Bragg / Johnson
10/29/91

J r i s e n Space Center - Houston, Texas

Propulsion and Power Division

Preliminary Test Results for Li-SOCl₃ High-Rate "D" Cells

by
B.J. Bragg

and
Paul Johnson

NASA Johnson Space Center

N 9 2 - 2 2 7 5 5
AGENDA

- Background
- Test Results
 - Weight, OCV, and Load Check
 - Shock Test
 - Vibration Test
 - Capacity Performance
 - Uninsulated Short Circuit
 - High Temperature Exposure
 - Overdischarge
- Conclusions
Preliminary Test Results for Li-SOCl2 High-Rate "D" Cells

<table>
<thead>
<tr>
<th>Propulsion and Power Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bragg / Johnson</td>
</tr>
<tr>
<td>10/29/91</td>
</tr>
</tbody>
</table>

BACKGROUND

- Objective - Evaluate the performance and abuse characteristics of 55 D-Size lithium-thionyl chloride (Li-SOCl2) cells at relatively high rates.
- Cells developed by Electrochem Industries, Inc. under contract to the Jet Propulsion Laboratory.
- Cells manufactured in October 1989.
 - Li wt, - 3.44 g
 - Li anode area - 530 sq. cm
 - 1 anode tab - 0.25" w X 0.005" thk.
 - Electrolyte - 1.8M LiAlCl4 in SOCl2 - 44-45 g
- Cathode (carbon) wt. - 5.2 g
- Cathode thk. - 0.025"
- 2 cathode tabs - 0.125"w X 0.005"thk.
- 55 cells delivered to JSC
 - 39 used in this test program
 - 14 cells discharged in calorimetry testing
 - 2 held as spares
TEST RESULTS

- Weight Check: 121.31 - 122.79 grams

- Open Circuit Voltage: 3.658 - 3.662 VDC

- Load Check Voltage (5 ohm load for 90 sec.): 3.045 - 3.176 VDC
 - None of the cells met 3.50 VDC minimum.
 - Cells were almost two years old.

- Shock Test (2 Cells)
 - Sawtooth shock pulse, 20 g peak with a 11 ± 1 millisecond rise and a 1 ± 1 millisecond decay.
 - Results: No change in OCV
• Vibration Test (3 Cells)
 • Random vibration for 15 minutes in each of 3 mutually perpendicular axes according to the following spectrum:

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 to 80</td>
<td>+3 dB/octave</td>
</tr>
<tr>
<td>80 to 350</td>
<td>0.1 g^2 / Hz</td>
</tr>
<tr>
<td>350 to 2000</td>
<td>-3 dB/octave</td>
</tr>
</tbody>
</table>

• Results: No change in OCV.
Preliminary Test Results for Li-SOCl\(_2\) High-Rate "D" Cells

Propulsion and Power Division

| Bragg / Johnson | 10/29/91 |

Capacity Performance (32 Cells)
- Ah to 1.5 VDC

<table>
<thead>
<tr>
<th>-40°F, 2 ohm load</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Cells</td>
</tr>
<tr>
<td>4.10 - 4.98 Ah</td>
</tr>
<tr>
<td>Avg. 4.52 Ah</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room Temperature, 1 ohm load</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Cells</td>
</tr>
<tr>
<td>10.38 - 10.75 Ah</td>
</tr>
<tr>
<td>Avg. 10.57 Ah</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>160°F, 1 ohm load</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Cells</td>
</tr>
<tr>
<td>9.48 - 9.61 Ah</td>
</tr>
<tr>
<td>Avg. 9.55 Ah</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Room Temperature, 2 ohm load</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Cells</td>
</tr>
<tr>
<td>10.42 - 11.11 Ah</td>
</tr>
<tr>
<td>Avg. 10.7 Ah</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>160°F, 2 ohm load</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Cells</td>
</tr>
<tr>
<td>9.45 - 9.75 Ah</td>
</tr>
<tr>
<td>Avg. 9.61 Ah</td>
</tr>
</tbody>
</table>
Li-SOCl₂ High Rate "D" Cell
One ohm discharge at room temperature to 1.5 volt
Li-SOCl$_2$ High Rate "D" Cell

Two ohm discharge at room temperature to 1.5 volt
Li-SOCl₂ High Rate "D" Cell

Two ohm discharge at room temperature to 1.5 volt
Li-SOCl₂ High Rate "D" Cell

One ohm discharge at 160°F to 1.5 volt
Li-SOCl$_2$ High Rate "D" Cell

Two ohm discharge at 160°F to 1.5 volt
Preliminary Test Results for Li-SOCl2 High-Rate "D" Cells

- Uninsulated Short Circuit (3 Cells)
 - Cell S/N 048396
 - Load: 0.75 ohm
 - Maximums: 0.27 VDC, 30 Amp, 118°F
 - Duration: 11 seconds until internal lead fused.
 - Post-test: 0.396 V on 100 ohm load
 - Cell S/N 048422
 - Load: 1.20 ohm
 - Maximums: 1.21 VDC, 25.2 Amp, 198°F
 - Duration: 4 min 42 sec until internal lead fused.
 - Post-test: 0.18 V on 20 ohm load
Li-SOCl₂ High Rate "D" Cell
Uninsulated short circuit test
Cell S/N 048422 on 0.12 ohm load
Li-SOCl₂ High Rate "D" Cell
Uninsulated short circuit test
Cell S/N 048422 on 0.12 ohm load

Cylinder wall temperature (°F)

Time (sec)
Preliminary Test Results for Li-SOCl2 High-Rate "D" Cells

- Cell S/N 048439
 - Load: .120 ohm
 - Maximums: 1.21 VDC, 25 Amp, 130°F
 - Duration: 1 min 43 sec until internal lead fused.
 - Post-test: No OCV

- High Temperature Exposure
 - Cells tested for one hour at 225, 250, 275, and 300°F.
 - No leakage was found on any of the cells one week after high temperature exposure.
Preliminary Test Results for Li-SOCl2 High-Rate "D" Cells

- Overdischarge; 2 Weeks Post-Discharge (6 Cells)
 - With Shunt Diodes
 - 1.5 A at 160°F
 - No cells vented, max temperature 209.4°F
 - Without Shunt Diodes
 - 1.5 A at 160°F to 245°F: Chamber temp. control drifted during test.
 - One cell vented at 19 hours and 3 cells at 19.25 hours, max temperature 348.7°F
- Overdischarge; 4 Weeks Post-Discharge (6 Cells)
 - With Shunt Diodes
 - 1.5 A at 160°F
 - No cells vented, max temperature 226.4°F
 - Without Shunt Diodes
 - 1.5 A at 160°F
 - One cell vented at 1.6 hours, max temperature 328.8°F
Li-SOCl₂ High Rate "D" Cell

Two week post-discharge overdischarge without shunt diodes

1.5 A at 160°F
Li-SOCl₂ High Rate "D" Cell
Two week post-discharge overdischarge without shunt diodes
1.5 A at 160°F

Chamber temperature controller drifted from 160 to 250°F during testing
Li-SOCl$_2$ High Rate "D" Cell

Four week post-discharge without shunt diodes

1.5 A at 160°F
Li-SOCl₂ High Rate "D" Cell
Four week post-discharge overdischarge without shunt diodes
1.5 A at 160°F
CONCLUSIONS

- Take note of presented capacity to 1.5 volt end voltage.
 - RT data, in particular, shows gradual decline from 3 v to 1.5 v.
 - Final report will compare fresh capacities at higher end voltages.
- Overdischarge Tolerance
 - Data taken after a 2-week interval of OCV was very tolerant.
 - Data taken after a 4-week interval vented very quickly.
 - Susceptibility to venting on overdischarge increases with length of OCV interval after discharge.
 - By-pass diodes protect the cell from this effect.
Nickel-Cadmium Technologies Session

Organizers: Dean Maurer
AT&T

Larry Thaller
The Aerospace Corporation