end point of the segment respectively.

LISTAB is a vector of dimension 20, It is a list of the pairwise
abutments in which a particular network edge takes part. This array is used

for diagnostic purposes. It is not essential to the automatic abutment search.

LISTCP is a 1ist of the columns and rows of the start and end points of
the pairwise abutment segments in which a particular network edge takes part.
It is dimensioned 20 by 4. The first index ranges over edge segments on the
edge and the second index ranges over column and row indices of the start and
end point each edge segment.

SEQCP is a two dimensijonal array dimensioned 40 by 2. It contains the
same data as in LISTCP except that it is sequenced in increasing coarse grid
lattice index order.

ILIST is a list of all network edges which 1ie near one another. It is a
two dimensional array, 10 by 2. ILIST(I,1) is the network index of the Ith
network edge segment in the abutment and ILIST(I,2) is the edge index of the
edge segment. :

MSHARY is a two dimensional array dimensioned 2 by 100. It contains the
mesh size of each network in the configuration.

EGLNTH is a two dimensional array dimensioned 4 by 100, It contains the
edge length of each of the 4 edges of the networks in the configuration.

BLANK is a blank common array used to store all of the edge coordinates.
Its dimension is variable and is dependent on the configuration.

LPT is a vector of length 401. Its first element contains a zero. The
remaining elements contains, for each network edge, a cumulative count of the
number of edge points whose coordinates are stored in the blank common array.

Lk
1
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4-1.3 Program Execution,

In the (3,1) overlay of DQG program, program PRABUT calls subroutine
USEABT to define any user-provided abutments. At the end of this process
USEABT calls SEARCH to define the search list for abutments (Array ISRCH).
PRABUT then reads into memory the edge coordinates of all networks and PRABUT
sets up a bookkeeping vector, LPT, to keep track of the storage location of
the edge coordinates. Finally PRABUT calls subroutine NETABT, which
constructs the pairwise abutment arrays.

For each network edge a list is made of all network edges which are not so
far away that they are unlikely to take part in an abutment with the given
edge. This is done in subroutine EDGLST. A maximum distance is defined equal
to the larger of the edge length of the network whose pairwise abutments are
being constructed (the reference network edge) and the edge length of the
network being examined. Then if a point on the reference edge is closer to
either the first or last point on the network edge under examination than the
maximum distance, the edge under examination is added to the edge Tist.

When all network edges have been examined, the pairwise abutment arrays
are constructed for the reference edge. For each point on the reference edge
which is also in the search list, (ISRCH), the minimum distance to each line
segment (segment between two successive corner points on the edge) on the edge
of a network in the edge list is computed. If this distance is less than the
global tolerance distance, it means a pairwise abutment is found. The
reference network, edge and coarse lattice indices are added to the IABUT
arrays as well as the network and edge index of the edge under examination.
This begins the pairwise abutment.

A similar computat{on is madé for the next point on reference edge. If it
is also close to a 1ine segment, the point is defined as the end point of the
pairwise abutment. This extends the pairwise abutment.

The extensions continue until there are no more points on the reference
edge or until there is a point on the reference edge which is not close enough
to the edge under examination. In either of these cases this signals the
termination of the pairwise abutment, A check is made to assure there are at
least two distinct corner points in the IABUT array and it is written to the
data base.

The process continues over all network edges in the edge list and for each
network edge in the configuration. Note that collapsed edges are never used
in the automatic abutment search,

After the pairwise abutments are defined, they are expanded in subroutine
ABXPND in the (3,2) overlay. For each network edge a list is made of all the
pairwise abutments in which it appears as the reference network (array
ABLIST). At the same time the network and edge which the segment 1ies near
(IABUT(7) and IABUT(8)) are added to the array LSTNET. The start and end
point lattice indices are transferred to the array LISTCP, These are
sequenced in increasing lattice index without duplication in the SEQCP array.
Now a determination is made as to which of the network edges in the LSTNET
array all lie near which of the line segments of the reference network edge.
The successive entries in the SEQCP array define edge segments which lie near
a common set of network edges. :

4-1.5



The average of two successive indices in SEQCP are computed Then the
average indices are compared with the start and end points in LISTCP. If the
average lies within the start/end interval then the corresponding network edge
in NETLST 1ies near the edge segment defined by the successive entries in
SEQCP. The network and edge are added to the ILIST array and the edge segment
data is transferred to an array JXPND. After all entries in LISTCP are
examined, the reference network edgk is added to the ILIST array. The entries
in ILIST are sequenced by the network edge constant. ILIST is transferred to
an array called IKEY. This is used as a key set to get any pre-existing
expanded abutment data. If the data is found, the new data in JXPND is. added
to the expanded abutment data and the 1nformation is written to the disk. If
no data is present, this defines a new expanded abutment. The new key array
is written to the data base as the ABUT-KEYS data and the new expanded
abutment data is written to the EXPANDED-ABUTMENT data set.

¢

The process continues until all network edges in the conf1gurat1on have
been processed.

At the end of subroutine ABXPND, all of the edge segments of every network
edge which appears in a single abutment should be contained in some
EXPANDED-ABUTMENT element set. The onTy remaining tasks are to identify start
and end po1nts of the edge segments in a consistent fashion and, for the rare
case shown in Figure 4-1,3, separate the two abutments which occur on common
edge segments. These are performed in CONABT.

In subroutine CONABT an expanded abutment descr1pt1on is read from the
disk. A single network edge from the IXPAND array is chosen to establish the
start and end points of the abutment. This edge is parameterized (see PAN AIR o
Theory Dacument, Appendix F, Section F.6 (Reference 1)) and the coordinates of \— 4
the po1nts 1/4 and 3/4 of way along the edge are computed. A1so a reference
distance is defined as the maximum of twice the global tolerance distance and
one tenth of the distance between th one-quarter and three-quarter points,
Then each other network edge in the expanded abutment is parameterized and the
distance from the 1/4 and 3/4 points of the first edge to the 1/4 and 3/4
points of the other edge. If both the 1/4-1/4 and 3/4-3/4 distances are less
than the reference distance or if both the 1/4-3/4 and 3/4-1/4 distances are
less than the reference distance, the network edge is transferred to the
WEABUT array and written to the data base. If neither condition is satisfied,
the other edge is skipped and the rest of the edges in the expanded
description are checked.

After all expanded abutments are processed, a ca11 is again made to
subroutine SEARCH. This again scans all abutments and writes to the DQG data
base all those network edges which do not take part in an abutment. These are
used in subroutine MTABUT to define empty space abutments.

(
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4-1.4 An Example

Figure 4-1.2 shows a configuration which will be used to illustrate the
operations described in the previous section.

Before searching for pairwise abutments the program PRABUT determines that
there is sufficient core memory available to store the coordinates of all the
edge points. After reading the coordinates of an edge PRABUT stores in array
LPT the cumulative number of edge points which have been read into memory.

The edges are read in order of network number and edge number. Using the

array LPT the program may keep track of the storage Tocations of the edge
point coordinates.

Assume that no abutments have been defined by the user., The automatic
abutment search will then be executed for the whole configuration. The search
for pairwise abutments begins with the first edge of the first network. The
configuration is sufficiently small that all network edges are close enough
together to be considered for an abutment with the first edge of network one,
Thus all edges in the configuration are searched for pairwise abutments. The
first network edge which 1ies within the global tolerance distance of the
first point on edge 1 of network 1 is network 4 edge 3. This causes the first
entries to be made in the IABUT array. The network edge and start point
column and row indices are listed in IABUT(1), IABUT(2), IABUT(3) and IABUT(4)
respectively. The network and edge which 1ie near the reference network edge
(network 1 edge 1), namely network 4 edge 3, is stored in IABUT (7) and
IABUT(8) respecitvely. The end point column and row indices of the pairwise
abutment (IABUT(5) and IABUT(6) are set equal to the start point indices. The
IABUT array then looks Tike:

I
IABUT(I)

-
-

7, 8
4 3)

nn
—
. w
- -

-
-

.-Edge index
(other network)}

Network index==---=-e==-
(ref network)

IR e e B

----Network index
(other network)

Edge index (ref network)---. . . . o======- Row index, last pt

=0l Pl g =) ()
S m G ml =8t =t =0 med (]

Col index, start pt---========, , (====-=e=-- Col index, last pt

P e N R L R T

Row index, start pte----==--- ———

Then the (2,1) point (that is, column 2 and row 1) of network 1 is
examined. It too lies near edge 3 of network 4. Thus the end pont is
redefined (IABUT(5)=2 and IABUT(6)=1) and the IABUT array now looks like:

1
IABUT(I)

"1, 2,3,4,5,6,7,8
"(13191913231’4’3)

The process continues and the end point is redefined until the last point
on edge 1 of network 1 is reached. At this point the search stops momentarily
and the IABUT array is written to the DQG database as dataset I-ABUT with a
key which is a cumulative index of the number of pairwise abutments

discovered, beginning with one. The rest of the network edges are processedv
in a similar fashion. At the end of program PRABUT, there are fourteen
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element sets in the I-ABUT dataset. The contents of the I-ABUT dataset after

the end of PRABUT execution are summarized in Table 4-I,1. Note that the =
fourth pairwise abutment involves the fourth edge of network 1 with the first

plane of symmetry. (Planes of symmetry are indicated by a negative network

index.) Note that the start and end points in Table 4-I.1 are the coarse grid

1att1$? indices of the points on the network edges {see Appendix 4-H of this

manual). .

After all the pairwise abutments have been defined, the expanded abutment
list is generated. A loop over network edges defines each network edge in
turn as a reference network edge. Then each pairwise abutment is examined to
see if the reference network edge is in the IABUT array that defines the
pairwise abutment (i.e., that the reference network edge is in IABUT(1) and
IABUT(2)). For each of these pairwise abutment, the other network edge
(entries IABUT(7) and IABUT(8)) identifiers are extracted and added to the
LSTNET array. The start and end points of the reference edge are recorded in
array LISTCP, To illustrate the process, consider network 2 edge 4 as the
reference network edge in the example introduced above. Examination of Table
4-1.1 shows that network 2 edge 4 appears as the entry in IABUT(1) and
IABUT(2) in three pairwise abutments. In the first network 2 edge 4 from
point (1,3) to (1,6) lies near network 1 edge 2. This defines LSTNET(1,1)=]
and LSTNET(1,2)=2 and LISTCP(1,I) = (1,3,1,6). The second pairwise abutment
in which network 2 edge 4 takes part states that points (1,1) to (1,6) lie
near network 3 edge 2. Thus LSTNET(2,1)=3 and LSTNET(2,2)=2 and LISTCP(2,1) =
(1,1,1,6). Finally the third pairwise abutment that the reference edge
appears in states that points (1,1) to (1,3) 1ie near network 4 edge 2. Thus
LSTNET(3,1)=4 and LSTNET(3,2)=2 with LISTCP(3,I) = (1,1,1,3).

ili

After all pairwise abutments have been examined the points in LISTCP are
rearranged in increasing lattice index order. The order of the points after
the rearrangement js:

(1,1)
(1,1)
(1,3)
(1,3)
(1,6)
(1,6)

Duplicate entries in the 1ist are deleted as the list is moved into the
array SEQCP. The results of these operations are summarized by the contents
of the arrays LSTNET, LISTCP and SEQCP in Table 4-I.2.

After the indices are copied into SEQCP, the average of each pair of
successive indices is computed. This is listed as “AVERAGE" in the SEQCP
Eortion of Table 4-1.2. Now the expanded abutment description is assembled.

or each of the entries in the array LISTCP, if the average index of the two
adjacent values of SEQCP lies between the start and end points in LISTCP, the
corresponding network and edge indicec of the array LSTNET are added to the
array ILIST. For the first set of average values we have (Table 4-1.2)

(1,2). Comparing this with entries in LISTCP we see the point does not lie
between the start and end points of the first entry (that is between (1,3) and
(1,6)), but it does 1ie between the second and third entries (namely (1,1) to
(1,6) and (1,1), to (1,3) respectively). Thus the corresponding network and

edge indices (network 3, edge 2 and network 4 edge 2) are added to the ILIST ]
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array. After all entries in LISTCP have been examined for a particular
average value, the reference network is added to the array ILIST. Then the
entries in ILIST are resequenced in increasing network and edge index order.
This result is shown in Table 4-I.3.

The sequenced ILIST array is used as a key set for the expanded abutment
data which is contained in the EXP-ABUT dataset. An attempt to read the data
with that particular key set is made. If no data is found, the expanded
abutment data is defined from the reference network edge (network 2 edge 4)
and from the entries in SEQCP which defined the average value (namely (1,1)
and (1,3)). Thus the array IXPAND(1,I) = (2,4,1,1,1,3). The number of edges
in the expanded abutment is set to one and the data is written to the EXP-ABUT
dataset with a key set equal to  (24,32,42). (Note that the network and edge
data from ILIST are combined into one index for each network edge by
multiplying the network index by 10 and adding the edge index.)

If the expanded abutment description is already found on the database, the
number of edges in the expanded abutment is increased by one and the network
edge and start and end corner point data is added to the existing IXPAND .
array. Then the data is written to the database.

This proceeds until all networks and edges have been defined as the
reference edge in a pairwise abutment. At the end of the subroutine ABXPND,
the EXP-ABUT dataset contains the five element sets described in Table 4-1.4
which are addressed by the key set as indicated in the same table. The reader
who desires a full comprehension of these steps is urged to work through the
rest of the problem by setting up the LSTNET, LISTCP, SEQCP and ILIST arrays
Zo; zach network edge in this simplified configuration and thus verify Table

Finally subroutine CONABT reads in the expanded abutment data and from it
defines the abutment description. The last network edge segments description
which is not a plane of symmetry is chosen to establish the start and end
points of the abutment. This is referred to in the code as the reference
network edge. The network, edge, start and stop indices are copied into an
intermediate storage array called TWEBUT and the refenence network index in
the array IXPAND is set to zero so that this edge will not be selected again
in an attempt to define another abutment. Then the subroutine C13QTR finds
the coordinates of the points one quarter and three quarters along the edge of
the reference segment. This is accomplished by parameterizing the edge
segment (see PAN AIR Theory Document, Section 6 of Appendix F (Reference 1)),
and then finding the successive corner points whose parameterizations span
0.25 and 0.75. The coordinates of the point on the line segment between these
points are then computed in an obvious fashion (by interpolation). The
quarter three-quarter point coordinates are used to assure that the start and
end points of each network edge are appropriately mated to the start and end
points of the reference edge.

After these coordinates are defined, each edge segement in the expanded
abutment description other than the reference edge is examined. The distances
between the quarter point of the reference edge and the quarter point of the
segment under examination, between the three quarter point and the quarter
point, between the quarter point and the three quarter point and the quarter
point and finally between the three quarter point and the three quarter point
are computed and compared with a reference distance. The reference distance
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is the larger of twice the global tolerance distance and one tenth of the
distance between the quarter point and the three quarter point of the
reference edge, If both the distances between the two quarter points and the
two three-quarter points is less than the reference distance, then the segment
under examination is copied into the TWEBUT array without interchanging the
start and end points. If the distances between the quarter point of one side
and the three quarter point of the other and vice-versa are less than the’
reference distance then the data is copied into the TWEBUT array but the start
and end indices are interchanged. If neither condition holds, the edge
segment under examination does not form an abutment with the reference edge.
(This occurs in the configuration illustrated in 4-1.3.) After all edge
segments have been considered, the data stored in the TWEBUT array is copied
to the WEABUT array and the abutment description is written to the DQG
database.

In the example discussed above, the reference edge segment in CONABT is
network 4 edge 2 from point (3,1) to (3,3). In this case the other to edge
segments in the expanded abutment lie sufficiently close to the reference edge
that they are included in the final abutment description. Table 4-I.5
contains the abutment descriptions for the configuration as they would appear
at the conclusion of the (3,2) overlay of DQG.

The information presented here covers the basic operations of the
automatic abutment search. Any additional information will be obtained by
examining the code itself, Having understood the discussion in this appendix
the code should be easy to comprehend.
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Table 4-I.,1 IABUT Array

Network Edge Start End Network Edge
(Col, Row) (Col,Row)
| 1 (1,1) (3,1) 4 3
1 2 (3,1) (3,3) 3 2
1 2 (3,1) (3,3) - 2 4
1 4 (1,1) (1,3) -1 0
2 4 (1,3) (1,6) 1 2
2 4 (1,1) (1,6) 3 2
2 4 (1,1) (1,3) 4 2
3 2 (1,2) (1,3) 1 2
3 2 (1,1) (1,3) 2 4
3 2 (1,1) (1,2) 4 2
4 2 (3,1) (3,3) 2 4
4 2 (3,1) (3,3) 3 2
4 3 (3,3) (1,3) 1 1
4 4 (3,1) (1,1) -1 0
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Table. 4-1.2 Generation of Expanded Abutments for network 2 edge 4

LSTNET(I,J) LISTCP(I,J)
I/ 1 2 I/ 1 2 3 4
1. 1 2 1.1 3 1 [
2. 3 2 2 .1 1 ] 6
30 4 2 3 01 ] ] 3
SEQCP(1,J)
I/d 1 2 AVERAGE
T 1 1 (1,2)
2.1 3 (1,4)
3. 6
Table 4-1,3 The ILIST array
ILIST(I,J) ILIST(I,J) After Sequencing
10 1 2 10 1 2 '
I . 3 2 l » 2 a
2 14 2 2 .3 2
3 12 4 3 14 2
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Table 4-1.4 [IXPAND Arrays

Element Set Key Set Network Edge Start End

(Col, Row) (Col, Row)
1 (11,43) 1 1 (1,1 (3,1)
4 3 (3,3) (1,3)
2 (12,24,32) 1 2 (3,1) (3,3)-
2 4 (1,3) (1,1)
3 2 (1,2) (1,3)
3 (-10,14) -1 0 (0,0) (0,0;
1 4 (1,1) (1,3
4 (24,32,42) 2 4 (1,1) (1,3)
3 2 (1,1) (1,2)
4 2 (3,1) (3,3)
5 (-10,44) -1 0 (0,0) (0,0)
4 4 (1,3) (1,1)
\
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Table 4-1.5 Final Abutment Description

Network Abutments
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Figure 4-1.1- Sample Configuration Illustrating Abutments
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Figure 4-1.2 - Configuration for Example Discussed in Paragraph 4-1.5
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Figure 4-1.3 - A Special Case Treated Correctly by Subroutine CONABT
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APPENDIX 4-J
ABUTMENT INTERSECTION SEARCH
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4-J.1 General Discussion,

In the PAN AIR system the continuity of doublet strength accross network
boundaries can be met under those conditions specified in PAN AIR Theory
Document, Section 4 of Appendix F (Reference 1). This is achieved through the
introduction of matching boundary conditions. One of the most difficult ,
problems which had to be solved in DQG was the determination of how to impose
these conditions at abutment intersections.

An abutment (see Appendix 4-1) is a place along which two network edges
meet (see Figure 4-J.1). An abutment intersection is the region where
abutments come together (Figures 4-J.2, 4-J.3 and 4-J.4). The matching
condition at the intersection means the doublet strengths at the two adjacent
corner points on the abutting network edges are equal to one another.

The PAN AIR Theory Document, Appendix F, Section F.5 (Reference 1), shows
that if N abutments come together at an intersection and N-1 corner points are
assigned to match doublet strength, then this is a necessary and sufficient
condition to assure doublet continuity at the intersection without redundant
equations if the correct N-1 corner points are assigned.

The problem faced by DQG is to select the correct N-1 corner points
subject to the following conditions: '

(1) Some corner points on design or wake networks are “matching" points,
i.e., they must be chosen for matching boundary conditions.

(2) Some corner points on some networks are “non-matching" points which
must not be used to match doublet strength.

(3) The selection of corner points to receive matching conditions shall
not cause a redundant system of equations.

(4) At collapsed edges of networks, at most one of the two corner points
can be used for matching doublet strength.

(5) Doublet strength must be continuous across a plane of symmetry at
corner points that lie on the plane of symmetry and doublet strength at a
corner point lying on an empty space abutment must be matched to zero.

(6) A corner point can be assigned to at most one abutment and each
abutment can receive at most one corner point.

The PAN AIR Theory Document, Appendix F, Section F.5 (Reference 1)
introduces a graphical abstraction which summarizes the geometrical
situation. Figures 4-J.3 and 4-J.4 provide some additional examples of
certain geometric configurations and Figure 4-J.5 a, b and c provide the
corresponding graphical equivalents. The reduction of the geometrical
configuration to its graphical equivalent and the use of an algorithm from
graph theory yields the solution to the problem. The (3,4) overlay of DQG
performs the operations which result in the solution to the problem.
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4-J,2 Solution to a Problem in Graph Theory

A graph is a collection of points called nodes connected by a set of lines
called branches. See Figure 4-J.6. An irreducible subgraph is the set of all
nodes which are connected by some set of branches to any other node in the set
(Figure 4-J.7). The problem of graph theory is to find all irreducible
subgraphs of a given graph,

The solution is accomplished in a very ingenious fashion. First all
branches and nodes are assigned an index. See Figure 4-J.8. Then all
connections are enumerated. A connection is a list of a branch and the two
nodes which match its end points. Table 4-J.1 1ists the connections in Figure
4-J.8. Now the connection list is sorted in the following particular fashion.

A table is constructed which has its columns labeled by connection index
and whose rows are labeled by node index (Table 4-J.2). The leftmost column
is filled with zeroes to initialize the table. For each connection the rows
corresponding to the nodes in the previous connection column are examined.

If both contain zero, the connection defines a new subgraph. New entries
in the connection columns are made with an integer labeling the new subgraph
for the two new nodes. All other nodes' entries are carried over without

change. This occurs for the first four connections in Table 4-J.2.

The first connection in Table 4~J.1 has branch 1 connecting node 2 with
node 3. The initial column in the sorting table contains only zero entries
corresponding to node 2 and node 3 (Table 4-J.2), so the next column in the
table (labelled by the index of the first connection, namely 1), is the same
as the previous column except that in the row corresponding to node 2 and node
3 there is a 1 entered. This indicates that nodes 2 and 3 belong to the first
zrrgducible subgraph. A similar process generates columns labelled 2, 3 and 4

n Table 4-4J.2.

~ When the fifth connecton in Table 4-J.1 is examined (branch 9 connecting
node 2 and node 5), it is discovered that there is a non-zero entry already
for node 2. Now something different happens.

If one entry contains zero while the other contains an integer labeling a
subgraph, the connection extends the existing subgraph. The zero is replaced
by the index of the subgraph and all other indices are copied from the
previous column. In the example of Figure 4-J.8, this situation arises for
connections 5, 6, 7, 8, 10, 12, and 13. A : : :

For connection 5 in Table 4-J.2, node 5 has a zero entry in the previous
column while node 2 has an entry equal to 1. So in the column for connection
5, node 5 receives an entry equal to 1 and all other indices are copied over

without change.

If both entries contain non-zero but different indices, the two subgraphs
are connected to one another. All entries containing one subgraph index are
changed to the other. For consistency, we always change the larger index.

A1l other entries are carried over without change. Connection 9 in Table
4-J.1 consists of branch 4 connecting nodes 10 and 11. In Table 4-J.2 the
column labelled 8 has a 3 in row 10 and a 2 in row 11.  Thus connection 9
causes subgraph 3 and subgraph 2 to be connected. In column 9 of Table 4-J.2,
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all "3's" in column 8 are changed to "2's" and the remaining entries are
copied directly. This situation occurs both for connection 9 and connection

If both entries contain the same non-zero subgraph index, a closed loop
has been discovered, i.e., a subgraph which connects to itself. This
situation arises for connection 11. -

Connection 11 of Table 4-J.1 consists of branch 8 connecting node 3 and
node 4. In the column labelled 10 in Table 4-J.2, both row 3 and 4 contain
the same entry "1". Thus connection 11 causes a closed loop to be formed in
thglirreducible subgraph with index “1". This is noted at the bottom of the
table.

When all connections have been processed, the entries in the final column
define the irreducible subgraphs of the problem. In Table 4-J.2, the Tast
column has entries with “1" and "2" in them., Thus there are two irreducible
subﬂraphs in the example (see Figure 4-J,8). The first contains nodes 1, 2,
3, 4, 5,6, 7 and 8 and the second contains noded 9, 10, 11, 12, 13, 14 and
15. The first subgraph contains a closed loop. Thus we have found through
the use of an algorithm that Figure 4-J,8 contains two irreducible subgraphs,
one of whch has a closed loop, a conclusion which is obvious from examination
of the figure. '

4-J.3 Application to Abutment Intersection Problem.

The solution to the problem in graph theory can be applied to the abutment
intersection problem by identifying abutment intersections with irreducible
subgraphs, abutments with nodes, and corner points with branches. The details
of the graphical representation of an abutment intersection are given in
Appendix F, Section F.5.1 of the PAN AIR Theory Document (reference 1), and we
shall not discuss it here any further.

4-J.3.1 Data Representations.

In this section we describe the data storage arrays and their meanings.

IABUTS (300) is an array which contains the index of the abutment. This
index is modified if the abutment is an abutment with a plane of symmetry
(IABUTS = 2,000 + abutment index) or an empty space abutment (IABUTS = 1,000 +
abutment index).

ICPMAP (5,600) contains information about where a corner point at the
start or end of an abutment is located as well as a flag indicating its
special properties:

ICPMAP(1,I) = Network index

ICPMAP(2,1) = Edge index

ICPMAP(3,1) = Coarse grid lattice indices of point (column)
ICPMAP(4,1) = Coarse grid lattice indices of point (row)
ICPMAP(5,1) = +1 if matching point

0 normal unspecified point
-1 if non-matching point
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ICPMAP(1,J) thus indexes all network corner points in the problem (the

J-index of ICPMAP is a global corner point index) and describes where they are -
(the I-index of ICPMAP).

CONNCT (3,600) defines the connection between two corner points by an
abutment.

CONNCT(1,I) = Abutment index
CONNCT(2,1) = Global corner point index of one corner point
CONNCT(3,1) = Global corner point index of other corner point

For an abutment with two network edges, there is only one connection at
the start and one at the end of the abutment. If there are N network edges
and planes of symmetry in the abutment, there are N(N-1)/2 connections. If
one of the edges is a plane of symmetry, this is a special case. The plane of
symmetry corner point index is defined conventionally to be zero. An abutment
with empty space is another special case. It has only one corenr point in its
connection. In this case the single corner point index is listed as both
nodes in the connection.

The connection 1ist is sequenced in a special order. First, all
connections which have one or more corner points which are matching points
appear in the list., Then all connections with empty space abutments appear.
Finally, all remaining connections are sequenced by the greater of the two
ndownstream parameters" of the two corner points. (The downstream parameter
is a measure of whether the point is upstream or downstream of the network
interior. It is defined as

V- ¢ -4
D = :
v

where Eo is the compressibility vector and V is the vector from the corner
point to the diagonally opposite panel-corner point if the corner point is a
network corner point. If the corner point is an extra control point added by
DQG then V is the vector from the corner point to the next interior
panel-corner point on the same column or row. -~ -~ = =~ - ,

This sequencing of connections is to assure that connections with matching
corner points will not be the ones that will be found to form a closed loop.
They will tend to create new subgraphs rather than extend existing ones. By
the same token, the more upstream corner points will tend to form additions to
subgraphs which will not form closed loops. This means that more upstream
corner points will be selected to impose matching conditions for the network,
a situation which is empirically preferred for stabiity reasons when solving
design problems. See PAN AIR Theory Document, Appendix F, Section F.4
(Reference 1).

On collapsed edges of a network, special consideration is required.
Collapsed edges do not appear as an abutment. For this reason the procedures
to be described would find for the example in Figure 4-J.9 that abutment Aj
corner point Cy did not take part in any abutment intersections, while
abutments Ap and A3 along with corner points Cp, C3, and C4 were

part of an intersection. - o
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To allow the addition of abutment Ay to the intersection, the contents
of the array CONNCT are modified. A1l nodes which are indexed by the global
index of the last corner point on the collapsed edge (in a counter clockwise
sense around the edge) are changed to -1 x the global index of the first
corner point on the collapsed edge. At the same time in array CECPN (600)
(initialized to zero) the entry under the global index of the first point is
set equal to the global index of the last point on the edge.

This will allow the procedure to find Al connected to A2 and A3 . The
negative value for the node index flags the corner point to indicate that if
the node in the connection is selected for a matching assignment, the
alternate reference (the last point on the edge, obtained from array CECPN) is
the true location for the matching assignment. :

CPLST (600) is an array which is used as the table constructed in Section
4-J.2. It is initialized to zero. At the end of the procedure, each entry in
the array contains an index of the abutment intersection (subgraph) to which
the corner point belongs.

PCCT (3,600) is an integer array which contains information compliment to
CONNECT. PCCT defines the connection between two abutments by a corner point.

pcCT(1,I)

corner point location for Ith corner point. It contains
network number times 1,000,000 plus column number times
1000 plus row number of the corner point.

PCCT(2,1) = abutment index for one of the two abutments connected to
the Ith corner point.
PCCT(3,I) = abutment index for the other abutment connected to the

Ith corner point,

ABTSYM(300) is an integer array that contains the abutment tangent symmetry
descriptor. Its value may range from O to 3.

ABTSYM(I) =0 if abutment I lies away from both POS
ABTSYM(I) =1  if abutment I lies in first POS
ABTSYM(I) = 2 if abutment I lies in second POS
ABTSYM(I) = 3 if abutment I 1ies in both POS

NETDBT(100) contains the network doublet type for each network in the
configuration,

After all abutment intersections are found, the matching assignments must
be made. In the process of performing the assignment, some additional arrays
are used. These arrays contain information concerning a particular abutment
intersection,

ABCPCP {3,30) contains all the connections which make up any one abutment
intersection (subgraph). These are stored on the disk keyed by intersection
(subgraph) number. If a connection establishes a closed loop, then the
abutment index in the connection description ABCPCP (1, K) is multiplied by
-1. Thus a negative abutment index in the connection 1ist of an abutment
intersection indicates that the intersection has a closed loop.
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CPLIST (60) contains the global corner point index of all corner points in -
the abutment intersection. As corner points are assigned matching conditions,
the value of the location which held the global index of the point is set to
zero. This removes it from consideration in future assignments.

ABLIST (30) contains the modified abutment indices (see description of the
IABUTS array) of all abutments in the intersection.

LNOD(15) CONTAINS THE ABUTMENT TANGENT STATUS EXTRACTED FROM ABTSYM for
the abutments which meet at the abutment intersection.

PNOD(15) contains the abutment indices. These indicies may be positive or

negative integers. The sign indicates the direction of the abutment. A
positive sign indicates that the abutment points away from the abutment
intersection and a negative sign indicates that the abutment points toward the

abutment intersection.

PQ(2,30) is a list of pairs of abutments. The indices of the two
abutments adjacent to Ith corner point are contained in PQ(1,1) and PQ(2,1).

KSEG(30) is the doublet matching status of corner points.

Ith corner point is on a source alone network

not used

doublet network but no control point for matching
reserved for plane of symmetry

regular corner control point

matching corner control point

KSEG(I)
KSEG(I)
KSEG(I)
KSEG(1)
KSEG(I)
KSEG(I)

LSEG(30) 1indicates whether corner point lies in a plane of symmetry.

(

NPpWN~O

0 Ith corner point not in any POS
i Ith corner point in first POS
+2 Ith corner point in second POS

LSEG(I)
LSEG(I)
LSEG(I)

Positive sign indicates that the network normal is parallel to the POS normal
and negative sign indicates that the normals are anti-parallel.

WSEG(30) contains the upstream downstream parameters of corner points

NFGSEG(30) is set up to help maintenance programmers to diagnose errors.
NEGSEG(I) contains network number times 1,000,000 plus column number times
1000 plus row number of Ith corner point in an abutment intersection.

4-3.3.2 Program Execution.

The assignment of matching conditions at abutment intersections occurs in
two steps. First all abutment intersections are found and written to the data
base (subroutine INTRSC). Then each intersection is assigned matching
conditions (subroutine ASSIGN).
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4-J,3.2.1 Abutment Intersections.

Figure 4-J.10 illustrates the process which finds all abutment
intersections in the configuration. Subroutine INTRSC reads abutment data and
from it constructs the IABUTS, ICPMAP, CPMAP, PCCT and CONNCT arrays.
Subroutine COLCPT modifies entries in CONNCT if there are collapsed network
edges and generates array CECPN. Then subroutine NTRLST performs an analysis
of entries in CONNCT similar to that presented in Section 4-J.2; and defines
abutment intersections. These are written onto the DQG data base in data set
INTERSECTION.

4-J,3.2.2 Matching Assignments.,

Figure 4-J.11 illustrates the subroutines and data flow which occur in the
process of assigning matching conditions at abutment intersections.,
Subroutine ASSIGN reads the intersection data from the data base and fills
array ABCPCP with it. From this data the arrays ABLIST, CPLIST, LNOD, PNOD,
PQ, KSEG, LSEG, WSEG and NFGSEG are then created. Subroutine ABTINT, which is
a PAN AIR library routine, examines the graph of the abutment intersection and
assigns corner points to abutments for doublet matching. If there are N
abutments in the intersections, N-1 corner points must be assigned to insure
doublet matching at the intersection. See PAN AIR Theory Document, Appendix
F, Section F.5 (Reference 1) for a discussion of this important point.

The indices of the matching corner points and the indices of the
associated abutments are passed to subroutine ABASGN. ABASGN obtains the
abutment data and checks ICPMAP(I,ICP) (where ICP is the corner point index),
I =1, 3 and 4 for agreement with the network and coarse grid lattice indices
of the start or end point in an edge segment in the abutment. If the point is
found in the Nth network edge in the abutment, the flag in the array DSVMCH
(part of the abutment data) corresponding to doublet corner point matching for
start or end points (DSVMCH(I,2,1) and DSVMCH(I,3,1) respectively) is set
equal to N. Then the abutment data is replaced on the data base, the number
of assignments made is incremented and the routine returns. In this way all
corner points where doublet matching is to occur are labelled in the abutment
description. Later in the (3,5) overlay, subroutine MATCHPT reads the
abutment data and copies these matching flags into the SPECIAL-POINTS dataset
for use in the (4,0) overlay of DQG where the matching boundary conditions are
actually imposed.

Matching assignments for abutment intersections lying on one or more
planes of symmetry present additional complications. PAN AIR takes the
approach to treat each symmetry condition as a separate problem. Therefore,
whether a matching condition should be assigned at a corner control point
1ying on a plane of symmetry depends on the symmetry condition and which plane
of symmetry the control point 1ies. For corner control points lying on a
plane of symmetry the matching assignments described in the last paragraph are
made for each symmetry condition. The matching pointers for Ith symmetry
condition is stored in DSVMCH(I,2,1) and DSVMCH(I,3,1) for start and end
corner points.

For corner points not lying on a plane of symmetry and for edge interior
control points the matching boundary conditions are independent of symmetry
condition and therefore, matching pointers are needed only for the first
symmetry condition.
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4-J.3.3 An Example.

Figure 4-J.12 shows a configuration for which we present a detailed
example of the operations discussed in this section. Tables 4-J.3 and 4-J.4
contain the abutment data. The abutments are labeled in Figure 4-J.13. (The
configuration contains a collapsed edge (network 4), plane of symmetry
abutments, a matching edge, and a non-matching edge. This example will
i1lustrate nearly all features of the program. )

(

From the data in Tables 4-J.3 and 4-J.4 we construct the IABUTS arrays and
the ICPMAP arrays shown in Table 4-J.5 and 4-J.6. Note that the empty space
abutments' entry in the IABUT array is the empty space abutment index plus
1,000, Also note the offset of 2,000 added to the plane of symmetry abutments.

Figure 4-J.14 shows the index assigned to each corner goint and abutment.
These indices correspond to the columns labelled index in Table 4-J.6 and
4-J.5 respectively.

Table 4-J.7 contains the connection description. Note that first in the
connection 1ist appears the connections with matching corner points. The
entry (0 0 0) in the connection array separates the matching connections from
the empty space connections (connection index 3), and the empty space
connections from all the other connections (connection index 20). The
connections at the end of the list are sequenced by downstream parameter,
Then subroutine COLCPT finds that edge 3 of network 4 collapsed. Thus
connection number 18 is changed from (14, 20, 20) to (14,-10,-10). The
reference to corner point number 20 appears in array CECPN.

The search procedure begins in NTRLST. Table 4-J.8 describes the A\ — 4
transition of the array CPLST as the connections are examined for subgraph
formations. This data is similar to Table 4-J.2 discussed in section 4-J.2,

Table 4-J.9 contains the resulting intersection data. Note that a closed loop
is discovered at connections numbers 23 and 29 for the first intersection and
at connection number 33 for the eighth intersection. Note also that several
intersections (13, 12, 10, and 6) are discovered to be connected to another
intersection (1, 10, 8, and 3 respectively) as the intersection search
proceeds.

At the conclusion of the search, the DQG data set INTERSECTION contains
the same data as Table 4-J.9. Thus there are ten abutment intersections is
the example of Figure 4-J.12. One of them has two closed loops (intersection
1) formed by abutments 3 and 4, and another has one closed loop (intersection
8) formed by abutment 3.

After the intersections are defined, doublet matching assignments are
made. Subroutine ASSIGN is called. This subroutine reads the intersection
data and sets up the data which describe the directed graph corresponding to
the abutment intersection. Subroutine ABTINT is called to make the matching
assignments for each abutment intersection. ABTINT returns the array NODSEG.
If the Ith element of NODSEG is less than or equal to zero then the Ith corner
point in CPLIST is not used for matching. However, if the Ith element of
NODSEG is a positive integer P then the Ith corner point in CPLIST 1s used to
match doublet across Pth abutment in PNOD. Each pair of matching corner point

and the corresponding abutment is passed to subroutine ABASGN which updates o
the matching assignment on the DQG database. I : =
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In this discussion we will only examine the assignment process for the
first intersection. The arrays PNOD, CPLIST and PQ for this intersection are
chown in Tables 4-J.10 and 4-J.11, together with the associated network
numbers. The direction of the abutments are shown by arrows in Figure 4-J.15,

The array NODSEG as outputed by subroutine ABTINT is given in Table
4-J.12. The first element contains 3. Therefore, the first corner point in
CPLIST, corner point number 10, is selected to match across the abutment
contained in the third element of PNOD or abutment number 14, The abutment
index is then used by ABASGN to read the abutment data. The corner point
index is used along with the array ICPMAP to determine whether the matching
corner point is the start point or the end point of the abutment. In this
case the lattice indices of corner point number 10 does not correspond to the
lattice indices of either the start point or the end point. But corner point
number 10 is on a collapsed edge (as indicated by a negative sign in abutment
intersection data and array PCCT). Therefore, array CECPM contains an
alternate corner point number which is 20. Corner point number 20 turns out
to be the end point of abutment number 14. The matching pointer is then set
to the appropriate control point and the abutment data is updated on the
database.

This process continues until all matching pointers are set. Notice that
the fourth element of NODSEG contains a zero. This means that the fourth
corner point in CPLIST, corner point number 12, does not have a matching
boundary condition. Processing of this abutment intersection is therefore
skipped to the fifth element in NODSEG.

Figure 4-J.15 shows the doublet matching assignments after all
intersections have been processed. Note that no assignment is made for points
11 and 16 since they are “no matching" points. Also no matching assignment 1is
made for point 12 since if it were assigned to either abutment 3 or 4, it
would produce a redundant set of equations for matching at the first
intersection.

Thus all abutment intersections have been identified and matching
assignments have been made without producing a redundent set of constraints
and without missing an assignment. Later in the third overlay in subroutine
MATCHPT of the (3,6) overlay, the matching flags are read from the abutment
data and transferred to the SPECIAL-POINTS dataset. This dataset is read by
the (4,0) overlay of DQG where the presence of a matching flag produces a DQG
generated boundary condition of doublet matching. The (4,0) overlay then
selects from among the user-defined boundary conditions and the DQG-defined
boundary conditions to determine what constraints are actually imposed at the
control points (see Appendix 4-M).
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Table 4-J.2 Sorting table whose generation determines the number

of irreducible subgraphs in a graph (see Section 4-J.2)

Connnection Index

1 12 13 14
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Node
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4-J.14

Network Edge Abutments for the example in Figure 4-J.12.

Table 4-J.3

This example is discussed in Section 4-J.3.3.

Net#ork
2

Network

Edge
2
4
Edge
1
3

Edge

Start
(3,1)
(1,1)

Start
(1,1)
(1,3)

Start
(1,1)
(3,1)
(3,1)

Start
(1,3)
(1,1)

Start
(1,3)

Start
(1,3)

End
(3,3)
(1,3)

End
(3,1)
(3,3)

End
(1,3
(3,3
(3,3)

End
(3,3)
(3,1)

End
(1,1)

End
(1,1)

I
i



C

Empty Space
Abutment
Index

1
2

~N oy O AW

Empty Space Abutme

- Table 4-J.4
nts for the example in Figure 4-J.13.

The example is discussed in section 4-J.3.3.

Network

SO 0 W NN

Edge

NN

Start
(3,3)
(3,3)
(1,3)
(1,3)
(1,1)
(1,1)
(1,1)
(1,3)

End

(1,3)
(1,3)
(3,3)
(3,3)
(3,1)
(3,1)
(3,1)

(1,1)
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Table 4-J.5
IABUTS Array for the example of Figure 4-J.12 and 4-J.13.
The example is discussed in Section 4-J.3.3.
Index : Array
1

2

—

3

4
2005
2006
1001
1002
1003
1004
1005
1006
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N

1007
1008
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Table 4-J.6

ICPMAP array for the example in Figure 4-J.12 and 4-J.13.
The example is discussed in Secton 4-J.3.3.

Start/stop
Index Network Edge Point Matching Flag CPMAP
(Col, Row)
1 [ 2 (3,1) 0 0.51
2 1 2 (3,3) 0 -0, 51
3 2 4 (1,1). 0 -0.70
4 2 4 (1,3) 0 0.7
5 2 1 (3,1) 0 0.72
6 3 3 (1,3) 1 -0.66
7 3 3 (3,3) 1 ~0.66
8 3 4 (1,1) 0 0.65
9 4 2 (3,1) 0 0.56
10 4 2 (3,3) 0 -0.88
1 5 2 (3,1) -1 0.42
12 5 2 (3,3) 0 -0.46
13 5 3 (1,3) 0 -0.44
14 1 1 (1,1) 0 0.51
15 1 4 (1,3) 0 -0.51
16 5 4 (1,1) -1 0.42
17 2 3 (3,3) 0 -0.70
18 3 2 (3,1) 0 0.65
19 4 1 (1,1) 0 0.57
20 4 4 (1,3) 0 -0.88
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Table 4-J.7 The list of Connections for the example of Figure 4-J.12
The example is discussed in Section 4-J.3.3.

Connection CONNCT Array CONNCT Array CONNCT Array

Index (Initial) (After Sequencing) (After COLCPT Execution)
A Cp Cp A Cp Cp A Cp Cp

1 2 3 6 2 3 6 2 3 6
2 2 57 2 5 7 2 5 7
3 0 0O 0 0 0 0 0 0
4 7 2 2 7 2 2 7 2 2
5 71515 7 15 15 7 15 15
6 817 17 8 17 17 8 17 17
7 8 4 4 8 4 4 8 4 4
8 9 5 5 9 5 5 9 5 5
9 917 17 9 17 17 9 17 17
10 10 7 7 10 7 7 10 7 7
n 10 18 18 10 18 18 10 18 18
12 11 8 8 n 8 8 n 8 8
13 11 18 18 1 18 18 1 18 18
14 12 16 16 12 16 16 12 16 16
15 12 11 11 12 11 " 12 1 11
16 131919 13 19 19 13 19 19
17 13 9 9 13 9 9 13 9 9
18 14 20 20 14 20 20 14 -10 -10
19 14 19 19 14 19 19 14 19 19
20 0 0 0 0 0 0 0 0 0
21 1 1 3 3 6 10 3 6 10
22 1 2 4 3 6 12 3 6 12
23 3 8 9 3 10 12 3 10 12
24 3 81 6 13 13 6 13 13
25 3 610 6 16 16 6 16 16
26 3 612 1 1 3 1 1 3
27 3 91 4 13 14 4 13 14
28 310 12 5 15 15 5 15 15
29 41314 4 12 1 4 12 1
30 412 1 5 14 14 5 14 14
31 51515 3 9 " 3 9 11
32 514 14 3 8 9 3 8 9
33 61313 3 8 n 3 8 11
34 6 16 16 1 2 4 1 2 4

CECPN Array

CECPN(I) = 0 I #£10 I=1,20
CECPN(10) = 20 -
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The example is discussed

—J.].Z.
ion 4-J.3.3.

Tabc. 4-1.8
Transition of array CPLST during abutment intersection search in subroutine
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Table 4-J.9
Abutment Intersections in example of Figure 4-J.12.
The example is discussed in Section 4-J.3.3

Intersection Connections Intersection Connections
Index Index
1 2 3 6 8 1 8 8
3 0 10 3 8 9
14 -10 -10 12 N 11
3 6 12 3 9 1N
-3 10 12 13 9 9
1 1 3 -3 8§ 1
-4 12 1
2 2 5 7 9 12 16 16
10 7 7 6 16 16
9 5 5
10 Appended to 8
3 7 2 2 1 13 19 19
8 4 4 14 19 19
1 2 4
12 Appended to 10
4 7 15 15 13 Appended to 1
) 5 15 15
5 8 17 17 14 6 13 13
9 17 17 4 13 14
5 14 14
6 Appended to 3
7 10 18 18
1 18 18

4-J.20
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Table 4-J.10 PNOD Array for First Intersection
INDEX PNOD(INDEX)

-2
-3
14
-1

4

TNy -

Table 4-J.11 Corner Point and Abutment Arrays for First Intersections

After Sequencing by
Downstream Parameter

Index CPLIST(INDEX) PQ(1,INDEX) PQ(2, INDEX) NFGSEG( INDEX)
1 10 -3 14 4003003
2 3 -2 -1 2001001
3 6 -2 -3 3001003
4 12 4 -3 5003003
5 1 -1 4 1003001

Table 4-J.12 NODSEG Array for First Intersection

INDEX NODSEG( INDEX)

ogEwn -
HON =W
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Figure 4-J .1
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N2 N1
A Ezz.ﬂ ¢1 A
2 4
¢ [*c
3 4
N3 N4
Aq

N = Network
A = Abutment
C = Corner Point
at Abutment Intersection

Figure 4-J .2 Example of an Abutment Intersection
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Figure 4-J .4 Another Abutment Intersection with 4 Abutments
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Figure 4-J.5

A2 AI
C3 c1
A3 - A4
4
Paths discussed
in the Text

Line Segment and Point Diagrams Corresponding to
Three Abutment Intersections
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Figure 4-J .6 An Example of a Graph
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Figure 4-J .7 Illustration of Irreducible Subgraphs
<
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a) The Unlabeled Graph

1
6
12 13
14
7 15
8 11 10

b) Labeling of Nodes

c) Labeling of Branches

Figure 4-J.8 Assignment of an Index to A1l Branches and Nodes of a Graph
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Figure 4-J.9 Abutment Intersections at Collapsed Edges of Networks. Without
special processing the intersection of abutments Al with A2 and
A3 would be missed. The special processing is described in
4-J.28 Section 4-J.3
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Figure 4-J .10 Data Flow and Program Operation for
Intersection Construction 4-0.29
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Flow Direction

/

Symmetry

Figure 4-J .12 Configuration for Example of
Abutment Intersection Search
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'Figure 4-J .13 Abutments in Example Configuration
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Figure 4-J .14 Abutment and Corner Point Indexing
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Figure 4-J.15 Doublet Matching Assignments at the Conclusion of the Abutment
Intersection Analysis at the End of the (3,4) Overlay of DQG. —%
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APPENDIX 4-K
OUTER SPLINE CONSTRUCTION
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4-K.0 Introduction

The fifth overlay of DQG computes the [SP] vectors (see PAN AIR Theory
Document, Appendix I (Reference 1)) at every corner point, center point and
edge mid-point in all of the networks of the configuration. These vectors
define source and doublet strength at the nine defining points of any
particular panel in a network in terms of the singularity parameters located
in that network, or, (in the case of a smooth abutment) in terms of
singularity parameters located in an adjacent network. In the sixth overlay
of DQG these spline vectors are o

used to assemble the spline matrices ([BS] and [BD] matrices). For source
analysis networks the [BS] matrix is computed separately. It does not use a

unique [SP] vector for each grid point and therefore does not impose source
continuity across panel boundaries. Also in the

sixth overlay the subpanel spline matrices ([SPSPLS] and [SPSPLD]) are
computed from the panel geometry.

Source and doublet strengths over the surface of a network are defined by
‘a complicated series of spline operations which are discussed from a
theoretical point of view in the PAN AIR Theory Document, Appendix I
(Reference 1). The fifth and part of the sixth overlays of DQG compute the
splines in several steps.

This appendix discusses mainly the calculation of the outer spline vectors

[SPS] and [SPDJ. Section 4-K.1 also discusses, however, how the outer spline
vectors are assembled to form the spline matrix for a panel. The coding of
the subpanel spline construction is straightforward and its implementation is
not discussed.

Appendix 4-K.1 discusses some general concepts and also discusses how the
outer spline vectors [SP] are assembled into the spline matrix for a panel.
Appendix 4-K.2 discusses the computation of doublet splines on network edges.
Appendix 4-K.3 discusses the computation of doublet splines in network
interiors. Appendix 4-K.4 discusses the construction of source spline vectors.

The concepts presented in this appendix are difficult. The readers are
encouraged to study the PAN AIR Theory Document, Appendix I (Reference 1),

where a more detailed discussion is given, in order to gain a more complete
understanding of this appendix.

4-K.3
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4-K,1 General Concepts

Before discussing the splining operations further, it is useful to
introduce some definitions of items which will be referred to throughout the
succeeding sections.

A spline vector is an one dimensional array with a dimension between one
to twenty possible components. Its inner product with a vector consisting of
values of singularity parameters in the vicinity of a point gives the value of
singularity strength at that point. Associated with a spline vector is an
index vector with the same dimension whose components are the singularity
parameter indices (see Appendix 4-H) of the surrounding points.

A unit spline vector is usually defined for each point where a singularity
parameter is located. It is a vector of dimension one with its component
equal to unity and with its associated index vector equal to the index of the
singularity parameter located at the point.

The splining process takes values of source or doublet strength at
discrete surrounding points and defines the source or doublet strength at the
point whose singularity strength is required as a linear combination of the
strengths at the surrounding points. The coefficients of the linear
combination are determined from a least squares fit (see PAN AIR Theory
Document, Appendix I, (Reference 1)). Splines are sometimes computed to
surrounding points whose doublet strength is not due to one singularity
parameter but is itself another spline vector. The process of computing the
spline vector which includes this more general case is called accumulating the

spline vector. , o
. \ =4

"Subroutine VECUNV performs the accumulation of the spline vectors. The
input to the subroutine includes the number of surrounding points to which the
spline is being performed, a spline vector for each of the surrounding points
(usually of dimension one), an index vector for each singularity parameter
(discussed below), the dimension of each spline vector and the set of
coefficients from the least squares fit. The output consists of a spline
vector, its dimension and an index vector for the spline vector. The index
vector associated with a particular spline vector tells which singularity
parameter to use to determine the value of singularity strength at the point.
An example should clarify this concept.

Suppose that we have a spline vector [SP] = (0.3, 0.25, 0.8) with an index
vector [ISP] = (23, 45, 21). The index vector means that the value of
singularity strength at the point which the spline vector refers to is 0.3
multiplied by the value of singularity parameter number 23 plus 0.25 times the
value of singularity parameter 45 plus 0.8 times the value of singularity
parameter 21. Of course the values of the singularity parameters are not
known until the AIC matrix has been inverted and applied to the right hand
side in module RHS. Thus, it is necessary to maintain the 1ist of index
vectors to keep track of which singularity values to use to evaluate the
singularity strength at an arbitrary po