
N92-22685
KNOWLEDGE-BASED AUTONOMOUS TEST ENGINEER (KATE)

Carrie L. Parrish, Ph.D. and Barbara L. Brown

NASA Kennedy Space Center, DL-DSD-23

Kennedy Space Center, FL 32899

ABSTRACT

Mathematical models of system components have long been utilized to allow simulators to predict system

behavior to various stimuli. Recent efforts to monitor, diagnose and control real-time systems using component

models have experienced similar success. NASA at the Kennedy Space Center is continuing the development of

a tool for implementing real-time knowledge-based diagnostic and control systems called KATE (Knowledge-based

Autonomous Test Engineer). KATE is a model-based reasoning shell designed to provide autonomous control,

monitoring, fault detection and diagnostics for complex engineering systems by applying its reasoning techniques

to an exchangeable quantitative model describing the structure and function of the various system components and

their systemic behavior.

INTRODUCTION

Conventional approaches to developing and maintaining diagnostic and control process software result in
a time-consuming and costly effort. Furthermore, the resulting software may be incomplete and unable to handle

situations that were unforeseen when the software was written. Significant advantages are obtained by systematically

representing and using knowledge of a physical system's structure and function to reason about its health and proper

functioning, a technique referred to as "model-based reasoning". The Artificial Intelligence Section, Engineering

Development Directorate, at the Kennedy Space Center, employs the concept of model-based reasoning in the

development of real-time knowledge-based diagnostic and control systems for ground launch operations. The project

resulting from these efforts is called KATE (Knowledge-based Autonomous Test Engineer). KATE is being
designed as a generic, model-based expert system shell, incorporating the engineer's reasoning about control and

diagnosis of complex engineering systems in the form of general software algorithms. KATE further embodies

concepts of sensor-based and model-driven monitoring and fault-location and performs control and redundancy

management of process control systems through application of the generic algorithms to an exchangeable knowledge
base, which describes the structure and function (i.e., mathematical model) of a specific domain. Refer to Figure

1 for a pictorial representation of the KATE System.

Ir

Lr
I

UTILITIES

I
NOrGT(]_NG r

Mg=

KATE SHELL

I DATA

_F.RI=ACE

I
SIHULAT_I_

Figure 1. KATE Block Diagram

83
PRECEDI?, GPACE BLANK NOT FILMED

BACKGROUND

NASA at the Kennedy Space Center, first developed LES (LOX Expert System) in 1983 to perform fault

detection and isolation for the process control system which handles the loading of Liquid Oxygen into the external

tank of the Space Shuttle. In 1985, LES grew into the more generic and robust model-based system, KATE.

During fiscal year 1989, KATE was successfully demonstrated against a scale model of the Orbiter
Modification and Refurbishment Facility's (OMRF) Environmental Control System (ECS). The OMRF ECS

supplies conditioned air to four different compartments of the Orbiter while the Shuttle is being processed in the

OMRF. The hardware model of the OMRF ECS contains a purge unit that supplies chilled air to four ducts which,

in turn, supply air to the Orbiter. Each duct consists of a heater for maintaining a constant temperature and a

motorized flow-control valve for controlling the flow rate. A failure panel has been added to allow for manual

failing of various components during testing. An operator can request certain flow and temperature setpoints and

KATE will respond by adjusting the valves and heater output to achieve the setpoints. KATE will also identify and

respond to external inputs to the ECS, such as load changes. In addition to control, KATE monitors the system,

identifying discrepant measurement values and assigning probable causes. In most cases, control of the system can

continue, especially if the discrepancy is determined to be due to a measurement failure.

In February of 1990 implementation of the KATE Generic Control System (GCS) prototype was

successfully integrated into the Generic Checkout System. The Generic Checkout System is comprised of a network

of UNIX-based equipment connected to a physical model of a Shuttle water tanking system, referred to as the Red

Wagon. KATE-GCS performed control and diagnosis of fastfill, chilldown, and other processes related to filling

the Red Wagon external tank.

KATE KNOWLEDGE BASE

The knowledge base contains all information specific to the domain, i.e. the electro-pneumatic system being

modeled. Generic component definitions as well as application specific data - classes of components, component

names, tolerances, output-functions, inputs, delays, ranges, any information relevant to system operation, is stored

here. The knowledge base can be thought of as a blue print of the system. When connected to hardware, the

KATE shell utilizes this blue print to establish a nominal, working system model. This internal model can then be

referred to as KATE monitors system health to detect anomalies, diagnose and recover from failures.

KATE's knowledge base has been developed through a combination of component modeling and

mathematical modeling. That is, the knowledge base not only describes the system architecture, but is also the

repository for functional information. System structure, or connectivity of system components, is repres_ted

primarily using data structures called inputs and outputs (described below). This information is used by KATE

to discern control paths from command to measurement and is vital to gathering valid suspects during diagnosis of

and recovery from failures. Mathematical equations of component output functions are also computed and stored

in the knowledge base. Output functions describe how a component should behave based on its inputs. By

representing structural and functional information, the dynamics of system's structure as well as its function can be

made use of to perform monitoring, control and diagnosis. The knowledge base is separate from the KATE shell

and therefore exchangeable. Conceivably, the shell might be used to monitor and control several hardware systems

by the simple exchange of knowledge bases.

Knowledge Representation
The knowledge base is based on a hierarchy of components and is separated into 3 major levels: the top,

mid, and instance level. System components are modeled from as high level a concept as a "thing" in the top
level, down to specific individual line replaceable units, such as a bypass valve being operated in the field, in the

instance level. The top level of the knowledge base provides the framework, or building blocks, for system
modeling. Here, broad concepts and classes of components are defined. The mid level houses generic definitions

of system components - butterfly valves, transducers, relays, flow meters, schematic pages, level sensors, circuit

breakers, and fuses to name a few. The instance level contains domain specific information, such as calibrations

for system components that override mid level default parameters. For example, the mid level generic definition

of a valve may contain default operating ranges for the valve. This default may be overridden in the instance level

84

definition of an actual occurrence of a butterfly valve in the field of operation. Inheritance of frame information

is accomplished via AIO and AKO slots (described below) during interpretation at run-time. The use of component

inheritance provides a means by which any component can be trace backwards to its top level definition (or visa

versa) and reduces the amount of information that must be stored in the knowledge base.

This object-oriented approach to knowledge representation greatly increases the ease of adding or removing

system components. Should it become necessary to do so, a component may be deleted or "disconnected" from

the knowledge base, connection points re-established, and the model is once again complete without the need for

costly recoding that is necessary with conventional software design.

Pseudo Obiects and External Influences

In an electro-mechanical system there exist components that are not actual "physical" components, but

rather, engineering concepts that manifest themselves during system operation. The effects of these "non-physical"

components are observable, and can be controlled and diagnosed if necessary. Early KATE developers found it

useful to model these pseudo-objects, as they are called in the KATE knowledge base, for the proper functioning

of the KATE shell software. In general, pseudo-objects represent information that has no corresponding sensor
for measurement, but can be computed from other data. Examples of pseudo objects are pressures, temperatures,

flow rates, and tank levels.

Manual valves and orifices are examples of external influences. When all system components are

functioning according to expectations, manual operation of an external influence component might explain

anomalous system behavior. Pseudo-objects and external influence object definitions, like any other objects, utilize
inheritance and are defined at all levels of the knowledge base in the same fashion as actual existing, line replaceable

components.

Knowledge Base Structure

A frame representation language has been employed for data representation. Frames contain "slots" of

information, and utilities have been constructed to allow for manipulation of these slots during knowledge base
development. Slots in a frame may be thought of as records in a data structure. Each frame contains a description

of the object and its connection to other objects. At the instance level a frame definition can be found for each

hardware component or pseudo object in the system. This statement however, is not meant to mislead the reader;

for certain types of components, other frame definitions may be necessary to complete the system model.

KATE currently makes use of forty odd slots for modeling purposes. These slots contain information that

applies to icon display, component location for camera tracking, or other information necessary for the KATE shell

to effectively perform monitoring, control, and diagnosis. Selected knowledge base slots are described here for the

reader's use in a later example of knowledge base construction.

NOMENCLATURE - Text string denoting the frame's object name and description.

AIO (An Instance Of) - Indicates the generic object type from which the component will inherit

characteristics. For example, if A75064 is a pressure transducer, the AIO slot in A75064's instance level frame

definition would read (alo PRESSURE-TRANSDUCER).

AKO (An Kind Of) - Indicates the class type of the object. For example, the AKO slot in the mid level

frame definition of PRESSURE-TRANSDUCER would read (ako TRANSDUCER).

KINDS - Inverse slot link to AKO. List of all frames in the knowledge base that represent a class of

object. For example, the KINDS slot in the top level definition of TRANSDUCER would read (kinds PRESSURE-

TRANSDUCER...).

INSTANCES - Inverse slot link to AIO. List of all component names of a certain generic type existing

in the field. For example, the INSTANCES slot in the generic component frame definition of PRESSURE-

TRANSDUCER would read (instances A75064 ...).

INPUTS - list of all frame names of the object's inputs.

85

OUTPUTS - List of all frame names of the object's outputs.

CHANNEL - Indicates the Hardware Interface Module, card, and position number from which the

measurement/command is polled/commanded.

COMPONENT-OF - Indicates a component's Hardware Interface Module and card number.

COMPONENT-POSITION - Indicates the position of the measurement or command on the polling card.

PHYSICAL-LOCATION - Text string denoting the components location in the field.

To better illustrate the method used to construct KATE's knowledge base from system schematics, a sample

drawing, taken from an advanced electrical schematic is used (Figure 2). This drawing depicts a 3-way solenoid

A711392
t_" _ItT t_I
CCHT ¥AL'¢E

GI,CItO I IE

f_
87

I

P t

I 'rMA _1 In
i

I_RDkME

o,, "
i

It

,, I

TOpoLgVgL DEFINITION

(Defmme THING

(memetuum "mmNh_')
SYfl'EM

MEASUREMENT

COMMAND
DISCRErE OBJECT))

(l_fnmm DI_IIK'TIt .Ol_C'r

(NOMF.NCLATURE'a _ _')

(tim THING)

0da_ DISCRETE MEASUREMENT

_RErE COMMAND))

MID-LEYEL DEFINITION

(Defnme COMMAND

NOMENCLATURE "a _')

(aim 'rm_o)

DISCRETE-COMMAND

ANALOO-COMMAND))

FT;T--I

pl

JI A

!

.-1 *1/ I

I
!

I IVAL_ I'MI)tkqY

(Defame DIBCRETE-COMMA,_)

(nom_k_m "adlmnum oommad')

(_o COMMAND

DISCRETE OBJECW)

ftmmom GLoK,a0t II_

(eeq_ emil

INSTANCE-LEVEL DI_FINITION

(13_mme GLOK4011 It

(nmamwhltu_ "K,ttmmd Tank

Cm_ rave O_a Ccmmad')

(,do DI$cRErE-ODMMAND)

(o_tm out (C1-1..9Jg6.34.0"/_I)

(dwml CH-SgU-34-07)

(omimmt of CAltD-f, ge6-34)

(_ podttoa 0"8

(l_ical-locmioa F.xtemd-Tmk))

(mm,_ "El" v-,, _ v_,,o F_')

0do _tWAY=&OLENOID=VALVE-CLOSlED

('mm,t.(ma (OLOK, m]ne- CONTAC'r el))

(Famma_isl (ATMOS_-PRE_URE etl|)

(pmmme-la2 (IIF,-SUFFLY-EILESSU]REout)))

(_k_d-tmaioe Er)

Figure 2. Figure 3.

86

valve, A78392, and its associated primary open command, GLOK4011E. Instance level frame definitions for

A78392 and GLOK4011E are described (Figure 3), as well as the associated top and mid level frame definitions

for a command. This example highlights the fact that there is not always a one-to-one correspondence of line

replaceable component-to-instance level frame definition. While Figure 2 shows only a valve and its open

command, in order to completely model A78392 and GLOK4011E, the instance level file would also have to
include frame definitions for GLOK40UE's associated command measurement, command contact, and Hardware

Interface Module card. (Note that top level object abstractions and the mid level generic component definition for

a 3-way solenoid valve are not shown.)

KATE SHELL

Process Monitorin_

Once the knowledge base (model) accurately reflects a physical system's behavior, monitoring is relatively

straightforward. Process monitoring can be broken down into two main software modules, the Measurement System

and the Constraint System. During normal operation, the Measurement System continuously polls command and

sensor measurements through a hardware interface. This system then places all measurements that have changed

by a user-defined "significant amount" on a queue for examination by the Constraint System.

The Constraint System processes any command or sensor measurement changes. If a command has

changed, the new value is propagated through the model to generate expectation values for the system sensors. The

sensor meamwements placed on the queue by the Measurement System are then compared to the expectation values

derived from the model. If all measurements are in agreement with the expected values, the assumption is made

that the system is behaving properly, and monitoring continues. If, however, any sensor measurement differs from

the expectation calculated using the model, it is assumed that the discrepancy is due to a physical system failure,

and the Diagnoser is invoked to localize the fault.

Diaenosis

Introduction

The Diagnoser's task is to search for all possible failures within the system that can explain the current

sensor readings. Reasoning from the sensor data, KATE uses a "violated expectations" approach to diagnosis which

is a technique compatible with the intuitions of human diagnosticians. KATE currently assumes a single point of

failure, however, the ability to diagnose to this point of failure is dependent upon the amount of sensor information

available to KATE (i.e., the visibility into the system).

Diagnostic Aleorithm

When the diagnoser is invoked due to a discrepancy, sufficient time is allotted for system stabilization.
This tinm is given for the effects of a possible system failure to reach all of the system measurements (sensors) so

that they may be used to aid in the diagnostic process. After system stabilization has occurred, any other discrepant
measurements are gathered.

Initially, every component in the system which can be considered a potential "suspect" is placed on a

suspect list. It is the diagnoser's task to reduce this list to a minimum number of suspects that can explain all

current sensor information. These suspects are gathered using structural information found within the frames.

Starting from the original discrepant measurement, all components that are structurally upstream from this sensor

are considered suspect. The discrepant sensor is also placed on the list as a possibly faulty object. All other

components are ignored (excluding structural faults like "bridges" or "short circuits" (2)) since objects not

structurally upstream of this sensor cannot account for the discrepancy in its reading.

Once the suspects have been determined, all sensors which can be affected by these suspects are gathered.
These sensors are also known as sibling sensors, and are used to aid in the effort of determining a suspect's
innocence.

Further pruning of the suspect list is then attempted through the use of the functional information stored

within the frames. Suspects which are of type "command" or "pseudo-object" are automatically cleared because

it is assumed that these objects cannot fail. Furthermore, in the case that there exists more than one discrepant
measurement, innocence can be established for the discrepant sensors based on the fact that a failed sensor cannot

87

cause another sensor to fail (refer to detailed description below).
A more sophisticated pruning method is then required to further localize the source of faulty system

behavior. This method is based upon analysis-by-synthesis, a search for some fault that can explain what the

sensors are showing, and has been labeled "The Full Consistency Algorithm" (3).

In general, the Diagnoser uses a "generate and test" paradigm. The algorithm involves calculating a

hypothetical value for each suspect that would explain the discrepant measurement's value. In other words, the
Diagnoser determines what state the suspect would have to be in to produce the discrepant measurement (generate).

If the hypothetical state of the suspect consistent with the discrepant measurement cannot also account for the other

system sensor readings (i.e., sibling sensors), then that suspect cannot be the cause of the failure and may be cleared

from the suspect list (test). This hypothetical value is derived by performing symbolic inversion of the stored

functional relationship between the discrepant measurement and the suspect. For further detail on the inversion

process and a description of the inversion algorithm, refer to (4) and (5), respectively.

Sensor Failure and Missing Data

When the Diagnoser is invoked due to a discrepant sensor reading, KATE assembles a list of possible

suspects. The discrepant sensor itself is also placed on this list as a plausible suspect. The sensor is processed just

as any other suspect object in the system, and if its innocence cannot be proven, it is retained as a potential cause

for its own discrepant reading.

Sensors can, in fact, be easier to diagnose than other system objects. Validation of a sensor can, in single

fault environments, become a quite trivial problem. If more than one sensor is discrepant, these sensors
automatically clear one another from suspicion because no one sensor can explain another sensor's discrepant

reading. The fact that KATE can diagnose a sensor failure just as any other system object and, in many situations,
represent an especially easy case, distinguishes KATE's model-driven approach from conventional software and

traditional rule-based techniques (3).

The ability to diagnose sensors has been of particular benefit since, historically, Shuttle launches have been
threatened more by instrumentation problems than by actual system failures, and unfortunately, there did not exist

a fast, reliable way to distinguish the two. The original goal of the KATE project was to provide a means to

determine whether a system failure indicator in fact resulted from an actual hardware failure that might be critical

to continued system operation or was merely a result of a defective instrument.

Another advantage that a model-based approach offers over a conventional approach is that missing or

degraded data due to a sensor failure is easily accommodated. Whereas most conventional approaches require

pre-encoded actions for each combination of sensed data being present or absent, KATE does not require any special

software to handle the many combinations of missing/available data. KATE simply refrains from using any sensor

data that is no longer available. Sensor data is used by the Diaguoser in two ways: (1) it is compared to

expectations generated by the model during normal operation to detect faulty behavior and (2) it is compared to

expectations generated from fault hypotheses to confirm or disconfirm them. If the sensor data is no longer present,

it is simply not compared with the expectations generated by the model. The diagnoses that follow may result in

more suspects being retained than what would have been retained had the sensor information been available, but

no suspect will wrongfully be cleared. In some sense, the missing sensor data is treated the same as if the sensor

data had not existed in the first place (6).

Control and Redundancy Mana2ement

Conventional control techniques require that an engineer, who is familiar with the design of a specific

system and is knowledgeable of the kind of devices that make up that system and how they may fail, hard-code the

functionality and connectivity of the system. Programs must be written to specify which commands need to be

issued to control a specific device and which measurements need to be checked to ensure the desired goal. The

programmer obviously must try to foresee all possible failures that may affect control of that device and write
subroutines to handle each case.

In KATE, the system's functionality and connectivity is represented in the knowledge base and is easily

and rapidly accessed by the systems thereof. This allows for the capability of low level control, based on a concept

somewhat similar to that used to diagnose the cause of a failure in an engineering system. The Diaguoser infers

which failed component(s) would cause a discrepant condition, whereas the Control System infers the required state

of all controlling components and commands that would result in a newly desired state. This conceptual relationship

resulted in the natural progression from LES to the KATE project. Using this technique, KATE is capable of

88

accepting a high level, desired system goal from the user, consisting of an object and a value to be obtained by the

object. For instance, the user may want to open or close a discrete valve, change the state of a relay, open or close

an analog valve by a certain percentage, or cause a measurement or indicator to read a certain value. KATE then

determines and issues the appropriate low level commands necessary to accomplish the desired task. Furthermore,
redundancy is automatically activated if required by a prior component failure.

The Control System performs the task by breaking the problem or goal down into subgoals and their

subgnals and so on, recursively, until controllable objects (i.e., commands) are reached. A set of options for

achieving the desired state of the object is the result of this process. For further details and examples, refer to (7).

The Control System dynamically creates, selects and executes the control code. Since KATE is continually

monitoring the system, checks will automatically be made to ensure successful completion of the task.

In addition, the user has the option of issuing powerful, high level commands, such that certain states of

the system or specific devices are "maintained" or "controlled" by KATE. In the case that a required state of an

object is affected by a failure, the Control System will automatically be invoked to search for an alternate means

to maintain or control back to that requirement, and issue the necessary commands to do so.

Control Advisories

The main focus of KATE is the modeling and control of tanking systems in a launch environment. In light

however, of the potential of costly damage to ground and flight hardware systems and the hazards surrounding the

use of cryogenic fuel in tanking operations at the Kennedy Space Center, all involved - from KATE's software

system designers to launch system operators - are understandably concerned with using the KATE prototype for

on-station control until the prototype has been rigorously tested and validated. Control advisories provide an

alternative to autonomous control and offer a means by which to demonstrate KATE's control capability without

risk to ground or flight hardware systems. Today, for demonstration purposes, control advisories are implemented

as prerequisite, reactive, or conditional control logic that is initiated upon violation of system operating criteria.

Under ideal conditions, initiating the Control Advisor would be as simple as making a menu selection to instruct

the KATE shell to perform advisories rather than issue commands to control hardware components. Once selected,

the Control Advisor would provide recommendations on control options to the operator based on operating

procedures, system constraints, and knowledge of high-level goals for control of a system or subsystem. (8)

KATE TOOLS AND UTILITIES

Generic utilities, as well as a few application specific utilities, have been made available in the KATE

system. Brief descriptions of the most commonly used tools and utilities follow.

AUTONOMOUS CAMERA CONTROL - Provides visual confirmation of component status in response to an

operator request or diagnosis of a component failure.

CONSISTENCY CHECKER - A knowledge base verification tool used in conjunction with the Tree Display

(described below). Examines selected knowledge base slots for accuracy of information and reports any

discrepancies found.

EXPLANATION FACILITY - Provides an explanation of the rationale used by KATE during diagnosis to indict

or vindicate a component as a failure suspect.

KATE REMOTE DATA TRANSFER UTILITY - Allows KATE to simulate real-time data acquisition using
archived data.

PLOT - Provides realtime line plots of component data for commands and measurements over time. Historical data

plots may also be generated from archived data.

PROCEDURE READER - Provides the capability to enter high level goals in the form of procedural steps. KATE

then executes each procedure by controlling the actual hardware or KATE's simulation of the hardware system.

89

SCHEMATIC DISPLAY - An interactive display of system schematics taken from actual engineering documents.

Reports current status of any component depicted on the page.

SIMULATOR - Allows for simulated operation of a hardware system using a software model of the system.

SINGLE POINT FAILURE ANALYSIS - Analyzes the model and detects the "we_" points of a system, i.e.

any component whose failure could cause loss of effective control of the system.

TREE DISPLAY - Provides a graphical view of the system architecture from the viewpoint of a user selected

component. Displays the component and its connections to other components using the relational concepts of

"upstream" (left side of the tree) and "downstream" (right side of the tree).

CURRENT APPLICATIONS

Currently, the Artificial Intelligence Section is focusing on the following two major implemantatious of

KATE: Autonomous Launch Operations and Shuttle Liquid Oxygen Prototype.

Autonomous Launch Operations (ALe)

KATE is being developed under the U.S. Air Force's Advanced Launch Systems (ALS) Advanced

Development Program (ADP) as a project entitled Autonomous Launch Operations (ALe). The objective of ALe

is to demonstrate an autonomous launch control software system that performs real-time monitoring, fault detection,

diagnosis and control from high-level operations requirements. It is part of an effort to reduce overall launch
operations costs, by significantly decreasing process control software development and maintenance costs and by
greatly reducing launch crew size, human error and fault recovery time.

In order to demonstrate the above stated goals, two hardware models have been constructed as targets for

prototyping the KATE software that is being extended in order to achieve the ALe objectives: A Water (H20)

Tanking System model and an Liquid Nitrogen (LN2) Tanking System model. In addition, the existing

Environmental Control System (ECS) model hardware is expected to be integrated with the tanking systems, creating

a multiple-subsystem testbed, such that all three models can be used together to demonstrate a more launch-realistic

environment with KATE software systems handling a variety of launch support subsystem models.

As a first step in demonstrating the KATE software for the ALe project, the H20 Tanking System model

is being used for real-time monitoring, fault detection, diagnosis and control of fluid tanking systems. As part of

the H20 Tanking System demonstration objectives, KATE performs the following tanking sequences and operations

through its control capabilities: Ullage pressurization, Transfer line chilldown (simulated), Main Engine chiUdown

(simulated), Slow fill, Fast fill, Topping, Replenish, Fill circuit drain and vehicle pressurization, Engine firing

(simulated) and Drainback. During these H20 Tanking System operations/sequences KATE's ability to perform

numerous tasks is demonstrated. Phase 2 demonstrations are currently being performed against this H20 Tanking

System hardware. As a future step, the KATE developers will be greatly challenged by the modeling issues and

the required KATE software enhancements surrounding the controlling and health monitoring of cryogenic fluid

systems when they move to the LN2 Tanking System model.

Shuttle Liouid Oxwen fLeX) Prototype

During a launch countdown, launch support personnel must not only monitor the health of the system and

be ready to perform troubleshooting in a tense, time-critical situation, but they must also be ever aware of system

constraints, operating procedures, and operating criteria. To aid in this proce_ KATE is currently being applied

to the Shuttle Liquid OXygen (LOX) loading system. KATE-LOX is funded by the Office of Aeronautics and

Space Technology. The ongoing objectives of this project are to incorporate technological advances in control,

monitoring and diagnostics techniques to increase productivity and reduce operator error, as well as lower software

development and maintenance cost in the shuttle ground operations environment. (9)

Since April 1990, KATE-LOX has monitored fueling operations during 18 shuttle launch countdowns in

an offline mode. Although the prototype is still under development, KATE-LOX has experienced success on several

occasions by accurately diagnosing failures of LOX equipment during live tankings. When completed, the KATE-

LOX prototype will perform monitoring and diagnosis of the Orbiter's external tank fueling operations, and will

90

provide advice to operators on control options.

The LOX Expert System (LES) mentioned previously, also modeled the LOX system but was implemented

using a simplified model and a simplified concept of flow. KATE-LOX employs more sophisticated control and

diagnostic algorithms as well as a more complex model of the LOX hardware system that more accurately represents
the effects and constraints involved in the flow of a cryogen such as liquid oxygen. Also new utilities have also

been designed to reflect the needs of firing room operators.

Model validation and system testing are being accomplished by exercising the system against the Shuttle
Ground Operations Simulator model of the Liquid Oxygen Loading System, online monitoring during live launch

countdown loading operations and simulated loadings using the KATE Remote Data Transfer Utility.

The LOX system contains approximately 515 LOX specific data points. Two-thirds of these sensor points

have been modeled, the majority or which occur at the instance level. The LOX knowledge base currently contains

1750 frames and is expected the reach 2500 by knowledge base completion. (10)

_-MM_Y AND FUTURE WORK

The development of KATE provides a means to avoid the creation and maintenance of large hard-coded

programs to control and diagnose engineering system domains. Instead, knowledge bases are developed that

describe the connections between internal application system components and how the outputs of each component

depend upon its inputs (i.e., control relationships). Using this domain-specific model, KATE has the capability to

intelligently control, monitor and diagnose faults for the particular application. The model produces control
operations and expected values for the hardware system's measurements. Constraint checking is performed

whenever a command or sensor value has changed. Upon detection of a discrepant sensor reading, the diagnoser

is invoked. The model is additionally used to test diagnostic hypotheses generated as explanations for observed

failures. Symbolic inversion of the dependency of a measurement upon each suspect component is used to calculate

a hypothetical value for the suspect that could explain the discrepancy. Various consistency criteria are then used

in an effort to eliminate all but one of the suspects - the culprit. This same inversion process is used for controlling

objects by calculating input value(s) for an object which will result in a desired output. In addition, KATE uses

both its control and diagnosis capabilities in performing redundancy management when a request to maintain a high

level system goal is disrupted by a system failure. The model is automatically updated as the engineering system

is manipulated or degrades. All diagnostic and control decisions are made in real-time, taking into account failed

objects, objects which are being maintained, and those objects which are already at their desired states.

Furthermore, modeling a system in terms of its structure and function, allows for the diagnosis of sensor failures

similar to that of other system components. This approach also allows for easy accommodation of missing sensor

information, and KATE can continue monitoring, diagnosis and control in the presence of a sensor failure. The

result is increased machine intelligence in the area of reasoning about a system's health and controlling the state of

a hardware system.
Uses for this type of system at the Kennedy Space Center include checkout of ground, payload, and launch

support equipment, launch team training, and simulation of ground support and space station flight hardware
systems for software component checkout.

Significant work remains to be done on improving the complex and time-consuming process of model

building. Several avenues for the development of a graphical knowledge base editor and an automatic knowledge

generation tool are being pursued to alleviate this problem. Should automatic knowledge generation reach fruition,

a significant portion of KATE's knowledge base could be generated automatically from Computer Aided Drawing

system schematics and design notes.

Technical matters, such as modeling issues - particularly those relating to pseudo object detection and

knowledge representation, improving diagnostic capability, and developing testing and validation methodologies

continue to provide challenges. Increasing processing speed and preparing for integration with KSC launch

processing systems are also concerns. To this end, porting to a conventional language and delivery platform is

actively being pursued.

The development of KATE and its associated concepts are ongoing. With each new application of KATE,
software enhancements are made to enable KATE to become more generic and encompassing in its ability to handle

a wider variety of and more complex engineering systems.

91

ACKNOWLEDGEMENTS

Theauthorswouldlike to recognizeNASAprojectengineer, Tim O'Brien, of the KSC Artificial

Intelligence Lab, for his assistance in the preparation of this paper. We further acknowledge the Boeing Aerospace

Operations, Model-Based Systems Group for their contributions in the design and development of KATE.

REFERENCES

(1) Internal Document, "KATE Knowledge Base Generation Guide" (September 1990).

(2) R. Davis, "Diagnostic Reasoning Based on Structure and Behavior', D. G. Bobrow ed., Qualitative

Reasoning about Physical Systems, MIT Press, Cambridge, MA, 1985.

(3) E.A. Scarl, J. R. Jamieson and E. New, "Model-based Reasoning for Diagnosis and Control', Proceedings

of the First Florida Artificial Intelligence Research Symposium (FLAIRS-88), Orlando, FL (May 1988).

(4) E.A. Scarl, J. R. Jamieson and C. I. Delaune, "Diagnosis and Sensor Validation through Knowledge of

Structure and Function', IEEE - Transactions on Systems, Man and Cybernetics SMC-17 (3), pp. 360-368

(May/June 1987).

(5) S. Thomas, "Symbolic Inversion of Control Relationships in Model-Based Expert Systems', Final Report

- NASA Research Grant NAG10-0045 (December 1988).

(6) c.L. Belton-Parrish and S. Enand, "KATE - A Model-based Diagnostic and Control Shell', Intelligent

Diagnostic Systems, Eds. K. F. Martin, J. H. Williams and D. T. Pham, IFS/Springer-Vedag, to be published in
Fall 1992.

(7) E. New, "Knowledge-Based Control and Redundancy Management Techniques Used in NASA's KATE

Project', Proceedings of Southcon/87, Orlando, FL (March 1987).

(8) T. Gould, "KATE Video Script', KATE 20 Minute Video (April 1991).

(9) C.L. Belton and B. L. Brown, "Knowledge-Based Autonomous Test Engineer (KATE) - A Model-Based

Control and Diagnostic Shell', Research and Technology, 1990 Annual Report, NASA Technical Memorandum
103811.

(10) B.L. Brown, "KATE-LOX Narrative', Code RC Center Management Review (August 1991).

92

