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Foreword

The seventh annual Goddard Conference on Space Applications of
Artificial Intelligence is sponsored by the Mission Operations and Data
Systems Directorate, in cooperation with the American Institute of
Aeronautics and Astronautics (AIAA) National Capital Section. The
Conference provides a needed and effective forum for the exchange of
ideas, techniques, and experiences among the researchers and practitioners
of Artificial Intelligence throughout the space industry.

No conference simply “happens”, even one that has had six previous
iterations of prototyping and testing. Thus, as always, there is the pleasant
duty of acknowledging the many people that have labored to bring about
this year’s Conference. Thanks, of course, to the authors, whose work
makes our Conference possible and worthwhile; and to the invited speakers
and panelists, for sharing their time and insight with us. Thanks, too, to
our Paper Review Panel, new to this year’s Conference, for their time and
expertise. And, as always, special thanks to the Conference Planning
Committee for their dedication and for the hard, sometimes frantic work
that lies behind every aspect of the Conference, and that the Conference
depends upon for its existence.

(ol Haat

Carl F. Hostetter
Chairman, 1992 Goddard Conference
on Space Applications of Artificial Intelligence
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Preface

This proceedings of the seventh annual Goddard Conference on Space
Applications of Artificial Intelligence, held May 5 and 6, 1992 at the
Goddard Space Flight Center, Greenbelt, Maryland, offers nineteen papers
demonstrating progress in the areas of planning and scheduling,
monitoring/diagnosis/control, tools, information management, neural
networks, and certain miscellaneous applications.

By virtue of an expanded paper selection process and a new editing cycle,
we believe this year's proceedings reaches a high point in quality. All of
the submitted papers were selected through blind review by a selection
committee drawn from NASA, industry, and academia. During the editing
cycle, time limitations permitted only minor revisions. The entire process,
considered to be worth the necessary additional time and effort, is likely to
be repeated, or extended even further, for next year's conference.

Under sponsorship of Goddard's Mission Operations and Data Systems
Directorate, the conference remains one of the most accessible of all the
means available to Al practitioners for communicating results relative to
space applications of artificial intelligence. No admission fees are charged,
and attendance is open to all U.S. citizens and qualified noncitizens. We
continue broadly soliciting contributions of technical papers appropriate to
the theme of the conference. Potential contributors should take note of the
call for papers for the 1993 conference printed at the end of this
proceedings document.

James L. Rash
Document Editor
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Artificial Intelligence Approach to Planning the Robotic
Assembly of Large Tetrahedral Truss Structures’

Luiz S. Homem-de-Mello 7
Jet Propulsion Laboratory

California Institute of Technology
Pasadena CA

Abstract

This paper presents an assembly sequence planner for
tetrahedral truss structures. To overcome the difficulties
due to the large number of parts, the planner exploits the
simplicity and uniformity of the shapes of the parts and
the regularity of their interconnection. The planning au-
tomation is based on the computational formalism known
as production system. The global database consists of an
hexagonal grid representation of the truss structure. This
representation captures the regularity of tetrahedral truss
structures and their multiple hierarchies. It maps into
quadratic grids and can be implemented in a computer by
using a two dimensional array data structure. By main-
taining the multiple hierarchies explicitly in the model,
the choice of a particular hierarchy is only made when
needed, thus allowing a more informed decision. Further-
more, testing the preconditions of the production rules is
simple because the patterned way in which the struts are
interconnected is incorporated into the topology of the
hexagonal grid. A directed graph representation of as-
sembly sequences allows the use of both graph search and
backtracking control strategies.

1 Introduction

Figure 1 shows a tetrahedral truss structure similar
to those that will be used in future space missions
[13]. The assembly, disassembly or repair of these
large truss structures requires careful planning in or-
der to guarantee that the parts are assembled, or dis-
assembled, in a correct and efficient sequence. This
planning is needed regardless of whether the assembly
is executed by humans or by robots.

Because of the size and complexity of these truss
structures, even trained humans may fail to detect
dead-end sequences until a lot of work has been done
and it is found that the overall assembly cannot be
completed. In the case of a repair in which a faulty
strut is to be replaced, an ill-planned disassembly

*This research was conducted at the Jet Propulsion Labo-
ratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

PRECEDING PAGE BLANK NOT FILMED

3

91109-8099

sequence may lead to an irveparable collapse of the
whole truss structure.

In addition to the difliculty humans have in guar-
anteeing correctness in the planning process, they of-
ten fail to notice which possibilities for the sequences
are the most efficient. This difliculty is further ag-
gravated by constant changes in the measure of the
efficiency of the assembly sequence. For example, the
efficiency may be measured by the total time it takes
to complete the assembly in one case, and by the total
energy in another case.

Moreover, humans typically are slow in generat-
ing assembly sequences. There are many situations
in which the sequence planning must also be expe-
ditious. Speed in sequence generation is particularly
important in the case of a repair in which a faulty
strut is to be replaced. It is virtually impossible
to preplan for every conceivable repair that may be
needed. Speed in sequence generation is also impor-
tant in the design of the truss structures because it
allows the difficulty of assembly to be considered in
the design process. A designer may also want to take
into account the difficulty of repairing different strue-
tures.

Therefore, there is a need to systematize and to
computerize the generation of the correct assembly,
disassembly, and repair sequences, as well as the se-
Jection of the best solution. Systetnatization is necded
in order to guarantee that the sequences generated
are correct and efficient. Computerization is needed
in order to enable the fast generation of assembly se-
quences. In the case of robotic assembly and repair,
the software for planning asserbly, disassembly, and
repair sequences will augment the array of unctions
that robots are able to perform autonomously.

Most previous work o assembly planning focused
on electromechanical and electronic devices [6]. This
paper presents an assembly sequence planner for
tetrahedral truss structires. To overcome the difli-
culties due to the large nimber of parts, the planner
exploits the simplicity and uniformity of the shiapes of
the parts and the regularity of their imterconnection,
The planning automation is based on the computa-
tional formalism known as production system. The



,
,
.
NS
3
\
s

~

Figure 1: Tetrahedral truss structure.

global database consists of an hexagonal grid repre-
sentation of the truss structure. This representation
captures the regularity of tetrahedral truss structures
and their multiple hierarchies. It maps into quadratic
grids and can be implemented in a computer by using
a two dimensional array data structure. By maintain-
ing the multiple hierarchies explicitly in the model,
the choice of a particular hierarchy is only made when
needed, thus allowing a more informed decision. Fur-
thermore, testing the preconditions of the production
rules is simple because the patterned way in which
the struts arc interconnected is incorporated into the
topology of the hexagonal grid. A directed graph rep-
resentation of assembly sequences allows the use of
both graph search and backtracking control strate-
gies.

2 Scenario

A truss structure is a composition of struts intercon-
nected at nodes and forming a stable and rigid unit.
All struts are identical, and so are all nodes. The
struts are attached to the nodes through joint con-
nectors. A strut s; is said to belong to a node n; if
one of s;’s ends is attached to n;. Similarly, node n;
is said to belong to strut s;.

In this paper, the robotic assembly facility of the
NASA Langley Research Center [12, 13, 15] will be
used as the reference scenario. Figure 2 shows that
facility in schematic forim. The robot arm is mounted
on a base that is mounted on a carriage that can
translate along one direction. The base where the
robot is mounted can translate along a direction or-
thogonal to the carriage translations. These two mo-

Pallets with
truss struts -

€ motion base

Figure 2: Robotic assembly facility at the NASA Lan-
gley Research Center.

tions allow the positioning of the robot arm in a
Cartesian coordinate system. The truss structure is
mounted on a base that can rotate. If necessary, be-
fore a strut is assembled, the structure is turned and
both the base of the robot arm and the carriage are
translated.

The assembly process consists of a succession of
tasks, each of which is the addition of one strut. The
nodes are preattached to their first strut to be as-
sembled. Whenever a strut is added, it is attached
to its two nodes, except when the nodes have been
preattached. The process starts with all struts stored
in pallets that are stacked on the same base where
the robot arm is mounted. The assembly process
ends with all struts properly joined to form the whole
structure. Ideally, after struts have been added, they
are not removed until the end of the assembly process.

An assembly task is said to be feasible if there is a
collision-free path to bring the strut to its position in
the structure from a situation in which it is far apart,
and if it is possible to lock the joints that attach the
strut to its nodes. Of course, the path should also
avoid collisions between the robot armn or the carriage
and the truss structure.

It is desired to create a computer system that will
generate a sequence of assembly tasks for any given
tetrahedral truss structure. Of course, the input to
this system includes a description of the desired struc-
ture. In addition to containing only feasible tasks
and achieving the assembly of the whole structure,
the sequence produced should minimize a given cost
function. Although the definition of the cost func-
tions is part of the problem, it will probably include
a weighed combination of reliability, safety, energy
and total assembly time.



3 Background on assembly
sequence planning

Most previous work on assembly sequence planning
2, 3, 4, 5] focused on electromechanical and electronic
devices such as gearboxes, alternators and disk drives.
The difficulty in planning the assembly sequence for
those products stems, in some degree, from the va-
riety of part shapes and from the lack of regularity
in the way the pieces are interconnected. To over-
come this difficulty, previous approaches used elab-
orate representations of mechanical assemblies and
complex geometric and symbolic reasoning techniques
1, 4, 16].

Another difficulty in the automation of assembly
sequence planning for electromechanical and elec-
tronic devices comes from the fast growth in the re-
quired computation with the increase in the number
of parts. Previous approaches have overcome this
problem by clustering components into subassemblies
(8], thereby artificially reducing the number of parts.
Many large products have natural subassemblies that
arise as a result of modular design as well as of man-
ufacturing advantages. Clustering components into
subassemblies sacrifices completeness since sequences
that interleave the assembly of parts of different sub-
assemblies can not be generated. But for most large
products this loss of completeness is not a serious lim-
itation because those natural subassemblies are as-
sembled independently anyway. In practice, a hierar-
chical model of the assembly [14] is used to implement
the clustering of parts. At the highest level, each sub-
assembly is treated as a part.

There has been substantial progress in assembly
planning in recent years, and several new approaches
and techniques have been reported[6]. Nevertheless,
because of the complexity of the reasoning involved
and the large size of the solution space, it is still im-
practicable to use existing planners to generate an
assembly sequence for assemblies containing a large
number of parts, such as the structure shown in Fig-
ure 1, which is made of 102 struts.

One way to reduce the computation, when plan-
ning the assembly of tetrahedral truss structures, is
to cluster the struts into subassemblies as in the case
of electromechanical and electronic devices. A truss
structure such as the one shown in Figure 1 can be
viewed as the composition of tetrahedral and pen-
tahedral units, much like a solid that has a com-
plex shape can be treated as the composition of sim-
ple solids that have faces in contact, one against the
other. Two adjacent units share the struts and nodes
of their “contacting” faces. For example, the small
truss structure shown in Figure 3a can be regarded as
the composition of the two pentahedral units shown
in Figure 3b. Those two pentahedrons have one face
“in contact” and they share the struts and nodes of
that face. Similarly, the structure shown in Figure
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Figure 3: A small truss structure and its subdivision
into two pentahedral units.

1 can be viewed as a composition of tetrahedral and
pentahedral units with faces “in contact.”

Since in practice it is preferred to finish the as-
sembly of one unit before beginning the assembly of
another [11], seeing the structure as a composition
of units should not be a problem in the assembly se-
quence planning. Furthermore, this approach should
reduce the computation required to create the assem-
bly sequence. Mathur and Sanderson [9] describe a hi-
erarchical planner for truss structures. For the struc-
ture shown in Figure 1, for example, using this ap-
proach corresponds to reducing the number of parts
from 102, which is the number of struts, to 37, which
is the number of units.

The use of a hierarchical approach for planning the
assembly requires that the tetrahedral truss structure
be subdivided into pentahedral and tetrahedral units.
But there are several ways to cluster the struts into
those kinds of unit. For example, in addition to the
subdivision shown in Figure 3b, there are two other
ways in which the small truss structure shown in Fig-
ure 3a can be subdivided into two pentahedral units,
and these are shown in Figure 4. Unlike the elec-
tromechanical and electronic devices studied previ-
ously, in the case of truss structures, there is no man-
ufacturing advantage in choosing one subdivision over
the others. Instead of having one natural hierarchy
of the parts, tetrahedral truss structures have several
hierarchical models, none of which is “more natural”
than the others. When the small structure shown in
Figure 3 is part of a large structure (e.g. Figure 1),
unless the best assembly sequence is known in ad-
vance, choosing one of its subdivisions to create a
hierarchical model will likely preclude the generation
of the best assembly sequence. Therefore, it is impor-
tant that the representation of the problem captures
the multiple hierarchies that occur in a tetrahedral
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Figure 4: Two additional subdivisions of the small
truss structure (Figure 3a) into two pentahedral
units,

truss structure.

A second way to reduce the computation, when
planning the assembly of tetrahedral truss structures,
is to take advantage of the simplicity and uniformity
of the shapes of the parts and the regularity of their
interconnection. Unlike the electromechanical and
electronic devices studied previously, the tetrahedral
truss structures are made of struts, all of which have
the same cylindrical shape. Moreover, those struts
are interconnected in a regular fashion. Because the
parts have the same shape and are interconnected in
a patterned way, the model of a truss structure can
incorporate the geometry of the set of parts in a more
explicit way than the models used for electromechan-
ical and electronic devices.

The models of assemblies that have been used in
previous work describe the shapes of all parts and
the geometric and mechanical relationships between
parts. Typically, assembly models can be associated
with graphs in which the vertices correspond to the
parts and the edges to the geometric relationships
between parts [14]. The topology of the graph corre-
sponds to the topology of the parts in the assembly.
But there is no relation between the geometry of the
set of parts in the assembly and the topology of the
graph. Figure 5 shows three simple assemblies made
up of the same set of parts. Those assemblies are as-
sociated with the same graph, also shown in Figure 5,
since the topology of the parts is the same. But the
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Figure 5: Three assemblies with different geometry
but same topology.

geometry of the parts in each assembly is very differ-
ent from the geometry of the parts in the others.

The next section presents an assembly planner that
uses a multihierarchical representation for the truss
structures and that takes advantage of the simplicity
and uniformity of the shapes of the parts and the
regularity of their interconnection.

4 Planning the assembly of
tetrahedral truss structures

The computational formalism known as production
system [10] has been used for the automatic genera-
tion of assembly sequences for tetrahedral truss struc-
tures. There are three major elements in a production
system: the global database, the set of production
rules, and the control scheme. This section describes
these three elements. Subsection 4.1 presents a multi-
hierarchical representation of tetrahedral truss struc-
tures that constitutes the global database; subsection
4.2 discusses the control scheme; and subsection 4.3
introduces the production rules that act on the global
database.

4.1 A multihierarchical
representation of tetrahedral
truss structures

It was mentioned in section 3 that, unlike the elec-
tromechanical and electronic devices studied previ-
ously, the tetrahedral truss structures are made of
simple struts all of which have the same shape. In ad-
dition, the struts are interconnected in a very regular



Figure 6:A subset of the structure shown in Figure 1.

fashion. The method for planning assembly sequences
of tetrahedral truss structures can take advantage of
these facts to reduce the computation needed to gen-
erate assembly sequences.

The representation to be introduced next is based
on viewing tetrahedrons and octahedrons as the
building blocks of a tetrahedral truss structure. A
pentahedron will be considered to be a building block
only when it is not embedded in any octahedron!.
Figure 6 shows a subset of the structure depicted in
Figure 1, and Figure 7 shows its building blocks.

As discussed above, there are six embedded penta-
hedrons in an octahedron. The nodes of the octahe-
dron shown in Figure 3a have been numbered by anal-
ogy with the numbers in a clock face. The embedded
pentahedrons are designated by the number of the
vertex corresponding to their apex. Therefore, the
pentahedrons shown in Figure 3b are referred to as
P12 (top) and P6 (bottom); the pentahedrons shown
in Figure 4a are referred to as P8 (left) and P2 (right);
and the pentahedrons shown in Figure 4b are referred
to as P10 (left) and P4 (right).

Figure 3a shows a coordinate frame associated with
an octahedron. The z—y plane contains nodes 2, 6,
and 10. The z axis points out of the figure?. The
octahedrons in a truss structure are all parallel to
each other. Therefore, the transformation between
the coordinate frames of two octahedrons is a pure
translation.

Some tetrahedrons have three nodes on the top
plane and one node on the bottom plane. These are
referred to as tetrahedron-down because they can be
viewed as a pyramid pointing down. The other tetra-
hedrons, which have three nodes on the bottom plane

1Pentahedrons not contained in any octahedron occur at
the periphery of a structure. See Figure 8.
2Nodes 4, 8, and 12 have positive z coordinate.
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Figure 7: The building blocks of the structure shown
in Figure 6.

and one node on the top plane, are referred to as
tetrahedron-up. All tetrahedrons-up in a truss struc-
ture are parallel to each other, and all tetrahedrons-
down are parallel to each other. Therefore, the
transformation between the coordinate frames of two
tetrahedrons-up (or two tetrahedrons-down) is a pure
translation.

A tetrahedral truss structure can be represented by
a graph in which the vertices correspond to volumet-
ric units, and the edges correspond to “face-contacts”
between adjacent units. Figure 8 shows a graph rep-
resentation for the 102-strut truss structure shown in
Figure 1.

The geometry of this graph parallels that of the
truss structure. Because of the regularity of the struc-
ture, its graph representation constitutes an hexag-
onal grid. In addition, the hexagonal grid can be
mapped into a rectangular grid as shown in Figure
8, where the lines and columns are labeled with their
indices. Furthermore, a coordinate frame can be as-
sociated with the graph shown in Figure 8: the x axis
points down, and the y axis points right.

There are three types of vertices, represented, re-
spectively, by hexagons, triangles, and half-hexagons.
Hexagon vertices correspond to octahedrons like the
one shown in Figure 3a. Triangles correspond to
tetrahedrons: triangles pointing down in the figure
correspond to tetrahedrons-down, and triangles point-
ing up correspond to tetrahedrons-up.

Unlike regular graphs, in this representation the
position and the orientation of the vertices are im-
portant. A coordinate frame is associated with the



FFigure 8: Graph representation for a tetrahedral truss
structure with 102 struts and its mapping into a rect-
angular grid.

Figure 9: The six orientations in which half-hexagons
may occur: {(a) P2; (b) P1; (¢) P6; (d) P8; (¢) P10;
(f) Pi2.

graph. Its axes are parallel to those of the frames
associated with the octahedrons. Fach vertex is ori-
ented as its unit’s parallel projection on the bottom
plane of the structure.

The half-hexagons correspond to pentahedrons
such as those shown in Figures 3b, 4a, and 4b. The
half-hexagons are used only when there is no octa-
hedron that includes the corresponding pentahedron.
Since there are six pentahedrons embedded in each
octahedron, there are six orientations in which the
half-hexagons may occur, and they are shown in Fig-
ure 9.

The edges in the graph representation of a truss
structure correspond to those “faces” that are com-
mon to two adjacent volumetric units, that is, those
sets of three struts that “belong” to both volumetric
units.

The mapping of the graph representation into a
rectangular grid gives rise to a data-structure for a
computer implementation: a two-dimensional array
in which each element may contain information about
one building block of the truss structure. The indices

Figure 10: The mapping of the graph representation
of tetrahedral truss structures into a quadratic (not
rectangular) grid.

of the array element indicate the position of the build-
ing block.

The edges in the graph shown in Figure 8 are
only implicitly encoded into the two-dimensional ar-
ray data structure. In addition, the contacts between
units that share only one strut, or only one node, are
also implicitly encoded into the array. For example,
a tetrahedron-up at cell (i , 7) (i.e. line ¢, column
7) shares one strut with the tetrahedron-down at cell
(i + 2, 7), another strut with the tetrahedron-down
at cell (i — 1, 7 — 1), and another strut with the
tetrahedron-down at cell (1 — 1, 7+ 1). As another
example, an octahedron at cell (i, j) shares one node
with the tetrahedron at cell (i +2, j — 2).

It should be pointed out that Figure 8 shows one
mapping from the graph representation of tetrahe-
dral truss structure, which is an hexagonal grid, into
a rectangular grid. That mapping is probably the
most direct, but it leaves a number of empty cells. In
a computer implementation, if the available storage
space is scarce, it is straightforward to devise other
mappings from the hexagonal grid into a quadratic
grid, which may not be rectangular. Figure 10 shows
another mapping from the graph representation of
truss structures into a quadratic grid. Unlike the one
shown in Figure 8, the mapping shown in Figure 10
does not leave empty cells.

As it will become clear in the following subsections,
this graph representation of truss structures allows an
assembly planner to exploit the regularity in which
the parts are joined to improve its planning efficiency.
This improvement is due, in part, to the encoding of
the geometry of the truss structure in the topology of



Figure 11: A portion of the directed graph of as-
sembly sequences, which is also shown in Figure 12.
The vertices have been labeled by the top view of the
partial truss structure at each state of the assembly
process.

the graph. Moreover, the graph representation also
allows the planner to take advantage of the multiple
hierarchies that exist in tetrahedral truss structures.
The decision of which hierarchy to choose does not
have to be made until it is needed. Being able to delay
the selection of the hierarchy, the planner will have
more information available to decide which hierarchy
is more advantageous, and therefore will be able to
make a better choice.

4.2 Control strategy

Several methodologies for representing assembly se-
quences have been utilized (7], including representa-
tions based on directed graphs and AND/OR graphs.

As mentioned in section 4, it is preferred to com-
plete the assembly of a tetrahedral or pentahedral
unit before beginning the assembly of another unit
[11]. Therefore, the assembly task can be redefined
as the assembly of one tetrahedron or one pentahe-
dron. In this definition, each assembly task consists
of a sequence of subtasks, each being the assembly of
one strut.

Since each assembly task is the addition of exactly
one volumetric unit, both the directed graph and the
AND/OR graph will have the same size. The directed
graph representation has been used in this work be-

Figure 12: A portion of the directed graph of assem-
bly sequences, which is also shown in Figure 11. The
vertices have been labeled by the graph representa-
tion of the partial truss structure at each state of the
assembly process.

cause it is simpler and easier to understand and im-
plement. The vertices in this directed graph corre-
spond to the states of the assembly process that can
be characterized by the description of the substruc-
ture already assembled. The edges in this directed
graph represent the assembly tasks, each correspond-
ing to the addition of one volumetric unit.

Figures 11 and 12 show a portion of the directed
graph of assembly sequences. In Figure 11 the ver-
tices have been labeled by the top view of the partial
truss structure at each state of the assembly process.
This labeling is better for displaying the assembly se-
quences for humans. In Figure 12 the vertices have
been labeled by the graph representation of the par-
tial truss structure at each state of the assembly pro-
cess. This labeling reflects more closely the computer
internal representation of the assembly sequences. In
both Figures, the vertex at the top corresponds to a
state in which one octahedron and two tetrahedrons
are already assembled. The two vertices in the middle
corresponds to states in which an additional penta-
hedron is already assembled. In the left vertex, the
additional pentahedron is P10, and in the right ver-
tex, the additional pentahedron is P8. The vertex at
the bottom corresponds to a state in which two octa-
hedrons and two tetrahedrons are already assembled.

Figure 12 also illustrates the advantage of using the



multihierarchical representation of tetrahedral truss
structures introduced in section 4.1. Because the
building blocks are tetrahedrons and octahedrons, it
is possible to generate sequences that use different
sets of pentahedrons as assembly tasks. As pointed
out above, the additional pentahedron in the left mid-
dle vertex is not the same as the one in the right
middle vertex. By using the representation in Figure
8, the three possibilities in which an octahedron can
be subdivided can be considered. In the scenario de-
scribed in section 2, the two possibilities correspond-
ing to the subdivision of the right octahedron into
P86 and P12 are not considered valid. If the structure
had been viewed as a composition of pentahedrons
and tetrahedrons, only one alternative would be con-
sidered.

Each assembly sequence corresponds to a path in
the directed graph of assembly sequences, starting in
the vertex that has no label (i.e., no strut has been
assembled) and ending in the vertex that is labeled
by the whole truss structure. By construction, the
directed graph of assembly sequences has no cycle.
A measure that reflects the quality of an assembly
sequence can be computed by assigning costs to the
vertices (i.e., the states of the assembly process) and
to the edges (i.e., the assembly tasks). The cost of a
path p can be defined recursively as:

Cs(sp) if the path has only one node
Cs(sp) + Cr(tp) + cost(r,) otherwise

cost(p) = {

where s, is the initial vertex (state) of p, t, is the
initial edge (task) of p, and r;, is the tail of p, that is,
what is left of p after s, and ¢, are removed. The func-
tion Cs gives an assessment of the quality of a state
of the assembly process. Better (e.g., more stable)
states correspond to smaller values of Cs. The func-
tion Cr gives an assessment of the quality of a task
in the assembly process. Better (e.g., less complex
or less time consuming) tasks correspond to smaller
values of Cs.

The directed graph representation of assembly se-
quences and its associated cost function allow both
backtracking and graph search control regimes [10] to
be implemented. The construction of the assembly se-
quence can proceed in backward or forward fashion.
The former is easier to understand while the latter
may be more efficient, since it avoids dead-end states.
Subsection 4.4 describes the current implementation.

4.3 Production rules

The global database introduced in subsection 4.1 re-
flects the state of the truss structure at each point
of the assembly process. The production rules that
are introduced in this subsection contain the condi-
tions for the execution of an assembly task and the
changes that occur in the state of the truss structure
when that task is executed. In the operation of the
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e Precondition:

1. Cell (i,7) currently contains a pentahedron
Pk.

2. Goal is one octahedron in cell {3, 7).
3. Any cell (z,y) for which L(z,y,¢,7,k) > 0
is empty where L(x,y,1,7,k) = a(k) -z +
e Effect:
1. Adjust the angle of the truss structure and

the z—y position of the robot arm acording
to the position of cell (3, 7).

2. Install pentahedron Pk’ in cell (7,7) where
k' = rem(6 + k, 12).

Figure 13: Production rule example. See Table 1.

planning system, whenever a production rule is ap-
plied, the global database must be updated to reflect
the changes in the state of the truss structure.

The simplest way to introduce the production rules
is by an example. Figure 13 shows one production
rule. It corresponds to the assembly task that fin-
ishes up one octahedron, starting with one of its
pentrahedron halves already assembled. If the pen-
tahedron already assembled is Pk, the pentahedron
that will complete the octahedron is Pk’ where k¥’ =
rem(6 + k,12).

The first two preconditions simply verify that the
goal is an octahedron in a cell (4,7) that currently
has a pentahedron. The third precondition verifies
that no collision will occur between the truss struc-
ture and the carriage where the base of the robot is
mounted. It requires that all cells on the side of the
line L(z,y,1,7,k) = 0 where Pk’ is must be empty.
Figure 14 shows a state in which the preconditions of
the production rule in Figure 13 are satisfied for cell
(7,5) and k = 10.

The effect of this production rule is the installation
of pentahedron Pk’ in cell (4, 7). This can be accom-
plished by using a precompiled sequence of subtasks,
each of which is the addition of one strut. Since the
base of the pentahedron is already in place, only four
struts must added. This subsequence of tasks, each
of which includes the motions of the robot arm, is in-
dependent of the position of the cell (%, ). Of course,
the positions of the carriage and of the base, as well
as the angle of the structure, must be adjusted ac-
cording to the position of cell (4,7).

For each possible geometric configuration that a
cell can take, there is a production rule similar to the



Table 1: Coefficients of L(z,y,1,7, k) in the produc-
tion rule example shown in Figure 13.

k| alk) | B(k) [ +(3,4,k)
2| -1 | -3 | (i+39)
a1 | 3| @i-9)
6| 1 0 —i

8| 1 3 | —(i+39)
0] -1 3 | 3i-14)
12] 1| o i

one in Figure 13. Since there are only a few geometric
configurations, the total number of production rules
is small.

4.4 Current implementation

The current implementation is an interactive produc-
tion system that uses a backtracking control scheme.
The assembly sequences are generated in a forward
fashion. The first unit to be assembled is given.

At each step, a menu containing all the subunits
that can be assembled next is displayed for the user.
These options are obtained by testing the precondi-
tions of the production rules. The alternatives in the
menu are ranked according to the system’s preference
criterion. The user may accept the system’s choice for
the next subunit or may select another among those
that are feasible. A graphical display of the truss
structure allows the user to visualize the available op-
tions. At any point, the user can force the system to
backtrack and to “undo” one or more assembly tasks.

This interactive production system exploits the
strengths of humans and computers. Computers are
better at guaranteeing that the sequence is correct
and that no option is overlooked. Humans are better
at assessing the quality of an assembly sequence.

The cost function that is used is a function of the
translation of the carriage, the translation of the base,
and the rotation of the structure. The shorter those
motions, the lower the cost function. The task for
which the cost function is minimal has the highest
preference. Other cost functions are being investi-
gated, and one of the goals of this project is to find
good cost functions and their corresponding heuristic
estimations.
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Figure 14: A state in which the preconditions of the
production rule in Figure 13 are satisfied for cell (7, 5)
and k = 10.

In each assembly task, a number of struts are as-
sembled. For example, in the tasks corresponding
to the effect of the production rule shown in Figure
13, four struts are assembled. By properly position-
ing the carriage and the base of the robot, the arm
motions to install a given strut is the same regard-
less of the position of the octahedron that is being
completed. In the current implementation, these mo-
tions were taught. Each production rule is associated
with the paths to install the struts of its correspond-
ing subunit. Therefore, the output of the planning
system includes, for each strut, the positions of the
carriage and the base of the robot, the angle of the
truss structure, and the specific arm motion to be
used.

5 Conclusion

This paper brought about a clear understanding of
the regularity of the tetrahedral truss structures and
their multiple hierarchies. Unlike electromechanical
and electronic devices, tetrahedral truss structures
can be represented by a graph whose topology corre-
sponds to the geometry of the parts. This representa-
tion captures the regularity of the truss structure as
well as all its hierarchies. It consists of an hexagonal
grid that can be mapped into a two-dimensional ar-
ray data structure. The relationships between units
are implicitly encoded by the indexes of their corre-
sponding cells in the array.

Using this representation and its associated data
structure, a simple reasoning is sufficient to decide



whether or not a candidate assembly task is feasible.
Furthermore, the choice between hierarchies can be
made as the plan is generated, thus allowing a better
selection than if the choice were made in advance.

A prototype planning system that uses the produc-
tion system paradigm has been implemented. The
global database is the hexagonal grid representation
of tetrahedral truss structures. There is one produc-
tion rule for each possible configuration that a cell can
take. Since there are only a few geometric configura-
tions the total number of production rules is small. A
directed graph representation of assembly sequences
allows the use of both graph search and backtracking
control strategies. The prototype uses a backtracking
scherne.

This current implementation is interactive and ex-
ploits the strengths of humans and computers. Com-
puters are better at guaranteeing that the sequence
is correct and that no option is overlooked. Humans
are better at assessing the quality of an assembly se-
quence. For the structure shown in Figure 1, the
system generated an assembly sequence that signifi-
cantly reduces the amount of rotation when compared
to a sequence generated by hand. Future work will fo-
cus on cost functions and heuristic evaluations aimed
at making the system fully autonomous.
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The Spacelab mission planning was an overconstrained domain.
There were over fifty resources and several hundred activities
with several thousand steps to be scheduled in the SLS-1 mission.
This is an NP-hard problem. The primary scheduling tool in use
during the SLS-1 planning phase was the operations research (OR)
based, tabular form Experiment Scheduling System (ESS) developed
by Marshall Space Flight Center (MSFC).

PLAN-IT is an artificial intelligence (AI) based interactive
graphic timeline editor for ESS developed by Jet Propulsion
Laboratory (JPL). We have enhanced the PLAN-IT software for use
in the scheduling of Spacelab experiments to support the Spacelab
Life Science missions. The enhanced software SLS-PLAN-IT System
was used to support the real time reactive scheduling task during
the SLS-1 mission. This software will be further enhanced before
the SLS-2 mission and is expected to completely replace the ESS
currently in use in MIO in the SLS-3 time frame.

SLS-PLAN-IT is a frame-based blackboard scheduling shell
which, from scheduling input, creates resource-requiring event-
duration-objects and resource-usage-duration-objects. The
blackboard structure is to keep track of the effects of event-
duration-objects on the resource-usage-duration-objects. The
constraints are propagated automatically for conflict resolution.
various scheduling heuristics are coded in procedural form and
can be invoked any time at the user's request. The timeline
entries can be manipulated by the mouse to support the scheduling
task. This paper describes the system architecture and what we
have learned with the SLS-PLAN-IT project.
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Introduction:

The Mission Integration Office (MIO) of GE Government
Services was responsible for generating and updating the crew
activity plan and resource assignments for the Spacelab Life
Science SLS-1 mission for NASA. The nine-day SLS-1 shuttle
mission was launched on June 5, 1991. The primary scheduling
tool in use during the SLs-1 planning phase was the Experiment
Scheduling System (ESS) developed by Marshall Space Flight Center
(MSFC) . The ESS software is hosted on a VAX computer. It has
evolved over the past ten years into a FORTRAN program with
100,000 lines of FORTRAN code. However, it is very time-consuming
in using ESS to update the crew activity timeline for the SLS
missions. A joint effort between MSFC and Jet Propulsion
Laboratory (JPL) of NASA went on for four years to develop an
Al-based companion interactive graphic timeline editor, called
PLAN-IT (shorthand for Plan-Integrated Timelines). PLAN~IT is a
frame-based functional timeline manager. The objective was to
enable the timeline engineers to explore scheduling options,
recognize scheduling opportunities and thereby include additional
or better-arranged activity into a schedule. The origin of PLAN-
IT can be traced back to the AI planner DEVISER system of Vere
(Ref. 13). Unfortunately, this joint effort of MSFC and JPL was
terminated in October, 1988, and the PLAN-IT scheduling system
was left unused in MSFC since then. Three main reasons for not
using PLAN-IT were: (1) the integration of PLAN-IT into the ESS
was poor, (2) the response time of PLAN-IT was unacceptable in
certain cases, and (3) the resistance from the ESS developer and
user communities was strong.

MIO of GE Government Services obtained the original PLAN-IT
source code from JPL in 1988. We have enhanced the software for
use in the scheduling of Spacelab experiments to support the
Spacelab Life Science missions. The enhanced software SLS-PLAN-IT
Scheduling System was used to support the real time reactive
scheduling task during the SLS-1 mission. This software will be
further enhanced for the SLS-2 mission, and is expected to
completely replace the ESS Flight Planning System (ESS/FPS)
currently in use by the MIO in the SLS-3 time frame. The SLS-
PLAN-IT is currently hosted on the TI Micro-Explorer Lisp machine
and will be ported to the SUN workstation under the Common Lisp
Object System (CLOS) environment.

The project objective of SLS-PLAN-IT is to provide an
intelligent scheduling tool that will allow the timeline
engineers of the Payload Activity Planning team to interactively
update an ESS generated timeline in a way that is time and cost
effective. SLS-PLAN-IT is a decision support tool. Its purpose
is to aid an expert human scheduler not only with effective
graphics and a menu-driven interface, but also with natural
problem presentation.

A vital feature of SLS-PLAN-IT is its resource timelines,
which are similar to timelines normally in use. The timeline
display shows the scheduler the conflicts in a trial sequence so
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that the sequence can be modified and improved immediately. The
sequence can be modified and the strategy can be directed while a
strategy is running. There are several advantages to this
approach. It allows the user to understand easily what is
happening. The trial sequence is displayed directly on the
screen. As the sequence changes incrementally, the user can
quickly grasp what is happening and interact with the scheduling
process. He can focus on some aspect of scheduling without being
concerned of the other constraints. This feature also makes it
easier for the user to capture expert advice.

There also exist controls that allow the user to focus on a
strategy. For example, the user can disable some of the resource
timelines so that the strategies will only consider a subset of
the resources. After the basic schedule is laid out, additional
resources can be evaluated. Another control approach is to tell
SLS-PLAN-IT to work with certain types of activities or to
consider moving activities within a user-defined window. The
effect of SLS-PLAN-IT's strategies can be reduced by freezing
some activities since only the user can move frozen activities.
One of the more effective control approaches allows the user to
select a single activity to which a strategy can be applied so
that he can ask SLS-PLAN-IT if there is a better place in the
sequence for this activity. This feature provides the scheduler
with a "smart" sequence editor.

The goal of SLS-PLAN-IT is to achieve a blend of human and
machine expertise. SLS-PLAN-IT initially produces preliminary
layouts. After political decisions have been made, they will be
reflected in the schedule. The operator can direct SLS-PLAN-IT
to make minor changes in the sequence, or he can control the
strategies. Finally, the operator can use SLS-PLAN-IT as an
editor to verify that certain constraints have not been violated.

In the following sections, we will first describe the
problem domain, review the relevant literature, then give a
detailed description of the system architecture, report the
current status and enhancement plan of the project, and finally
discuss what we have learned from the project.

The Problem Domain:

Mission planning schedules are composed of three types of
element: activities, resources, and constraints. Activities are
the events in a schedule. They can either have durations (like
experiment steps) or be point events (like a space shuttle
launch). Activities consume, create, or replenish resources.
Activities also have inter-relationships that are often expressed
as precedence relationships or concurrency/non-concurrency of

activities. Resources can be associated with one activity, a
group of activities, or all activities. There are activity-
specific resources, e.g., equipment associated with an

experiment, and pool-resources, e.g., electrical power.

The Spacelab mission planning is an overconstrained domain.
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In past Spacelab or Skylab missions, low priority experiments
were occasionally bumped to achieve more important goals.
Therefore, the mission planners must be able to relax or even
ignore certain constraints in order to get an acceptable
schedule.

In our timeline engineers' terminology, a performance is an
execution of an experiment, and a step is an activity of an
experiment. The experiments are then modeled by the constraints
of the steps involved and the constraints of the performances.
The constraints imposed for the Spacelab missions can be
categorized into time constraints and resource constraints. The
time constraints include performance time window, maximum and
minimum performance duration, maximum and minimum performance
delay, maximum and minimum step duration, maximum and minimum
step delay, concurrency and non-concurrency of steps, and target
or attitude opportunities. The resource constraints include
equipment, nondepletable resources, depletable resources,
resource carry-through, crew selection, crew lock-in, crew
monitoring, and the requirements of balanced resource usage. In
fact, this is an NP-hard scheduling problem.

Literature Review:

Bennington and McGinnis gave a survey of the past research
in resource constrained project scheduling problems (Ref. 1).
They demonstrated how to search for the optimal algorithm by
three basic approaches: the first approach was to formulate the
problem as an integer linear programming (ILP) problem, which can
be solved by standard ILP techniques; the second approach was to
directly employ some enumerative scheme for constructing an
optimal schedule; and the third was to formulate the problem in
terms of minimaximal paths in a disjunctive graph, which could be
solved by network flow methods or implicit enumerations.

In spite of the progress in research, almost all researchers
have agreed that the heuristic method is still the only viable
solution technique for large-scale practical problems since the
computing time would be prohibitively large if exact optimal
procedures were used. Studies of the complexity of the resource
constrained scheduling problems also draw lots of attention.
Coffman showed that these problems were actually NP-hard (Ref.
3). Elmaghraby (Ref. 5) and Coffman (Ref. 3) contain excellent
coverage of the recent results in resource constrained scheduling
problems.

In recent years, the emergence of expert system technology
has had a great impact on scheduling system design. Dhar and
Ranganathan used the university course timetable scheduling
problem as an example to contrast the advantages and
disadvantages of AI approaches versus OR approaches (Ref. 4).
They pointed out that the OR approaches had the following
disadvantages:

1. Single objective limitations: The objective function used in
OR formulation express one goal, but there are other goals
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that the scheduling expert tries to satisfy.

2. Compiled knowledge limitations: Solutions are very sensitive
to the coefficients of the objective function, and some
default knowledge is difficult to incorporate into the
coefficients.

3. Global optimization 1limitations: Global optimization
essentially obscures the reasons for assignments and implies
lack of explanation for its decisions.

4. Lack of support in making plan revisions: Plan revisions are
inevitable, but it is very difficult for the decision maker to
revise the schedule with minimum perturbation in OR
approaches.

Jaap and Davis described an interesting review of the
software development of ESS (Ref. 8). The ESS software hard-coded
the scheduling rules in FORTRAN to handle the time constrains and
the resource constraints. The scheduling core of ESS consisted of
five modules: the bookkeeper for resource tracking, the checker
for determining availability of resources, the loader to load the
schedule, the trace listing as an explainer, and finally the
selector to determine the ordering of scheduling the activities.
Two methods, the random-order method and the preference-order
method, were incorporated in ESS.

Boarnet documented the requirements of a scheduling expert
system tool from NASA's point of view (Ref. 2). It was one of the
best examples of the impact of expert system technology on the
design of the scheduling system software. In the paper, Boarnet
discussed the requirements of a scheduling expert system tool for
Space Station Freedom mission planning applications. He pointed
out that the scheduling tool should represent activities,
resources, and constraints, with facilities to group those
elements and to represent the time variance of the elements. The
tool should support activity scheduling and job scheduling.
Enumeration of alternatives with algorithms, hypothetical worlds,
rule systems, and schedule hierarchies should be integrated into
a powerful reasoning tool. The tool must support the procedural
code that might be necessary either for procedure attachment or
to control the scheduling techniques. The tool must support
interactive scheduling with intelligence that can be interactive
or automatic at the user's discretion, and with good human
factors.

In the panel discussion on "AI-Based Schedulers in
Manufacturing Practice" held in IJCAI-1989, Detroit, USA, Sidhu
(Ref. 10) pointed out that the most common mistakes in building
intelligent scheduling system include:

1. Inadequate analysis of dominant domain characteristics,
especially when prepackaged scheduling tools are used.

2. Inappropriate reliance on locally greedy strategies. Because
most scheduling problems are fairly complex, they are often
simplified by using simple local dispatching rules.

3. Misuse of shallow expert knowledge: Human schedulers always
over-simplify the constraints, or misrepresent situation-
dependent knowledge as general-purpose knowledge.
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The special issue of AI magazine, January 1991, contains a
report of the workshop, "Issues in the Design of AI-Based
Schedulers", by Kempf et al. (Ref. 9). The issues covered in the
workshop included expert vs. deep vs. interactive schedulers,
integrating predictive and reactive decision-making, maintaining
convenient schedule descriptions, and some other advanced topics
like learning and benchmarks. Several points expressed by the
participants are very interesting and representative:

1. Fully automated schedulers are not as desirable as interactive
schedulers because the man and the machine bring complementary
skills to the scheduling task.

2. Many deployed scheduling systems contain only a small amount
of AI. Successful systems can be dominated by other issues
such as the user interface, database connections, and real-
time data collection.

3. One strong point for interactive methods is that they allow
humans to build schedules by methods that they naturally use
but are hard to represent, and allow humans to guide the

search.
4. Integration of predictive and reactive scheduling components
is important. A Dblackboard-style scheduling system

architecture may be appropriate.
5. Optimization is an ill-conceived objective for scheduling. It
is hard to define, and factory operations are unpredictable.

Fox and Smith proposed a knowledge-based system for factory
scheduling called ISIS (Ref. 6). The central idea of ISIS is that
schedule construction can be cast as a constraint-directed
activity that is influenced by all relevant scheduling knowledge.
In the paper, they pointed out that given the conflicting nature
of the domain's constraints, the problem differs from typical
constraint satisfaction problems, and one cannot rely solely on
propagation techniques to arrive at an acceptable solution.
Rather, constraints must be selectively relaxed and the problem-
solving strategy must be one that finds a solution that best
satisfies the constraints. This implies that the constraints must
serve to discriminate among alternative hypotheses as well as to
restrict the number of hypotheses generated. The design of ISIS
focused on two issues:

1. Construction of knowledge representation that captures the
requisite knowledge of the job shop environment and its
constraints to support constraint-directed search, and

2. Development of a search architecture capable of exploiting
this constraint knowledge to effectively control the
combinatorics of the underlying search space.

In constructing a job shop schedule, ISIS conducts a
hierarchical multi-level constraint-directed search in the space
of all possible schedules. The different levels of the search
provide multiple abstractions of the scheduling problem, each a
function of the specific types of constraints that are considered
at that level. Control generally flows in a top down fashion, and
communication between levels is accomplished via the exchange of
constraints.
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Syswerda and Palmucci presented the construction of a
genetic algorithm based optimizer for a resource scheduling
application (Ref. 12). Genetic algorithms (GA) use Darwin's
fitness-for-survival principle to do function optimization. The
optimizer described in the paper is a combination of local expert
search and global search provided by a genetic algorithm. The
issues involved in the construction of a GA-based scheduler
include:

1. how to represent the schedule as a bit-string used in GA,

2. how to isolate the details of the problem from the GA.
They also pointed out that the system must be able to combine
manual scheduling of special cases with automatic scheduling
based on more general criteria. Manual scheduling is accomplished
by the use of an intelligent graphical interface. The interface
is intelligent in that it understands all the well-defined
constraints of the scheduling problem, and advises the user about
where to place tasks while disallowing the construction of
illegal schedules. We have similar graphical user interface in
SLS-PLAN-IT.

SL8~-PLAN-IT's 8ystem Architecture:

SLS-PLAN-IT's approach to problem solving relies on three
highly interactive elements: a model builder to construct
activity and resource models, a user interface that takes into
consideration what the user needs to know and how he controls or
directs the scheduling process, and the scheduling strategies.

Hayes-Roth (Ref. 7) used a blackboard model to implement
their opportunistic strategy, planning both top-down and bottom-
up. Smith et al (Ref. 11) reported an extension of ISIS to OPIS
(the Opportunistic Intelligent Scheduler), which was implemented
with a blackboard style architecture. These knowledge sources
had implemented alternate scheduling strategies that extended and
revised a global set of scheduling hypotheses. Smith et al.
reported better performance than that of ISIS with the
multiperspective scheduling approach. These blackboard models
have beed adopted by SLS-PLAN-IT scheduling system.

The blackboard structure is a global, hierarchical data
structure partitioned to represent the problem domain as a
hierarchy of analysis levels. Each level consists of nodes that
are objects in the system implemented as frame structures. The
nodes are integrated by links, where a node in the hierarchical
structure represents an aggregation of lower level nodes. Thus,
the blackboard can be structured as an undirected graph of nodes.
However, one can place nodes without 1links on the blackboard.
During problem solving, partial schedules begin to grow on the
blackboard. The higher levels represent abstract decisions made
about the general pattern of the mission schedule, while the
lower levels represent decisions made about the specific details
of the schedule. The relationships of the nodes are either
specified by the model builder prior to the scheduling sessions,
or specified via the mouse by the user dynamically during the
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manual-mode scheduling sessions. Thus, knowledge sources can
create decisions that refine the schedule from the higher to the
lower levels of the blackboard, growing the schedule in a top-
down fashion. Alternatively, knowledge sources can create
decisions about specific details of a schedule and incorporate
those decisions into the whole schedule, growing the schedule in
a bottom-up fashion. The knowledge sources are specialists that
access the blackboard by creating nodes, modifying nodes, or
modifying links between nodes. This allows a knowledge source to
contribute information without knowing which other knowledge
sources will be using the information. In SLS-PLAN-IT, the
knowledge sources are implemented as scheduling strategies that
can be triggered whenever a goal is posted or whenever data
changes. The three main components of the system are described in
detail in the following sections.

Model Builder

SLS-PLAN-IT uses a datatype specification modeling language
to model the scheduling requirements of the mission. The purpose
of having the modeling language is two-fold. Firstly, it is to
simplify resource definitions programming so that classes of
items already defined need not be re-coded by hand. Secondly, it
is to insulate the resource-describer from having to know the
exact order of resource definition commands that must be included
in the source code.

In response to the users' request to remove the major
obstacle that discourages the users from using SLS-PLAN-IT, a
model builder is currently under development and will be included
into SLS-PLAN-IT for the SLS2 mission.

The model builder will be able to construct activity models
and resource models. An activity can be an experiment to be
scheduled or an electrical storage to be discharged. Resources
include the depletables, the non-depletables and the human
resource. Examples include the power, the data rate, and the
crew.

An activity model will include a series of individual steps
to be performed in the experiment, the scheduling time ranges or
time allotment, the resources to be used, and the constraints in
scheduling. The steps in an activity may occur sequentially or
concurrently, or they may overlap one another.

Resources are modeled as timelines that show how each
resource is used or changed throughout the entire sequence. A
resource model will include the availability of the resource in
quantity and time, and the constraints in scheduling.

The activities and the resources interact with each other
throughout the scheduling process. Whenever an activity or a
step of an activity is changed, the resource timelines will be
updated. Whenever the usage of any resource has exceeded its
limits, a conflict will be detected. In this way, the resource



models will serve as safeguards against the misallocation of the
resources.

User Interface

SLS-PLAN-IT's man-machine interface focuses on the graphical
presentation of the resources and activities. control of the
program is through pop-up menus and mouse operations. The screen
of SLS-PLAN-IT is divided into six sections (see Figure). The
top section includes a status pane that displays operational
messages of the program, oOr the status information of the mouse,
or the detailed information related to the timeline interval over
which the mouse is positioned. The next five sections are
graphical displays of the experiment timelines, the equipment-
resource timelines, the non-depletable-resource timelines, the
target or attitude opportunity information window, and the

unattended-operation timelines, one Dbelow another. The
unattended-operations consume resources, but no crew were
associated with them except for occasional monitoring. The
details of an experiment can be edited interactively. The
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resource timelines display white where there is no load, gray
where loads exist with no resource conflict, and black to denote
a conflicting area. By positioning the mouse over an activity,
details of the activity will be displayed in the status pane to
aid the user in editing. When the mouse is over a resource
timeline, the status pane will display the amount of the resource
being used and the activities involved. When the mouse is over a
conflicted resource area, the status pane will display the
activities that caused the conflict.

When the entire SpaceLab sequence of the mission is
displayed, the screen is overwhelmed by the amount of detail.
Therefore, SLS-PLAN-IT provides a zooming facility for the user
to tailor the screen display to his/her need. The user can
examine any portion of the timelines at any specified scale.
Since SLS-PLAN-IT's display is interactive, the user can actually
watch during the automatic mode what the scheduling strategy is
doing as the experiments are being moved and modified. The
impact on the resource timelines and on the experiments is
directly and immediately shown to the user. At any point in the
processing, the user can redirect SLS-PLAN-IT to focus on a
different aspect of the sequence.

There are several modes of operation in SLS-PLAN-IT, from
running without user interaction to user controlling the search
or user manually scheduling the experiments. Therefore, the user
can select the level of control over the mission timeline, and go
back and forth among the various modes of operation.

An important feature of SLS-PLAN-IT is the explicit conflict
representation on resource timeline. This is a natural
representation for the expert user and thus made the interaction
with the user more direct and simpler. Since the experiments are
tracked explicitly on the Gantt-chart type timeline blackboards,
the experiments could be scheduled in any random order.

The ability of an expert scheduler to intuitively grasp what
the scheduling engine is trying to do is very important, as has
been noticed by several researchers as a necessary condition of a
successful scheduling system. SLS-PLAN-IT developers are well
aware of this.

8cheduling Strategies

Besides the manual scheduling mode supported by the
blackboard structure, the constraint propagation mechanism and
the graphical user interface, SLS-PLAN-IT also supports automatic
scheduling mode with various scheduling strategies. One of the
fundamental ideas of SLS-PLAN-IT is that there is no single
"correct" way to sequence. In fact, no single way is powerful
enough to do the task in a reasonable time. Thus, SLS-PLAN-IT
supports a number of scheduling strategies that can then be
combined into a scheduling session.

In automatic mode, the system must be able to compare
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different partial schedules and choose one to continue
scheduling. This requirement is reflected in the structure of
scheduling strategy. A strategy consists of three parts. The
first part is a goodness measure that indicates whether one

sequence is better than another. This measure can change from
strategy to strategy. Typically, the goodness measure rates the
total conflict on the resource lines. The second part is to

select activities to be changed, which can simply be all the
activities of certain types or the activities involved in the
worst conflict. The third part is to suggest the actions to be
taken such as to move, to modify, or to delete an activity. SLS-
PLAN-IT makes small changes, one at a time, to improve a goodness
rating.

Several strategies are currently implemented in SLS-PLAN-IT.
These strategies together form a hill climber. A goodness rating
will determine a topology for the search space. A strategy will
change the schedule until it finds a local maximum in the
topology of the search space. By selecting a different strategy,
the topology of the space will be changed and the SLS-PLAN-IT
will be able to continue improving the mission sequence.

SLS-PLAN-IT possesses meta-knowledge in the form of strateqgy
modifiers. These modifiers restrict the search space of a
strategy. An example of this is the restriction on the number of
resources a strategy could consider. This particular modifier is
based on the knowledge that, to the first order, a mission
schedule is determined by a small subset of the total number of
resources. Other modifiers force a strategy to only consider
moving experiments to areas of the mission timeline that have
little resource usage.

There seems to be no single best way in scheduling. The
scheduling techniques depend on the particular project, the life
point in the mission, and the current schedule. SLS-PLAN-IT is
able to represent many different scheduling strategies.
Flexibility in choosing a suitable scheduling strategy is the key
to successful scheduling. The concept of scheduling strategy
provides a natural hook of SLS-PLAN-IT system to any optimization
technique. Given a goodness measure as the objective function,
all the scheduling and sequencing techniques available from
traditional operations research discipline or non-traditional
combinatorial optimization approaches can be incorporated into
SLS-PLAN-IT in the form of scheduling strategies.

Current S8tatus of SLS-PLAN-IT:

MIO of GE Government Services obtained the original PLAN-IT
source code from JPL in 1988. We have tailored the software for
use in the scheduling of Spacelab experiments to support the
Spacelab Life Science missions. Although the original PLAN-IT has
the ability to perform very specialized strategies to resolve
particular scheduling difficulties, the automatic mode that uses
the above strategies is still not powerful enough to handle the
overconstrained resource requirements of scheduling the Spacelab



mission timeline. MIO's current major concerns in SLS-PLAN-IT to
support the SLS-2 mission include the graphical user interface
and the automatic constraint propagation capability, which allow
the user to modify a timeline by mouse operations. We will
enhance the automatic scheduling capabilities for SLS-3.

A Spacelab mission timeline contains over fifty resources
and hundreds of experiments. The timeline engineers can manually
enter the initial schedule or use MSFC's tabular-form scheduler
ESP to produce the initial schedule. During SLS-1 mission
planning phase, the timeline engineers used SLS-PLAN-IT to
maintain the schedule produced by ESP. After the schedule was
modified by SLS-PLAN-IT, the modified schedule was transmitted to
the Flight Planning System (FPS) for standard output plotting.

The SLS-PLAN-IT Scheduling System was used to support the
Spacelab Life Sciences-1 (SLS-1) mission during the mission
period from 6/05/91 to 6/14/91. This on-line real time usage of
SLS-PLAN-IT during the mission demonstrated the strength of this
scheduling system. The timeline engineers of the Payload Activity
Planning (PAP) team confirmed that SLS-PLAN-IT is a flexible and
useful scheduling tool that provides a real time reactive
planning capability that the o0ld scheduling system ESP/FPS
lacks. For example, the timeline engineer had used SLS-PLAN-IT to
reschedule the activities on flight day 9 due to short notice.
The ESP required more time than available to do this kind of
replanning. The SLS-PLAN-IT had won the user confidence and
acceptance that were not in existence in the early stage of PLAN-
IT development.

Feedbacks from SLS-PLAN-IT users during SLS-1 mission are:

1. The system gives visual display of experiment timeline with
schedule conflicts indicated. Mission planning using SLS-PLAN-
IT is much quicker than using ESS.

2. The mouse and menu-driven user-interface of SLS-PLAN-IT and
the Gantt-chart like resource timeline are very convenient to
support manual-mode scheduling of the mission. Minimum user
training is needed for manual-mode scheduling if SLS-PLAN-IT
is used, instead of the six months training time of ESS.

3. It is usable as a real-time reactive mission scheduler with
prospects of increasing productivity of mission support staff
and increasing science returns of the Spacelab experiments.

4., A quicker and more convenient model-builder is needed to
support the SLS-2 mission. The integration of SLS-PLAN-IT with
other flight planning software needs to be improved.

Enhancement:

The on-line real time usage of SLS-PLAN-IT aroused the user
interests to further enhance the SLS-PLAN-IT software. The major
enhancement requirements include:

1. rehosting SLS-PLAN-IT to a SUN platform to boost the operation
speed and to allow better integration,

2. providing an intelligent model builder to enhance the model
editing capability and shorten the modeling and planning time,
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3. providing more options for automatic file creation and
generation of operation output in current FPS format, which
includes the information of ground tracking, attitude
timeline, sun/shadow times and all other miscellaneous
information on other FPS output.

4. additional capabilities to support the execute shift

activities; the exact requirements are to be determined.

The direction we are taking is to completely replace the FPS
system with SLS-PLAN-IT in the SLS-3 time period. With a very
high level of user jinvolvement, the SLS-PLAN-IT will evolve as a
fully automated knowledge-based scheduling system with graphical
user interface for space exploration.

In summary, the performance of SLS-PLAN-IT during the SLS-1
mission was very satisfactory. Recommendation for further
enhancements of the software was made for the SLS-2 mission. It
is expected that the SLS-PLAN-IT will completely replace the ESS
currently in use by the MIO in the SLS-3 time frame.

conclusion and lessons learned:

During the development of SLS-PLAN-IT, we have gained some
useful experience in software engineering of an AI-based
scheduling system that we would like to share with the community:

1. Quick response time is crucial in real time scheduling
environment. One of the reasons that JPL's version of PLAN-IT
was abandoned is that it did not have a model editor. It took
an hour or more on Symbolics 3650 to incorporate the model
from ESS. We improved the operation time to about ten minutes
in the first version of SLS-PLAN-IT. Enhancements of the model
editor to support incremental model editing are in progress.

2. Good integration of the AI scheduler with all other Flight
Planning System (FPS) software is important because the
purpose of SLS-PLAN-IT is for operational daily usage to
support the mission.

3. Automatic shift of focus is difficult to achieve. There are
many scheduling strategies available in the automatic mode of
PLAN-IT. However, the users did not use them for the SLS-1
mission. One of the reasons is that the users do not fully
comprehend the scheduling strategies. We have to better
express the strategies to the users in more natural ways oOr
the "automatic mode" will stay unused.

4. It is very important to allow the users to play "what-if"
games during scheduling process and see why things happened.
This is one of the reasons the MIO mission planners switched
from using ESS to using SLS-PLAN-IT.

5. User-naturalness is the key to have a good user interface. For

example, the automatic constraint propagation capability of
SLS-PLAN-IT and the blackboard structure of the resource lines
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are user-natural tools to support the above vital features.

6. The level of user involvement and expectation of SLS-PLAN-IT
is very high in MIO over MSFC and JPL. In fact, the users
always expect more than the developers can provide. We are
driven by the users and the users are driven by the scheduling
workloads they support.

7. The effects of a schedule change should be kept as local and
as minor as possible. Minimum disruption of the schedule is
sometimes more important than obtaining an optimal schedule.

Our experience with SLS-PLAN-IT reconfirms the observations
made in the IJCAI workshop mentioned earlier. Fully automated
schedulers are not as desirable as interactive schedulers because
the man and the machine bring complementary skills to the
scheduling task. Also, deployed scheduling systems contain only a
small amount of AI. The issues of user interface, database
connection, and real-time requirements dominate the system design
and user acceptance of the scheduling system. The most important
feature emphasized in SLS-PLAN-IT is the user-natural interface
to cooperate with humans in changing perspective or focus level
to support the opportunistic scheduling strategies. The various
strategies employed in the automatic scheduler are attempts to
simulate the opportunistic scheduling capability of the human.
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Abstract ~

The presence of multiple scientific
instruments aboard the Hubble Space
Telescope provides opportunities for
parallel science, i.e., the simultaneous
use of different instruments for different
observations. Determining whether
candidate observations are suitable for
parallel execution depends on numerous
criteria (some involving quantitative
tradeoffs) that may change frequently.
This paper presents a knowledge based
approach for constructing a scoring
function to rank candidate pairs of
observations for parallel science. In the
Parallel Observation Matching System
(POMS), spacecraft knowledge and
schedulers' preferences are represented
using a uniform set of mappings, or
knowledge functions. Assessment of
parallel science opportunities is achieved
via composition of the knowledge
functions in a prescribed manner. The
knowledge representation, knowledge
acquisition, and explanation facilities of
the system are presented. The
methodology is applicable to many
other multiple-criteria assessment
problems.

1. Introduction

Despite a well-known manufacturing flaw
in its primary mirror, NASA's orbiting
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Hubble Space Telescope (HST) has
produced images of unprecedented clarity
since its launch in 1990 [Kin91]. Repair
of the telescope's ability to resolve very
faint objects is planned during a
maintenance mission in 1993, and
demands for observation time on the HST
have remained high.

In order to maximize the efficient use of
observation time, the Space Telescope
Science Institute (STScI) has promoted
the research and development of
advanced methods for scheduling
astronomical observations. Two software
systems -- Spike and Transformation --
developed at STScI have applied
artificial intelligence techniques toward
this end. Transformation [Ger91] is a
planning system for the grouping and
ordering of observation tasks.
Transformation converts observers'
requests for spacecraft activities into
hierarchical structures called scheduling
units (SUs) containing multiple
sequential tasks that may be subsequently
treated as indivisible entities for
scheduling purposes. Spike [Mil91,
Joh90a, Mil88] is a knowledge-based
system for long-range scheduling. Using
suitability functions [Joh90b] to represent
scheduling constraints and preferences,
Spike determines week-long segments
into which each SU may be scheduled.
The output of Spike is later refined into a
second-by-second calendar using the
Science Planning Scheduling System
(SPSS) [Tay91].

The presence of six scientific instruments
aboard the HST provides opportunities
for parallel science, i.e., the simultaneous
use of different instruments to observe
different targets. By overlapping multiple
observations, this concept clearly has the
potential to increase throughput. Parallel
science is particularly useful for schedul-
ing important exploratory surveys.
Without it, such explorations consume
considerable resources at the expense of
many other shorter and more specific ob-
servations. If executed in parallel with
other pre-scheduled activities, however,
such endeavors may be undertaken at
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opportune times without excessive re-
source consumption. The parallel science
effort at STScI has been a substantial un-
dertaking, involving major extensions to
several existing software systems, includ-
ing Spike, Transformation, and SPSS.

To utilize parallel science, an observer
must specifically request that an
observation is to be conducted in parallel.
It is then the responsibility of schedulers
at STScI to find a corresponding non-
parallel (or primary) observation
somewhere on the HST calendar with
which the parallel task may be matched.
The large number of observations (on the
order of 10# primaries and 103 parallels)
and the wide diversity in their
requirements makes this a formidable
task. This paper describes the Parallel
Observation Matching System (POMS),
a knowledge-based advisory system
embedded into Spike that assists
schedulers in finding such matches
between primaries and parallels. For each
primary SU scheduled by Spike, POMS
ranks available parallel SUs according to
their compatibility with the requirements
of the primary.

Although compatibility between a primary
and a parallel depends on certain obvious
factors such as instrument constraints
(e.g., both tasks must not require the use
of the same instrument) and pointing
similarity (the two targets must be
sufficiently close), it also involves many
other more subtle criteria, some of which
are quantitative in nature and introduce
tradeoffs into the assessment. The
advisory system must be able to represent
and aggregate the effects of such criteria.

Another salient characteristic of the
problem is that the match assessment
criteria are likely to be vague, particularly
in the early stages of the parallel science
project, since parallel scheduling policies
have not been firmly established and the
full effects of the criteria are not yet well
understood. Hence, knowledge is likely
to be tentative, incomplete, and subject to
frequent change. Ease of incremental

extension and modification of the
knowledge base is therefore crucial to the
success of the system.

The knowledge representation scheme
used in POMS permits the construction of
a scoring function for ranking primary-
parallel matches. The scoring function is
built from modular units of knowledge
about individual criteria and from a
modifiable aggregation formula that is an
explicit part of the knowledge base. The
approach has been used previously in a
very different application, i.e., a
prototype advisory system for selecting
mathematical software from numerical
subroutine libraries [Luc92]. POMS is
the first production level application of
the technology. The approach extends
existing representation media in its
capabilities to express quantitative
tradeoffs and complex interactions among
multiple criteria [Luc90], while retaining
the traditional advantages of expert
systems for incremental modification and
explanation.

POMS is implemented in the Common
Lisp Object System (CLOS)
programming language.

The remainder of the paper is organized
as follows. Section 2 describes the
architecture and high-level functionalities
of the system. Section 3 introduces some
terminology and notation required to
describe the knowledge representation.
The assessment criteria are described in
Section 4. The knowledge representation,
explanation, and knowledge acquisition
facilities are presented in sections 5, 6,
and 7, respectively. In section 8 we
discuss the preliminary results of the
POMS project.

2. System Overview

The architecture of POMS is depicted in
Figure 1. The three major components of
the system are: (1) the parallel database,
(2) the parallel knowledge base, and (3)
the parallel matcher.
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Figure 1. Architecture of POMS

The parallel database is a relational
database that stores descriptive
information about each primary and
parallel (e.g., pointing, instrument, and
timing requirements). This information is
accessible to the matcher when needed at
run time.

The parallel knowledge base contains the
assessment criteria used to evaluate the
compatibility between primaries and
parallels. The knowledge base was
initially constructed by the POMS
developers (with input from systems
engineers), however it may be modified
by users (schedulers).

The parallel matcher is the POMS control
mechanism. The matcher is invoked after
the primaries have been scheduled by
Spike to week-long segments, but before
these primaries are delivered to SPSS for
short-term scheduling refinement. The
matcher evaluates the compatibility of
each scheduled primary with each
available parallel in the database, based
on the descriptions of the SUs contained
in the database and the scheduling
knowledge/preferences contained in the
knowledge base. Each primary-parallel
pair is assigned a score, and the highest
ranked matches for each primary are
delivered to SPSS.

Upon request, the matcher also generates
explanations of its advice for inspection
by users and knowledge engineers.

N

3. Terminology and notation

The following notation and terminology
are used in the subsequent description of
POMS.

P is a set of primaries that have been
scheduled for a specific week by Spike.

p is a primary SU in P.

Q is a set of parallel SUs to be matched
with P.

q is a parallel SU in Q.

R = {r}, 3 ..., 1} is a set of properties
that characterize primaries and/or parallels
(target, time duration, instrument, etc.).
Properties may be viewed as functions on
PuQ eg:

if rj = "primary-target", ri(p) returns a
list of two elements containing the
celestial longitude and latitude of the
primary's target;

if rp = "parallel-instrument”, r2(q)
returns the name of the scientific
instrument required by the parallel;

if r3 = "primary-duration” r3(p) returns
number of seconds allotted to the
primary during which parallel science
may be conducted;

if r4 = "primary-week" r4(p) returns the
week to which p has been scheduled.

To avoid ambiguity, properties that apply
to both primaries and parallels (e.g.,
"target” or "instrument") are represented
as two distinct properties (“primary-
target," ‘"parallel-instrument”). For
notation, assume that properties 1,2,...,h
apply to primaries, and properties h+1,
h+2,..., k apply to parallels, i.e., R =1y,
r2, ... Th, Th41, Th+2, ... Tk. Property
values either exist explicitly in the parallel
database (e.g., the primary or parallel
instrument), or are determined by the
Spike scheduler (e.g., the week to which
a primary has been scheduled).



F = (f1.f2,....fn} is a set of evaluation
criteria or features upon which the
compatibility between a primary and a
parallel is assessed. Examples of features
for a primary p and a parallel q are:
"pointing” (the targets of P and Q must be
sufficiently close to one another),
“instruments" (p and q must not both
require the use of the same scientific
instrument), and "timing" (p and q match
best when they each require
approximately the same amount of
execution time). Note the distinction
between features and properties, i.c.,
properties are characteristics of a primary
or a parallel (e.g., the instrument used),
while features are characteristics of a
match (e.g., whether the instruments
used by the primary and the parallel are
the same). Property values are required
for the evaluation of features (see below).

The evaluation interval L =[L), Ly)isa
sub-interval of the real numbers, where
L) < L. Lj is the lower bound of L and
Ly, is the upper bound. L is the range of
the scoring function, as well as the range
of some of the mappings used in the
knowledge base. In the POMS
knowledge base L = [0,1], although this
restriction need not hold in general.

The neutrality point LN e L indicates a
“neutral” value in the evaluation interval.
This reflects a "moderate” compatibility
score (i.e., not particularly compatible,
nor particularly incompatible). In POMS,
Ln =0.5.

The scoring function H:PxQ->L
evaluates the compatibility of any primary
p with any parallel q. For all p,p'e P
and q, q' e Q, H(p, q) > H(p', q) iff
the match between p and q is considered
better than the match between p' and q'.
Since any p or q is described by
properties, we may consider the domain
of H to be vectors of property values,
i.e., H(p,q) = H(ri(p), r2(p), - tn(p),
rh+l(Q), teey rk(Q))-

The matching score for a primary p and a
parallel q is the value returned by the

scoring function H when applied to a
primary-parallel pair.

Feature evaluation is the assignment of a
value to a feature for a particular primary-
parallel pair. This assignment is an
expression of the compatibility between p
and q with respect to a single feature. For
example, if p and q both require the same
instrument, then the feature "instruments”
would evaluate to 0, indicating that the
pair is incompatible with respect to this
feature. If different instruments are
required, then "instruments” evaluates to
1 for the pair. For certain features,
intermediate values are possible. Some
features are qualitative, i.c., they are
either totally present or totally absent. For
example, the instruments used by p and q
either are or are not the same. The
absence of a single qualitative feature may
be sufficient to disqualify p and q from
simultaneous execution. Other features
are quantitative, i.e., they are exhibited to
varying degrees, possibly on a
continuous scale. The feature "timing",
for instance, is associated with a
goodness-of-fit measure, i.e., the closer
the timing requirements of p and q, the
better the match.

4. Matching Criteria

Currently, the POMS knowledge based
represents the effects of ten features. Five
features ("timing", "priority"”, "roll",
"mechanism-motion”, "pcs-mode”) are
quantitative, and the others
("instruments","pointing”, "nssc-usage”,
"permits-parallels”, and "manual-match")
are qualitative.

"Timing" is the degree to which the
primary's time available for parallel
science matches the time required by the
parallel. The most compatible situation
occurs when p has slightly more time
available than is required by q. If p is
much longer than g, then the match is not
as good, since the extra time would be
better utilized in a match with a longer
parallel. If p is much shorter than the g,
then the primary and parallel are clearly
incompatible. Total incompatibility does



not exist, however, when p is only
moderately shorter than g, since the
short-term schedulers may have reason to
delay the initiation of the next primary,
thereby permitting the parallel to finish.
"Timing" is a continuous feature that, in
general, assumes values intermediate to
the stereotyped situations described
above.

"Priority" is number indicating the
scientific importance of a parallel SU, as
determined by a peer review committee
and the Director of the STScI. The higher
the number, the higher the compatibility
of a parallel with any primary.

When both the primary and parallel have
fixed point targets (as opposed to target
regions -- see below), it is usually
necessary to roll the spacecraft (rotate it
about an axis parallel to its bore) in order
to bring both targets into the fields of
view of both instruments. "Roll" is the
number of degrees of spacecraft roll
required to do this. Since rolling the
spacecraft takes time, the greater the roll,
the lesser the compatibility.

The HST has a pointing control system
(PCS) that stabilizes the spacecraft during
observations. The PCS operates in three
different modes, depending on the degree
of stability required by the observation.
The more stable modes require
successively greater overhead time. The
policy has been adopted that no matches
are permitted between parallels whose
PCS requirements are more stringent than
the primaries, since the additional
overhead would delay the pre-scheduled
primary. The best case occurs when the
primary and parallel have the same PCS
requirement. Matches are permitted in
cases where p has a stricter requirement
than q, however this is less desirable than
the above case, since p's strict
requirement is "wasted" on a parallel that
doesn't really need it. The feature "pcs-
mode" reflects these considerations. If
p's PCS mode is greater than q's PCS
mode, than p and q are incompatible with
respect to "pcs-mode”. Otherwise, the

greater the difference between the two
modes, the lower the compatibility.

The feature "instruments" expresses
whether or not the scientific instruments
required by p and q are a legal
combination for parallel science. Certain
instruments are currently precluded
entirely, however this is subject to
change. If the parallel instrument is
allowable and is not the same as the
primary instrument, then p and q are
totally compatible with respect to this
feature.

The feature "pointing” exhibits total
compatibility when the targets for p and q
are positioned sufficiently close to permit
parallel observations. Otherwise, p and q
are incompatible with respect to the
feature.

Some observations use instruments with
moving parts, which causes the HST to
vibrate slightly. Other observations
cannot tolerate such small vibrations.
Obviously, these two types cannot be
executed in parallel. The feature
"mechanism-motion” exhibits total
incompatibility in such cases, and total
compatibility otherwise.

An NSSC-1 computer aboard the
spacecraft is used to store a variety of
temporary data. Since only one
instrument at a time may access the
computer, p and q are incompatible if
they both require its use. The feature
"nssc-usage” expresses this criterion.

There are numerous reasons why certain
primaries are excluded out of hand from
consideration for parallel science. In such
cases, the feature "permits-parallels”
exhibits total incompatibility.

By setting appropriate fields in the
parallel database, the scheduler is
permitted to force a match between a
particular p and q. In such cases, the
highest matching score is assigned to the
pair, thereby guaranteeing its delivery to
SPSS. In such cases, the feature



"manual-match" exhibits total
compatibility.

5. Knowledge representation

The POMS knowledge base contains
expertise about the semantics and
influences of matching criteria, encoded
via a structured set of expert-supplied
numerical mappings, or knowledge
functions. The knowledge functions
generate a network, whose traversal
implements the application of the
knowledge base to a candidate primary-
parallel pair. The output of the network is
a numerical score that estimates the
degree to which the primary and parallel
are compatible.

There are four types of knowledge
functions, each with a specific
representational task:

(1) measurement functions, which
quantify the degree to which a feature is

present in a primary-parallel pair;

(2) intensity functions, which normalize
the degree of each feature's presence;

(3) compatibility functions, which
describe relationships between feature
intensity and the goodness of a match,
with respect to a single feature;

(4) an aggregation function, which
combines individual feature
compatibilities into an overall assessment
of the match.

Application of the knowledge base to a
primary and a parallel is achieved via the
composition of the knowledge functions
in a prescribed manner. Figure 2 depicts
how this composition may be viewed as
a traversal of a network in which the arcs
are knowledge functions and the nodes
are function inputs/outputs. Processing of
the knowledge base corresponds to
traversal of the network from bottom to
top. The inputs to the network are
property values for a primary p and a
parallel q. The n measurement functions
accept these inputs and return n

measurement values. The intensity
functions accept the measurement values
and return n intensity values.
Compatibility functions accept intensity
values and return n compatibility values.
Finally, the compatibility values are
mapped into a single number H(p,q) at
the figure's top.

géregation function

... compatibility values ...

... compatibility functions ...

... intensity values ...

... intensity functions ...

m ... measurement values .. m
...measurement functions..
M M Mn

Properties of p, q
[(P),-.s Tp(p). £y, (), ... Ti(q)

Figure 2. Network model of scoring
function H for primary p and parallel q

5.1 Measurement functions

For each feature fj, there is a
measurement function M P xQ - §j
where S;is the (feature—d‘ependcnt) range
of M;. 134 is a procedure to measure f;.
The i mputs to M; are property values and
the output is a measurement value m; that
expresses (in feature-dependent umts) the
presence of fj in a primary-parallel pair.
The measurement function for f; =
“instruments", for instance, returns T or
NIL, depending on whether the



instruments used by the primary and
parallel are different or the same. As an
example for a quantitative feature, M; for
the feature fj = "timing" accepts two
inputs: tqt,)the length of time (in seconds)
required by the parallel for its execution,
and tp, the number of seconds available
for parallel science beginning with the
start of the primary. tp and tq are property
values stored in the parallels database. M;
returns a measurement value m; = tp - g,
i.e., the difference between the length of
time available and the length of time
required for a primary-parallel pair.

In certain cases, the measurement
function involves more complicated
calculations, e.g., the measurement
function for the feature "roll” might
compute the number of degrees of roll
required by the spacecraft to bring both
targets into view. The criteria and
methods used for measuring features are
chosen by the domain expert.

5.2 Intensity functions

For each feature fj, there is an intensity
function Ij: S;— L, where §; is the
range of the measurement function M;. Ij
normalizes the measurement value mj into
a uniform scale. In POMS, intensity
functions are defined as sets of points
provided by the domain expert. For
qualitative features, the mapping is
frequently trivial, i.e., the measurement
value is either O (signifying total absence
of fj) or 1 (signifying total presence). For
example, if fj = "instruments" (as
described in the previous section), I;
Ssimply maps S; = (T, NIL) into (0,1
(Table 1). For quantitative features that
assume continuous values, the ordered
pairs generate a piecewise linear function
where additional points may be defined to
arbitrarily fine gradation at the discretion
of the domain expert. In such cases, a
"neutral” intensity value ij = 0.5 indicates
moderate presence of fj. For example,
intensity for the feature fj = "timing”,
refers to the degree to which the time
available exceeds the time required, i.e.,
if p is a very short primary SU and q is a

very long parallel SU, then the feature
timing is considered to be weakly present
in the pair. Conversely, "timing" is
strongly evidenced when a very long
primary is matched with a very short
parallel, and the feature is neutral when
the time available is equal to the time
required. This behavior is represented in
a table of ordered pairs defining Ij (Table
2). Domain values not explicitly
represented in the table are derived by
linear interpolation (e.g., Ij(200) = 0.40).
Since linear interpolation requires finite
values, the infinite values at the extremes
must be compromised by finite
approximations -- in this case 100,000
and -100,000 -- beyond which the
function value will not change. The
particular data points chosen by the expert
are somewhat arbitrary and represent an
approximation to the expert's
interpretation of the feature's semantics.

Note that intensity is a function only of
the feature, not the goodness of a match,
i.e., high intensity does not necessarily
imply that the primary and parallel are
well-matched with respect to the feature.
For example, neutral intensity for
“timing" (i.e., a situation where the
primary and parallel have the same timing
requirements) is a more compatible
situation than high intensity (i.e., a
situation where the time available from
the primary greatly exceeds the time
required by the parallel). This is
illustrated in the following section.

Table 1. Intensity function for feature
fi = "instruments”

m;j iy = limj)
NIL 0.0
T 1.0




Table 2. Intensity function for feature

f; = "timing"
m; ij = Ij(mj)
-00 0.00

-100,000 0.00

-10,000 0.03

-1,000 0.20
-400 0.30
0 0.50
400 0.70
1,000 0.80
10,000 0.97

100,000 1.00
+o00 1.00

5.3 Compatibility functions

For each feature f;, there is a
compatibility function é :L » L. G
represents the compatibifity between a
primary and a parallel with respect only to
feature fj as a function of the feature's
intensity. The input to C; is the intensity
value ij. The compatibility value ¢j = G(ij)
represents the goodness of the matcL
between p and q with respect to fi. Like
intensity functions, compatibility
functions are represented as sets of
ordered pairs. Table 3 shows the
definition of C; for the feature f; =
“instruments”. When the feature is absent
in the primary-parallel pair (i.e., ij=0,
denoting that the pair uses the same
instrument), the pair is incompatible with
respect to "instruments". If the feature is
present with maximum intensity (i.e., ij

= 1.0, denoting that p and q use different
instruments), then the pair is judged to be
totally compatible (cj= 1.0) with respect
to the feature. Table 4 shows a more
complicated compatibility function for the
quantitative feature "timing".

Table 3. Compatibility function for
feature f; = "instruments"

ij ci=CiGj |
0.0 0.0
1.0 1.0

Table 4. Compatibility function for
feature f; = "timing"

i ci= Ci(iil)_=
0.0 0.0
0.4 0.3
0.5 0.45
0.55 0.5
0.6 0.7
0.8 0.5
0.9 0.42
1.0 0.25

Here Cj encodes the belief that the
optimal compatibility (0.7) is achieved
when the intensity is moderately high
(0.6). This reflects a situation where the
time available is greater, but not too much
greater, than the time required.
Compatibility declines for higher values
because the extra time available would be
wasted (and used better with a longer
parallel). Situations where the time
available is less than the time required are
not considered incompatible because
SPSS may choose to delay the initiation



of the next primary, in which case the
parallel may continue to completion. The
compatibility declines sharply as the
negative timing disparity increases,
however.

The precise values chosen by the expert
to define quantitative compatibility
functions are not arbitrary. The method
for defining these mappings is described
in section 7.

5.4 Aggregation function

The knowledge base contains a single
aggregation function A : L? » L whose
purpose is to combine the compatibility
values ci, ¢2, ..., ¢p into an overall
matching score for a primary-parallel
pair. The aggregation function is not a
predetermined formula, but rather it is
defined by the expert as an explicit part of
the knowledge base. It depends on the
evaluation features, and may be changed
at the expert's discretion. To capture the
particular semantics of different features,
the aggregation function is built up from
operators called aggregation primitives,
MIN, MAX and a. The primitive
operators reflect three different modes of
aggregation between features.

For simplicity, we describe each primitive
as a binary operator, but since all three
are associative and commutative, they
may generalized in a straightforward
manner to n-ary functions whose
arguments may be evaluated in any order.
Each primitive accepts two compatibility
values ¢;j and c;j as arguments and returns
a value equal to the aggregate effect of ¢;
and ¢j. The semantics of the three
opcrators are shown in Table 5. MIN
simply returns the minimum of ¢; and ¢
while MAX returns the maximum. MII{I
and MAX represent cases where the
compatibility of either feature always
dominates the aggregation, e.g., if ¢; <
then MIN(c;, ¢;) = ¢, rcgardlcss of
dllc precise value oi! Cj, i.e., no tradeoffs
are exhibited. o 1s used to express
tradeoffs and compensations, i.e., neither
feature dominates and the aggregate effect

depends on the precise level of each
feature.

An example of MIN occurs between the
qualitative features f; = "instruments" and
fj= "permits-parallels”. If a candidate
pnmary parallel pair is incompatible with
respect to instruments, (i.e., ¢j = 0) then
the aggregate effect is always
incompatible, whether or not the primary
permits parallel science. Similarly, if
parallel science is not permitted on the
primary (i.e., ¢ = 0), then the aggregate
effect is always incompatible, whether or
not the instruments are compatible. These
semantics are captured by MIN(c;, ¢j).

Note that for qualitative features, MIN is
equivalent to the logical conjunction (i.e.,
overall compatibility requires individual
compatibility from both features), hence
this mode of aggregation is called
conjunctive.

An example of MAX occurs between fj =
“instruments” and f; = "manual-match".
Since "manual-match” overrides all other
features, if a user requests a manual
match between a primary-parallel pair
(i.e., cj = 1), then the aggregate effect is
always totally compatible, regardless of
"instruments” compatibility. (Obviously,
this feature assumes some special
knowledge on the part of the user, and is
not to be used carelessly.) Thcsc
semantics are captured by MAX(cj, ¢
Note that for qualitative features, MAXJ
equivalent to the logical disjunction (i.e.,
compatibility from either feature implies
aggregate compatibility), hence this mode
of aggregation is called disjunctive.

An example of a occurs between the
features "timing" and “priority".
Regardless of how compatible the
candidate pair is with respect to timing,
the aggregate effect may be raised
(lowered) by the influence of a high (low)
priority. The influence of “priority" is
similarly modified by the effect of timing
compatibility. A significant property of a
is that neutral compatibility in either
feature has no effect on the aggregation,
i.e., a(cj, LN) = a(LN, ¢;j) for all ¢j. This



mode of feature interaction is called
compensatory.

The formula used to model these
semantics depends on the choice of the
evaluation interval L and the neutrality
point LN. In POMS (L =[0,1] and LN =
0.5), we use a: L - L defined as

CiCj
cicj + (1-¢j) (1-cj)

a(CisCj) =

a is a special case of a symmetric sums
operator [Sil79]. Its properties are
discussed in [Luc90]. This definition for
a is not unique, i.e., other formulas
might yield qualitatively similar results.
See [Che88] for a formal mathematical
treatment of related families of
aggregation operators. Note that a creates
a zero-divide condition when one of the
inputs is 0 and the other is 1. To avoid
this possibility, compatibility functions
that return a value of 1 for any finite
measurement value are not allowed for
compensatory features. This restriction
reflects an assumption that no single
compensatory feature is sufficient to
dominate the matching process.

The aggregation primitives constitute a
simple language for expressing complex
interactions among multiple features. In
principle, additional operators may be
added to the language, although MIN,
MAX, and o have thus far sufficed.

Table 5. Behavior of aggregation
primitives

Ci Ci MAX=MIN (v}

high | high | high | high ] very high

high | low | high | low | moderate

low | high | high | low | moderate

low | low | low | low | verylow

The aggregation function A is defined as
a composition of aggregation primitives.

This process may be visualized as a parse
tree in which the leaves are compatibility
values and the internal nodes are
aggregation primitives. Figure 3 is an
example of an aggregation parse tree for
the features f; = "manual-match”, f3 =
"permits-pars”, f3 = "priority” and f4 =
"timing". Here A = max(cy, (min (c2,
a(c3, c4)))). The aggregate effect of
“priority" and "timing" is compensatory,
and their combined effect is conjunctive
with "permits-parallels”. Finally, the
aggregate effect of the three lower
features is disjunctive with "manual-
match". For example, if:

(1) a manual match is not requested
(ie.,c1 =0);

(2) the primary permits parallel
science (i.e., ¢c2 = 1);

(3) the parallel has been assigned a
high priority (e.g., c3 = 0.8);

(4) the timing compatibility is fairly
low (e.g., c4 = 0.3);

then the matching score for a candidate

pair displaying these features is
MAX(0, MIN(1, a(0.8, 0.3))) = 0.63.

oeoss

C3 =0.8 C4 =0.3

Figure 3. Example of aggregation
function parse tree. A(cy, C2, €3, C4) =
0.63



The full aggregation function (expressed
in the n-ary format) currently used in the
POMS knowledge base is:

MAX(c19, MIN (cg, c7, €8, c9, afcy, c2,
€3, C4, C5))),

where ¢1 = "timing", c2 = "priority"”, c3 =
"roll", ¢4 = "mechanism-motion", c5 =
"pcs-mode”, cg = "instruments”, ¢7 =
"pointing”, cg = "nssc-usage", cg =
"permits-parallels” and cjg = "manual-
match". This formula reflects that (1) cl
through c5 are compensatory with respect
to one another; (2) cg through cg and the
aggregate of ¢ through cs are mutually
conjunctive; and (3) cjg is disjunctive
with all other features.

6. Explanation

Upon request, the matcher generates
tables that explain its assessments. Each
table summarizes the reasoning that went
into the matcher's analysis of the
compatibility between a particular
primary-parallel pair. An example
(reformatted) is shown in Table 6. The
header of the table contains the unique
SU identification numbers for p and q,
and the matching score. In this case, the
score of 0.565 indicates that p and q are
moderately compatible.

Each row in the table corresponds to the
evaluation of a particular feature. The first
column contains the feature's name. The
second and third columns contain relevant
property values for the primary and the
parallel, respectively. The primary
column in row 1, for example, shows the
number of seconds available for parallel
science for p (9700), and the parallel
column shows the time required by g
(700 seconds). For legibility, the name of
the property and the units of measurement
are not listed in the table, but they are
understood by schedulers who are
familiar with POMS.

Columns 4, 5 and 6 contain the
measurement, intensity and compatibility
values, respectively, for each feature.
Recalling the "timing" measurement

function (Section 5.1), the measurement
value in row 1 is the difference between
the time available (column 2) and the time
required (column 3), or 9000 seconds.
By Table 2, this yields an intensity value
of 0.95, indicating that there is quite a lot
of excess time available. POMS
recognizes (via the "timing" compatibility
function, Table 4) that this large excess
is undesirable and assigns a low "timing"
compatibility value (0.33) to the primary-
parallel pair.

Table 6. Explanation of match assessment

Primary 0091401 Parallel 0091505 Score = 0.556

Feature Primary Parallel Mea Int Com
timing 9700 700 9000 | 0.95 | 0.33
priority - 3.8 3.8 10.70 ] 0.62
roll 131.4 | 0, 360 0 0.0 ] 0.50
mech-

motion Y, Y N, Y 1 0.75 ] 0.53
pcs-

mode fine fine 0 1.0 ] 0.58
instru-

ments WFPC FOC T 1.0 1.0

20,60]r9050] T 10| 1.0

pointing 8.0,2.0

nssc-

usage N N N 00 ] 1.0
permits-

parallels Y - T 1.0 | 1.0
manual-

match - - N 0.0 { 0.0

For the next feature, "priority”, the only
significant property is the scientific
priority of the parallel, 3.8. No primary
properties are relevant, hence the primary
column for "priority" is blank. The
measurement function for "priority"
simply returns the priority property value,
hence it is also equal to 3.8. Priorities are
assigned on a scale of 1 to 5, hence 3.8
is considered to be a fairly important
observation, i.e., the intensity value for
"priority” is high (0.70). This high
intensity is viewed by POMS as having a




fairly strong positive influence
(compatibility value =0.62).

The primary column for "roll" contains
the orientation of the spacecraft (in
degrees, relative to an HST-specific
coordinate system) that is intended for
observing p. In this case, this so=called
“nominal orientation” is equal to 131.4
degrees. The parallel column contains an
orientation interval that is sufficient to
view both the primary and the parallel. In
this case, the interval includes all possible
orientations, i.e., 0 to 360 degrees. (Any
orientation is sufficient because the
parallel has a region target that contains
the primary target. See "pointing”,
below). The roll measurement function
computes the minimum number of
degrees that the spacecraft must rotate
from the nominal orientation, in order to
reach the desired interval. In this case, the
nominal orientation is within the desired
range already, hence no roll is required.
This fact is recorded in the "roll"
measurement value (0 degrees). For
"roll", this minimal intensity implies
neutral compatibility, i.e., the feature will
have no effect on the overall assessment
(compatibility value = 0.5).

The primary column for "mechanism-
motion" refers to two properties: (1)
whether or not the primary requires
mechanism motion ('Y indicates motion
is required); and (2) whether or not the
primary can tolerate motion ("Y" means
"yes"). The same scheme is used for the
q, hence the parallel column for
“mechanism-motion" indicates that the
parallel can tolerate motion, but does not
require it. The measurement function for
"mechanism motion" recognizes this
situation and returns a tag value of 1 to
the measurement value. (The simple
tagging scheme for measuring this feature
and its related intensity function are not
described here.) This combination of
motion requirements is considered to be
mildly favorable, hence a slight positive
compatibility value (0.53) is assigned.

Both p and g require the strictest PCS
mode. This is a favorable situation, hence

"pes-mode" exhibits a compatibility value
of 0.58.

The remaining features are qualitative. p
and q use different instruments (the wide-
field planetary camera (WFPC) and the
faint object camera (FOC)). Neither uses
the NSCC-1 computer, while the primary
permits parallel observations, and no
manual match has been specified. Hence,
the conjunctive features "instruments",
"nssc-usage” and "permits-parallels” each
exhibit maximal compatibility, and the
disjunctive feature "manual-match"
exhibits minimal compatibility.

The primary column for the feature
"pointing”  contains the celestial
coordinates (2.0 degrees longitude, 6.0
degrees latitude) of the primary target.
The parallel properties indicate that q has
a region target, i.e., a region of space in
which any specific pointing is sufficient.
(Region targets are quite common for
parallels.) The parallel column describes
this region as a rectangular area ("r")
centered at 9.0 longitude and 5.0 latitude,
with a longitudinal extent 10.0 degrees
from center, and a latitudinal extent 2.0
degrees from center. Since the primary
pointing is contained well within the
parallel's target region, p and q are
compatible with respect to pointing. (This
also explains why any orientation of the
spacecraft is acceptable.)

Application of the POMS aggregation
function (Section 5.4) yields a slightly
positive matching score of 0.556, despite
the poor time-fit. POMS has concluded
that the timing problem is outweighed by
the combined positive influences a high
scientific priority, favorable mechanism
motion and pointing control
requirements.

7. Knowledge acquisition

In this section, we describe the methods
used in POMS for acquiring new
expertise and for modifying an existing
knowledge base.



7.1 Adding new knowledge

The process of acquiring new knowledge
in POMS is relatively structured,
compared to conventional knowledge-
based systems where acquisition usually
requires informal (and often lengthy)
dialogs between the domain expert and
the knowledge engineer. New knowledge
in POMS always comes in the form of a
new feature to be added to the assessment
process. Support for the new feature
requires the expert to provide definitions
for the new measurement, intensity and
compatibility functions, and to extend the
existing aggregation function to include
the new feature. To illustrate this process,
assume that a new feature fp4] is being
added to a knowledge base containing fj,
f2, ceey fn.

First, the domain expert selects a name
for fu+1, decides on a procedure for
measuring the new feature, and
determines what SU properties are
required for the analysis. The knowledge
engineer then implements the procedure
in CLOS. A pointer to this code is added
to the knowledge base so that it is
invoked whenever the new measurement
function Mp41 is applied.

For the intensity function Iy, 1, the expert
provides a set of ordered pairs as in
Section 5.2. For qualitative features, this
is straightforward. For quantitative
features, the function should reflect the
expert's intuitive understanding of the
feature's semantics.

Extension of the aggregation function A
to incorporate f4+] requires the addition
of a new branch and leaf (and possibly a
new internal node) to the existing parse
tree for A. The expert is requested to
identify the modes of interaction between
the new and existing features. Based on
this analysis, the placement for the new
leaf cp4t is identified. (For difficult
cases, this ad hoc extension technique
may be assisted by a partially mechanical
procedure [Luc90].) The engineer then
makes a corresponding change in the

41

formula that implements the aggregation
function in the knowledge base.

To elicit a new compatibility function
Cn+1 for fn41, a context is constructed in
which the levels of the existing features
are constrained such that the new
feature's effect completely dominates the
aggregate compatibility of f1,f2, ..., fn+1.
Under these assumed constraints, A(cy,
€2, ... Cn, Cn+1) is exactly equal to Cp41 =
Cn+1(ins1), for all in4q1 (see below).
Hence, in the assumed context, A =
Cn+1. To illustrate such a context, we
consider the case where all features are
compensatory, i.e., where
A(C1,62,...,Cn+1) = a(C1,C2,...,.Cn+1). In
this case, the desired context is achieved
by assuming that the aggregate effect of
f1.f2,....fn is neutral, i.e., A(c},€2,...,Cn)
= a(c1,62,....¢n+1) = LN. Under this
assumption, A(c1,C2,..-,Cn+1) = Cn+1 =
Cn+1(ins1), for all intensity values in+1,
i.e., the aggregate compatibility of
f1.£2,....fn+1 1s completely dominated by
fn+1. This equality, which is easy to
verify formally, is consistent with the
intuitive interpretation that neutral
compatibility has a neutral aggregative
effect among compensatory features.

Once the context has been established, the
expert is then asked to estimate the
matching score for various selected
intensity values ip+1, with the other
features fixed at their assumed levels.
Since A = Cp+1, €ach matching score is
equivalent to a compatibility value Cn+1.
Hence, each <ip4], matching score> pair
is equivalent to a <ips1, Cp+1> pair. The
set of such pairs becomes the new
compatibility function Cpy1.

The rationale for the above strategy is that
it yields the expert's opinion of the
direction and degree to which the new
feature displaces the neutral effects of the
other features. This "strength of
displacement” is the essential heuristic
used to estimate a feature's significance to
the overall aggregation.

Consider a simple case in which
f2="priority" is being added to the



existing knowledge base which contains
the single feature fl1 = "timing". The
aggregation function is A(cji,c2) =
a(c1,¢2) and the context contains the
assumption that ¢ = 0.5. The expert is
asked to score a match in which timing is
neutrally compatible, i.e., c; = 0.5 for
varying intensities of i for "priority". If
"priority" is present with minimum
intensity (i.e., i2 = 0, the lowest possible
priority), then the aggregate matching
score is very low, say 0.1. This
assessment states the expert's opinion
that very low priority significantly
degrades the neutral effect of "timing".
Some other feature might have a less
significant effect. At neutral intensity for
"priority" (i.e., i = (.5), the matching
score might be 0.5, implying that a
moderate priority has neither a positive
nor negative effect on the matching score.
The highest priority (i.e., i = 1.0) might
create an aggregate score of 0.8,
representing the opinion that high priority
has a strong positive effect on
compatibility. The data pairs [(0, 0.1),
0.5, 0.5), (1.0, 0.8)] are included in the
new compatibility function C;. Additional
points may be provided to whatever
granularity is deemed necessary by the
domain expert.

The assumed context of aggregate
neutrality described above is appropriate
only if all features are compensatory.
Different assumptions are required for
non-compensatory features. If fy,
f2,....,fn is conjunctive with respect to
fn+1, then the aggregate effect of
f1.f2,....fn is assumed to be totally
compatible (i.e., A(c1,¢2,....cp) = 1.0).
In this case, A(c1,€2,...,.Cn+1) =
MIN(A(c1,€2,...,Cn)s Cn+1) = MIN(1.0,
Cn+1) = Cn+1. Hence, the aggregate effect
of f1.f2,....fn+1 is dominated by 41, as
desired. In this case, the matching scores
provided by the expert represent the new
feature's strength to displace the total
compatibility of fy,...,fn.

Disjunctive features are handled by
assuming that fi,...f, are present with
minimal compatibility, and the matching
score represents the new feature's

strength in displacing the minimal
compatibility of fy,....fn.

In the general case, where all three modes
of interaction may be present in fy,...f;,
the context requires all three forms of
assumptions. For example, suppose that
the feature f4 = "timing" is added to an
existing knowledge base containing f) =
"manual-match", f2 = "permits-parallels”
and f3 ="priority". The modes of
interaction among these features is shown
in Figure 4. The context for defining C4
consists of the following assumptions:

(1) f3 exhibits neutral compatibility (the
parallel has moderate priority, i.e., c3
= 0.5);

(2) f» exhibits total companbl]lty (thc
primary permits parallel science, i.e.,

c2= 1)’

(3) fl exhibits total incompatibility (a
manual match is not requested, i.e.,
=0).

It is easily verified that under these
assumptions A(cj,c2,¢3,c4) = C4(ig),
hence by describing the overall
compatibility with variances in the
intensity of f4, the expert expresses a
compatibility function for fy.

The method described above is a heuristic
for approximating compatibility
functions. The degree to which the
defined function actually represents the
true effects of a feature depends on how
closely the feature's general behavior is
modeled by its behavior under the
assumed constraints. In certain cases,
more restrictive assumptions (such as
assigning specific measurement values to
certain features) are necessary in order for
the context to make sense to the domain
expert [Luc90]. Other heuristics are
possible, but in practice the above
strategy has worked satisfactorily.

7.2 Changing existing knowledge

Any of the existing knowledge functions
may be modified incrementally. Most



commonly, changes are made to
compatibility functions in order to fine-
tune the relative effects of features.
Suppose, for example, that the scheduler,
upon review of many matches, decides
that POMS is underscoring matches in
which p has a large excess of time
available for parallel science (as in the
example of Section 6). This deficiency is
easily addressed by dampening the
negative values defined for such cases in
the "timing" compatibility function. For
instance, the last entry in the function
definition (Table 4) might be adjusted
from (1.0, 0.25) to (1.0, 0.30), thereby
lessening the worst case effect of the
feature. The second-from-last entry might
also be modified slightly from (0.9, 0.42)
to (0.9, 0.45). Using this modified
compatibility function for "timing", the
example in Section 6 would yield a
matching score of 0.602, somewhat
higher than the original score of 0.556.
Changes to intensity functions (reflecting
a reassessment of a feature's semantics)
are made in a similar manner.

Currently, such changes are made by
manually editing a file that contains the
knowledge base, although an interface is
planned that will permit such changes to
be made interactively by the scheduler.

Changes in the way features are believed
to interact are made by rewriting the
aggregation formula in the knowledge
base file. Changes to a feature's
measurement function usually involves
the recoding of the CLOS procedure that
implements it. This requires intervention
by Spike system developers.

Features may be deleted from the
knowledge base simply by removal from
the argument list of the aggregation
function.

8. Results

Since the HST parallel science program is
still in the early testing stage, it is too
early to make conclusive statements about
the performance of POMS. Currently the
system has been used successfully to

verify matches made by human
schedulers. POMS has also been
employed to analyze the frequency of
good matches in a large pool of proposals
to be executed in 1992. Although much
improvement is required before POMS
can assume a more autonomous role in
scheduling, the system's rate of
improvement has been highly
encouraging thus far.

The most apparent strength of the system
in this early phase (during which it has
been subjected to frequent changes in the
matching criteria) has been its capability
for incremental refinement.  The
explanation facility has been quite useful
in identifying assessment errors and
these errors have, in most cases, been
easily corrected by adjusting a
compatibility function. Furthermore, the
corrections have, in almost all cases, been
made without destroying the prior
integrity of the knowledge base, i.e.,
without invalidating previously correct
assessments. This same amenability to
local refinement was also observed in the
previous application of the technique
[9,10] and seems to be a generic
advantage of the approach. As the human
knowledge sources for POMS become
more familiar with the parallel science
problem, we expect that POMS will be
able to represent and use this expertise in
an accurate fashion.

There is no particular dependence
between the POMS methodology and the
parallel science problem. Hence, if
successful in the present arena, the
knowledge representation scheme should
be applicable to other problems involving
the assessment of multiple quantitative
criteria. We are currently investigating
several potential applications, including
the detection of duplicate scientific
requests in the HST proposal pool, and
the matching of scientific observations to
point spread functions for image
restoration.
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ABSTRACT

This paper describes a process-oriented control
model for distributed problem-solving. The model
coordinates the transfer and manipulation of in-
formation across independent networked applica-
tions, both intelligent and conventional. The model
was implemented using SOCIAL, a set of object-
oriented tools for distributed computing. Complex
sequences of distributed tasks are specified in terms
of high-level scripts. Scripts are executed by SO-
CIAL objects called Manager Agents, which realize
an intelligent coordination model that routes indi-
vidual tasks to suitable server applications across
the network. These tools are illustrated in a pro-
totype distributed system for decision support of
ground operations for NASA’s Space Shuttle fleet.

Keywords: distributed control, intelligent coordi-
nation, distributed artificial intelligence

INTRODUCTION

End-user tasks in distributed systems typically de-
compose into sequences of interactions between in-
dependent applications. For example, scheduling
engines are often driven by task, resource, and con-
straint networks derived from independent planning
systems. Scheduling a space mission may therefore
depend on a succession of individual data transfers
and manipulations across several decision support
tools and databases. Similar task decompositions
arise in operations support for complex control net-
works such as the Space Shuttle Launch Processing

System (Adler, 1990).
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Interactions among distributed applications
and data stores must be initiated and managed. In
the absence of direct interprocess links, human in-
tervention is required to effect transfers of data and
control. Such involvement, whether by end-users or
supporting network operators, impacts the produc-
tivity and cost of frequent, high-level activities such
as decision support. Moreover, the likelihood of hu-
man errors may compromise quality and safety.

Intelligent systems have the capacity to coor-
dinate distributed problem-solving autonomously.
However, considerable latitude exists in design-
ing architectures for distributed intelligent control
(Bond and Gasser, 1988). For example, interac-
tion sequences can be automated piecemeal, by es-
tablishing directed, data-driven control links be-
tween individual applications. Distributing sequen-
tial control logic in this manner is cmmnbersome
application networks that address multiple com-
plex tasks. Moreover, directed links are difficult to
maintain, extend, and verify when network applica-
tions and tasks are added or modified with any fre-
quency. Finally, highly distributed control schemes
incur processing overhead to ensure focus and co-
herence of autonomous problem-solving activities.

This paper describes a process-oriented model
for distributed coordination. The model enables
complex sequences of distributed tasks to be spec-
ified in terms of high-level scripts. Each script el-
ement represents a distinct data transfer task or
request for problem-solving skills between comple-
mentary applications. The meodel also encompasses
intelligent control modules that execute these pro-
cess scripts automatically: individual tasks are
routed to suitable distributed servers and results

nﬁn,,i_(imunnwm SLANK



are retrieved for the requesting applications. This
model alleviates many of the difliculties faced by
more decentralized coordination schemes.

The new process control model was imple-
mented as an extension to SOCIAL, a development
tool for distributed computing across heterogeneous
hardware and software environments. The next sec-
tion of the paper reviews SOCIAL’s architecture
and functionality. The following section describes
the design and implementation of the process con-
trol model. The model is then illustrated with
a prototype distributed system for decision sup-
port of Space Shuttle fleet ground operations at the
NASA Kennedy Space Center.

OVERVIEW OF SOCIAL

SOCIAL consists of a layered collection of object-
oriented tools for distributed communication, data
management, and control (c¢f. Figure 1). These
generic capabilities are bundled into active objects
called Agents. SOCIAL provides an extensible li-
brary of predefined Agent classes with specialized
integration and coordination hehaviors. An ap-
plication is linked non-intrusively to an Agent via
calls to a high-level Application Programming In-
terface (API). Applications make API calls to in-
voke their mediating Agent objects to execute de-
sired distributed behaviors.  Agents interact us-
ing asynchronous message-passing. SOCIAL’s un-
derlying layers transparently manage interprocess
message communication across heterogeneous lan-
guages, operating systems, and networked hard-

ware platforms (Symbioties, 1990).

De IAppllcatlo:n ]
t
Application velopment Inter aceJ
Agents Agent
Agent Library
SOCIAL (Managers, Gateways) De';:ek;'f’:;:m
A
Network
Proczs::rr, and Data Management
Software Platfor

Distributed Communications (MetaCourler)

Figure 1: Architecture of SOCIAL

SOCIAL Gateway Agents

SOCIAL Gateway Agents provide a uniform design
model and methodology for integrating heteroge-
neous applications, both conventional and intelli-
gent (Adler, 1991b). The root Gateway Agent class
defines a full peer-to-peer control model that is in-
herited by all specialized Gateway subclasses. This
model invokes a set of Agent methods in a data-
driven manner to process: (a) outgoing messages
from the Gateway’s associated application to other
Agents; (b) incoming messages from other Agents;
and (c) responses to prior outgoing messages.

An application is integrated by creating a new
Gateway subclass, which involves specializing two
sets of Agent methods. One set establishes custom
mappings for application-specific data models and
control interfaces. To simplify interactions between
heterogeneous applications, SOCIAL transports in-
formation in a neutral exchange format. Accord-
ingly, each Gateway subclass must define conver-
sion methods for translating from the application’s
native knowledge representation model and com-
mand interface into SOCIAL’s neutral data format,
and vice versa. Native and neutral exchange data
structures are accessed and manipulated using func-
tions from the application’s programmatic interface
and the API for SOCIAL’s data management layer.

The second set of Gateway methods defines the
application’s desired interactions with other ele-
ments of the distributed system. These control
methods are constructed using the Gateway con-
version methods for extracting data and knowledge,
injecting information, or invoking application com-
mands, as required. One method establishes server
behaviors, which process incoming messages from
other application Gateways and generate suitable
responses. A second method defines client behav-
iors. Applications configured as clients initiate out-
going messages containing service requests via their
Gateways. A Gateway client behavior typically in-
Jects responses to previous request messages back
into the associated application for follow-on pro-
cessing. A given application Gateway can sup-
port multiple client and server interactions with any
number of other application Agents.



SOCIAL Manager Agents

SOCIAL Manager Agents provide predefined con-
trol models for coordinating activities in com-
plex networks of application Agents. Coordination
among distributed problem-solvers can be achieved
through different strategies. One approach is to dis-
tribute control, localizing it within individual apph-
cations. A second approach is to centralize control,
either in a preferred application or in a dedicated,
independent module. SOCIAL Gateway Agents
provide flexible vehicles for implementing either of
these opposing alternatives. Manager Agents were
developed to support a third design strategy, which
is to combine localized and centralized control into
hybrid coordination architectures.

The first SOCIAL Manager Agent defined a hi-
erarchical, distributed control (HDC) model (Adler,
1991a). This HDC-Manager mediates interactions
among autonomous “subordinate” Agents much
like a human manager. Application Gateways com-
municate exclusively with their Manager Agent, re-
questing information or problem-solving resources,
and receiving responses to those requests. Subor-
dinate Agents do not need to know about the func-
tionality, structure, or even the existence of other
application Agents; they only need to know (a)
the high-level API for interacting with the HDC-
Manager and (b) the names of the services available
within the HDC-Manager’s scope.

The basic operational model for the HDC-
Manager is summarized in Figure 2. The HDC-
Manager functions as an intelligent router of task
requests, based on a directory knowledge base. This
directory describes: (a) individual information re-
sources and problem-solving capabilities; (b) the
application Agent that supports each such service;
(c) the message format for requesting that service;
and (d) the server Agent’s logical address. Request
messages from application Gateway Agents are
posted to the HDC-Manager’s agenda queue. The
HDC-Manager processes and dispatches requests
asynchronously to suitable server application Gate-
ways. These Agents, in turn, post responses from
their applications to the HDC-Manager’s “bulletin-
board” database. The HDC-Manager subsequently

retrieves such responses and forwards them back to
the original requesting Agents.

~ HDC-Manager Agent

>Dirrectory Router

.| Agenda  Bulletin-
dispatch dispatch
response@// request @)\\

—
o H@r::;o..:

request
. Gatewny Agent * Gateway Agent
Application 1 [ Application 2

Figure 2: HDC-Manager Operational Model

In essence, the HDC-Manager establishes a
layer of control abstraction that decouples appli-
cation Gateways from direct connections with one
another. The centralized directory promotes main-
tainability and extensibility over the evolutionary
lifecycle of complex distributed systems.

SOCIAL’S PROCESS-PLANNER AGENT

SOCIAL’s HDC-Manager Agent supports simple
interactions between independent distributed sys-
tems. For example, an intelligent scheduling
tool might query a remote shop floor production
database to determine the availability of equipment
or labor resources. Similarly, an intelligent opera-
tions support application for a power management
system might collect data to confirm a power bus
fault hypothesis, or command an experiment man-
agement system to minimize power consumption.

The applications in these examples are loosely
coupled. The scheduler uses the database solely
as a source of current status information about its
target domain. Similarly, operation management
systems only interact in situations where the struc-
tural and functional interfaces between their target
subsystems appear to be relevant. Simple discrete
transactions (e.g., query-response, sensor polling,

command-acknowledgment interchanges ), provide



sufficient coupling to enable distributed problem-
solving activities in these contexts. The HDC-
Manager Agent contains all of the apparatus and
control functions required to coordinate discrete
transactions within a distributed system.

However, many kinds of distributed problem-
solving activities cannot be accomplished within
the scope of an individual logical transaction be-
tween two remote applications. Consider, for ex-
ample, a distributed decision support system com-
posed of two or more independent tools, such as a
planning system and a scheduling engine. Suppose
that the planning system incorporates the master
database for all decision support information, in-
cluding all operational plans and schedules for the
target domain. Assume also that the models used
to represent data and knowledge are incompatible
across the two tools, which is common for indepen-
dent systems specialized to solve different problems.

In this context, an elaborate set of information
and control exchanges has to take place to perform
scheduling. Data must be extracted from the plan-
ning system’s database, transferred to the sched-
uler, translated into a format that is compatible
with the scheduler, and then loaded. At this point,
the primary scheduling activity itself can proceed.
Once scheduling has been completed, a similar set
of support transactions must be accomplished in
reverse order. The completed schedule must be
translated into a format acceptable to the plan-
ner, transferred back to the planner’s host platform,
and incorporated into the master decision support
database.

Clearly, such sequences need to be automated,
both for end-users and for autonomous manage-
ment systems. It should be possible to invoke
scheduling or comparable functions through sim-
ple, high-level commands. Such commands should
specify only the few data items that are required
to characterize particular instances of the desired
task type (e.g., a mission identifier, options to over-
ride default control parameters for the scheduling
engine). This amounts to a requirement to auto-
mate composite activities, or processes, composed
of multiple discrete interactions between indepen-

dent distributed applications. The HDC-Manager
Agent currently lacks the requisite capabilities ei-
ther to define such distributed problem-solving pro-
cesses or to coordinate their execution. We consid-
ered several design approaches to extend SOCIAL
to provide the desired functionality.

One alternative would be to configure a dis-
tributed system so that one message would initiate
the desired activity sequence by triggering the first
application Gateway to perform its assigned task,
pass the results onto a second Gateway to perform
the second required task, and so forth. In other
words, a single message to the first server Agent
would automatically initiate the desired chain of in-
teractions. SOCIAL’s communication layer main-
tains a “travel log” for each message as it is passed
through Agents. Once the “terminal” Agent com-
pletes its activities, results are automatically re-
turned and post-processed through all preceding
Agents that appear in the message’s log.

Unfortunately, the logic for parsing and for-
warding messages within individual application
Gateway Agents can become quite involved for
complex processes. Moreover, a given application
Agent may have to perform a given function within
multiple process sequences, with different successor
Agents and post-processing activities for each dis-
tinct chain. Maintainability and extensibility are
compromised in that each time a new process is de-
fined, the control logic for Gateway Agents in that
process chain must be modified. Consequently, for
mission critical applications, the entire suite of be-
haviors for each affected Agent has to be verified
again. Finally, SOCIAL’s communication model
only supports acyclic message forwarding, preclud-
ing processes involving “back-and-forth” exchanges
or iterative looping.

A second alternative would be to extend the
HDC-Manager directly to support the specification
and execution of distributed sequential processes.
On this strategy, special “macro” tasks would be
definable in the HDC-Manager’s directory knowl-
edge base, corresponding to composite processes.
A message requesting execution of such a com-
posite task would activate extended control logic.



This logic would decompose macro tasks into con-
stituent service requests and post individual steps
to the task agenda, in suitable order, for the HDC-
Manager to process and route.

This approach resolves the objections raised
against the previous design strategy. First, mes-
sages are only passed between the extended HDC-
Manager and individual application Agents, elimi-
nating the hardwiring of interaction sequences di-
rectly into the control logic for individual Gate-
ways. Second, the new macro processes are modu-
lar, maintainable, and readily extensible. In partic-
ular, processes are modeled independent from and
external to individual application Agents. System
testing is simplified because new processes can now
be defined without affecting previously verified pro-
cesses and Agent behaviors. Finally, the extended
HDC-Manager mediates all interactions between
application Gateways as separate message trans-
actions. SOCIAL’s acyclic message-passing model
can accommodate cyclic behaviors that are broken
up in this manner.

The main objections to extending the HDC-
Manager are performance and complexity. This
Agent’s primary design role is to eliminate direct
connections between application Agents by medi-
ating interactions. The proposed functional exten-
sions decompose macro tasks and manage queuneing
of process subtasks. These capabilities for man-
aging distributed processes impose computational
overheads that reduce the responsiveness of this
core routing capability. Moreover, these design ex-
tensions also complicate the original control logic
of the IIDC-Manager significantly.

We adopted a third approach, which distributes
the functionality of the extended HDC-Manager to
overcome these design problems. Specifically, cen-
tralized process definition and management func-
tions are retained, but decoupled from the HDC-
Manager and assigned to a new subclass of Manager
Agents called Process-Planners. The distributed
control model realized in the Process-Planner is
then configured to drive the HDC-Manager through
the individual process steps comprising composite
activity sequences. It does this by posting succes-
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sive service requests to the HDC-Manager’s agenda
for distributed routing. This basic architectural
configuration is depicted in Figure 3.

=
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Figure 3: SOCIAL Process Control Architecture

This distributed design is attractive because it
enables the HDC-Manager to function identically
for two distinet distributed computing models —
transaction-based and process-based. The Process-
Planner manages process decomposition and ac-
tivity sequencing. [t transmits imdividual process
steps as individual service requests to the HDC-
Manager, replicating the type of imputs that would
be expected from ordinary application Gateway
Agents. Consequently, the HDC-Manager need not
distinguish between discrete and composite service
requests within its agenda. In fact, process steps
and service requests representing discrete Gate-
way transactions can be interleaved on the HDC-
Manager’s agenda, enabling both kinds of inter-
actions to be coordinated concurrently. In addi-
tion, partitioning distributed control logic across
two Manager Agents fosters modularity, maintaim-
ability, and extensibility.

The message traflic between the Process Plan-
ner and HDC-Manager entails some performance
overhead. However, the two Agents communicate
asynchronously and can operate concurrently on
dedicated processors, compensating at Jeast i part
for message-passing overhead. Overall performance
depends strongly on the particular distributed sys-
temn and its ratio of communication and coordina-

tion to local application problem-solving loads.



Implementing the Process-Planner Agent

The Process-Planner Agent was implemented as a
subclass of SOCIAL Gateways. Consequently, it
inherits the standard Gateway peer-to-peer con-
trol model and API methods. These methods were
specialized to interface with the core process plan-
ning application. The data injection API method
parses two SOCIAL neutral exchange types. Char-
acter strings are interpreted as pathnames for files
containing process scripts, which the planning sys-
tem loads into memory. Lists are treated as com-
mands and command arguments, which are exe-
cuted through the application’s control interface
(e.g., initialize, reset). Extensions to handle other
data types amount to straightforward program
Case statement clauses. The API method for ex-
tracting information was not required, because the
process planning system functions solely in a client
role.

The process planning application examines a
process script to determine the next step to per-
form. Currently, a script consists of an ordered
list of entries that correspond to services identi-
fied in the directory knowledge base of the asso-
ciated HDC-Manager Agent. The :compute-next-
step command retrieves the first script item that
has not been instantiated. An item has been in-
stantiated if it has been annotated with execution

results returned from the HDC-Manager.

The planning program also computes prede-
cessors and successors to current steps in process
scripts. The HDC-Manager supports a generic file
transfer service based on SOCIAL utility agents
that send and receive files across network nodes.
This service is context-sensitive in that it presup-
poses source and target file pathnames and host
names. ‘The HDC-Manager can determine these
items given the previous and succeeding script steps
to the current file transfer task.

The Process-Planner Agent starts up the em-
bedded planning program in response to a mes-
sage that specifies initialize and reset commands,
together with the name of a script file to load. A
second message initiates the following control cycle:
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1. the Agent determines the next process step
from the process planner program and dis-
patches a suitable service request message to
the HDC-Manager;

2. the HDC-Manager dequeues the request from
its agenda, finds the server application Agent
(e.g., a Gateway for a scheduling engine, a
Send-File utility), and dispatches an appropri-
ate task message to that Agent;

3. the target application Agent performs the as-
signed task and posts its response to the HDC-
Manager’s bulletin-board. Typically, the tar-
get Agent is a Gateway, which interacts with
its embedded application by injecting data or
commands and collecting query or problem-
solving results;

4. the HDC-Manager automatically routes the
posted task results back to the Process-Planner
Agent;

5. the planning program updates the instanti-
ated script with service request results and
computes the next step from the script. The
Process-Planner dispatches this new process
step back to the HDC-Manager for routing.

The Process-Planner then reiterates this exe-
cution cycle. The Agent terminates looping when
notified by its embedded process planning program
that the script has been completely instantiated.

The Process-Planner plays the role of a Man-
ager Agent in that it performs distributed control
functions rather than integrating domain-specific
applications. However, it was designed and im-
plemented as a subclass of Gateway Agents. So-
phisticated process planning tools are beginning to
appear commercially in CAE, CAM | and CASE do-
mains. These tools are used to specify task decom-
positions and autornate control of work flows for
machining complex parts, other manufacturing pro-
cesses or managing large projects. The Gateway’s
uniform, high-level interface architecture preserves
design flexibility to replace the SOCIAL process
planning program with a more powerful dedicated
engine,



Distributed Decision Support Prototype

A prototype was developed to validate this de-
sign model for coordinating processes in SOCIAL.
This prototype simulates a distributed decision sup-
port system for ground operations activities for the
Space Shuttle fleet at the NASA Kennedy Space
Center. Specifically, a Process-Planner Agent was
implemented and coupled to an HDC-Manager.
These two Agents automatically coordinate the
complex sequence of distributed activities required
to schedule Shuttle missions.

Two (simulated) decision support applications
were integrated using SOCIAL Gateway Agents
(cf. Figure 4). One Agent represents a commer-
cial planning system called Artemis, which NASA
has modified with a frontend interface customized
for planning ground support activities for Shut-
tle missions. The second Agent represents an in-
telligent, constraint-based scheduling engine called
Gerry (Zweben, 1990), which is being developed by
the NASA Ames Research Center. Artemis is based
on a proprietary fourth generation language and re-
sides on an IBM mainframe host. Gerry, written in
Common Lisp and CLOS, runs on Unix worksta-
tions.

The Artemis Gateway Agent is configured to
simulate three tasks: (a) downloading data files
for a particular mission from the Artemis master
planning database; (b) uploading data files rep-
resenting a completed mission processing schedule
back into Artemis; and (c) running an analysis pro-
gram to detect and report resource conflicts be-
tween the new schedule and existing schedules for
other Shuttle missions. The Gerry Gateway also
simulates three tasks: (a) translating and loading
mission plan files into the scheduler; (b) computing
the mission schedule; and (c) extracting and trans-
lating the completed schedule back into Artemis-
compatible file format.

The Gerry scheduler requires four types of plan
information: a network of tasks to be performed
to prepare the Shuttle vehicle and its associated
payload(s) for launch; a specification of available
resources (e.g., labor schedules, equipment such as

cranes, and other materials); a set of constraints on
tasks and resources; and a data dictionary that de-
scribes the information fields in the preceding three
datasets. Artemis generates these datasets as four
ASCII files in a standardized record format. Gerry
requires data to be input from ASCII files in a cus-
tom object-oriented format.

Gerry Gateway

Gerry Scheduler %
(simulated) i [

Figure 4: Prototype Decision Support Gateways

SOCIAL’s data management subsystem was
used to define custom neutral exchange data struc-
tures. Translators were written to map between
Artemis and SOCIAL data models and between
Gerry and SOCIAL data models (cf. Figure 5).
The translators were hooked into the application
Gateway Agent interface API methods to perform
appropriate conversions of data file formats. Data
files are translated into neutral exchange format
structures in memory, and then written to new files
in the target converted format.

Artemis Data Model SOCIAL Neutral | Gerry Data Model
(DBMS/4GL-based) Exchange Model (LISP/CLOS-based)
Data Diet) : rojec
field-descriptors Attributes
Fields —» Tasks
. Misson Data Zaskstda:a:ectlsa M Relations
i onstrain ase
task networks R datasets Resource-pools
constraints esource datase Milestones
resources

Figure 5: Disparate Decision Support Data Models

A subclass of HDC-Manager Agent, called the
DSS-MGR, was created to coordinate interactions



between the two decision support applications (cf.
Figure 6). Three steps were required to specialize
the DSS-MGR Agent for this purpose. First, con-
ditions were defined for prioritizing agenda service
requests. The DSS-MGR sorts requests with re-
spect to an ordinal list of service types. Requests of
the same type are ordered by increasing values of a
numeric priority attribute. Second, the DSS-MGR
directory knowledge base was constructed. The di-
rectory identifies all services available from all ap-
plication Gateways subordinate to the DSS-MGR,
plus the generic file transfer capability. Both DSS-
MGR attributes are defined using the high-level
declarative API specific to HDC-Manager Agents.
Third, dispatching functions were written for each
directory service entry. These functions manipulate
data arguments contained in service request mes-
sages into a task message that the HDC-Manager
routes to the relevant application Gateway server.

DSS-Mgr Agent

v o

Gatewn Ga ] SOCIAL Flle

ueway s Transfer Utllity
Gerry Process}| *** Agents
(simulste { Planner] : (on each node)

Figure 6: Decision Support HDC-Manager Agent

Next, a script was written for the Process-
Planner Agent, defining the distributed process for
scheduling Shuttle missions. This sequence consists
of the following steps:

(retrieve-Artemis-data)
(transfer-data-files)
(load-Gerry-data)
(schedule-mission)
(retrieve-Gerry-data)

(transfer-data-files)
(load-Artemis-data)
(Artemis-analyze-and-report)

File format conversions currently take place
within the load-Gerry-data and retrieve-Gerry-data
tasks. Once the various Agents are loaded and ini-
tialized, the mission scheduling sequence is initiated
through a simple message to the Process-Planner
Agent to compute the next step for a particular mis-
sion, such as STS-40. The Process-Planner Agent
then executes the control loop described in the pre-
vious section against the mission scheduling script.

All demonstration Agents and simulated appli-
cations were written in Common Lisp. The demon-
stration system can be run on a single platform or
combination of platforms that currently run SO-
CIAL/Lisp, including Apple Macintosh IIs, Lisp
Machines, and Unix workstations. The Agent Li-
brary is currently being converted to C, to run on
SOCIAL/C workstation hosts. A planned port of
SOCIAL/C to the IBM/VM environment will es-
tablish direct interprocess interfaces across main-
frames and workstations. NASA’s distributed de-
cision support system can then be implemented on
the intended target platforms.

FUTURE DIRECTIONS

The Process-Planner Agent is being redesigned
with extended functionality. The original planning
program only supports simple sequential scripts.
These scripts cannot specify data-driven processes,
in which successive steps are determined dynam-
ically at runtime, contingent on the results of
preceding process steps. Moreover, the initial
Process-Planner drives the HDC-Manager to ex-
ecute script steps individually, in a strictly syn-
chronous, “execute and wait” sequence. Ideally,
the Process-Planner should be able to request the
HDC-Manager to route all script activities that are
mutually independent within a single control cycle.
To overcome these limitations, a more expressive
scripting language will be developed for specifying
processes that incorporate conditional branching,
iteration, and concurrent tasking. The Process-



Planner’s control logic will be extended accordingly.
A capability for executing multiple scripts simulta-
neously will also be added.

A second set of enhancements will provide more
formal development tools for creating and manag-
ing script libraries, replacing the ad hoc techniques
used in the prototype Process-Planner. A menu-
based editor will be developed to access and manip-
ulate process scripts. Also, scripts will be stored in
a central database of process plans rather than in
an arbitrary collection of independent files.

Other development efforts will extend SO-
CIAL’s library of Manager Agents. The current
HDC-Manager is adequate for distributed systems
in which a single application Agent represents the
unique source for a given resource or service. How-
ever, additional control requirements arise for ap-
plication networks in which multiple application
Agents can provide data, knowledge, or problem-
solving skills redundantly. For example, identical
copies of a program may be available on several
nodes. In addition, some applications may have
overlapping functionality for planning, scheduling,
or other tasks. A dedicated “Server-Group” Agent,
inspired by the ISIS model for group-based tasking
(Birman, 1990), is being designed to address dis-
tributed control issues for functionally redundant
application networks. Like the Process-Planner,
this Agent will be configured to offload new con-
trol capabilities and work cooperatively with the
HDC-Manager. Specifically, the Server-Group will
monitor availability of server Agents, determine the
best server for a task, and enable redundancy-based
approaches to fault tolerance.

RELATED WORK

Alternative frameworks for developing heteroge-
neous, distributed intelligent systems include ABE
(Hayes-Roth, 1988), MACE (Gasser, 1987), Agora
(Bisiani, 1987), and Cronus (Schantz, 1986).
MACE incorporates dedicated manager agents for
centralized routing of messages among applica-
tion agents. However, MACE managers lack the
other capabilities of SOCIAL HDC-Managers, such

as shared memory, transparent returning of mes-
sage responses, and extensibility for multi-level
control hierarchies. Like SOCIAL, ABE, Agora,
and Cronus all provide virtual environments to
shield users from platform dependencies and net-
working mechanics. However, they do not im-
plement generic distributed services in uniform,
object-oriented layers that are accessible to devel-
opers for customizing. Agora relies on communi-
cation through shared-memory, reflecting its ori-
entation towards parallel multi-processing architec-
tures. The other tools use message-passing models
comparable to SOCIAL. ABE and Agora provide
predefined control frameworks such as data flow
and blackboard models. Unlike SOCIAL Manager
Agents, these models explicitly couple individual
applications directly to one another. Moreover, het-
erogeneous SOCIAL Manager Agents can be con-
figured to work together cooperatively. It is unclear
whether the other tools support such combinations
within a given distributed systems.

The literature on distributed artificial intelli-
gence (DAI) contains many interesting architec-
tures for cooperative problem-solving, including
blackboard systems, contract nets, and collections
of autonomous agents (Bond and Gasser, 1988). In
this context, cooperation refers to loosely-coupled
networks of intelligent Agents working to solve a
single complex problem through collective action.
Most such DAT architectures rely on purely local-
ized control models duplicated across homogeneous,
autonomous agents. These designs can be repli-
cated within the generic communication and con-

trol model provided by SOCIAL Gateway Agents.

More recent DAI research focuses on theories
of cooperation for open-ended systems composed of
arbitrarily heterogeneous applications (Gasser and
Huhns, 1989). The critical problem here is to de-
sign dynamic interaction protocols for communi-
cating self-descriptive goals, plans, and intentions
among agents with radically different knowledge
and perspectives. SOCIAL Managers currently ad-
dress more modest closed-world domains, in which
the resources available in an agent network are spec-
ified @ priors and statically. A synthesis of Man-
ager control models with dynamic interaction pro-



tocols could contribute to a powerful theory of co-
operation for open networks of autonomous agents:
agents and their resources could be registered dy-
namically in the context of a partially centralized
control architecture that mediates agent interac-

tions.

CONCLUSIONS

SOCIAL applies a highly modular, non-inirusive
object-oriented approach to simplify the design
and implementation of complex distributed sys-
tems (cf. Figure 7). High-level Agent APIs parti-
tion generic distributed computing and application-
specific functionality. Gateway Agents provide a
uniform methodology and design architecture for
integrating heterogeneous applications, both intel-
ligent and conventional. Manager Agents provide
high-level distributed control building blocks for ty-
ing application Gateways together. Coordinating
via Managers eliminates direct connections between
individual application Agents that are difficult to
maintain and extend.

Manager Agent

Shared memory
Directory of services
Task allocation
Routing / Dispatching
External Interfaces

Gateway Agent

Application Integration

Servergroup Agent

Health monitoring
Fault tolerance

Task allocation
(redundant servers)

Process Planoer Agent

Activity sequencing

Figure 7: SOCIAL Library Building Blocks

'The prototype distributed decision support sys-
tem described earlier illustrates capabilities for:

e integrating independent planning and schedul-
ing engines across a computer network;

e automating distributed interprocess commu-
nication, namely “fine-grained” exchanges of
data and control between remote executing ap-

plications;

e automating conventional “coarse-grained” in-
teractions such as file transfers across dis-
tributed application platforms;

e automating the coordination of complex se-
quences of fine- and coarse-grained interactions
between distributed applications through high-
level, declarative scripts.

The coordination capabilities provided by SO-
CIAL Manager Agents have broad applicability for
distributed intelligent systems in space-related do-
mains. For example, process scripts could be used
to coordinate routine shop floor activities. Task
control and work-in-progress status data could be
routed automatically among Shuttle and payload
processing facilities scattered across the Kennedy
Space Center complex. Similarly, shop floor statis-
tics could be collected, summarized, and transmit-
ted to higher-level decision support systems. Mis-
sion schedules could be monitored and managed
more effectively. This feedback could also be used
to tune the processing estimates that drive long-
term planning of Shuttle missions.

In addition, process scripts could be used to au-
tomate standardized launch processing and mission
control disciplines, enhancing productivity, safety,
and quality assurance. Beyond decision and oper-
ations support applications, process scripts can be
used to automate routine flows of information in
office automation and concurrent engineering con-
texts. Finally, process scripts can be applied n
space science domains for automating sequences of
data retrieval, analysis, and graphic visualization
activities. End-users could develop, maintain, and
extend their own application-specific scripts.
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Abstract
The workstation, minicomputer, and
microcomputer marketplaces have been

revolutionized in the past decade by systems that
are both open and distributed. As a leader in this
revolution, the Naval Research Laboratory’s
(NRL) Naval Center for Space Technology
(NCST), has been employing reusable software
components to build a series of test beds, test and
checkout systems for satellite assembly line
operations, and distributed control of satellite
tracking stations. The Navy has taken this one
step further by unifying ground and space
operations with the development of the Spacecraft
Command Language (SCL).

SCL is a hybrid software environment borrowing
from expert system technology, fifth generation
language development, and multitasking
operating system environments. SCL was
developed by the Navy to be the controlling
software for their Advanced Systems Controller
(ASC). The ASC is a MIL-STD-1750A based
Telemetry, Tracking, and Control (TT&C)
controller for a new generation of Navy
spacecraft having the capability of autonomous
operation for up to 180 days.

Today’s spacecraft are becoming increasingly
more complex, with added sensors, higher data
rates, and more capable standalone and
distributed processors. The SCL system allows
on-board processing of data, which has
traditionally been considered to be in the realm of
the ground segment. The distribution of
processing to the space segment allows the
spacecraft controller to analyze data points on-
board and make decisions based on knowledge
stored in the SCL scripts and rules.

In addition, the spacecraft bus and payload
systems are commonly developed independently,
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each having their own processors/controllers.
Using a common distributed control language
results in significant savings in total software
development. The space-based SCL system can
support distributed environments using a
hierarchical scheme allowing subsystem
controllers to communicate with a central
controller.

A distributed approach is also used with the
ground segment. Data points downlinked from
the spacecraft are routed to workstations that
analyze and view spacecraft and artificial
telemetry points in real time. The workstation’s
knowledge base is used to analyze the telemetry
and adjust the spacecraft’s high level tasking to
maintain the mission profile.

To unify the space and ground segments, the
NCST has chosen the SCL system as the standard
for use on-board the spacecraft as well as in the
ground stations. The SCL system will run on a
central ground station computer uas well as on
individual workstations used for subsystem
monitoring and control. The SCL Real-Time
Executive (RTE) on-board the spacecraft will be
monitoring health and welfare, processing
telemetry, scheduling mission tasking, and
managing payload configuration changes.

Connectivity between multiple SCL nodes 1s not
limited to exchanges of database items. A
workstation can directly connect to any remote
version of the SCL RTE. This allows direct
control, interactive commanding, and real-time
query of the remote SCL RTEs. This direct
connect capability includes the version of the
SCL RTE on-board the spacecraft.

This paper presents the SCL concept of the
unification of ground and space operations using
a distributed approach, describes the SCL system,
offers examples of potential uses for the system,

-
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and details current distributed applications of
SCL.

Introduction

The Naval Center for Space Technology (NCST)
is in the process of developing the Advanced
Systems Controller (ASC), which is a major
upgrade to its current microprocessor based
spacecraft controllers. The ASC hardware is
based around the Honeywell GVSC MIL-STD-
I1750A processor and has been designed to be
general purpose to allow tailoring of the system to
meet the requirements of other spacecraft
programs. The ASC software is based on the
Spacecraft Command Language (SCL) Real-Time
Executive (RTE). SCL is a hybrid system that
employs a rule based event driven expert system
as well as a procedural scripting capability.

The SCL development environment consists of a
ground based windowed system used to develop
SCL scripts and rules. The integrated

environment consists of an editor, a compiler,
decompiler, tracing subsystem, explanation
subsystem, and the RTE. The SCL RTE was
designed to be portable and run in a real-time
embedded systems environment. The SCL RTE
represents the majority of the code necessary to
implement an embedded spacecraft controller.
The NCST saw the need for the integration of
ground and space operations with a common
control system using a single control language.
By using SCL in a distributed environment, the
command language for ground and space
segments share a common syntax. The SCL
grammar is based on fifth generation languages
and is very english-like, allowing non-
programmers to write the scripts and rules that
constitute the knowledge base. Because the
ground-based SCL environment uses the same
RTE as the spaceborne controller, scripts and
rules can be developed and debugged on the
ground-based RTE before requiring the spacecraft
hardware for final checkout.



The NCST has incorporated a control system in
its ground stations for the past decade. This
control system has proliferated to integration and
test environments, and to many of the supporting
ground stations around the world. The SCL
system has been integrated with this control
system to provide additional, or “value-added”
capabilities to the existing systems. Besides the
goal of early deployment and checkout of the
SCL software, the NCST felt that the existing
ground stations could benefit from the expert
systems capabilities provided by the SCL system.

The existing NCST satellites are well
characterized and are managed by several
software components and Orbital Operations
Handbooks (OOH), which define configurations,
constraints, and contingency plans. This
knowledge can easily be translated into SCL’s
scripting language. The resulting knowledge base
consists of SCL scripts, rules, and functions. The
knowledge base is used in real time to monitor
and detect changes in the vehicle configuration,
maintain the configuration, move efficiently from
one configuration to another, monitor system
health, and perform command verification. At a
ground station, copies of the SCL system are used
on workstations to analyze telemetry and drive
third party graphics products. The SCL
workstations are able to advise an operator of
anomalous conditions and suggest corrective
measures, compare the current configuration
against the desired mission tasking profile, and
provide a capability to autonomously maintain
vehicle configuration.

A New Way of Doing Business

in the past, only a ground-based command and
telemetry database needed to be managed. With
the advent of the ASC concept, the on-orbit SCL
database must also be considered. The field sites
throughout the world must also have knowledge
of the database items that are on board, as well as
the scripts and rules that are loaded on the ASC.
All ground stations must have knowledge of the
orbiting satellite’s database.

The current generation of spacecraft has a control
system used for ground operations, an embedded
control system for the spacecraft controller, and
hard-coded algorithms for specialized hardware.
Rather than use several different sets of software,
the NCST approach is to use the same SCL
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software for spacecraft control functions as well
as for ground station control. The SCL system is
portable and has been designed to be used in
embedded systems as well as workstations and
minicomputers. This approach allows a common
SCL grammar to be used for the ground station,
the spacecraft controller, and payload controllers.

A major departure from the past and present
spacecraft control systems, is the concept of using
an existing, validated software “shell” for control
system development. In the past, it was felt that
each new spacecraft system needed a unique on-
board software controller. Thus a special team of
specialized programmers would develop a new
control system from scratch. This proved to be a
high risk as well as a very expensive approach
both in terms of cost and schedule. With the SCL
concept, the only unique software is the low level
hardware interface code, the database, and the
knowledge base. This approach has several
advantages:

« The development cycle can be shortened;
much of the code is “off the shelf”.

« Risk is reduced. The SCL system has been
proven both on ground and on space
Processors.

+ The knowledge of a system is embedded in the
controller.

« The learning curve for ground station
operations is reduced since the knowledge is
captured on the system.

« Consistent operations. Tasking of the vehicle
is performed the same for both the ground and
space segment.

The scripting contained in the knowledge base is
written using a high level language that can be
easily learned and understood by the subsystem
engineers, thus not requiring a team of specialized
programmers.

Mission tasking has traditionally been based on a
time-line. At a given point in time the spacecraft
is commanded to perform a function.
Commanding can be carried out via stored
commands, and by interactive commanding from
the ground station. The time-line approach has
proven to be cumbersome and difficult to
administer. Previously, commanding was done
“blind”’; no database was available on the
spacecraft for interrogation. With the availability
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of SCL’s scripting capabilities and flight GPS
receivers and other equivalent devices, an on-
board expert system that is performing real-time
monitoring of the current spacecraft position can
allow field of view tasking to be implemented.
The spacecraft can collect data when an area of
interest is in the field of view, and it can dump
stored data when a field site is within its field of
view. This approach can greatly simplify the
mission tasking definition and the reduce the need
for as many men in the loop.

The NCST envisioned using the SCL system on-
board the spacecraft to share the testing burden,
since it would be able to detect and isolate faults
and report them to the ground. Time saved
during the integration and test phase of the
program can result in significant monetary
savings. The capability to do self-diagnosis is
desirable since a low earth orbiting spacecraft
(LEQS) is in view of a ground station for only a
small percentage of its orbit.

SCL System Architecture

The SCL system consists of five major
components:

« The database describes digital and analog
objects that represent spacecraft sensors and
actuators. The latest data sample for each item
is stored in the database. The database also
contains derived items that are artificial
telemetry items whose values are derived from
physical sensors. Examples of derived items
could be: average temperature, power based on
current and voltage monitors, subsystem status
variables, etc. Data structures required to
support the Inference Engine are also stored in
the database. These items include command
actuators for commanding the spacecraft
systems.

+ The development environment is a window
based application that includes an integrated
editor, the SCL compiler, decompiler, cross-
reference system, explanation subsystem, and
filing system. The development environment
is also used as a front-end to control the SCL
RTE. A command window is used to provide



a command-line interface to the Real-Time
Executive. Extensive use of pull down menus
and dialogs are used to control the system.

. The RTE is the portable multi-tasking
command interpreter and inference engine.
This segment represents the core of the flight
software. This portion of the software 1S
available in both C and Ada to allow ease of
porting to a specific hardware platform
(ground or space).

« The Telemetry Reduction program is
responsible for filtering acquired data, storing
significant changes in the database, and
presenting the changing data to the Inference

Engine.

« The project is the collection of SCL scripts and
rules that make up the knowledge base. On the
ground based systems, the project contains an
integrated filing system 1O manage the
knowledge base. In the space environment, the
binary knowledge base is uploaded to the
spacecraft and stored in memory.

Depending on the needs of the user, all
components of SCL can be run on a single
system, or may be distributed among systems.
The development environment can be used to
directly connect (0 a local or remote version of
the SCL RTE. This direct connect capability is
also supported for the space segment to allow
interactive commanding and query of the system.

Fielding the System

Due to the power and the advantages provided by
SCL, the NCST decided to put the SCL system
into the field immediately for several reasons:

« Risk Reduction - prove the system is viable
through a series of proof of concept efforts.

. Capture knowledge of key personnel to allow
the system to aid integration and test efforts.

. Allow parallel development of knowledge
bases on workstations.

« Develop a concept for adaptive mission
tasking, and field of view commanding.

« Allow development of simulations for Air
Force and Navy Projects.

« Integrate SCL with existing systems to allow
value-added features.

The SCL system was put through its paces early
in its development cycle in a series of proof of
concept efforts. The Lab Test Bed proof of
concept used the SCL RTE on a UNIX platform
10 control a prototype satellite. To demonstrate
the enhanced capabilities of SCL, the following
demonstrations were performed:

. SCL_Satellite Configuration and Auto
reconfiguration. The goal of this
demonstration was to show SCL is capable of:

- Transitioning from one control language to
another. This was demonstrated by
translating existing control system
command procedures into SCL SCripts.

. Commanding the spacecraft and receiving
elemetry responses.

- Detecting that the spacecraft is not in a
desired configuration and notifying the
operator.

. Automatically reconfiguring the spacecraft
(0 a safe state in event of an error.

. SCL Commanding. The goal of this
demonstration was to show several SCL
capabilities:

- Simple commanding and verification by
monitoring telemetry points to verify that
the command was successful.

. Mission constraint checking by verifying
telemetry prior to a command being issued
to prohibit a potentially damaging command
from being sent.

. Abstract commanding by using SCL’s high
level commanding capabilities. Scripts are
used to check telemetry and manage
primary and redundant sides of boxes, and
allow a default side to be active.

« Fault Tolerant Configuration. The goal of this
demonstration was to show the SCL capability
to react in real time to telemetry changes and
implement an alternate COUISE of action if
conditions warrant. This demonstration used
redundant sides when the primary side did not
respond.




constraint  HOT_SWITCH
subsystem TRANSMITTER
category SWITCHING
priority 15

activation YES

if
(BIU_CROSS or BIU_NORM)
and
XMIT_POWER = ON
then
reject
execute fault_log with constraint_err

reporting of problems. SCL enhances testing
by providing a flexible and re-usable means of
implementing on-board testing. At the
subsystem level, scripts and rules can be
written to provide a test environment for a
specific subsystem. SCL can send commands
to the unit, and react to the telemetry responses
from the unit. This would provide a common
test method for many layers of the system,
allowing consistent testing throughout the
phases of system integration. At this level,
SCL supports command and telemetry
verification for each box.

end if

end

HOT_SWITCH

SCL Constraint Example

-- This script prepares the Reaction Control
-- Subsystem for a thruster firing and calls a
-- subroutine script to perform the actual

- firing. It accepts two parameters: one

-- indicating which thruster to use and

Field of View Operation. The spacecraft
position coordinates are telemetry database
items and may have rules associated with
them.  When a significant change in the
position data occurs, the rules associated with
them are executed. The rate that the position is
updated is determined by the desired ground
track accuracy. The field of view can be
calculated from the position coordinates and
compared to the area of interest. If the area of
interest is within the field of view, the rule may
execute scripts or sequences of commands to
change the spacecraft configuration,

Mission Tasking. The goal of this
demonstration was to highlight three tasking
aspects of SCL. First, SCL is required, at a
minimum, to reproduce the current capabilities
to schedule and activate various configura-
tions. Second, SCL is capable of a variety of
common cyclic functions that can be scheduled
within the SCL kernel. Third, SCL is capable
of multitasking. This multitasking capability
will reduce the time, effort, and complexity of
resolving the varied resource needs between
program entities. By supporting multitasking,
SCL can satisfy requirements from many
different sources.

Self-Testing. The NCST has designed the
ASC with a goal of improving testability. By
using the ASC processor as an asset for testing,
parallel testing can be accomplished. Having
an intelligent controller allows the system to
perform self-diagnosis, trouble shooting and

const fore 1

script Maneuver1

-- another specifying the duration of the firing

-- define a constant for the
-- forward thruster
thruster, duration

-~ command to enable thrusting
set RCS_ENABLE to ON

-- allow propellant flow

set TANK_ISO_VALVE to OPEN

if
thruster = fore
then
-- call Fore thruster subroutine

execute ManvFore with duration

else
-- call Aft thruster subroutine
execute ManvAft with duration

end it

-- command to disable thrusting
set RCS_ENABLE to OFF

-- command to isolate tank

set TANK_ISO_VALVE to Closed

end Maneuveri



SCL Script Example - Mission Tasking

+ Simulation. Frequently, in the production of
the spacecraft, there are subsystem components
that have not been integrated or are missing
due to troubleshooting or modification. In
their absence, test procedures have to be
modified or must be postponed until the
component is available. Having a simulator
for a missing component is desirable so test
procedures can be run without modification
and testing can proceed without the complete
system in place. In the event a particular box
is absent from the spacecraft, its presence
could be simulated by the SCL inference
engine, either operating in its embedded form
on-board the spacecraft, or in its ground
system form operating on the ground station
processor. To simulate a missing component, a
knowledge base must be developed to respond
to commands defined for the component.
When a command is sent to the component, the
associated rule is executed and a corresponding
telemetry response is generated.

rule BATT3_TEMP
subsystem EPS
category BATT3
priority 15
activation  YES

if

BATT3IT > 50
then

set alarmlevel of BATT3IT to RED
execute battsafing with 3, priority = 30
end if
end BATT3_TEMP

SCL Rule Example

Further Proving of the System

In another proof of concept, the NCST wanted to
test the expert system technology in a “real-
world” scenario. This proof of concept required
that the SCL system be compared to a
commercial off the shelf (COTS) expert system.
Both SCL and the COTS system were required to

be capable of being used in embedded systems
(i.e., blown in PROM). The expert systems were
to be used to implement the flight algorithms for
NRL’s upper stage used for orbital insertion of
satellites. The upper stage is spin stabilized until
it reaches the insertion orbit. Once in the desired
orbit, the upper stage is spun down and stabilized
using momentum wheels and reaction control
thrusters. The upper stage then jettisons the
spacecraft allowing it to move into its parking
orbit.

All aspects of the orbital transfer maneuver are
controlled by the Attitude Control Electronics
(ACE). The ACE subsystem is semi-autonomous
and can issue thruster commands to maintain the
desired attitude. The ACE control loops were
developed in the flight processor’s native
assembly language. The development of the
algorithms required years of design, testing and
elaborate simulation. Within 3 months, two
prototypes were generated using SCL and the
COTS expert system. The two prototypes were
exercised using the same flight qualification test
used for acceptance testing of the original ACE
flight software.

The results of this effort proved that the COTS
expert system was NOT able to keep pace with
the flight control loops, resulting in additional
thruster burns to stabilize the spacecraft. The
knowledge base for the COTS expert system was
re-designed, but was still unable to keep up with
the control loops. The SCL system however,
performed the ACE algorithms as efficiently as
the flight software.

Based upon the successful demonstrations of the
SCL system, the NCST baselined the SCL
software as the control system for the Advanced
Satellite Controller. The system has also been
chosen as the control system for two NASA
projects, one of which will launch in September
of 1993.

Satellite Simulations

In the summer of 1990, the NCST was chosen to
provide spacecraft simulations for the Space
Defense Initiative Office (SDIO) Standard
Mobile Segment program. The NCST chose to
use the SCL system to provide command
response capabilities and electrical and thermal
modeling for the FLEETSATCOM and GPS



satellites. An SCL rulebase was developed to
decode binary commands and insert an
appropriate response in the telemetry bit stream.
Telemetry from this bit stream was distributed
over Ethernet to Air Force contractor
workstations. The SCL system was integrated
with the NCST’s TT&C system to allow real-time
simulation of command responses. The electrical
and thermal models were also developed as part
of the SCL knowledge base. These models
provided a detailed emulation of the spacecraft in
real-time or up to 600 times real-time.

The SCL simulations were developed on
workstations and delivered on the host computer
as a stand-alone entity. The system was activated
from the TT&C system, and runs with little or no
operator intervention. The only intervention
required is when an operator wishes to generate
anomalies in a scenario. These simulations have
been delivered to Air Force contractors, to the
National Test Bed, and to the NAVSOC facility
at Pt. Mugu, California. The NAVSOC personnel
currently use the simulators for FLEETSATCOM
training. In the near future, the SCL software will
be embedded in a high-fidelity hardware
simulation for a NCST program.

Integration with Existing Systems

Currently, the SCL system is completing its
integration with the NCST’s ground station
software where it will become part of a client-
server model. The SCL system will reside on
several workstations as well as the ground
station’s central computer. All communications
will be through a packetized message passing
protocol over Ethernet. The ground station
TT&C software is responsible for telemetry
decommutation and distribution. The SCL
workstations will monitor appropriate telemetry
to generate operator advisories and drive graphics
interfaces, which are used to indicate the
spacecraft configuration, health, and welfare.

The NCST tracking stations are taking advantage
of the distributed aspects of SCL using a network
of minicomputers and workstations. Once the
NCST’s ASC is launched, the full potential of
SCL can be exploited. In addition to the ground-
based network, the spaceborne ASC platforms
will be capable of communicating with each
other. Ground stations will be able to perform the
central site load to one ASC. The ASC that is

loaded will be capable of forwarding the
applicable script, rule, and database loads to the
other ASC’s. Since the ASC’s can be in constant
communication with each other, the mission
tasking load can be balanced among the cluster of
ASC’s. This concept of adaptive tasking will be
managed by the on-board SCL expert systems.
Each SCL knowledge base will know the
configuration of the on-board ASC, and can query
the other ASC’s to obtain their current
configuration and tasking profile. Having this
capability will create a network of ground and
spaceborne SCL platforms. With the ability to
upload databases and knowledge bases, the
possibilities for this network are tremendous.

Reusable Controllers

Recently, SCL was chosen for a
commercialization of space contract funded by
NASA Goddard Space Flight Center. The
Autonomous Rendezvous and Docking (ARD)
satellites will use SCL to control docking and
fluid transfer experiments. The ARD satellites
will use off-the-shelf spacecraft computers based
on the 80186 chipset. The ARD satellites will be
low earth orbit satellites. The ground stations
will use SCL to monitor telemetry and send
commands. The two satellites will both be
controlled by an embedded version of SCL and
will communicate with each other during the
docking procedure through RF modems. When
the satellites are within a kilometer of each other,
one satellite will act as master, and the other as
slave. The SCL knowledge base on one platform
will be sending commands to control the
maneuvers of the other.

The same off-the-self spacecraft controller will be
used for a material processing experiment to be
launched as a NASA Get Away Special (GAS)
on-board the Space Shuttle. This captive
experiment will use SCL to control an oven and a
robot that will be used to place material samples
in an oven to.test the effects of annealing in a
weightless environment.

Lessons Learned

Development of a distributed expert system for
ground and space did not come without its share
of technical and psychological obstacles. The



following paragraphs give an overview of some
of our challenges.

Portability: The SCL system was originally
developed on a Macintosh II platform. The
Macintosh proved to be a highly productive
environment because of its integrated toolkit for
windowing, the operating system, and the filing
system. The software development tools
available on the Macintosh were the most
affordable and most sophisticated at the time. We
made great strides in the development of the
systems, but we were faced with the chore of
porting the system to other platforms. The NCST
tracking station uses the Digital Equipment
Corporation (DEC) VAX family of computers
and workstations running the VMS operating
system. The SCL code was originally written in
C, and we had to convert the real-time engine and
database loader to ANSI compatible C. We also
needed to support UNIX platforms and IBM PC
platforms. This required adding conditional
compilation statements for some of the include
files since paths are different.

To keep the core software identical on all
platforms, the operating system specifics and the
I/O have been abstracted to a very small number
of routines, which are replaced on each system.
These routines interface directly to the host
operating system to schedule execution, map
memory sections, and obtain systems time. The
low level I/O and network [/O is also handled in
this group of routines. This abstraction of 1/O has
allowed the system to be easily ported to multiple
hardware platforms, operating systems, and real-
time executives for embedded systems.

Another major obstacle was communication
between local and remote versions of SCL on a
non-homogeneous network. Different machines
were either big-endian or little-endian (high byte
then low byte in memory, or vice-versa); they
also use different floating point formats. The
low-level I/O modules were modified to
determine the *“sex” of the local and remote SCL
systems and perform any data transformations
necessary. The network I/O has been sufficiently
abstracted to allow communication via TCP/IP
and DECnet protocols over Ethernet, Appletalk,
serial communications such as RS-232, and
custom protocols.

We felt it was prudent to allow the spaceborne,
embedded version of SCL to perform native
access to all data structures including the
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database, and the knowledge base. To allow the
embedded SCL to have native access, the ground
based development environment had to support a
cross-compilation of all data destined for a
remote version of SCL. By setting a software
switch, the data streams, and files produced, are
formatted in the target processor’s native data
structures. The development environment is also
capable of decompiling the data streams from the
target platform.

Necessity vs. “Feature-itis’’: As the system
evolved, new features were added as needs and
requirements dictated. At one point we found
ourselves adding features because we thought it
would make the system “slick”. As we found out,
new features and new code created side effects
that were not discovered without extensive
testing. We also found that many of the “slick”
features were difficult to duplicate on other
platforms, since they did not have an integrated
toolkit like the Macintosh. We were striving to
maintain a common look and feel for the product
across platforms. Because of the porting of the
code to multiple platforms, the system was
baselined (frozen) and only changed for
maintenance and bug fixes.

The SCL proofs-of-concept resulted in another
company providing an objective analysis of our
product. Our system was compared with
commercial products to test functionality as well
as real-time performance. As a result of the
comparisons, we added several extensions to the
grammar, and an additional user-selectable,
inferencing strategy. Other behavioral quirks
were also corrected. We did not however, add
more object oriented features due to the real-time
considerations. The SCL system is designed for
real-time embedded environments and pre-
allocates all data structures prior to startup. The
SCL RTE does not perform any dynamic memory
allocation due to memory fragmentation issues.
Traversing the data structures necessary to
implement additional object-oriented features
would degrade the real-time performance and
increase the memory requirements for the system.

Information Management: For past programs,
the spacecraft controller used a low-level
command-language and did not support an on-
orbit database. The ground station and test
systems were the users of a database. With the
introduction of the’ASC (with SCL on-board), the
ground sites as well as the spacecraft must



contain copies of the database. Additionally, a
core set of scripts and rules must also be
managed. In the past, it has been difficult to
ensure that all mission sites contain a database
which describes the same command and telemetry
points as the central site. The prime contractor is
now responsible for delivering and configuration
managing databases for each site and platform.
Distribution of the databases are from a master
database at a central site. All other sites'
databases are derived as a subset of the central
site’s database. The spacecraft data points are the
same from site to site, but the databases at each
site can be extended to include ground specific
data points.

Currently the SCL development environment
compiles scripts, rules and database records and
assigns ID’s to each. Scripts, rules, and database
records are referenced by these ID’s. To keep all
sites synchronized, a given ID must correspond to
the same script, rule or data point at each site.
The situation is further complicated when the user
references data points or scripts on another
platform or network node. Several options are
available to guarantee that an ID is unique among
all nodes and platforms in the network. The
strongest contender as a solution is to use a hash
algorithm to define the node and
script/rule/database item combination. This
scheme results in a 64-bit ID for each object and
doubles the current size of the ID in the SCL
intermediate code. In addition to the extra data
word requirement, several table lookups are
required to efficiently look up the address for the
data structures.

Another area of concern was how to distribute the
calculation of the artificial data points (derived
items). It was felt that the prudent approach was
to divide the derived item calculations between
ground and space. Rules are used to calculate
derived items and are defined on the appropriate
platform. Spaceborne derived items might be
used in calculations for attitude control, where
derived items would be used on the ground to
drive graphics displays. The ground derived
items are further distributed to workstations that
analyze telemetry for specific subsystems.

Windowing & Reusable Code: As prototypes
of the SCL system were ported to other platforms,
the amount of code was increasing rapidly. This
problem was complicated by the fact that the
windowing systems on each platform (Macintosh,

OSF/Motif, Microsoft Windows) behaved quite
differently from a programming viewpoint. We
estimated that a man-year would be required to
bring a programmer up to speed on each
windowing system to generate a production
quality application. We also saw that many
software functions were being replicated even
within the same programming team. It was at this
point we decided to port the SCL development
environment over to C++ to promote code
reusability and abstraction from the windowing
system specifics.

We saw four layers of class libraries that needed
to be defined. The foundation of the system is the
portable filing system layer and the database
management layer. The filing system layer
implements a class library modeled after the
Macintosh resource files. The filing system is
based upon a four character ASCII key that is
used as an index. Each key (or resource) can
contain variable length data structures identified
by a unique name and index. This filing system
is used to maintain a consistent interface across
all platforms.

The data management layer is based largely upon
the public domain National Institutes of Health
(NIH) class library. This class library manages
commonly used data structures: lists, sorted lists,
data blocks, strings, collections of objects, etc.
This layer is a simplified subset of the functions
contained in the NIH class library. Data
persistence is implemented to allow data
structures to be maintained in memory once they
have been read from disk. This has significant
performance advantages since the disk is only
accessed again when the file is closed, or the
programmer explicitly requests that the data be
written back to disk.

Abstraction: The SCL system was envisioned
from its inception to be applicable to other types
of controllers and other satellite programs. To
accomplish this, the system had to abstract the
specifics of the application from the knowledge
engineer. The grammar for SCL is a hyper-
scripting language that supports object-oriented
features. The object-oriented approach allows the
Real-Time Executive to treat Actuators, Sensors,
and Derived Items essentially the same way. All
decisions as to how to perform the 1/O is deferred
to the lowest level interface routines. These
routines are the “glue” between the logical and
physical interfaces. This approach allows a few



hundred lines of code to perform any
transformation required by the hardware
interface. This approach allows identical scripts
to run both on workstations and the flight
processor. Both implement the same
functionality, but one could communicate over
Ethernet, while the other communicated with a
TT&C bus, or an I/O card in the same chassis.

SCL
Scripts And Rules

Application
Independent
Layer

Interface
Routines

Application
/ > Specific
Layers

SCL Software Architecture

Abstraction is also the key to keeping the vast
majority of the SCL code portable. All operating
system specifics are isolated from the code in just
a few routines. These routines are replaced on the
target machine with calls to systems services
specific to that operating system.

Fear Of Artificial Intelligence/Expert Systems:
Perhaps the largest hurdle to overcome is an
inherent fear or apprehension of managers that
they do not want to lose control of their
spacecraft to a computer. They simply don’t
want to accept the perceived risk, and are more
comfortable with the old or existing methods. To
overcome some of the initial negative reactions,
we have had to avoid the terms artificial
intelligence and expert systems. Instead we use
the term “Smart Control System”. There is
probably a better term. The main points that must
be made are:

+ Existing methods of ground up development
are just re-inventing the wheel and are more
risky because of the use of “new” and
unproven code. They are also more costly

because of the time to develop a controller
from scratch and because of the increased
schedule time.

+ Rules are already embedded (hard coded) into

existing software. But because they are coded
by specialized programmers, it is difficult for
the subsystem engineers to review and
understand how their systems are being
monitored and controlled.

« As stated previously, the SCL system
employes the concept of using an existing
validated software “shell” for control system
development. With the SCL concept, the
only unique software is the low level
hardware interface code, the database, and the
knowledge base. The scripting contained in
the knowledge base is written using a high
level language that can be easily learned and
understood by the subsystem engineers, thus
not requiring a team of specialized
programmers. The rules that exist in the
traditional controllers are now structured as
individual items that are evaluated by the
inference engine. This structure makes it easy
for the subsystem engineers to review and
understand the how their subsystem is being
monitored and controlled.

« The amount of control given to the SCL
system can vary depending on the needs and
the configuration of the system. SCL can be
used to duplicate an existing system’s
capabilities, perform data pre-processing, self-
test, or autonomous control. The amount of
control given to the system can be determined
by the project office.

Expert systems have been recognized as being
applicable to ground and space applications.
However, association with Artificial Intelligence
continues to project negative connotations for
some people; the relationship must often be
avoided.

Other Uses for SCL

The use of abstraction and object-oriented
techniques allows the SCL Real-Time Executive
to be applied in a variety of areas:

Spacecraft controllers: The RTE is available in
both C and Ada making it applicable to a wide
variety of processors.



Subsystems Controllers: The SCL system is
designed for distributed environments and as such
allows for a hierarchal bus structure for
subsystem controllers to report to a system
controller.

Centralized ground station computers: The
system can be used in conjunction with X-
Terminals to manage ground station resources
such as antennas, frame syncs, command
encoders, etc. The system can also be used for
scheduling ground station resources.

Workstations: The SCL system is ideally suited
for use on workstations to allow distributed
processing and parallel analysis. The system is
also useful for driving graphics and visualization
tools. Results from local workstations can be
reported back to a central computer, or commands
may be uplinked to change or correct the mission
profile. SCL has been demonstrated to be
capable of analyzing the spacecraft configuration
and providing advisories for operators and
spacecraft engineers.

Integration and Test: The SCL system is used
at Integration and Test (I&T) facilities to perform
automated command procedures. The procedures
developed at the I&T facility can then easily
migrate to the tracking facility. If SCL is also
used for the spacecraft, the scripts and rules can
also migrate to the spacecraft. The on-board
processing capabilities of SCL allow a spacecraft
to perform self-health diagnostics and report its
status to the ground.

Test Equipment: Quite often, mission unique
hardware must be developed for test equipment.
The equipment often requires a control system
and a language to allow it to be commanded to
perform its functions. SCL can easily be
embedded in the target hardware to provide a
standard interface for all phases of testing.

Simulation: SCL has been proven to be capable
of providing command response simulations as
well as detailed modeling of systems. The
simulations can be used to augment missing
subsystems during spacecraft integration as well
as provide a common platform for system training
of operators and other personnel.

Conclusions

The SCL system is quite feasible for use on
distributed systems for ground and space. The

SCL system also helps promote a standard
interface for the many facets of ground and space.
The system does introduce information
management problems that are overcome by a
disciplined approach to configuration
management. This disciplined approach must
also extend to the distribution of databases and
knowledge bases. The system is several years
into its development, has had numerous proofs-
of-concept, and is in use at several sites. The
SCL system provides a low-cost, low-risk
solution for many of today’s command and
control environments.
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Abstract

Model-based reasoning has been proposed as a
general methodology for such diverse tasks as
monitoring, diagnosis, control, and design. In
this approach, a behavioral model mimicking the
structure of the target system is used to reason
about expected performance of the target system.
However, most such work does not explicitly
account for inaccuracies in the model.

This paper describes an approach to automatically
assessing the accuracy of various components of
a model. In this approach, actual data from
operation of the target system is used to drive
statistical measures to evaluate the prediction
accuracy of various portions of the model. We
describe how these statistical measures of model
accuracy can be used in model-based reasoning for
monitoring and design. We then describe
application of these techniques to monitoring and
design of the water recovery system of the
Environmental Control and Life Support System
(ECLSS) of Space Station Freedom.

Keywords: model-based monitoring, diagnosis,
control and design, validation of knowledge-based
systems, model-based simulation

1. Introduction

Model based reasoning has been
advocated as a general approach to a wide
variety of tasks such as monitoring [Doyle et
al. 89, Doyle et al. 91, Dvorak & Kuipers
89], diagnosis and interpretation [Davis and
Hamscher 88], control [Scarl et al. 88], and
design [Chien et al. 91a, Chien et al. 91b,
Bose & Rajamoney 91]. However, despite
this strong effort, comparatively little work
has focused upon using actual data on model
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performance to characterize how well a model
captures the behavior of the target system.

This paper describes a statistical approach
to measuring the prediction error of a model
based upon an analysis of model prediction
performance on actual data. This analysis
produces a statistical model of expected
model prediction error. This model of the
model error is then used in the model-based
reasoning tasks of monitoring and design.

The next section of this paper describes
how the statistical techniques are used to
create a model of the error and how this
model of the error can be used to calculate
confidence intervals. The following section
describes how this confidence interval
information can be used in model-based
monitoring and design tasks. This section
also describes several applications of this
error model to monitoring and design of the
Environmental Control and Life Support
System for Space Station Freedom. The
discussion section of this paper focuses upon
ongoing work to increase the accuracy of the
error models by applying machine learning
techniques to learn error models.

2. Evaluating Model Accuracy

Model-based reasoning uses a model of a
system to predict the behavior of the system
under the conditions included in the scope of
the model. It is useful for applications using
a model to know how accurately the model
predicts the behavior of a system being
modeled. Instead of simply predicting that a
measure will take on some value, it is more
useful to state how confident the model is in
predicting that value.



Model accuracy can be evaluated by
comparing model behavior to observed
system behavior. Through analysis of errors
in predicting system behavior, we can
estimate the amount of error we expect a
model to produce. Data obtained by
performing model evaluation studies can
provide a basis on which to model the errors
a model produces.

Model error (A) is defined as the
difference of the model predicted value (m)
based on previous observed system values
and the current observed system value (o) for
a given system state:

M A=m-o

For our applications, the time step is
relatively constant. Thus the model is
making a prediction of the i-th time step from
the data of the (i-1)th time step. In Figure 1,
the model error is the difference between the
model predicted value and the observed
system value over time.
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Fig 1. Graph showing difference between
model predicted value and observed
system value over time

For a given operating mode of a system,
some number (n) of observations of one time
step model predictions are taken, and the
error computed for each. This results in a
sampled model error distribution of A, Aj,
..., Ap. From this distribution we develop a
general model of the error. We observed our
samples to be approximately normally
distributed. Figure 2 shows a histogram of
model error for a particular sensor. Given
this sampled error distribution, we estimate

that the true model error is normally
distributed with mean X and variance s2.
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Fig 2. Histogram showing model error
distribution for sensor KP02

For a given operating mode of a system,
we evaluate model accuracy by determining
the probability (p) that the true system
measurement (t) will take on a value within a
range of values (m-e, m+¢) around the model
predicted value (m). This probability can be
determined given the distribution of the
model error. Alternatively, by setting an
acceptable probability bound, we can
determine the range of values that the true
system will take on with that probability.
Equation 2 shows how this probability is

determined given @, the cumulative

distribution function of the standard normal
distribution.

(2) P(me<t<m+e)=
® (%) - @ (%)

Using the probability table for the
standard normal distribution, this measure
quantifies the accuracy with which a model
predicts the true system measurement.

3. Applying the Error Model in
Model-based Reasoning

This section describes two applications of
confidence intervals to model-based
reasoning: model-based monitoring as
applied to discrepancy detection and model-
based prediction for design.



3.1 Application to Model-based Monitoring

One application of model accuracy is in
model-based monitoring [Doyle et al. 89,
Dvorak & Kuipers 89]. In model-based
monitoring, & model of the target system is
used to predict sensor values. Deviations
from the predicted values are indications of
abnormal behavior and are thus indicative of
sensors which should be reported to
operators. However, if portions of the model
in certain operating modes are inherently
inaccurate because of noise or poor
understanding or predictability of the
occurring phenomenon, the strength of the
model's predictions should be
correspondingly reduced.

One method to account for model
inaccuracy in model-based monitoring is use
of a running average of model/actual
deviation [Doyle et al. 91]. In this approach,
a running average of the deviation between
model predicted and actual values is
maintained. By tracking the current deviation
minus the running average of the deviation,
the current deviation can be ignored in cases
where the model has not been tracking the
system behavior accurately.

While the deviation from running average
deviation measures the recent performance of
the model, statistical measures over all
available historical data provide a measure of
past historical performance. With a
confidence interval capability as described in
the previous section, a more direct approach
to calibrating deviation scores according to
model accuracy can be applied. Specifically,
the statistical model of the prediction error of
the model can be used to generate a measure
of the unusualness of a deviation of the
model from the observed value.

For example, consider the following
example from our ECLSS monitoring
application. Using the techniques described
in the previous section, a sensor KP02 is
measured to have a error with a measured
distribution of mean -0.19 and standard
deviation 1.89 in system operating mode
PROCESS. If we observe a discrepancy of 3
PSIG between the observed and predicted
values, we can now use the equations shown

in Section 2 to produce a confidence rating of
0.89 that the model is within 3 PSIG of the
actual. Thus high confidence values for the
error being less than the current deviation
indicate unusual deviations.

As a second application to model-based
monitoring, consider the case where a model
historically predicts well but has recently
been predicting poorly. This may indicate a
persistent unexplained phenomenon affecting
the sensor or portion of the system in
question. Such a situation could be detected
by determining if the running average of the
deviation is at a level which is relatively
unusual given the error model (e.g. for a
running average deviation e, P(-e SA <S¢) is
high). This provides a measure of the
unusualness of the running average of the
deviation. Note that this monitoring measure
and the previous one are complementary.
The unusualness of the current deviation
catches quickly developing departures from
normal operations, but is susceptible to
random noise. The unusualness of the
running average of the deviation is not
susceptible to random noise, but takes longer
to manifest and inform.

3.2 Application to Model-based Prediction
for Design

Another application of model-based
reasoning is in evaluating sensor placements
for assistance in the design process.
Specifically, we have been working on
approaches to evaluate sensor placements
with respect to a diagnosability criterion
[Chien et al. 91]. In this approach a model of
the target system is used to determine how
specific proposed sensors would report
altered scores in the event of a fault
occurrence. More specifically, we evaluate
how well a sensor can distinguish between
classes of states with respect to three criteria.
For the purposes of fault detection, the
relevant distinction is between faulted and
non-faulted states. For the purposes of fault
isolation, the relevant distinction is between
faulted states.

Towards evaluating diagnosability, we
have developed three measures. First,
Discriminability measures how much of a



divergence the model predicts would occur in
comparing between the two states. Second,
Accuracy measures the confidence in the
model's prediction of the expected
divergence. Third, Timeliness measures the
time lag between the occurrence of the fault
and the discrimination detected by the sensor.

Using the measure for model error we
have described in this paper, we can
formulate the confidence that the predicted
divergence would be predicted and the actual
value not deviate as a probability. The lower
the probability of this occurrence, which
represents the model predicting a change that
does not occur, the more likely the sensor
will be able to perform the discrimination.

3.3 Examples from Application to the ECLSS
Testbed

Our sensor placement approach is being
tested upon the water reclamation subsystem
of the Environmental Control and Life
Support System (ECLSS) for Space Station
Freedom. A model describing the behavior
of the Multifiltration Subsystem (MF) in
terms of fluid flow and heat transfer has been
constructed. This model was developed via a
combination of study of design
documentation (i.e., schematics, etc.) and
consultation with domain experts (e.g. the

operators of the testbed). This model has
been validated by comparison against actual
data from the subsystem testbed undergoing
evaluation at the Marshall Space Flight Center
in Huntsville, Alabama. We also have
constructed models of the Vapor
Compression and Distillation (VCD) and
Volatile Removal Assembly (VRA)
subsystems of SSF ECLSS. Together, these
models represent coverage of virtually the
entire water-side of SSF ECLSS. We are
also in the process of extending our model to
cover ECLSS air-side subsystems.

Figure 3 below shows the ECLSS
multifiltration subsystem. In this subsystem,
the water first passes through a pump at the
inlet to the MF system. Next, the water
passes through a coarse filter before entering
the sterilization loop. In the sterilization loop
the water is heated in the regenerative heat
exchanger and then by the in-line heater after
point 3. Within the sterilizer reservoir, the
temperature of the water is maintained at
250° F for several minutes. In the second
portion of the subsystem, the water passes
through a set of unibed filters designed to
remove particulate contaminants from the
water. Possible sensor types are flow rate,
water pressure, and temperature. Possible
sensor locations are indicated by ovals in
Figure 3.
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In model-based monitoring, the
empirically derived model accuracy scores
- impact monitoring in the following way. The
process mode model of the conductivity
sensor KT02 at point 4 exhibits poor model
accuracy (empirically derived mean of 2.15
and standard deviation of 27.24). Thus,
relatively large deviations from model
predicted values such as 4, with a confidence
rating of 0.52, do not cause the sensor score
to be brought to the attention of the operator.
However, the process mode model of sensor
KP02 is more accurate (mean -0.19 and
standard deviation 1.89) so that relatively
small deviations on the order of 4, with a
confidence rating of 0.97, cause the sensor to
be flagged and the sensor value to be brought
to the attention of the operator.

In model-based diagnosability
assessment, again the model accuracy figures
heavily in evaluating certain sensors. For
example, one possible fault is unibed
loading, which occurs when particulate
matter gets caught in the unibed filters. This
fault has several effects. First, a pressure
drop would occur, causing a lower pressure
at location 9. Second, unibed performance
would decrease, resulting in an increase in
conductivity downstream from the unibeds.
Third, if loading is significant, flow in the
entire subsystem may decrease. Again,
because the conductivity models are not very
accurate, the Accuracy measure of the
diagnosability evaluation would score the
pressure sensor placement higher than the
conductivity sensor placement for fault
detection of this fault.

4. Discussion

This work is preliminary; there are a
number of outstanding issues. One issue is
the selection of a normal distribution to model
the error. Other possible distributions may
model the error more accurately. A measure
of how well the derived error model matches
the observed distribution would be useful in
assessing the degree of confidence in the
error model.

Another issue is our choice to model the
error in absolute terms rather than as a

percentage bound based upon the current
model prediction (e.g. 4 PSIG £ 5% rather
than 4 PSIG £ .20). This has ramifications if
the model error tends to increase as a function
of the model predicted value. A cursory
analysis indicates that in general, in our
domain, the error is not strongly correlated
with the model predicted value so that
modelling the absolute error seems
reasonable.

We also model the model error
independent of potentially relevant factors
such as other causally related model predicted
values. For example, the model may use an
equation to derive a temperature in the MF
subsystem that is accurate only in cases
where the water pressure is high. One
extension of our work focuses upon using
machine learning techniques to determine
what other potentially relevant factors would
be good indicators of model accuracy. In this
work we are investigating applying GID3* to
learn a model accuracy function for a sensor
S based upon model predicted value for S
and other sensors.

Another outstanding issue is that of
dealing with variable time steps. The
accuracy of the model's predictions clearly
depends upon how far into the future the
model is required to make predictions.
Currently, our model of the model prediction
error does not account for this variable.

§. Conclusion

This paper has described an approach to
evaluating the accuracy of a model's
predictions. This approach uses statistical
methods to develop a model of expected error
in model predictions. This paper has also
described how this statistical measure for
model error can be used in two model-based
reasoning tasks: model-based monitoring and
model-based reasoning for evaluating sensor
placements. By application of our derived
measure for model accuracy, the degree of
accuracy of the model of the target system
can be accounted for to increase the
usefulness of model-based reasoning in both
monitoring and evaluation of sensor
placements.



Acknowledgements

This work was performed by the Jet
Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration.

References

[Bose and Rajamoney 91] P. Bose and S.
Rajamoney, "An Approach Based on First
Principles For The Design of Continuous
Devices," Proceedings of the 1991
Workshop on Model-based Reasoning,
Anaheim, CA, 1991.

[Chien et al. 91a] S. A. Chien, R. J. Doyle,
and L. S. Homem de Mello, "A Model-based
Reasoning Approach to Sensor Placement,”
Proceedings of the 1991 Workshop on
Model-based Reasoning, Anaheim, CA,
1991.

[Chien et al. 91b] S. A. Chien, R. J. Doyle,
and N. Rouquette, "A Model-based
Reasoning Approach to Sensor Placement for
Diagnosability," Proceedings of the Second
International Workshop on the Principles of
Diagnosis, Milan, Italy, 1991.

[Doyle et al. 89] R. J .Doyle, S. M. Sellers,
and D. J. Atkinson, "A Focused Context-
sensitive Approach to Monitoring,"”
Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence,
Detroit, MI, 1989.

[Doyle et al. 91] R. J. Doyle, U. M. Fayyad,
D. Berleant, L. K. Charest, L. S. Homem de
Mello, H.J. Porta, and M.D. Wiesmeyer,
"Sensor Selection in Complex Systems
Monitoring Using Information Quantification
and Causal Reasoning," in Recent Advances
in Qualitative Physics, B. Faltings and P.
Struss (eds.), MIT Press, 1991.

[Dvorak and Kuipers 89] D. Dvorak and B.
Kuipers, "Model-based Monitoring of
Dynamic Systems," Proceedings of the
Eleventh International Joint Conference on
Artificial Intelligence, Detroit, MI, 1989.

76

[Davis and Hamscher 88] R. Davis and W.
C. Hamscher, "Model-based Reasoning:
Troubleshooting,” In H. E. Shrobe, editor,
Exploring Artificial Intelligence: Survey
Talks from the National Conference on
Artificial Intelligence, Morgan Kaufman, San
Mateo, CA 1988.

[Scarl et al.,, 88] E. A. Scarl , J. R.
Jameison, and E. New, "Deriving Fault
Location and Control from a Functional
Model," Proceedings of the Third IEEE
Symposium on Intelligent Control,
Arlington, VA, 1988.



N92-23363

An Architecture for the Development of Real-Time
Fault Diagnosis Systems Using Model-Based

Reasoning

Gardiner A. Hall, James Schuetzle,
David LaVallee, and Uday Gupta

Loral AeroSys
7375 Executive Place, Suite 101

Seabrook, Maryland 20706
(301) 805-0300

Abstract

This paper presents an architecture for
implementing real-time telemetry-based
diagnostic systems using model-based
reasoning. First, we describe Paragon, a
knowledge acquisition tool for offline entry
and validation of physical system models.
Paragon provides domain experts with a
structured editing capability to capture the
physical component's structure, behavior,
and causal relationships. We next describe
the architecture of the run-time diagnostic
system. The diagnostic system, written
entirely in Ada, uses the behavioral model
developed offline by Paragon to simulate
expected component states as reflected in the
telemetry stream. The diagnostic algorithm
traces causal relationships contained within
the model to isolate system faults. Since the
diagnostic process relies exclusively on the
behavioral model and is implemented without
the use of heuristic rules, it can be used to
isolate unpredicted faults in a wide variety of
systems. Finally, we discuss the
implementation of a prototype system
constructed using this technique for
diagnosing faults in a science instrument. The
prototype demonstrates the use of model-
based reasoning to develop maintainable
systems with greater diagnostic capabilities at
a lower cost.

L_Introduction

Diagnosing spacecraft faults is a difficult,
error-prone, and time-consuming activity.
Spacecraft diagnosis is performed by an
operations team composed of a large
contingent of highly trained people. These
people monitor a satellite telemetry stream
containing hundreds of system data points.
When an anomaly is detected, the operations
team analyzes this data with respect to
archived historical telemetry data and detailed
spacecraft design information. Analyzing
such large quantities of data and developing a
hypothesis explaining the data is an extremely
challenging task. It is not uncommon for
satellite anomaly investigations to take several
days.

The already difficult chore of satellite fault
diagnosis will be even more demanding in the
future. Satellites and their instruments will
become more sophisticated and complex,
raising the complexity of the fault analysis
process. Along with increased complexity,
future missions are expected to last longer. A
mission life measured in terms of decades
rather than years, introduces challenges in
maintaining the operations team skill level.
The desire to support interactive science
operations conducted by people external to
the control center will further complicate fault
diagnosis activities. The operations crew's
ability to maintain a current accurate
assessment of the spacecraft's state will be



taxed as more people manipulate the
spacecraft and its instruments. Due to these
increased complexities, the corresponding
control centers are apt to be more costly to
build, maintain, and operate.

The application of artificial intelligence
techniques promises to help alleviate these
problems by increasing the level of
automation in spacecraft operations.
Specifically, improving the automation level
of a control center may result in realizing the
following benefits:

a. reducing the risk of catastrophic
mission failures

b. reducing the cost of control center
operations

c. increased spacecraft and instrument
utilization

d. increased retention of key operator's
skills

e. an ability to "scale up"” control centers
to handle more complex spacecraft,
more spacecraft and instrument
activities, and more users without a
proportional increase in cost

This paper describes a system that improves
the level of automation in a control center by
automating a control center's fault detection
and isolation activities.

Background

Our approach to providing automated fault
diagnosis tools that quickly and accurately
find and solve problems is centered on three
basic premises. First is the belief that
knowledge base construction and
maintenance activities are most appropriately
performed by domain experts. Second, a

fundamental feature of our expert systems is
the separation of problem solving from
knowledge acquisition. Third, the tools we
build reflect the notion that solving different
problems requires different problem-solving
techniques. The rationale for this design
philosophy is documented in [JAW-87].
Figure 1 illustrates the architecture derived
from these design principles.

Our first tool, a rule-based expert system,
the Ford Lisp Ada Connection (FLAC)
described in [JAW-88], includes an offline
knowledge acquisition component and an
online inference engine. The offline
component is an intuitive graphical editing
tool that is used directly by the domain
expert. It does not require knowledge of Al
or expert systems and is easily learned by the
domain expert. The rule base is developed as
a graph of nodes symbolically depicted as
andl/or gates, as typically seen in CAD
systems for integrated circuit design. Once
the expert is satisfied with the rule base it is
downloaded to the online system. The rule
base is loaded into data structures at run time
for use by the embedded Ada inference
engine.

FLAC successfully demonstrated the
feasibility of real-time expert systems.
However, the limitations of production rule
systems soon became apparent. Fundamental
to these systems is the requirement to
enumerate explicitly all possible faults.
Intuitively, as the complexity of the system
increases, it becomes increasingly difficult to
predict accurately every possible fault
scenario. Another deficiency in the rule based
approach is the inability to gracefully solve
problems that change over time. One key
requirement for a diagnostic system is the
capability to reason about temporal and
control relationships between attributes of the
target system. Developing a rule base that
captures and implements rules describing
temporal and control relationships is
exceedingly difficult and error-prone.
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Figure 1. An Architecture for Knowledge-Based Systems

Issues associated with maintaining a rule base
large enough to describe a spacecraft also
became apparent. Because of the unstructured
nature of rule bases, maintenance is difficult
when adding or modifying rules. The
unstructured nature of rule bases also leads to
a formidable verification and validation task.
Additionally, as rule bases become larger,
maintaining consistency between rules
becomes increasingly difficult. Maintaining
rule base integrity requires the addition of
more rules and routines dedicated to the
consistency checking function.

To overcome these difficulties, we began an
investigation into a model-based reasoning
approach to real-time fault diagnosis. The
model-based reasoning approach has
promising features relevant to control center
fault diagnosis activities. For instance:

a. Model-based systems reason from
deeper principles. Model-based systems

know the internal processes of a
machine and can determine the
machinery's state from observed
values. In a rule-based system,
relationships defining each observation
and the machine's state must exist.

b. Model-based systems can reason about
a system as it changes over time.
Model-based reasoning systems have
this capability because events and
conditions can be represented by
mathematical functions that are close
approximations of actual conditions.

Like FLAC, our model-based reasoning
system contains an offline graphical
component for easy entry of knowledge, and
an online embedded diagnostic component.
The offline component, originally
implemented by Loral's Space and Range
Systems division, is a model-building tool
called Paragon. Paragon is used to build a
structural and functional model of the system
to be monitored. The model is exported as a



file to be loaded at run time by the online
diagnostic component. The diagnostic
system, developed by Loral AeroSys, uses
the behavioral model to predict expected
states for the system and compares them to
actual states as reflected in the telemetry
stream. The diagnostic algorithm traces
causal relationships described in the model to
isolate system faults. The diagnostic system
is implemented in Ada and is capable of real-
time performance on conventional
processors.

The remainder of this paper discusses our
experiences with the model-based reasoning
approach in more detail. Section II describes
the architecture of the system. The
implementation of the prototype is covered in
Section III, and our results and conclusions
are presented in Sections IV and V
respectively.

II. Model-based Reasoning System
Architecture

In our prototype system there is an offline
component for creating and verifying
knowledge bases, and an online component
for the diagnostic software. This design
reflects the architecture of many current
control centers (e.g., MSOCC, Space
Telescope). The offline systems define
telemetry and command databases, while the
online systems use these databases for
interpreting spacecraft telemetry and building
spacecraft commands.

Offline Knowledge Acquisition
System

The Paragon knowledge acquisition tool
provides a method to construct a detailed
structural and functional model of a problem
domain. The model is specified in terms of
objects, object behaviors, and relationships
between objects. These different views of a
model can be thought of as defining
conceptual and relational entities. Conceptual

entities define concepts existing in the
problem domain and are composed of
dynamic and static aspects. Dynamic aspects
describe an object's relationships to other
objects and how that object may be
manipulated. Static aspects describe the
object's attributes and how these attributes
relate to other concepts. Relational entities
describe relationships between two concepts.
Each relationship within the model has a
specific and well-defined behavior. Figure 2,
a screen dump from a Paragon session,
provides an example model definition.

Concepts in the Paragon system are either
relations, classes, or instances. The Paragon
system supports inheritance in the form of

classZ=® subclass T instances. This
classification scheme is a strict hierarchy; an
instance may have at most one defining class.
Using this scheme, a semantic network is
constructed representing the real-world
system. The frames composing the network
are the defined instances. The slots of the
frame hold the object's attribute values.
Relation objects link the frames to complete
the network.

Figure 3 provides an example of applying
concepts, relations, and dynamic and static
aspects to a physical object, a thermal switch.
Two relationships, temperature and current,
affect the concept thermal switch. The switch
also contains the local attributes swirching
temperature and output. The internal process
of the thermal switch provides for two
possible states: ON and OFF. The dynamic
aspects of the concept of the thermal switch
are represented by the links labeled
Temperature >= SW and Temperature < SW.
These represent the possible transition
conditions between the ON and OFF states.
For example, if the incoming temperature
value is less than the local attribute switching
temperature, control is passed to the ON
state. The static aspects of the thermal switch
concept are described by the event equations
labeled Ousput = 0 and Output = Current.
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Using these ideas, a model of the physical
system is built by recursively defining and
instantiating frames and relationships. For a
spacecraft, the objects in the system are the
onboard components. Each object's attributes
are the parameters contained in the
spacecraft's telemetry stream. The design and
functional information for each object is
captured by defining the object's possible
states, state transitions, and behavior when in
a particular state. An object's attributes may
be affected by other local attributes, itself, or
attributes of another object. The process of
defining objects and relationships continues
until a model of satisfactory fidelity is
achieved. Included with Paragon are tools for
inspecting the classes, objects, and
relationships within the system. Also
included is a simulation capability for
validating the model's correctness.

Online Diagnostic System

The real-time component of the diagnostic
system is the Model-Based Reasoning
(MBR) module. The primary function of the
MBR module is to detect and diagnose
electromechanical or other system faults in
real time. The diagnostic system is composed
of simulation, monitoring, and causal
analysis subsystems. The simulation
subsystem uses the Paragon-developed
knowledge base to generate expected values
for each telemetry (attribute) point. The
monitoring subsystem synchronizes the
simulation with actual time, and performs
expected versus observed value comparisons.
A mismatch between these two values
triggers the causal-analysis subsystem. The
causal-analysis subsystem develops
hypotheses explaining the observed behavior
by examining each faulty component's
relationships. These three subsystems work
in unison to perform fault detection and
diagnosis.

The simulation subsystem uses the
information contained in the Paragon model

to continuously update the target system's
expected state. Specifically, the simulation
cycles through all the objects in the system,
evaluating each object's state transition
criteria for the current state. Once the current
state is determined, its attributes are modified
to reflect that state. The frequency of the
simulation's cycle is the real-time rate.
Modifications to the expected state can be
effected through external commands,
scheduled activities, or the model's internal
processes. Maintaining this model provides a
reference point for evaluating the spacecraft's
health.

The monitoring subsystem is responsible for
fault detection. The monitoring process
compares time-synchronized, simulation-
generated, expected values with actual
system-measured values (telemetry in the
case of a space system) at predefined time
intervals (cycle). A component is considered
to be abnormal when these two values
disagree. These abnormal components, along
with their attributes, actual and expected
attribute values, and fault-detection cycle
identifiers, are posted to a blackboard
structure, called the Abnormal-Components-
Blackboard. The Abnormal-Components-
Blackboard is inspected to determine if the
detected abnormal component exists on the
blackboard. If the component does exist on
the blackboard, its fault-detection time-cycle
identifier is updated with the old fault-
detection time-cycle number before it is
posted to the blackboard. Whenever
abnormal components are detected, further
analysis is performed by the causal analysis
subsystem to isolate the exact cause(s) of the
fault(s) from the abnormal components list.

The causal analysis of suspected abnormal
components relies on functional and design
information provided by the Paragon model.
The basic fault-diagnosis strategy for the
causal analysis is:



The list of suspected components is
read from the Abnormal-Components-
Blackboard. A node corresponding to
each suspected component is created.
These nodes are referred to as Fault
Mechanism Nodes (FMN) and are
maintained in a list structure.

Design and causal link information is
obtained for each faulty component.

During this step, the causal-effect
pointers of the FMNs are assigned.
Three types of pointer are set: In-link,
Out-link, and Next pointers. In-links
point to FMNs whose components
affect the attribute(s) of the current
FMN. FMN Out-links point to FMN(s)
whose component(s) attribute(s) can be
affected by the current FMN. The Next
pointer simply points to the next FMN.
Setting In-link, Out-link, and Next

pointers transforms the FMN list into a
graph, referred to as a Fault Mechanism
Graph (FMG). Figure 4 shows a FMG.
Each block contains the component
name, In-link, Out-link, and Next FMN
pointers. As shown in Figure 4, the
component Power Supply 1 has a null
In-link pointer indicating that it is not
affected by any other FMN. The Out-
link pointer of Power Supply 1 points
to the node Instrument Power. This
indicates that Power Supply 1 causes
Instrument Power to be abnormal.
Instrument Power's In-link pointer
indicates that Instrument Power is
affected by Power Supply 1. The
component VNIR FPA has a null Out-
link pointer indicating that it does not
affect other FMNs. These
interpretations can be similarly applied
to the other nodes of the graph.
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Out-Link
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Figure 4. MODIS Fault Mechanism Graph




d. The In-link and Out-link pointers of
each node of the FMG are examined.
Components with null In-link pointers
are considered to be fault sources.
Fault-propagation paths are computed
by iteratively selecting those FMN's
with null In-link pointers, tracing the
node's Out-link pointer to the affected
FMN and tracing the affected FMN
Out-link pointer to other affected FMNs
until the current Out-link pointer is null.
These paths explain the order in which
components became abnormal.

Steps a through d are repeated when a fault-
detection cycle detects an abnormal
component, or a previously detected
abnormal component is found to have
returned to a normal state.

ITII. Prototype Implementation

We demonstrate our model-based approach
for real-time fault detection and diagnosis in a
testbed environment. The testbed is a
complete command and control environment
for the Moderate Resolution Imaging
Spectrometer (MODIS), a future Earth
Observing System (EOS) instrument. Qur
prototype runs on a VaxStation 3100 and is
implemented in the Ada programming
language. The MODIS model was developed
using the PARAGON tool on a Symbolics
3640 and downloaded to the Vax
workstation.

The model, based on a proposed design for
the MODIS instrument, took three months to
implement using Paragon. The MODIS
model consists of over 50 component
classes, 80 components, and 11 types of
functional relationship. In addition, the model
is capable of responding to 96 different
instrument commands, and transmits 132
different telemetry points. The model
includes definitions for all normal instrument

states, state transitions, and internal attribute
update equations for all components.

The testbed contains three processors to
provide a high-fidelity environment for
evaluating control center automation
techniques. The architecture of the testbed is
shown in Figure S.

The Symbolics is the offline processor, used
for creating knowledge bases. One of the
VaxStations is dedicated to control center
functions. In addition to fault diagnosis, there
is software for:

a. Receiving and decommutating a 2 Kbs
stream of packetized telemetry

b.  Processing and transmitting instrument
commands

c. Displaying graphically instrument
telemetry data

The other VaxStation, the telemetry source,
executes simulation software generating
instrument telemetry. The simulator has the
capability to:

a. Modify the value of any object's
attributes

b.  Update the current state of an object
c.  View any object's attribute values

d. Control the length of simulation cycle
time (useful for debugging)

e. Accept and process instrument
commands sent from the ground

f.  Packetize and transmit telemetry.
Telemetry and commands are exchanged

between these two processors by way of
Ethemet using the TCP/IP protocol.
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Figure 5. MODIS Control Center Testbed

IV. Results

Using the testbed, the prototype MBR system
has been tested under several different fault
scenarios. These fault scenarios were
developed on the basis of Loral's spacecraft
operations experience. The types of fault
scenarios tested were:

a.  Components that commonly fail during
mission (e.g., a sticky relay)

b. Rare or infrequent component faults
(e.g., a failed door drive motor)

¢c.  Multiple simultaneous fault scenarios
(e.g., a failed heater and a faulty relay).

We also tested the case where two
components affecting a common component
fail. In this scenario, our prototype identified
both components as failed. In all fault
scenarios tested, the MBR system accurately
detects and isolates the source of fault.

Importantly, these fault scenarios were
designed after the implementation of the
model and fault diagnostic software. In no
case were component specific rules
describing fault conditions or causes
implemented.

V. Conclusions

These preliminary results suggest that model-
based reasoning is a viable method for
automating spacecraft fault detection and
diagnosis activities. On the basis of this
research several advantages of the technique

are apparent:

a. A model-based system is capable of
detecting and diagnosing unpredicted,
non-intuitive faults in a continuous,
dynamic system in real-time

b. The knowledge acquisition process is
simplified



c. The maintenance of the knowledge base
is simplified

d. This technique can be leveraged with
other control center and spacecraft
implementation efforts.

This system has the capability for detecting
and diagnosing unpredicted faults. The test
cases that have been devised emphasize this
point. The design of the fault scenarios used
for test purposes was based upon operational
requirements rather than diagnostic system
capabilities. During demonstrations of the
prototype, faults are generated "on the fly” by
having members of the audience select the
component to be faulted.

Knowledge acquisition activities for
implementing the system are reduced.
Building the knowledge base for a model-
based reasoning system only requires the
ability to describe a correctly operating
system. Since there is no need to enumerate
all possible behaviors, the amaunt of time
required for constructing knowledge bases is
reduced. Verification of the knowledge base
is easier. Using the physical system as a
reference point allows a simple comparison
demonstrating the model's accuracy. One of
the advantages of representing a physical
system as a network of objects is that this
presentation lends itself to a graphical
representation. A graphical representation is
advantageous because it allows the
knowledge-base builder to view components
from different perspectives.

An important advantage a model-based has
over rule-based systems is that knowledge-
base maintenance is an easier task. The object
orientation of the model simplifies knowledge
base maintenance. As each object's interfaces
with other objects in the system are clearly
defined, modifications can be localized to the
object, reducing the potential for harmful side

effects. The object-oriented approach also
provides for potential knowledge-base reuse.
For example, libraries containing generalized
reconfigurable objects can be built.

The single most important advantage of a
model-based system may be that it is
complementary to current control center
designs. Calculating the expected state for
each on-board component provides a
mechanism for dynamically updating
telemetry limits and alarm values. Another
key point is that most projects construct
simulators for ground system verification and
training. The model-based technique for fault
diagnosis provides a method for leveraging
these simulators into day-to-day operations.
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