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Preface

The Center for Modeling of Turbulence and Transition (CMOTT), a co-
operative turbulence research team, was formally established in May of 1990
as a focal group within the Institute of Computational Mechanics for Propul-
sion (ICOMP). The location of CMOTT is shown in the organization struc-
ture chart in Appendix A. The objectives of the CMOTT are to develop, vali-
date and implement the models for turbulence and boundary-layer transition
in practical engineering flows. The flows of interest are three-dimensional,
incompressible and compressible flows with chemistry. The schemes being
studied include the two-equation (e.g. k -E) and algebraic Reynolds-stress
models, the full Reynolds-stress (or second moment closure) models, the
probability density function (pdf) models, the Renormalization Group The-
ory (RNG) and Direct Interaction Approximation (DIA), the Large Eddy
Simulation (LES) and Direct Numerical Simulation (DNS).

Currently, CMOTT has eight formal members working on various as-
pects of turbulence and transition modeling in collaboration with NASA-
Lewis scientists and Case Western Reserve University (CWRU) faculty mem-
bers. The CMOTT members have been actively involved in international and
national turbulence research activities through meetings, seminars, work-
shops and exchange-visitors. Since June of 1990, a CMOTT seminar series
has been conducted with speakers invited from within and outside of the
NASA Lewis Research Center, including foreign speakers. In 1991, a new
series of biweekly CMOTT technical meetings was initiated for informal dis-
cussions regarding special issues in turbulence and transition modeling. The
CMOTT research activity is advised by a group consisting of Professor J.L.
Lumley (Cornell University), Dr. M. Goldstein (NASA/LeRC) and Professor
E. Reshotko (CWRU ).

This research brief contains the progress reports of the CMOTT Re-
search staff from May 1990 to May 1991. It is intended to be an informational
report of the CMOTT activities as well as an annual report to ICOMP and
NASA. The current CMOTT roster and its organization are listed in the
Appendix A. Listed in Appendix 13.1 are the visiting members and their
seminar abstracts. Appendix 13.2 gives the scientific and technical issues dis-
cussed in biweekly CMOTT meetings. Journal and conference publications
by CMOTT members are grouped in Appendix C.
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Starting in 1991, NASA Technical Memoranda authored by members of
the CMOTT staff will be given a specific number to identify them as CMOTT
reports. These manuscripts will be made available for early dissemination of
completed research results by the CMOTT staff.

Finally, we express our thanks to one of the CMOTT members, Dr.
William W. Liou, who carefully assembled the material and provided edito-
rial assistance.

Louis Povinelli
Meng-Sing Liou
Tsan-Hsing Shih

viii



Center for Modeling of Turbulence and 7'ransition
Research Briefs - 1990

The Study of PDF Turbulence Models in Combustion

Andrew T. Hsu

1. Motivation and Objectives

1.1 Motivation
The accurate prediction of turbulent combustion is still beyond reach

for today's computation techniques. It is the consensus of the combustion
profession that the predictions of chemically reacting flow were poor if con-
ventional turbulence models were used. The main difficulty lies in the fact
that the reaction rate is highly non-linear, and the use of averaged temper-
ature, pressure and density produces excessively large errors. The proba-
bility.density function (pdf) method is the only alternative at present time
that uses local instant values of the temperature, density, etc., in predicting
chemical reaction rate, and thus is the only viable approach for turbulent
combustion calculations.

1.2 Objectives
The present work aims at the development and implementation of the

the pdf turbulence models in solving realistic combustion problems. The fact
that the pdf equation has a very large dimensionality renders finite difference
schemes extremely demanding on computer memories and thus impractical,
if not entirely impossible. A logical alternative is the Monte Carlo scheme,
which has been used extensively in statistical physics. However, the use of
Monte Carlo scheme to solve both the flowfield and the chemical reaction is
very time consuming. Further more, since CFD has reached a certain degree
of maturity as well as popularity, it seems less beneficial to abandon CFD
completely and opt for Monte Carlo schemes. Therefore, we propose the
use of a combined CFD and Monte Carlo scheme in the present study. The
scheme would use the conventional flow solvers when calculating the flowfield
properties such as velocity, pressure, etc., while the chemical reaction part
would be solved using Monte Carlo solvers.



2. Works Accomplished

2.1 Code development.

A parabolic code with k - E turbulence models have been developed
in the past months. Three different k - E models have been tested with
satisfactory numerical resuits.

A grid dependent Monte Carlo scheme is being explored. This scheme
discretize the pdf equation on a given grid and write, for parabolic flows:

P2+dT>j = a iP. j+i + Oj Py ,j + -(jp.,j- 1 	(1)

and we require
aj+Qj+^6 =1 	 (2)

Using a very simple test case of a convection / diffusion process with two
scalars, it was found that the previous scheme does not conserve mass frac-
tions due to re-contamination. It is found that in order to conserve the
mass fractions absolutely, one needs to add further restriction to the scheme,
namely

aj + ^̂ j = aj-1 + 7.7+ 1	(3)

A new algorithm was devised and is currently being tested. Again using
the simple test case of two scalars with assumed constant coefficients in the
pdf equation, the new algorithm is shown to conserve the mass fractions
perfectly in cases of uniform flows or pure diffusion problems. Deficiencies
such as directional bias and re - contamination that were found in the previous
algorithm are completely eliminated.

2.2 Applications.

The code developed has been validated by solving a heated turbulent
jet. The temperature is treated as a conserved passive scalar and solved
using the pdf Monte Carlo simulation while the flow field is obtained using
a conventional CFD solver. The mean temperature profile and RMS of the
temperature fluctuation were compared with experimental data.

As a first application to combustion problems, the non-premixed flame
of hydrogen and fluorine is being studied. A comparison between primary
results from the present study and experimental data show that the present
scheme predicts the mean flame temperature accurately.
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3. Future Plans
1. Further investigate the case of hydrogen-fluorine reaction.
2. Study finite rate calculation of the same non-premixed flame.
3. Study the interaction between mixing and chemical reaction.
4. Study compressibility effects.

4. Publications

1. Hsu, A.T., "The Study of PDF Turbulence Models in Combustion,"
9th National Aero-Space Plane Technology Symposium, November 1-2,
1990.

2. Hsu, A.T., " On Recontamination and Directional Bias Problem in
Monte Carlo Simulation of PDF Turbulence Models," NASA CFD Con-
ference, April 12-14, 1991, Moffett Field, California.

3. Hsu, A.T., "Progress in the Development of PDF Turbulence Models for
Combustion," 10th National Aero-Space Plane Technology Symposium,
April 23-25, 1991, Monterey, California.

4. Hsu, A.T., "The Study of PDF Turbulence Model in Nonequilibrium
Hydrogen Diffusion Flames" AIAA Paper 91-1780, Honolulu, Hawaii,
June, 1991.
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TI irbulence Modeling

Tsan-Hsing Shili

1. Motivation and Objectives

(1) Examine the performance of existing two-equation eddy viscosity mod-
els and develop better models for the near-wall turbulence using direct
numerical simulations of plane channel and boundary layer flours.

(2) Use the asymptotic near-wall behavior of turbulence to examine the
problems of current second-order closure models and develop new models
with the correct near-wall behavior.

(3) Use Rapid Distortion Theory to analytically study the effects of mean
deformation (especially due to pure rotation) on turbulence, obtain
analytical solutions for the spectrum tensor, Reynolds stress tensor,
anisotropy tensor and its invariants, which can be used in the turbu-
lence model development.

(4) Explore the potential of the renormalization group (RNG) theory in
turbulence modeling.

(5) Modeling of compressible turbulent flows.
(6) Modeling of bypass transition.

2. Work Accomplished and Ongoing Work

2.1 k-e model

The k-e model is still the most widely used model for computing engi-
neering flows. We have examined the near-wall behavior of various eddy
viscosity models proposed by different researchers, and have studied the
near-wall behavior of the terms in the k-equation budget. We found that
the modeled eddy viscosity in many existing k-e models does not possess
correct near-wall behavior and the pressure transport term in the k-equation
is not modeled appropriately. Based on the near-wall asymptotic behavior of
the eddy viscosity and the pressure transport term in the k-equation, a new
set of improved closure models has been obtained. In addition, a modeled
equation for the dissipation rate is derived more rationally. This work is
reported in NASA TM 103221 ICOMP-90-16111.

In addition, all the existing two-equation models (except Jones & Laun-
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der model, which unfortunately does not work well even for some simple
flows) have an "unacceptable" wall distance parameter (y+ ) in their eddy
viscosity damping function fµ (y + ). This will result in an unphysical zero
eddy viscosity near the separation region. In addition, y + can not be well
defined in many flows with complex geometry. To remove this deficiency,
Dr. V. Michelassi, Dr. A. Hsu and I proposed two new eddy viscosity damp-
ing functions, and both of them are independent of the wall distance. The
new models have been satisfactorily tested in channel and boundary layer
flows. This work is reported in two papers: AIAA-91-0611 121 and NASA
TM/ICOMP/CMOTT[sl

2.2 Second order modeling of near-wall turbulence

The main emphasis is on developing a near-wall turbulence model for
the velocity pressure gradient correlation and the dissipation tensor in the
Reynolds-stress equation. A modeled dissipation rate equation is also derived
more rationally. Near a wall, a reduction in velocity fluctuations normal to
the wall becomes significant. Because of this wall effect, the viscous diffusion
term in the Reynolds-stress equations becomes the leading term and it must
be properly balanced by the other terms. We have used this as a model
constraint for developing a model for the pressure and dissipation terms. To
test the models, a fully developed channel flow and boundary layer flows
are chosen as the test flows, for which direct numerical simulations and ex-
perimental data are available for comparison. The modeled Reynolds stress
equations for the channel flow are steady one-dimensional, and for bound-
ary layer flows are steady two-dimensional. Therefore model testing will be
very accurate. This part of work ['] is reported in the paper: Proceedings
of the International Symposium on Engineering Turbulence Modeling and
Measurements and NASA TM 103222 ICOMP-90-0017.

2.3 Second order modeling of a three - dimensional boundary layer

A study of three-dimensional effects on turbulent boundary layer was
achieved by the direct numerical simulation of a fully developed turbulent
channel flow subjected to transverse pressure gradient (see Physics of Flu-
ids, Vol.2 N0.10, 1990, pp. 1846-1853). The time evolution of the flow was
studied. The results show that, in agreement with experimental data, the
Reynolds stresses are reduced with increasing three-dimensionality and that,
near the wall, a lag develops between the stress and the strain rate. In ad-
dition, we found that the turbulent kinetic energy also decreased. To model
these three-dimensional effects on the turbulence, we have tried different
two-equation models and second order closure models. None of the current
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closure models can predict the reductions in the shear stress and turbulent
kinetic energy observed in direct numerical simulations. Detailed studies
of the Reynolds-stresses budgets were carried out. One of the preliminary
conclusions from these budget studies is that the velocity pressure-gradient
term in the normal stress equation W) plays a dominant role in the re-
duction of shear stress and kinetic energy. These budgets have been used
to guide the development of better models for three dimensional turbulent
boundary layer flows. This work N was presented in the American Physical
Society Forty-Third Annual Meeting, November, 1990.

2.4 The effect of rotation on turbulence

In addition to the above studies of second order closure models, we have
carried out some RDT analysis on simple homogeneous turbulent flows. An
order of magnitude analysis shoes that under the condition of S(q 2 )1E »

Rt , the equations for turbulent velocity fluctuations can be approximated
by a linear set of equations, and if S(q 2 )/E » R3/4 , then the turbulent ve-
locity equations can be further approximated by an inviscid linear equation.
Therefore, RDT can be used to analytically study some very basic turbulent
flows, such as, homogeneous shear flows, irrotational strain flows and pure ro-
tational flows. This work focuses on the effect of rapid rotation on turbulence
using RDT. We have obtained analytical expressions for velocity, the spec-
trum tensor, Reynolds-stress, the anisotropy tensor and its invariants. The
solutions show that the turbulence is strongly affected by the rapid rotation.
Using RDT, we can calculate the rapid pressure-stain term exactly and we
can obtain very useful information for developing corresponding turbulence
models. See the report [ ' ] for this work.

2.5 Renormalization Group Theory (RNG) in turbulence modeling

RNG method has been introduced to the turbulence modeling mainly in
the Large Eddy Simulation (LES) of turbulence with a subgrid scale model.
One also attempted to use it to develop Reynolds-averaged turbulence model
equations, for example, k -E model equations. However, we found that there
are a few fundamental concepts and important procedures used in the deriva-
tion of those model equations which are not clear and well justified. Dr. Z.
Yang and I are working on this subject and try to explore the potential of
RNG in the turbulence modeling.

2.6 Modeling of compressible turbulent flows

The turbulence models for compressible flows are of great interest in hy-
personic flows and turbulent combustion. The modeling scheme greatly de-
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pends on the averaging schemes (i.e., conventional average, density weighted
average and mixed average) used in the turbulence equations. We start with
the analysis of the turbulent equations derived from the different averaging
schemes to see what kind of averaging scheme is most convenient for both
turbulent modeling and applications in CFD. We concentrate on the second
order closure model (i.e. Reynolds stress model) and two-equation model.
Dr. W. Liou and I are working on this subject. See Reference N for the first
report on averaging schemes for compressible flows.

2.7 Modeling of bypass transition

Most common transition phenomena occurred in engineering flows are
bypass transition. A few papers on modeling of transition with turbulence
models show that the bypass transition can possibly be modeled with the
modified turbulence models developed solely for turbulent flows. However,
most of the work in this direction was based on the parabolic two-equation
models. We expect that the bypass transition phenomena will be more ap-
propriately described by the elliptical equations. Then, the prediction of
normal stresses becomes important. Because of the inability of modeling
normal stresses with the two-equation models, we are pursuing the ellipti-
cal Reynolds stress model equations for the bypass transition studies. Dr.
Z. Yang and I are working on the improvement of our previous near-wall
Reynolds stress model for the purpose of modeling bypass transition.

2.8 Modeling of scalar turbulence:

Modeling of scalar turbulence is of great importance in turbulent heat
transfer. Eddy viscosity models often fail in the prediction of heat trans-
fer in many shear flows. We have developed a set of second order closure
models based on the joint realizability (between velocity and scalar) and the
experiments. Dr. A. Shabbir and I are working on this subject. A paperN
was presented in the Lumley Symposium: Recent developments in turbulence,
November, 1990.

3. Publications:

1. Shill, T.-H., 1990, "An Improved k-e Model for Near-Wall Turbulence
and Comparison with Direct Numerical Simulation," NASA TM 103221
ICOMP-90-16.

2. Shih, T.-H. and Hsu, A.T., 1991, "An Improved k-e Model for Near-Wall
Turbulence," AIAA-91-0611.
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3. Michelassi, V. and Shih, T.-H., 1991, "Low Reynolds Number Two-
Equation Modeling of 'Eirbulent Flows," NASA TM 104368, ICOMP-
91-06, CMOTT-91-01.

4. Shih, T.-H. and Mansour, N.N., 1990, "Modeling of Near-Wall Turbu-
lence," Proceeding of the International Symposium on Engineering Tur-
bulence Modeling and Measurements, September, 1990, Dubrovnic, Yu-
goslavia, Editors: W. Rodi, E.N. Gami c. or, NASA TM 103222 ICOMP-
90-0017.

5. Shih, T.-H., 1990, "Modeling of 3D Turbulent Boundary Layer Flows,"
American Physical Society Forty-Third Annual Meeting, 1990, Cornell,
U. Ithaca, New York.

6. Shih, T.-H., 1991, "Rapid Distortion Theory on Homogenous Turbu-
lence with Rapid Rotation," CMOTT Report.

7. Liou, W.W. and Shih, T.-H., 1991, "On the Basic Equations for the
Second-order Modeling of Compressible Turbulence," CMOTT-91-06.

8. Shih, T.-H. and Shabbir, A., 1990, "Advances in Modeling the Pressure
Correlation Terms in the Second Order Moment Equations," the Lum-
ley Symposium: Recent developments in turbulence, November, 1990,

ICASE, NASA Langley Research Center, Edited by T.B. Gatski, S.Sarkar
and C. G. Speziale

9. Shih, T.-H., 1990, "Advancements in Engineering Turbulence Model-
ing," 9th NASP Technology Symposium, Paper-105, November, 1990,
Orlando FL.

10. Shih, T.-H., Chen, J.-Y. and Lumley, J.L., 1991, "Second Order Mod-
eling of Boundary Free Turbulent Shear Flows," AIAA 91-1779.
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Experiments and Modeling

Aamir Shabbir

1. Motivation and Objectives

The usual approach in establishing the correctness and accuracy of tur-
bulence models is to numerically solve the modeled differential equations
and then compare the results with the experiment. However, in the case
of a discrepancy, this procedure does not pinpoint where in the model the
drawback lies. It is also possible that the model overcompensates one phys-
ical phenomenon and undercompensates the other so that the net result is
a good agreement between the two. Therefore a more desirable approach is
to directly compare the individual terms in the equations with their mod-
els. To achieve this objective primarily physical experiments have been used
to carry out the second moment budgets. These can then be used to ana-
lyze and assess various models and closure assumptions and seek improve-
ments/modifications where models prove deficient.

2. Work Accomplished

2.1 Evaluation and Development of Turbulence Models for Pres-
sure Correlations.

A direct comparison between the pressure strain and pressure temperature-
gradient correlations and their closure models is carried out. The flows used
include both physical and numerical experiments on homogeneous shear flows
and physical experiments on buoyant plumes. Models considered include
both the linear and the more elaborate non-linear ones. It is found that
the non-linear models provide a much better agreement with these experi-
ments than the linear ones. A new model for the slow part of the pressure
temperature-gradient correlation is also derived using joint realizability con-
cept.

2.2 On the Ratio of Mechanical to Thermal Time Scales in Tur-
bulent Flows.

The ratio of these time scales is very often employed in the two equation
turbulence models. The study of Beguier et al (1978) recommended this
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ratio to be around 2.0. The current analysis using the buoyant plume and
homogeneous shear flow experiments shows that this value is about 3.0. It
is shown that this departure from the commonly used value is a consequence
of the local equilibrium assumption being not satisfied by these experiments.

2.3 Turbulent Buoyant Transport - A Comparative Study between
Models and Experiments.

The more popular gradient diffusion type models for the turbulent trans-
port (third moments) were found to underestimate the experiment by an
order of magnitude. More complex models (Andre et al 1976, Lumley et
al 1978), based on the simplification of exact transport equations of third
moments, do a much better job in reproducing the third moments although
the results are still less than satisfactory.

2.4 Experimental Balances of Second Moment Equations for a
Buoyant Plume.

Despite large volume of work on second moment closure, there is very
little experimental information available about the budgets of the second
moments. Part of this reason stems from our inability, at present, to mea-
sure the pressure correlations. Experimental budgets for Reynolds stresses
and heat fluxes have been carried out for a boundary free shear flow (round
plume) and the pressure correlations are obtained as the closing terms in
these budgets. These budgets show how different terms in the equations are
distributed across the flow and can be used to analyze some of the modeling
assumptions. For example they show that the assumption of local equilib-
rium is not justified for bulk of the flow field - an idea fundamental to the
algebraic stress models.

2.5 X-wire Response in Turbulent Flows of High Intensity Turbu-
lence and Low Mean Velocities.

This work is based on an experimental study, which was carried out at
SUNY/Buffalo, of angular response of an x-wire, at low velocities (0.25m/s
to lm/s). It is found that the k-factor in the modified Cosine Law is strongly
velocity dependent. The implications of this on multi component turbulence
measurements are explored. Expressions are also derived for evaluating when
the cross-flow errors begin to affect x-wire measurements.

10



2.6 Modeling of Turbomachinery Flows using the Average Passage
Approach.

Turbomachineray flows are turbulent and unsteady and numerical calcu-
lation of a flow in a multistage machine, at present, is not possible. However,
the effects of periodic unsteadiness can be accounted through the models for
deterministic stresses which arise in the average passage equation set (Adam-
czyk 1985). Exact equations governing the transport of these stresses have
been derived and a two equation model is being developed and tested at
present. The model uses ideas from turbulence modeling such as the gradi-
ent diffusion type hypotheses. This work is being performed in collaboration
with J. Adamczyk of the Lewis Research Academy, at the NASA Lewis Re-
search center.

3. Future Plans

3.1 Study the effect of buoyancy on turbulence by computating flows using
turbulence models. In addition to environmental flows, such a work also
has industrial applications e.g. cooling of nuclear reactors and electronic
components, and "geyser" formation in fuel tanks in microgravity.

3.2 Seek improvements in the models for turbulent transport. In general
the transport is not too important in most of the turbulent flows but in
some applications, e.g. geophysical flows, the modeling of the transport
could be critical in the success of a computation.

3.3 Seek improvements in the existing two equation models by incorporating
newer models for pressure correlations etc.

3.4 Assess the models for deterministic stresses in a multistage turboma-
chinery environment.

4. Publications

1. Pressure Correlations in the Reynolds Stress and Heat Flux Equations
- A Comparison between Experiment and Models. A. Shabbir. APS
Bulletin, Vol. 35, No. 10, Nov. 90, Abstract KC4.

2. Evaluation of Turbulence Models for Predicting Buoyant Flows. A.
Shabbir and D.B. Taulbee. J. Heat Transfer, 1990, Vol 112, No 4, pp
945-951.

3. Experiments on Round Turbulent Buoyant Plumes. A. Shabbir and



W.K. George. Under review for publication in J. Fluid Mechanics.

4. Advances in Modeling Pressure Correlation Terms in the Second Mo-
ment Equations. T.-H. Shih and A. Shabbir. Presented at the Sympo-
sium honoring J. Lumley's 60th birthday, November 90, NASA Langley
Research Center.

5. X-wire Response in Turbulent Flows of High Intensity Turbulence and
Low Mean Velocities. A. Shabbir, P.D. Beuther, and W.K. George.
Submitted to Experimental Thermal and Fluid Science.

5. References
Ada-Tnczyk, J. J. "Model Equation for Simulating Flows in Multistage
Turbomachinery", ASME Paper No. 85-GT-226. (1985)

Andre J.C., G. De Moor, P. Lacarrere and R. du Vachat "Turbulence
Approximation for Inhomogeneous Flows: Part I. The Clipping Approx-
imation", J. Atmos. Sci., Vol. 33, pp. 476-481, (1976)

Beguier, C., 1. Dekeyser and B. E. Launder "Ratio of Scalar and Velocity
Dissipation Time Scales in Shear Flow Turbulence" ," Phys. Fluids, Vol.
21, pp. 307-310 (1978).

Lumley, J. L., 0. Zeman and J. Siess "The influence of Buoyancy on
Turbulent Transport", J. Fluid Mech., Vol. 84, pp. 581-597 (1978).
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Modeling of Compressible Turbulent Shear Flows

William W. Lion

1. Motivation and Objectives

Despite all the recent development in computer technologies and numer-
ical algorithms, full numerical simulations of turbulent flows are feasible only
at moderate Reynolds numbers and for flows with relative simple geometries.
Turbulence models provide alternatives in the pressing need for the prediction
of turbulent flows and,in fact, have become an important pacing factor for
the successful development of computational fluid dynamics (CFD). With
the advent of supercomputers, however, it has become more affordable to
apply second order closure models in the prediction of flows with complex
effects; such as strong curvature, three-dimensionality and compressibility.
The main goal of this research is to develop new second order moment clo-
sures for compressible turbulence. It has been shown that the models based
on the extension of those developed originally for incompressible flows fail
to predict adequately turbulent flows at high Mach numbers. In this at-
tempt, the compressibility effects will be explicitly considered. A successful
development of these models that take into account directly the compress-
ibility effects may have a range of technological implications in the design of
supersonic and hypersonic vehicles.

2. Work Accomplished

During this early stage of the task, the goal is to obtain an objective yet
comprehensive understanding of the development and the current status of
compressible turbulence modeling. Due to the variable density effects in com-
pressible flows, density correlation terms appear in the governing equations
for the mean flow, if the conventional ensemble averaging technique is ap-
plied. These terms do not exist in incompressible flows and need to be mod-
eled. On the other hand, the mass-weighted-averaging or Favre procedure
generates a set of mean equations that have the similar forms as they are for
incompressible flows. One may then incline to use the incompressible analog
in compressible flow calculations. A simple test, however, should show that a
direct application of the exact incompressible models fails. One of the main
effects that is excluded in incompressible models is the finite propagation
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speed of disturbances. In compressible flows, modulation of flow properties
occurs only within Mach cones of influence, with acoustic time delay. This
introduces additional scales for the transport properties. Caution also needs
to be exercised in comparing Favre-averaged calculations with experiments,
since the differences between Favre-averaged and measured quantities may
not be negligible at high Mach numbers.

Compressible turbulence modeling is still in its infancy. This appears
to be true both theoretically and computationally. Recently, a new concept
called dilatation dissipation was proposed. Dilatation dissipation, as op-
posed to the solenoidal dissipation in incompressible flows, accounts for the
viscous dissipation of turbulent kinetic energy due to volume fluctuations.
Models accommodating this effect show the importance of this additional
drain of turbulent kinet-ic energy in order to obtain adequate model predic-
tions. Dilatation dissipation appears to be among the direct consequencies
of compressibility effects.

Another school of thought on compressibility effects focuses on the
changes of turbulence structures at high Mach numbers. Note that these
structures are identified by using conditional sampling techniques in exper-
iments. Due to the communicability problem between interacting elements,
structures that are highly efficient in extracting energy from the mean flow at
low Mach numbers no longer prevail as the Mach number increases. They are
replaced by structures that are less sensitive to the Mach number. This se-
lective amplifying behavior is describable by quasi-linear theory, which view
the turbulence energetics as physical manifestations of ongoing nonlinear
instability in turbulent shear flows.

The above mentioned matters are described in detail in an ICOMP/
CMOTT report [1] that is in preparation. Equations for the second order
moments and the mean flotiv as a result of the application of different averages
will also be given. Modeling methodologies used in compressible flow calcula-
tions will be reviewed. The evaluation process performed during the present
stage of the research has identified avenues that will be pursued during the
next period of this task.

3. ]Future Plans

(1) Develop second order models for compressible turbulence based on en-
semble averages. This may be assisted by first developing k — E types of
models to identify important mechanisms.

(2) Develop unconventional models that incorporate explicitly the charac-
teristics of the structures of compressible turbulence.
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The developed models will be applied to certain benchmark flows with and/or
without chemical reactions.

4. Publications

1. Liou, W. W. and Shih, T.-H., "On the Basic Equations for the Second-
order Modeling of Compressible Turbulence," CMOTT-91-06, 1991.

2. Liou, W. W. and Morris, P. J., "An Comparison of Numerical Methods
for the Rayleigh Equation in Unbounded Domains," CMOTT-91-05,
1991.
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RNG in Turbulence and Modeling of Bypass 'Transition

Z higang Yang

1. Motivation and Objectives

Since I joined CMOTT on July 1990, I have been working on two
research projects. The first project concerns the Renormalization Group
(RNG) analysis of turbulence and the second project is on the calculation of
bypass transition through turbulence modeling. In addition, the preparation
of two papers on work performed at was completed.

Application of RNG in turbulence was proposed by Yakhot and Orszag
in 1986. RNG is a process which eliminates systematically the small scales,
and represents the effect of those eliminated small scales on the uneliminated
large scales as the changes in the transport properties. It is because of this
property of RNG that Yakhot and Orszag suggested that RNG could be
used as a model builder in turbulence modeling. They also presented a
k — c model in their 1986 paper. However, this paper is lengthy, with many
unstated assumptions. Our aim is first to understand, and to validate the
RNG approach in turbulence through an independent study. We will then
study the possibility of constructing RNG based turbulence models, and try
to proceed to do the turbulence modeling through RNG in parallel with the
classical approach. We will also compare the numerical predictions made by
RNG models and by classical models against data from Direct Numerical
Simulation and against experimental data from different benchmark cases.

In a quiescent environment, the transition is initiated by the instability
of the laminar boundary layer to Tollmien-Schlichting waves. These waves
are amplified with streamwise distance and eventually breakdown into tur-
bulent spots, which are precursors of turbulent boundary layer. While in an
environment with high freestream turbulence, the transition is found to be a
bypass one in which turbulent spots are formed without Tollmien-Schlichting
wave amplification. The formation of turbulent spot is a random process,
and flow within a turbulent spot is almost fully turbulent. This suggests the
possibility of using turbulence modeling to describe and predict the bypass
transition. There have been some works in this direction, primarily using
different versions of two equation models. Bypass transition is predicted, as
the level of the freestream turbulence is increased. However, it is found that
the predicted transition is much sharper than that observed in the experi-
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ment. In addition, the predicted transition depends on the description of the
initial profiles to an certain extent. The works we propose to do are twofold.
1) We will be using a low Reynolds number version of Reynolds stress model
rather than the two equation model. This would bring in more physics, and
hopefully would fit better the complicated flows such as bypass transition.
2) We will be using an elliptic solver rather than a parabolic solver for this
boundary layer transition. This way, we will be able to include the effect of
the leading edge. The testing case will be flow passing a flat plate. Both the
zero pressure gradient case and the non-zero pressure gradient case will be
tested.

2. Work Accomplished

1. Nonlinear dynamics near the stability margin in rotating pipe flow.
The nonlinear evolution of inarginally unstable wave packets are studied

in rotating pipe flow. These flows depend on two control parameters, which
may be taken to be the axial Reynolds number Re and the rotation rate q.

Marginal stability is realized on a curve in the (Re, q) plane, and we explore
the entire marginal stability boundary. As the floe- passes through any point
on the marginal stability curve, it undergoes a supercritical Hopf bifurcation
and the steady base flow is replaced by a traveling wave. The envelope of
the wave system is governed by a complex Ginzburg-Landau equation. The
Ginzburg-Landau equation admits Stokes waves, which correspond to stand-
ing modulations of the linear traveling wavetrain, as well as traveling wave
modulations of the linear wavetrain. Bands of wavenumbers are identified in
which the nonlinear modulated waves are subject to a side-band instability.

This work[1] was reported in APS/DFD meeting in November 1990. A
paper for this work has been submitted to JFM for consideration of publica-
tion. The paper is co-authored with S. Leibovich of Cornell University. This
work was supported by AFOSR-89-0346.

2. Unstable viscous wall modes in rotating pipe flow. (AIAA Paper No.
91-1801)

Linear stability of flow in rotating pipe is studied. These flows depends
on two parameters, which can be taken as the axial Reynolds number Re and
the rotating rate q. In the region of Re » 1 and q = 0(1), the most unstable
modes are wall modes. The wall modes are found to satisfy a simpler set of
equations containing two parameters rather than four parameters as in the
full linear stability problem. The set of equations is solved numerically and
asymptotically over a wide range of the parameters. In the limit of Re —> oc,
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the eigenvalue reaches the inviscid limit and the eigenfunction shows a two
layer structure. The eigenfunction reaches the inviscid limit over the main
part of the domain, while near the wall of the pipe, the eigenfunction is
represented by a viscous solution of the boundary layer type.

This work[2] is to be presented at the AiAA 22nd Fluid Dynamics,
Plasma Physics and Lasers Conferences, June 24-26, 1991. The paper is co-
authored with S. Leibovich of Cornell University. This work was supported
by AFOSR-89-0346.

3. RNG in turbulence modeling.
This work is done in collaboration with Dr. T.H. Shih of CMOTT. In

this work, we carry out an independent study of the work done in the paper
by Yakhot and Orszag up to their derivation of k — E equation. Many of their
results are repeated. However, we also found some discrepances, and some
unclaimed assumptions in their derivations.

3. Future Plans

1. Currently, we are testing and improving the low Reynolds number
version of Reynolds stress model proposed by Shih and Mansour (1990) in
the simple shear flows, such as channel flow and boundary layer flow. This
model is going to be used in the calculation of bypass transition.

2. We will carry an independent derivation of k — E equation using RNG,
and compare it with the one presented by Yakhot and Orszag. We will also
compare the prediction of RNG k — E model with the other k — E models, in
both the high Reynolds number case and the low Reynolds number case.

4. Publications

[1] Yang, Z. and Lelbovich, S. 1990 "Nonlinear dynamics near the stability
margin in rotating pipe flow", Submitted to J. Fluid Meth.

[2] Yang, Z. and Leibovich, S. 1990 "Unstable viscous wall modes in rotating
pipe flow", AIAA Paper 91-1801.

5. References

Yakhot, V. and Orszag, S.A. 1986 Renormalization group analysis of
turbulence. J. Sci. Comput. Vol. 1, No. 1, 3-51.

Shih, T.H. and Mansour, N.N. 1990 Modeling of near wall turbulence.
NASA TM-103222, ICOMP-90-0017.
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Turbulence Modeling in Supersonic Combusting Flows

Tawit Chitsomboon

1. Motivation and Objectives

To support the National Aerospace Plane project, the RPLUS3D CFD
code has been developed at the NASA Lewis Research Center. The code
has the capability to solve three dimensional flowfields with finite rate com-
bustion of hydrogen and air. The combustion processes of the hydrogen-
air system are simulated by an 18-reaction path, 8-species chemical kinetic
mechanism. The code uses a Lower-Upper (LU) decomposition numerical
algorithm as its basis, making it a very efficient and robust code. Except
for the Jacobia.n matrix for the implicit chemistry source terms, there is no
inversion of a matrix even though it uses a fully implicit numerical algorithm.

The main purpose of this work is to incorporate a k -E (two equation)
turbulence model into the RPLUS31) code.

2. Work Accomplished

Since February 1990, when this work was started, some of the more
important accomplishments are categorized as follows:

1) Add a k-e turbulence model: The model selected is in a high Reynolds
number form. The low Reynolds number form could not be used economi-
cally in the case of a three dimensional flow with chemical reaction since it
demands too much in computer resources. The addition was designed to be
as modular as possible but some interactions with the main code are needed
in order to be more efficient. The first test case tried was a Mach 0.5 floe-
over a flat plate. The velocity profile compare very well with the log-law.
profile. The friction coefficient also compares well with the Van Driest corre-
lation. More validations will be performed for other flows such as free shear
layer and jet flows.

2) Improved accuracy and convergence rate: According to a stability
analysis of a model equation, it is shown that the RPLUS3D code exces-
sively added artificial damping to the right hand side of the algorithm while
at the same time it overestimated the spectral radii on the left hand side.
These excessive additions would not give an optimum convergent rate. Mod-
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ifications were made such that true directional spectral radii were added to
the left hand side and the artificial damping terms were reduced to optimum
values in accord with the stability analysis.

A test run was made of a Mach 4 flow of air over a 10 degree compression
ramp. It was found that the modified code converged to machine zero about
five times faster than the original code while at the same time it somewhat
improved the shock resolution.

3) Added consistent damping terms at block interfaces: It had been ob-
served that at the block interface of a multi-block grid, wiggles developed.
This happened because the damping terms at the interface were not consis-
tent with those at the interior points.

4) Validated RPLUS31) with laminar flows over flat plates: The test
cases run were for Mach numbers of 0.1, 0.3 and 0.5. Results of all cases
seemed to be good except for the region of high curvature of the velocity
profile near the edge of the boundary layer.

5) Add two dimensional capability to the code: It turned out that this
is not a trivial task especially for a finite volume code like RPLUS31). It is
nice that now the code can solve a 2D flow without having to carry the 3rd
direction along as a redundancy. There is, of course, no need to maintain a
separate 2D code.

6) Implemented a local time stepping capability: The original code al-
ways ran at a fixed time step of 1 second. For most flows this corresponds to
using a very large CFL number which may not be conducive to a fast con-
vergence rate. With the local time stepping, it was found that an optimum
CFL number was, in agreement with other investigators, around 5 to 7.

7) Implemented implicit boundary conditions: This addition enhanced
the convergence rate by about 30 percent at the expense of a more complex
code and an increase of about 20 percent in CPU time per iteration step.
There seems to be, then, no net advantage of the implicit boundary condition
except maybe in the area of robustness.

8) Changed input file: Instead of having to scan a whole subroutine to
set up a problem, a user now can change numbers in a small file of length
about one page. To start up a run from a previous run one now needs only to
change a parameter in this input file without having to recompile the input
subroutine as before.

9) Solved two 3D hypermixing flow fields of W.Hingst and D.Davis: This
work was performed in collaboration with Dr. A.C. Taylor of Old Dominion
University. My task was to set up the program for these particular problems
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and to generate the grid for one of the problems.

3. Future Plans
The work plan for the year 1991 consists of both basic model implemen-

tations and practical applications of the code :
• Continue to validate the baseline k-E model.
• Add compressibility effects to the base line model.
• Apply the base line model to re-solve the 3D flowfields mentioned in the

previous section.
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Development of New Flux Splitting Schemes

Meng-S. Liou and Christopher J. Steffen, Jr.

1. Motivation and Objectives

Maximizing both accuracy and efficiency has been the primary objective
in designing a numerical algorithm for computational fluid dynamics (CFD).
This is especially important for solution of complex 3D systems of Navier-
Stokes equations which often include turbulence modeling and chemistry
effects. Recently, upwind schemes have beer. well received for both their
capability of resolving discontinuities and their sound theoretical basis in
characteristic theory for hyperbolic systems. With this in mind, we present
two new flux splitting techniques for upwind differencing.

2. Work Accomplished

The first method is based upon High-Order Polynomial Expansions
(HOPE) of the mass flux vector [1]. The present splitting results in positive
and negative mass flux components that vanish at M=O. Thus the error in
the Van Leer scheme which results in the diffusion of the boundary layer is
eliminated. We also introduce several choices for splitting the pressure and
examine their effects on the solution.

The second new flux splitting is based on the Advection Upwind Split-
ting Method (AUSM for short) [2]. In Navier-Stokes calculations, the diffu-
sion error present in Van Leer's flux splitting scheme corrupts the velocity
vector near the wall. In the AUSM, a proper splitting of the advective ve-
locity component leads to an accurate resolution of the interface fluxes. The
interface velocity is defined using the Mach number polynomial expansion
in the mass flux, then the convective fluxes follow directly. Again, several
choices of pressure splitting axe possible among which a simple Mach num-
ber splitting according to characteristics appears to be the best in terms of
accuracy. The scheme has yielded results whose accuracy rivals, and in some
cases surpasses that of Roe's method, at reduced complexity and computa-
tional effort. The calculation of the hypersonic conical flow demonstrates
the accuracy of the splittings in resolving the flow in the presence of strong
gradients. The second series of tests involving the 2D inviscid flow over a
NACA 0012 airfoil demonstrate the ability of the AUSM to resolve the shock
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discontinuity at transonic speed and the level of entropy generation at the
stagnation point.

In the third case we calculate a series of supersonic flows over a cir-
cular cylinder. The Roe splitting in all conditions and grids tested yielded
anomalous solutions (sometimes referred to as the carbuncle phenomenon),
which could appear as non-symmetric, protuberant, or indented contours.
The AUSM gave expected solutions in all calculations.

The fourth test deals with a 2D shock wave/boundary layer interaction.
This provides an opportunity to accurately resolve a laminar separation re-
gion and to compare the ability to resolve a non grid-aligned shock with
other methods.

3. Future Plans
Future plans are primarily concerned with the AUSM. A detailed sta-

bility analysis for this new technique will be useful. The idea of splitting the
ddvective velocity opens up a whole family of potential schemes. Therefore, a
comprehensive study of the interaction between various pressure and advec-
tion velocity splitting methods is necessary to optimize both accuracy and
efficiency. Additionally, a 2D turbulent calculation would be a good test of
the scheme's ability to solve a coupled system of K — e equations.

4. Publications
1. Liou, M.-S. and Steffen, C.J.Jr., "High-Order Polynomial Expansions

(HOPE) for Flux-Vector Splitting," (to be presented at the ICES191
Conference, August 11-16, 1991)

2. Liou, M.-S. and Steffen, C.J.Jr., "Development of a New Flux Splitting
Scheme," (to be presented at the AIAA Tenth CFD Conference, June
24-26,1991)
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Progress of Simulations for Reacting Shear Layers

Sheng-Tao Yu

1. Motivation and Objectives

In the past six months, the effort was devoted to the development of
a high speed, chemically reactive shear layer test rig. The purpose of the
experiment is to study the mixing of oxidizer and fuel streams in reacting
shear layers for various density, velocity, and Mach number. The primary
goal is to understand the effects of the compressibility upon mixing and
combustion in a fundamental way. Therefore, a two-dimensional shear layer
is highly desirable for its simplicity to quantify the compressibility effects.

The facility consists of a two-stream wind tunnel with two indepen-
dent gas supplies. After passing through flow-management devices located
upstream, each gas stream expands to its predetermined Mach number by
means of a contoured center body and tunnel walls. Various combinations
of flow conditions of high-speed stream and low-speed stream allows for the
systematic study of mixing and reactions of compressible shear layers.

2. Work Accomplished

The RPLUS 2D code is used to calculate the flow fields of different
sections of the test rig. The emphasis was on the supersonic nozzle design,
the vitiation process for the hot air stream and the overall thermodynamic
conditions of the test matrix.

The k — e turbulence model with wall function has been successfully
implemented in the RPLUS code. The k and e equations are solved simulta-
neously and the the LU scheme is used to make it compatible with the flow
solver. The coupling between the flow solver and the k — E solver depends
on the turbulence viscosity only, and the k — e solver is separated from the
flow solver to reduce the complexity. The newly developed code has been
used for the compressible shear layer calculations. Many cases of the com-
pressible free shear layer with various convective Mach numbers and density
ratios have been simulated using the compressible k — e solver. The results
are summarized in two technical papers.' , ' Currently, the k — E solver is a
standard feature in the RPLUS 2D code and the code has been distributed
to the industry and universities through NASP group. Locally, Duncan and
Tsai are using the k — e solver for their research work.
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3. Future Plans
Physical phenomena of the reactive free shear layer can not be ade-

quately described by the k — E model coupled with the Reynolds averaged
flow equations. The properties of the vortical flows which dominate the
whole flow field of free shear layers can only be illustrated by time marching
numerical method with accurate spatial resolution. Traditionally, the spec-
trum methods were used for this kind of applications. However, very limited
success has been reported for compressible flows using spectrum methods.
On the other hand, recent development show promising results using high
order central differencing and Essentially Non-Oscillatory (ENO) schemes.
One developed by Lele of Stanford university using high order compact dif-
ferencing is especially interesting. Future work includes Direct Numerical
Simulation (DNS) of Navier Stokes equations for the chemically reactive
flow and application to free shear layers.

In additional to the above mentioned work, I will serve as a consultant
for the k — E solver in the RPLUS code.

4. Publications
1. S. T. Yu, J. S. Shuen, and Y-L P. Tsai, "Three Dimensional Calculations

of Supersonic Combustion Using a LU Scheme," to appear in the J. of
Comput. Phys.

2. S.T. Yu, C.L. Chang, and C.L. Merkle, "Solar Rocket Plume/Mirror
Interactions, " submitted to the J. of Spacecraft and Rockets.

3. S.T. Yu, B.J. McBride, K.C. Hsieh, and J.S. Shuen, "Hypersonic Flows
Simulations with Equilibrium or Finite Rate Chemistry," submitted to
Computers & Fluids for publication

4. S.T. Yu, "A Convenient Way to Convert 2D CFD Codes to Axisym-
metric Ones," submitted to J. of Propulsion and Power as a technical
note.

5. S.T. Yu, C.D. Chang, and C.J. Marek, "Modern CFD applications for
the Design of a Reacting Shear Layer Facility," presented at the AIAA
Science Meeting, 1991.

6. S.T. Yu, C.D. Chang, and C.J. Marek, "Simulation of Free Shear Layers
Using a Compressible k -E Model," accepted for presentation at the AIAA
Propulsion Conference, 1991.
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Appendix B

Seminars and Technical Meetings

B.1 CMOTT Seminar Seminars

The purpose of these seminars is to exchange ideas and opinions about
the latest developments and current state of turbulence and transition re-
search. The speakers are invited from within and outside of the NASA
LeRC, including foreign speakers. This seminar series complements the in-
formal CMOTT technical group meetings.

The abstracts of the seminars are given below.
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Measurements in a Circular Jet of Helium into
Quiescent Air*

by

John L Lumley
Cornell University

Monday, June 4, 1990
9:00-10:30 a.m.

ERB Building 5, Room 119

The ability to model an inert flow with density fluctuations allows one to model a

diffusion flame with fast chemistry, and gives insight into one aspect of the

dynamics of compressible flows. With this in view, these measurements were

made to calibrate a second order model for such flows. Measurements using

shuttle-mounted hotwire and Way-Libby probes are described. For comparison,

a jet of air into air was also measured. Moments up to fourth order were

computed. The data are used to evaluate various modeling assumptions.

Attempts are made to explain the greater spreading rate of the helium jet.

*From the Ph.D. thesis of N. R. Panchapakesan

Contact: Charles Feller, PABX 3-6681

30



	

ICOMP ^	 CENTER FOR MODELING OF

	

\fs..m =^-^ ,^^	 TURBULENCE AND TRANSITION

CMOTT SEMINAR SERIES

ENGINEERING TURBULENCE MODELING
Present and Future?

Tsan-Hsing Shih
Center for Modeling of Turbulence and Transition

Wednesday, July 11, 1990
3.00-4:00 PM

ERB Building 5, Room 119

A summary of the present position of eddy-viscosity models (e.g.
k — E) and second-order closure models (Reynolds stress models
is presented. Typical examples (comparisons between model predic-
tions and experiments) show their abilities as well as their limitations.

Development of more advanced and complex schemes is discussed.
The inclusion of such models into a CFD commercial code is feasible,
but need intensive work - a cooperative effort!

Contact: T.-H. Shih, PABX 3-6680
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FUNDAMENTAL IN-HOUSE EXPERIMENTS
TO SUPPORT THE LEWIS TURBULENCE

MODELING PROGRAM
Edward J. Rice

Inlet, Duct and Nozzle Flow Physics Branch

Wednesday, July 25, 1990
3.00 PM

Building 5, Room 119

The fundamental experiments conducted by members of the Inlet, Duct and Nozzle
Flow Physics Branch of IFMD have been primarily for support of the shear flow control
effort within the Division. Although this support effort is expected to continue, some work
could be diverted (and in time expanded) to support the Turbulence Modeling Program
currently underway within ICOMP. This new emphasis can be accomplished through an
interactive effort between the Numerical Analysts and the Experimentalists. The current
and planned experiments will be summarized in this talk and include: unsteady flow around
airfoils (stationary and oscillating), 2D rapid diffusers (backward facing ramp), aspirated
backward facing step, circular and rectangular jets (subsonic and supersonic), dual stream
supersonic shear layer (annular geometry), and boundary layer transition. A swirl generator
within the plenum of the CW-17, ERB rig allows the addition of swirling flow to any of
the jet or shear layer experiments. The available and planned experimental instrumentation
include: single, X-wire and three-wire hot wire anemometry, single and two element corona
probe, multiple microphone and pressure transducer channels, Schlieren and laser-sheet flow
visualization, and conventional and fiber-optic two-component LDA systems. The new 16
channel anemometry system allows simultaneous measurement with 8 X-wires. Some sample
data will be presented to illustrate the current capability.

This is intended to be a group discussion type of workshop. The presentation will take
30 minutes and will be followed by 30 minutes of discussion between the numerical and
experimental participants. The presentation will be general in nature intended mainly to
acquaint the numerical analyst with the experimental capability which can support the
numerical program through a cooperative effort.

For additional information contact: T.-H. Shih, PABX 3-6680
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CFD-RELATED RESEARCH AT THE
UNIVERSITY OF BRUSSEL

AND TURBULENCE RESEARCH ACTIVITIES IN
EUROPE

Prof. Charles Hirsch
Vrije Universiteit Brussel

Wednesday, July 25, 1990
1.00-2.00 PM

Building 5, Room 119

For additional information contact: L. Povinelli, PABX 3-5818
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CHAOTIC WANDERINGS THROUGH A LAND
OF TURBULENCE MODELS

Russ Claus

Aerothermochemistry Branch

Wednesday, August S, 1990
3.00 PM

Building 5, Room 119

A turbulence model user details his pursuit of the mythological "correct
answer". The talk opens with some failed attempts to calculate seperated
flows using a two equation turbulence model. Following this, additional
attempts to achieve the "correct answer" through a series of Direct Nu-
merical Simulations and Large Eddy Simulations will be described and the
limitations of these approaches are highlighted. Finally, a re-examination
of two-equation and a second order closure calculations of a jet in crossflow
will be discussed.

A brief discussion of some turbulence modeling efforts being supported
under the NASA SBIR program will also be described. This includes RNG
modeling with Orszag and Yakhot, and PDF modeling for compressible
flows with Kollman and Farshchi.

For additional information contact: T.-H. Shih, PABX 3-6680
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A COMPARATIVE ANALYSIS OF TWO
EQUATION TURBULENCE MODELS

Nancy Lang

CFD Branch

Wednesday, August 22, 1990
3.00 PIN1

Building 5, Room 119

Several two equation models have been proposed and tested against
benchmark flows by various researchers. For each study, different numerical
methods or codes were used to obtain the results which were an improve-
ment or success over some other model. However, these comparisons may
be overshadowed by the different numerical schemes used to obtain the re-
sults. With this in mind, several existing two equation turbulence models,
including k-c and k-T models, are implemented into a common flow solver
code for near wall turbulent flows. Calculations are carried out for low
Reynolds number, two dimensional, fully developed channel and boundary
laver flows. The accuracy of the different models is established by com-
paring the turbulent kinetic energy, mean velocity, and shear stress profiles
with the direct numerical simulations and experimental data.

For additional information contact: T.-H. Sbih, PABX 3-6650
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ON LENGTH SCALE EQUATIONS IN
TWO-EQUATION TURBULENCE MODELS

Micha Wolfshtein
Faculty of Aerospace Engineering

Technion, Israel Institute of Technology
Haifa, Israel.

Wednesday, August 29, 1990
3.00 PM

Building 5, Room 119

Two-equation turbulence models show a great survivability between the very successful
mixing length models and the Reynolds stress models. Yet the models are often critisized,
mainly on the wide scatter of the computed results and on the difficulties encountered in the
derivation of a reliable scale equation. The problem has been difficult to resolve due to:
(i) The large resources required for developing solvers and to run test cases on computers;
(ii) The theoretical difficulties to derive turbulence models from the Navier Stokes equations.
The demands from a "good" turbulence model axe difficult to satisfy, and are often conflicting
with one another. This point will be illustrated in a discussion of some possible approaches
to this problem. In particular we shall refer to well established models like the dissipation
or length scale models, as well as newer models like the volume of turbulence or time scale
models. A generalised two-equation turbulence model will be used to demonstrate a possible
approach for the improvement of two-equation models. Finally, a fourth order boundary layer
solver for the generalized two equations model will be presented. The solver can handle both
compressible and incompressible flows, with any two-equation model, with or without wall
functions. Some results will be presented, for a flat plate boundary layer and for unseparated
diffuser flows.

For additional information contact: T.-H. Shih, PABX 3-6680
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EFFECT OF ACOUSTIC EXCITATION ON
STALLED FLOWS OVER AN AIRFOIL

Khairul Zaman
Inlet, Duct and Nozzle Flow Physics Branch

Wednesday, September 5, 1990
3.00 PM

Building 5, Room 119

Experimental results on the subject are to be summarized focussing atten-
tion on post-stalled flows, i.e. flows that are fully separated from near the
leading edge of the airfoil. The excitation results in a tendency towards
reattachement, which is accompanied by an improved airfoil performance,
although the flow may still remain fully seperated. It is observed that with
increasing excitation amplitude, the effect becomes more pronounced but
shifts to a Strouhal number which is much lower than that expected from
linear, inviscid instability of the seperated shear layer. In addition, some
results from a recent experiment on supersonic jets will be briefly reviewed
emphasizing need for collaboration between experiment and computations.

For additional information contact: T.-H. Shih, PABX 3-6630
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COMPUTATION OF ELLIPTIC FLOWS USING
LOW-REYNOLDS-NUMBER TWO-EQUATION

MODELS
Vittorio Michelassi

Energy Engineering Department
University of Florence, Italy

Wednesday, September 19, 1990
3.00 PM

Building 5, Room 119

Two new low-Reynolds number forms of the k — E model will be presented.
These exhibit better stability and stiffness characteristics as compared to
the previous formulations. Model generality is improved by formulating
the damping functions so that they do not depend on the wall distance.
The proposed formulations are compared with eight other low Reynolds
number two-equation turbulence models by computing the fully developed
channel flow and the incompressible flow past a hill. Results are compared
with available direct numerical simulation and experimental data. The flow
solver is based on the approximate factorization technique and the artificial
compressibility method requiring no (or very little) numerical damping. A
simple linearization technique for the turbulence model source terms based
on Taylor series expansion ensures implicit algorithm stability for all the
models tested. Both numerical accuracy and computational efficiency are
discussed.

For additional information contact: T.-H. Shih, PABX 3-6680
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Evaluation of Models for the Pressure Terms
in the Second Moment Equations

Aamir Shabbir

Wednesday, October 10, 1990
3.00 PM

Building 5, Room 119

The usual approach in establishing the correctness and accuracy of turbu-
lence models is to numerically solve the modeled differential equations and
then compare the results with the experiment. However, in the case of a
discrepancy, this procedure does not pinpoint where the drawback of the
model lies. It is also possible that the model overcompensates one physical
phenomenon and undercompensates another resulting in good agreement
between the prediction and experiment. A more desirable approach is to
individually compare each term in the equations with its model. This talk
will focus on such a comparison for the pressure correlations appearing in
the second moment equations. At present these correlations can not be mea-
sured but can be obtained by balancing the turbulent flux and Reynolds
stress equations. Using this approach, pressure correlations will be directly
compared with their models, which range from simple linear to more elab-
orate nonlinear ones. Also results will be shown for a newly developed
model for the return to isotropy part of the pressure temperature-gradient
correlation. The data used is from the homogeneous shear flow and the
buoyant plume experiments as well as from the direct numerical simulation
of homogeneous shear flow.

For additional information contact: T.-H. Shih, PABX 3-6680
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HEAT TRANSFER WITH INHOMOGENEOUS
FREE STREAM TURBULENCE

S.N.B. Murthy
School of Mechanical Engineering

Purdue University, West Lafayette, IN 47907

Thursday, October 25, 1990
2:00 PM

Building 5, Room 119

The presence of free stream turbulence (FST) in a wall-bounded flow with
heat transfer presents several interaction complexities. These depend upon
(a) the state of the boundary layer, laminar, fully turbulent or transitional,
(b) the nature of FST, especially its "peakiness" or inhomogeneity, and (c)
other complications such as pressure gradient, geometry and cooling. An
investigation is in progress on the possible application of (a) large eddy in-
teraction hypothesis (based on Lumley's rational description of turbulence)
and (b) spectral analogy between heat and turbulence kinetic energy to the
simplest case of a flat wall, fully developed turbulent boundary layer with
zero pressure gradient when there is heat transfer in the presence of homo-
geneous FST. An extension of the approach to the case of other types of
boundary layers with inhomogeneous FST will be discussed.

For additional information contact: T.-H. Shih, PABX 3-66SO
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PRESSURE-STRAIN MODELLING AND
THE RETURN TO ISOTROPY

M.M. Gibson
Imperial College of Science Technology,

London, England.

Wednesday, November 14, 1990
1.00 PM

Building 5, Room 119

Calculations of complex shear layers give the best results when the con-
stant in Rotta's return-to-isotropy model is given values greater than those
deduced from the measurements in grid turbulence. New data from grid
turbulence are presented and assessed in the light of previous experiments.
The results show that homogeneous turbulence decay is associated with
increasing Reynolds number. It is argued that this finding has important
implications for Reynolds-stress Modelling. Recent theoratical and experi-
mental studies of the analogous model for pressure scrambling in the scalar-
flux equations reveal even larger discrepancies in them "Monin constant".
The implications for the future of second-moment modelling are discussed.

For additional information contact: T.-H. Shih, PABX 3-6680
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CURRENT TRENDS IN TURBULENCE MODELLING

by

W. Rodi
University of Karlsruhe

Institute for Hydromechanics

Thursday, November 29, 1990
1:00-2:00 p.m.

ERB Building 5, Room 119

A brief review is given of recent work in the area of modelling turbulence in near-wall regions and by
Reynolds-stress-equation models. Various low-Reynolds-number versions of the k-s model and their
damping functions are examined with the aid of results from direct numerical simulations and they are
compared with respect to their performance in calculating boundary layers under adverse and favorable
pressure gradients. A two-layer model is presented in which near-wall regions are resolved with a one-
equation model and the core region with the standard k-e model. Various applications of this model
are shown. The ability of the various models to simulate laminar-turbulent transition in boundary layers
is discussed. Recent applications of a basic Reynolds-stress-equation model to complex flows of
practical interest are presented. Finally, some recent proposals for improved Reynolds-stress-equation
models are outlined and an outlook on possible future turbulence model developments is given.

Contact: Charles Feller, PABX 3-6681
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COMPUTATION OF TRANSITIONAL AND TURBULENT
FLOWS IN COMPLEX GEOMETRIES

George Em Karniadakis

Mechanical and Aerospace Engineering,
Program in Applied and Computational Mathematics,

Princeton university, Princeton, NJ.

Friday, March 22, 1991
2:00 - 3:00 PNI

Building 5, Room 119

General, high-order numerical schemes are formulated appropriate for simulation of tran-
sitional and turbulent incompressible flows in complex geometries. In particular, the new
schemes are based on mined explicit/implicit stiffly stable time-stepping methods and ex-
plicit treatment of the pressure boundary condition that lead to enhanced stabilit y and
arbitrarily high-order time-accuracy dictated entirel y by the employed integration rule. H y

-brid spectral element methods are then used for the spatial discretization of the variable
properties governing equations in three-space dimensions. Special Neumann/viscous sponge
type boundary conditions are developed for open flows. Large or sub-rid scales in the high
Reynolds number regime are modeled through renormalization group ( R\G) techniques.

Simulations are than performed to stud y the transitional and full y turbulent stages of
spatially developing flows. Here, we consider the flow over a backward- facing step, and the
three-dimensional flo%v past a circular c y linder. For the first flow, the secondary instability is
first investigated and the three-dimensional transitional states are computed through direct
simulation (DNS). Tra n sport and sub-rid RNG models are then employed to simulate the
high Reynolds number flow and heat transfer. Comparisons with experimental data in both
regimes are presented. For the second, three-dimensional equilibria are accurately resolved
via DNS; the series of bifurcations followed is simulated until the cylinder wake becomes
turbulent. Our results <_ug est a successive period doubling in the temporal response of the
flow, which eventuall y leads to a disordered state and renders the wake turbulent.

For additional information contact: T.-H. Shill, PABN 3-66SO
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A DYNAMIC MODEL FOR LARGE EDDY SIMULATION
OF TURBULENT FLOWS

Parviz Moin

Stanford University
and NASA Ames Research Center

Tuesday, March 26, 1991
10:00 - 11:00 AM

Room 176, Sverdrup Building

One major drawback of the subgrid scale models currently used in large
eddy simulations is their inability to correctly represent with a single uni-
versal constant different turbulent flows in rotating or sheared flows, near
solid walls or in transitional regimes. A new subgrid scale model will be
presented which alleviates many of these drawbacks. The model coefficient
is inputted dynamically rather than inputted a priori. The basic idea in
the derivation of the model is the utilization of the spectral information
which is computed directly. This rather rich spectral information is not
available in methods based on Reynolds averaged equations. The subgrid
scale stresses obtained using the proposed model vanish in laminar flow and
at a solid boundary. The results of large eddy simulation of transitional and
turbulent channel flow that use the proposed model are in good agreement
with the direct numerical simulation data. The same model was applied
to the decay of isotropic turbulence with excellent agreement with the ex-
perimental data. The model has been extended to compressible flows. A
dynamic subgrid scale turbulent Prandtl number was derived. Its depen-
dence on molecular Prandtl number, direction of scalar gradient, and the
distance from the wall are in accordance with direct simulation.

For additional information contact: T.-H. Shih, PABX 3-6680
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TURBULENCE AND DETERMINISTIC CHAOS

Robert G. Deissler

Lewis Research Academy
NASA Lewis Research Center

Wednesday, April 10, 1991
3:00 - 4:00 PM

Room 119, Building 5

Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained.
The unaveraged equations are used numerically in conjunction with tools and concepts from
nonlinear dynamics, including time series, phase portraits, Poincare sections, largest Lia-
punov exponents, power spectra, and strange attractors.

Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are
compared. The turbulence, which is fully resolved, is sustained by a nonrandom time-
independent external force. The solutions, on the average, separate exponentially with time,
having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic.

In a search for solutions which contrast with the turbulent ones, the Reynolds number (or
strength of the forcing) is reduced. Several qualitatively different flows are noted. These are,
respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point.
Of these we classify only the fully chaotic flows as turbulent_ Those flows have both a positive
Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic
flows, although having positive Liapunov exponents, have some pattern in their Poincare
sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally
understood, is both time-dependent and aperiodic.

For additional information contact: TAI. Shih, PABX 3-6680
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A CRITICAL ASSESSMENT OF TURBULENCE MODELING

Charles G. Speziale

ICASE, NASA Langley Research Center

Monday, April 22, 1991
1:30 - 2:30 PM

Room 175, Sverdrup Building

A variety of turbulence models including zero, one and two-equation mod-
els as well as second-order closures will be reviewed. Based on comparisons
with results from physical and numerical experiments on homogeneous tur-
bulence, a strong case will be made for the superior predictive capabilities
of second-order closure models. It will be shown how some significant im-
provements in second order closure models have been recently achieved
by means of invariance arguments coupled with a dynamical systems ap-
proach. Several applications will be discussed including recent extensions
to high speed compressible flows that were developed in connection with
the National Aerospace Plane Project.

For additional information contact: T.-H. Shih, PABX 3-6680
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A CRITICAL-LAYER THEORY
FOR BOUNDARY-LAYER TRANSITION

Reda R. Mankbadi

Lewis Research Academy
NASA Lewis Research Center

Tuesday, April 30, 1991
10:00 - 11:00 AM

Room 119, Building 5

An asymptotic critical-layer theory is developed to study nonlinear interactions of a triad
of instability waves leading to boundary-layer transition. This triad consists of a spatially
growing plane fundamental wave and a pair of symmetrical, subharmonic oblique waves. The
spatial development of the waves is determined by nonlinear viscous flow in the critical layer.
The theory successfully captures not only the linear and parametric resonance stages, but also
the later fully interactive regime of the transition process including the saturation and decay
stages. The analysis is fully nonlinear, in that all the nonlinearly generated waves that were
not originally present, are accounted for in the analysis. The three-dimensional nonlinear
modifications of the mean flow are also considered. The theory applies to both ribbon-
induced and naturally occurring transition. The analytically obtained amplitude equations
are highly accurate but simple enough to be used for practical transition predictions. Results
presented explain experimental observations and reveal novel features of the phenomena.

For additional information contact: T.-H. Shih, PABX 3-6680

47
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Research Briefs - 1990

13.2 CMOTT Technical Meetings

These are CMOTT's biweekly group meetings. In each meeting, one
speaker from either CMOTT or other local modeling efforts at the NASA
LeRc presents new ideas or work under progress. The informal seminars were
intended not noly to keep the members informed of the latest development
of local turbulence and transition modeling research but also to increase
interactions between group members and other researchers at the NASA
LeRc.

The schedule of these biweekly events were widely disseminated before
each series began. The following is the meeting schedule during the reporting
period.
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Date:	 December 19, 1990

To:	 CMOTT Members and SVR and IFMD Staff

From:	 William W. Lion (6682)

Subject:	 CMOTT Biweekly Meeting

The following is a tentative schedule for CMOTT biweekly get-together from Dec.

19, 1990 to Feb. 27, 1991. In each meeting, one member of our group will give an informal

presentation on the subject she/he is interested in or currently working on. This will not

only give us opportunities to interact with each other, but also keep us informed about

exciting approaches in modeling turbulence other than our own specialities. However, the

format of the meeting after the current period is open to suggestions.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

Dec. 19, 1990 Zhigang Yang (61-2123)
Understanding RNG in Turbulence: A Preliminary
Report

Jan. 2, 1991	 Tsan-Hsing Shih (6680)
Realizability Concept and Its Applications in
Turbulence Modeling

Jan. 16, 1991 Wai-Ming To (5937)
Spectral Methods

Jan. 30, 1991 Le Tran (61-6701)
Stagnation Point Turbulence and Heat Transfer

Feb. 13, 1991 William W. Liou (6682)
Weakly Nonlinear Models for Turbulent Free Shear Flows

Feb. 27, 1991 Chris Steffen (8508)
Optimizing Laminar Accuracy
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Date:	 March 13, 1991

To:	 CMOTT Members and SVR and IFMD Staff

From:	 William W. Liou (6682)

Subject:	 CMOTT Biweekly Meeting

The following is a tentative schedule for the CMOTT biweekly get-together from

March 20, 1991 to May 1, 1991.

This round of biweekly meetings will be more of presentations of progress and hurdles

in pursuing the subjects than presentations of results. Therefore, active participation is

expected from the attendants. Note that these meetings are different from the CMOTT

Seminar Series, whcih axe mainly formal presentations.

We would also appreciate some contributions from you. Subjects related to either the

theoretical, experimental or computational aspects of turbulence and transition modeling

are welcomed. Those who are willing to share their experience in these areas can contact

me or Dr. T.-H. Shih at 6680 for further arrangement.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

Mar. 20, 1991 K. Zaman (5888)
Low Frequency Fluctuations in Separated Flows
- Experimental Evidence

Apr. 3, 1991	 K. Kirtley (61-6659)
Let's Talk RNG

Apr. 17, 1991 T.-H. Shih (6680)
Lumley's New Formulation of Dissipation Equation

May 1, 1991	 K. Kao (5965)
Stability of Compressible Couette Flows
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Date:	 April 25, 1991

To:	 CMOTT Members and SVR and IFMD Staff

Froin:	 William W. Liou (6682)

Subject:	 CMOTT Biweekly Meeting

The following is a tentative schedule for the CMOTT biweekly get-together from

May 1, 1991 to June 12, 1991. Please note that Dr. Shih's and Dr. Kao's talks have been

rescheduled.

The presentations will be informal and active participation is expected from the atten-

dants. These meetings complement the CMOTT Seminar Series, which are mainly formal

presentations.

We would also appreciate some contributions from you. Subjects related to either the

theoretical, experimental or computational aspects of turbulence and transition modeling

are welcomed. Those who are willing to share their experience in these areas can contact

me or Dr. T.-H. Shih at 6680 for further arrangement.

The meeting will start at 4:00 p.m. in Room 228, Sverdrup Building.

May 1, 1991	 T.-H. Shill (6680)
Lumley's New Formulation of Dissipation Equation

May 15, 1991 A. Shabbir (5927)
On Some Closure Assumptions Regarding Time Scales,
Local Equilibrium and Pressure Diffusion

May 29, 1991 Z. Yang (61-2123)
Near Wall k — e Modeling: Another Crusade

June 12, 1991 K. Kao (5965)
Stability of Compressible Couette Flows
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Appendix C

Collection of Publications
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THE STUDY OF PDF TURBULENCE MODELS
IN COMBUSTION

Andrew T. Hsu
Sverdrup Technology, Inc.

& Center for Turbulence Modeling
NASA Lewis Research Center

Cleveland, Ohio

9th National Aero-Space Plane
Technology Symposium

November 1-2, 1990

Paper Number 107
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I. Introduction

(U) In combustion computations, it is well known that the predictions
of chemical reaction rates (the source terms in the species conservation equa-
tions) are poor if conventional turbulence models are used. The main dif-
ficult y lies in the fact that the reaction rate is highly non-linear, and the
use of averaged temperature, pressure and density produces excessively large
errors. Moment closure models for the source terms have attained only lim-
ited success. The probability density function (pdf) method seems to be
the only alternative at the present time that uses local instantaneous val-.
ues of the temperature. density, etc., in predicting chemical reaction rates.
and thus is the only viable approach for more accurate turbulent combustion
calculations.

(U) The fact that the pdf equation has a ver y large dimensionalit y ren-
ders finite difference schemes extremel y demanding on computer memories
and thus impractical. if not entirel y impossible. A logical alternative is the
Monte Carlo scheme. which has been used extensively in statistical physics.
The evolution equations for the joint pdf of the velocity and species mass
fraction have been successfully solved using Monte Carlo schemes, see, e.g.,
Pope[1]. However, since CFD has reached a certain degree of maturity as
well as acceptance, it seems, at least from the stand point of practical appli-
cations. that the use of a combined CFD and Monte Carlo scheme is more
beneficial. Therefore, in the present study a scheme is chosen that uses a
conventional CFD flow solver in calculating the flowfield properties such as
velocity. pressure. etc.. .chile the chemical reaction part is solved using a
Monte Carlo scheme.

(U) A combined CFD-Monte Carlo computer algorithm has been de-
veloped recentl y. As a first calibration of the Monte Carlo solver recently
developed in this Nvork. the discharge of a heated turbulent plane jet into
quiescent air is studied. Experimental data for this problem shows that when
the temperature difference between the jet and the surrounding air is small,
buovancv effects can be neglected and the temperature can be treated as a
passive scalar. The fact that jet flows have a self-sillular solution lends con-
venience in the modeling studv. Furthermore, the existence of experimental
data for turbulent shear stress and temperature variance (temperature fluc-
tuation) make the case ideal for the testing of pdf models wherein these
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values can be directl y evaluated.

(U) The following section presents the methodologies used in this study,
and a discussion on the numerical results and their comparison with experi-
mental data follows.

II. Method

2.1 Governing equations

(U) The Favre averaged momentum and species transport equations can
be written as

pdtui + pujdJ u i = — diP + UdJTi) — dju+^uJ

pd1 Y; + pic j dj Y = p (9,( DOJI — I.„u”) + c);(Dd;pOjY,") + pfvi

where ui is the velocity and 3" is the crass fraction. The major problem en-
countered in the numerical study of turbulent combustion lies in the modeling
of the chemical source term. pw i , known as the chemistry closure problem.
The Source term wi is an exponential function of temperature, and it is well
know that the use of averaged temperature, T, in evaluating pwi can cause
egregious errors. Therefore the accurate prediction of turbulent combustion
using conventional turbulence models becomes ver y difficult. This motivated
the use of pdf methods. If the pdf, P. is given, then the mean of the source
term can be evaluated exactly:

p w i = J ... I pwi(Yi, .... Y,^, T, p ) P ( Yc, - - -, Yn, T, p ) dY1 ... dY'l,dTdp

To solve for the pdf, we need the following:

2.2 Evolution equation for the pdf

(U) The evolution equation for the probability density function of the
mass fractions, temperature, and density, P(Y,, ..., Y,, T, p), can be written
as(lj

;v

p91P + p b' a'p + p E dV, { wi N)l, ---, ON)P}
i-1

 
N N a

_ 0"(p
  C tea I lr^i	 P) — p	 V,G.+G (< E iJ I 'Nk > P)
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where the terms represent mean convection, chemical reactions. turbulent
convection. and molecular mixing, respectively; P is the density-weighted
joint pdf:

P=PP,

e is the scalar dissipation:

Ei; _ —PDi;c;l'„

Vi 's are variables such as the mass fractions, density, and temperature, and
<, > denotes the mathematical expectation of a function.

(U) The left hand side of the above equation can be evaluated exactly
and requires no modeling; the right hand side terms contain the conditional
average of the Favre velocity fluctuation and the conditional average of the
scalar dissipation and require modeling.

2.3 Finite difference solution for the NS equations

(U) In order to simplify the problem so as to concentrate on the stud y of
the pdf models, we have confined our numerical procedures to parabolic flows.
A parabolic NS solver with a k — e turbulence model has been developed.
The k — f model has been tested by solving standard cases such as flat plate
boundary lavers and free shear lavers with satisfactor y numerical results.

2.4 Monte Carlo scheme for the pdf equation

(U) A grid dependent Monte Carlo scheme has been employed, primarily
following Chen and Kolimann[5[. The task here is to construct an ensemble
of sample points, each sample has its own distinct properties such as tem-
perature. mass fraction. etc.: these properties change with time or location
such that the probabilit y function of the ensemble evolves according to the
evolution equation. Consequently, the pdf of' the ensemble is the desired
approximate solution for the pdf equation.

(U) Suppose N samples are assigned to a grid cell in the flow domain,
the pdf for the ensemble of N samples can then be written as

N

where o, is the scalar function value carried by the j` h sample, e.g., the mass
fractions. etc.
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(U) In order to have the pdf P' evolve according to the pdf evolution
equation. «ve discretize the equation on a given grid and write, for parabolic
flows:

P'r+dx.i = ai P'x.j+i + 3jP*=,j + 'iP•=.i -1

and require
aj +;3; +7; = 1

2.5 Recontamination in a Monte Carlo scheme

(U) Using a very simple test case of a convection/ diffusion process with
two scalars. it was found that the previous scheme(5] does not conserve mass
fractions due to re-contamination. It is found that in order to conserve the
mass fractions absolutel y, one needs to add further restriction to the scheme,
namely

A new computer algorithm was devised and tested. This algorithm uses a
few extra arrays to store informations form the previous time level and thus
eliminates the repetition in the sampling process. With the simple test case
of two scalars with assumed constant coefficients in the pdf equation, the
new algorithm is shown to conserve the mass fractions perfectly. Deficiencies
such as directional bias and re-contamination that were found in the previous
algorithm are completely eliminated.

(U) It is not yet known whether one can indeed devise a scheme that
satisfies relation (*) in general flows, where the coefficients of the pdf equation
are variable and are calculated from the flow velocities, turbulence time scale,
etc.
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III. Results

(U) The sketch of a heated plane jet is given on this page. The flow
domain is divided into 30 cells in the cross direction. and 100 samples are
assigned to each cell. The numerical results from the present study are
compared with experimental data in the following figures.

P	 _ ,	 — I

Figure 1. Sketch of a heated turbulent free jet.
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(U) The numerical solution for the ensemble averaged pdf's of the tem-
perature: y/y0.5 = 0. where yo.5 is the location where T = 0.5To. In order to
interpret the data, the ensemble averaged pdfs are integrated to obtain the

approximate continuous pdf: P = P`(OT)/AT. The result of this integra-
tion is shown as vertical bars. The normal distribution is plotted as a dotted
line for comparison.

Fig. 2 probability density distribution
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(U) The numerical solution for the ensemble averaged pdf's of the tem-
perature: y/yo . s = 0.44, where y O _ 5 is the location where T = MTo. In order
to interpret the data, the ensemble averaged pdfs are integrated to obtain
the approximate continuous pdf: P = P"(OT)IAT. The result of this in-
tegration is shown as vertical bars. The normal distribution is plotted as a
dotted line for comparison.

Fig.3 probability density distribution
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(U) The computed velocity profile is compared with experimental data
from Foerthmann(7]. The good agreement between the numerical solution
and experiments indicates that the parabolic flow solver emploved in the
present study is fairl y accurate and can serve its purpose.

Fig.4 Velocity distribution
1.0

0.8

0 0.6

0.4

0.2

0 0

0	 Present
o	 Experimentsl7]

0
0

8
0

0

0

00 p

0 00
0

8

0.0	 0.5	 1.0	 1.5	 2.0
	

2.5

y\y . 5 U

61



(U) As a calibration for the k — e turbulence model. the turbulent
shear stress from the present stud y is compared with measurements given
b y Brandbury[S], and by Gutmark and NVygnanski[9]. Except for a slight
over prediction towards the edge of the jet, the numerical solution generally
agrees well with the experimental data. This comparison is very crucial for
pdf calculations because it is an indicator of the accuracy of the numerically
predicted turbulent kinetic energy, k. and dissipation, e, which are used to
determine turbulent time scale, t, from t = k1 e. An accurate prediction for
k and e is essential for the correct modeling of molecular mixing in the pdf
calculation.
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(U) The results for mean temperature from the \Monte Carlo solution of
the pdf equation for the temperature compared with experimental data from
Ref. 10-12.
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(U) The standard variance of the temperature, or the temperature fluctu-
ation, compared with experimental data from Ref. 12 and 13. Because of the
limited number of sample points (N=100) used in the computation, the nu-
merical results are scattered: however, these results agree very well with the
experimental observations. Particularly important is the agreement between
the predicted and the measured temperature fluctuations, for in case of finite
rate chemistry calculations, the instantaneous temperature will be used in
determining the reaction rate, and the correct prediction of the temperature
distribution will ensure the accuracy in reaction rate calculations.

Fig.7 -Standard variance of temperature
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On Recontamination and Directional-Bias Problems
in Monte Carlo Simulation of PDF Turbulence Models

Andrew T. Hsu
NASA Lewis Research Center, Cleveland, Ohio 44135

Phone 216/826-6648

Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models.
The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and
the higher order correlations in the conventional moment closure models of the chemical source term can not be
neglected, making the applications of such models impractical. The probability density function (pdf) method
offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional
models.

The partial differential equation for the probability density function, P, can be written as

N
Pat e +Pb,L%p +P	 t9v,; {w;(01'....tGN)P)

;=t

N N
_ -aQ P <	 0;^;(< (+jI VGk > P)

=t;=t

where the terms represent the time derivative, mean convection, chemical reaction, turbulent convection, and
molecular mixing, respectively. The fact that the pdf equation has a very large dimensionality renders finite
difference schemes extremely demanding on computer memory and CPU time and thus impractical, if not entirely
impossible. A logical alternative is the Monte Carlo scheme, wherein the number of computer operations increases
only linearly with the increase of number of independent variables, as compared to the exponential increase in a
conventional finite difference scheme.

A grid dependent Monte Carlo scheme following that of J.Y. Chen and W. Kollmann has been studied in the
present work. In dealing with the convection and diffusion of the pdf, the pdf equation is discretized on a given
grid, e.g.,

Ps+dti=a^P=i+t 1QiP=i+7iPzi—t

where
aj + Q, + 7j = 1

However, if this is the-only restriction satisfied by the numerical algorithm, the mass fractions may not be con-
served due to re-contamination, and directional-bias also appears. These phenomena are illustrated in Figure 1:
Consider a mixing layer; use white balls to represent contaminants in the upper stream and black balls to represent
contaminants in the lower stream. As the two streams move toward right, the location of the white balls and black
balls are interchanged randomly to simulate convection and diffusion. From Figure 1, it is clear that directional-
bias caused by recontamination caused the center of the mixing layer to drift downward. ( Directional-bias can
be partially corrected by changing sweeping directions. ) One also notices that after the first marching step, the
conservation law is violated, reflected in the Figure as missing white or black balls.

It is found that in order to conserve the mass fractions absolutely, one needs to add further restriction to the
scheme, namely

aj + 7i = aj— t + 7i+1

A new algorithm was devised that satisfies this restriction in the case of pure diffusion or uniform flow problems.
Using the same example, it is shown that absolute conservation can be achieved. This result is shown in Figure 2.
One can see than the diffusion process is symmetric, and the problem of directional- bias is eliminated.

Although for non-uniform flows absolute conservation seems impossible, the present scheme has reduced the
error considerably.
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in the solution procedure.
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I. Introduction

(U) A combined Monte Carlo—CFD algorithm has been developed re-
cently at NASA Lewis Research Center for turbulent reacting flows. In this al-
gorithm, conventional CFD schemes are employed to obtain the velocity field
and other velocity related turbulent quantities, and a Monte Carlo scheme
is used to solve the evolution equation for the probability density function
(pdf) of species mass fraction and temperature.

(U) In combustion computations, the predictions of chemical reaction
rates (the source terms in the species conservation equations) are poor if
conventional turbulence models are used. The main difficulty lies in the fact
that the reaction rate is highly non-linear, and the use of averaged tempera-
ture produces excessively large errors. Moment closure models for the source
terms have attained only limited success. The probability density function
(pdf) method seems to be the only alternative at the present time that uses
local instantaneous values of the temperature, density, etc., in predicting
chemical reaction rates, and thus may be the only viable approach for more
accurate turbulent combustion calculations. The closure problem and the
need for pdf has been discussed in detail in a previous paper[1].

(U) Assumed pdf are useful in simple problems; however, for more gen-
eral combustion problems, the solution of a evolution equation for the pdf is
necessary.

H. Method

(U) Conventional CFD flow solvers are quite common and needed no
explanation here. We will concentrate on the derivation and solution of the
pdf evolution equation in this section.

2.1 PDF evolution equation of mass fraction.

(U) For simplicity, the pdf equation for a single scalar will be derived
here. The extension to multi species is trivial. The species transport equa-
tions ( for a single species ) can be written as

patY = —pu kak Y + pak(DakY) + pw	 (0.1)

where uk is the velocity, Y is the mass fraction, and w is the chemical source
term; summation for repeated indices is understood.
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Let P(Y) be the probability density function, and define 0 = exp(%Ac),
then the characteristic function of the pdf can be written as the ensemble
average of 0:

< ¢ >= f P(Y)OdY,

and the pdf can be written as the inverse Fourier transform of the character-
istic function:

P(Y)	 J < 0 > exp( —iaY)dY.
2r 

Now differentiate 0 with respect to time,

ato = i.lexp(1*A Y)(atY),

and replace atY in the above equation with the right hand side of eq. (1),
we obtain

PatO = iAe_xp ( %aY) [ — P U kak Y + ak(pDak Y) + Pw],

which can be rearranged as

at(PO) + ak (Puk^) = iA Oak(PDakY) + taopw

Take ensemble average of the above equation gives

at < PO > +ak < pu k O >= t*A < pwo > +ia < Oak(PDakY) >
The inverse Fourier transform of the above equation gives the evolution equa-
tion for the probability density function:

at(PP ) + ak(P < u k > P) + 0Y(PwP)

_ —ak(P < uklY > P) — ay(< ak (pDakY)lY > P)
where the terms represent mean convection, chemical reactions, turbulent
convection, and molecular mixing, respectively.

For multi species and temperature, the pdf is written as P(0 1 ,..., 0„),

where tki , i = I,—, n represent the scalars including mass fractions and tem-
perature. A similar derivation gives

N

Pat e + PvQaaP + P	 a^; {w;( 1 , ..., 4 N) P}

N N
_ —a

"
(P < vale; > P) — P^1:a^:^;(< C:jIOk > P).
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(U) The left hand side of the above equation can be evaluated exactly
and requires no modeling; the right hand side terms contain the conditional
average of the Favre velocity fluctuation and the conditional average of the
scalar dissipation and require modeling.

2.2 Modeled pdf equation

(U) The first term that needs modeling is the turbulent diffusion term,
for which the following gradient model is used:

— < uk10i >P"'Dta^P,

where Dt is the turbulent diffusion coefficient, which is set to be equal to the
eddy viscosity, i.e., the turbulent Schmidt number is equal to one.

(U) The next term needs modeling is the molecular mixing term. A
coalescence/ dispersion model is used for this term, which has the following
general form:

N N

—P 	 a2,,t; (< E;, I Ok > P)

CD f P(0')P(;b1')T (iP j Of , 0 11 ) dO ld^" — P
J	 = D,n P

where T is the transition probability. For more detail description of the
molecular mixing model, see Ref 2. The modeled the pdf equation is then

N

AP + PijAP + P aOi { w+(01, ..., ON)P}

= a, (D t aa P) + D,nP

2.3 Solution of the pdf equation

(U) A fractional step method is used to solve the pdf equation in a
Monte Carlo simulation. Three processes, namely, (1) convection/ diffusion,
(2) molecular mixing, and (3) chemical reaction, are simulated consecutively:

N
(at + p	 a^:{ w,(^1, ..., ^N)})( at — D,n)(at + pvaa — aa (Dtaa )P = o.
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This equation is solved using a Monte Carlo simulation, i.e., the pdf is
represented by an ensemble of samples. These sample points move in the
hyperspace of ( X 1, x2, 23, 01, ..., ;b„) according to the above equation.

III. Results

(U) A heated turbulent plane jet had been calculated and results re-
ported at last NASP symposium. The case has since been recalculated using
modified turbulence model, and improved results are shown here.
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(U) A hydrogen—fluorine diffusion flame was calculated. The flowfield
and flow conditions, as well as the calculated velocity and turbulent kinetic
energy distribution, are given on this page.
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(U) Figures show the calculated heat release of the H2-F2 flame (tem-
perature distribution) compared to experimental data, and the species mass
fraction from pdf calculation.

Fig.1 Temverature distribution.: H2+F2=2HF
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A STUDY OF HYDROGEN DIFFUSION FLAMES USING
PDF TURBULENCE MODEL

Andrew T. 11su'
Sverdrup Technology, Inc.

NASA Lewis Research Center, Cleveland, Ohio 44145

Abstract

The application of probability density function (pdf) turbulence models is addressed in this work. For
the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD
flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm
has been validated using experimental data for a heated turbulent plane jet. The study of H2 —F2 diffusion
flames has been carried out using this algorithm. Numerical results compared favorably with experimental
data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the
same equivalence ratio, similarity solutions for flames exist.

Introduction

It is the consensus of the combustion profession
that the prediction of chemical reaction rate (the
source term in a species conservation equation) is
poor if a conventional turbulence model is used. The
main difficulty lies in the fact that the reaction rate
is highly non-linear, and the use of averaged tem-
perature, pressure and density produces excessively
large errors. Moment closure models for the source
terms have attained only. limited success because the
assumptions for such models to be valid often can
not be satisfied. The probability density function
(pdf) method seems to be the only alternative at the
present time that uses local instantaneous values of
the temperature, density, etc., in predicting the chem-
ical reaction rate. and thus is the only viable approach
for more accurate turbulent combustion calculations.
Two main lines are being followed in pdf methods:
one uses an assumed shape for the pdf, the second
solves a pdf evolution equation; the present paper ad-
dresses only the latter. There has been significant
progress in the stud y of pdf turbulence models in low
speed flows in the past decades. These developments
were summarized in Refs. [1], [2] and [3]. In spite
of this progress. pdf turbulence modeling remains a
nascent discipline with many unresolved issues.

The fact that the pdf equation has a very large
dimensionality renders the use of finite difference
schemes extremely demanding on computer memories
and thus impractical, if not entirely impossible. A log-
ical alternative is the \Monte Carlo scheme, which has
been used extensively in statistical physics. The evo-
lution equations for the joint pdf of the velocity and
species mass fraction have been successfully solved
using Monte Carlo schemes, see, e.g., Pope[l]. Ilow-
ever, since CFD has reached a certain degree of ma-
turity as well as acceptance, it seems, at least from
the standpoint of practical applications, that the use
of a combined CFD and Monte Carlo scheme is more
beneficial. Therefore, in the present study a scheme
is chosen that uses a conventional CFD algorithm to
solve the Navier-Stokes equations and provide flow-
field properties such as velocity, pressure, etc_, and the
chemical reactions are calculated by using a Monte

Carlo scheme to solve a pdf evolution equation.
The combined CFD-pdf solver has been devel-

oped recently and validated using non-reacting flow
data for a heated turbulent plane jet. The algorithm
has been further tested in the numerical study of an
H2 —F2 diffusion flame. This diffusion flame was stud-
ied experimentally by \fungal & Dimotakis[4] and
Hermanson & Dimotakis[5]. The numerical results
from the present study are compared with these ex-
perimental data.

Theory

Governing emiations for reacting flows.

Flows with chemical reaction are governed by
the continuity equation, momentum equations, en-
ergy equation. and species transport equations:

atP+ (di pui = 0

Pat u ; + puj aj ui = -ai p + M ai Tij

Pa t h+Puj aj — at p — u j aj p 	 (1)

q, + Q

Pa tl k + Puj Oj 1"k = pa, (Daj Yk ) + wk

k = 1,2 ......V.

where u i is the velocity, }k is the mass fraction, and
w k is the chemical source term. (In addition to these
equations, one also needs the equation of state.) For
turbulent flows, we substitute

ui = ui + ui+	
(2)

Yi=Y"+Y,

into the above equation and take an ensemble aver-
age. In the process of averaging, new unknown quan-
tities in the form of correlations appear, e.g., uiuj',

u'Yk, etc. These quantities can all be modeled using
conventional turbulence models, such as two equation
models or second order closure models. A problem
unique to flows with chemical reaction is the average
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of the chemical source term, pwk , The major diffi-
culty lies in the fact that w k is a highly nonlinear
(usually exponential) function of the temperature. It
is well know that the use of averaged temperature, T,
in evaluating pwi can cause egregious errors. One may
consider the effect of the temperature fluctuation, T',
by applying a moment closure model to the term pwi;
however, such a closure model results in an infinite se-
ries that converges only when T. — T and T' «T. In
many combustion, problems, these two conditions are
violated: in fact, we often have T. » T and T' ^- T
instead. In view of the above, the prospect of an ac-
curate prediction of turbulent combustion using con-
ventional turbulence models seems dismal. The above
fact motivated the use of pdf methods.

Pdf evolution equation

Given	 a set	 of m	 random	 vari-
ables, 0 1 , 02 , • • • , ,pm , and the joint probability den-
sity function, P(0 1 , 02, • • -, 0",; T,, y, Z, t), the mean of

any random function, P01,  0 2 , • • • Om -1 x, y, z, t), can
be calculated as

f(x, y ,=,f) = f ... f f Pd0i d02 ... dV)--	 (3)

For simple ;"lows, one could assume the shape of
the pdf and compute the source term, 77w-7k , based on
the assumed pdf using the above integral. For more
general problems, one needs to solve a pdf evolution
equation for a more accurate pdf distribution. In the
latter case, the evaluation of the source term, pwk , is
no longer necessary because the mean values of the
temperature, species mass fractions, which we previ-
ously would obtain by solving the transport equations
(Eq. 1), can now be evaluated directly from the pdf
using the above integral.

The pdf evolution equation can be derived from
the transport equations (Eq. 1) in many different
ways, using a Dirac delta function, a characteristic
function. or a characteristic functional. [1-3] The evo-
lution equation of a single point probability density
function of scalar random variables w 1 ,	 r[,,, can be
written as

m

PatP+pi5'aaP+P	 {wi(V i,...,ZGm)P}
i.l

= —aa(P < va1¢k( x ) = Ok > P)

—P	
av Y; (< Eij 10k ( y) _k > P)	 (4)

i=1 j=1

where the terms represent the rate of time change,
mean convection, chemical reaction, turbulent con-
vection, and molecular mixing, respectively; P is the
density-weighted joint pdf:

P = PP/P,

ei; is the scalar dissipation:

Eij = Daa0iaa-Oj,

(where D is the diffusion coefficient), and < xly >
denotes the mathematical expectation of a random
function x conditioned upon y.

The left hand side of eq. (4) can be evaluated
exactly and requires no modeling; the right hand side
terms contain the conditional expectation of the ve-
locity fluctuation and the conditional expectation of
the scalar dissipation, which are new unknowns and
require modeling.

Closure models for pdf equation

The first term that needs modeling is the tur-
bulent convection term, for which one can use the
following gradient model:

— < v" alV k > P = D=BaP,

where Di is the turbulent diffusion coefficient, which
is set to be equal to the eddy viscosity, i.e., the tur-
bulent Schmidt number is equal to one.

The next term needs modeling is the molecular
mixing term. A coalescence/dispersion model is used
for this term, which has the following general form[6]:

N N

i=1 j=1

= Co f f 
F,( ,)P( „

)7 (t^^P^,;b")dO'd,p" — P

M (P)

where T is the transition probability. A new mix-
ing model continuous in time is recently developed by
Hsu and Chen[7]. For more detail description, of the
molecular mixing models, see Refs. 6 and 7.

The modeled pdf equation is then

m

pa ' P+paaaaP+P	 a0,1wiN1,... (Wpl
i=1

=aj (Do%P) + Al (P),	 (5)

which can be solved using a Monte Carlo simulation.

Numerical Methods

In the present study, a combined finite
difference—Monte Carlo solver is developed. For the
velocity field, the Navier-Stokes equations and a k — c
turbulence model are solved using a finite difference
method; for scalar variables such as the temperature,
mass fractions, etc., the pdf evolution equation is
solved using a Monte Carlo scheme. The CFD flow
solver provides the Monte Carlo solver with the mean
velocity and a turbulence time scale r, where r = k/e,
and the Monte Carlo solver provides the mean flow
solver with the density, P.

The solution'of the Navier-Stokes equations
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Since the primary concern of the present work is
pdf modeling, we choose the simplest possible solver
for the N-S equations. :lie equation is transformed
into a general coordinate system using the following
general relation:

a=f
Y = W, n)

and

ar = ac — Uf all
Yv

1

a  — 
Yn an

The transformed momentum equation for steady
flows is

	

1	 1
	Ofu 	u+(v — 6 Yf)	1 (9, = —Pafp+ 1

a" ( VT av u ) ,
YU Y?

where the viscous term involves gradient in the ( -
direction is neglected since Nve are only interested in
shear flows in the present study.

First order upwind difference is used in the
direction so that a marchine scheme for steady

parabolic flows can be used. To ensure stability, a
flux splitting scheme is used in the r7 -direction.

The solution of the Pdf equation

A fractional step Monte Carlo method, as will
be described in the following, is used to solve the pdf
equation. We first discretize the time derivative in eq.
(5) using finite difference: (9,P = ( Pnt1  — P")/Of
then the pdf evolution equation (eq. 5) can be written
as

m
Pn +1 _ {1— ,tUQatr—^t ^CjL',w,(t3 1,....t^Im)

;-1

	

+Ot aQ D, aQ +	 P"

Using approximate factorization, the above equation
is recast as

m
n+1	 •/, ))

;.1

x(1+A- 0f)(1 —Atpva, +AtatrD,,% P"

+O(At)
(1 + AtQ1 + AtM)(1 + AtR)P" +O(Ot),

where C denotes the convection operator, m the
molecular mixing, and R chemical reactions. With
the above expression, we can three processes consec-
utively:

(1) convection:

(2) molecular mixing:

P" - (1 + At.1f) P' ,

(3) chemical reaction:

Pn+1 = (I+At R)P"

In the present study, only steady flows are considered.
so at is replaced by of and a marching scheme in the
^-direction is employed.

In a Monte Carlo simulation, the continuous pdf
is replaced by N x M delta functions,

P' (w1,02," ,1Jm.S,Y,Z,t)

1N
= N	 b(^1 — oinl(t))

n=1

X 6 (02 — 9(n)(t)) ... b (O.n — 0(n)(t)),

where each product of the m delta functions repre-
sents one event of an ensemble of N sample events.
An event can be thought of as a fluid particle. and
the evolution of P' entails the movement of the par-
ticles in the physical space as well as the phase space
(V)—space). The movement of the particles is, of
course. governed by the pdf evolution equation. and
is simulated in the following three steps.

Step 1: convection

Replace P by P' in the pdf evolution equation
and transform it into the l —Y coordinate system, the
convection process for a steady flow can be written as

P Uaf P' = — P( v — uYf)yna,P. + I av(PDs(9.,P*),

Discretizing the above equation using a finite differ-
ence scheme, we can write

P;.i = aP;_1,] +1 + 3P;_l.i +7P, -l.i-=

(Here again we used a one sided difference so that a
marching scheme could be used.) The above equation
states that if we divide the flow field into cells. then
the pdf at point (i, j) can be written as a linear com-
bination of the pdf at neighboring points, To simulate
this process with a Monte Carlo scheme, we move the
sample particles between cells according to the above
equation. For instance. the particles of cell (i, j) will
be obtained by choosing randomly ON particles form
cell (i — 1, j+ 1), pN particles from cell (i— 1, j), and
7tV particles from cell (i — 1, j — 1). In order for the
total number of particles not to change, we require
that a+i3+-r = 1.

It is worth noting that this method can easily
be extended to elliptic flows and applied to general
curvilinear coordinate systems.

Step 2: molecular mixing;
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The molecular mixing process is simulated by the
following binary interaction model:

puBE P
=CD 

f f P ( ,P )P(0")T(0JO', ^p")d;b'dV," — P

where T is the transition probability. By assigning
various functions to T, we would have different mix-
ing models. In the present study, the modified Curl
model by Janicka et al. [8] is used. In this model, the
transition probability is given as

for t/i' <;b<t/"

0	 otherwise.

with CD = 6.0.
In the Monte Carlo simulation, the above model

is realized in the following manner: Divide the flow
domain into small cells, each containing N sample
particles_ Given a small time interval At and a tur-
bulent time scale r, select randomly N,,, r pairs of par-
ticles, where

Nmr = O.J^,T.^'.

and let a pair, say, m and n. mix as follows

6„(t + At) = AOm(t) + (1 — A)0,(t)

0m(t + At) = Ao„(t) + (I — .-1)0m(t)

where A = 0.51;, with l a random variable uniformly
distributed on the interval [0.1]. The remaining N —
2N,,, = particles remain unchanged:

0n(t + At) = an(t)

The turbulent time scale is supplied by the finite
difference solution of a k — c turbulence model: r =
k/e.

This model admits the non-physical jump con-
dition and does not produce the correct long time
behavior for decay problems in homogeneous turbu-
lence. A continuous model that predicts the correct
long time behavior for turbulence decay problem has
been introduced by Hsu and Chen [7]. But as shown
in Ref. [i], for practical combustion problems where
the long time statistical behavior is not crucial, the
modified Curl model gives acceptable results. In the
present study, both the modified Curl model and the
continuous model have been used.

Step 3: chemical reaction

Chemical reaction is represented in the Monte
Carlo simulation by the movement of sample particles
in the phase space due to reaction. A sample point
with a given composition {0 1 ,0 2 ,•• , 0m 1 at time t

will acquire new composition at the next moment, and
the changing rate is 	

Idd, = wi(01,02,"

i = 1,2,-	 ,M,

where w i is the reaction rate for that specific sample
point. If we regard w i as the convection velocit y of
the particle in the phase space, the it is clear that
the above ODE represent the movement of a sample
particle in the phase space.

The various chemistry models considered in this
study are presented in the following section.

Chemistry Models for H, — F, Reaction
Finite rate chemistry_

The reaction of H2 -+ F2 = 2HF can be repre-
sented by the following two step chain reactions[4]:

H2 +F--'' HF+H

H+F,	 HF+F

with
610

k t = 2.6 x 10127.0.5exp 	
RT )

k 2 — 3 x 10 9 T l sexp	
RT
1680 )

where T is in K, R in cal cool -1 K -1 , and k in cm-3
mol' sec'.

The above expressions only provide the forward
reaction rate; the backward reaction rate can be cal-
culated using the e q uilibrium coefficient:

k b = kflkeq,
and the equilibrium coefficient can be evaluated using
Gibbs free energy. Polynomials for Gibbs free energy
for various species can be found in Ref. [8]. A nu-
merical experiment shows that the backward reaction
rates are much smaller than that of the forward re-
action for the two reaction steps described above and
can be neglected.

Let C denote the mole concentration; for each
sample particle, we need to solve the following set of
ODES:

d
=— k i CH, CF = w t

dt

t

d CF2 = —k, CH CF, = w2
dt

d CH

dt	 — —w t + w 2 = ws

d CF
di	 --L —W 2 =W4

d CH F

dt
_

— 
-w l — w2 = ws

d 
_ —

s

h j, Wi
dt

i-1

where h is the enthalpy and h' is the heat of forma-
tion.
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Using n to denote the time level. we found that
the following semi-implicit scheme seems to be most
stable:

a few hundred degrees Kelvin. Under these circum-
stances, the variation of specific heat C, is negligible,
and the temperature can be calculated as

C" +1
H'

=	 CHI
1+Atk1CF

Cn+1
F'

n
=	 F,

1 + At kzCH

C" +1
H

— C" + At k l C',CF
1 + At kzCH

Ci}1
F

_ CF + ^t k- CF, H

1+At k1CH,
CHF1 = CHF + At (k 1 CK^ CF + k, C;1 CF= )

The energy equation is solved explicitly. To start the
chain reaction 0.00002 mole fraction of F was released
into the flowfield initially.

Using the above equations to calculate the reac-
tion in a larninar premixed flame, we found that the
time required for this reaction is the order of one mi-
crosecond (Figs. 1 and 2). The turbulence time scale
in the calculation. r = k/e, is the order of one sec-
ond. Considering this large difference of time scales.
it is impractical to use finite rate chemistry in this
calculation.

Fast reaction

Since the chemical reaction is very fast compared
to the flowfield development and the reverse reactions
are negligible, we chose to use the following complete
irreversible reaction mechanism. We assume that af-
ter molecular mixing, complete reaction is achieved
within each particle during the time interval of one
marching step in the calculation. The reaction is cal-
culated using the following equations.

For Cy 7 > C"

C" + 1 = Cn — CnH 7 	H2	 F7

CF+ 1 =0

HF1 = ^HF + 2CF,

For CH I < CFA :

CH71 = 0

C 1F+ - CFA - cn

CHFI = CH F + 2CH,

The energy equation can be written as

Ah = 
—hf, ACHF (Mp F) ,

where MHF if the molecular weight of HF.
Since the concentrations of reactants are low, the

heat release is low, and the temperature rise is within

7'n+1 =7"+
Ah
 
C;'

The error involved in this approximation is less than
5%.

Results and Discussions

Code validation.

Before applied to the hydrogen-fluorine diffusion
flames, the computer algorithm is first validated us-
ing experimental data for a heated turbulent jet. The
non-reacting flow data serves as a check for the con-
vection and molecular mixing process in the pdf solver
as well as the k — c model in the N.-S. solver.

Extensive experimental results for turbulent
plane jet have been reported by many authors. Mea-
surements for mean velocity field in a turbulent jet
were first reported in the 1930's[9]; turbulent shear
stress measurements had been reported more re-
centiv[10,11]. To determine the effect of turbulence
on mixing, the temperature field of a heated turbu-
lent jet had been studied by several authors. The tur-
bulent jet has a slightly higher temperature than the
ambient. Measurements of both the the mean tem-
perature and the rms of the temperature fluctuations
were given[12-17].

In the present study of this non-reacting flow
case, the temperature field is treated as a conserved
scalar and is simulated by the pdf of the tempera-
ture; the velocity field and turbulent shear stress are
obtained by solving the N.-S. equation and a k — e
turbulence model.

In the finite difference solution of the flowfield,
41 grid points are used across half of the jet width. A
symmetry boundary condition is used a-. the jet cen-
terline. Fig. 3 shows the comparison of the present
solution of the mean velocity field with the experimen-
tal data, and Fig. 4 presents the numerical solution
of the turbulent shear stress as compared to the ex-
perimental data. Good agreements between numer-
ical results and experimental data are observed for
both the mean velocity field and the turbulent shear
stress. The turbulent shear stress is calculated from
— < uV >= v,au /8y, where v_ = Ck2 /e. A good
prediction of the turbulent shear stress ensures that
the turbulent time scale, r = k/c, supplied to the
Monte Carlo simulation is correct.

For the Monte Carlo simulation of the temper-
ature field, two sample sizes of 1000 and 1500 sam-
ple particles per cell are used. The predicted mean
temperature and the root mean square (rms) of the
temperature variation are presented in Figs. 5 and
6. The results show that both calculations produce
fairly good comparisons with the experimental data,
which means a sample size of 1000 particles per cell
is large enough.'
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The above validation lends credibility to the N.S.
solver as well as the !Monte Carlo solver developed in
the present study.

H, — F, diffusion flames

The flow conditions for the H, — F, diffusion
flames are set according to an experiment performed
b y Hermanson and Dimotakis (1989). The flame con-
sists two streams. The upper stream contains [V_, and
F2 , the flow velocity is U I = 22 m/s: the lower stream
contains of IV-2 and of H2i with velocity U2 = 8.8 m/s.
In the present study, 6 cases involving various per-
centage of H2 and F2 in the upper and lower stream
are considered; the conditions are listed in Table 1,
where AT,,v is the difference between the adiabatic
flame temperature and the free stream temperature.

tax
No.

eq uivalence
ram

lower stream,
mole fraction

of H,

upper stream,
mole fraction

of F,
OT.,f

1	 1 0.02 0.02 186
2	 1 0.04 0.04 368
3	 1 0.06 0.06 554
4	 1!4 0.01 0.04 151
5	 1/4 0.02 0.08 302
61	 1/4 0.04 0.16 600

Table 1. Initial conditions of the flames calcu-
lated in the present study.

Fig. 71 shows the calculated temperature rises due
to combustion for cases 2 and 5 of Table 1 and the cor-
responding experimental data. In the figure. ST is the
shear laver thickness determined by 1% of the tem-
perature rise. AT is the actual temperature rise due
to combustion. ( the two streams have the same tem-
peratures initially,) and ATadf is the adiabatic flame
temperature assuming complete reaction. The solu-
tion for case 2 agrees fairly well with the experimental
data for the same case. while the mean temperature
is slightly over predicted for case 5. The computation
shows the flame center shifts as a result of change in
equivalence ratio, which is consistent with the exper-
imental results.

The rms of the temperature variance for cases 2
and 5 are given in Fig. 8. The results show that in
a diffusion flame, the temperature variance has two
peaks, and the highest values do not coincide with
the maximum values of the temperature distribution.
The shifting of the flame due to the change of equiv-
alence ratio can also be observed from this figure.

The mass fractions of H2 , F2 and HF for cases
2 and 5 are presented in FIgs. 9 and 10. respectively.
One can see that although a complete reaction chem-
istry model was used. with the pdf method, results
simular to that of a finite rate computation are pro-
duced, which is one of the many advantages of the
pdf method.

One experimentally established fact is that for
the same equivalence ratio, with various mole con-
centrations of fuel and oxidizer in the flowfield, the

normalized temperature stays the same [4,51. The
present calculation confirmed this. Figs. 11 and 12
are the mean temperatures and rms's of the temper-
ature variance for an equivalence ratio of one; three
mole concentrations of fuel were considered. One can
see that the curves coincide with each other. The
same agreements are found for equivalence ratio 1/4
(Figs. 13 and 14).

The pdf distributions for flame temperature at
the center and at the outer edge of the flame (for case
2 of Table 1) are plotted in Fig. 15, where the x-
axis denotes (T— < T >) /Q, with < T >= T being
the mean temperature and v the rms. The pdf dis-
tributions show that at the center of the flame, the
temperature with the highest probability is not far
from the adiabatic flame temperature, while at the
outer edge of the flame, most of the time one would
find a temperature close to that of the free stream
temperature. Nonetheless, as a result of external and
internal intermittency, low temperature fluid does ex-
ist at the center and high temperature fluid the outer
edge. Pdf distributions for various species concentra-
tion can also be obtained from the solution. but will
not be presented here.

Concludinff Remarks

A Monte Carlo soi'ution algorithm for the pdf
evolution equation has been developed and success-
fully combined with a finite difference flow solver in
the study of turbulent combustion. The algorithm
was validated using turbulent mixing data from non-
reacting flows. Turbulent diffusion flames of H2 -
F2 were computed using the pdf method, and good
agreements between numerical solution and experi-
mental data were observed. The computation iden-
tified the change of equivalence ratio as the cause of
flame shift, and demonstrated that similarit y solu-
tion exists for flames with the same equivaience ra-
tio. The present work showed that a grid depen-
dent Monte Carlo scheme can be readily applied to
a general curvilinear coordinate system: therefore. it
is suitable for realistic reacting flow computations.
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Figure 1. Temperature rise in a premixed lami-
nar H2 -F2 flame.
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An Improved k-e Model for Near Wall Turbulence
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Abstract

This paper presents an improved k-e model for low Reynolds number turbulence
near a wall. The work is twofold: In the first part, the near-wall asymptotic behavior of
the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation
are analyzed. Based on these analyses, a modified eddy viscosity model with the correct
near-wall behavior is suggested, and a model for the pressure transport term in the k-
equation is proposed. In addition, a modeled dissipation rate equation is reformulated,
and a boundary condition far the dissipation rate is suggested. In the second part of the
work, one of the deficiencies of the existing k — e models, namely, the wall distance (e.g.,

Y + ) dependency of the equations and the damping functions, is examined. An improved
modal th^.t does not depend on any v,, dl distance is introduced. Fully developed turbulent
channel flows and turbulent boundary layers over a flat plate are studied as validations for
the proposed new models. Numerical results obtained from the present and other previous
k-e models are compared with data from direct numerical simulation. The results show
that the present k-e model, with added robustness, performs as well as or better than other
existing models in predicting the behavior of near-wall turbulence.

1. Introduction

The k-e model is one of the most widely used_ turbulence models in enginee.iug
applications. Patel et al. [ ' ] recently reviewed existing two-equation models that can be
integrated directly to the wall. One of their conclusions was that the damping functions
used in turbulence models, especially the one for the eddy viscosity, need to be further
modified in order to improve model performance. In fact, as we shall see later, many
existing k-e models do not provide the correct near-wall behavior of the eddy viscosity.

Shih l' l recently proposed a new near-wall k — e model based on asymptotic analysis.
The present paper is a direct extension of that work.

In the present paper, we will first analyze, in section 2, the near-wall asymptotic
behavior of the eddy viscosity and the pressure transport term in the k-equation, and
in sections 3 and 4, propose models according to their near-wall behaviors. The model
equation for the dissipation rate is reformulated following an argument similar to that of
Lumley, lsl and a boundary condition for e is suggested.

An asymptotic analysis shows that, in the near wall region, while the pressure
transport term in the turbulent kinetic energy equation is small compared to the dissipation
and molecular diffusion terms, it is much larger than the turbulent transport term, and

* Institute for Computational Mechanics in Propulsion.
** Supervisor, Comput. Phys. Section, Sverdrup Technology, Inc., Member AIAA.

This paper is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.
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it plays an important role in the balance between the dissipation and molecular diffusion
terms. This near-wall behavior is also observed in direct numerical simulation of fully
developed channel flows (Mansour et a1. 13 ^ ) , Kim et al. [ ' ] ). However, in existing k-e models,
this pressure transport term is either ignored or lumped into the turbulent, transport model.
The present work introduces a model for the pressure transport term explicitly.

Most of the existing k-e models for near-waL turbulence use y+ (defined as ury/v,
where u r the friction velocity) as a parameter in constructing damping functions, with the
Jones-Launder model being the only exception. While the use of y + is perfectly fine for
simple attached boundary layer flows, it is inconvenient in more general applications such
as separated flows and flows with corners, where y + is not well defined. The Jones-Launder
model has the advantage of avoiding y + ; however, the model is known to perform poorly
in predicting near wall turbulent quantities, especially the turbulence kinetic energy. In
the present work, a new damping function is derived based on asymptotic analysis (Section
5). The new function is constructed upon a non-dimensional quantity that is independent
of the coordinate system.

The new models proposed in this paper were validated using direct numerical simu-
lation data for fully developed turbulent channel flows and turbulent boundary layers over
a flat plate. These numerical results are reported in Section 6. Comparisons are also made
with other popular k — e models implemented in the same computer code. The numerical
results show that the present model, in general, performs better than the existing models
while providing added robustness.

2. Asymptotic Analysis

To analyze the near-wall asymptotic behavior of the eddy viscosity and other tur-
bulent quantities, we expand the fluctuating velocities and pressure in Taylor series about
the wall distance as follows:

u i — b i y + c l y2 + dl y3 + ...
u 2 = C2y2 + d2y3 + ...

U 3 = b 3 y + C3y2 + d3 y3 + ...	
(1)

p = ap + bpy + cpy 2 + dpy 3 + ...

where the coefficients ap , b l , C2 , ... are functions of x, z and t. Using the continuity and
momentum equations, Mansour et al J31 derived the following relations between the coeffi-
cients,

2C2 = — ( b i,i + b3,3)

ap,1 = 2vc 1	(2)

ap , 3 = 2vc3

The eddy viscosity is usually defined as

2
— ( u = u i) = vT(U` >i + Ui, i ) — 2kbii 	 (3)
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where ( ) stands for ellscinble average and k = (v rdi) /2 is the turbulent kinetic cnrrgy.
For plane shear flows, we can write from Eq. (3)

	

VT = aulay	 ()

and using Eq. (1), we obtain the near-wall asymptotic behavior of the eddy viscosity:

VT _ —( -
	

/
1

2) y 3 + — ( bl d2 + C1 

2	

2 ( b , C2)( C 1) y4 + 0(y 5)	 (rJ)
1

That is, near the wall vT is 0(y3 ). A correct eddy viscosity model should have this near-
wall behavior. We shall see later that many existing models do not have this near-wall
behavior. For later use, let us examine also the near-wall asymptotic behavior of the
turbulent kinetic energy k and its dissipation rate E = v(u i,j u i j ). Using Eq. (1), we
obtain the following relations for the k and e:

( b ])	 (b3 )yz2	
+((b,Cl) + ( b 3 l:3))y3 +OW) 	 l6)2

E — (b 1
2)

+ ( b3) + 4((b1c1) + ( b3 C3)) y + O ( y2 )	 ( 7)
V

In addition, the pressure transport term in the k-equation, 11 = — v (u ip ,i ), becomes (using
Eq.s (1) and (2))

II = — 2v((blcl) + ( b3C3 ) ) y + O ( y2 )	 ( S)

The turbulent transport term in the k- equation, —(ku i ) i , can be estimated as 0(y3).

Therefore, the pressure transport term is much larger than the turbulent transport term
near the wall.

3. Eddy viscosity model

In this section, we will propose a model for the eddy viscosity using its near-wall
behavior described in the previous section. In general, the eddy viscosity model can be
written as

	

11T = C UT	 (9)

where u' and t' are the turbulent characteristic velocity and length scale, respectively.
Depending on how the velocity and length scales are specified, the edd y viscosity model
can be a mixing length model, a one-equation (k) model or a tyro-equation (e.g. k-e)
model. For example, in plane shear flows, Prandtl's mixing length model specifies the
characteristic velocity with 69Ulay. For near wall turbulence, the Van Driest mixing
length model further damps the length scale to y[1 — exp(—y'/A)]. For more advanced
mixing length models, see Baldwin and Lomax [ ' ] , and King [' ] . One-equation (k) models
use k 1l2 as the characteristic velocity, which is determined by the turbulent kinetic energy
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equation. In two-equation models, e.g. k-E models, the length scale is usually specified
by 0 12 1E, where E is determined by a dissipation rate equation. In this paper we will
concentrate on two-equation models, wherein the eddy viscosity is usually written as

k2

	

VT = Cµ f,, k
	

(10)
E

where C,, = 0.09, and fµ is a damping function. The form of the damping function
is critical in such formulations, since the prediction of the mean velocity field depends
primarily on the eddy viscosity model. Thus it is important for an eddy viscosity model
to have the proper near-wall behavior. We have examined the near-wall behavior of eddy
viscosity models based on various k -E model equations. The results are listed in Table 1,
which shows that some of the k-E models do not have the correct near-wall behavior of the
eddy viscosity, namely, vt = 0(y3).

The quantity k3/ ' /E is usually considered a characteristic length scale, P', (or the
size) of the energy containing eddies. One expects that near the wall the size of these
eddies to be of the order of the distance from the wall, O(y). However, Eq.s (6) and (7)
show that k 3 ^ 2 /E is O(y 3 . Hence, 0 12 /E is not an appropriate quantity to represent the
length scale of the large eddies near the wall. We therefore introduce a new variable E:

ak/ax i ak/axi
E =E -v	

2k

which has the following property: E approaches E away from the wall and is 0(y 2) near the
wall. Therefore, k. 3/2 /E is a proper quantity to characterize the length scale of the large
eddies. With this length scale, the eddy viscosity should be written as

k2

	

LIT = C", fµ 
e	

(12)

Now in order for vT to have the correct near-wall behavior, the damping function fµ
must be O(y) near the wall and approaches 1 away from the wall. The damping functions
used in various k -E models are listed in Table 2. If we consider the presence of the gall
as the main effect on the eddy viscosity, then we may assume fµ is mainly a function of

Y+ . The form of fu can be determined quite accurately if we know vT , k and E from, for
example, the direct numerical simulation. One may optimize the following simple form by
numerical experiments:

	

f, = 1 - exp(-a l y+ - a2 y+
2	
- a3 y+

3
 - a4y+

4

 )	 (13)

The optimal values for channel flows are a 1 = 6 x 10 -3 , a2 = 4 x 10 -4 , a3 = -2.5 x
10 -6 , a4 = 4 x 10 -9 . It can be shown that this form of damping function does provide
the required near-wall behavior. As will be shown later, the above constants are valid for
general boundary layer flows.

(11)
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4. Modeled k-e equation

To complete the eddy viscosity model, we need the modeled equations for the tur-
bulent kinetic energy and its dissipation rate. In this section we will analyze the near-wall
behavior of the k-equation and propose a model for the pressure transport term Nvith a
proper near-wall behavior. The equation for the dissipation rate is also reformulated with
a formal invariant analvsis.

4.1 k-equation

We start with the equation for the turbulent kinetic energy,

	

k,:+U;k,;=D„+T+H+P— e 	 (14)
where D,,, T and H represent the transport of the turbulent kinetic energy due to the
viscosity, turbulent velocity and pressure, respectively. P and e are the rate of production
and dissipation of the turbulent kinetic energy. The terms on the right hand side of Eq.
(14) are defined as follows:

D„ = vk,ii

T = —(kuj),i

P _ —(utuj)U;,j
E = v(u=,iu=,i)

tTSing Eq.s (1) and (2), we obtain the budget of the k-equation near the wall,

Dk = O(y3)
Dt

D, = "(( bi) + (b3)) + 6v ( ( b i c i ) + ( b3 c3)) y + O(y2)
T = 0(y3)	 (16)
H = —2v((b l c l ) + (b3C3 ))y+O(y2)

P = O(y3)

E = v(( b2 ) + ( b3)) + 4v(( b l cl) + ( b3 c3)) y + O(y2)

This budget shows that the term 11 is much larger than the term T, and that H cannot
be neglected if we want the k-equation be balanced in the near-wall region. However, the
existing models either do not consider this term or simply combine it with the term T and
model them as

VT
	 ( 17)

ak	 l'i

In this paper, we propose a model for 11 which has a similar form to that of the standard
turbulent transport model, but with a coefficient to ensure its correct near -wall behavior,
Eq. (8). The proposed model form of II is

Co	 VT	
18k,,	 (	 )—II =

	

fµ [1 — exp(—y+)] Qk	 ^'j
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where Co = 0.05 is a model constant. In some existing k -E models, it is assumed that E = 0
at the wall. In that case, in order to balance the term D,,, a nonzero artificial term D
must be added to the k-equation. The form of D for various k -E models is listed in Table
3. Finally, the modeled k-equation becomes

ak	 ak_ a	 vT ak	 avi aU
)
 avi

at +U^ax;	 ax^^(v+ a k ) ax;^ +II+vT( ax; 	 ax,)axj - 
E +D	 (19)

In the present model, D = 0, since E is nonzero at the wall. (The boundary condition for
E will be discussed later.)

4.2 E-equation.

The exact dissipation rate equation is

E ,t + U; E , ; = D' + T E + II` + PD	 (20)

where D', T` and 11` represent the diffusion rate of the dissipation rate due to the viscosity,
turbulent velocity and pressure, respectively, and PD stands for the entire mechanism of
the production and destruction of the dissipation rate E. The terms on the right hand
side of the above equation are as follows:

D;,=vE;;
fT = — v(ui,kui,kuj),i
f--2v

R	 P (P,ku.i,k),i 	 (21)

PD = - 2v ((u i,k uj,k) + (vk,iuk,i))Ui j - 2v(u;ui ,k)Ui,k;

- 2v('ui,ku;,ku=,I) - 2v 2 
(ui,klui,kJ)

The term II` is usually neglected and the term T f is modeled as

To model PD, we define %P by

VT l
T` = T E , ;

J	
(22)

PD = _ EE

k
At the level of the k-E model, we assume T is a function of v, VT, k, E, e, Uij and Ui,jk-
Since T is an invariant, it must be a function of the invariants that can be constructed
from these quantities. Therefore we can write

	

vT Ui,; Ui,;	 k
IP = T (R,,	 1/VTUi,JkUi,Jk—)

E	 EE

where Rt is the turbulent Reynolds number k2 1VE. We expand IP in a Taylor series about
VTUijUijlI and vvTUi jkUi , ; k klEe, and take only the linear terms. We obtain

' I•	 V 
vT Ui,i Ui ,i	 .I,	 k

= WO + y l	 E	 + 4'2vvTUi,JkUi,Jk 
EE	

(23)
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where the coefficients VVo, 01 and 02 are in general functions of R t . Finally, the modeled
dissipation rate equation becomes

aE	 aE a 	 LT aE	 E	 EE
—4- U; 	=	 [( v +—)	 ^ 4-Crf]- VTUi ,l Ui ,.7 —C2 f2— + E 	 (24)at	 ax;	 ax;	 Gr F ax;	 k	 k

where, C, and C2 are the model constants, and f l and f2 are functions of Rt . The term
E in the present model comes from the last term in Eq. (23):

E = VIIT [Ti,Ik Ui,jk	 (25)

where we have taken 02 = —1. The form of E and Cl , C2i f1 and f2 for various k -E models
are listed in Tables 3 and 4.

4.3 Boundary Condition for E.

Many of the earlier k — E models use E = 0 as the boundary condition for the
dissipation rate. It is now generally agreed that this is not the physically correct boundary
condition. However, controversy still exists in what boundary condition should be used for
the dissipation rate. In some calculations, ac/ay = 0 is used. which clearly has no physical
background. Most models use the second derivative of the turbulent kinetic energy at the
boundary as the boundary condition for E, as listed in Table 1. This condition cornes
directly from the k-equation and is physically correct; however, it makes the problem very
stiff and thus put very stringent restrictions on the choice of initial profiles for k and E.

If the initial profile for k is not given correctly, the second derivative of k can become
negative and cause the solution procedure to diverge.

We propose the following boundary condition based on the asymptotic analysis. At
y = 0, it is obvious from eqs. (6) and (7) that

2

E = 2v 
a 
a	

(26)

y

This expression is exact at the gall, and it does not add stiffness to the solution procedure.

5. Deficiencies and Improvements of Existing Models

5.1 Damping functions

One of the deficiencies of the existing near wall models is that most of the wall
damping coefficients are functions of a wall coordinate, such as the y+ . This types of
damping function works well only in the cases of attached boundary layer flows with simple
geometries where y + is well defined. For practical engineering problems with corner flows
or separated flows, some ad hoc treatment to the damping function must be made. The
same is also true for the length scale in an algebraic model. The only exception to the above
is the Jones-Launder model in which the damping function is a function of Rt = k2/vE.

Although the Jones-Launder model has the advantage of independent of y + , it
is known that this model does not predict correctly the near-all turbulence, especially,
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the near-wall turbulent kinetic energy is underpredicted. One natural cation could be to
modify the J-L model such that it would predict the correct near-wall turbulent quantities.
However, one basic difficulty met in such attempts is that the k-equation is very stiff. The
fact that we are putting k 2 back into the equation by using the parameter R t aggravates
the situation.

To avoid the above difficulty and yet still achieve the same end, we introduce the
following parameter:

U4
R,, 

= ve ,
	 (27)

where U is the total velocity. (Note: U is the total velocity in a coordinate frame fixed to
the solid boundary.) From the results given in Section 3, since e approaches a finite value
at the wall, it is obvious from eq. (1) that R,, = 0(y4 ) near the wall. Similar to eq. (13)
of Section 3, we write the damping function for the eddy viscosity as:

f^^ = 1 - exp(-a 1 Ru/4 - a2 R,i,/2 - a3 R,,)	 (28)

with a l = 5 x 10-3 , a 2 = 7 x 10 -5 , and a3 = 8 x 10 -7 . One can easily verify that with this
damping function, the eddy viscosity has the correct near wall behavior, i.e., VT = O(y3).

One point worth mentioning is the wide applicability of the above damping func-
tion. Though developed with Shih model (Section 3, 4) in mind, it can be used with any
existing k - e model that uses a non-zero boundary condition for the dissipation. This new
parameter R,,, unlike Rt , by no means affect the stability of the solution procedure.

5.2 Pressure transport term.

In order to remove the coordinate dependency of the k-equation, we replace the
pressure transport term given in eq. (18) by the following expression:

L
II	 Co VT kti J=	 (29)2 QA

11 	 J
,1

where the model constant is readjusted to Co = 0.01.

5.3 The formulation of Z.

In order to obtain the correct wall behavior for the eddy viscosity, we have in-
troduced e` in eq. (11), Section 3. Theoretical analysis shows that e is always positive.
However, in numerical calculations, the value of E may become negative or even oscillatory
due to round of errors. ( Depending on the accuracy of the numerical procedure, this may
or may not be the case.) Here, an alternative definition of e is suggested:

E = (1 - exp(-R,1/2 ))e	 (30)

This expression has the same near wall behavior as eq. (11) but is less likely to cause
numerical instability.
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%Vith the modifications suggested above, the model constants need slight adjust-
ment. The constants used in the present modified model are as shown in Table 4.

6. Numerical Testing

Flows with self-similar solutions are particularly useful for accurate model testing,
because their solutions are independent of initial conditions, and one does not need to
choose carefully the initial conditions for the k and E. In this paper, we use a fully
developed channel flow and a flat plate boundary layer for model testing. These flows are
the simplest wall bounded turbulent shear flows with self-similar solutions. However, the
complex features of the turbulence, for example, the effect of the wall on shear turbulence,
are present. In the case of the channel flow, the k -E equations form a one-dimensional
problem, numerical calculations are easy and accurate. Recently, the measurementsl8l
confirmed the accuracy of the direct numerical simulation data. l41 These data are used for
model validations.

In legends of the figures presented at the end of the paper, .wliich will be discussed
in detail in the following paragraphs, the word "present" refers to results obtained using
the model suggested in Section 4 together with the new damping function and e given in
Section 5, while the label "Shill" refers to results obtained using strictly formulations given
in Section 4.

6.1 Fully developed turbulent channel flow

Let h be the half width of the channel, u, the friction velocity and Re, the Reynolds
number defined as u T h/v. Let U, k, E, VT and y be the non-dimensional quantities, normal-
ized by u,, u 2 , uT/h, v and h, respectively. The modeled equations for the channel flow
becuine

AT	 1—y
dy

	
Re, 

1 + v	
(31)

d { 1 [,+(1+C)vTJdk}+ VT(
Q	

dU)2 1 -
E -0	 (J2)dy Re,	 k dy	 dy Re,

d	 1 vT dE	 E	 dU 2 1	 EE	 d 2 2 1
—{	 (1+—)—} +C, — vT(—)	 –C2 f2 + VT( d 2) 

Reg 0 (33)
-dy Re,	 a, dy	 k	 dy Re,	 y	 T

where
k2

VT = Cµfµ Re, —
E

( dk )2
l y

2k Re,
fµ = equation(13)	 (34)

0.4	 ( Re, k2
f2 = 1 - 1.4 expl-( 

6E )2]

	_ 	 Co

C fa[1 — exp(—y+)]
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The boundary conditions are simple. At. the wall,

U=k=0

(dy ) z 	( 35)

e 2k Re,

and at the center of the channel,
dk	 de

= 0	 (36)
dy - dy

The main results from different k-e models for a channel flow with Re, = 180
are plotted in figures 1 - 4. All the calculations are compared with the direct numerical
simulation data. Figure 1 shows mean velocity profile, Figure 2 shows the turbulent kinetic
energy, Figure 3 shows the turbulent shear stress distribution, and Figure 4 shows the
Dissipation rate. From these numerical results we reach the following conclusions: The
model of Jones and Launder l "I (JL) underpredicts the mean velocity as well as the peak
value of the turbulent kinetic energy. Chien's model [" ] performs better than the JL model,
but it overpredicts the mean velocity near the center of the channel as well as the turbulent
kinetic energy. In these two models, e = 0 at the wall is used as the boundary condition,
so the dissipation rate-near the wall cannot be correctly predicted. Lam and Bremhorst1`1
use a nonzero boundary condition for e and have made some improvement for the mean
velocity and turbulent kinetic energy compared with the results of the JL model. However,
the shear is much overpredicted, and the dissipation rate near the wall is not correct. The
model of Nagano and Hishida l1 I presents a very good prediction for the mean velocity and
shear stress, while the peak value of k is under-predicted. Their main modification to the
JL model is a change in the damping function fµ and the form of E. A zero dissipation rate
at the wall is used. The numerical results from the Shih model and the present modified
Shih model show improvements in the prediction of all quantities, including the dissipation
rate.

6.2 Boundary layer flows

The boundary layer equations and the corresponding k- and e-equations are solved
using a conventional semi-implicit finite difference scheme. In this scheme, the coefficients
for the convection terms are lagged one step in the x-direction, and the source terms in
the k- and e-equation are linearized in such a way that stability is ensured.

In the present study, a grid of 100 points in the y-direction is used. The grid is
stretched linearly with Dye+ 1 /Dye = 1.05. The grads expands in the y-direction according
the the boundary layer growth rate.

The results of this calculation are presented in Figure 5 through Figure 10.

Figure 5 and 6 show the comparison of the wall shear stress from various models to
experimental data and some DNS data. As shown in Figure 5, at low Reynolds number
(based on momentum thickness), J-L model overpredicts the shear stress while Chien
model and NH model under-predict the shear stress. One common character of these three
models is that they all used zero boundary condition for the dissipation, and thus unable
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to predict the correct turbulence near wall behavior. At high Reynolds number (Figure
6) the JL model still overpredicts the wall shear stress, while the others seem to do a fare
job.

Figure 7 and 8 are the results for Rce = 1410, and Figure 9 and 10 are the results
for Ree = 7700. From these results one can reach similar conclusions as we did from the
channel flow case: The JL model generally underpredicts the peak value of the turbulent
kinetic energy while overpredicts it in the inertia layer; the model also underpredicts the
mean velocity profiles. The LB model and the NH model also under-predict the peak value
of the turbulent kinetic energy near the wall. The three models mentioned above either
have zero boundary- condition for e or do not have the correct order of magnitude for eddy
viscosity. The Figures show that, in general, the present model performs better than the
existing models.

Conclusions

Froin the model testing, we conclude that the present k -e model has made consid-
erable improvement over previous k-e models according to the comparison with the direct
numerical simulation data. We find that the improvement is mainly due to the modified
eddy viscosity model and the model of the pressure transport term in the k quaticn. The
proposed dissipation rate equation also shows a better near-wall behavior than the previ-
ous ones. The correct boundary condition for E also seem to play an important role in the
accurate prediction of the turbulence near wall behavior.
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Table 1 Eddy viscosity and boundary condition for E in various k -E models

Model vT BC: E,,
JL O(y3) 0
Reynolds O(y5) v aayz
LB O(y4) vayz
Chien O(y3) 0
NH O(y4) 0

z
Shih	 O(y3)	 2v ( Wyk/

2
Present	 O(y3)	 2v (aa k)

y

Table 2 Damping functions used in various k-e models

Model fl, f i f2
JL exp(1 +R=/50) 1.0 1 - .3 exp(-Ri )

Reynolds 1 - exp(-.0198R k ) 1.0 [1 - .3 exp(-R= /9)] fµ
LB [1 - exp(-.0165R k )] z 1 } (fY )3 1	 - exp(- R 2 )

X 
(1 

+ 2R .5 }

Chien 1 - exp(-.0115y + ) 1.0 1 - .22 exp(- R 2 /36)
NH [1 - exp(-y+ /26.5)] 2 1.0 1 - .3 exp(- R,

2 )
Shih Eq. (13) 1.0 1 - .22exp(-R2 /36)
Present Eq. (28) 1.0 1 - .22 exp(- Rt /36)

Table 3 Model terms in various k-E models

Model II D E
JL
Reynolds

0
0

-2v(aay ^2
0

2vvT(aY2
0

LB 0 0 0
Chien

NH

Shih

0

0

Eq. (18)

- 2yz'

-2v(aay /2
0

- 2y2E exp(-.5y+)

vVT	
2

(1 - fµ)(ay2 )

( a2z )zvvT 
ay

Present Eq. (29) 0 a?u 2vvT( aye

Table 4 Model constants in various k-E models

Model
JL

C,,
.09

C,
1.45

C2
2.0

ak
1.0

QE
1.3

Reynolds .084 1.0 1.83 1.69 1.3
LB .09 1.44 1.92 1.0 1.3
Chien .09 1.35 1.8 1.0 1.3
NH .09 1.45 1.9 1.0 1.3
Shih .09 1.45 2.0 1.3 1.3
Present .09 1.5 2.0 1.3 1.3

Rt = K2 /vE, Rk = I^yl y , y+ = wryly.
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Figure 1. Mean velocity profile for channel flow, Re, = 180.
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Figure 2. Turbulent kinetic energy for channel flow, Re, = 180.
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Low Reynolds Number Two-Equation
Modeling of Turbulent Flows

V. Michelassi; T.-H. Shih
Center for Modeling of Turbulence and Transition

NASA Lewis Research Center

March 2S, 1991

Abstract

A new k — e turbulence model that accounts for viscous and wall effects is
presented. The proposed formulation does not contain the local wall distance
thereby making very simple the application to complex geometries. The for-
mulation is based on an existing k — c model that proved to fit very well with
the results of direct numerical simulation. The new form is compared with nine
different two-equation models and with direct numerical simulation for a fully
developed channel flow at Re = 3300. The simple flow configuration allows a
comparison free from numerical inaccuracies. The computed results prove that
few of the considered forms exhibit a satisfactory agreement with the channel
flow data. The new model shows an improvement with respect to the existing
formulations.
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MODELING OF NEAR-WALL TURBULENCE

T.H. Shih*
Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio 44135

N.N. Mansour
National Aeronautics and Space Administration

Ames Research Center
Moffett Field, California 94035

ABSTRACT

This paper presents an improved k-c model and a second order closure model for low-
Reynolds number turbulence near a wall. For the k-E model, a modified form of the eddy
viscosity having correct asymptotic near-wall behavior is suggested, and a model for the pres-
sure diffusion term in the turbulent kinetic energy equation is proposed. For the second order
closure model, we modify the existing models for the Reynolds-stress equations to have proper
near-wall behavior. A dissipation rate equation for the turbulent kinetic energy is also refor-
mulated. The proposed models satisfy realizability and will not produce unphysical behavior.

Fully developed channel flows are used for model testing. The calculations are compared with
direct numerical simulations. It is shown that the present models, both the k-e model and the
second order closure model, perform well in predicting the behavior of the near wall turbulence.
Significant improvements over previous models are obtained.
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ADVANCES IN MODELING
THE PRESSURE CORRELATION TERMS
IN THE SECOND MOMENT EQUATIONS

Tsan-Hsing Shih and Aamir Shabbir
Institute for Computational Mechanics in Propulsion

and Center for Modeling of Turbulence and Transition
Lewis Research Center

Cleveland, Ohio 44135

and

John L. Lumley
Cornell University

Ithaca, New York 14853

ABSTRACT

In developing turbulence models, different authors have proposed various model con-
straints in an attempt to make the model equations more general (or universal). The most
recent of these are the realizability principle (Lumley 1978, Schumann 1977), the linearity
principle (Pope 1983), the rapid distortion theory (Reynolds 1987) and the material indif-
ference principle (Speziale 1983). In this paper we will discuss several issues concerning
these principles and will pay special attention to the realizability principle raised by Lum-
ley (1978). R.ealizability (defined as the requirement of non-negative energy and Schwarz'
inequality between any fluctuating quantities) is the basic physical and mathematical prin-
ciple that any modeled equation should obey. Hence, it is the most universal, important
and also the minimal requirement for a model equation to prevent it from producing un-
physical results. In this paper we will describe in detail the principle of realizability, derive
the realizability conditions for various turbulence models, and propose the model forms
for the pressure correlation terms in the second moment equations. Detailed comparisons
of various turbulence models (Launder et al. 1975, Craft et al. 1989, Zeman and Lumley
1976, Shih and Lumley 1985 and one proposed here) with experiments and direct numeri-
cal simulations will be presented. As a special case of turbulence, we will also discuss the
two-dimensional two-component turbulence modeling.
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ABSTRACT

Some new developments in two-equation models and second order closure models will

be presented. Two-equation models (e.g., k-e model) have been widely used in CFD for

engineering problems. Most of low-Revnolds number two-equation models contain some

wall-distance damping functions to acount for the effect of wall on turbulence. However,

this often causes the confusions and difficulties in computing flows with complex geometry

and also needs an ad hoc treatment near the separation and reattachment points. In

this paper, a set of modified two-equation models is proposed to remove abovementioned

shortcomings. The calculations using various two-equation models are compared with

direct numerical simulations of channel flows and flat boundary layers.

Development of second order closure model will be also discussed with emphasis on the

modeling of pressure related correlation terms and dissipation rates in the second moment

equations. All the existing models poorly predict the normal stresses near the wall and fail

to predict the 3 dimensional effect of mean flow on the turbulence (e.g., decrease in the

shear stress caused by the cross flow in the boundary layer. The newly developed second

order near-wall turbulence model to be described in this paper is capable of capturing the

near-wall behavior of turbulence as well as the effect of three dimension mean flow on the

turbulence.
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1. k-E model

The two-equation model, especially k -E model, is still the most widely used model

for computing engineering flows. We first list some of the commonly used two-equation
models,[1],[2],[a),[a],[sl,[s] and their predictions on the fully developed channel flows and

boundary layer flows compared with the corresponding direct numerical simulations. Then,
we propose a modified k -E model which does not contain any wall distance. The proposed

k-E model has been also tested using direct numerical simulation data.

The eddy viscosity VT is assumed in two-equation models as follows:

k2
VT = Cµ fµ-

E

or

VT = C,,fµ kT

where T = k2/e

The general k -E (or k-T) model equations are of the following forms:

k,t + Ujk ,j VT + v/K Uk k1J J

E ,t + Uj E,J -
VT

+ v/^ E^JJ\ QE ,7

T + UJT,J -
VT

+ v^K U r2 T'JJ ,j

+ Il + VT ( Ui ,j + Uj , i) Ui ,j - E + D

+ CI k VT ( Ui,j + Uj,i) Ui,j - C~2 f2 k + E

+ 2 ( VT 
+ v) k ,iT,i - 2 

C 
vT + v I T,iT,i

k Uri	 T Uri

+ (1 - CE1) 7kVT(Ui,j + Uj,i)Ui,j + ( C ,2f2 - 1)
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This table lists the model terms, damping functions and model constants appeared in

various two-equation models

Model B E Cil Cie fl {
J2

JL 2vvi( —;)2
E 1.45 2.0 1.0 1 - .3e -

LB o E 1.44 2.0 1+( f ) 2 1-e-^
Chien -21E E 1.35 1.8 1.0

_ 4 
361 - .22e

NH -IUIvvt(1 -	 ( 31 ) 2 E 1.45 1.9 1.0 1 - .3e
Shih 1/.j (")'

071 
'1 " R' 2 1 . 45 2.0 1.0 1 — .22e —	 36

Model H D f^
O'k

JL o —2v (aa )2 e^ 1T 5o)
l.o 

LB O O (1 — e - .ol65R12( 1 + 20.,')
1	 R 1.0

Chien o —21/k /y2 1 — e(--0155y') 1.0

NH O —2v(^ ) 2 [1 - e(-y+/26.5)12 1.0
SAA o

— O (1 +" - 15
le

 )tank( o)
v

1.36

Shih .05vik,i

CrkfN[ —exP(' y+)j

---]

O 1 — e(-6xlo -3 y + -4xlo -4y + {

2.5 x 10 -6 y +3 -4 x to-9y+4)

1. 3

T/t = CItf/, k	 J+ = u-y
	

^L = P
	

= 
Vk

v	 !v	 E	 v
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The following figures show the predictions on fully develop channel flow using various

two-equation models compared with the direct numerical simulation data. [7) Ploted quan-

tities include the mean velocity U, turbulent shear stress (uv), turbulent kinetic energy k

and dissipation rate EPS c. The open circle represents direct numerical simulation, and

the solid line represents the model prediction.
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Overall, Shih's k-E model gives better prediction in both fully developed channel flows

and flat plate boundary layer flows according to the comparisons with corresponding direct

numerical simulations. However, this model has the same problem as the others, that is it

contains the wall distance parameter y + , which is defined as

+ ury
y = —

v

where u T is the friction velocity. The difficulty would occure in some situations. For

example, near the seperation point u T aproaches zero and hence vt (through fµ (y+ )) will

approach zero everywhere when this u T is used. Another example is the flow with complex

geometry that the wall distance is not well defined. In the both cases, the ad hoc treatment

is needed in the model implimentation. We notice that Jonse-Launder's model [ ' , does not

contain y+ . However, its present form does not perform very well in the simple testing

flows. Here, we based on the Shih's k-E model modify the parts which is related the y+

with another parameter R = k E^z L . R is a ratio of turbulence length scale to viscous

length scale. The modifications [91 made here are:

fµ = 1 — exp {C3 I1 — exp(C6 R1/4
)] }

II=
 ^

Co VT k

f µ ^^	 ,J
r	 1/2

E = E I 1 — exp(—R t )

where R t = k2 /vE, Co = .004, C3 = .0004, C6 = 1.2

114



The following figures show the predictions from the present model on fully developed

channel flow compared with other models (including Jonse and Launder's modelN ) and di-

rect numerical simulation dataP ] The open symbols represent direct numerical simulation,

and the lines represent the model prediction.
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2. Second order modeling of near-wall turbulence

Using the near-wall asymptotic behavior of turbulence l10l as model constraints, we

formed a set of modeled transport equations for the Reynolds-stress tensor and the dissi-

pation rate of turbulent kinetic energy. The main emphasis was on developing a near-wall

model for the pressure correlation and dissipation terms in the Reynolds-stress equation.

A modeled dissipation rate equation is derived more rationally. Asymptotic analysis shows

that near the wall, the viscous diffusion term in the Reynolds-stress equations becomes

the leading term and is balanced by the pressure correlation and dissipation terms. We

use this as a model constraint in the model development. The proposed models satisfy

realizibility and ensure no unphysical behavior will occur. Here, we briefly describe and

list the proposed models.

Reynolds stress equation

The exact equation for the Reynolds stress tensor is:

Dt ( u = uj) = Pij + Tij + Dij + HI j — Eij

where ( ) stands for an ensemble average, D/Dt = a/at + Uka/a2k. the terms Pij , Tij,

D(v ) , rl ij and e ij represent the production, turbulent diffusion, viscous diffusion, velocity

pressure-gradient correlation and dissipation tensor, and are identified as follows:

Pij = — ( u i u k) Uj, k — (ujUk)Ui,k

Tij = —(uiUjUk),k

D(^) = v(uiuj),kk

17 ij = —P (u iP,j + ujP,i)

Eij = 2v(ui,kuj,k)

The proposed near-wall model for n ij — E ij is:

Il ij — E ij = —fw 
(42) 

[2(u i uj ) + 4(( u i u k) njn k + (ujuk ) nink ) + 2(uk uj)nknrninj]

where n i is a unit vector normal to the surface, and fw = exp(—(Rt /C1 )2 ), Rt = 9vf ,

Cl = 1.358RO . 44 , R,! ,, = u r b/v. u T is the friction velocity, b is the thickness of the boundary

layer or the half width of the channel. 	 -

Away from the wall, the velocity pressure-gradient correlation N ij is split into the

rapid part W' ) and the slow part 11(2): 

llij = rl(1) + rl(2)
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The proposed model for II i,- 	 Eij is:

(	 2	 {
—E (Q bij + 3 6ij )( 1 — JiU)

where
F 72

/j = 2 + 9 1 2 + 80.1 ln[1 + 62.4(—II + 2.3111)]} exp(— 
7.77

)

	

R t	 R 
1/2
t

F = 1 + 27111 + 911

II = —1bijbji

III = 13bijbjkbki

bij = (uiuj ) / ( g2 ) — b ij/3
The rapid part of velocity pressure-gradient, H(1 ) is modeled as follows(Shih and

Lumley [11,12) ):

II^^ ) _ ( 5 + 2a5)(g2 )( Ui,j + Uj i ) — 3(1 — a5 )(Pij — 2Pbij)
2	 2	 2	 6

+ (3 + 3
16 

a5)(D ij — 2Pbij) + 
2 (Pij — D ij) + 6bijP

+ 
5(g2) 

[(( U i Uk ) UJ,4 + ( U J Uk ) Ui ,9)( UkU 9) — ( U = Up ) ( U l U 4)( Up ,9 + U4,p)]

where,

Pij = — ( UiUk ) Uj , k — (UjUk)Ui,k

Dij = —(uiUk)Uk , j — (Ujuk)Uk i

P = 
1
2 Pi i

a5 = — 10(1+C2F1/2)
C2 = 0.8[1 — exp(-(Rt/40)2)]

Finally the model for the third moments is modeled as:

(uiu j uk) = —.07(22) [( UkUp )( UiUJ),p + ( U ) UP)( UiUk ) ,p + (UiUp)(UJUk),p]

Dissipation rate equation

The modeled dissipation rate equation derived in this work is:

•/,
E ,t + UiE , i = ( 1/E,i — (EUi)),i	

EE
— 

`^0 (g2)

— 01 ( E ( UiUj ) Ui,j — 02 v
(q2) 

(Ukul)(Ui,jl — Ul,ij)Ui,jk
q 2)
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where

00 = 5 + 0.98[1 — 0.331n(1 — 55II)] exp(- 2.83R, 112)

Y'1	 2.1

02 = —.15(1 — F)

y(42),i(g2),i
4(42)

The turbulent flux term (EU k ) is modeled as:

(Euk) = -.07 (q22) (ukup)E,p
E 

These figures show some existing Reynolds stress models (for example, Launder and

ShimP 31 , Lai and So f"I ) and present model compared with the direct numerical simulations.^71
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3. Second order modeling of a three-dimensional boundary laver

A study ["] of three-dimensional effects on turbulent boundary layer were achieved by

direct numerical simulation of a fully developed turbulent channel flow subjected to trans-

verse pressure gradient. The results show that, in agreement with experimental data [ "] , the

Reynolds stresses are reduced with increasing three-dimensionality and that, near the wall,

a lag develops between the stress and the strain rate. To model these three-dimensional

effects on the turbulence, we have tried various two equation models and second order

closure models. None of the current models can predict the reductions in the shear stress

observed using direct numerical simulations. However, we found that the newly proposed

second order closure model listed in the previous section do at least qualitatively capture

these three-dimensional effects.
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Abstract
This paper presents a set of realizable second order models for boundary free turbulent

flows. The constraints on second order models based on the realizability principle are re-
examined. The rapid terms in the pressure correlations for both the Reynolds stress and
the passive scalar flux equations are constructed to exactly satisfy the joint realizability.
All other model terms (return-to-isotropy, third moments and terms in the dissipation
equations) already satisfy realizability (Lumley 1978, Shih and Lumley 1986). To correct
the spreading rate of the axisymmetric jet, an extra term is added to the dissipation
equation which accounts for the effect of mean vortex stretching on dissipation. The test
flows used in this study are the mixing slicar layer, plane jet, axisvmmetric jet and plane
wake. The numerical solutions show that the new unified model equations (with unchanged
model constants) predict all these flows reasonably as the results compare «ell with the
measurements. lVe expect that these model equations would be suitable for more complex
and critical flows.
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1 Introduction
Various turbulence models have been formulated for prc-

dicting buoyancy-driven flows. Some of the parameters in these
models have been determined by keying the solution of the
model equations to experimental data for certain basic flows
Such as decay of grid turbulence. Other parameters have been
determined by calibrating closure formulations directly with
experimental data- However, this approach may be somewhat
inaccurate due to the lack of quality experimental data for
certain correlations, especially dissipation. Finally, certain
model parameters have been fine tuned or determined by re-
quiring that the computed solution agree with experimental
data for more complex flows, such as shear flows. In addition
there have been instances where model parameters have been
adjusted or empirical corrective terms added so that agreement
with experimental data is accomplished for a particular flow.
When model parameters are adjusted to get agreement, say
for the mean velocity and temperature fields for a particular
flow, little regard is given for the internal integrity of the model.
In other words, are the various processes such as diffusional
transport, pressure-strain interactions, etc-, predicted cor-
rectly? Or arc there compensating assumptions where one pro-
cess is overpredictcd at the expense of another and yet the end
predicted result for the mean flow agrees with experiment?
The lack of complete sets of data for higher moments, dissi-
pation, and pressure-velocity correlations for various flows
has prevented detailed verification of closure models for the
various processes that have to be modeled.

The objective of this paper is to use the recently obtained
and comprehensive experimental data of Shabbir and George
(1987) and Shabbir (1987) on the axisymmetric buoyant plume
to assess the various closure relations proposed for the kinetic-
cncrgy/dissipation and the algebraic stress models for buoy-
ancy-dominated flows. The usual approach is to solve the
modeled differential equations numerically, and then compare
the computations with the experiment. However, this method
does not help pinpoint the drawbacks in the various terms of
the models. In this paper, instead of the usual approach, cor-
relations obtained from measured velocity and temperature
are used directly to verify the closure hypotheses for the tur-
bulcnt transport of momentum, thermal energy, and turbulent
kinetic energy.

2 Experimental Data
The data used were taken in an axisymmctric buoyant plume

by Shabbir and George (1987) and Shabbir (1987), who mcas-

ContriSutcd by the Hut Tnnsfcr Division and presented at the National ttut
Tnnsfcr Confrrenee, Pittsburgh, Pennsylvania. August 9-12, 1987. Manuscript
received by the Hcat Transfcr Division March J, 1988; rrision received No-
vember 10, 1989. Keywords: Modeling and Scaling. Plumes, Turbulence.

ured velocity and temperature fields at several vertical levels
above a heated source of air. Here we .briefly summarize their
experimental technique and results.

The three-wire probe used consisted of a cross-µire and a
temperature wire. Thus the instantaneous values of the two
velocity components (vertical and radial) and temperature were
measured. The axisymmetry of the flow was established by
using an array of 16 thermocouples and also by rotating the
cross-wire by 90 deg. Profile for the correlations between the
velocity components and velocity components with tempera-
turc through the fourth order were determined from the in-
stantaneous measurements.

Source conditions were continuously monitored in order to
calculate the rate at which buoyancy was added at the source.
The source Grashof number was 5.5. By integrating the mean
energy equation, an integral constraint can be obtained for a
buoyant plume. For a neutral environment this constraint im-
plies that the rate at which buoyancy crosses each horizontal
section is constant and must equal the rate at which buoyancy
is added at the source, i.e., the ratio

F	 1	 — ll

F F, 
[2, ^o 

g,6(UAT+ur)rdr
1	

(1)

must be unity (F, is the source buoyancy)- This integral con-
straint was satisfied within 7 percent.

The correlation profiles at various heights were found to be
similar in the coordinate n = r/z (z accounted for the virtual
origin) when the vcloaty is scaled by U, F."z" and the
temperature is scaled by T, = Fo az -sn/gs. The measurements
agreed well with the earlier study by George et al. (1977), who
measured only the temperature and the vertical component of
velocity. The scatter in the measurements of higher moments
is typical for such flows and is also present in previous ex-
periments, such as those of George et al. (1977). The primary
reason for the scatter is that slow time scales of the flow require
much longer averaging time for the higher moments in order
to obtain the same statistical convergence as for the mean
quantities. Other errors in the measurements arise from the
flow reversal on the hot wire—a phenomenon most likely to
occur toward the outer edges of the flow where local turbulent
intensities arc considerably higher. These are discussed in Shab-
bir and George (1987).

The various correlations in similarity variables were fitted
with curves using a least-squares fitting procedure. This rcp-
resentation allows easy evaluation of the terms in the governing
equations and closure formulations when they arc cast in sim-
ilarity variables. Using these profiles the balances for the mean
momentum and energy differential equations were carried out
to check whether the flow satisfied the equations of motion it
is supposed to represent. Within the thin shear layer and the
Boussincsq assumption the mean momentum and energy equa-
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I ERROR

-	 ak -_
U	 –q2u;+–pull +P+G-e	 (4)

f ax
l 	

ax
J
 2	 P

where P = –uTi au,/ax, is the mechanical production and
G = –0gY,7 is the production due to buoyancy, Each term
except for the dissipation e and the pressure transport pu; is
determined from the experimentally determined correlations.

0.04 r/z o.rz	 o.zo	
The pressure transport was evaluated from pu//p = –gzuj/

y=	 5, a formula given by Lumley (1978). Although this closure
Fig - 1(a) Balances of mean energy and momentum equations (taken 	 relation has not been verified experimentally, it was felt that
from Shabbir and George, 198n

	

	 since the pressure transport is significant, some correction
should be included rather than simply neglecting it, as is often

tions can be respectively written as 	 done. The dissipation determined from the balance of the

au	 aU	 1 a	
turbulent kinetic energy equation is shown in Fig - 1(a) as a

	

U az + V ar	 r ar (r"")–gSAT
	 (2) solid line.

By a similar procedure the dissipation of the mean-square

aAT	 aAT _	 1 a	 temperature t' is determined from

U az + V ar	 r ar (rte)	 (3)	 arr	 a	 oT

	

U — _ – u^ –2 i77 — –2e	 (5)

Since all the quantities appearing in these equations are meas- 	 J axe	 axe	 ' ax`	`

ured, their profiles were substituted to see whether the meal-
uremcnts balance the equations. Figure 1(a), taken from All terms are evaluated from e xperim ental data and the re-

Shabbir and George (1987), shows that the experiment satisfies	 suiting thermal dissipation is shown 
in
n Fig.ig. 1(b).

this nontrivial test within 10 percent. An error of such mag- 	 The time scales qz /e and r2 /c, for the relaxation of the me-
nitude is typical of turbulent shear flows.	 chanical and thermal dissipation, respectively, are shown in

The dissipation of mechanical energy was determined by 	 Fig. 2, along with their ratio
balancing the turbulent energy equation	 R= (rz/e,)/(q^/e)	 (6)

Nomenclature

F. = buoyancy flux, equation (1)
g = acceleration due to gravity
G = turbulence production from

buoyancy
k = turbulent kinetic energy
p = fluctuating pressure
P = turbulence production by mean

flow
Pr T = turbulent Prandtl number

r = radial coordinate

R = time scale ratio, equation (4)
f = fluctuating temperature
T = mean temperature
u = fluctuating axial velocity com-

ponent

U = mean axial velocity component
u = fluctuating radial velocity com-

ponent

z = vertical coordinate
,6	 = coefficient of thermal expan-

sion
F = dissipation of mechanical en-

ergy

E,	 = dissipation of mean-square
temperature

P T = turbulent eddy viscosity
P = mean density
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These time scales appear extensively throughout the model
formulations and will be further discussed in the next sections.

3 Assessment of Closure Hypotheses of k-c Model

The form of the k-e model, which is considered to be the
standard one, is that used by Launder and Spalding (1974).
In this model the Reynolds stress is given by

(a Qj aU\ - 2
- uu—u^ = v T	 +	 J - kbu	 (7)

	

axe	 ax;	 3

and the heat flux by

vT aT

	

-^ Pr T ax;	
(8)

where PT = C kt /c and C„ = 0.09 (see Launder and Spalding,
1974).

O unalRrxr
K-- —EL

—.— ALL .0 MUS —EL

1.5
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0	 \ ^_

0.04	 0.12	 0.20

r^z

Fig. 5 Radial heal flux

By invoking the thin shear layer assumption for a buoyant
plume, the above relations reduce to

au
uu= - v T-

ar

aT
U7 _ - {v TIP rT) 

aZ

aT
H = - (vT/PrT) ar

Taking Pr T = 1.0, the right-hand sides of the above equations
were evaluated experimentally. These are compared with meas-
urcd values of Yu-, i7, and W in Figs. 3-5. The points are
experimental values and the chain lines are from the model.

The modeled values of uu and 0 compare reasonably with
the experimental profiles except in the outer portion of the
curves. On the other hand the modeled profile of vertical heat
flux 7  is much smaller than the experimental one. It is well
known that the simple gradient models given by equations (7)
and (8) with an isotropic eddy viscosity arc inadequate for
determining streamwise turbulent momentum and heat fluxes.
Usually these quantities do not influence the prediction for
shear layers since only the radial fluxes arc important in these
flows. However, in the case of the buoyant plume the flux
lD is a dominant production term in the turbulent kinetic energy
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equation and its correct calculation is very important for ac-
curate prediction of k.

The diffusional transport in the kinetic energy equation (4)
for a thin shear layer is modeled as

I — 1 _	 ak
2 uq2± pu -1 ` ar	 (9)

P

Using pu/p = - uq215 from Lumley (1978) gives uq2 12 =
- (513)v 7-ak/ar from which the result, with the right side eval-
uated from experimental results; is showrl in Fig. 6. It is seen
that the predicted and experimental data peak at different
radial locations; however, the predicted magnitude is more
accurate, which indicates that the pressure diffusion needed

to be taken into account.
In the k-e model the dissipation is calculated from

_	 z

	

U, 
aE _ - d 

e'u/+C,, 
e 

(P+G) -C, 2 E	 (10)
ax;	 ax;	 k	 k

where e'u; _ -(vr-/a,)aE/ax; and a, = 1.3, C,, = 1.44, and
C, 3 = 1.92 as given by Launder and Spalding (1974). In order
to get an indication of the validity of equation (10), it was
numerically solved for the dissipation e with all other quantities
needed to evaluate the coefficients determined from the ex-
perimental cori:clations. The result is shown in Fig. 1(b) and
it is seen that it compares reasonably well with the curve ob-
tained from balancing the turbulent kinetic energy equation
with experimental data.

Launder et al. (1972) showed that the standard k-c model
yields a solution for the axisymmetric jet that overpredicts the
spreading rate by about 30 percent. The standard k-c model
also does not correctly predict the axisymmetric buoyant plume
(Hossain and Rodi, 1982). Proposals have been made (Pope,
1978; Hanjalic and Launder, 1980) for modifying the dissi-
pation equation, based on arguments concerned with vortex
or eddy structures characteristic of axisymmetric flows. The
modified equation produces more dissipation, thus decreasing
the turbulent eddy viscosity, which results in a smaller spread-
ing rate of the flow. Here we use the empirical correction given
by Rodi (1972) where C, 2 = 1.92 (1-0.03511) with H = 1 (yE/
U,,,)dU, Idxl° -2 and where U,,, is the maximum velocity and
YE is the distance from the centerline to the edge of the shear
layer. This correction decreases the destruction term in the
dissipation equation, hence producing an increased dissipation.
However, when this correction is used in equation (10) there
is very little change in the solution for f when experimental
data are used for the other quantities in the equation. This is
probably due to the approach taken here, which does not allow
for the nonlinear interactions between the various terms in the
closure_ If the kinetic energy and dissipation equations arc
solved simultaneously, then the axisymmetric correction will
produce a significant change in the solution of the k-< model.

4 Assessment of Closure Hypotheses for Algebraic
Stress itiodel

Chen and Rodi (1975), Tamanini (1978), Chen and Chen
(1979), and Hossain and Rodi (1982) have made predictions
for the buoyant jet using algebraic stress models. Many of the
ideas used in these models for calculating buoyant flows orig-
inatcd with Launder (1975, 1978). Algebraic stress models are
obtained by simplifying the convective transport equations for
Reynolds stresses and heat fluxes so they are no longer dif-
ferential equations. The dynamic equation for the Reynolds
stress tensor is

2
(C-D)-r;=PJ+GJ- 3 E6J

rk

	 2 1
- C,e 	 - 3 6	 C2ii 1 - (pu 3 P6J 1

30C2 -22	 2	 aU;
5 DJ- 3 P6;;1 - (8C2-6)k

(V"J, + a,,,

	

-C3 GJ 2- 3 G6J)	 (t 1)

where P,•; _ —u;uk aUi/aXk — u;Lk aU,laXk is the mechanical
production and GJ = -0g; Y17 - Og; lu^ is the buoyancy
production. The left side represents convection minus diffu-
sional transport, the dissipation is assumed isotropic, and the
last three lines rep resent the closure formulation Jor
p(au;/ax;+au;/ax;) /p given by Launder et al. (1975) and
Launder (1975, 1978). Launder assumes: (1) an equilibrium
situation where convection is balanced by diffusion (C - D
= 0) and production is balanced by dissipation (P + G - e
= 0); (2) the second and third terms (third line) in the rapid
part of the pressure-velocity correlation are negligible; the

coefficient C2 is adjusted so that the first term approximates
the entire rapid part; (3) the parameter C3 is taken equal to
C2 . After applying all the assumptions

2 C,+C2-I 1-C2 k
uu;= 3	 C	 kbJ- C(PJ +G,,)	 (12)

	

t	 t	 e
where c, = 2.2 and C2 = 0.6. It should be pointed out that
in free shear flows the equilibrium condition (C - D = 0 and
P + G - E = 0) only applies in the outer portion of the flow_
Also, Zeman and Lumley (1976) found C 3 = 0.3, after applying
all the constraints applicable to determining the contribution
of buoyancy to the pressure-strain correlation.

The dynamic equation for the heat flux is

a 	 aU;
(C-D) - u,u - - - ice— -ogf

	

- - ' 
ax;	 ax;

- C,, ^+CL -.-,7' - 5 ia^ 'U. + C3,6gt2	 (13)axi

where the first line on the rig ht side is the production and the
second line is the closure for pat/ax; /p. Neglecting convection
and diffusion (C - D = 0) and the third term in the second
line, equation (13) becomes

1 k	 aT	 au,

u7 = Ct , e [ - u u' —ax, - 
(1 - C2, )V ax; - (1 - C31) fig

• (14)

where C„ = 3.0, C2i = 0.5, and Ca r = 0.5. Zeman and Lumley
(1976) show that C2, = 0.8 and C3 , = 0.2 from theoretical
considerations.

Neglecting the convection and diffusional transport in equa-
tion (5) and eliminating c, with equation (6) gives

	

r2 =-R E U17aX
	

{ii)
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which was given by Launder (1975, 1978) and used by Hossain
and Rodi (1982).

Chen and Rodi (1975) and Chen and Chen (19 7 9) used the
differential equation (5), with e, eliminated by using equation
(6) to determine t' rather than using equation (15). In either
case R is taken to be a constant equal to 0.8 (Hossain and
Rodi, 1982; Chen and Rodi, 1975; Chen and Chen, 1979;
Launder, 1975, 1978). It is seen in Fig. 2 that the experimentally
determined value of R is much lower with an average value
across the profile of roughly 0.25. Launder (1978) cites cx-
perimcntal evidence for R being in the range of 0.5 to 0.8.
However, he found that the algebraic stress relations agreed
but with an experiment for a stably stratified homogeneous
shear flow with R = O.S. Hence, that value has been adopted
in the algebraic stress models- The experimental results of
Shabbir and George (1987) indicate R is much lower for strongly
buoyant flows_ When the algebraic stress model is applied to
this experiment with R = 0.8, the results arc very poor for
t2 . Therefore, in the following evaluation of the algebraic stress
model, the experimentally determined proiele for R (Fig- 2) is
used.

Equations (10), (12), and (13) represent a system of algebraic
equations that calk be solved for u,--u-j , i77, and t2 . Employing
the t::in shear layer approximation, where only gradients in
the radial direction are retained, Hossain and Rodi (1982) give

2C1 +C2 -1	 1—C2k	 au

3	 C	 k+ C E (
-2uu ar +2	 I (16)
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1—Cz k	 au
uu= 

C E (- err 
+8^	 (17)

1

- 2 C2 +C2 - 1 k	 (18)3	 CI

u7= E ^-uU err—( 1 —C2,)^ 
aU

+(1—C3r)FT,-]
Cl,

(19)

_ -1 k—
Cl ,

aT

	

 E .ar	
(20)

k aT2R 
E 

T7 - err	
(21.)

from which v, C„k'/E where

C;+C2(i-C2)(-I	 ..
r=	 1+ 	 %3.	 C2	

2	 )	 1 k(	
Cl, E d aU/er

aT/arr)
	^

C (22)

The system of equations (16)-(21) was solved to determine the
Reynolds stress and heat flux components with U, T, k, E, and
R given by the experiment. The following values for the con-
stants were used:

C 1 =2.2, 'C2 =0.6, C3=0.6

C 1 ,=3.0, C2,=0.5, C3,=0.5

The value of C,,, which appears in the eddy viscosity relation
r, C„ k2/E and is given by equation (22), is roughly 0.125
and is reasonably constant across the flow. This value is con-
siderably larger than the, value of C„ = 0.09 in the standard
k-E model. Rodi (1972), to correct for the discrepanau in the
prediction for the axisymmetric jet, developed an empirical
correction to C,,. Thc parameter C„ is replaced by (I-0.465H) C,,
whereH= 1(yE/U.)dU./dt'IQ ' ', U. is the maximum vclocity,
and yE is the distance from the centerline of the edge of the
jet. Hossain and Rodi (1982), Chen and Rodi (1975), and Chen
and Chen (1979) used this correction in their predictions for
turbulent buoyant jets. When the correction is applied, we get

approximately 0.09, which is the value of C„ for the standard
k-e model.

The question we are asking is, "given the turbulent energy,
dissipation, velocity, and temperature, does the proposed al-
gebraic stress expression correctly predict the Reynolds stress
and heat flux components?" Figure 8 shows the radial Rey-
nolds stress determined from equation (18). It is seen that the
predicted value ^'/k = 0.53 is a little smaller  than the exper-
imental curve in the center portion of the plume, but agrees
quite well with experiment in the outer portion. The predicted
shear stress uu, the axial heat flux i7, the radial heat flux uf,
and the mean squared temperature t2 are shown in Figs. 3, 4,
5, and . 7, respectively. Again the points arc experimental data
and the broken lines arc from the model- It is seen that the
shear stress uu and radial heat flux i7 are predicted reasonably.
However, the vertical heat flux 0 and temperature fluctuations
t2 are - predicted .poorly and-, have incorrect shapes; unlike the
experimental values they go to zero near the origin." .

Equation (21) gives t 2 proportional to the radial temperature
gradient, which is zero at the ccntulinc. Then since 1'2 = 0 at
r 0, equation (19) gives u? = 0 at r = 0. In order to obtain
nonzero value: for i7 and t2 at. the centerline from the model
equations (12), (14), and (15); terms containing the axial gra-
dicnt, i.c., aW3z and aT/az, were retained. These terms were
added to equations (19) and (21) and the system of equations
was solved again. Although the centerline -values of ut and
t2 were found to be nonzero, the predictions still decreased to
relatively small values new the centerline.

Another possibility for this behavior is.the neglect of ad-
vcaion and diffusion terms in the model. Gibson and Launder
(1976) have proposed the.following model for these-terms:

(C-D)—,= k .(P+G-E)	 (2-3)

(C-D)^;-^= 
2r' 

(P,-E,)+ 
2--k 

(P+G-c)	 (24)

where P, is the production term in the r2 equation. These were
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incorporated in equations (16)-(21) and the resulting set of

nonlinear coupled algebraic . equations was solved simultanc-
ously. The results did improve the prediction for the vertical
heat flux 0 and temperature variance l but the comparison
for radial heat flux and shear stress became worse. As noted
by Gibson and Launder (1976), the above model is not good
near an axis of symmetry. This is why, by incorporating them
in the original model, no overall improvement in the prediction
is achieved.

Chen and Rodi (1975), Tamanini (1978), and Chen and Chen
(1979) use th e differential convective-transport equation (5) to
determine t in their predictions of buoyant jets- Equation (6)

was used to eliminate c,. Thus, the final form of the r z equation
becomes

ate 	at, 1 a	 k2 ail	 aT 1 E —U— +.V — _ -- C,---- —217— = — — ? (25)
az	 ar . r ar	 e ar	 ar	 R k

This equation was numerically solved for the temperature var-

iance tZ with all other quantities needed to evaluate the coef-
-ficichts determined from experiments. The value of C, was
taken as 0.13. The bat agreement,. as shown in Fig. 7, was
achieved with R = 0.35. When the average experimental value
of R = 0.25 is used, the prediction peaks at about 6.0 (Ti =
0.04) as compared to the experimental value of t 2 of about 8.0
(71 0.04). When the standard value of R = 0.8 is used, tZ
is overpredicted by a factor of four.

When tt is calculated from the convective-transport equation
(5), the diffusive transport is given-by the simple gradient
closure

	

a^	 (26)

with C, = 0.13 as given by Chen and Rodi (1980). The pre-
diction for v1r , using experimental information to evaluate the
right-hand side of equation (26), is shown in Fig. 9. The pre-
dicted curve peaks somewhat above and toward the centerline
as compared to the data.

Finally, we ask that if the models do not depict the axial
heat flux 0 and the temperature variance P correctly, then
why do the predictions such as made by Hossain and Rodi
(1982), Chen and Rodi (1975), Tamanini (1978), and Chen and

Chen (1978) show reasonable agreement with the experiment
for the mean velocity and buoyancy? The answer to this is
that with R = 0.8 the temperature variance t from equation
(21) or (25) is too large. This makes (tic vertical heat flux
from equation (19) large enough so that the mean velocity and
buoyancy are reasonably predicted.

5 Summary and Conclusions
The experimental data on buoyant plumes were used to

evaluate various closure relations for turbulence transport. The
objective was not to propose new models, but to evaluate the
closure schema proposed by other workers for buoyancy-

dominated flows. The closures evaluated were those used in
the k-E and algebraic stress models. The results arc summarized
below.

1 The closure relations of the k-c model compare rcason-
ably with experimental data, except for the axial turbulent
transport, which is drastically underpredicted. The axial heat
flux governs the production due to buoyancy in the kinetic
energy and dissipation equations and its correct prediction is
very important. This is a probable reason why the results of
Hossain and Rodi (1982) from the k-c model undci predict the
spreading rate for the plume by 10 percent even when w6syrn-
metric jet corrections arc included.

2 The ratio R of the time scales, which is used to determine
the dissipation of the mean squared temperature in the alge-
braic stress model, was found to be considerably different from
the accepted value of R = O.S. Apparently R is not a universal
constant, but can vary from flow to flow and is influenced by
the strength of the buoyancy present. From the experimental
data on a plume it appears that R = 0.25 for strongly buoyant
flows-

3 The closure equations for the shear stress and radial heat
flux of the algebraic stress models also compared well with
experiment but are not better than the simple gradient closures
used in the k-e model. The axial heat flux and mean squared
temperature are predicted poorly in the central core of the flow
and had incorrect trends. This drawback could be attributed
to the assumption of local equilibrium, which resulted in the
neglect of convection and diffusion terms in the transport
equations for Reynolds stress and heat flux. However, no
substantial improvement was.achieved by keeping the second-
ary derivatives or by incorporating the model for the convec-
tion and diffusion terms. Therefore, the full dvnainic equations
for Reynolds stress and heat . flux with convection and diffusion
are required to predict the axial heat flux and temperature
variance properly.
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On the Basic Equations for the Second-order Modeling of
Compressible Turbulence

W. W. Liou and TAL Shih

Center for Modeling of Turbulence and Transition
ICOMP/NASA Lewis Research, Center

Cleveland, OH 44135

Abstract

Equations for the mean and the turbulence quantities of compressible turbulent

flows are derived in this report. Both the conventional Reynolds average and the
mass-weighted Favre average were employed to decompose the flow variable into a

mean and a turbulent quantities. These equations are to be used later in developing

second-order Reynolds stress models for high-speed compressible flows. A few recent

advances in modeling some of the terms in the equation due to compressibility effects
are also summarized.
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Abstract

Linear stability of flow in rotating pipe is studied.
These flows depend on two parameters, which can be
taken as the anal Reynolds number Re and the rotat-
ing rate, q. In the region of Re » 1 and q = 0(1), the
most unstable modes are concentrated near the pipe
wall, the so-called "wall" modes. These wall modes
are found to satisfy a simpler set of equations contain-
ing two parameters rather than four parameters as in
the full linear stability problem. The set of equations
is solved numerically and asymptotically over a wide
range of the parameters. In the limit of Re —+ oo,
the eigenvalue goes to the inviscid limit. The eigen-
function shows a two layer structure. It reaches the
inviscid limit over the main part of the domain, while
near the wall of the pipe, the eigenfunction is repre-
sented by a viscous solution of boundary layer type.

1. Introduction

Swirling flow is common ir, nature and technology.
Fully-developed flow in a rotating pipe is an exact
solution of the Navier-Stokes equations, and is the
simplest available model of swirling flows. Swirling
flows are known to be subject to instability, and the
question of stability of flow in rotating pipe has con-
sequently attracted a reasonable amount of attention.
Pedley r showed that these flows are unstable to in-
viscid non-axisymmetric perturbations when the ro-
tation is fast (in a sense which will made definite).
Stability to inviscid perturbations in the finite rota-
tion rate region was studied numerically by Marlowe'-.
Later, Maslowe and Stewartson 3 extended this work
in a significant way and established by asymptotic
methods that the dominant unstable modes are wall

'Research Associate

t Profce or

modes (that is, modes of motion concentrated asymp-
totically close to the wall) in the limit of large az-
imuthal wave number.

For viscous perturbations, Pedley 4 , and simulta-
neously Jesoph and Carr i s found that the critical
Reynolds number at which the perturbation is neu-
tral in the limit of fast rotation. Cotton and Salwene
carried out comprehensive computations in search of
neutral stability curves and they discovered that the
neutral modes are center modes when Reynolds num-
ber is large. Center modes in rotating pipe flow were
later analyzed asymptotically by Stewartson, Ng and
Brown 7 , and these authors speculated that center
modes dominate for large Reynolds number.

In this study, we investigate the effect of viscos-
ity on the inviscid wall modes found by Maslowe and
Stewartson 3 when the Reynolds number is large but
finite. We find the proper scaling for Reynolds num-
ber in order for viscous wall mode to exist and derive
simplified governing equations for them. These equa-
tions contain only two parameters instead of four pa-
rameters in the full linear stability problem. The wall
mode equations are then solved both numerically and
asymptotically.

The plan of this study is as follow: Linear stabil-
ity analysis is formulated in section 2, where it is
shown numerically that the most unstable modes are
wall modes. The governing equations for viscous wall
modes are derived in section 3_ Numerical solutions
of the viscous wall mode equations are presented in
section 4. An asymptotic analysis for the viscous wall
modes equations is carried out in section 5, and sec-
tion 6 concludes the paper.

2. Linear Stabilitv Formulation

If length is nondimensionalized by the radius of the
pipe L and velocity by the the axial velocity at the
axis U, the laminar base flow in a pipe rotating with

Copyright©1991 by the authors. Published by
the American Institute of Aeronautics and
Astronautics, Inc. with permission. 	
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angular velocity Q is then described in a cylindrical where
(x, B, r) coordinate system by,	

-t= k(1—r2)+mq—w
U = (1 — r 2 , q r, 0)

where the inverse Rossby number

nL_
q U

(1)
The above equations for the perturbations are sup-

plemented by the following boundary conditions. On
the wall of the pipe, the no slip boundary conditions

(2) require

measures the relative strength of rotation. This
nondimensionalizaLion also defines a Reynolds num-
ber

Re = UL	 (3)
I/

where v is the kinematic viscosity of the fluid.
Linear stability analysis concerns the stability of

the motion subject to infinitesimal perturbations.
Since the linear stability problem with base flow given
by (1) is then separable in the x and 0 directions, the
perturbation field may be written in the normal mode
form. i.e.

A (u(r), v(r), w(r), p(r)]exp [i(kx + mB — wt)]

where A is an arbitrary constant, k is the axial wave
number of the perturbation and m is the azimuthal
wave number of the perturbation. w is the complex
frequency, with its real part being the frequency and
the imaginary part being the growth rate. Without
loss of generality, m is taken as positive, k is any real
number, and w is to be found. If Im(w) is positive,
the flow is linearly unstable.

The Navier-Stokes equations linearized about the
base flow, and the equation of continuity are of the
following form in the cylindrical coordinate system
used,

i-fu — 2rw + ikp =
1 a, u 1 au m2

u — k 2

	

Re (ar e + r	 r2	
u

ar 

i-ry + 2qw + imp—
r

1 	 1 av	 m2 + 1	 2iw	
2Re 

(a2v

	

 ar 2 + r ar	 r2 v +m — kr2	 v

i-yw — 2qv + ap
a =

1 	 1 aw m2 + 1	 2imv (a'w
ar t + r aT	 r2 w
	 — k-wr2 

	

im	 aw w
iku+ —v - —ar +— =0	 (4)
r 	 r

U(I) = v(1) = w(1) = 0	 (5)

At the center of the pipe, the perturbation must
satisfy the following conditions to ensure that to be
single-valued8

for m=0

u'(0) = v(0) = w(0) = p'(0) = 0,

for IM! =1

u(0) = v(0) + im w(0) = p(0) = 0,

for m otherwise

u(0) = v(0) = w(0) = p(0) = 0. 	 (6)

The above ordinary differential equations (4) and
the boundary conditions (5) and (6) form an eigen-
value problem with w as the eigenvalue. Nontrivial
solution exists only when w takes some specific values
given by

w = w(Re, q; m, k)

If Im(w) is less than zero, the flow is stable; if Im(w)
is positive, the flow is said to be linearly unstable. We
are interested in the regions where the instability oc-
curs. Earlier studies show, and our results confirm,
that instability occurs only for mk < 0. In the fol-
lowing, we will take m positive, and k negative.

The linear stability problem was studied exten-
sively by numerical means by Cotton and Salwene
and by Yang'. Cotton and Salwen searched in the
parameter space (Re, q; m, k) for the neutral modes
(modes with zero w i ), and found that the neutral
modes are center modes, with most of the uontrivial
activities confined near the center of the pipe. Yang's
study concentrated on the most unstable modes, and
we shall briefly describe the most unstable modes that
he found in the region Re » 1 and q = 0(1).

Table 1 gives the information for the most unsta-
ble modes at Re = 10000 and some different values
of q's. As q is increased, the the most unstable mode
has larger values of both the azimuthal and axial wave
numbers. In addition, we find for q = 0(1), although
the real part and the imaginary part of the eigen-
value have quite different size, the difference of the
real part of the eigenvalue from mq is of the same
order as that of the imaginary part. These findings
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Table 1: The most unstable modes for different q's
with Re = 10000.

m: the azimuthal wave number,
k: the axial wave number,
w: the eigenvalue of the most unstable mode

q m k W

0.5 3 -0.50 (1.25, 0.177)
1.0 5 -0.81 (4.67, 0.296)
1.5 7 -1.04 (10.13, 0.379)
2.0 9 -1.20 (17.61, 0.439)
3.0 11 -1.22 (32.63, 0.518)

suggest the viscous wall mode scalings studied in the
next section. For q = 3, the most unstable mode has
the wave numbers m = 11, k = —1.22. The eigen-
function corresponding to this most unstable mode is
shown in Fig 1. The eigenfunction is normalized such
that the maximum axial velocity is 1. The real part
of the eigenfunction is drawn in solid lines, and the
imaginary part is drawn in dotted lines. The non-
trivial behavior of this eigenfunction takes place in a
thin region near the wall of the pipe. This behavior
justifies the "wall mode" terminology used, and will
be the subject of further study in next section.

3. The viscous wall mode equation

From the numerical computations in the last sec-
tion, it is clear that in the region of Re » 1 and
q = 0(1), the dominant modes are given by the
asymptotic wall modes, a type of modes with large
azimuthal wave number and with nontrivial behavior
concentrated near the wall.

When azimuthal wave number m is large, there
could be another type of mode for general swirling
flows, the ring mode, as demonstrated by Leibovich
and Stewartson 10 . In the case of rotating pipe flow,
ring modes do not exist. Because of the existence of
the pipe wall, wall modes characterize the behavior
of perturbation with large azimuthal wave number.

Maslowe and Stewartson 3 studied the stability of
inviscid pipe flow to perturbations of very large az-
imuthal wave number, and established that the pre-
vailing modes are the wall modes in the limit of
M oo. Stewartson 11 analyzed the effect of the
viscosity on ring modes and found that viscous ef-
fects come into play in higher order terms because
the inviscid ring mode solution can satisfy the exact
boundary conditions of the problem.

We study the wall mode when the viscosity is taken
into account. Since the inviscid wall mode is close to
the wall, where the no-slip condition is required but

,..

u

(C)

Figure 1: Eigenfunction for Re = 10000, q = 3, m =
11,k = —1.22. (a) axial velocity, (b) azimuthal ve-
locity, (c) radial velocity.

is not satisfied by the inviscid solution, it is expected
that the viscous effect might be important in this
case, at least in certain regions .

We are going to study the linear stability problem
for large azimuthal wave number and large Reynolds
number, i.e. both m and Re are large. In this case,
the proper wall mode scalings are

	

r = 1—	 77

(.m2 + k2)1/2

W = iw

2p
P = m

(.m2 + k2)3/2

	

Re = —Re	
2k

_ 2k	 /
(.J mq (m2 +k2)1/2 l7)

The scaling for the radial variable means that the be-
havior of the wall mode is confined to a small distance
to the wall comparable with the wave length of the
perturbation. The scaling for the Reynolds number
giv , the balance between the. viscous term and the
inertia term. The form of the scaling for the complex
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frequency is suggested by the numerical computations
of the full linear stability problem. In above, a mi-
nus sign is introduced in places where k appears, for
we know from the full linear stability problem that
instability occurs only when m k < 0.

Upon substituting the above expressions into the
linearized Navier-Stokes equations and the equation
of continuity for the perturbation, and dropping the
terms of order m- 1 and smaller, we find that w should
satisfy the following single equation, after u, v, p are
eliminated.

LDLDw - LLw + LDw - Quo = 0	 (8)

D = d
T77

L	 Re(D2-1)-(,7

Q = - 4( m + qk)	
(9)k

which emerges as one of the independent parameters
for the viscous wall mode.

The boundary conditions are

w=Dw=D 2 Lw-Lw=0 at r7=0	 (10)

and

nonlinear eigenvalue problem. This nonlinear eigen-
value problem is changed to a system of linear eigen-
value equations by letting

Y = Lw	 (12)

In Y, w, the governing equations are

L(D2 - 1)Y + 2DY - (Q - 2)w = 0

Y - Lw = 0 (13)

and the boundary conditions are

w=Dv,=D 2 Y-Y=0 atr7=0	 (14)

w= Div =D 2Y-Y=0 asr7-»oo	 (15)

We employed a spectral method with Chebyshev
polynomials as the basis functions to solve equations
(13) - (15). Because the domain of definition extends
to infinity, while Chebyshev polynomials are only de-
fined over [-1, 1], the method of domain trur:cation
was used to numerically truncate the domain of def-
inition from [0, oo) to [0, b] and the boundary condi-
tions at infinity are replaced by

w=Dw=D 2 Y-Y=Oat 77=b	 (16)

In the spectral method used, we write

N

;-r

where

and

w=Dw=D 2 Lw-Lv,= 0as r7 -+oo 	 (11)

Thus, we have established the formulation for the
viscous wall modes. The governing equation takes
a simpler form compared with the full problem, and
the number of the independent parameters is reduced
from four to two. Of these two parameters, Re and Q,
Q measures the effect of rotation on the wall mode
and Re measures the effect of viscosity on the wall
mode. The solutions of above wall mode problem
will give:

(D = CD (Re ' Q)

If Im(LD) is less than zero, the flow is linearly stable;
if Im(C,)) is positive, the flow is said to be linearly
unstable.

4. Numerical Solution of Wall Mode Equations

In general, solutions of the wall mode equation have
to be found numerically. Because the eigenvalue en-
ters quadratically, this wall mode equation gives a

N

Y = E Y,"T-i(y)	 (17)
;-r

where y is related to r1 by

y = 2r7/b - 1.

Thus the domain of definition for y is [-1,11. The
reduction from the differential equations to a set of
algebraic equations is made by a Galerkin-Tau projec-
tion —i.e. the Galerkin method is used to project the
equations while the Tau method is used to enforce the
boundary conditions on the spectral representations
of the perturbation field. The Galerkin-Tau projec-
tion results in an set of algebraic equations, which are
of the form of generalized eigenvalue problem with
complex matrices.

Two methods are used in this study to find the
eigenvalues and the eigenvectors of this complex gen-
eralized eigenvalue problem. One method uses the
IMSL subroutine EIGZC which uses the QZ transfor-
mation to find all the eigenvalues and, optionally, all
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the eigenvectors. The other method used is an inverse
power iteration for the generalized eigenvalue prob-
lem developed by Kribus", which finds the eigen-
value closest to the initial guess and its corresponding
eigeavector. The inverse power iteration is faster, so
it is used whenever a good guess is available. The QZ
is used to provide the starting values for the Inverse
Power Iteration. It is also used when the phenomenon
of mode jumping is suspected to occur.

Since the eigenfunctions decay exponentially as

n — oo, b = 10 was found sufficient for most of the
calculations. The number of terms in the Chebyshev
representation, N, varies with Re. For order one Re,
we must take N = 60, and b = 10 to achieve three
digit accuracy in eigenvalue, and 0(10 -4 ) accuracy
for the eigenfunction. But when Re is large, the so-
lution shows a behavior of boundary type for 71 near
zero, i.e. near the wall of the pipe, and a large value
of N is needed to resolved this region. The largest N
needed for the parameter range covered here is 115.

There is a symmetry in the eigenvalue problem due
to the replacement of the boundary conditions at in-
finity by the conditions at 77 = b. The solution is
invariant under

77 	 b — n

w .--. w'

Y	 Y'

where the star means the complex conjugate. This
symmetry signifies that for a given solution, its im-
age about r) = b/2 is also a solution of this equation
with the same growth rate. Apparently, this solution
is a spurious mode in the sense that it is a solution
of the differential equation after enforcing the bound-
ary condition at finite b rather than the solution of
the original differential equation defined over the in-
finite domain. This symmetry property can be used
to check the resolution of the numerical solution of
the algebraic problem, which should also exhibit this
symmetry.

Extensive computations were carried out in the
(Re, Q) plane. Fig 2 shows the imaginary part of the
eigenvalue C), which is proportional to the growth rate
of the perturbation, vs. Re for some different values
of Q. The eigenvalues shown are for Q = 5, 10, 20, 30,
40, 50 respectively, although numerical computations
were carried out for a larger range of Q. The real
part of the eigenvalue is shown in Fig 3. The growth
rate increases as Q is increased, which r ,,!ans that ro-
tation helps perturbations to extract energy from the

,.0

... r /	 ii

14

Figure 2: The imaginary part of the wall mode eigen-
values vs. Re for Q = 5, 10, 20, 30, 40, 50.

base flow. This result is in agreement with that of
Pedley t , who found that the maximum growth rate
is 2.0 and is reached in the fast rotation limit. This is
exactly the same as the upper bound for the growth
rate for flow in the rotating pipe, as shown by Joseph
and Carmis.

The growth rate increases with Re. As Re gets
large, the growth rate will increase. The eigenvalues
seem to change smoothly 'as Re — oo and approach
to the results found by Maslowe and Stewartson from
their inviscid analysis. The limit of Re — co will be
analyzed asymptotically in the next section, and a
comparison of the results with the inviscid case will
be made.

Fig 4 shows the eigenfunction for Re = 2, and Q =
5. The eigenfunction plotted is normalized such that
its maximum modulus is 1 and its phase at the posi-
tion of maximum modulus is 0. As in the eigenfunc-
tion plotted in Fig 1, the real part of the eigenfunction
is drawn in solid line while the imaginary part of the
eigenvalue is drawn in dotted line. To see the effect
of increasing Q on the eigenfunction, we show in Fig
5 the eigenfunction for Re = 2 and Q = 20. As Q
increases, the eigenfunction is pushed outward, but
this response is not very sensitive to Q. To see the
effect of changing Re, Fig 6 shows the eigenfunction
for Re = 100 and Q = 5. As Re increases, the eigen-
functions are pushed towards n = 0, i.e. toward the
wall. The limit of Re oo will be the further studied
in the next section.

5. The Limit of Re oo
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Figure 4: Wall mode eigenfunction, Re = 2, Q = 5 Figure 6: Wall mode eigenfunction, Re = 100, Q = 5.
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Maslowe and Stewartson 3 carried out the wall
mode analysis for m » 1 for the inviscid case. One
of the purposes of our viscous wall mode analysis is
to see if the results of their inviscid analysis is the
limit of the viscous analysis for large Reynolds num-
ber. We use a perturbation technique to address this
question in this section.

For Re » 1, to can be expanded formally by taking

Re 	 the small parameter, we write:

w = Woo ( 17) + lie- 1Wi( 11) + ...

To leading order, the equation for Wo is:

D 2 Wo - (1 +	 Q )Wo = 0	 (18)
( 11 +1;1)2

with the following boundary conditions:

Wo(0) = 0	 (19)

In addition, the solution is required to match the
outer solution in the matched asymptotic sense.

The general solutions of the inner problem in the
leading order can be found, and they are

Wo
o
 = Ql exp(A1C) +,3.2 C eZp ( A 1C) +03 exP(A2()

+Q4 C eZp ( A2t) +As +Qa t	 (23)

where

A1,2 = x/ )1/2

and 131, 02, 03, 04, )3s, /3a

1 

are constants to be deter-
mined by the boundary conditions and the matchinf
conditions. CD is given by the outer solution.

The boundary conditions at C =	 t.0 require that

01 +)33 + 05 = 0

	

W0'('7 - -) - 0	 (20)	 31 A , +Q2 +03 A3 +Q4 +Ot = 0

	This poses the same eigenvalue problem that was	 3	 3

	

studied by Maslowe and Stewartson, thus their solu- 	
2a1 Q2 + 2^ '2 	= 0

tions (both the eigenvalue and the eigenfunction) may As — oo the inner solution must also match the

be viewed, as might have been expected, as the first outer solution. Near 77 = 0, the outer solution is, to
term in a formal outer expansion in inverse powers of leading order,
Re.

	

The outer solution thus found can satisfy all the	 Wo = a 77

boundary conditions at infinity since the outer solu-
tion decays exponentially as 71	 oo. But not all the where a = DWo(0) ,f 0.

	boundary conditions at n = 0 can be satisfied. For	 To carry out the matching, we need to know the

example, DWo (0) # 0. Thus, another (inner) solu- behavior of Wo for large C. The behaviors of the

tion of boundary type near 7 7 = 0 is needed.	 exponential terms are determined by the sign of the

	

The inner variable is found to be: 	 real parts of a l , A 2 . Since a 1i A 2 are the square roots

1/2	 of (i,), a l is the negative of a 2 . In this study, we
= 711e	 take

The inner expansion is assumed to be:

to = Red ( Wo(() + Re -1/2 Wi (C) + ...)

where d is to be determined.
After substituted into the governing equation, the

equation to leading order is found to be:

( D2 +^) 2 D 2 W0 = 0	 (21)

where

d
D = d(_

The boundary conditions for the inner solution are:

Wa(0) = 0

DWQ(0) = 0

(D 2 + 4))" Wo(i0) = 0	 (22)

Re(a1) < 0

Re(A 2 ) > 0

As -+ oo, the matching of the exponentially grow-
ing terms gives:

Q3 = 0

Q4 = 0

The exponentially small terms are immaterial, and
the matching of the algebraic terms gives

Re d Qa = a rl

which gives

1
d=--

2

(24)
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Table 2: Eigenvalue of viscous wall mode.

Q eigenvalue (Re = 100)
5.0 (-0.14917D+01, 0.72752D+00)
10.0 (-0.18163D+01, 0.15096D+01)
20.0 (-0.21617D+01, 0.26668D+01)
30.0 (-0.23766D+01, 0.35755D+01)
40.0 (-0.25358D+01, 0.43505D+01)
50.0 (-0.26633D+01, 0.503841)+01)

Table 3: Eigenvalue of inviscid wall mode.

Q eigenvalue (Re = oo)
5.0 (-0.14142D+01, 0.68305D+00)
10.0 (-0.17476D+01, 0.148751)+01)
20.0 (-0.21038D+01, 0.26574D+01)
30.0 (-0.23247D+01, 0.35710D+01)
40.0 (-0.24877D+01, 0.43487D+01)
50.0 (-0.26181D+01, 0.50383D+01)

and

Qe=o

All the other constants can be determined, yielding

Q1 = - c,/A1

'3, = 0

Qs = a/A1

The inner solution, to the leading order, is

Wo(()	 + 
a1 

(1 - exp(A1()))	 (25)

Thus, we have the following composite solution to the
leading order:

Wo = Wo ('1) + WoM - - 'I	 (26)

Thus, one sees that indeed, the solutions for the
most unstable modes found by Maslowe and Stew-
artson are the correct limit when Re oo, except in
a thin layer near the wall of the pipe where the flow
field is described by a viscous layer of the boundary
layer type. The eigenvalues found are the same as for
the inviscid case.

The above asymptotic analysis is confirmed by the
numerical calculation. In Table 2, we present the
eigenvalues for Re = 100 and in Table 3, we present
the eigenvalues from the inviscid calculation fora few
values of Q. It is seen that differences of the eigen-
values in these two cases are small. In Fig 7, we show
the eigenfunction for Q = 5.0 from the inviscid calcu-
lation. It is seen that the general shape agrees with
the viscous calculation presented in Fig 6. To see
the existence of a thin viscous layer near the wall, we
present in Fig 8a a blow-up of Fig 6, and in Fig 8b
a blow up of Fig 7 near the wall. It is seen that flow
fields near the wall are different, the viscous solution
has a zero slope while the solution from the inviscid
equation has a non-zero slope.

,..

n
..

6. Discussion

We have examined the linear stability of rotating 	 I

pipe flow to perturbations of large azimuthal wave
number. It is found that when the azimuthal wave
number is large, the nontrivial behaviors are concen-
trated near the wall of the pipe, so the prevailing
variations are manifested as wall modes. The equa- Figure 7: WaIl mode eigenfunction for the inviscid
tions governing wall modes are found to contain two case, Q = 5.
parameters Re and Q, which measure the Reynolds
number and swirl, respectively.
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expected that a local viscous critical layer based on
( a i	 our viscous wall mode formulation would get rid of

this singularity.
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Development of A Nei: Flux Splitting Scheme

Meng-Sing Liou' and Christopher J. Steffen, Jr.t
NASA Lewis Research Center

Cleveland, Ohio

Maximizing both accuracy and efficiency has been the
primary objective in designing a numerical algorithm
for computational fluid dynamics (CFD). This is espe-
cially important for solution of complex 3D problems
which often involve Navier-Stokes equations with turbu-
lence modeling and chemical species equations. Upwind
schemes have been well received for both their capa-
bility of resolving discontinuities and their sound theo-
retical basis in characteristic theory for hyperbolic sys-
tems. Several flux splitting schemes, notably by Steger-
Warming, Van Leer, Osber, and Roe, have been tested
and discussed extensively in the past decade.

However, several inherent shortcomings exist in each
of these schemes. For example, while the Van Leer
scheme is simple, taking only O(n) operations, n being
the number of equations, and yields accurate solutions
for inviscid problems, it suffers inaccuracy for predicting
velocity and temperature fields in the viscous problems.
The Roe scheme, commonly accepted as the most accu-
rate scheme available currently, however is a great deal
more complex and costly due to the matrix operation,
requiring O(n') operations. Moreover, the extension to
the chemically reacting flows renders no unique way of
defining the `Roe-averaged' states. The Osher scheme
has the smooth property and has recently been general-
ized by Suresh and Liou to deal with chemically reacting
flows. But the determination of the intermediate states
also requires O(n') operations. Thus it is logical to ask
whether there is room in the universe of upwind schemes
for improvement to arrive at a simple (O(n) operations)
and accurate scheme for a wide range of problems.

In this paper, we summarize recent successes of a
new splitting scheme for some model aerodynamic prob-
lems where Van Leer and Roe schemes failed. The new
scheme is based on a rather different idea of splitting in
which the convective and pressure terms are separated
and treated differently in accordance with the under-
lying physical intuitions. We propose an appropriately
defined cell-face advection Mach number using values
from the two straddling cells via associated characteris-
tic speeds. This interface Mach number is then used to
determine the upwind extrapolation for the convective
quantities. Next the pressure splitting is weighted us-
ing polynomial expansions of the characteristic speeds.

Thus, the name of the present scheme is properly coined
as Advection Upstream Splitting Method (AUSM). The
scheme is remarkably simple and yet its accuracy in the
present study rivals and in some cases surpasses the Roe
scheme in the Euler and Navier-Stokes solutions at con-
siderably reduced computational effort. The detailed
formulation of the scheme is net sbown here due to space
limitation. However it will appear elsewhere.

The calculation of the hypersonic conical flow demon-
strates the accuracy of the splittings in resolving the
flow in the presence of strong gradients. The tempera-
ture and pressure profiles of the first order results are
shown in Figs. 1 (a) and (b). The Van Leer splitting is
seen to produce a thicker boundary layer which in turn
further displaces the shock wave. Both AUSM and Roe
solutions are in excellent agreement.

The second series of tests involve the 2D inviscid flow
over a NACA 0012 airfoil. The results, not included
here, demonstrate that the level of entropy generation
at the stagnation point is about three times smaller than
the Roe solution.

In the third case we calculate a series of supersonic
flows over a circular cylinder. The Roe splitting in all
conditions and grids tested yields anomalous solutions
(sometimes referred to as the carbuncle phenomenon),
which may appear as nonsymmetric, protuberant, or in-
dented contours, see Fig. 2. The mode of these non-
physical solutions appears to be sensitive to changes in
Mach number or grid. The AUSM, however, gives ex-
pected solutions in all calculations.

The fourth test deals with a 2D shock wave/laminar
boundary-layer interaction. In Fig. 3, the AUSM is seen
to give excellent agreement with the data especially in
the reattachment region, which has been in defiance of
many previous calculations in the literature. Also the
oblique shock appears to be more tightly captured by
the AUSM.

In summary, it appears that the new splitting scheme,
AUSM, has delivered the promise by improving the ac-
curacy as well as efficiency significantly. As usual, the
final judgment will be decided via many more tests and
further modifications of the scheme.

Senior Scientist, Internal Fluid Mechanics Division. Member AL4A

Aerospace Engineer, Computational Fluid Dynamics Branch. Member AIAA
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High-Order Polynomial Expansions(HOPE) for Flux- Vector Splitting

Meng-Sing Liout and Chris J. Steffen, Jr.*

NASA Lewis Research Center
Cleveland, OH 44135, U.S.A.

Summary

The Van Leer flux splitting is known to produce excessive numerical dissipation for
Navier-Stokes calculations. One example is the incorrect prediction of boundary-layer
profiles. We attempt in this paper to remedy this deficiency by introducing a higher-
order polynomial expansion(HOPL for short) for the mass flux. In addition to Van
Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0.
Several splittings for pressure are proposed and examined. The effectiveness of the
HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic
shock-wave/boundary-layer interactions. Also, we give the weakness and suggest areas
for further investigation of the scheme.

Introduction

In the past decade, upwind differencing schemes have gained considerable attention
for their accuracy and robustness in Euler flows with discontinuieties, shock waves in
particular. Naturally, significant research effort in the CFD community has been focused
on maxmizing the accuracy and efficiency, among other objectives. Four popular but
conceptually different flux splitting ideas have been utilized for nearly 10 years: Steger
and Warming, Van Leer, Roe, and Osher. However, each scheme has an associated
weakness when numerical accuracy and efficiency are considered.

In this paper, we deal specifically with the improvement of Van Leer's flux vector split-
ting[1]. Besides its simplicity, Van Leer's splitting has the following properties: (1) it can
be interpreted as a special member of a family of second-order polynomial expansions[2],
and (2) the associated flux Jacobian and eigenvalues are continuous at the sonic points.
Van Leer's choice allows one vanishing eigenvalue in the case of an ideal gas, thereby
resulting in a crisp shock representation. Furthermore, the continuous differentiability
is helpful for convergence acceleration, e.g., in multigrid schemes.

However, failing to recognize the contact discontinuity, the Van Leer splitting[1] pro-
duces excessive numerical diffusion and thus requires a huge number of cells to correctly
resolve the boundary-layer flow. Some improvements have been demonstrated recently
by Hanel et al[2] and Van Leer[3] for 1-D conical, hypersonic viscous flow, but a pressure
glitch arises. A new scheme by the present authors[4] has been proposed that not only
corrects this pressure difficulty, but also is remarkably simple to implement. Neverthe-
less, the above schemes[2-4] have already departed from the ideas of flux vector splitting

t Senior Scientist, Internal Fluid Mechanics Division
* Aerospace Engineer, Computational Fluid Dynamics Branch
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and in fact become more like the flux difference splitting. Since the differentiability and
simplicity are desirable properties, one would still wish to search for a better splitting
scheme that is strictly based on the flux vector splitting.

In this paper, we propose a family of higher-order polynomial expansions for the mass
flux that diminishes the diffusion error as M —► 0. We give a detailed study of the
accuracy of the scheme for 1-D conical flow and 2-D shock wave/boundary-layer inter-
actions. The weakness of the scheme is also pointed out and possibile improvements
suggested.

Analysis

To exemplify the concept, let us consider the quasi two-dimensional system of equations
for conical flows:

8U OF
+	 = Sat	 8 rl

where U T = ( P, P u , P v , P E ), FT = (P V , P vu , P V ' + p , pvH), E = e + 1 /2(u' + 0), and
H = E + plp. The flow considered consists of a very thin shear layer at the wall
and a shock wave away from the wall. An algorithm must be capable of minimizing
the numerical smearing(diffusion) at the locations where an eigenvalue changes sign or
approaches zero. For example, Van Leer's splitting[l] can represent shock profile well,
while greatly diffusing the boundary layer. The Van Leer split mass fluxes are:

Fl = Fl + Fi ; F} = fpa/4(M f 1)'.

The net difference from the curve it approximates is largest at M = 0; its value equals
pa/2. This error, viz numerical diffusion, significantly broadens the boundary layer,
leading to incorrect velocity and temperature profiles. A simple way to remove the
diffusion at M = 0 is by adding an extra higher-order term that allows the split mass
fluxes to pass through the origin(Fig. 1), i.e.,

F± = fpa/4[(M f 1 )' + m i( M )( M ' — 1)'],

where the higher-order term has a coefficient m l , in general function of M. It should
have the following properties:

(1) m l —4 —1	 as M --► 0;

(2) m i (M) = ml(—M);

(3) m l --+ 0 as M —+ fl.

A formula satisfying those properties is chosen as:

m l = ( M' — 1 )/( M' + 1)S,

where the exponent S is a free parameter; also shown in Fig. 1 is m l vs M with S = 4.
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Fig. 1. Mass Flux Splitting in HOPE.	 Fig. 2. Pressure Splitting.

In the conical flow calculations, the accuracy and convergence appear to be insensitive
to the specified values of S = 2, 4, 6. Now, regarding the flux as a sum of convective and
pressure terms, we can write the splitting formula for the flux vector:

Fl }	 PV	 1	 0
Fz 	 pvu	 _ 

Ff
	 u	 0

F3 	pvv + p	 '	 v + p}

F4	 pvH	 H	 0

With the realization in [5] that the pressure splitting could be considered separately in
the Van Leer formula[l], a whole host of freedoms for the pressure splitting becomes
possible. Following is the list of formulas tested:

(pl)	 P} = T-1/4(M f 1)'(M :F 2)P,

(p2) :	 p} = (pl) :F 3/4M (M' — 1)2p,

(p3) :	 p} = (pl) f 3/4m 1 M(M' — 1)2p,

and

(P4) :	 P} = 1/2(1 f 7M)p.

Figure 2 displays the distribution of the split pressure vs M. The first formula is that
used by Van Leer[1]. The second and third splits, (p2) and (p3), yield vanishing
slope at M = 0, thus corresponding to central differencing. However, no instability
was encountered in the conical flow problem with the (p2) or (p3) split used in an
implicit code. The fourth split (p4) is obtained from an approximate integration along
characterics. As will be seen later, the four formulas give essentially the same results
for the conical flow calculated.

sults And Discussion

In this paper, two cases were tested to check the accuracy and convergence of the
HOPE scheme. The first case is the 1-D self-similar conical flow over a 10-degree
half cone at hypersonic speed, for which a detailed comparison study was conducted.
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The flow conditions are: M,,. = 7.95, and Re m = 4.2 x 10 5 . Since P* = 1.0, exact
solution gives adiabatic wall temperature, 13.64T., . The second case is the 2-D shock
wave/laminar boundary-layer interactions, for which experimental measurements were
available[6]. The conditions are: M., = 2.0, Re m = 2.96 x 10 6 , and oblique shock
angle 0 = 32.585 degrees. In both cases, the results from the Roe splitting are also
included for comparison. An implicit Newton iteration procedure was used to achieve
steady-state solution with L,,,, residual dropped by five orders of magnitude.

Figures 3 and 4 show the pressure and temperature distributions from the first- and
second-order solution on a 65-grid; little difference is seen. A monotone solution across
the shock is obtained with the first-order scheme while oscillation appears in the second-
order scheme, which can be eliminated by a TVD procedure. It is noted that the first-
order pressure is smooth at the edge of the boundary layer, unlike the Roe solution which
shows a slight discontinuity(not shown here). Although the boundary layer exhibits a
steep temperature gradient, the HOPE scheme predicts the wall temperature correctly,
indicating removal of the numerical diffusion associated with the original Van Leer
splitting.

Fig. 3. Pressure Profile of Conic Flow. Fig. 4. Temperature Profile of Conic Flow.

Figure 5 displays the results using various pressure splittings; they are practically iden-
tical except the Van Leer pressure split (pl) shows some minor oscillation near the wall.
However, the pressure splittings show significant effect on the convergence rate. The
(p3) and (p4) splits are the best, comparable to the Roe splitting, while the other two
are roughly two to three times slower. These may indicate possible instability in a more
complex case.
Finally, for the 2-D case, the surface pressure and friction coefficient are plotted in
Figs. 7 and 8. The first-order HOPE results compare fairly with Roe's splitting and
experimental data. However, the second-order calculation experienced difficulty in con-
vergence in which the residual was reduced by only two orders of magnitude and the
result is not presented here.
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Fig. 5. Comparison of Pressure Splits. 	 Fig. 6. Convergence History.

We suspect that a further investigation on other pressure splittings may lead to success
in stability and convergence. Nevertheless, a systematic study of the eigenvalues of
the split fluxes and the complete discretized system will prove to be a useful endeavor.
Above all, the present research suggests that there are still possibilities in flux-vector
splitting after Van Leer's appeared nearly 10 years ago. The possibilities may very well
still lie in the mass-flux splitting.
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Three-Dimensional Calculations of Supersonic Reacting Flows

Using an LU Scheme

Sheng-Tao Yu, Y.-L. Peter Tsai, and Jian-Shun Shuen

Sverdrup Technology, Inc.,
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ABSTRACT

A new three-dimensional numerical program that incorporates comprehensive real

gas property models has been developed to simulate supersonic reacting flows. The code

employs an implicit, finite volume, Lower-Upper (LU), time-marching method to solve

the complete Navier-Stokes and species equations in a fully-coupled and very efficient

manner. A chemistry model with nine species and eighteen reaction steps is adopted

in the program to represent the chemical reactions of H2 and air. To demonstrate the

capability of the program, flow fields of underexpanded hydrogen jets transversely injected

into the supersonic airstream inside the combustors of scramjets are calculated. Results

clearly depict the flow characteristics, including the shock structure, the separated flow

regions around the injector, and the distribution of the combustion products.
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Simnlations of Free Shear Layers Using
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ABSTRACT

A two-dimensional, compressible Navier-Stokes
equations with a k — c turbulence model are solved
numerically to simulate the flows of compressible free
shear layers. The appropriate form of k and c equations
for compressible flows are discussed. Sarkar's modelling
is adopted to simulate the compressibility effects in the
k and c equations. The numerical results show that the
the spreading rate of the shear layers decreases with

increasing convective Mach number. In addition, fa-
vorable comparison was found between the calculated
results and Goebel and Dutton's experimental data.

INTRODUCTION

Recent national interest in trans-atmospheric ve-
hicle has rekindled the hypersonic research. For this
vehicle, a supersonic combustion ramjet (scramjet) en-
gine was proposed to provide the power. Inside this
scramjet engine, compressible mixing layers are impor-
tant phenomena. The performance of the engine will
depend on the supersonic mixing and the flame holding
of shear layers.

The behavior of incompressible mixing layers has
been studied extensively. However, additional study
is required to understand the compressibility effects of
free shear layers at high speeds. Figure 1 shows a sketch
of a typical free shear layer. Two streams at different
temperatures, densities, and Mach numbers merge to-
gether to form a free shear layer. Various combinations
of flow conditions of high-speed streams and low-speed
streams allow for the systematic study

Research Engineer, Member AIAA.
t Aerospace Engineer, Member AIAA.
$ Senior Research Scientist.

of compressible shear layers. In this paper, we report
the incorporation of a k — c model with compressibility
effects to a two-dimensional flow equations solver for
the simulation of compressible shear layers. First. we
point out the derivation procedure of the compressible
k and c equations. Unlike the procedure in the incom-
press equations, both Favre and Reynolds averaging
procedures ) are performed in deriving the flow and tur-
bulence equations. Particularly, the additional terns in
the Navier-Stokes equations due to the averaging pro-
cedure are illustrated. These terms are often omitted
in CFD practices. The k and c equations are presented
in vector form for the convenience of illustrating the
numerical method.

The lower-upper (L U) scheme developed by loon
and Jameson' is adopted in this work. This method has
proven very efficient for large systems of equations. 3 For
completeness, a brief account of the numerical method
is presented in this paper. The newly developed solver
then is applied to simulate compressible free shear lay-
ers with five different convective Mach numbers from
0.05 to 1.48. One of five test conditions is a replica
of that reported by Goebel and Dutton.' The most
important feature of the compressible free shear lay-
ers one want to demonstrate in the calculations is the
decrease of the shear layer thickness with increasing
Mach number.' Favorable comparison were found be-
tween the experimental data and the calculated results.

THEORETICAL MODEL

In deriving the compressible flow equations of fully
turbulent flows, all the flow properties are Favre aver-
aged (mass weighted averaged) except the densit y. p,
and pressure, p. The definition of the Favre average is

^ _ PIP•	 (1)
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where 0 is any flow property. 'Thus flow variables are
decomposed in the following fashion,

0 = ^ + O" -	 (2)

On the other hand, conventional Reynolds' average are
used for the pressure and the density. According to
the definition of Favre averaging, the following relations
exist:

P'O'

P	 (3)

Po n = 0,

T = 0.

In doing so, all the terms associated with the density
fluctuation, e.g., p'u', in the Reynolds' averaged equa-
tions were eliminated in the Favre's averaged equations.
The resulting flow equations are much simpler com-
pared to the equations derived by the Reynolds aver-
aging procedures-

Written in a strong conservative form, the turbu-
lent, compressible, flow equations. can be expressed as
follows:

a
Q + a (E—E v )+ a (F—F v )=H. (4)

Here x and y are Cartesian coordinates, Q is the depen-
dent variable, E and F are the convective flux vectors
and E„ and F„ are the viscous flux vectors. The equa-
tions are similar to the laminar equations. However,
all variables in the equations are the averaged vari-
ables, and the transport properties are the effective,
i.e., laminar plus turbulent, properties. Here, we want
to point out that the viscosity multiplied by the dilata-
tional terms in the normal stresses is still the laminar
viscosity as illustrated in the following relations:

au 2 au av
Txx = 2 (^ + /at)ax — 3 µ ax + ay)'

N2 au av 1	 (5)
TYY — 2(ta + p t ) ay 3 µ (ax y + a J

The vector H on the right hand side of the flow
equations, Eq. 4, represents the additional terms intro-
duced by the averaging procedure. The vector H can

be expressed as

0
z 8pk

— a ax
2 ank

H =	 —3 ay	 (6)
Tr_ [(^ + 0", ax	 a [(^ + at ay J

+2ua (Pk)+2v-L(pk)+G
ay

where k is the turbulent kinetic energy and is defined
as

k
 = 2

p(u „ u„ +v"v„)	
(7)

P

G is the generation of the turbulent kinetic energy and
is defined in the following section.

The equations of turbulent kinetic energy, k, and
energy dissipation rate, c, are derived by the manipula-
tion of the flow equations and the averaging procedure.
The derived equations of k and c can not be solved di-
rectly due to the closure problem. Modelling of certain
terms in the equations is necessary to make the govern-
ing equations well posed. The details of the modelling
is beyond the scope of this work. Here, only the final
form of the equations are presented. The k and c equa-
tions in the Cartesian coordinate system can be cast
into the vector form: .

aQke + aEk^ + aF k , _ aEv ke + aFvke + S (8)

	

at	 ax	 ay	 ax	 ay

	where	
1Tk

Qke = 
PC J ,

Gii(
uk

	

Eke = 	 '

pvk
£' ke = PVE '

^ ak
(({L	 ak) as 1 ,

Evke	
+

I\ ( 
ax

+/ (µ ,k ) aYFvke	 1`/
l{L+ o )aY

S—C G—Pc(1+aM=)1 ,	 (9)(C 1 G — C2pf) k

where G is the generation term of the turbulent kinetic
energy and can be expressed as:

1 au;	 aui	 2 au k 	2— auk 
(10)G = µt [2 (axj + ax i ) — 3 ax k — 3pkaxk 

where the subscripts i, j, and k follows the convention
of Cartesian tensor.

The eddy viscosity ta t is derived in terms of appro-
priate length and velocity scales. For the k — c turbu-
lence model, the length scale and the velocity scale of
turbulent fluctuations are taken as

_ k3/2

	

P	
c	 (11)

	

u»	
kt/2r
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These relations allow the eddy viscosity, Eft, to be mod-
elled as:

_kZ
µt = CN P

	

	 (12)
e 

The constants used in the k - E model are the standard
Jones and Launder's values: 6 C,, = 0.09, Cl = 1.44,
C2 = 1.92, vk = 1.0, and Q, = 1.3. These constants
were never altered during the course of this work.

In order to accommodate the compressibility ef-
fect, the dissipation term pE in the source term of the k
equation is multiplied by a correction factor (1+aMt ).
Here M= is the local turbulence Mach number defined
as Mt = v/-k-/a where a is the local speed of sound. The
constant a in the term is taken as unity. This model
is developed by Sarkar et al.' The physical meaning of
the term is that for high turbulence Mach number (Mt)
flows, the dissipation of the turbulence kinetic energy
is enhanced by a factor of aMt . For free shear layers at
high convective Mach number, the turbulence intensity
is greatly reduced due to compressibility.

In calculating the turbulent free shear layers, the
inlet boundary conditions for mean velocities and tem-
perature are specified based on the hyperbolic tangent
profile with specified initial shear laver thickness. The
hyperbolic tangent profile is an approximation of the
self-similar solution for fully developed turbulent free
shear layers. The inlet transverse velocities are set to

be zero. The turbulent kinetic energy and dissipation
are specified according to the local equilibrium assump-
tion and a algebraic turbulence model :8

{^c = Pln, ay	 (13)

where 1,,, = 0.1256 and the shear layer thickness, 6, is
based on the distance between the two transverse lo-

cations where u = u l - OAAii and u = u2 + OAAu.
The dissipation can be related to the local length scale
which is specified based on the local shear layer thick-
ness:

E 
_ 

C, 
k5

6	

(14)

where C, = 1.23. Using Eqs. (13) and (14), and the
equation for the eddy viscosity, i.e, Eq. (12), k and
E can be readily obtained for the upstream boundary
conditions.

Numerical Method

The numerical solution of Eqs. (4) and (8) is
performed in a general, body-fitted coordinate system,
(f, p). For the purpose of discussion, we will concen-
trate on Eq. (4). However, the procedure is equally

applicable to Eq. (8). Coordinate transformation of
Eq. (4) results in:

aQ + ^^ (E - E v ) + j^ (F - Fv ) = H(15)

where
Q=hQ

E = h({SE+^,F)

F = h ( rl. E + r)v F)	 (16)
E v = h (^. Ev +^,F,,)
F v = h ( t7z Ev + rlyFv)

H=hH

in which It is the cell volume.
The transformed equaticn, Eq. (15), is solved us-

ing a time-marching, LU scheme. The LU scheme can
be obtained by approximately factorizing the left-hand-
side (LHS) of the equation. In time-marching form, the
implicit upwind difference scheme of Eq. (15) can be
written as

[I+ At(D{ A - + D+ B - - D+

D{ A + + D, h + )]AQ = AtRHS	
(17)

In Eq. (17), At is the time-step. Backward-difference
operators are denoted by D- and D, , and forward-

difference operators by D{ and D,+. The flux Jaco-

bians, A + , B + , A - , and B - are constructed such that
the eigenvalues of `+' matrices are nonnegative and
those of `-' matrices are nonpositive. The matrix D
is the Jacobian matrix of the source term.

The LHS matrix of Eq. (21) is usually too large for
direct inversion. An approximate-factorization proce-
dure is implemented which results in the following LU
scheme :

I + At (D- ,k + + D,^ B + - Q̂ - 3 - D I J

+ At(B+-B-)-D I i
Atj

//	 A+ B+
/J	

1111
I + At I D{ A - + D+ h - + Q^ + Oq - D I J AQ

= AtR \	

ff

(18)

where the grid spacing in the general coordinate, A^
and An are usually taken to be one. R represents the
residual of each LU time marching step. In calculating
the residual, R, both the inviscid and viscous terms are
discretized using the central-difference approach:

R = D^(Ev - E) + D,(F v - F) + II	 (19)
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where Df and D, are the central difference operators.
Equation (18) is the generic form for the LU

scheme. Its derivation can be found in Ref. 3 and
will not be repeated here. This LU scheme requires
inversion of the matrix,

[I + At (A + — A - + B + — I3 - — D) ]	 (20)

for the L operator and

[I+At(A,+— A- +II+— B- -bjD)] 	(21)

for the U operator.
Up to this point, no definition has been made to

the exact form of the split flux Jacobians. Yoon and
Jameson 2 proposed that the split flux Jacobians are
defined as

A+ = 0.5(A + yAI)

A - = 0.5(A — yAI)
(22)

B + = 0.5(B + yBI)

B - = 0.5(B — yBI)

where 7p and yII are greater than the spectral radii of
the associated flux Jacobians :

yA > max(IAAI)
(23)

yn > max(JA,3J)

The purpose of constructing split flux-Jacobians by Eq.
(22) is to make the matrices in Eqs. (20) and (21) diag-
onal for efficient inversion. Apparently, the eigenvalues
of the split flux-Jacobians are not the characteristics
speeds of the flow.

In solving the k and c equations, the aforemen-
tioned numerical method, i.e., the LU scheme on the
left hand side and central differencing on the right hand
side, is used. The solution procedure of the whole equa-
tion set is decoupled into flow solver and turbulence
solver. Thus, the turbulence solver stands alone and
can be easily turned on or off. This arrangement does
not affect the overall numerical stability due to the fact
that the feedback from k and c equations to the flow
equations depends on the turbulent transport proper-
ties only. Thus, it is more efficient and convenient to
separate the solution procedure into two parts.

The source terms of the k and c equations demand
special treatment. In linearizing the source terms for
the numerical method, the Jacobian matrix is obtained
through the derivative of the source terms with respect
to the dependent variables, i.e., pk and pc. Following
the usual practice, the form of the source terms guar-
antee a 2 x 2 full matrix for the Jacobian matrix. How-
ever, special treatment in deriving the Jacobian matrix

is applied in this work to enhance the numerical stabil-
ity. In the k equation, c has been replaced by k(c/k)

where c/k is treated as a constant. A similar method is
also applied to the source term of the c equation. The
Jacobian matrix obtained is:

k(1 +aMi)	 CO', 	 )D —	
0	 —CZ k	

27

Note that off-diagonal terms are eliminated and the di-
agonal terms are always negative. Thus, the implicit
part of the source terms of k and c equations behaves
like a sink which always stabilize the numerical scheme.

Results and Discussions

Bogdanoff' introduced the convective Mach num-
ber as a parameter that collapses the growth rate date
of plane shear layers. The convective Mach number is
defined as

	

MC = 
Ul — U` 

= 
U` — 

U2	 (28)
	cl 	 c2

where Ul and U2 are the freestream velocities, and cl
and c2 are the freestream sound speeds. Uc is the con-
vective velocity of large structures and is defined as

	

UC _ 
U1C2 + U2C1	 (29)

C1 + C2

Table 1 shows the five test conditions of the simulated
compressible free shear layers. The range of the convec-
tive Mach numbers, M, is from 0.05 to 1.48. The last
two rows show the spreading rate and the ratio of the
compressible spreading rate to incompressible spread-
ing rate in which b is the shear layer thickness and the
superscript ' represents the derivative of b with respect
to the streamwise distance. As indicated in the last
row of the table, the ratios of the spreading rate of
the free shear layers decreases as the convective Mach
number increases. The test conditions of Case 3 in the
table are the same as in the experiments reported by
Goebel and Dutton.' In the rest of the section, we will
first show the direct comparison between the simulated
results and the experimental data for Case 3. Then,
detailed numerical solutions of Case 3 in terms of ve-
locity, turbulent kinetic energy, turbulence dissipation
rate, Reynolds stress, and eddy viscosity are presented
in a coalesced fashion. Finally, the solutions of five
cases are compared to each other in the figures of ki-
netic energy, Reynolds stress, and ratio of spreading
rates.

The solutions of Case 3 are examined in detail.
Figure 2 shows the development of the free shear layer.
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Note that x and y axes are not on a 1:1 ratio for the
convenience of illustration. The definition of the shear
layer boundaries is the same that of the shear layer
thickness. III 2, the boundaries of the shear layer
corresponding to 10 — 90% are drawn. Circles are the
experimental data of Dutton et al. The calculated re-
sults agree well with the experimental data. After the
developing region, the boundary of the shear layer is
almost linear. Incidentally, Figs. 3a and 3b show the
numerical convergence trends of the flow and k — c
equations. In about 2500 iterations, the residuals drop
about 12 orders of magnitude and reach the machine
accuracy.

Figure 4 shows the Mach number profile at various
axial locations. The velocity gradient in the transverse
direction decreases as the flow goes downstream. Figure
5 is the coalesced version of Fig. 4. The nondimension-
alized y coordinate defined as (y— y,)/b is used, where
y, is the transverse location at the center of the shear
layer, and b is the shear layer thickness. Note that the
upstream boundary condition of velocities is prescribed
according to a hyperbolic tangent curve which is an ap-
proximation of self-similar solution of free shear layers.
According to Fig. 5, this self similarity of velocity pro-
files never fail as the flow goes downstream.

Figure 6 shows coalesced turbulence kinetic ener-
gies at various locations. The turbulence kinetic en-
ergy is nondimensionalized by AU'. This figure clearly
shows that after the first three stations, i.e., about 150
mm, the turbulence kinetic energy retains self similar-
ity. Thus, the developing region for the turbulence is
about 150 mm. Figure 7 shows the turbulence dissipa-
tion profiles. As flow goes downstream, the peak values
of turbulence dissipation at each stations decrease, and
the turbulence dissipation never reach a fully developed
condition. However, if the c value is nondimensional-
ized by AU3 16 the coalesced profiles appear as shown
in Fig. 7. A similar behavior is observed for the eddy
viscosity profiles (Fig. 8). Figure 9 shows the nondi-
mensionalized Reynolds stress profiles. Again, the tur-
bulence Reynolds stress becomes the fully developed at
about 150 mm downstream of the splitter plate.

Figure 10 shows the comparison between the pre-
dicted fully developed Reynolds stress and the experi-
mental data reported by Dutton et al.' The predicted
solution underestimated the peak value of the Reynolds
stress profile by 6 — 8%; however, the overall trend
of the predicted results is correct. Many factors con-
tribute to the discrepancy between the predicted result
and experimental data. Among them, the upstream
boundary conditions are simplified in the solution pro-
cedure, i.e., no effort was made to simulate two bound-
ary layers merging at the tip of the splitter plate. This
could offset the solution in the developing region and

shift the fully developed solutions.
Figure 11 shows the comparison of the turbulent

kinetic energy between the five cases. Again, the turbu-
lent kinetic energy is normalized by the square of the ve-
locity difference of the two streams. It is clear that the
normalized turbulence intensity decreases with increas-
ing convective Mach number. A similar situation is
observed in Fig. 12, the normalized Reynolds stress de-
creases with increasing convective Mach number. Fig-
ure 13 shows the distribution of the ratios of spread-
ing rates for the five cases compared to experimental
data. The ratio of the spreading rates decreases from
about unity to 0.45 as the convective mach number in-
creases from about 0. to 1.45. Both the experimental
data and the simulated results show the spreading rate
ratio reaches an asymptotic value after the convective
mach number exceeds unity. Simular phenomenon can
be seen in Figs. 11 and 12. Both figures show that
the normalized turbulence kinetic energy and Reynolds
stress reach asymptotic values as the convective Mach
number increases.

CONCLUDING REMARKS

In this paper, we report the incorporation of a com-
pressible k, — c model with a two-dimensional Navier
Stokes solver to study compressible free shear layers.
Sarkar's modelling is adopted to simulate the compress-
ibility effects of the k and e equations. The model en-
hances the turbulence dissipation rate of flows at high
speeds. In deriving the governing equations, the Favre
averaging procedure for the fully trubulent flow equa-
tions is elaborated. The equation sets are presented in
the vector form for the convenience of the discussion of
the numerical method. Yoon and Jameson's LU scheme
is used to solve the equation sets. Details of boundary
conditions and the treatment of the source terms of the
k and c equations are discussed. Then the program is
applied to simulate compressible free shear layers with
five different convective Mach numbers. The decrease
of the spreading rate of the shear layers with increasing
Mach number is observed in the calculated results. Re-
sults also show favorable comparison with Goebel and
Dutton's experimental data.
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Table 1: Test conditions of the calculated shear layer.

CASE 1 2 3 4 5

M I ,M 2 1.2,	 1.1 2.0, 1.4 1.9 1,	 1.37 2.5,	 1.1 6.1, 3.15

M c 0.0.5 0.31 0.45 0.70 1.49

U I ,U 2
[m]

419, 394 676,465 702,404 965, 390 3461, 1786

T 1 , T2

[K]
300, 300 275,275 334,215 295,295 800,900

PI , p^
(Kg/-m 3)

0.64,0.6 0.7,0.7 0.57,0.89 0.64,0.64 0.24,0.24

P [atml 0.55 0.55 0.55 0.55 0.55

S' 0.007 0.021 0.027 0.035 0.024

1.01 0.7 0.54 0.47 0.40
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