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The RICIS Concept

The University of Houston-Clear Lake e_tab_shed the Research Institute for

Computing and Information Systems (RICIS] in 1986 to encourage the NASA

Johnson Space Center (JSC) and local Industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an Integrated

program of research in advanced data processing technology needed forJSC's

main missions, Including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, Industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest

to its sponsors and researchers. Within UHCL, the mission is being

Implemented through interdisciplinary involvement of faculty and students

from each of the four schools; Business and Public Administration, Educa-

t_ion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with Industry In a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships _th other universities and _,

search organizations, having common research interests, to provide addi-

tional sources of experilse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research an'l education programs, while other research

organizations are involved vla the "gateway" concepL

A major rote of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sclences. RICiS, working Jointly with itssponsors, ad_ses on research

needs, recommends principals for conducting the research, provides tech-

rdcal and administrative support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. John B. Cheatham Jr. and Kevin N. Magee

of Rice University. Dr. Terry Feagin served as RICIS research coordinator.

Funding was provided by the Information Systems Directorate, Information

Technology Division, NASA/JSC through Cooperative Agreement NCC 9-16 between

the NASA Johnson Space Center and the University of Houston-Clear Lake. The

NASA technical monitor for this research activity was Dr. Timothy F. Cleghorn of the

Information Technology Division, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, R/CIS, NASA or the United States Government.
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Abstract

The Rice University Department of Mechanical Engineering and Materials

Sciences Robotics Group has designed and built an eight degree of
freedom redundant manipulator. Fuzzy logic has been proposed as a

control scheme for tasks not directly controlled by a human operator. In

preliminary work, fuzzy logic control has been implemented for a camera

tracking system and a six degree of freedom manipulator. Both

preliminary systems use real-time vision data as input to fuzzy

controllers. Related projects include integration of tactile sensing, and
fuzzy control of a redundant snakelike arm (under construction).
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Outline

1. The ROMR redundant manipulator

1.1 Current control strategy

1.2 Graphic simulation of the ROMR manipulator
2. Preliminary research in fuzzy control

2.1 Fuzzy logic camera tracking system

2.2 Fuzzy control of a six degree of freedom manipulator
3. Future projects

3.1 Integration of tactile sensing

3.2 Fuzzy control in joint coordinates

3.3 Fuzzy control of the ROMR manipulator

3.4 Fuzzy control of a snake-l!kearm
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1. The ROMR redundant manipulator

Although the kinematics and dynamics for redundant robots are

difficult to implement, redundant manipulators show remarkable

dexterity when compared to their non-redundant counterparts., For

example, to make a robot manipulator pass through a narrow hole to

retrieve an object, the manipulator must have not only a specific wrist

orientation, but also a specific arm configuration. Any similar task

requiring simultaneous orientation and configuration specification can

not always be accomplished by a non-redundant manipulator,

demonstrating the advantages in implementing a redundant structure. [1]

The Rice Omnidirectional Mobile Robot (ROMR) is currently equipped

with a single eight degree of freedom redundant manipulator. Since the

ROMR is a remote worker in a telepresence system, the ROMR

manipulator was constructed to perform complicated manipulation tasks.

For this reason the ROMR arm possesses four degrees of freedom for

position and four degrees of freedom for orientation. Thus, position and

orientation each claim one redundancy. Design specifications and

kinematic equations are presented in Appendix A.

1.1 Current control strategy

The control strategy currently employed with the ROMR arm reduces

the complexity of the kinematic and dynamic equations by treating the

manipulator as a non-redundant robot with variable link parameters.

Since the motion of the redundant joints is manually controlled, the

automated portion of the control is greatly simplified; however, the

burden of choosing configurations is shifted to a human operator. In

r

3



short, by treating joint three in the arm and joint five in the wrist as

redundant joints (and by temporarily freezing these angles), a

configuration and orientation can be determined through inverse

kinematics in accordance with the desired trajectory. The solution will

not be unique, but by reconfiguring the redundant joints the human

operator can select the best configuration and orientation for the

task [1 ].
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Fiaure 1;.. The Rice Omnidirectional Mobile Robot (ROMR/ with Eiaht

Dearee of Freedom Redundant Man ioulatot

1.2 Graphics Simulation of the ROMR manipulator

Although the physical system is complete and operational, research

with the ROMR manipulator is first implemented in computer graphic
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simulation. There are several reasons for developing and experimenting

with a robot simulation before implementation on a real robot. First, it

is easier and less expensive to make changes to a computer graphics

simulation than it is to mechanically or electrically repair a robot.

Although successful performance in simulation does not guarantee

successful performance in the real world, dangerous and costly failures

can be prevented by first repairing them in simulation. Second, if a

robot is to be operated either remotely or in hazardous environments, it

may be convenient to control the physical robot with respect to a

computer simulation rather than with other feedback. This is more

easily accomplished if simulation has been incorporated as part of the

development process.

The ROMR manipulator simulation has been implemented in the C

programming language. Robot motion is controlled by keyboard input, and

movement can be specified either in joint coordinates or in world

coordinates. Two graphics windows simultaneously show the motion of

the manipulator as viewed from two perpendicular viewpoints. The

manipulator itself is represented as a simple 2-D line frame, although

more detailed 3-D wire frame andsolid modeling simulations have been

proposed for future work. [1]

V

2. Preliminary research in fuzzy control

As mentioned earlier, the advantages of kinematic redundancies in

robotic manipulators present challenges for control. Although for

completely teleoperational tasks the current ROMR manipulator control

scheme is sufficient, in many situations it is necessary to provide
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robots with local autonomy and control. Because fuzzy logic controllers

have proven effective in a variety of other robotics and control

applications, fuzzy logic has been proposed as a semi-autonomous

control strategy for the ROMR eight degree of freedom redundant

manipulator. However, due to the difficulties present in integrating

sensor data into control systems, and the Complexities inherent in
=

redundant manipulators, there is much technical progress needed before

fuzzy control can be applied. Two research projects have been

undertaken in preparation for the fuzzy control of the ROMR redundant

manipulator.
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2.1 Fuzzy logic camera tracking system

To develop a versatile vision guided system, real-time vision data

must be integrated into the fuzzy logic controller. As a step towards

sensory integration, a fuzzy logic:based camera tracking system has

been developed which automatical!y pans and tilts a camera to keep a

selected object centered in the visual field. This is analogous to a robot

"turning its head" to follow a moving object.

When thetracking system is started, a live image is displayed on the

vision system screen. A human operator then clicks the mouse on an

object to be tracked. From then on, the system digitizes the scene and

tracks the object at rapid int-ervais Currently, the image update/track

time is 0.06 seconds, which is equivalent to approximately 17 Hertz.

The system continues tracking the object as |ong as the object remains

within the field of view of the camera and its movements are not too
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rapid. At every frame update interval a computer simulation of the

digitized scene is drawn on the graphics monitor. [2]
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2.1.1 The system hardware

The camera tracking system hardware includes a color vision system

(TARGA 64 by Truevision) installed on a 486 computer. Modifications

were made to an existing camera pan-tilt head to allow it to be

controlled from the computer. Additionally, a DC relay control circuit

was designed and constructed. The circuit uses three single-pole,

double-throw relays to control the direction and speed of each motor.

The relays are driven from the computer using a parallel I/0 board based

around the 8255A PIO chip. Currently the system controls two speeds in

both forward and reverse directions, and on/off status for each motor.

This requires only six of the twenty four digital ports of the chip,

leaving the other I/O lines available for future expansion [2].

Camera

Tray

486cpu

Main

Program
Logic

FuzzyLogic
Rule-Base

Centroid
Location

Algrothim

pan-motor I

pitch-motorJ

I Frame I /Grabber

Camera
view

N

Figure 2: Block diagram of the Fuzzy Logic Camera Tracking System
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2.1.2 The fuzzy controller

Through use of a rapid centroid estimation algorithm (presented in

Appendix B), the vision processing returns an x and y value in screen

coordinates for the location of the object in the visual field. These

numbers are fuzzified according to membership functions corresponding

to regions of the screen as shown in Figure 3.
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Eigure 3" Fuzzy Camera Tracker X and Y Membershio Functions

=

W

W

i

=

l

g

I

i i
I |

J

I

=

I

i

J

l
m

I

The fuzzy x and y values are used as inputs into the following six rule

fuzzy logic rule base, which outputs fuzzy values for the pan and tilt

velocities.
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IF (X IS LEFT) THEN (PAN = LEFT)

IF (X IS CENTER) THEN (PAN _ STOP)

IF (X IS RIGHT) THEN (PAN = RIGHT)

IF (Y IS TOP) THEN (TILT - UP)

IF (Y IS CENTER) THEN (TILT I STOP)

IF (Y IS BOTTOM) THEN (TILT _, DOWN)

m
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The fuzzy pan and tilt velocities are converted to crisp values using

centroid defuzzification on the membership functions in Figure 4. ,
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-I00

B 1,0
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L
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- O0

Left Stop Right

-33 0 _33

Pan Velocity (in % Full Speed)
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Tilt Velocity [in % Full Speed)

÷ O0

O0

Figure 4: Fuzzy Camera Tracker Pan and Tilt Membershio Functions

At this point, the pan and tilt speed values are categorized as either

fast, slow, or stop in the indicated directions to accomodate motor

m

9



11

circuitry limitations. Appropriate bits are then set in the I/O board to

activate the motors with the desired speeds and directions.
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It2.2 Fuzzy control of a six degree of freedom manipulator

Building on the integration of visual sensing and fuzzy control _-

accomplished in the fuzzy camera tracker, a fuzzy controller for a six m

degree of freedom (non-redundant) manipulator has been developed in
I!

preparation for the more complicated task of controlling a redundant

manipulator. In this system, the user identifies both the robot end
lib

effector and the goal object in a live video image by clicking on each of

them with the mouse. From then on, the vision software continuously i

digitizes and interprets the scene while the fuzzy logic rule base --_
II

specifies motions of the end effector towards the goal until contact is

made. The robot is able to locate and grasp either a stationary or a
Wll

slowly moving object even if the camera is moved during operation.

Several innovations over the fuzzy camera tracker include the tracking _
Z

of multiple objects by the vision System (both a goal object and the

robot manipulator instead of only a goal object), and the managing of a

higher degree of freedom system by the fuzzy controller (a six degree of
B

freedom robot instead Of the two degree of freedom pan-tilt base.)

ii

2.2.1 System hardware

|
The Six degree of freedom manipulator used in this system is a

Unimate PUMA 560 industrial robot. A 486 computer equipped with a

color vision board performs the image processing and fuzzy logic

inferencing. Displacements in world coordinates are generated by the
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fuzzy controller and are sent to the PUMA control hardware, which

performs the necessary inverse kinematics to shift the robot. The

system is arranged as shown in Figure 5.

485 CPU

Centroid Algorithm

.,'nDut: Digitized image

Outout: Location of centroids of

end erfector and goal object in
screen coordinates

illiu, i i

,_nouL Distance between centroi

of end efrector and goal object

screen coorcIlnates

Output: End errector motion In

world coordinates

PUMA 560

manipular.or

r

PUMA Controller

_nout:End efrector motion in

world coordinates

Ou[out: Joint motions

(inverse kinematics)

Fiaure 5: Block diaaram of Six Dearee of Freedom Manioulator System

2.2.2 The fuzzy controller

The fuzzy controller for this project was developed using the Togai

InfraLogic (TIL) shell (see Appendix C). Program listings for the system

are provided in Appendix D. The task of the fuzzy controller is to

perform a camera-to-world coordinate transformation and to specify

world motions by the robot that bring the end effector to rest directly on

top of the object. The controller consists of nine rules listed below

which are applied to the membership functions shown in Figure 6.
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IF (DX IS P) THEN (VX = N)

IF (DX IS N) THEN (VX = P)

IF (DX IS Z) THEN (VX = Z)

IF (DX IS NM) THEN (VX = PM)

IF (DX IS PM) THEN (VX = NM)

IF (DY IS P) THEN (VY = N)

IF (DY IS Z) THEN (VY =- Z)

IF ((DY IS Z) AND (DX IS Z)) THEN (VY = Z)

IF ((DY IS Z) AND (DX IS NOT Z) THEN (VY = P)

Although extension to three spatial dimensions is under development,

the current rule base operates in only two dimensions. The specified task

is to move the end effector vertically downward onto an object with

minimum horizontal motion. Since the object is usually-resting on a

surface, negative vertical displacements below the object occur

infrequently and are treated as zero when they do occur. This results in an

asymmetric membership function for y displacement.

One advantage of the fuzzy rule base is that it moves the end

effector to a feasible grasp configuration without the specification of

intermediate points above the object. In traditional robot programming, an

end effector is first moved to a known position precisely above an object

and then moved directly downward. The fuzzy controller skips the

intermediate step in the following way" At most points in the workspace

the end effector is driven towards the goal. However, if the vertical

displacement of the end effector from the goal approaches zero while the

horizontal displacement is non-zero, the end effector is sent upwards

away from the goal. This prevents the end effector from making a final

descent until it is appropriately positioned for grasping. The narrow

region for zero displacement in the x displacement membership function

ensures that a close tolerance is met. Thus, the manipulator grasps the

goal object without calculating or traversing a specific intermediate point.
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Another advantage of the fuzzy system is that the fuzzy controller

needs only to give a rough approximation for the image-to-world

coordinate transformation. In the traditional robotic vision approach, a

camera must be rigidly fixed and the coordinate transformation between

camera and robot must be precisely known. Using fuzzy control, so long

as the vision and robot axes are aligned within about twenty degrees, the

controller produces displacement values that tend to shift the end

effector towards the goal. The only effect of having the axes out of

alignment is to alter the velocity specifed by the controller. However, if

the misalignment is too severe, the controller will specify a zero

velocity too early and the robot will stop without reaching the target.

Overall, the robot reaches the destination with great reliability over a

wide range of approximate vision and robot axes alignment, though no

guaranteed convergence criteria have been developed. This process has

proven successful even when the camera is moved during the procedure.

In general, the robot is able to track and contact a slowly moving object

in real-time, even in the presence of uncertain and changing visual

information.
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3. Future projects

The end focus of these preliminary research projects has been the

effective control of redundant manipulators using fuzzy logic integrated

with vision systems. However, several further research steps in sensor

integration and fuzzy control are desirable before extension to redundant

robots.
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3.1 Integration of tactile sensing

Although not essential, it will be useful to integrate tactile sensing

into the control scheme to assist in grasping and manipulation tasks.

The Robotics Group has constructed two multifingered hands and is

carrying out research projects in dextrous manipulation using force and

tactile feedback. Using multiple senses will allow manipulation in cases

where vision data becomes unavailable, such as when the manipulator

blocks its own line of sight. Additionally, force sensing is a proven

technique for fine-tuning end effector positions when high precision is

required, as it is in many insertion tasks.

3.2 Fuzzy control in joint coordinates

Before applying fuzzy control to redundant manipulators, the fuzzy,

controller will be modified to transfer its operation from world

coordinates to robot joint coordinates. Currently, the fuzzy controller

performs an approximate image-coordinate-to-world-coordinate

transformation and outputs displacements which bring the end effector

closer to the goal object. However, since the fuzzy controller outputs

displacements in world coordinates, separate inverse kinematic

computations must be performed to appropriately shift the robot joints.

A better approach would be to have the fuzzy controller output the

necessary joint displacements directly; i.e. to perform approximate

inverse kinematics. Because trial and error formulation of the

relationships may prove difficult, it is possible that artificial neural

networks will be employed to create the fuzzy system. Recent

successes have indicated the suitability of neural networks for learning
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relationships may prove difficult, it is possible that artificial neural

networks will be employed to create the fuzzy system. Recent

successes have indicated the suitability of neural networks for learning

inverse kinematics [3]. Regardless of how the fuzzy representation is

developed, there will be numerous advantages obtained by having the

fuzzy controller perform approximate inverse kinematics as well as

approximate coordinate camera-to-world coordinate transformations.

A first advantage is that there will be less time spent in kinematic

computation. Fuzzy logic inferencing is extremely fast in comparison to

calculating traditional inverse kinematics. Additionally, although not

yet installed for the six degree of freedom manipulator project, the lab

has hardware (the FCD10SB developed by Togai InfraLogic, Inc.) capabJe

of increasing the speed of fuzzy computation by thousands of fuzzy

inferences per second.

A second advantage is that no explicit kinematic knowledge of the

robot will be required once the appropriate fuzzy rule base and

membership functions are developed. Instead, all kinematic formulas

will be stored implicitly in the fuzzy rule base. Moreover, no explicit

global coordinate system will be employed. After the vision processing

has supplied va-iues to the fuzzy controller, the fuzzy controller will

specify joint motions corresponding to directions towards the goal,

rather than along arbitrary x, y, and z axes.

Although as yet untested, a third advantage may be improved

dynamic behavior of the robot. It has been demonstrated that

approximate reasoning makes possible the use of an imprecisely

positioned camera. In the same way, approximate reasoning on the
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A fourth advantage is that it would be possible to include fuzzy

optimization as part of the inferencing. To fully exploit the advantages

of a redundant arm, it is often desirable to induce self-motion in the

robot in such a way as to limit joint velocities, avoid obstacles, and

maximize manipulability. Performance measures for these and other

criteria have been developed; recent research [4] has used fuzzy logic as

a means of combining and applying the various optimization metrics

simultaneously. Through fuzzy optimization, important criteria

affecting manipulator configuration might be built directly into the

controller.

3.3 Fuzzy control of the ROMR manipulator

Once an enhanced fuzzy logic controller has been developed for the

six degree of freedom system, construction of a fuzzy logic controller

for the eight degree of freedom manipulator will be possible.

The first step will be to develop a controller that works with the

manipulator simulation. As with all fuzzy logic development, the bulk of

the time will be spent developing rules and membership functions that

represent the manipulator, although time may be greatly reduced by

using neural networks as mentioned earlier. After the controller has

been sufficiently debugged in simulation, it will be applied to the

physical ROMR arm. Various manipulation and grasping tasks using

vision and any other integrated senses will be performed to evaluate the

controller performance.
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3.2 Fuzzy control of a snake-like arm

Once control has been accomplished of the ROMR eight degree of

freedom manipulator, an attempt will be made to apply fuzzy control to

an even more Complicated and unusual system.

A team of senior mechanical engineering students, in conjunction

with faculty and graduate students of the robotics group, is constructing

an eight degree of freedom snake-like manipulator_ The design consists

of sixteen vertebrae elements, arranged as four sets of four vertebrae

each, with each set being capable of 90 degrees of motion in two degrees

of freedom. Design predictions indicate that this manipulator will be

capable of maneuvering through and around obstacles in much the same

manner as a snake [5]. Assuming that a fuzzy logic is successful with

the ROMR arm, the snake-like arm presents control problems which seem

well suited to the application of fuzzy logic.

lip

Figure 7: An Eiaht Degree of Freedom S.n_k_,-Like Manioulator
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Summary

A description of a currently operational eight degree of freedom

redundant manipulator has been presented along with preliminary work

in fuzzy control. Success integrating fuzzy control with vision data for

the control of a non-redundant manipulator has been described. Research

is now focused on extending fuzzy control to the ROMR eight-degree of

freedom arm and eventual application to a new snake-like manipulator.

z

.--

L

m

=_ .

19



J

References

[1] Shuxin Gu: "Inverse Kinematics and Computer Simulation of the ROMR

Robot", Research Report, Fall 1991.

[2] Sarmad Adnan, "Report on Summer Research in the Robotics

Laboratory," Rice University Department of Mechanical Engineering

and Materials Sciences, August 16, 1991.

[3] John Norwood, "A Neural Network Approach to the Redundant Robot

Inverse Kinematic Problem in the Presence of Obstacles," Doctoral

Thesis, Rice University Department of Mechanical Engineering and

Materials Sciences, 1990.

[4] Arati Deo, "Redundancy Resolution by Fuzzy Optimization," Project

Report for MI=CH/ELEC698, Rice University, April 1991.

[5] "Design of a Snake-Like Robotic Arm", Rice University, MECH 407

Semester Report, December 4, 1991.

U

m
m

m

u

g

i

If

I

g

mm

m

J

W

m

m

m

W

!

qw

m

g _

i
m

!

2O

R

W -'
Q

i

2

IIW



= -

Appendix A

Kinematics of the ROMR robot (taken from [1])

l_

1

w=.-

L

/

/
y

× Z

j/ Z/ x,

z d

Fig. ROMR ROBOT

Link

D-H CONVENTION TABLE

ai ai di Oi

1 0 90 a 01

- 2 0 -90 0 02

3 0 .90 b 03

4 0 -90 0 04

5 0 90 g 05

--- 6 0 90 0 06

7 0 90 0 07

-- 8 0 0 0 Os

- Solution for the .a_ll ioint angles of ROMR robot:

a) The joint angles in the arm:

03: given

- 04 = atan( D2/Dt )

21
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where"

D 1 = (dx2+dy2+(dz-a)2"g2"b2)/(2g b)

D2 = +(1-c0s(04)2) 1/2 = +(1-D12) 1/2

01 = atan(EJE2)+atan(dy)dx)
where"

E1 = gsin(0a)sin(04)/(dx2+dy2) 1/2

E2= +(1-Et2) 1/2

02 = atan((t4tl-t3t2)/(t4t2+t3tl))
where'

tl = -gcos(03)sin(04)

t3 = dxcos(01)+dysin(0x)

b) The joint angles in the wrist:

05: given

t2=gcos(04)+b

t4=dz-a

06 = atan(ay'/ax')

07= atan((-ax'COS(06)-ay'sin(06))/az')

Where"

0s=atan(F1/F2)
where:

F1 - -(Sx'COS(06)+Sy'sin(06))cos(Ov)-Sz'sin(OT)

F 2 = Sx'sin(06)-Sy'COS(06)

rl x S x ax dx

A_- ny' Sy ay dy
Sz az dz

0 0 l

Sy' ay' 0 /

[ oo *1
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Appendix B

Rapid object tracking software

The object tracking software was developed by Sarmad Adnan to track a

single Coke-Bottle-Red object.

multiple objects with colors

algorithm is as follows:

It was extended by Kevin Magee to track

determined at run-time. The basic

(1) Digitize an image
(2) Select a pixel on the goal object to be a starting

point.
(3) Sequentially check neighboring pixels along the

vision system coordinate axes until encountering

a pixel with a different color value.

(4) Average the values for the maximum and minimum
coordinates along both the x and y axes to obtain a
centroid estimate.

(5) To track a moving object, digitize a new image.

Loop back to step (3), using the centroid estimate

from step (4) as the new starting point.

This fast and simple algorithm works well tracking convex shapes of

uniform color. Irregularly-shaped objects and objects with large color

variation are tracked less reliably. As with any vision system,

performance also depends on the speed with which images can be

digitized.

A tracking function using this algorithm appears on page five of the

program "viscon.c" (included in appendix D).

_°

=
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Appendix C

Introduction to the Togai InfraLogic Shell

The Togai InfraLogic (TIL) shell is a fuzzy logic development tool

created by Togai InfraLogic, Inc. Running under MicroSoft Windows, it

provides a graphical interface for creating fuzzy logic systems. The TIL

shell allows a user to create high-level objects such as rules, variables,

and membership functions. Relationships between objects can also be

specified.

Once a fuzzy system has been designed, the user can transform the

high level objects into portable C code through the use of a fuzzy C

compiler. Various inferencing options and variable representations can

be selected at compile time. The C code implementing the fuzzy logic

system is readily incorporated into other C programs. Additional options

allow a user to produce code that runs on special fuzzy hardware.

Use of the TIL shell in Rice Mechanical Engineering and Materials

Sciences robotics lab has greatly reduced the development time of new

fuzzy systems. Appendix D includes an example of code produced by the

T1L shell.
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Appendix D

v

Control software

The following programs accomplish fuzzy control of the PUMA

manipulator using vision sensing; similar programs control the fuzzy

logic camera tracking system. The program "world.c", generated by the

TIL shell, contains the actual fuzzy logic controller for the manipulator.

The program "viscon.c" links together the fuzzy controller with real-

time vision data. The program "vision.val", written in the VAL II

programming language, receives commands from the fuzzy controller and

implements them on the PUMA robot.

L

25



viscon.h Sat Dec 21 01:31:50 1991 I

/*

*/
HEADER FILE FOR THE VISION DIRECTED FUZZY CONTROLLER FOR ROBOT

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <gf.h>

#include <asiports.h>

#include <targraf.h>

#include <math.h>

/* Communications constants */

#define KXLEN 5

#define TXLEN I00

/* PUMA constants */

/* Initial position */

#define XINIT 210

#define YINIT 500

#define ZINIT 350

/* Workspace limits */

#define MAXX 450

#define MAXY 501

#define MAXZ 350

#define MINX 0

#define MINY 499

#define MINZ -100

/* Vision constants */

#define COLOR_ERR
#define COLOR MAX

#define RED

#define GREEN

#define BLUE

#define X RES

#define Y RES

0x06L

0xlfL

0x7c00L

0x3EOL

0xlFL

512

400

/* Tracker constants */

#define MAX

#define MIN

#define NOB

#define ROBOT

#define GOAL

/* General definitions */

#define BETWEEN(x,y,z)

#define FALSE

#define TRUE

((x)>-(y)) && ((x)<-(z))
0
1

extern int ok;

/* Vision functions */

void vision init(void);

unsigned lon-g int locate_object(int *blob_x, int *blob_y);

void track obJect(int objx[NOB], int objy[NOB], int *track);

void define_color_range(int object, unsigned long int color);

void draw_cross(int x, int y);

\032
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h

w

r _

r .

w

/*

VISION DIRECTED FUZZY CONTROLLER FOR ROBOT

This version has only one way communication from the fuzzy controller

to the robot. All feedback on robot position is entirely from vision.

For better synchronization between the robot and fuzzy controller, it

is helpful to do the following:

(i) Have the robot move at high speed

(2) Specify only small displacements in each command

The fuzzy controller, developed with the TIL shell, is programmed in

a separate file.

./

#include "viscon.h"

#include <math.h>

#include <tilcomp.h>

#include "world.h"

#define VISLOOP

#define CONTACT

#define HORZERR

#define INRANGE

#define TIME

i

50.0

200.0

I0.0

2

/* Global color ranges */

unsigned long int red[NOB] [2], green[NOB] [2], blue[NOB] [2];

main()

{

/*

int

int

int

unsigned long

unsigned int

int

int

char

double

int

x[NOB], y[NOB];

track;

sim color[NOB]-{5,4}; */

color;

button;

px-210, py-500, pz-325, ptx, ptz;

dpx-0, dpy-0, dpz-0, chk-0;

s[TXLEN+I];

xd, yd, dist:

xdist, ydist;

/* Initialize con_nunications with PUMA on COM2 */

printf("Initializing communications...\n");

asifirst(COM2, (ASINOUTIBINARYINORMALRX), RXLEN, TXLEN);

printf("Step two in comm init.\n");

asiinit(COM2, 9600, P_NONE, i, 8);

/* Initialize the vision system */

printf("Initializing vision...\n");

vision init();

/* Start up the slave program on the PUMA */

sprintf(s,"ex vision%c", 10);

printf("Starting PUMA: %s", s);

asputs(COM2, s, 13);

/* Make sure user knows what is going on */

printf("knMake certain that both robot and target ");

printf("are stationary and in view.\n");

/* Wait for user to release mouse button */



viacon.c Sat Dec 21 01:31:49 1991 2 w

button _ TRUE;

while( button !- FALSE)

Buttons(&button);

/* Locate the robot and the goal */

printf("\nClick on the robot\n");

color s locate_object( &x[ROBOT], &y[ROBOT]);

define color_range(ROBOT, color);

printf_"Robot color s %x\n", color);

printf("knClick on the goal.kn");

color - locate_object ( &x[GOAL], &y[GOAL]) ;

define_color_range (GOAL, color) ;

printf("Goal color - %x\n", color);

do (

/* Track the objects */

track_object( x, y, &track);

/* How far apart are the centroids in vision coords? */

xdist - (x[GOAL] - x[ROBOT]);

ydist - (y[ROBOT] - y[GOAL]);

xd - (double) xdist;

yd - (double) ydist;

dist - sqrt(xd*xd + yd*yd);

/* Only move the robot if you are tracking! */

if (track -- TRUE) {

/* Move if the last specified motion was non-zero */

if (dist > CONTACT) (

/* Send the final position values of the E.E. and G. to the

Fuzzy Controller. It will output displacement values

for the robot to move the end effector closer to the goal. */

FuzzyWorldControl(xdist, ydist, &dpx, &dpz);

_ . = i_!_ _L_,_ ....
/* Convert the output velocity into a displacement by multiplying

by the time factor (actually divide by 1/factor) */

dpx /- TIME;

dpz /- TIME; .....

/* Compute the possible new position of the PUM A robot */

ptx -'px + dpx, ptz - pz + dpz; _.

/* Make sure values are in workspace window of PUMA */

if ((ptx<MAXX) && (ptx>MINX)) px - ptx;

if ((ptz<MAXZ) && (ptz>MINZ)) pz = ptz;

/* Send the displacement values and a checksum */

chk - dpx + dpz;

sprintf(s,"%d %d %d %d%c", dpx, 0, dpz, chk, i0); ....

/* printf("Sending displacements: %s", s); */ _L i

asputs(COM2, s, 13);

}
else { /* IF contact has been made! */

printf("In position! Hit a key to Continue'..\n");

sprintf(s,"%d %d %d %d%c", 0, I0, 0, 0, i0);

asputs(COM2, s, 13);

/* Return PUMA to ready position */

sprintf(s,"%d %d %d %d%c", 0, 255, 0, 0, i0);

asputs(COM2, s, 13);

while (!kbhit ()) ;
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)
}

else { /* IF --NOT_ TRACKING */

printf ("%c", 7) ;

}

} while (!kbhit()) ;

/* Send code to the PUMA to make it halt */

sprintf(s,"%d %d %d %d%c", 0, 0, 0, 255, i0);

printf("Sending termination code: %s", s);

asputs(COM2, s, 13);

asiquit (COM2) ;

exit (0) ;

)

z

v

E

/* Initialize the vision board and mouse */

void vision_init (void)

{
if (InitGraphics() !- 0) {

printf("Targa board not responding, install device driver\n");

exit (I) ;

)

if(OpenPntDev(microsoftMouse) -- FALSE) {

printf("Mouse driver not foundkn");

exit (I) ;

)
if (SelectLiveSource(vidInputComposite) -- FALSE) {

fprintf(stderr, "Can not select video source\n");

exit (I) ;

}
EnableGenlock () ;

EnableDisplay () ;

}

/* Allow a user to choose an object to track (called once for each object)

An object can either be a goal or the end-effector */

unsigned long int locate_obJect(int* blob_x, int* blobdy)

(
unsigned int bin_state;

unsigned long color, delay;

Point pt;

do {

GrabFram_ () ;

GetPDevPos (&pt) ;

draw_cross(pt.x, pt.y), draw_cross(pt.x+4, pt.y), draw_cross(pt.x-4, pt.y), draw_cro

ss(pt.x, pt.y+4), draw_cross(pt.x, pt.y-4) ;

Buttons (&bin_state) ;
if (kbhit ()) {

printf("two: keyboard touched, exiting\n") ;

exit (0) ;

}
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draw_cross(pt.x, pt.y), draw_cross(pt.x+4, pt.y), draw_cross(pt.x-4, pt.y), draw cr--

ss(pt.x, pt.y+4), draw_cross(pt.x, pt.y-4); g

for(delay-0; delay<f0000; delay++);

} while( ! (btn_state & leftButton) );

/* Wait for user to release button */

while( (btn_state & leftButton) )

Buttons(&btn_state);

/* Find out the color of the selected object */

GetPixel(pt.x, pt.y, &color);

*blob_x-pt.x;

*blob_.y-pt.y;
return color;

D
W

g

I

z
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/* Create a range of color to around the selected object color since

objects are never of truly uniform color. Good color range values

are chosen through experimentation. */

void define_color_range(int object, unsigned long int color)

unsigned long int redval, greenval, blueval;
g

redval - (color & RED)>>10;

red[object] [MIN] - ((redval<COLOR_ERR) ? (0L) : (redval-COLOR_ERR))<<I0; I

red[object] [MAX] - ((redval+COLOR_ERR>COLOR_MAX)?(COLOR_MAX): (redvaI+COLOR_ERR))<<I0;

printf("red: min - %ix max - %ix\n", red[object] [MIN], red[object] [MAX]);

greenval - (color & GREEN)>>5; J

green[object] [MIN] - ((greenval<COLOR_ERR)?(0L):(greenval-COLOR_ERR))<<5;

green[object] [MAX] - ((greenvaI+COLORERR>COLOR_MAX)?(COLOR_MAX): (greenval+COLOR ERR)_
<<5; - -----

printf("green: min - %ix max - %lx\n", green[object] [MIN], green[object] [MAX]);

blueval _ (color & BLUE);

blue[object] [MIN] - ((blueval<COLOR_ERR) ? (0L) : (blueval-COLOR_ERR));

blue[object][MAX] - ((bluevaI+COLOR_ERR>COLORMAX)?(COLOR_MAX):(bluevaI+COLOR_ERR));

printf("blue: min - %lx max - %lxkn", blue[object] [MIN], blue[object][MAX]);

J

I

W

/* Draw the cursor on the vision screen for mouse usage and for locating

lost objects. */

void draw_cross(int x, int-y)

{

unsigned long xc - RED;

SetPixel(x-2, y, xc), SetPixel(x-l, y, xc), SetPixel(x+l, y, xc), SetPixel(x-l,

SetPixel(x, y-2, xc), SetPixel(x, y-l, xc), SetPixel(x,_y+l, xc), SetPixel(x, y+2,

}

/* The fast centroid estimation algorithm. Performed once for each object

(eithe r a_goal or an end effector) */

void track_obJect(int objx[NOB], int objy[NOB], int *£rack)
= =

{

unsigned long color, redmin, redmax, greenmin, greenmax, bluemin, bluemax:

register int top, bottom, right, left;

int x, y, object;
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LJ

GrabFrame();

*track - TRUE;

for(object-0; object<NOB; object++) {

redmin - red[object] [MIN];

redmax - red[object] [MAX];

greenmin - green[object] [MIN];

greenmax - green[object] [MAX];

bluemin - blue[object] [MIN];

bluemax - blue[object] [MAX];

x - objx[object];

y z objy[object];

GetPixel(x, y, &color) ;

if ( BETWEEN(color&RED, redmin, redmax) && BETWEEN(color&GREEN, greenm/n, greenmax) && B

ETWEEN(color&BLUE,bluem/n,bluemax) ) {

/* Search up until finding top of object */

for(top=y; top<Y_RES; top++) {

GetPixel(x, top, &color);

if( ! (BETWEEN(color&RED, redmin, redmax) && BETWEEN(color&GREEN, greenmin,greenma

x) && BETWEEN(color&BLUE,bluemin, bluemax) ) )

break;

}

/* Search down until finding bottom of object */

for(bottom-y; bottom>-0; bottom--) [

GetPixel(x, bottom, &color);

if( !(BETWEEN(color&RED, redmin, redmax) && BETWEEN(color&GREEN, greenmin,green_a

x) && BETWEEN(color&BLUE,bluemin,bluemax) ) )

break;

}

/* Search to the right until finding the right edge */

for(right-x; right<X_KES; right++) (

GetPixel(right, y, &color);

if( !(BETWEEN(color&RED, redmin, redmax) && BETWEEN(color&GREEN, greenmin,greenma

x) && BETWEEN(color&BLUE,bluemin, bluemax) ) )

break;

}

/* Search to the left until finding the left edge */

for(left-x; left>-0; left--) {

GetPixel(left, y, &color);

if ( ! (BETWEEN(color&RED, redmin, redmax) && BETWEEN(color&GREEN, greenmin, greenma

x) && BETWEEN(color&BLUE,bluemin,bluemax) ) )

break;

}

/* Calculate the centroid estimate */

objx[object] - (right+left)/2;

objy[object] - (top+bottom)/2;

else {

*track - FALSE;

draw_cross(x, y), draw_cross(x+4, y), draw_cross(x-4, y), draw_cross(x, y+4), dra

w_cross (x, y-4) ;

}
}

}
\032
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/*

* Togai InfraLogic (R) Fuzzy-C Compiler Version 2.3.1
*

* Source file: "world.til"

* Compiled Fri Dec 06 14:55:05 1991

* Selected options:

* Default map size:

* Default map type:

* Output C format:

* Emit unused MEMBERs:

* Force expr:

* Force map:

* Generate debug code:

*/

256

FUBYTE

OFF

ON

OFF

OFF

OFF

struct _SWO_b_point { SWORD x; FUBYTE y; };

void FuzzyWorldControl (SWORD X, SWORD Y, SWORD *VX, SWORD *VY);
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/*

* Togai InfraLogic (R) Fuzzy-C Compiler Version 2.3.1

* Source file: "world.til"

* Compiled Fri Dec 06 14:55:05 1991

* Selected options:

* Default map size:

* Default map type:

* Output C format:

* Emit unused MEMBERs:

* Force expr:

* Force map:

* Generate debug code:

*/

256

FUBYTE

OFF

ON

OFF

OFF

OFF

/*

* Portability definitions and internal structures.

*/

#include <stdio.h>

#include <string.h>

#include <math.h>

#include <tilcomp.h>

#include "world.h"

i
w

l In

I v

| rams

#define min(a,b) ((a)<(b)?(a): (b))

#define max(a,b) ((a)<(b)?(b): (a))

struct til cbinfo { long moment, area; };

struct _til_cfinfo [ double moment, area; };

struct til hbinfo { long hcentroid, height; };

struct _til_hfinfo ( double hcentroid, height; };

* Point list evaluation routine for signed word values.

*/

static FUBYTE _SWO..b._ploop (SWORD var, int n, struct _SWO..b_point *pts);

static FUBYTE _SWO b_.ploop (SWORD vat, int n, struct _SWO b_point *pts)

(
register int i;

FUBYTE _alpha;

SLONG _imp;

p

if (var < pts->x)

--alpha - ((FUBYTE) 0) ;

else if (var -- pts->x)

_alpha - pts->y;

else (

_alpha - ((FUBYTE) 0);

for (i - 0; i < n - I; i++, pts++)

if (vat > pts->x && vat <- (pts+l)->x) {

_tmp - (((SLONG) (vat)) - ((SLONG) pts->x)) *

(((SLONG) (pts+l)->y) - ((SLONG) pts->y));

_alpha - (FUBYTE) (((SLONG) pts->y) +_tmp /

(((SLONG) (pts+l)->x) - ((SLONG) pts->x)));

break;



Sat Dec 21 01:31:31 1991

im

g

return _alpha;

}

static FUBYTE VX N map[] = {

/*00000"/ 255, 248, 242, 235, 229, 223, 216, 210, 204, 197,
/*00010*/ 191, 184, 178, 172, 165, 159, 153, 146, 140, 133,

/*00020*/ 127, 121, 113, 108, 102, 95, 89, 81, 76, 70,

/*00030*/ 63, 56, 51, 44, 38, 31, 25, 19, 12, 6,

/*00040*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00050*/ 0, 0, 0, 0, 0, 0, 0,

/*00060*/ 0, 0, 0, 0, 0, 0, 0,

/*00070*/ 0, 0, 0, 0, 0, 0, 0,

/'00080"1 0, 0, 0, 0, 0, 0, 0,

/*00090*/ 0, 0, 0, 0, 0, 0, 0,

/*00100*/ 0

};

static FUBYTE _VX_Z_map[] " {

/*00000"/ 0, 0, 0, 0, 0, 0, 0,

/*00010*/ 0, 0, 0, 0, 0, 0, 0,

/*00020*/ 0, 0, 0, 0o 0, 0, 0,

/*00030*/ 0, 0, 0, 0, 0, 0, 0,

/*00040*/ 0, 0, 0, 0, 0, 0, 0,

/*00050*/ 255, 160, 65, 0, 0, 0, 0,

/*00060*/ 0, 0, 0, 0, 0, 0, 0,

1"00070"/ 0, 0, 0, 0, 0, 0, 0,

i_0_080,/ 0, 0, 0, 0, 0, 0, 0,

/*00090*/ 0, 0, 0, 0, 0, 0, 0,

/*00100"/ 0

};

static FUBYTE _VX..P_map[] - (

/*00000"/ 0, 0, 0, 0, 0, 0, 0,

/*00010*/ 0, 0, 0, 0, 0, 0, 0,

/*00020*/ 0, 0, 0, 0, 0, 0, 0,

/*00030"i 0, 0, 0, 0_ 0, 0, 0,

/*00040"/ 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 65, 160,

0, 0, 0,

0, 0, 0,
0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0,

/*00050*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00060*/ 0, 6, 12, 19, 25, 31, 38, 44, 51, 56,

1"00070"/ 63, 70, 76, 81, 89, 95, 102, 108, 113, 121,

/*00080*/ 127, 133, 140, 146, 153, 159, 165, 172, 178, 184,
1"00090"/ 191, 197, 204, 210, 216, 223, 229, 235, 242, 248,

I*00100"/ 255

};

static FUBYTE VX NM map[] " {

I*00000"/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/*00010*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1"00020"/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00030*/ 0, 25, 51, 76, 102, 127, 153, 178, 204, 229,

/*00040*/ 255, 229, 204, 178, 153, 127, 102, 76, 51, 25,

I*00050"I 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/'00060"1 0, 0, 0, 0,

/*00070*/ 0, 0, 0, 0,

/*00080*/ 0, 0, 0, 0,

/*00090*/ 0, 0, 0, 0,

1"00100"1 0

);

0, 0,

0, 0,

0, 0,

0, 0,

0, 0, 0, 0,

0, 0, 0, 0,

0, 0, 0,

0,' 0, 0,

static ?UBYTE VX PM map[] - (
I*00000"I 0,-- _, -- 0, 0, 0, 0, 0, 0, 0, 0,

I*00010"I 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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/*00020*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00030*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/'00040"I 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00050*/ 0, 25, 51, 76, 102, 127, 153, 178, 204, 229,

/*00060*/ 255, 229, 204, 178, 153, 127, 102, 76, 51, 25,

/*00070*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00080*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00090*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00100*/ 0

};

v

static FUBYTE VY N map[] = {

/*00000"/ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
/*00010"/ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

/*00020*/ 255, 255, 255, 255, 255, 255, 243, 234, 224, 214,

/*00030*/ 204, 193, 183, 173, 163, 153, 142, 131, 121, 112,
/*00040*/ 102, 91, 81, 71, 60, 51, 40, 30, 20, i0,

/*00050*/ 0, 0, 0,' 0, 0, 0, 0, 0, 0, 0,

/*00060*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00070*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00080*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/*00090*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00100*/ 0

};

static FUBYTE

I*00000*/ 0,

I*00010"/ 0,

I*00020"/ 0,

t*00030*/ 51,

vx z map[] - {

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 10, 20, 30, 40,

60, 71, 81, 91, 102, 112, 121, 131, 142,

I*00040"/ 153, 163, 173, 183, 193, 204, 214, 224, 234, 243,

t*00050*/ 255, 243, 234, 224, 214, 204, 193, 183, 173, 163,

I*00060"/ 153, 142, 131, 121, 112, 102, 91, 81, 71, 60,

/*00070*/ 51, 40, 30, 20, 10, 0, 0, 0, 0, 0,

/*00080*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00090*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1"00100"/ 0

};

static FUBYTE VY P map[] - {
/*00000"/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00010*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00020*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/*00030*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00040*/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

/*00050*/ 0, 10, 20, 30, 40, 51, 60, 71, 81, 91,

/*00060*/ 102, 112, 121, 131, 142, 153, 163, 173, 183, 193,

/*00070*/ 204, 214, 224, 234, 243, 255, 255, 255, 255, 255,

/*00080*/ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

/*00090*/ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,

/*00100*/ 255

};

/*

* User defined objects.
*/

/*

* VAR X

*/

/*

* MEMBER N

*/
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static struct _SWO_b_.point___

( -5_0, 255 },

{ -50, 0 )

};

x N b_pts[] = (

I

m

W

/*

* MEMBER Z

*/

static struct SWO_b_.point

( -13, 0 },

{ O, 255 ),

{ 18, 0 }

);

/*

* MEMBER P

*/

static struct _SWO_b point _ _ _
{ 50, 0 },

{ 500, 255 !

};

X Z b pts[] - {

X P b pts[] - {

g

m

i

g

m

mm

* MEMBER NM

*/

static struct _SWO_b_point

[ -i00, 0 ),

( -52, 252 },

{ 0, 0 )

};

x NM b_2ts[] - {

/*

* MEMBER PM

*/

static struct _SWO..b_point

( O, 0 ),
{ 50, 255 ),

{ i00, 0 }

);

/*

* VAR Y

,/

X PM b 9is[] = {

/*

* _ER Z

*/

static struct _SWOb_point _Y Z_b_pts[] - {

( O, 255 },

{ 120, 0 }

};

i
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/*

* MEMBER P

*/

static struct _SWO_b_point _Y.P_b_pts [] = {

{ O, 0 },
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( 250, 255 },

I 500, 255 }

};

/*

* VAR VX

*/

/*

* VARVY

*/

/*

* FUZZY Controller

*/

static void Controller (SWORD X, SWORD Y, SWORD *VX, SWORD *VY);

static void Controller (SWORD X, SWORD Y, SWORD *VX, SWORD *VY)

(

FUBYTE _alpha;

FUBYTE X is Z;

FUBYTE Y is Z;

FUBYTE _VX_alpha;

FUBYTE _VX_temp[101];

FUBYTE _VY_alpha;

FUBYTE _VY_temp[101];

register int i;

FLOAT moment;

FLOAT area;

memset (_VX temp, 0, sizeof ( VX_temp));

memset ( VY_temp, 0, sizeof (_VY_temp));

X is Z - _SWO_b_.ploop (X, 3, X Z b 2ts);

Y is Z - _SWOb_ploop (Y, 2, Y Z b 2is);

/*

* RULE Rule0000

*/

_alpha I _SWO b_ploop (X, 2,

if (_alpha !- ((FUBYTE) 0)) {

I* VX - N *I

X P b_pts);

for (i - 0; i < 101; i++) (

VX_alpha - min ( alpha, VX N map[i]);

if (_VX temp[i] < _VX_alpha)

_VX temp[i] - _VX_alpha;

)

/*

* RULE Rule0001

*I

_alpha - _SWO_b_ploop (X, 2,

if (_alpha !- ((FUBYTE) 0)) (

X N b 9ts);

- /* VX " P */
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*

/*

for (i - 0; i < I01; i++) (

_VX_alpha - min ( alpha, VX P map[i]);

if ( VX_temp[i] < VX alpha)

VX_temp[i] - VX alpha;

}

* RULE Rule0002

*/

_alpha = X is Z;

if (_alpha !- ((FUBYTE) 0)) {

I* vx = Z *I

for (i - 0; i < i01; i++) {

VX alpha - min ( alpha, VX Z map[i]);

if ( VX_terap[i] < _VX_alpha)
VX temp[i] - VX alpha;

* RULE Rule0006

*/

alpha - _SWO_b_ploop (X, 3,

if (_alpha !- ((FUBYTE) 0)) {

/* VX - PM */

X NM bpts);

for (i = 0; i < I01; i++) {

_VX_alpha - min (_alpha, VX PM map[i]);

if ( VX_temp[i] < _VX_alpha)

_VX_temp[i] - _VX_alpha;

}

/*

* RULE _ule0007

alpha - SWO_b..ploop (X, 3,

if (_alpha !- ((FUBYTE) 0)) (

I* VX - NM *I

X PM b pts) ;

for (i - 0; i < I01; i++) l

_VX alpha - min (_alpha, VX NM map[i]);

if ( VX_temp[i] < _VX..alpha)

VX_temp[i] - VX alpha;

}

/*

il
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=

!

c

v

* RULE Rule0003

*/

_alpha - _SWO_b ploop (Y, 3,

if (_alpha !- ((FUBYTE) 0)) (

/* VY - N */

Y P b pts);

for (i - O; i < I01; i++) (

_VY_alpha - rain (_alpha, VY N map[i]);

if ( VY_temp[i] < _VY_alpha)

_VY_temp[i] - VY alpha;

)

/*

* RULE Rule0004

*/

alpha - mini Y is Z, X is Z);

if (_alpha !- ((FUBYTE) 0)) (

I* VY - Z *I

for (i " O; i < 101; i++) {

_VY_alpha - _tln (_alpha, VY Z map[i]);

if (_VY_temp[i] < _VY_alpha)

_VY_temp[i] - _VY_alpha;

)

/*

* RULE Rule0005

*/

_alpha - m/n( Y is Z, ((FUBYTE) 255) -

if (_alpha !" ((FUBYTE) 0)) {

I* VY - P *I

X is Z) ;

for (i - 0; i < 101; i++) {

_VY_alpha - min (_alpha, VY P map[i]);
if (_VY_.ten_[i] < _VY_alpha)

_VY_tea_[i] -V__alpha;

!

moment - area - 0.0;

For (i - O? i < i01; i++) (

area +- ((FLOAT) VX_tem_[i]);

--moment ÷- ((FLOAT) VX_temp[£1) * (FLOAT) i;

)
if ( area !- 0.000000)

•--VX - ((SWORD) ((--moment / _area) + -50.0000));

moment - area s 0.0;

For (i - O_ i < i01; i++) (
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area +- ((FLOAT) _VY_temp[i]);

--moment +- ((FLOAT) _VY_temp[i]) * (FLOAT) i:

!

if (_area !- 0.000000)

• VY - ((SWORD) ((--moment / area) + -50.0000));

* PROJECT FuzzyWorldControl

*/

void FuzzyWorldControl (SWORD X, SWORD Y, SWOBD *VX, SWORD *VY)

(
/*
* FUZZY Controller

*/

Controller (X, Y, VX, VY) ;
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EDIT vision

SPEED 50*I00/SPEED(1) MMPS ALWAYS
CLOSEI

FLIP

NONULL

COARSE

SET a- TRANS(210, 500, 325, -127, 87, 152)
MOVE a

BREAK

no.error _ TRUE

WHILE no.error DO

-- PROMPT "", x, g, z, c

_. IF c -- (x+z) THEN

IF g _- 0 THEN

SET a - SHIFT(a BY x, y, z)
MOVE a

_ ELSE

IF g -- 255 THEN

READY

ELSE

OPENI

END

END

__ ELSE

no..error - FALSE
END

END

-- NULL

FINE

E

--c

w

w

w
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