PRECISION GPS EPHEMERIDES
AND BASELINES

Final Report for NASA Grant No. NAGW-2717
January 1991 - December 1991

CENTER FOR SPACE RESEARCH
THE UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TEXAS

(NASA-CR-190247) PRECISION GPS EPHEMERIDES
1991 (Texas Univ.) 59 p CSCL 176

Unclas
N92-23541
G3/04 0085179
INTRODUCTION

The emphasis of this grant was focused on precision ephemerides for the Global Positioning System (GPS) satellites for geodynamics applications. During the period of this grant, major activities were in the areas of thermal force modeling, numerical integration accuracy improvement for eclipsing satellites, analysis of GIG '91 campaign data and the Southwest Pacific campaign data analysis.

THERMAL FORCE AND ECLIPSING ORBITS

Papers on thermal imbalance force modeling and eclipsing orbit analysis were presented at the AIAA Space Flight Mechanics Conference held in February 1992 at Houston, Texas. Details are included in Appendix VII and Appendix VIII of the Final Report for NASA Grant No. NAG5-940.

GIG '91 DATA ANALYSIS

An intensive global GPS observation campaign called "The First GPS IERS and Geodynamics Experiment – GIG '91" was organized by the Jet Propulsion Laboratory for a period of three weeks during early 1992. The campaign spanned part of GPS Weeks 576, 577, 578 and part of Week 579 starting from January 22, 1992, to February 13, 1992. About 120 stations distributed globally, collected data during this period using a variety of GPS receivers which included Rogues, TI-4100's, Trimbles, Ashtechs, Mini Mac 2816 AT's, WM-102's; in addition, data from the five continuously operating DMA stations were also available. From among these, data from 20 globally distributed stations were chosen for orbit determination and Earth orientation parameter determination experiments at UT/CSR. Of these, 17 sites had Rogue receivers, two TI-4100 and one Mini Mac
Orbit determination experiments included computation of orbits using data from a reduced set of global stations and from an expanded set, and comparing the baselines and other criteria to assess the orbit accuracy. In addition to the GIG'91 data set mentioned above, data collected during the 1989 South West Pacific Campaign also were used. Results of this study were presented at the 1991 AGU Spring Meeting held at Baltimore, Maryland, during May 1991. Further details are included in the Appendix.

Using the same GIG'91 data set several experiments were performed at CSR to determine the pole positions \((X_p, Y_p)\) during this time period. The main objective of the experiments was to explore strategies for determining the Earth orientation parameters (EOP), polar motion and UT1, using global GPS data. Short arc and long arc with sub arc parameters were considered as possible approaches. The estimated pole positions were compared with SLR and VLBI determined polar motion series in order to assess the quality of these determinations. Results of this study were presented in the special workshop held in Ahrweiler, Germany, during August 1991 and at the XX General Assembly of the IUGG during August 1991 in Vienna, Austria. A copy of the presentation is included in the Appendix.

SWP CAMPAIGN DATA ANALYSIS

Analysis of data collected during the South West Pacific (SWP) campaigns contributed to accuracy assessment of the GPS satellite orbits. The SWP campaign data were collected during the summers of 1988, 1989 and 1990 and these data have been analyzed in various stages at CSR. These data sets complement the CIGNET data in forming a better global distribution and facilitates various orbit and baseline experiments. Studying the repeatability of baselines between various sites in the SWP network provides one method to evaluate the accuracy level of the computed orbits. In depth analysis of few weeks of data collected at the sites in Tonga region (SWP) during the above three years were performed at CSR and the results indicate that the computed GPS orbits yield baseline
repeatability at the 10 to 20 parts per billion (ppb) level. A brief summary of these results were presented at the 1991 AGU Fall Meeting held in San Francisco during December 1991. Copy of the presentation is included in Appendix.

CONCLUSION

Based on the research efforts at CSR in the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods etc. Although each one of these aspects has been studied at CSR in research efforts under this (and the previous) grant, only points pertaining to the force modeling aspect are addressed here.

Dynamic Modeling – Current Status

At present the following known forces are modeled in routine computation of GPS satellite orbits:

1. Nonspherical Earth gravity acceleration represented by one of the extant gravity fields such as GEM-L2, GEM-T1 or GEM-T2 truncated to 8×8 is adequate. However, increasing the degree and order and/or tuning the field (at least the resonance coefficients) for GPS orbits may slightly improve the accuracy of this perturbation modeling.

2. represented as point masses are adequate.

3. force modeling and the geometric tide effects must be considered in the measurement models.

4. Perturbation due to solar radiation pressure is adequately modeled by the ROCK4 models; however, it is necessary to scale these accelerations by at least one adjustable parameter.
(5) Perturbation due to venting of the heat source in the GPS satellite is modeled as 'Y-bias acceleration' scaled by an adjustable parameter.

Values of weekly estimates of this scale parameter considered over a period of time do not exhibit any systematic trend except for a somewhat weak correlation with the eclipsing period. Experience shows that it is necessary to include this perturbation along with an adjustable parameter in order to obtain good fit of the data. However, in a long arc solution, considering several sub arcs for this perturbation does not significantly improve the rms of fit.

Following are some of the factors which could contribute to additional improvement of orbit accuracy beyond the current level.

(1) Perturbation due to imbalance in thermal radiation has been shown to cause differences in orbit prediction at the level of a few meters over a period of about one week or more. Although small, inclusion of this perturbation may help in achieving baseline accuracies (and/or repeatabilities) at parts per billion level. But the difficulty in considering this perturbation routinely is due to the fact that nonlinear partial differential equations (heat equations) must be solved simultaneously with the ordinary differential equations of motion, which causes significant complications in algorithm and computation even for a modest approximation of the satellite configuration. Hence, careful evaluation of the costs and benefits of including this perturbation is needed.

(2) Handling discontinuities in function values (occurring in SRP acceleration at shadow crossings), can be overcome by the ad hoc modification of the integrator back difference table. However, inclusion of this modification did not seem to improve the rms of fit or the prediction error in real data processing, although improvements were obvious in simulation studies. The reason for this anomaly is not known at present and will have to be investigated before this feature can routinely be included in orbit computation.
Dynamic Modeling – Future Study

There are indications (evidenced by discontinuities in daily/weekly solutions and by prediction errors) to the effect that all the perturbations described above do not completely or exactly represent all the forces acting on the GPS satellites. There may be other unmodeled forces such as unintentional thrusting (due to outgassing, momentum dumping, attitude correction etc.) or due to other natural phenomena. One of the ways in which such unknown and unmodeled perturbations could be accounted for in orbit computation is to estimate empirical accelerations. Such an approach needs detailed analysis in the future.
APPENDIX

GPS EPHEMERIS ACCURACY IMPROVEMENT FROM GLOBAL DATA SET

P.ABUSALI, B.SCHUTZ, B.TAPLEY, D.KUANG
CENTER FOR SPACE RESEARCH
THE UNIVERSITY OF TEXAS AT AUSTIN

AGU 1991 SPRING MEETING
MAY 28 - 31, 1991
BALTIMORE, MARYLAND
LOCATIONS OF STATIONS WHICH OBSERVED DURING S.W. PACIFIC CAMPAIGN
INCLUDING THE FIVE DMA STATIONS (TOTAL 19) ; GPS WEEK-499
GLOBAL TRACKING NETWORK DATA FOR WEEK 499

<table>
<thead>
<tr>
<th>CIGNET</th>
<th>AUGMENTED</th>
<th>DMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mojave, CA (MM)</td>
<td>Orroral, Australia (TI)</td>
<td>Buenos Aires, Argentina (TI)</td>
</tr>
<tr>
<td>Westford, MA (MM)</td>
<td>Huahine, Fr.Polynasia (TI)</td>
<td>Quito, Ecuador (TI)</td>
</tr>
<tr>
<td>Yellowknife, NWT (TI)</td>
<td>Tanna (TI)</td>
<td>Smithfield, Australia (TI)</td>
</tr>
<tr>
<td>Kauai, HI (TI)</td>
<td>Western Samoa (TI)</td>
<td>Hermitage, England (TI)</td>
</tr>
<tr>
<td>Wettzell, Germany (MM)</td>
<td>Kwajalein (TI)</td>
<td>Bahrain (TI)</td>
</tr>
<tr>
<td>Onsala, Sweden (TI)</td>
<td>Santo (TI)</td>
<td></td>
</tr>
<tr>
<td>Tromso Norway (TI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsukuba, Japan (MM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richmond, FL (MM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WEEK 499</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>No. of Stations</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>No. of DD Observations</td>
<td>43294</td>
<td>106417</td>
</tr>
<tr>
<td>No. of Estimated Parameters</td>
<td>436</td>
<td>906</td>
</tr>
<tr>
<td>RMS of Fit (cm)</td>
<td>2.54</td>
<td>2.904</td>
</tr>
</tbody>
</table>
TROMSO-ONSALA VECTOR BASELINE ACCURACY
COMPARISON WITH VLBI SOLUTION

<table>
<thead>
<tr>
<th></th>
<th>Week 499</th>
<th></th>
<th>Week 500</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 GS</td>
<td>20 GS</td>
<td>10 GS</td>
<td>19 GS</td>
</tr>
<tr>
<td>North (M)</td>
<td>-0.0286</td>
<td>-0.0313</td>
<td>-0.0591</td>
<td>0.0479</td>
</tr>
<tr>
<td>East (M)</td>
<td>-0.0112</td>
<td>-0.0670</td>
<td>-0.0194</td>
<td>0.0229</td>
</tr>
<tr>
<td>Vertical (M)</td>
<td>0.0757</td>
<td>0.0127</td>
<td>0.0668</td>
<td>0.0312</td>
</tr>
<tr>
<td>Length (M)</td>
<td>-0.022</td>
<td>-0.048</td>
<td>-0.054</td>
<td>-0.042</td>
</tr>
<tr>
<td></td>
<td>(1.5 x 10^-8)</td>
<td>(3.4 x 10^-8)</td>
<td>(3.8 x 10^-8)</td>
<td>(3.0 x 10^-8)</td>
</tr>
</tbody>
</table>
RMS of Trajectory Differences
9 GS vs 20 GS Solutions

<table>
<thead>
<tr>
<th>PRN</th>
<th>Radial (M)</th>
<th>A-Track (M)</th>
<th>C-Track (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 GS</td>
<td>20 GS</td>
<td>9 GS</td>
</tr>
<tr>
<td>3</td>
<td>2.043</td>
<td>1.836</td>
<td>15.571</td>
</tr>
<tr>
<td>6</td>
<td>3.011</td>
<td>2.463</td>
<td>60.891</td>
</tr>
<tr>
<td>9</td>
<td>2.204</td>
<td>1.931</td>
<td>5.920</td>
</tr>
<tr>
<td>11</td>
<td>0.728</td>
<td>1.044</td>
<td>5.104</td>
</tr>
<tr>
<td>12</td>
<td>2.312</td>
<td>1.403</td>
<td>30.271</td>
</tr>
<tr>
<td>13</td>
<td>2.015</td>
<td>1.657</td>
<td>10.176</td>
</tr>
</tbody>
</table>
(Pred vs Fit) in W500 for PRN-03
9 Ground Stations

Components: R, A, C (m)

Time (Day)
(Pred vs Fit) in W500 for PRN-03
20 Ground Stations
(Pred vs Fit) in W500 for PRN-09
9 Ground Stations

Components: R, A, C (m)

Time (Day)

Radial
A-Track
C-Track
(Pred vs Fit) in W500 for PRN-09
20 Ground Stations

Components: R, A, T (M)

- Radial
- A-Track
- C-Track

Time (Day)
ECF EPH DIFFERENCES (WEEK 499)
(*UT/CSR DD PHASE SOLN - NSWC EPH*)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN(m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial</td>
<td>-1.335</td>
<td>-1.348</td>
<td>-1.343</td>
<td>-1.316</td>
<td>-1.264</td>
<td>-1.313</td>
</tr>
<tr>
<td>A-Track</td>
<td>-1.898</td>
<td>-0.272</td>
<td>-0.801</td>
<td>1.037</td>
<td>-2.153</td>
<td>0.451</td>
</tr>
<tr>
<td>C-Track</td>
<td>0.482</td>
<td>0.487</td>
<td>0.452</td>
<td>0.049</td>
<td>-0.143</td>
<td>-0.158</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS(m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial</td>
<td>1.618</td>
<td>1.571</td>
<td>1.721</td>
<td>1.421</td>
<td>1.317</td>
<td>1.405</td>
</tr>
<tr>
<td>A-Track</td>
<td>3.133</td>
<td>2.228</td>
<td>2.442</td>
<td>1.752</td>
<td>2.777</td>
<td>1.475</td>
</tr>
<tr>
<td>C-Track</td>
<td>4.633</td>
<td>4.187</td>
<td>3.568</td>
<td>2.489</td>
<td>3.795</td>
<td>2.376</td>
</tr>
</tbody>
</table>
ECFEPH DIF(CSR-NSWC) SV PRN- 3
W499:CSR DD SOLN (15+3) GS:GLB499S. EST

TIME (DAY)

DR, DA, DC-M

RAD

ATR

CTR
ECFEPH DIF(CSR-NSWC) SV PRN- 9
W499:CSR DD SOLN (15+3) GS:GLB499S. EST

![Graph](image-url)
GIG'91 Workshop
Agenda

Monday, 5 August 1991

Arrival of the participants

19.00 - 20.00 Open-air reception by good weather otherwise in the restaurant of the hotel

Tuesday, 6 August 1991

08.00 - 09.00 Registration

09.00 - 10.30 Opening Session (Chair: H. Seeger, IFAG)
 Greeting and Remarks from Hosts: H. Seeger (IFAG)
 Greeting and Remarks from IERS-Background and objectives of the IERS GPS Campaign: M. Feissel? (IGN)
 Greeting and Remarks from the IERS GPS Technique Coordinator: W. Melbourne (JPL)
 IERS Latest UTPM Results for the GIG Experiment Period: M. Feissel? (IGN)

10.30 - 11.00 Coffee break

11.00 - 12.30 The Field Campaign (Ch: W. Schlüter, IFAG/R. Neilan, JPL)
 Summary of the Campaign-Planning, Standards, Procedures, Operations, Performance, etc: R. Neilan/S. Fisher (JPL)
 Reports from Various Operations Teams (Representatives from organizations that participated in field ops will be asked to give a brief account of their experiences, insights, etc.)

12.30 - 14.00 Lunch

14.00 - 15.30 The Field Campaign (cont.)
 Continued Reports from Ops Teams
 Discussion: Lessons Learned, Recommendations for Future Campaigns (Standards, Procedures, Documentation, etc.)

15.30 - 16.00 Coffee break

16.00 - 18.00 Data Analysis - I: Preparation
 Status of Data Pre-Processing & Distrib., Site Ties (S. Fisher)
 Reports by Pre-Processing Centers (All)
 Summary of Analysis Standards Proposed by JPL (G. Blewitt)
 Discussion of above and related topics

19.00 Open-air grillparty
Data Analysis - II: Results - The plan is to organize this all-day session by topics. Those with results in several areas will therefore give several short presentations. The main topics are:

1. Descriptions of software and modeling strategies
2. Baseline Solutions
3. GPS Orbit Solutions
4. Earth Orientation Solutions
5. Geocenter Solutions
6. Discussion, Comparison & Analysis of Results

As of 25 July, the known groups planning to present results are:

- U. Texas - B. Schutz
- DGFJ - K. Kaniuth
- NSWC - E. Swift
- UNAVCO - C. Rocken
- MIT - R. King
- JPL - Blewitt, Lichten, Lindqwister, Webb, Yunck

There is still space for more.

08.30 - 10.00 Special Topics (Preliminary list):

- Multipath studies with GIG data (C. Rocken)
- Do high latitude sites pose special problems? (TBD)
- Implications of SA/AS for global GPS measurements (T. Yunck)
- Status of 3CAR GPS geodesy project in Antarctica (J. Manning)
- Summary of early GIG results (TBD)

10.00 - 10.30 Coffee break

10.30 - 12.30 Open Discussion (Suggested topics):

- Implications of early GIG results
- Establishing a GPS-based global reference frame
- Integrating GPS into IERS operations and products
- Plans for a follow-up GIG'91 workshop before IGS campaign?

12.30 Lunch

14.30 Sightseeing tour through the Ahr-Valley
SUMMARY

• Analyzed days 34-38 of GIG '91

• Data: 17 Rogue Sites
 Plus Hobart mini-mac
 W. Samoa TI
 Easter I. TI

• Analysis Strategies
 • Fix Hobart Kokee and Wettzell to SV5
 • No a priori constraints on estimated parameters
 • Estimated baselines range from 800 km to 8000 km
 • Repeatability result: 20 PPB to 2 PPB
 • Adjust all stations with 1 meter a priori, all other estimated parameters have no a priori
 • Pole position error estimate (RMS): 1 mas
GIG 91 DATA

- All Rogue sites, except S. California array and Honefoss
- Augmented network
 - Hobart, Tasmania (Mini-Mac)
 - W. Samoa (TI-4100)
 - Easter Island (TI-4100)
REPEATABILITY BASED ON 4 DAYS
8 STA, 28 BASELINES

\[Y = 3.2306e-2 + 3.8144e-9x \]

with $x > 10,000$ km, $b = 0.25$
REPEATABILITY BASED ON 4 DAYS
8 STA, 28 BASELINES

\[y = 3.6375 \times 10^{-2} + 2.9117 \times 10^{-9} x \]

\(\delta_0 \times 10^{-9} \) without > 10,000 km baselines
Polar Motion Comparison During the GIG Campaign

Delta xp (mas)

MJD

48260 48280 48300 48320

Delta yp (mas)

MJD

48260 48280 48300 48320
GLOBAL GPS ORBIT DETERMINATION

B. Schutz, P. Abusali, M. Watkins, H. Rim, and B. Tapley

Center for Space Research
The University of Texas at Austin

IAG
Vienna, Austria
August 1991
SUMMARY

- Analyzed days 34-38 of GIG '91
- Data: 17 Rogue Sites
 - Plus Hobart mini-mac
 - W. Samoa TI
 - Easter I. TI
- Analysis Strategies
 - Fix Hobart Kokee and Wettzell to SV5
 - No a priori constraints on estimated parameters
 - Estimated baselines range from 800 km to 8000 km
 - Repeatability result: 20 PPB to 2 PPB
 - Adjust all stations with 1 meter a priori, all other estimated parameters have no a priori
 - Pole position error estimate (RMS): 1 mas
SOFTWARE VALIDATION

- Force and Kinematic Models

 - MSODP and MSODP1: Agree to sub-mm level over 7-day GPS arcs

 - MSODP1 and UTOPIA: Agree to mm level in all models (ROCK4 not tested, not available in UTOPIA)

 - UTOPIA and GEODYN (GSFC): Agree to mm level for TOPEX/POSEIDON (largest difference in ocean tide force model)

 - UTOPIA extensively used for SLR processing
 - Etalon analysis/models similar to GPS

 (fit 800 days of SLR Etalon data to few cm)
SOFTWARE VALIDATION (continued)

- GPS Measurement Model

 - Tests preprocessing system

 - Zero baseline tests of TI and Trimble

 - Short, calibrated baseline tests between Trimble, TI, TI-Trimble, TI-Minimac, and Trimble-Minimac

 - Comparisons of GPS results with VLBI and SLR
 (Recent: Onsala/Tromso, McDonald/Platteville/Quincy; results 1–2 parts in 10^8)
GEODE蒂C PROCESSING (COMPUTER: CRAY Y-MP)

• MSODP: Multi-Satellite Orbit Determination Program. Developed for GPS processing (planned to be phased out by end of 1991).

• MSODP1: Similar to MSODP, but includes high (GPS) and low (e.g., TOPEX) satellites. Will become primary processing software for multi-satellite data. Has more extensive force models, more compatible with UTOPIA, write regress files, etc.

• LLISS: Large Linear System Solver. Uses regress file (used for gravity estimation, etc.).
DATA PREPROCESSING (COMPUTER: VAX)

- Convert raw receiver binary or RINEX into VAX binary
- Review and correct receiver phase measurement time tags (EDORBCL)
- Insert information flags (PREPB)
- Edit phase, fix cycle slips (EDPH)
- Review double difference, perform further editing, write DD file (ASCII) (also preliminary geodetic analysis)
- Utility programs (print binary file, edit binary flags, sample data, etc.)
GIG '91
GPS Experiment for IERS and Geodynamics
ROGUE RECEIVER LOCATIONS

ADDITIONAL ROGUES IN CALIFORNIA PERMANENT ARRAY:
PINON, SCRIPPS, JPL MESA
GIG 91 DATA

- All Rogue sites, except S. California array and Honefoss

- Augmented network
 - Hobart, Tasmania (Mini-Mac)
 - W. Samoa (TI-4100)
 - Easter Island (TI-4100)
<table>
<thead>
<tr>
<th>DAY</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>✓</td>
</tr>
<tr>
<td>35</td>
<td>✓</td>
</tr>
<tr>
<td>36</td>
<td>✓</td>
</tr>
<tr>
<td>37</td>
<td>✓</td>
</tr>
<tr>
<td>38</td>
<td>✓</td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>TEST</td>
<td>40</td>
</tr>
<tr>
<td>DATA</td>
<td>41</td>
</tr>
<tr>
<td>SET</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>✓</td>
</tr>
<tr>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
SCALE DIFFERENTIAL CUMULUS
OVER 24 HOUR PERIOD
DAY 3G
GPS Analysis Models

<table>
<thead>
<tr>
<th>MSODP1/LLISS</th>
<th>MSODP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational Model</td>
<td></td>
</tr>
<tr>
<td>- GM = 398600.4404 km/s</td>
<td>398600.436</td>
</tr>
<tr>
<td>- Nominal field: TEG-2 (Tapley, et al.)</td>
<td>GEM-T1</td>
</tr>
<tr>
<td>- Truncation of field: 8x8</td>
<td>Same</td>
</tr>
<tr>
<td>- Point mass Sun and Moon</td>
<td>Same</td>
</tr>
<tr>
<td>- Solid Tide: degree 2</td>
<td>Same</td>
</tr>
<tr>
<td>- Ocean Tide: Not included</td>
<td>Same</td>
</tr>
<tr>
<td>- Central body relativistic perturbation</td>
<td>Same</td>
</tr>
</tbody>
</table>

Nongravitational Model	
- Solar Radiation (ROCK4)	Same
- y-bias	Same
- Earth Radiation: Not included	Same

Empirical Forces:	
- Along track (CT)	No
- Radial (once/rev)	No
- Normal (once/rev)	No
GPS MODELS (continued)

<table>
<thead>
<tr>
<th>MSODP1/LLISS</th>
<th>MSODP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Frame (a priori)</td>
<td>Same</td>
</tr>
<tr>
<td>Station coordinates: SV5</td>
<td>Same</td>
</tr>
<tr>
<td>IERS Standards: precession/nutation</td>
<td>Same</td>
</tr>
<tr>
<td>IERS Standards: plate motion (AM0-2)</td>
<td>Same</td>
</tr>
<tr>
<td>IERS Standards: solid tides/loading</td>
<td>Same</td>
</tr>
<tr>
<td>Lageos pole position (x,y)</td>
<td>Same</td>
</tr>
<tr>
<td>Lageos/VLBI UT1</td>
<td>Same</td>
</tr>
</tbody>
</table>
REPEATABILITY BASED ON 4 DAYS
8 STA, 28 BASELINES

\[y = 3.2306 \times 10^{-2} + 3.8144 \times 10^{-9} x \]

\(\leq 3 \times 10^{-7} \) without >10,000 km baselines

[Graph showing scatter plot and line of best fit]
REPEATABILITY BASED ON 4 DAYS
8 STA, 28 BASELINES

y = 3.6375e-2 + 2.9117e-9x

x = 0.0 \times 10^{-9}
without
>0.000 km baselines

VERL (M)

BSL DIS (KM)
Polar Motion Comparison During the GIG Campaign

Delta x_p (mas)

Polar Motion Comparison During the GIG Campaign

Delta y_p (mas)
GEODETIC ANALYSIS OF GPS MEASUREMENTS NEAR THE TONGA TRENCH: 1988-1990

B. Schutz, D. Kuang, P. Abusali, F. Taylor
The University of Texas at Austin

M. Bevis
North Carolina State University

AGU

DECEMBER 1991
SAN FRANCISCO
Plate boundaries and active zones of the Earth's crust
SOUTHWEST PACIFIC DATA CHARACTERISTICS

- 1988:

 Fiducial: TI-4100 (8 sites), Mini-Mac (1 site)
 SWP Network: TI-4100 (4 sites)
 SA off, 11 day campaign, 7 satellites
- 1989 (Session 1):

 Fiducial: Mini-Mac (5 sites), TI-4100 (10 sites)
 SWP Network: TI-4100 (5 sites), Trimble SLD (3 sites)
 SA off, 5 day campaign, 7 satellites
- 1990 (Burst 1):

 Fiducial: Mini-Mac (6 sites), Trimble SST(5), TI-4100 (4), Rogue (5)
 SWP Network: Trimble SST (11 sites)
 North American Evaluation Network: Trimble SST & TI-4100 (3 sites)
 SA on, 8 day campaign, 13 satellites
SOUTHWEST PACIFIC PROCESSING STATUS

• 1988:
 Processing complete (11 days); various experiments in progress

• 1989 (Session 1):
 Processing in progress; processing of Sessions 2-4 completed to
 establish DMA Smithfield coordinates in reference frame

• 1990 (Burst 1):
 Processing complete (except DMA data); various experiments in progress
GPS ANALYSIS MODELS

MSODP Force Models

- Gravitational Model
 - GM = 398600.440 km/s
 - Nominal field: GEM-T1
 - Truncation of field: 8x8
 - Point mass Sun and Moon
 - Solid Tide: degree 2
 - Ocean Tide: Not included
 - Central body relativistic perturbation

- Nongravitational Model
 - Solar Radiation (ROCK4)*
 - y-bias*
 - Earth Radiation: Not included

* Denotes solve-for parameter

MSODP Reference Frame

- Fixed station coordinates
- Combined SLR/VLBI
 - SLR: CSR91L03
 - VLBI: GSFC GLB718
 - Epoch: January 1988
- Coordinates mapped to campaign epoch using SLR or VLBI observed velocities
- IERS Standards:
 - Precession/nutation
 - Solid tides/ocean loading
- Earth Rotation
 - Lageos pole position (x,y)
 - Lageos/VLBI UT1
SWP-90 ANALYSIS STRATEGY AND EXPERIMENTS

• Global fiducial network to determine orbits

• Multi-day (7 day) arcs

• Simultaneous adjustment of orbit parameters (including force model parameter), 2.5 hour zenith delay, ambiguity parameters, station coordinates; all estimated parameters have infinite a priori covariance

• Experiments:
 • Full global network solution (selected fixed sites)

 Number of Double Differences (DD): \(\sim 326,000\)
 DD RMS: 2.5 cm

 • Reduced network solution: emulate the network configuration in 1988

 Number of Double Differences (DD): \(\sim 154,000\)
 DD RMS: 2.9 cm
SWP-90 SOLUTIONS

- Full global network fixed sites:
 Minimac: Mojave, Westford, Richmond, Wettzell, Tasmania

- Reduced network fixed sites:
 Mojave, Westford, Wettzell, Orroral (Trimble)

- Comparison between full network and reduced network:

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Global (m)</th>
<th>Reduced (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rarotonga/Vava’u (1509180+)</td>
<td>0.7633 (.025)</td>
<td>0.7724 (.026)</td>
</tr>
<tr>
<td>Rarotonga/Tongatapu (1605587+)</td>
<td>0.9078 (.025)</td>
<td>0.9206 (.027)</td>
</tr>
<tr>
<td>Rarotonga/W.Samoa (1527538+)</td>
<td>0.6459 (.017)</td>
<td>0.6574 (.018)</td>
</tr>
</tbody>
</table>

(Repeatability RMS in parentheses)

- Precision estimate:
 - From above 3 lines: 10-20 parts per billion
 - From 103 lines in the global network: 2.3 cm + 8 ppb*length
SWP-90 EVALUATION SOLUTIONS

- Based on results from full global network:

<table>
<thead>
<tr>
<th>Baseline</th>
<th>SWP-90</th>
<th>SLR/VLBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orroral (Tr)/Tasmania (MM) (805722+)</td>
<td>0.200</td>
<td>0.214</td>
</tr>
<tr>
<td>Kokee Park (Tr)/Huahine (Tr) (4312837+)</td>
<td>0.388</td>
<td>0.333</td>
</tr>
<tr>
<td>Mojave (MM)/McDonald Obs. (Tr) (1305503+)</td>
<td>0.619</td>
<td>0.625</td>
</tr>
<tr>
<td>Wettzell (MM)/Onsala (TI) (919659+)</td>
<td>0.478</td>
<td>0.449</td>
</tr>
</tbody>
</table>

(All distances in meters)

- Accuracy estimate: 10-30 parts per billion
 - Receiver mix used in evaluation
 - Evaluation sites include mix of SLR and VLBI
SWP-88 SOLUTIONS

- Fiducial sites (all TI-4100):
 Orroral, Kokee Park, Mojave, Westford, Richmond, Yellowknife, Wettzell, Onsala, Tromso

- Fixed sites:
 Orroral, Mojave, Westford, Wettzell

- Strategy:
 - Multi-day arcs: separate arcs for GPS Week 444 and Week 445 (July 1988)
 - Simultaneous adjustment of orbit and geodetic parameters (as in 1990)

- Solution characteristics:
 - Week 444: 73710 DD, RMS = 2.3 cm
 - Week 445: 43147 DD, RMS = 2.1 cm
 - Repeatabilities (combined 444 and 445):
 - Rarotonga/Tongatapu: 4.6 cm
 - Rarotonga/Vava’u: 4.1 cm
 - Rarotonga/W. Samoa: 6.9 cm
CONCLUSIONS

- Solution has precision at level of 10 to 20 ppb
- Comparison with SLR/VLBI baselines in Australia, French Polynesia, and North America and Europe indicates agreement at the 10-20 ppb level
- Results from global network of 20 sites compared with results of a reduced network to emulate 1988 fiducial configuration: agreement within precision estimate

SWP-90:
- Solution based on 7 Block I satellites. TI-4100 receivers (maximum 4 satellites) exhibit higher daily repeatability than 1990 (~4.5 cm vs. ~2.5 cm)
- Comparison with VLBI baseline Weizell/Tromsø shows agreement at 10 ppb

SWP-88:
- Experiments using two separately edited data sets from Week 444 show differences at the repeatability level

SWP-89:
- In progress

(Baseline: 2296 km)