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ABSTRACT

A method for solving the viscous shook-layer equations for

hypersonic flows over long slender bodies Is presented. The governing

equations are solved by employlng a spatial-marchlng implicit finite-

difference technique. The two flrst-order equations, continuity and

normal momentum, are solved simultaneously as a coupled set. This

method yields a simple and computationally efficient technique.

Flows past hyperboloids and sphere cones with body half angles of

five to 35 degrees are considered. The flow conditions included are

from high Reynolds numbers at low altitudes to low Reynolds numbers at

high altitudes. Detailed comparisons have been made with other

predictions and experimental data for slender body flows.

The results show that the coupling between the continuity and

normal momentum equations is essential and adequate to obtain stable and

accurate solutions past long slender bodies. Both the Cebecl-Smith and

Baldwin-Lomax turbulence models ape found to be adequate for application

to long slender bodies. Using the corrected slip models, the viscous

shock-layer predictions compare quite favorably with experimental data.

Under chemical nonequilibrlum conditions, the surface catalytic effects

can significantly influence the surface heat transfer.
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Chapter I

INTRODUCTION

1.1 Physical Features of the High Math Number Flow

A renewed interest in hypersonic aerothermodynamlcs has been

motivated by new vehicle concepts such as the national aero-space plane

(NASP) [I] , and the transatmospherlc vehicle (TAV) [2]. The term

"hypersonic" implies that the flight velocity is much greater than the

ambient speed of sound. An approximate classification of this flow

regime is where the freestream Mach number is greater than five. These

vehicles will encounter a variety of flow conditions which include

atmospheric flight and the transitional flow regimes. For example [3],

the TAV will take off from the Earth's surface, and enter a low Earth

orbit. The vehicle will carry out a global mission either inside or

outside the atmosphere, and eventually land back on Earth under its own

power. The range of flow conditions includes low altitude, high density

flow, to high altitude, low density flow. These conditions include the

continuum flow regime where the no-sllp assumption is made. In addition

the transitional flow regime, where sllp effects are important, must be

considered.

*The numbers in brackets indicate references.
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There are two main effects associated with hypersonic flows [4,5]:

(I) the fluid dynamic effects arising from the high velocity gas, and

(2) the real gas effects due to the high temperature gas. For

hypersonic speeds, the shock layer, which is defined as the distance

between the shock and body, is small. The boundary layer thickness

grows more rapidly because kinetic energy dissipation within the

boundary layer, which yields a high gas temperature, results in an

increase in gas viscosity and a decrease in density. Along with the

thin shock layer, the thick boundary layer creates an important

disturbance in the outer flow that gives rise to the viscous interaction

phenomenon which controls the surface pressure distribution over the

body. Moreover, for a blunt body, the shock wave Is curved, leading to

large entropy gradients in the shock layer.

Compression of the gas forward of the vehicle and heat generation

due to viscous dissipation lead to elevate gas temperatures in the shock

layer. Additionally, the gas will promote chemical reaction in both the

boundary layer and the shock layer. As a result, the specific heat per

unit mass is increased considerably, and the specific heat ratios will

no longer be constant. The gas will not behave as a calorically perfect

gas. Moreover, if the shock layer temperature is sufficiently elevated,

radiation effects will become important, giving rise to a radiative flux

to the surface. The resulting heat transfer to the surface of a

hypersonic vehicle will dominate the design criteria of the vehicle.

For hypersonic speeds, Blottner [6] showed that the shock layer

flow is in chemical equilibrium and has a definite boundary layer region

for low altitude conditions. Also, the flow can become turbulent at

these conditions [7]. However, the gas may not reach the equillbrlum
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state for higher altitude conditions. Moreover, the boundary layer

cannot be identified because it merges with the shock wave.

1.2 Numerical Methods for Hypersonic Flow

In general, there are two methods to analyse hypersonic flow --

experimental and theoretical . Flows in chemical equilibrium can be

simulated with small-scale laboratory experiments with corrections for

"real gas" effects. However, the chemical nonequilibrium flow around a

hypersonic vehicle operating in the upper atmosphere cannot be simulated

because it requires simultaneous reproduction of air density, flight

velocity and vehicle scale. In absence of a full-scale flight

experiment in which the thermodynamic environment is fully duplicated,

an adequate design capability for hypersonic vehicles relies on

theoretical predictions.

The great entropy gradients and the thick boundary layer in a

hypersonic flow make the classical isentropic irrotational approach and

the conventional first-order boundary layer equations inadequate to

predict the flowfield. Second-order boundary layer effects and

vorticity interaction should be considered in the flow. Three current

numerical approaches have been adopted for analysing these problems.

They are the solution of either the second-order boundary layer

equations, the full Navier-Stokes equations, or the viscous shock-layer

equations.

The simplest of these approaches is to employ the second-order

boundary layer equations [8], with matching of the first- and second-

order boundary layer and inviscid solutions at the boundary layer edge.

Although this approach has been found quite attractive for short slender
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bodies [93, several computational difficulties becomeobvious for long

slender bodies. First, the computing time required is excessive because

one must compute the Invlscld flow, the flrst-order boundary layer flow,

the flow due to displacement thickness, and then the second order

boundary layer flow. A second difficulty arises from strong vortlclty

interaction which mayoccur far downstreamdue to the entropy layer on

blunt long slender bodies. This entropy layer causes difficulty in the

matchup procedure between the viscous and inviscid regions because there

is a question as to what the proper edge conditions should be for the

boundary layer. This approach does not properly take into account the

swallowing of the strong entropy layer by the boundary layer [5]. The

design geometries of hypersonic vehicles are slender long bodies with

blunt noses in order to reduce heat transfer rate at the stagnation

region and reduce drag force on the body. The second-order boundary

layer equations are not desirable for this problem.

The second approach employs the steady Navler-Stokes equations

[10] and their tlme-dependent forms [11]. This approach successfully

provides the solution for the stagnation region of short bodies.

However, the complexity of the solution procedure due to the elliptic

nature of the equations requires excessive computing time and computer

storage, which currently limits their applications to short bodies.

Becauseof the difficulties encountered by the above two

approaches, attention has turned toward the third approach, the viscous

shock-layer equations. This set of equations which was developed by

Davis [12] is obtained from the full Navier-Stokes equations by keeping

terms up to second-order in the inverse square root of the Reynolds

number in both viscous and Invlscid regions. It is uniformly valid to
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second-order throughout the entire shock layer, hence, the viscous-

inviscld interactions and strong vorticity interactions are accounted

for in a stralght-forward manner. Moreover, this set of equations is of

a hyperbolic-parabolic nature and, therefore, can be solved by using a

marching procedure similar to methods employed in boundary layer theory.

As a consequence, they can be solved for a hypersonic flow on a slender

long body without excessive computer time and storage requirements.

Moreover, this set of equations can be used to compute the viscous flow

in the subsonic blunt nose region. This is desirable for long bodies,

especially for analysing problems with chemical reactions.

The full viscous shock layer solution of Davis [12] was obtained

through an iterative relaxation process from the thin shock layer

solution. This approach encountered difficulties for the flow far

downstream, especially for the slender body. Werle et al. [13]

developed an Alternating Direction Implicit (ADI) Technique with an

artificial time coordinate to relax the shock shape from an initial

guess. Even with large relaxation factors, the instabilities were still

encountered whenever the inviscid region encompasses a significant

portion of the total shock layer thickness. The relaxations of the

shock shape in Davis [12] and Werle et al. [13] are essential due to the

slightly elliptic nature of the equations in the streamwise direction.

These instabilities do not come from the shock shape relaxing technique.

From the hypersonic small disturbance theory [14], it is shown

that the continuity, normal momentum, and energy equations become

uncoupled from the tangential momentum equation in the inviscid region.

In other words, the solution of the continuity, normal momentum and

energy equations will not depend strongly on the solution of the
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tangential momentumequation. The numerical methods of Davis [12] and

Werle et al. [13] solved the governing equations separately which are

knownas the cascading method. In this method, the solution of the

tangential momentumequation drives the solution of the continuity and

normal momentumequations. This method becomesimproper for the flow

far downstream, especially for a slender body on which the shock layer

thickness is very thick and the inviscid region encompasses a large

portion of the shook layer. An alternative method of solution was

suggested by Werle et al. [13]. The more adequate method is to solve

the equations simultaneously.

A fully coupled system of all the equations is a desirable scheme.

Hosny et al. [15] solved the four governing equations, namely, the

continuity, tangential momentum, normal momentum and energy equations,

simultaneously as a coupled set and local iterations were made to solve

for the shock stand-off distance. Gorden and Davis [16] added an

equation for the shock stand-off distance into the coupled set to

eliminate the need for local iterations. This technique is quite

appealing for perfect gas applications. But, it requires inversion of

large matrices and hence the storage and computing requirements are

quite large. Also, the system of equations will become very complicated

if chemical reactions are included. Therefore, this approach is not

desirable for long bodies.

The two second-order equations, tangential momentum and energy,

are parabolic, and there are few problems in finding the solutions to

these equations. The greatest difficulty exists in solving the two

flrst-order equations, continuity and normal momentum [13]. Moreover,

from the hypersonic small disturbance theory, the solution of the
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tangential momentumequation becomesuncoupled with the other equations

far downstreamfor a slender body. A more desirable approach is to

solve the two first-order equations simultaneously as a coupled set

rather than solve all four equations as a fully coupled set. This

approach is quite attractive for slender body problems, especially with

real gas effects. The instabilities will be eliminated, and the storage

requirements and computing time may not increase excessively.

Wasklewicz and Lewis [17] coupled the two first-order equations and

reported good improvement in the solution obtained for slender (7 degree

and 10 degree) but short bodies with solutions up to 20 nose radii or

less. The effects of this technique on the flow field over a slender

long body far downstream should be investigated.

Most of the work with viscous shock-layer equations in the past

has considered either short slender or wide angle bodies. However, most

of the future vehicles will be long slender blunt bodies. The

calculation of hypersonic viscous flows past long slender axlsymmetric

blunt bodies is of prime interest to the designer of such aerospace

vehicles.

A variety of flow conditions are encountered during the

transatmospheric flight of these vehicles. The range is from low

Reynolds numbers at high altitudes to high Reynolds numbers at low

altitudes. At low altitude, the hypersonic flow over a slender body

usually becomes turbulence. Direct numerical solution of turbulent flow

cannot be obtained at the present. The prediction of turbulent effects

depends on modeling the fluctuation terms. The algebraic eddy viscosity

models are more appealing than the other models because less computer

storage and computer time are required. The general algebraic
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turbulence model which is implemented with the viscous shock layer

method is the Cebeci-Smith model [18,19]. Due to the difficulty of

determining the boundary layer edge in a hypersonic flow over a long

slender body, an alternative model, the Baldwin-Lomax model [20], is

more likely to be used. This model has been implemented in the Navier-

Stokes equations and the parabolic Navier-Stokes equations [21,22], but

not in the viscous shock-layer equations.

At high altitude, the "low density effects" becomeimportant where

they can significantly influence the lift, drag, momentsand aerodynamic

heating of a hypersonic vehicle. However, not muchattention has been

given to the problems encountered with low-density aerothermodynamics.

At highly rarefied gas flow conditions, the continuum approach is no

longer valid. But at slightly rarefied gas flow conditions, the

continuum approach can be extended to this flow regime if slip effects

are properly accounted for [12,23].

At high temperature, the perfect gas assumption becomesinvalid.

The gases in the flow becomechemically reacting, especially, at high

altitude. While flows with chemical equilibrium in the shock layer have

been studied intensively [24,25], there are only a limited numberof

analyses on flows with chemical nonequilibrium [6,26]. The effects of

flnite-rate chemical reactions are not fully understood yet.

The main objective of this study, therefore, is to investigate the

solution for long slender blunt body; i.e., the continuity and normal

momentumequations are solved simultaneously as a coupled set. The

basic theoretlcal formulations used in this study are provided in Chap.

2. The suitability of the Cebeci-Smith and Baldwin-Lomax models for the

hypersonic flow past long slender bodies at low altitudes is examined.
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examined. It is presented in Chap. 3. The low-denslty effects using a

perfect gas model are presented in Chap. 4. The investigation of a

chemical nonequilibrlum flow is presented in Chap. 5.
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Chapter 2

BASICTHEORETICALFORMULATION

The viscous shock-layer equations for a perfect gas [12] and for a

multicomponent gas mixture [24] are presented in this chapter. The

physical model and coordinate system for a body are shownin Fig. 2.1.

The flow in the shock layer is assumedto be axisymmetic, steady,

viscous and compressible. The shock-layer gas is assumedin local

thermodynamic equilibrium.

2.1 Governing Equatlons For a Perfect Gas

The viscous shock-layer equations are obtained from compressible

Navler-Stokes equations which are written in the body-orlented

coordinate system shown in Fig. 2.1. These equations are

nondimenslonalized with variables which are of order one in the region

near the body surface (boundary layer) for large Reynolds number. The

same set of equations are then written in variables which are of order

one in the essentially inviscld region outside the boundary layer.

Terms in each set of equations up to second-order in the inverse square

root of a Reynolds number are kept. A comparison of the two sets of

equations is then made and one set of equations is obtained which is

valid to second order in both the outer and inner regions. A solution

to this set of equations is thus uniformly valid to second-order in the

entire shock layer for arbitrary Y. Anderson and Moss [19] used the



11

"0
0

rn

itl

,i1,,I
m
I=

L
0
0
(J

o;

&



12

eddy viscosity approximation to replace the Reynolds stresses and

turbulent heat flux to find the solution of the turbulent flow. The

viscous shock-layer equations for a perfect gas with turbulent flow are

[19]

Cont inui ty:

_[a (r+ncose)Jpu] + _n[(1+nK)(r+ncose)Jpv] - 0 (2.1)

s-momentum:

2a +au
u au au uw_ I ___ c {_[_(I+¢ )_P(Y+nK as + v _-_ + l-';_nK" + l+n---'_ as "

_ I/U_] 2_ JOOSe )[(I+c au pU_1+n_ + (1-V6_nK+ r+ncose + )a-n - 1--/6_n_] }

n-momentum:

(2.2)

Energy:

__-- av u2_) _nav + v + - 0 (2.3)
P(T+_K as an 1+nK

2
u aH + aH a_p_ pu w .

P(l+n< as v _-_) - v an + l+n_

2,a . p(1+g + Pr _ aH K jcose )
e L_-_L_-_ Pr,t" _ + ¢] + (1-_-_n_ + r+ncose

State:

p + Pr aH
X [_--_(l+e rr,_"---T-r)a'n + ¢]}

(X-l) pT

(2.4)

(2.5)
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where

2

_._ + Pr , au ]_u K¢ = [Pr - I + E ,-:--/tPr,t - I) u _-c_] (2.6)
1+nKrI-,_

The molecular viscosity is given by the Sutherland's law as

- [(I+C)/(T+C)] T 3/2 (2.7)

where

* 2*C = C /(Y-I) M T® (2.8)

and C is 110.33 K for air.

The preceding equations are written in nondimensional forms where

the nondimensional variables are defined as

s - s /R N u = u /U®
* * *2

p = p /p®U®

n = n /RN v = v /U® T = T /Tre f

r = r IR N p = p Ip® - _ Iv (Tre f)

= < RN h = h lh Cp = CplCp,® (2.9)

Also, the dimensionless parameters that appear in Eqs. (2.1) to (2.6)

are defined as

Pr - u C IK (2.10)
P

Pr,t = PTCpl_T (2.11)

(T ref) 112
E-I, , ,]

p® U® RN

(2.12)

and

+ * *

s " UTIU (2.13)



To simplify the numerical computations, a coordinate

transformation Is applied to the viscous shock-layer equations• This

transformation is accomplished by normalizing the normal coordinate wlth

respect to the local shock standoff distance. Consequently, a constant

numberof flnlte-dlfference grld points between the body and shock are

used. Also, the need for interpolation to determine shock shape and the

addition of grid points in the normal direction Is eliminated as the

computation movesdownstream.

The transformed variables are

s - _ (2.14)

n - n/nsh (2.15)

The transformations relating the dlfferentlal quantities are

and

n' a
a a sh -

-- - n _-_ (2.16)
as a_ nsh

a__. I a (2.17)

an nsh aW

where

a 1 a
-- I

an 2 n2 a_ 2
sh

(2.18)

In general, a variable grld spacing is used In the _-directlon so

that the grld spacing can be made small in the region of large

gradients. Since the spacing Is not uniform in the _ direction, it Is

convenient to apply a transformation to the _ coordinate so that the

dnsh
n' --- (2.19)
sh d_
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governing equations can be solved on a uniformly spaced grld in the

computational plane. Thls transformation is achieved by [26]

n - g(_h ) " g(_)
(2.20)

The stretching function g(_) is given by

g(_) - I - [_ + (I-_)

_n(_+11 )

{B-n(2_+1)+.1.)
_n _+_(2E+I)_I,]

(2.21)

The first and second derivatives of Eq. (2.21) are expressed as

• I I
dg ,. (I-_)(2_+I){[B.__.(2,_+I)+I ] ['_+R(2_+I)-I] }

d_' £n(-_._)

(2.22)

d2g (I-_) (2_+I) 2 1 I

w. - ]2}d_2 B'+I { 2
_,n(,_) [_-_(2ot+ I)+I ] [B+rl(2ct+1)-I

(2.23)

Equation (2.21) permits the mesh to be refined either near the body only

(_ - O) or equally near both the body and bow shock (_ - I12). The

parameter B controls the amount of stretching. The coordinate _ can be

obtained from inverting Eq. (2.21) and is expressed as

I-n-_

,'B+ 1 ,, 1-E

" (2E+I) [I -B { 1-n-E }]

(-_+I) I-_
+I

(2.24)

Thls transformation keeps the body at n - 0 and the shock at n - I with

uniform mesh in the computational coordinate n.

After the governing equations, Eqs. (2.1) to (2.6), are written In

the transformed _, n coordinates, the second-order partial differential

equations are expressed as [19]
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B2W

Bn2

d2g/d_ 2 + a l(dg/d_) aW
÷

(dg/d_) 2 an

a 2
W

_3 _4 BW
__ ÷ l • _ 1 0

(dg/d_) 2 (dg/d_) 2 BE

(2.25)

The quantity W represents u for the s-momentum equation and H for the

energy equation. The coefficients _I to e4 are written as-

s-momentum, W - u:

1 BP(I+¢+_ ) nShK (I+2¢+) JnshC°S8

÷ ÷

_1 " " @n (1+..nnshK)(1+¢+) r + _'nsbCOSe_(1+¢ +)

nshnsh_P u nsh p v

¢ p(I+¢+) (1÷nnsh K)
e2g(1,¢ ÷ )

(2.26)

2

nsh K _ ah(1+¢ +)_ dE nshK -- x

_2 = - + - _n d_ (1÷¢+)(1+-_nsh K)
p(I+¢ )(1+nnsh K)

2
nshKP v

_oose l - +
[l+_nsh _ + r+_nshCOSS- ¢2(1+_nshK)_(1+g )

(2.27)

¢2(l+_nShK)p (1+¢+ _'. nsh d_

(2.28)
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2
nsh pu

÷

e2(1+_nshK)P (I+E

(2.29)

Energy, W = H:

_r(1 + Pr _ d_
+E P-"_ t;

+ Pr )l + _nsh -

*e _ J l+n-71sb_

Jnsh cos8
-- +

r+_nshe os8

nsh n sh_P u

2 U + + Pr )(1+_nshK)¢ _(I { Pr,t

nsh p v

2_ + Pr ,

(2.30)

(2.31)

nsh

(_3 " _--_'-_(1+ + Pr )c Pr,t

@n

joosB ,.)
+ r+_nshcos

2

V d__ _J__ nsh_VpU

2 -- ¢2c dn an (l+-nnsb K)

(2.32)

_4

2

n shpu

2p ++Pr)( - )
¢ _--_ (I ¢ Pr,t l+nnsh_

(2.33)
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where

÷

1
Pr u

p-_-_,t(Pr,t - I)] --dg _u
nsh d_ _)rl

2
Uu K

1+finsh_
(2.34)

The remaining first-order equations are written as

Global Continuity :

_[nsh (r+_nshCOS8)J pu] + _ _n {(r+_nshCOSS)

X [(1+-_nshK)PV - n_h_PU]} - 0 (2.35)

n-momentum:

nsh(1+n-hsh_) @n d_ nsh @n d_

_ pu2_ + I_!- B_p__ = 0

(1+_nshK) nsh Bn dF

(2.36)

State:

p - pT (Y-I)/Y (2.37)

2.2 Governing Equations for a Multicomponent Mixture

The conservation equations that describe a reacting multicomponent

gas mixture can be found in the literature [27,28]. The viscous shock-

layer equations for a nonequillbrlum multicomponent gas mixture are

obtained from the conservation equations employing the same procedure as

for the perfect gas [24]. The nondimensional forms of global
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continuity, s-momentum,and n-momentumare written in the sameform as

÷

Eqs. (2.1) to (2.3) except the eddy viscosity, ¢ , is set to zero.

For a chemical nonequilibrium flow, the energy equation is

formulated in terms of the temperature instead of total enthalpy. In

addition to these conservation equations, the species continuity

equation and equation of state are needed to complete the set of

equations. The nondimensional forms of these equations are expressed as

[24]

Energy:

C u 8T _T (____u_p + v B_n) -P p(¥+_ _s + v _) - 1+n_ _s

2 a aT (______ +
E [_-_(_-_) + 1+n_

N
S

Jcose , 3T
r;ncose'_ - [

i-I

N
S

8u _u )2]

i-I

(2.38)

Species continuity:

u _C i _C i

P(_+F_ _ + v a-E-) - _i -

2
E

(1+nK)(r+ncose) j

x {_ [(1+nK)(r+ncose)JJi]} (2.39)

State:

N

p- pT(_)
MC

p,=

(2.40)
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The nondimensional variables are as defined by Eq. (2.9) and

- _ /_refCp ®

_%i = _%iRN Ip®U® (2.41)

Ji = JiRN/_ref

Using the same coordinate transformations as given for a perfect

gas, Eqs. (2.38) and (2.39) are written in the form of Eq. (2.25). The

W in this equation represents T for the energy equation and Ci for the

species continuity equation. The coefficients a I to a4, in this case,

are given by

Energy, W = T :

N

1 8< dg+ nshK JnShc°se nsh
al = _ 8-_ dW 1+i_nshK ÷ r+n-nshCose - -_- I-IJiCp' i

+ nshnshPCpUn _ nshPCp v

e2 (1+_nsh_) e2

(2.42)

a - 0
2

(2.43)

a3 "

2

nshU ( I _u dg _u

nsh _n d_ 1+n-nshK

2-N
s

)2 _ __nsh_2; hiwi
c x: i=I

2 ap n2Unsh sh u nshn v
( )

¢2_(1+_nsh_) _ e2_ 1+-nnshK nsh nsh

dg 8p

dn 8n

(2.44)
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C_4 == --

n2hPCpU

e2K( I+_nshK)

(2.45)

Species continuity, W = Ci:

I aPL i dg
= + (

_I PL i an d_

nShK

I+TTnsh_

nshCOS8
+

r+_nshCOS8

nshn_h_PU

¢2pLi(1+_nshK)

nshPV

e2pL
i

(2.46)

_2 = 0 (2.47)

_3 =
I aPM i dg PM i nShK + nshCose

PL i an dE + PL---_(1+_nsh< r+_nshCose) +
e2pL i

(2.48)

_4 == -

2

nshP u

E2pLi (I+_nsh_)

(2.49)

where

= la AbiiPL i Pr (2.50)

N
S

k=l

k_l

ac k d8

an
(2.51)
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Abik .I Le'i

* * N

M i M i zs
Le, i - [ _ Le, ik + (I - -_] Le,ijCj] iWk

M M k j-1
j,_i

i-k

(2.52)

In Eq. (2.52), Le,ik are the multicomponent Lewis numbers and M

molecular weight which is given by

is

w

* I
M - (2.53)

Ns C i

The mass flux, Ji' due to concentration gradients can be written as [29]

N
s @Ck dg

Jt " P _- Abik
nshPr k-1 _n dIT

(2.54)

The equation of state is given by

p = pT R / M C (2.55)
p,=

2.3 Boundary Conditions

At low altitudes, slip effects are not important. No-slip and no-

temperature-jump boundary conditions are used on the body surface. The

wall temperature and enthalpy are specified as constant. The boundary
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conditions at the shock are calculated by using the Rankine-Hugonlot

relations [12,24].

At high altitudes, the continuum flow assumption breaks downin

the region next to the wall. The no-sllp and no-temperature jump

boundary conditions are no longer valid. As such, the sllp and

temperature jump boundary conditions should be used.

2.3.1 Boundary Conditions on the Wall

Shldlovsky [30] has shown that at the body surface the velocity

sllp and temperature Jump conditions are of the same order as the

Knudsen number. The Knudsen number is defined as the ratio of the

molecular mean free path in the gas to a characteristic dimension of the

flowfield. The no-sllp boundary conditions (which correspond to

continuum conditions) are obtained when Kn ÷ 0. However, when the flow

density decreases, the mean free path becomes long compared to the

characteristic length in a region next to the wall. This region is

called the Knudsen layer. Under this condition, the sllp conditions

should be used.

The sllp conditions are assumed to exist across the Knudsen layer.

The net fluxes of momentum and energy at the outer edge of the Knudsen

layer are equated to the difference between the incident and reflected

fluxes at the wall. These fluxes are assumed to be constant across the

Knudsen layer and are obtained from the moments of the distribution

functions. The slip conditions are then obtained from the balance

equations of these fluxes and are given by [31]

Velocity slip:

Us . _ c2 Us _u Ku (2.56)
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Pressure slip:

_s Ps _T
. + --

PS Pw 5 2_ (_---_1 e Pr Ts s

Temperature slip:

2
I _- T 2-8 _ _s _T

.,. _ ")Ts " Tw 2 s

(2.57)

(2.58)

Pressure slip:

2

" ,_ nsh d_" _ (1+_nshK)]s (2.59)

2 8 e2 _S _S

Ps " Pw +
5 _ nsh d_ _nn)s

Temperature sllp:

TS" Tw + _ (Y--'_T)( ) Pr p_sp s nsh d_ _)s

2.3.2 Boundar Z Conditions at the Shock

The boundary conditions at the shock are the modified Rankine-

Hugoniot relations developed by Cheng [32]. The shock equations are

obtained from one-dlmensional Navier-Stokes equations which are written

(2.60)

[62]

Velocity slip:

In the derivation of the relation for the temperature sllp, it is

assumed that the internal energy is frozen during the reflection from

the wall. The parameter 8 is the accommodation coefficient and its

value is taken to be unity in this study.

In the computational plane, Eqs. (2.56) to (2.58) are expressed as
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in the shock-oriented coordinate system. The tangential derivatives are

neglected as comparedto the normal derivatives. Then, the shock

equations in dimensional forms are expressed as

Continuity:

(p V ) = 0 (2.62)
am

Tangential-momentum:

* * a_ a * a_,)
an an an

(2.63)

Normal-momentum:

p ? "--i" + = (2W + }, )
an am am am

(2.64)

Energy:

* * * aT * _p a (<*p C 9 ----i,- 9 , = ---_- ) +
P an an an an

*2 *2

(2p + _ )( ) + U ( ) (2.65)

an an

Integrating Eqs. (2.62) to (2.65) from just behind the shock wave

to freestream, the shock conditions are obtained. The nondlmenslonal

forms are given by

Continuity:

Pshgsh = -sine (2.66)

Tangential-momentum:

2 a_

e _sh (a-_)sh + _sh sins " sinscoss (2.67)

Normal-momentum:

Psh = P® + sins(slne + 9sh ) (2.68)
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Energy:

E2(p__rST_) + Tshsin_
sh

sins (_sh - c°s_)22

sins { 47 sin2 + [(2) 4(7--I)] I

= 2 (7÷I)2 7-I (Y+1)2 M2

4
- }

(7+I) 2 M_ sin2s

Since velocity components tangent and normal to the shock are not

the same as those tangent and normal to the body surface,

transformations are needed to relate these quantities. The

transformations are given by

_sh " Ush cos(_-8) + Vsh sin(_-8)

_sh = - Ush sin(_-6) + Vsh cos(s-e)

Also, the transformations between the body-oriented and shock-oriented

(2.69)

The derivative with respect to _ is related to (s,n) coordinate as

- cos(s-e) _
a-_ _-_ - sin(_-e)

Consequently, the shock conditions in the computational plane are

expressed as

Continuity:

Psh _sh = -sin_

(2.72)

(2.73)

(2.71)

(2.74)

(2.75)

coordinates are given by

- s cos(_-e) + n sin(_-e)

- - s sin(_-e) + n cos(_-e)

(2.70)



Tangential-momentum:

0_7

dnsh I
_2_sh{[COS(e-e)÷ _ -_--sin(e-e)]-- _ _--_

nsh d_ _n

[tJ_ sln(e-e)}sh + Qsh sine - slne cose (2.76)

Normal-momentum:

Psh " P® + sine(sine + Vsh) (2.77)

Energy:

2 _ dnsh __
(_)sh {[cos(,,-e) + -_"-A-- sin(e-e)] 1----_ aT

nsh d_ _n

@T slne
sine - -- -(Ush - c°se)2"- B-_ sin(e-Sl}sh + Tsh 2

sine {4Y 71 4(Y-12)-I
2 (_+I)2 sinme + [( ) ]- (Y+1)

4

(y+1)2M4sin2e

(2.78)

Equation of state:

Psh " 7Psh/(7-1)Tsh (2.79)

From Eqs. (2.76) and (2.78), it is noted that the first term in these

two equations can be neglected at low altitudes where c is very small.

On the other hand, this term becomes important when c is large.
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Chapter 3

HIGHREYNOLDSNUMBERPERFECTGASFLOW

3.1 Introduction

For a hypersonic flow over a slender body at lower altitudes where

density, and hence, Reynolds numbers are high, the flow will become

turbulent. The Reynolds stresses and turbulent heat flux should be

considered in the analysis of such flowflelds. These two effects

dominate the surface properties. However, at present, it is impossible

to relate these fluctuating terms correctly to the dependent variables

in the equations. Direct numerical solutions of turbulent flows cannot

be obtained without a proper modeling of the fluetuatlng terms.

Many turbulence models have been developed with varying degrees of

complexity [33]. These models, generally, are developed by first

postulating a mathematical model containing undetermined constants, and

then by attempting to choose the constants to make predictions fit the

experimental measurements. Empirical turbulence models, such as the

algebraic eddy viscosity models are appealing because the storage

capacity and computing time required are much less than that for a more

sophisticated turbulence model. Also, these models provide results

which are comparable to a more complex model [333.

Two algebraic turbulence models, Cebeci-Smith [18] and Baldwin-

Lomax [20], have been used widely for calculation of the compressible

turbulent flows [19,22,25,34-36]. Both are two-layer eddy-vlscoslty
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models and have similar forms. The primary difference between them is

the choice of length and velocity scales in the outer layer.

The boundary layer displacement thickness and boundary layer edge

velocity are used as length and velocity scales, respectively, in the

Cebeci-Smith model. The determination of the boundary layer edge is

required within the solution. However, it is difficult to define the

boundary layer edge in a hypersonic flow because there may not be a

constant velocity region in the shock layer. Thus, the definition of

the boundary layer edge is not well defined. Anderson and Moss used the

ratio of the local total enthalpy to freestream total enthalpy to define

the boundary layer edge [19]. It is based on the fact that the total

enthalpy is constant within the inviscid part of the shock layer. It

has been observed that with the presence of small numerical variations

of the velocity or enthalpy profile in the shock layer, there could be

sudden jumps and oscillations in the boundary layer thickness [37]. The

length scale in the Cebeci-Smith model would be affected, hence the heat

transfer to the body surface would experience oscillations that were not

physically correct.

Another definition suggested by Anderson and Moss [25] is based on

the ratio of the integral of the viscous dissipation term in the shock

layer for situations where the total enthalpy is not constant in the

inviscid region. However, the factor of the ratio is subjective.

By observing the shape of the total enthalpy profiles, Thompson et

al. [34] defined the boundary layer thickness on the same physical basis

as of Anderson and Moss [19] but in terms of the total enthalpy

gradient. It was found that this definition gave reliable boundary
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layer thickness consistently. It was superior to other definitions of

the boundary layer edge.

It has been shown that the calculated heat transfer was sensitive

to the definition used in establishing the boundary layer thickness

[37]. Due to these difficulties with the Cebeci-Smith model, it is more

appealing to use the Baldwin-Lomax model to predict the turbulent

effects, since this model does not require the determination of the

boundary layer edge. The velocity and length scales are based on the

distribution of the vortlcity. The maximum value of a vortlcity

function and its corresponding location, instead of the boundary layer

quantities, are used to form the velocity and length scales for the

outer layer. This model has become a popular algebraic eddy viscosity

model.

Although the Baldwln-Lomax model avoids determining the boundary

layer edge in the outer eddy viscosity formulation, several difficulties

have been encountered. First of all, there is ambiguity in determining

the peak of the vorticlty function. Deganl and Schiff [38] found that

there might be more than one peak in the function. This can result in

an incorrect determination of the length scale for the outer layer if a

wrong maximum value has been picked up. This problem can be eliminated

by selecting the peak near the body surface [22,36].

The second difficulty lies in determining the two additional

constants, Ccp and CKleb ' in the outer formulation. Baldwin and Lomax

determined these constants by comparing results with the Cebeci-Smlth

model for transonic, constant pressure boundary layer flows [20].

Visbal and Knight [36] have shown that Ccp should be decreased and CKleb
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increased for an equilibrium incompressible turbulent boundary layer

[36]. However, Knight suggested a higher value of C for a compression
cp

corner calculation at Mach3.0 [21]. The values of Ccp and CKleb depend

on the flow Machnumber[20,21,36,37]. There is no one fixed value for

all flow conditions. These values should be chosen carefully, otherwise

different heat transfer results will be predicted [37]. These

difficulties need to be investigated intensively before this model can

be relied on to hypersonic flow conditions.

In this chapter, a method for solving the flow over a blunt

slender body where the inviscid region encompassesa significant portion

of the total shock layer thickness is presented. The first order

continuity and normal momentumequations are solved simultaneously as a

coupled set rather than in a successive manner as has been utilized for

wlde-angle bodies. Twoof the most frequently employed algebraic

turbulence models, namely the Cebeci-Smith and Baldwin-Lomax models, are

implemented to examine their suitability for the hypersonic flow.

3.2 Basic Formulation

As indicated in Chap. 2, the steady perfect gas viscous shock-

layer equations [12] for an axlsymmetrlc or two-dlmenslonal body at zero

angle of attack are obtained from the compressible Navler-Stokes

equations, written in terms of a body-orlented coordinate system. They

are nondlmenslonallzed by the variables which are of order one in the

region near the body surface (boundary layer) for large Reynolds

numbers. The sameset of equations are then nondlmenslonallzed by

variables which are of order one in the essentially Invlscld region
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outside the boundary layer. Terms in each set of equations up to

second-order in the inverse square root of the Reynolds number are kept.

A comparison of the two sets of equations is then made and one set of

equations is obtained from them which is valid to second order in both

the outer and inner regions. A solution of this set of equations is

thus uniformly valid to second-order in the entire shock layer for

arbitrary Y. Anderson and Moss [19] used the eddy viscosity

approximation to replace the Reynolds stresses and turbulent heat flux

to find the solution of the turbulent flow. These equations provided

here again are in an orthogonal, body oriented, transformed coordinates

form, Eqs. (2.25) through (2.37).

The second-order partial differential equations applicable to thls

study are expressed as [19]

a2W d2g/d_2 + Sl (dg/d_) aW _2
+ _ + W

a 2 (dg/d_)2 an (dg/d_)2

_3 e4 aW
+ + m 0

(dg/6-_) 2 (dg/d-_) 2 a_
(3.1)

where dg/d_ and d2g/d_ 2 are the first and second derivatives of the

stretching function g. The quantity W represents u for the s-momentum

equation and H for the energy equation. The coefficients _I to a 4 are
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written as:

s-momentum, W = u:

a I

I
1

+

IJ(I*¢ )

*)_gC1+e dg +
_n d_

nsh_ (I+2e +)

(1*_nsh_)(1+¢ +)

JnshCose
+

r + _shCose

+

nshnshnpu

E:2p ( 1*E:* ) ( 1*nnsh_ )

nshPV

2 +

¢ p(1+e )

(3.2)

a2

nshK

pC1+e*)C1+_nshK)

2

_p(I+¢ +) dg _ nshK

_n dW ÷

(I+¢) (1*_nsh_:)

X

(I
+WnshK

2

) _ nshK.Vnjcose

r+Wnshe°se ¢2(1+-_nshK)_(1+¢+ )

(3.3)

a3

2

nsh

e2( I*-_nsh_ )_ (I*e + )

[_ - nshq d_
nsh d_ _]

(3.4)

_4

2

nshPU

-- +

g2(1+nnshK)U(1+¢ )

(3.5)

Energy, W = H:

aI
l 1 alga p + Pr .

._r(1+£+ _) d_" a'-'n [_(1+¢ p--_,t )]
P[',_

_nsh
+

1+_nshK



34

JnshCOS8

r+_nshCOS8

÷

nshnshnP u

2 u(1+e+ Pr )(1+_nsh_)
E _'_ FP,5

nsh p v

2 _ I+E+ Pr )
e _( _r,_

(3.6)

s2 = 0
(3.7)

nsh
I

s3 _r (I + Pr ,
nsh +_sh _

+ 4eose ,

r+_nshCOS
,)

v d__ _p nsh_Vpu2 ]
÷ -- -- ,

2
e d_ an ¢2(1+qnshK)

J
(3.8)

2

nshP u

CI 4 " -

2 _ ,g p_.r..__,t)(1,rlnsh_ )E_- 6 (1 *Pr -

(3.9)

where

+ Pr u
p-77,t(Pr,t - 11] au

nsh dg an

2
MU _:

(3.10)

The remaining first-order equations are written as

Global continuity:

8_[n_(r+_nshCose)Jpu ] + _ _aa{(r+- shCose)an
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x [(1+_nshK)PV - n_h_pu]} - 0 (3.11)

n-momentum:

pu av

(1+_nShK) a_

n' npu
sh

(1*n-hshK) an d_ nsh an d_nsh

2
pUK

(I+n-hsh__)
+ -- B 0

nsh aq dIT
(3.12)

State:

p = pT (Y-I)IY (3.13)

The molecular viscosity is given by the Sutherland's law as

- [(I+C)/(T+C)]T 3/2

where

(3.14)

and C is 110.33 K for air.

In the preceding equations, the prime denotes the differentiation

÷

with respect to _, and e is the eddy viscosity which is set equal to

zero for a laminar flow. The independent variable of transformation is

defined by

n- h) . g(5) (3.16)

The stretching function g(_), Eq. (2.21), is given by (_ - O)

C = C /(Y-I) T (3.15)
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- 1 _ rB-n+l
gCn) - 1 - ._'+1 _'nl'_"-2_ET)

_,nt__ 1 )

and its first and second derivatives are

£n(_,T[) _ (_'+_-I)

(3.17)

(3.18)

d2g 1 [ 1 1
d_2 " ' _+I' -- 2 )2 ]

(B-n+1)
(3.19)

Equation (3.17) permits the mesh to be refined near the body with

the values of B near I giving the largest amount of stretching.

Equation (3.16) may be inverted to obtain the physical coordinate n from

the transformed coordinate n:

f'6'+ 1 ,_1-n

tTzTJ -1-- ] (3.20)

_-1" + I

The transformation of Eq. (3.16) keeps the body at _ I 0 and the shock

at n - I with uniform mesh in the computational coordinate n.

3.3 Boundary Conditions

At low altitude, slip effects are not important. At the wall, no-

slip and no-temperature-Jump boundary conditions are used. The wall

temperature and enthalpy are specified as constant.
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The boundary conditions at the shock are calculated by using the

Ranklne-Hugonlot relations. The nondimenslonal forms are given as

Continuity:

Psh 9sh " - sln_

Tangential-momentum:

Qsh " cos_

Normal-momentum:

. I_L_÷ _ I____)
Psh YM_ sin2_ (I Psh

State

Psh " oshTsh

Density

(Y+1)M_sln2a

(3.21)

(3.22)

(3.23)

(3.24)

" o (3.25)Psh
(Y-1)M_sln2a + 2

where _sh and ?sh are the velocity components in the tangentlal and

normal directions, respectively, in the shock-oriented coordination

system. These are related to the body-orlented coordinate as

Ush " _sh sln(_+B) + Vsh cos(a+B) (3.26)

Vsh " - Qsh cos(e+B) + 9sh sin(a+8) (3.27)
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3.4 Turbulence Models

Twoof the most widely used algebraic turbulence models, namely

the Cebeci-Smith (C$) and Baldwin-Lomax (BL), have been implemented in

this study. Algebraic turbulence models are more appealing because they

require less computer storage and much less computational time as

compared to the two-equation model of turbulence, such as K-e model.

Both Cebeci-Smith and Baldwin-Lomax models of turbulence employ a two-

layer eddy-viscosity formulation. The inner law is based upon Prandtl's

mixing-length concept. The outer law employs either the Clauser-

Klebanoff expression (in the Cebeci-Smith model) or an equivalent

expression (in the Baldwin-Lomax model) for computing the eddy

viscosity.

3.4.1Cebeci-Smith Turbulence Model

The algebraic eddy viscosity (in nondimensional form) is given by

+ _ _ _crossover

+ Iei

¢ - (3.28)

E+ -- --
0 n > ncrossove r

where ncrossove r is the value of n at which values from the inner and

outer formulas are equal.

The inner eddy viscosity is obtained from the Prandtl mixing-

length concept

¢ _nsh

(3.29)
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The mixing length £ is obtained by using the van Driest's proposal

stated as [18,19]

-- ÷ +

£ - K1nshn[1-exp(-n /A )] (3.30)

where

+ nsh_P Pw au dg I/2

n - eU [P-_sh ( _q d_')w] (3.31)

+

The quantity K I is the yon Karman constant with a value of 0.4, and A

is a damping factor expressed (for flows with a pressure gradient) as

[18,19]

÷
A - 26(I-11.8P+) -I/2 (3.32)

where

n' dg ap)
+ 2 _ [(_) sh _e (_)e(_n ] (3 33)P "- ¢ pu ---

e nsh e

and

u e [ _w (_n d )u g

I/2

- ] (3.34)
T _ W

For the outer region of the viscous layer, the eddy viscosity is

approximated by the Clauser-Klebanoff expression [18,19]

+ K2PUe6kYi'_ (3.35)
Co " 2

c

where

6 _ u_._) nsh
6 k - I0 (I u dg/dW dn (3.36)

e

K2 - 0.0168 (3.37)
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and

nsj 6 -I

Yi,n " [I*5 ] (3.38)

The boundary layer thickness, 6, in Eqs. (3.36) and (3.38) is

assumed to be the value of n at the point where

H t / Ht, = - 0.995

Another criterion for obtaining 6, based on viscous dissipation, is the

height where

6 F

Io (d_/d_) an
= 0.995

I F

IO (dEld_) dn

where

(3.39)

F - { g2 [(1+g:+)"Insh _ _U___
kCU ] }2/(i+E+)_

(1*_sh_)

(3.40)

(3.41)

Thompson et al. [34] defined the boundary layer edge at a location where

d(H t / Ht,®)/d_ _ 0.5 (3.42)

All three of these criteria have been used in this study.

3.4.2 Baldwln-Lomax Turbulence Model

This model employs a formulation similar to the Cebeci-Smith model

for the Inner-reglon eddy viscosity

I,,,I (3.43)4-

¢i " 2
e

÷ --÷

where £ is given by Eq. (3.30) except that A is replaced by A which is

defined as
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In Eq. (3.44), T is the local shear stress obtained from

2 +) I==__ dg _)u 1+_-_UUsh_')nnnsh d_ _n
(3.45)

The magnitude of the vorticity, Imi is given by

I _v _nsh dg _v (1+_nsh_) dg 3u

Ito] " ](1+Hnsh_)(_ - _ _ .... keu)nsh nsh d_ _)ri
(3.46)

The outer-eddy-vlscoslty approximation of the Baldwln-Lomax model

replaces the Clauser-Klebanoff formulation by the relation

+ K2 CcppFwake FKLEB(_)
¢0 = 2

E

(3.47)

where K2 is a constant given by Eq. (3.37), Ccp is an additional

constant given as 1.6 [20] and

m

Fwake - nma x Fmax (3.48)

The quantities nma x and Fma x are the values at the location of the

maximum value in the vortlclty function

F(_) = nsh_l_lCl-exp(-n +/A+)) (3.49)

The Klebanoff intermlttency factor, FKLEB , is given by

- 6 -I

FKLEB(_) . (I+5.5(CKLEB_n n) )
max

(3.50)
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where CKleb - 0.3

It has been found that the value of C depends on the Mach
cp

number. Baldwin and Lomax [20] chose a value of 1.6 for C by
cp

comparing with the Cebeci-Smith's turbulence model for transonic,

constant pressure boundary layer flows. However, a value of 3.0 for C
cp

is found more appropriate for hypersonic flow [37].

3.4.3 Transition Model

Both continuous and instantaneous transitions from a laminar to

turbulent flow have been included in this study. Instantaneous

transition is initialized when the local Reynolds number or momentum-

thickness Reynolds number exceeds a preselected value. Continuous

transition is effected by defining a streamwlse transition intermittency

+

factor Yi,_ which modifies the composite eddy viscosity e over a

specific distance along the body.

The factor Yi,_

Naraslmha [39] as

Yi,_ " 1-exp(-0.412_)

where

is evaluated by a relation developed by Dhawan and

4(_-_ 0)

- _o(__i)

(3.51)

The quantity E0 is the location where the transition is started and

is approximately equal to two.

(3.52)
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3.5 Method of Solution

The overall method of solution employed is an implicit finite-

difference spatial-marchlng method, similar to the one employed by

Davis, and Anderson and Moss [12,19]. However, the method is

implemented in this study differently because convergence problems are

encountered for slender bodies if the method of solution outlined in

these references is employed.

To simplify the numerical computations, the viscous shock-layer

equations are again transformed by normalizing most of the variables

with their local shock values. It should be pointed out that the normal

velocity, at the shock may change sign at some locations and may be near

zero at others. The normalized v-profiles in such a region are not very

well behaved and stability problems can occur if these profiles are used

in the solution procedure. Therefore, it is desirable to remove the

normalization procedure from the normal velocity profile.

When the normal coordinate is normalized with respect to the local

shock standoff distance, a constant number of finlte-differenee grid

points between the body and shock are used. The second order equations,

Eqs. (3.1) through (3.10), are solved by using the finite difference

method. The derivatives are replaced with finlte-difference expressions

in a such way that three-point central differences in the n-dlrection

and two-polnt backward differences in the E-dlrection occur. The

truncation terms of order A_m and either AnnAnn_1 or A_n-Ann_1 are

neglected. The subscript n denotes the grid point along a line normal

to the body surface, whereas the subscript m denotes the grid station



along the body surface. Replacing the differential terms by the finite-

difference expressions, the governing equations are expressed as

AW + BW +C W -D
n m,n-1 n m,n n m,n+1 n

2 (Sl)m,nAnn
An - Ann_I (Ann+Ann_I ) - Ann_I (Ann+Ann_I )

where

(3.53)

(3.54)

2 + (al)m,n(Ann-A_n-1)+ + (a4)m,n (3.55)

B n - AnnAnn_1 AnnAnn- I (a2)m,n A_ m

2 (_I)m,nAnn-1
C - + (3.56)

n Ann(Ann+Ann_1 ) Ann(Ann+Ann_1 )

(a4)m,n Wm-1 ,n (3.57)

Dn - - (a3)m, n + ' A_ m

Equation (3.53) along with the boundary conditions constitutes a system

of the tridiagonal form, for which efficient computational procedures

are available.

To avoid the instability problem encountered by the traditional

approach [12,19] and from the hypersonic small disturbance theory [14]

for a flow on a slender body, the two first-order equations -- the

continuity and normal-momentum equations -- are solved simultaneously as

a coupled set rather than in a successive manner for the pressure, p,

and normal velocity, v. The density in these equations is eliminated

through use of the equation of state. The resulting equations are
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-_(nsh(r_nshcos0)_u•_ --__(r_nshcos0)

- nsh_]} - 0x [(1+_nsh_)_ T ' -- u (3.58)

and

nshPU _v

(1+_nsh_) _

n_hnU p Dv dg _v dg

(1+iTnShK) _n d_ + vp Bn dH

2

nshKU p Y _p dg

+ (__I) T
(I÷_nshK) _n d_"

---- I 0 (3.59)

Equations (3.58) and (3.59) are expressed in the finite-dlfference form

at points (m,n+I/2) and (m,n-I/2) using a box scheme discussed by

Richtmyer [40]. The final forms are

+ C
Ac,n+I/2 Vm,n+1 + Bc,n+I/2 Vm,n 0,n+I/2 Pm, n+1

+ Dc,n+I/2 Pm,n = Ec,n+I/2 (3.60)

+ B +C
Ac,n-I/2 Vm, n c,n-I/2 Vm,n-1 c,n-I/2 Pm,n

+ De,n-I/2 Pm,n-1 = Ec,n-I/2 (3.61)

ANM,n+I/2 Vmtn+1 + BNM,n+I/2 Vm,n + CNM,n+I/2 Pm, n+1

+ DNM,n+I/2 Pm, n " ENM,n+I/2 (3.62)

÷ ÷

ANM,n-I/2 Vm,n BNM,n-I/2 Vm,n-1 CNM,n-I/2 Pm,n
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+ DNM,n-I/2 Pm,n-1 " ENM,n-I/2 (3.63)

The coefficients of these equations are given in Appendix A. Eliminating

p and v alternatively in the coupled equations, Eqs. (3.60)-(3.63), two

tridlagonal equations for pressure and normal velocity are obtained as

K1Pm, n+1 + K2 Pm,n + K3 Pm,n-1 = K4

K5 Vm,n+1 + K6 Vm,n + K7 Vm, n-I = K8

The coefficients K I through K8 are also given in Appendix A.

(3.64)

(3.65)

Equations

(3.64) and (3.65) are solved in the same way as the energy and s-

momentum equations.

By integrating the continuity equation from n-O to _-I, a

quadratic equation for the shock standoff distance is obtained. The

density is determined by the equation of state.

The solution is started at the stagnation streamline where the

various flowfield quantities are expanded in terms of the distance, _,

along the body surface [19,26]. These series expansions reduce the

partial differential equations, Eqs. (3.1) through (3.12), to ordinary

differential equations in terms of n. At a body location m, other than

the stagnation streamline, a two-point backward difference scheme is

used for the derivative with respect to _ at the point (m,n). This

again gives ordinary differential equations at location m in terms of n

for Eqs. (3.1) through (3.12). The flnlte-dlfference form of these

ordinary differential equations (obtained through the central

differences) can be solved by using the Thomas Algorithm. Figure 3.1

gives the flow chart for the solution sequence of these equations.
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ShOCk solution at station [] I

51 Eddy viscosity, G+ [

i +

+

+
i _o,-Hoooo_. oo,o_ui

_ ,
[ Solve continuity equation for nsh J

J Solve continuity and n-momentum J

[equations simultaneously for v and p ]

Fig. 3.1 Solution sequence of viscous shock-layer equations.
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The Vigneron condition [41] (for the pressure gradient in the

streamwise momentum equation) has been used for marching in the subsonic

nose region. In this condition, a portion of the pressure gradient is

treated implicitly by employing a two-point backward difference scheme.

The remainder portion of the pressure gradient is forward differenced to

allow for upstream influences.

The solution is iterated at location m until convergence is

achieved. The solution advances to the next body station, m+1, and uses

the previous converged solution profiles as initial values for starting

the solution at m+1. This procedure is repeated until a global solution

at all body locations is obtained.

The initial shock shape is created by the thin layer approximation

0

for a short wide-angle body (35 sphere-cone, for example). The shock

shape obtained from a full-layer solution to this body shape is then

used as an initial guess for the slender bodies in a sequential manner

by reducing the body angles in steps of 5 to 10 degrees. In place of

the shock stand-off distance used previously [17,42], its derivative in

the streamwise direction is smoothed after each global iteration.

Due to the change in sign of the normal velocity profile from

station to station, an under-relaxation scheme [43]

F = gF I ++(I-_) F 2 (3.66)

has been employed in the present work. Here F I is the most recently

calculated physical quantity and F2 is the value obtained from the

previous local iteration. A value of g of 0.2 to 0.4 gives convergence
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in most cases. In general, an under-relaxatlon was required only for

the pressure and normal velocity.

Depending upon the initial approximation to the shock shape

(whether obtained by using the thin shock-layer form of normal-momentum

equation or from a larger body angle solution), the first global pass

solution may be improved by subsequent global iterations.

3.6 Results and Discussions

Numerical solutions to the previously discussed viscous shock-

layer equations for the hypersonic flow over a long slender body have

been obtained. Results for laminar, transitional, and turbulent flows

of a perfect gas are compared with the experimental data and/or with

numerical solutions in the literature. The solutions are chosen for

O O

small body angle (5 to 35 ) hyperboloids and sphene-cones at zero-

degree angle of attack. The free stream Reynolds numbers are within the

range from 1.2 X 104 to 3.5 X 106 .

3.6.1 Comparison of the Present Method with Cascading Method

Figures 3.2 to 3.6 show the effect of solving the normal momentum

and continuity equations simultaneously in a coupled way as compared to

solving all the governing equations in a successive way [12,19].

Results of shock stand-off distance, wall pressure, and skin friction

O

coefficient are shown in Figs. 3.2 to 3.4 for a hyperboloid with 20

half-body angle. It is clearly noticed that the solutions oscillate in

the downstream region with the cascading approach. It is also noticed

that this instability can be removed when coupling is implemented

between the normal momentum and continuity equations.
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Figures 3.5 and 3.6 show the results for shock stand-off distance

0

and Stanton number distribution for a 35 sphere-cone without coupling

the two flrst-order equations. Oscillation in the solution is noted in

the vicinity of the tangency point where the curvature is discontinuous.

The curvature is equal to one on the spherical part and zero on the

conical part. It is important to note that coupling the two flrst-order

equations can stabilize the solutions at this discontinuity.

3.6.2 Comparison of the Present Method with other Predictions and Data

for Laminar flows

The results obtained by the present method (VSL2D) are compared

with another method (VSL3D) in Figs. 3.7 to 3.;0. The results of VSL3D

were obtained by Thompson [44]. Figure 3.7 gives the convergence

history of the streamwise derivative of the shock stand-off distance for

the present method. It is seen that solutions do not diverge with the

subsequent global passes. Figure 3.8 presents a comparison of the

boundary layer thickness, as obtained by the VSL2D and VSL3D methods.

The boundary layer thickness is defined as the location where Ht/Ht, - -

0.995. The predictions of the boundary layer thickness are quite

different by the two methods. The VSL3D results show a big Jump in the

boundary layer thickness. In spite of this difference, the laminar

heat transfer and skln-frlctlon coefficients compare well as shown in

Figs. 3.9 and 3.10.

O

A comparison of surface heat transfer results for a long 5

sphere-cone between the present viscous shock-layer (VSL) and

parabollzed Navler-Stokes (PNS) predictions [45] is given in Fig. 3.11.

The VSL results are about five to ten percent higher for most of the
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body length as compared to the PNS results. The PNS predictions employ

fourth-order explicit and second-order implicit smoothing terms, whereas

the present VSL calculations do not use any smoothing. Furthermore, the

stability of PNS solutions restricts the reduction of the normal grid

spacing adjacent to the wall (required for accurate heat transfer

predictions) if a relatively large marching stepsize is required for a

long body. Since the PNS requires a starting solution that describes

the subsonic region, any starting solution errors distort the PNS

results in the nose region. In the VSL method, the starting profiles

are created as part of the solution and, thus, the method is self-

starting.

Figures 3.12 to 3.15 show comparisons of results obtained from the

present method with available experimental data. A comparison of the

O

predicted pressure distributions on a 10 hyperboloid.with the

experimental data [46], as well as with the results of Hosny et al.

[15], is given in Fig. 3.12. Both predictions compare quite well with

the data. Hosny et al. [15] solved all governing equations in a coupled

manner which may require more computational time at every point in the

flow, especially if real gas properties are included. The present

method with the coupling between the two flrst-order equations gives

equally accurate results. The present approach may be more appealing

for real gas calculations where local iterations are required to update

the chemical composition along with the transport and thermodynamic

properties.

The present method gives surface heat transfer rates which compare

O

quite well with the data of Cleary [47] for a 15 sphere-cone as shown
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in Fig. 3.13. As shown in Figs. 3.14 and 3.15, the present predictions

for the wall pressure distribution and surface heat transfer rate on a

o

12.84 sphere-cone agree fairly well with the experimental values of

Miller [48,49].

3.6.3 Comparison of Predictions with different Turbulence Models and

Data for Long Slender Bodies

Cebeci-Smith [18] and Baldwin-Lomax [20] turbulence models are

implemented in the present method to predict turbulence effects.

Transition to turbulence is modeled by using the Dhawan and Narasimha

method [39].

Figures 3.16 to 3.18 show a comparison between the results for a

O

10 sphere-cone as obtained by the VSL2D and VSL3D [44] models. The

Cebeci-Smlth turbulence model is implemented in both solutions. The

onset of transition is set at s /RN = 2.0. The definition of the

boundary layer edge is based on the total enthalpy (i.e., Ht/H t =,®

0.995). The results for the boundary layer thickness are shown in Fig.

3.16. Similar to the results for the laminar flow (Fig. 3.8), these

results also differ significantly with each other. However, this

difference influences the surface heat transfer rate and skin friction

coefficient predictions significantly for a turbulent flow as shown in

Figs. 3.17 and 3.18.

The length and velocity scales in the Cebeci-Smlth model are

strongly dependent on the boundary layer edge location, and these

influence the surface properties. Due to this difficulty, Thompson et

al. [34] defined the boundary-layer edge location based on the gradient
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of the total enthalpy [_(Ht/Ht, ®) /_]. With this definition, good

agreement between the VSL2D and VSL3D results is obtained for the

surface heat transfer rate (Fig. 3.19). The results obtained by using

the classical total enthalpy definition for the boundary-layer edge are

also shown in Fig. 3.19. It is noted that the new boundary layer

definition gives results comparable to the classical definition along a

long body [37].

O

The results for the turbulent flow over a 9 sphere-cone are

illustrated in Figs. 3.20 to 3.25. The hemispherical portion of the

model was roughened in order to insure attainment of turbulence flow

over this region [50]. Three different definitions, which are based on

the total enthalpy, the gradient of total enthalpy, and the dissipation

models, for the boundary layer edge locations have been used to

calculate the turbulent heating with the Cebeci-Smith model as given in

Fig. 3.20. It is seen clearly that predictions from the total enthalpy

and total enthalpy gradient models are comparable to the experimental

data. The boundary layer thickness based on the dissipation model does

not give heat transfer predictions comparable to the classical enthalpy

model.

The Baldwln-Lomax model uses the distribution of vorticity to form

the outer length scale. It is known that there may be more than one

peak in the vorticity function [38]. Figures 3.21 to 3.23 give the

distributions of the vorticity function at three different locations.

It is seen that there is more than one peak at each location. The

correct peak that should be picked is near the body surface. The

Baldwin-Lomax model proposed originally [20] was for constant pressure
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boundary layers at transonic speeds. This model has been modified to

--+

include the effect of pressure gradient on the damping factor A [37].

Results of surface heat transfer for both models are given in Fig. 3.24.

When compared to the experimental data, the original model predicts well

up to the tangency point (s /RN _ 1.5) in the favorable pressure

gradient region, whereas the modified model gives good predictions in

the adverse pressure-gradlent region and beyond. It was, therefore,

decided to combine the two models. The predictions for the combined

pressure gradient models implemented in the Baldwln-Lomax model are

given in Fig. 3.25. Here the original Baldwln-Lomax model is used up to

the tangency point and the modified model is used afterwards. The

combined model gives very good predictions when compared to the

experimental data along the entire body length. Also included in this

figure are the predictions obtained with the Cebeci-Smlth model. The

two models give almost the same surface heat transfer predletlons.

O

The results for the Stanton number distributions for a 7 sphere-

cone are given in Figs. 3.26 and 3.27. The transition to turbulence is

initialized at s /RN - 4.8 as given by the data of Carver [51].

Results by using the Cebeci-Smlth turbulence model with two boundary

layer edge definitions based on the total enthalpy and its gradient are

shown in Fig. 3.26. Both definitions give surface heat transfer rate

predictions within 15% to the experimental data. There is an increase

in the value of Stanton number at a s /RN location of about 15 by using

the total enthalpy definition for the boundary layer thickness. This is

probably due to the poor resolution of the gradients of various
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F(n)

Fig. 3.21 Distribution of vortlctty function at s = 1.0 for
• 9" sphere-cone with turbulent flow.
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F(n)

FIG. 3.22 Distribution of vorticlty function at s - 2.0 for
a 9" sphePe-cone with turbulen_ flow.
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Fig. 3.23 DlscrtbuCion of vor¢lclCy function a_ s = 10.0 for
8 9 ° sphere-cone with turbulen_ flow.
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flowfield quantities at the boundary layer edge at this body location.

This problem can be overcome through the use of adaptive grids. The

observed increase in the heating data in Figs. 3.26 and 3.27 with

increasing body location is probably due to the entropy-layer

swallowing. This trend is also visible from the theoretical

predictions. Once the swallowing is complete, the data and predictions

would probably show a decreasing trend with increasing body distance.

Since the sensitivity of the surface heat transfer rate on the

boundary layer thickness definition does not exist in the Baldwin-Lomax

turbulence model, the Stanton number distribution was obtained using

this model in Fig. 3.27. A comparison of predictions with the

experimental data shows that a value of 3.0 for C gives better results
cp

as compared to the values of 2.08 suggested for M® - 3 by Knight [21] or

the original value of 1.6 given for M ® - I [20]. This coefficient

which appears in the Baldwln-Lomax outer formulation is dependent upon

the flow Mach number. The value of 3 inferred here for C at M - 8
cp w

along with the other suggested values for different Math numbers point

to a linear dependence of Ccp on the flow Math number in the range I _ M

& 8. Additional comparisons with data are necessary to verify this

dependence.

O

The surface heat transfer results for a 5 sphere-cone obtained by

using the Cebeci-Smlth and the modified Baldwln-Lomax models of

turbulence are illustrated in Fig. 3.28. The results of laminar flow

calculations are shown in this figure. These calculations were

performed using both the present method and the VSL3D method [34]. The
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transition was initialized at an axial location of 23.8 ft. Even though

the turbulent flow results from the two methods using the Cebeci-Smith

model are different, the VSL3D results compare with the modified

Baldwin-Lomax model very well from the end of transition.

3.7 Conclusions

Numerical solutions of viscous shock-layer equations are presented

for hypersonic laminar and turbulent flows over long slender bodies.

These results are obtained from a method which employs a spatial-

marching impllclt flnlte-dlfference technique. This technique is fast

and uses partial coupling among the governing equations based on the

hypersonic small disturbance theory. The partial coupling yields a

simple and computationally efficient technique.

Detailed comparisons have been made with other predictions and

experimental data for slender body flows to assess the accuracy of the

present numerical technique. Results from the present method show that

the coupling between the normal momentum and continuity equations is

essential and adequate to obtain stable and fairly accurate solutions

past long slender bodies.

The two widely used algebraic turbulence models, namely, the

Cebeci-Smlth and Baldwln-Lomax models have been analyzed with the

present numerical technique for application to long slender bodies.

Both of these models appear adequate for such flows. Due to the

sensitivity of the Cebeci-Smith turbulence model to the boundary layer

edge location, however, it is imperative that the numerlcal method

should provide good resolution and accurate solutions near the boundary

layer edge. This can be a problem for long slender bodies, especially,
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if the numerical method (such as PNS) employs artificial viscosity to

damposcillations. For this reason, the Baldwin-Lomax turbulence model,

which avoids the use of the conventional boundary layer thickness in its

formulation, appears more convenient to implement.

A correction for the pressure-gradient effect has been made to the

Baldwin-Lomax model. Constant C in the outer-layer formulation has
cp

been modified to 3.0 for the Math 8 case. Based upon this study and

other investigations, a linear dependence of this constant on the flow

Mach number is suggested. Further comparisons with the experimental

data are needed to verify this dependence. An additional consideration

in the implementation of the Baldwin-Lomax model concerns the appearance

of two peaks associated with the two maxima in the vorticity functions

used to form the outer-layer length scale. The second peak is avoided

by choosing the first one in the region where the gradient of total

enthalpy is less than or equal to 0.5, i.e., _(Ht/Ht ®)/_ _ 0.5.
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Chapter ;4

LOWREYNOLDSNUMBERPERFECTGASFLOW

4.1 Introduction

Most future hypersonic vehicles will be operating in the upper

atmosphere, where "low density effects" will play a major role in

establishing the llft, drag, moments,and aerodynamic heating on a

hypersonic vehicle. An accurate knowledge of hypersonic

aerothermodynamics under low density conditions is required for an

accurate prediction of the aerothermal environment for the new

generation of hypersonic vehicles.

The degree of rarefaction of a low density flow is usually

expressed through the Knudsennumberwhich is the ratio of the molecular

meanfree path in the gas to a characteristic dimension of the

flowfleld. The conventional continuum flow assumption is valid when

this parameter is very small in comparison to unity. The opposite limit

of very large Knudsennumbercorresponds to a free molecule flow in

which intermolecular collisions may be neglected. The region between

these limits is generally referred to as the transition flow regime

[52].

At highly rarefied gas flow conditions, the conventional approach

by continuum analysis is no longer valid. A more appropriate approach

is by kinetic theory of gases which can correctly describe microscopic

properties of molecules, such as the Boltzmann equation [30]. Although
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there is only one dependent variable, the distribution function for the

molecular states in the Boltzmann equation, the numberof independent

variables make this approach extremely difficult to obtain analytical or

numerical solutions. An alternative is to model the gas flow at the

molecular level. The Direct Simulation Monte Carlo (DSMC)method [53]

has been found to be most readily applicable to complex engineering

problems. However, this method still requires large computational times

and computer storage.

At the slightly rarefied gas conditions, significant levels of

molecular collisions are still present in the flowfield which makethe

continuum approaches applicable except in a region next to the wall. It

is because the gradients of the macroscopic variables becomeso steep

that the meanfree path becomeslarge comparedto the local

characteristic length. This region is called the Knudsen layer in which

the determination of the flow properties requires the direct solution of

the Boltzmann equation matched to the solutions for the outer flow and

the wall boundary conditions. This is most conveniently done through

the use of a slip model in which slip and jump properties are used for

the boundary conditions for the conventional continuum flow equations.

These slip and Jumpboundary conditions for the gas and solid interface

are obtained from the balance equations for mass, momentumand energy

fluxes at the Knudsen layer edge [30-31, 54-55].

Not muchattention seemsto have been given to the problems

encountered with low-density aerothermodynamics. Davis []2] included

body and shock-slip in the viscous shock-layer analysis of a perfect-gas

flow around a hyperboloid. Davis [563 modified these sllp relations for

a binary mixture. Tree et al. [57] analyzed the hypersonic ionizing
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viscous shock-layer flow past axially symmetric bodies at low densities.

Tiwari and Szema[58,59] investigated the effects of body and shock slip

conditions on the aerothermodynamic environment of a Jovian entry body.

Swaminathan et al. [60] and Song et al. [61] recently included the body-

and shock-slip effects for three-dimensional flows. However, their

surface slip condition for single species or multicomponent mixtures

contained some errors as explained in Ref. 31. The shock-slip boundary

conditions did not account for the derivatives of the shock quantities

in the shock-oriented coordinate system. This introduced significant

errors in analyzing flows past slender bodies as compared to the wide-

angle bodies [62].

Gupta et al. [31] reanalysed the wall boundary conditions by using

the approach of Scott £63] and provided appropriate relations for the

various quantities with surface sllp in a form which can readily be

employed for multicomponent and binary mixtures as well as a single-

species gas. These surface sllp expressions have been implemented

successfully in full Navier-Stokes equations [26,62]

Under the low Reynolds number (or low density) flow conditions,

the viscous effects influence almost the entire shock layer and the

shock itself is considerably thick as compared to the high Reynolds

number (or high density) case. The complete Navier-Stokes equations are

considered appropriate for the low Reynolds number applications. But

computer storage and computational time make them are very expensive to

solve for flows around long bodies. The viscous shock-layer equations

have been shown to give good results for hypersonic flows on blunt

slender long bodies at high Reynolds number. Thus, it is desirable to

employ the viscous shock-layer equations instead of Navier-Stokes
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equations at low Reynolds numbercases to reduce the computational

requirement.

In this chapter, the surface-sllp relations developed by Gupta et

al. [31] and the corrected form of the shock-slip boundary conditions

[12] are implemented in the viscous shock-layer code for a perfect gas

as described in Chap. 2. to obtain results for the low-density flight

conditions for long slender bodies. A detailed comparison with

experimental data and other numerical results gives an estimate of

accuracy of the present predictions. Furthermore, the range of

applicability of the viscous shock-layer solutions Is ascertained by

comparing these results with those obtained from the steady-state

Navler-Stokes equations.

4.2 Flow Governing Equations

The conservation equations employed in this chapter are the steady

perfect gas viscous shock-layer equations for an axisymmetrlc or two-

dimensional body at zero angle of attack [12]. These equations are

written in the same forms as Eqs. (2.25) through (2.37) except that the

+

eddy viscosity, ¢ , Is set to zero. Also, the stretching function g(_),

Eq. (2.21), is given by

g(_) - I - [_ + (I _)

_n(_,_-_)

_n {8-n(2_+I)+I
_'+W( 2_+I )-I } ] (4.1)
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The first and second derivatives of Eq. (4.1) are expressed as

w

dg (l-a) (2ot+1) 1
. {" [ _-_'( 2E+ I ) + I ]
_n _'[_I )

I
(4.2)

d2g (I-_) (2_+I)2
= { I _ I

d_ 2 _n(__+11) [_-_(2_+I )+I ]2 [B+n(2_+1 )-I ]2

} (4.3)

Equation (4.1) permits the mesh to be refined either near the body

only (_ - 0) or refined equally near both the body and bow shock (_ -

I/2) when the shock becomes thick under the low density flight

conditions. The parameter _ controls the amount of refinement with

values near I giving the largest amount of stretching. The physical

coordinate n can be obtained from inverting Eq. (4.1) and is expressed

as

1-n-_

,B+I _ 1-E

-- 1 _]_',' - 1
n- (2_+I) [I -B { 1-n-E }] (4.4)

(B_+I_ I-E
B-I" + I

This transformation keeps the body at n - 0 and the shock at _ = I with

uniform mesh in the computational coordinate n.
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4.3 Shock- and Surface-Slip Boundary Conditions

At high altitudes, the continuum flow assumption breaks downin

the region next to the wall. The no-sllp and no-temperature jump

boundary conditions are no longer valid. As such, the sllp and

temperature jump boundary conditions should be used. The relations for

the body and shock sllp conditions are provided in this section.

4.3.1 Surface Slip Conditions

The surface sllp conditions for a slngle-species gas as given in

Gupta et al. [31] are used as the boundary conditions on the body

surface. Since no mass injection is considered in this chapter, the

normal component of velocity at the surface is taken to be zero. The

nondlmenslonal forms of surface sllp conditions in the computational

plane, Eqs. (2.59) through (2.61), are given here again as

Velocity slip:

2

US = (_) --EPS [1 dg au _u ] (4.5)

nsh d_ an (1+n-hshK) s

Pressure slip:

2+ (2j_) e _S PS (I...__dg ST)
4 (_) 8 P"r T d_'_"nn

Ps " Pw 5_ s nsh s

Temperature slip:

(4.6)

I_ x _ e2 _s (_/_I dg aT
T s " T w +'_ (__-L-[)( ) Pr Ps_s nsh dE _'nn) (4.7)

In the derivation of the relation for the temperature slip, it is

assumed that the internal energy is frozen during the reflection from
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the wall. The parameter _ is the accommodationcoefficient which is

taken to be I in this study.

4.3.2 Shock Sllp Conditions

The boundary conditions at the shock are the modified Ranklne-

Hugonlot relations developed by Cheng [32]. These relations are

obtained by integrating the one-dlmensional Navier-Stokes equation

across the shock. Since velocity components tangent and normal to the

shock are not the same as those tangent and normal to the body surface,

transformations are needed to relate these quantltes. The

transformations are given by

_sh " Ush cos(s-e) + Vshsin(s-8) (4.8)

9sh - - Ush sln(s-8) + VshCOS(s-8 ) (4.9)

where _sh and ?sh are the components of velocity tangent and normal to

the shock interface, respectively. The nondlmenslonal forms of the

shock slip conditions in the computational plane, Eqs. (2.75) through

(2.78), are given here again by

Continuity:

Psh ?sh " -sins (4.10)

Tangentlal-momentum:

dnsh _ __
¢2_sh{[COS(s-e) + n-_- sin(s-e)] I dg _Q

nsh d_ Bn

+ _ sin(s-e)_sh- + _sh sinm - sins

I

co_ (4.11)
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Normal-moment um:

Psh " P® + sins(sins ÷ ?sh )

Energy:

dnsh
2 _ + - __ __

¢ (P-r)sh {[cos(s-e) n -_- sin(s-e)] I dE ST
nsh d_ Sn

ST sin(s-e)} + sins
- _-_ sh Tsh sins (_sh - c°ss)22

si_ { 4"1' _ 4(Y-1)] 1
2 (_+I)2 sin2m + [ ( - ) M 2

(Y+I) ®

(y+l)2M_sin2a

(4.12)

} (4.13)

Equation of state:

Psh I yPshl(Y-l)Tsh

The errors in the expressions used by Davis [12] have been

corrected in this study and this is discussed also by Lee et al. [62].

(4.14)

4.4 Method of Solution

The method of solution is similar to that implemented in Chap. 3.

The two second-order equations, s-momentum and energy, are replaced with

central differences in the n-direction and two-point backward

differences in the _-direction. The two first-order equations,

continuity and normal-momentum, are solved simultaneously in a coupled

way. The solution is started at the stagnation point. The velocity

slip and temperature Jump on the surface and at the shock are iterated

along with the corresponding governing equations. The solution is

iterated at location m until the convergence is achieved. The solution
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iS then advanced to the m+1station. Figure 4.1 presents the flow chart

for obtaining solutions with body-sllp only, shock-sllp only, and with

body and shock-slip.

Solutions to the steady-state Navier-Stokes equations, which are

given in Appendix B, have been obtained by first expressing them in the

body-orlented coordinate system. This procedure is the sameas the one

employedwith the viscous shock-layer equations. After obtaining a

solution of the viscous shock-layer equation, the hlgher-order terms are

evaluated using these flowfleld results. These terms are held constant

during the solution for the first approximation to the Navler-Stokes

equations. The solution with this approximation is obtained at the end

of the first global pass. At the beginning of the second global pass,

the higher-order terms are reevaluated from the first global-pass

solutions. These terms are held constant again during the solution for

the second approximation obtained at the end of the second global pass.

This procedure is repeated until the flowfield results corresponding to

successive global passes converge within a specified limit [23].

4.5 Results and Discussions

Numerical solutions of the viscous shock-layer (VSL) equations for

the low-density hypersonic flow over long slender bodies are obtained.

The surface slip [31] and the recently corrected shock-slip boundary

conditions [62] are implemented in the implicit finlte-dlfference method

used to solve the governing equations. Detailed comparisons with the

experimental data are included for several conditions. Extensive

results are provided for long slender bodies with temperature surface

conditions ranging from adiabatic to highly cooled. Also included are
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calculations from the steady-state Navler-Stokes equations. These

results provide an indication of the range of applicability of the

viscous shock-layer solutions.

4.5.1 Comparison with Experimental Data

There are only a few experimental data for the low-denslty, high-

energy flows available in the literature. The data of Little [46] are

still considered quite good for such flows. These data, however, are

limited to the measurements of pressure, drag, and skin friction. These

data were used extensively for comparison with the theoretical

predictions by Davis [12]. The same data have been employed for

comparison with the present results also. Figures 4.2 to 4.6 give

comparisons between the viscous shock-layer predictions and the

@

experimental data [46] for a 10 hyperbolold. With shock and body

sllp, surface pressure predictions by the present method agree quite

well with the experimental data as shown in Fig. 4.2. Comparisons of

O

drag coefficients on a 10 hyperbolold for a range of values of the

rarefaction parameter ¢ are shown in Figs. 4.3 to 4.6. Predictions of

Davis [12] are also given in these figures. It is clear that the

present predictions with the shock and body slips are in much better

agreement with the experimental data than the predictions of Davis.

Large differences in the present calculations and those of Davis are

seen with increasing values of _. These differences may be due to the

errors in the sllp conditions as mentioned in Sec. 4.1.

Comparison between the predicted Stanton number distribution and

O

experimental data [64] for a 10 sphere-cone is provided in Fig. 4.7.

The present calculations with shock and body sllp are in good agreement
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with the data except for the stagnation point. The experimental heat

transfer rate at the stagnation point were determined to be biased

upward due to particle impact caused by the arc heater [65].

4.5.2 Comparison with Predicted Results

0

Results obtained for a 22.5 hyperboloid in the stagnation region

by the present viscous shock-layer equations and the steady-state

Navier-Stokes equations are compared with those obtained by Anderson and

Moss [23] in Table 4.1. The results from these calculations compare

fairly well, especially for C . A maximum difference of less than ten
P

percent occurs between the two results at Re,® of 90 in the heat

transfer coefficient, CH. This may be due to the grid clustering

employed near the shock and body in the present calculations.

Figures 4.8. and 4.9 show comparisons for the Stanton number and

skin friction coefficient, respectively as obtained by the present

viscous shock-layer method and that obtained by Davis [12]. Also shown

are the present results obtained from the steady-state Navier-Stokes

equations. The calculations are carried out for the stagnation point

only for different values of the Reynolds number parameter, ¢, which is

a measure of the degree of rarefaction. Larger values of c imply

increased rarefaction effects. The two viscous shock-layer predictions

have similar trends. However, significant differences are noticed for

large values of ¢. The discrepancies may be due to the errors contained

in the slip equations used by Davis [12] and the current grid clustering

near the shock and body. Figures 4.8 and 4.9 also show that the viscous

shook-layer predictions deviate from the Navier-Stokes results for large

values of c. For E - I, the present viscous shock layer predictions
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give a Stanton number of 0.68, whereas the Navier-Stokes results yield a

value of about 0.9. It is clear that the Navier-Stokes predictions have

the right trend in approaching a value of I for the free-molecule flow

limit. These results suggest that the viscous shock-layer approximation

may not be valid for large values of ¢.

Figures 4.10 and 4.11 show comparisons of predicted skln-frlctlon

coefficient and Stanton number distributions, respectively, as obtained

by the present vlscousshock-layer method and that by Gordon [16]. The

comparison between these two results is quite good when the coarse grid

structure of Gordon [16] is used. The method of Gordon is fully coupled

and requires solving a 5 x 5 matrix at every point in the flowfield for

a perfect gas. The complexity and stability problems in a fully coupled

solution will be increased in analyzing a multi-species high-temperature

air flow. Also, the computational times will be considerably large for

long slender bodies by this method. The present approach, with coupling

between the normal momentum and continuity equations only, may be more

appealing for such flow conditions. Figures 4.10 and 4.11 also give

results with and without slip for a variable grid near the shock and

body surface. It is clearly seen that the computational grld-size as

well as the slip effects are important in this case.

4.5.3 Calculations for Different Altitudes and Surface Temperatures and

Range of Validity of Viscous Shock-Layer Results

An extensive test for the present computational method and the

surface and shock-slip boundary conditions is provided through the

results given in Figs. 4.12 and 4.13. The flow analyzed in these

figures is a high Mach number (M® - 20) flow over highly cooled (TW -
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300 K), 2.54 cm nose radius, five and ten degree sphere cones. The

free-stream conditions for very high-to-low altitude flight cases are

given in Table 4.2. Figure 4.12 gives the Stanton number distribution

o

for a 5 sphere-cone obtained by using the viscous shock-layer equations

for different body locations. The slip effects become insignificant at

body locations greater than about ninety nose-radll or at altitudes less

than about 60 km for a wall temperature of 300 K. The Stanton number

O

values with and without slip for a 10 sphere-cone as shown in Fig. 4.13

O

are higher than those for a 5 sphere-cone at the corresponding body

locations for a given altitude except for the stagnation point (s - 0).

At this location, the Stanton number values are almost the same for the

O O

5 and 10 sphere-cones. Figures 4.12 and 4.13 also indicate that for a

given altitude and body location, the slip effects are higher on the

O O

conical flank portion for a 5 sphere-cone than for a 10 sphere-cone.

Further, the effect of sllp increases with increasing altitude for a

given cone angle and body location.

Figures 4.14 to 4.20 show the effect of surface temperature on

stagnation-point pressure and heat-transfer coefficients. Both the

viscous shock-layer and Navier-Stokes solutions are provided in these

figures. The results presented in Figs. 4.14 to 4.17 show that the

viscous shock-layer values of C with no sllp gradually increase from a
P

value of 1.84 at about 30.5 km altitude to a value of 1.88 at 100 km

altitude. The value of C stays constant at 1.84 for an adiabatic wall.
P

The viscous shock layer predictions for C with sllp continuously
P

decrease with increasing altitude for a cooled surface. Thls trend is
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similar to the one given by the results of Davis [12]. This trend,

however, indicates that viscous shock-layer results with sllp do not

approach the free molecule flow value at higher altitudes. The Navler-

Stokes results with the body and shock slip do provide the right

behavior of approaching the free molecule flow value at higher

altitudes. These results, however, first show a decrease in the value

of C and then an increase as the altitude increases further.
P

This behavior, also obtained by Jaln and Adlmurthy [66], is

consistent with the trend observed by Potter and Bailey [67]. Good

agreement between the Navler-Stokes results and the data of Potter and

Bailey [67] was reported by Jaln and Adlmurthy [66]. As can be noticed

from Figs. 4.14 to 4.17, the dip in the pressurecoefficlent curve is

reduced by increasing the wall temperature. For an adiabatic surface

(implying no temperature sllp), there is no dip in the C curve, and it
P

increases monotonically towards the free-molecule flow value with the

increasing in the altitude. It may be mentioned here that the free-

molecule flow value of Cp as well as its asymptotic value at lower

altitudes is also influenced by the wall temperature. The free-molecule

flow value is obtained from the equations of Bird's [46]. The predicted

value of Cp from Navler-Stokes and viscous shock-layer solutions with

sllp approach the asymptotic value of 1.84, which is predicted by the

Invlscld modified Newtonian formulation, at lower altitudes with the

increase in surface temperature. Obviously, this asymptotic value is

obtained for a very high Reynolds number flow in absence of any sllp

effects. Reducing the sllp effects by increasing the wall temperature

also gives this asymptotic value at moderately high altitudes.
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The results for the stagnation-polnt heat transfer coefficient as

a function of the freestream Knudsen number (or altitude) are presented

in Figs. 4.18 to 4.20 for different surface temperatures. Results for a

given surface temperature show that the viscous shock-layer formulation

with or without slip does not give physically realistic results at very

high altitudes. The Navier-Stokes results with slip do approach the

free-molecule flow value of approximately unity at very high altitudes.

With an increase in surface temperature, the surface heat-transfer rate

is decreased as expected. The effect of slip is noticeable down to an

altitude of about 60 km for the various surface temperature considered

here. Discrepancies of less than ten percent are noticeable below

approximately 75 km altitude.

Results of Figs. 4.14 to 4.20 suggest that the viscous shock-layer

calculations with slip begin to deviate from the Navier-Stokes results

with slip for freestream Knudsen number (X® / RN) greater than about

0.06. For Cp, the deviation begins at X® / RN - 0.01. It may not be

appropriate to use the viscous shock-layer model even with body and

shock slip at higher altitudes.

4.6 Conclusions

Results have been obtained for the surface pressure, drag, heat

transfer, and skin-friction coefficients for hyperboloids and sphere-

cone-shaped slender bodies under varying degrees of low-density flow

conditions. Recently obtained surface-slip and corrected shock-slip

conditions are employed to account for the low-density effects. The

method of solution used for the viscous shock-layer equations is a
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partially coupled spatlal-marchlng implicit finlte-difference technique.

The flow cases analyzed include highly cooled surfaces in very high Math

number flows. The viscous shook-layer predictions compare quite

favorably with experimental data. Results are also obtained from the

steady-state Navler-Stokes equations by successive approximations by

using the viscous shock-layer results to evaluate higher order terms for

the first approximation. Comparison between the Navler-Stokes and

viscous shock-layer results indicates that viscous shook-layer equations

even with body and shock sllp do not give physically consistent results

in the stagnation region above approximately 75 km altitude for the

conditions considered in this study.
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Chapter 5

CHEMICAL NONEQUILIBRIUM FLOWS

5.1 Introduction

One of dominant aspect of hypersonic flow is high-temperature

effects. Strong compression of the gas forward of the vehicle and heat

generation due to viscous dissipation lead to increase gas temperature

in the shock layer. At high temperature, the gas will become chemically

reacting. The specific heat per unit mass is considerably increased,

the specific heat ratio will no longer equal to 1.4 and will no longer

be a constant. The assumption of a calorically perfect gas is not

appropriate; the effects of chemical reactions must be taken into

account.

From the example of atmospheric entry of the Apollo command

vehicle given by Anderson [68], the shock layer temperature predicted on

the basis of an equilibrium chemically reacting gas is a factor of 5

less than the temperature predicted on the basis of a calorically

perfect, nonreacting gas which gives an unrealistically high value of

temperature in a high Mach number flow. Two major physical

characteristics which cause a high-temperature gas to deviate from

calorically perfect gas behavior, as stated in [68], are vibrational

excitation and chemical reactions.

All chemical processes take place by molecular collisions. As the

temperature of the gas is increased, and hence the molecular collisions
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becomemore violent, it is probable that the diatomic molecules of

oxygen, 02, and nitrogen, N2, will be dissociated and nitric oxide, NO,

will be formed or dissociated by collisions with other particles. In

turn, collisions take time to occur. Hence, the chemical changes in a

gas require a finite time to occur. Equilibrium flows assumethat the

gas has had enough time for the necessary collisions to occur. However,

there are someflight conditions frequently encountered in atmospheric

entry where the gas is not given the necessary time to cometo a state

of equilibrium. Under these conditions, flows are characterized by a

chemical nonequilibrium process in the shock layer. The experimental

wall temperature measurementsand resulting heat-transfer rates obtained

during the first flights of the Space Shuttle have been lower than the

predicted equilibrium values at least over the first dO percent of the

Shuttle length and for much of the altitude range of interest [69-72].

The flight data from the Catalytic Surface Experiment [71,73] have

verified that the lower rates can be attributed primarily to the fairly

noncatalytic nature of the Shuttle thermal protection system and not to

the unknowns in the freestream or flowfield quantities, and that the

nonequilibrium effects persist to altitudes as low as 50 km for the

orbiter.

Although measurement data can be obtained from the Space Shuttle

flights, it is very expensive for each flight. Moreover, a small scale

laboratory experiment cannot simulate the chemical nonequilibrium flow

around a hypersonic vehicle. An adequate design capability for future

transportation systems relies on numerical predictions. Among the

numerical methods available for solving the nonequilibrium flow over a
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hypersonic vehicle, the viscous shock-layer approach not only has the

advantage of requiring muchless computing cost as compared to the

Navier-Stokes solutions, but it also provides accurate predictions.

This method has been used widely as a tool for engineering calculations

[24,60,61,72,74,75] •

The viscous shock-layer equations for a perfect gas and for a

chemically reacting binary mixture were developed by Davis [12,56].

Based on this analysis, Moss[24] developed a code using the viscous-

shock-layer equations for a multicomponent gas mixture with chemical

equilibrium or nonequilibrium. It is shown that accurate results can be

obtained by this nonequilibrium code [24,72,74,76,77]. However, the

difficulties encountered in the case of a perfect gas are also

encountered in the nonequilibrlum flow over a slender long body.

Appropriate shock and wall boundary conditions must be prescribed

for the viscous shock-layer equations for chemically reacting flows. In

addition to surface temperature and velocity, wall species

concentrations are needed. However, the surface heating rate in a

hypersonic nonequilibrium flow environment is strongly affected by the

surface catalytic activity {the recombination of the dissociated oxygen

and nitrogen atoms). For a dissociated nonequilibrium flow over a

finite-catalytic wall, the heating rate and the wall species

concentration is a function of the surface reaction rate coefficient (or

energy-transfer recombination coefficient) [78]. The temperature-

dependent and constant values of the coefficients for oxygen and

nitrogen surface recombination have been determined by Scott [79].

These values have been incorporated in the viscous-shock-layer code

available in [72]; however, the resulting heating predictions are only
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in fair agreement with the STS-2 experimental data. Based on STS-2

data, a new oxygen reaction rate expression has been developed by Zoby

et al. [77], and it has been shown that a better heating comparison with

experimental data can be obtained [75,77].

Thermodynamic properties and transport properties are required for

each species considered in a multicomponent gas mixtures. All these

properties are obtained from the polynomial curve-flt formulas based on

measured data. Measurements made on the Orbiter during reentry have

provided an extensive and reliable data base to improve these relations.

The primary objective of this study is to investigate the effects

of chemical nonequilibrium conditions in hypersonic flows over long

slender bodies. For this, modifications in the existing code by Moss

[24] are needed. The modifications included are:(1) the two first

order equations, continuity and normal momentum, are solved

simultaneously as a coupled set, and (2) the thermodynamic and transport

curve fit relations are modified. The effects of different wall

recombination coefficients on the predicted heat transfer are

investigated. Also, this chapter includes a parametric study on the

effects of body-angle, nose radius, and Math number.

5.2 Analysis

The conservation equations that describe a reacting multicomponent

gas mixture can be found in the literature [27,28]. The viscous shock-

layer equations for nonequilibrium multieomponent gas mixture developed

by Moss [24] are obtained from the conservation equations employing the

same procedure as for the perfect gas [12]. For a blunt axisymmetrlc
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body at zero angle of attack, the global continuity, s-momentum,and n-

momentumequations in the orthogonal, body-oriented transformed

coordinates and in nondimensional form are written in the same form as

Eqs. (2.25) through (2.29), (2.35) and (2.36) except the eddy viscosity,

+

¢ , is set to zero. For a chemical nonequilibrium flow, the energy

equation is formulated in terms of the temperature instead of total

enthalpy. In addition to these conservation equations, the species

continuity equation and equation of state are needed to complete the set

of equations. The energy and species continuity equations in the

computational plane are written in the form of Eq. (2.25). The W in

this equation represents T for the energy equation and C i for the

species continuity equation. The coefficients a I to a4, Eqs. (2.42) to

(2.49), are given here again by

Energy, W - T:

N
nShK JnshCOS8 nsh s

. I _K dE + + - _ LTJiCp
al _ _-_ d_ 1+_nsh_ r+n-hsheOse K i-I 'i

+ nshnshPCpUn nshPCpV

2 - ) e2
e _(1+nnsh_ K

(5.1)

(5.2)

a3

2

nsh_ (1 _u dg

nsh _ diT

2-N
s

_U .]2 - __nsh" Z hiw i
1+_nshK" c2_ i-I
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N
s

" ZPM I - p---_
k-1

k#i

nbik

i)C k

an
(5.10)

Abik = I Le'i

Le, i

* * N
M I M i s

- [ _ Le, ik + (I ---_) Z Le,ijC j]

M M k j-1
JWi

i-k

iWk

(5.11)

In Eq. (5.11), Le,lk are the multieomponent Lewis numbers and M

molecular weight which is given by

D

* 1
M -

N s Ci

M i

is

(5.12)

The mass flux, Ji' due to concentration gradients can be written as [29]

_s @C k dg
Jl " u Ablk _)rl d_

nshPr k- 1
(5.13)

The equation of state is given by

m

p = pT R / M Cp,® (5.14)

The term h i which appears in the energy and species continuity

equations represents the rate of production of species i due to chemical
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reactions. As discussed by Blottner [6,29] and Davis [56], the way of

the production terms are written is very important in achieving

convergence of the iteration procedure. Consequently, for the energy

equation, the production terms are written as [56]

( "p-- )k+l " ( _ )k + _'_ ( -_ )k ( Tk+l - Tk )
(5.15)

where k denotes the iteration for which the solution is known and k+1

the iteration for which a solution is required. It is found that if an

expression of this type is not used which allows T to appear as an

unknown in the energy equation, the method will not converge at low

altitude conditions where the gas is approaching equillbrium conditions

[29]. The term

N

ZShi_i which appears in the energy equation, Eq. (5.3),
i-I

is written as follows:

_s + TQ 2hlQ1 " QI
1-I

(5.16)

As for the species continuity equations, the production term is written

_i .0 CI_I-_" w i -

as

(5.17)

Hence, Eqs. (5.15) and (5.17) express the production terms as a function

of temperature for the energy equation and in terms of the species mass

fraction for the species equations.
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5.3 Boundary Conditions

At the wall, the no-sllp and no-temperature-jump boundary

conditions are used in this study. No mass injection is considered, the

normal component of velocity at the surface is taken to be zero. Also,

the surface total enthalpy is given as

- N

H - is hiCi (5.18)
I-I

For a nonequilibrium flow, the wall species concentration is

dictated by the catalytic recombination rate kw
in the recombination

equation which is given by

BC i dg kw'iPPrnsh C i - 0 (5.19)
_n d_ Le _ c2

where kw, i - kw, i / U®.
The catalytic recombination rate is determined

from the catalytic recombination coefficient (or catalytic efficiency)

_i by [78]

2_M i ,
--i--_ k
R T w,i

(5.20)

For a noncatalytic wall, the catalytic recombination rate of atoms is
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equal to zero [31]; hence, Eq. (5.19) becomes

_C i

( _-n )w" 0 (5.21)

for all the species of a multicomponent mixture. For a fully catalytic

wall, the catalytic recombination rate of each atom is equal to one

[31].

For a finite rate catalytic wall, the recombination coefficient

for oxygen and nitrogen based on arcjet experimental heat-transfer data

were determined by Scott [79] such as

_0 " 16.0 e-10271/Tw (5.22)

and

YN " 0.071 e-2219/Tw (5.23)

However, it has been noticed that the resulting heating predictions are

only in fair agreement with the STS-2 experimental data by

incorporating these coefficients [72,75]. Zoby et al. [77] developed a

recombination coefficient for oxygen based on experimental flight, STS-

2, heat-transfer data. It is given by

YO " 0.00941 e-658"9/Tw (5.24)

Boundary conditions immediately behind the shock are calculated by

using the Ranklne-Hugonlot relations. The nondimenslonal shock



139

relations are the sameas Eqs. (3.21) to (3.23) and include

Energy:

hsh " h® +

sin2m I

(I- ---_--)

Psh

(5.25)

State :

R
Psh " PshTsh ( * * )

Msh C
p,m

(5.26)

Enthalpy:

N

. Zs hi,sh C ihsh i- I ,sh
(5.27)

The chemistry across the shock wave is assumed to be frozen.

5.4 Chemical Composition

In this study, the chemical reaction is confined to a system of

neutral air species (0, 02, N, N 2 and NO). When chemical reactions

proceed at a finite rate, the rate of production terms h i are required.

For a multicomponent gas with N reacting chemical species and N
s r

chemical reactions, the chemical equation describing the overall change

from reactants to products may be written in the general form

Nj Kf,r Nj
* ------÷

_ _i,rXi ÷___ Z
i-I , i-I

Kb,r

Bi.rXi (5.28)
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where r - 1,2,..., Nr and Nj is equal to the sum of the reacting species

(NS) plus the number of catalytic bodies. The quantities _i,r and BI, r

are the stoichiometrlc coefficients for reactants and products,

respectively, whereas Kf, r and Kb, r
are the forward and backward rate

constants. The quantities Xi denote the concentrations in moles per

unit volume. The rate of change of any species as a result of a

particular reaction is [80]

* Nj
dXi * *_j, r

- - _ Xj(--'_)dtr (Bi,r _i'r) (Kf'r J-1

Nj
, ,Sj,r)

- _ Xj
Kb'r J=1

(5.29)

In order to find the net mass rate of production of the ith species per

unit volume, Eq. (5.29) must be summed over all reactions r. Thus,the

rate of production of chemical species, _i' can be expressed as

N *
r dX.

•i "Mi Z (--i,) (5.301
r=1 dt r

The chemical reactions used in this study are as follows:

r - I 02 + MI = 20 + M I

r - 2 N2 + M2 = 2N + M2
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r - 3 N2 + N - 2N + N

r-4
NO + M 3 = N + O + M 3

r - 5 NO + 0 - 0 2 + N

r - 6 N + 0 - NO + N
2

where MI, M2 and M 3 are the catalytic third bodies [6]. The reaction

constants for these equations are expressed in the modified Arrhenius

form, where the forward rate is given as

, ,C2 Cr x 103 -s

Kf, r - T r exp(log e CO r T* )'-sl (mole)_ r (4.31)

and the backward rate is given as

, , 0 3
.D2 r DI r x I

. ) I (mole)-Sr (5 32)
Kb, r - T exp(l°ge DOr T '-s cm 3

where

Nj

" [ _i - I (5.33)
°r i-I ,r

and

N.

J

Br = [ 81, r - I (5.34)
I=I

The values for the coefficients in Eqs. (5.31) and (5.32) are taken from

the compilation of experlmentally determined rate constants given by

Blottner et al. [81]. For a specified temperature, density, and species

composition, Eqs. (5.29) to (5.32) are used to determine the production

rate of a multlcomponent gas.
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5.5 Thermodynamicand Transport Properties

The thermodynamic properties Cp,i and hi and the transport

properties _i' Ki and Dij are required for each species considered.

Since the multicomponent gas mixtures are considered to be mixtures of

thermally perfect gases, the thermodynamic and transport properties for

each species are calculated by using the local temperature and pressure.

Then the mixture properties are determined in terms of the individual

species properties.

5.5. I Thermodynamic Properties

Values for the thermodynamic properties as a function of

temperature are obtained by using polynomial curve fits for each

chemical species. The foilowlng polynomial equations are used:

Specific Heat

, - a I + a2T
R

Enthalpy

+ a4T + a5T+ a3T*2 *3 *4 (5.35)

hi a2 T a3T* 2 a4T* 3 asT* 4 a6

-_ - a I + -- + -- + -- + -- + -_ (5.36)
RT 2 3 4 5 T

The development of these curve fits and a tabulation of the polynomial

constant (a I to a7) are presented in [82]. These curve-fit formulas are

tabulated up to 15,000 K. However, there are many flow conditions where

the temperatures in the shock layer are much higher than 15,000 K.

Hence, these curve fit formulas have been extended to a temperature

range of up to 35,000 K by Shinn [83] based on the tabulated values

given by Browne [84,85].



137

5.5.2 Transport Properties

Transport properties for vlseosity and thermal conductivity are

required for each species considered in the shock layer gas. These

properties are obtained by using polynomial curve fits to the data of

Eseh et al. [86]. The mixture viscosity is obtained by using the

semiemplrical formula of Wilke [27]. The mixture thermal conductivity

is obtained by a method analogous to that used for viscosity [24]. A

binary diffusion model with Lewis number equal to I .4 is used.

In addition, the transport properties of the individual species

are also obtained from the polynomial curve-flts in temperature to the

values given by Yos [87]. These data are believed to be more accurate

at the higher temperatures which are encountered in nonequillbrium

calculations. With these individual species properties, transport

properties for the gas mixture are obtained by using the methods of

Armaly and Sutton [88] for viscosity and Mason and Saxena [89] for

thermal conductivity.

5.6 Method of Solution

The method of solution is essentially the same as that used for

solving the viscous shock-layer equations for one component perfect gas.

The solution for the multicomponent gas mixture proceeds in exactly the

same way as given in Chap. 3 for the one component gas except a species

equation is included now.

Three second-order equations, species continuity, s-momentum and

energy, are replaced with central differences in the n-direction and

two-point backward differences in the t-directlon. The two first-order

equations, continuity and n-momentum, are solved simultaneously. The
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density in these two equations are replaced by Eq. (5.14). Then these

two equations can be written in the sameforms as Eqs. (3.60) to (3.63).

The coefficients for a multicomponent gas mixture in these equations are

given in Appendix A. All these equations along with the boundary

conditions constitute a system of the tridiagonal form such as Eqs.

(3.53), (3.64) and (3.65). The shock stand-off distance is evaluated by

integrating the continuity equation and density is obtained from the

equation of state.

For specified free-stream conditions and body geometry, a

stagnation streamline solution is obtained. With the stagnation

streamline solution providing the initial conditions, the conditions at

the shock providing the outer boundary conditions, and the conditions at

the wall taken as the inner boundary conditions, the numerical solution

is marched downstream to the desired body location _. At any body

station m, the converged profiles at station m-1 are used as the initial

guess for the profiles at station m, The solution is then iterated

locally until convergence is achieved. The solution Is advanced

subsequently to the m+1 station. Figure 5.1 presents the procedure for

solving the governing equations for any location m.

5.7 Results and Discussions

Numerical solution to the previously discussed viscous shock-layer

equations with chemical nonequilibrium are presented and discussed.

First, comparisons of present results are made with data of STS-2 [90]

to investigate the effects of modifications of the chemical

nonequilibrium code and the heating effects of different finite-rate

oxygen surface recombination expressions. Second, results of three



139

Shock solution at station m I

+

_-_ Solve species continuity for C l I

r i solve energy equation for T I

Solve equatiln of state for p 1

I IThermodynamicandtransport properties I

_ - I Solve s-momentum equation for u I "

I I I " .Solve contlnul_y equation for nsh 1

Solve equation of state for p I

,ov.oo.:o I
--_ station

Fig. 5.1 Solution sequence with nonequilibrlum chemistry.
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different small body-angle sphere cones are presented which demonstrate

the effects of surface catalysis and body angle. Finally, the effects

of nose bluntness, Mach number and the thermodynamic and transport curve

fit relations on surface heat transfer rate are investigated.

In the original code of Moss [24], the convergence criteria for

each body station was that the relative difference be less than 0.001

for both the temperature and tangential velocity derivatives at the

wall. In this study, the temperature, tangential velocity, pressure and

species concentration profiles are added into the convergence criteria

where the relative difference is less than 0.001 for all these profiles.

5.7.1 Comparison of the Present Method with Cascading Method

Figures 5.2 and 5.3 show the results of shock standoff distance

O

and surface heat transfer distribution over a 35 sphere cone with

finite rate chemistry. Without coupling the two flrst-order equations,

continuity and normal-momentum, oscillation exists in the vicinity of

the tangency point; this is the same as with the perfect gas model

{Figs. 3.5 and 3.6). This oscillation can be removed by solving the two

flrst-order equations simultaneously in a coupled way.

5.7.2 Comparison of the Present Method with Measured Data

Present predicted heating rates are compared with the STS-2

laminar heating data [90] for three different altitudes in Figs. 5.4 to

5.6. The viscous shock-layer equations are applied to the windward

symmetry plane by using the concept of an equivalent axlsymmetrlc body

at zero degree angle of attack [72,77,91,92]. Results for an altitude

of 71.29 km are given in Fig. 5.4. With coupling the global continuity

and normal momentum equations, the predicted heating rates are lower
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than that without the coupling. Since the body angle is not small, the

coupling effect is not significant. It is also shown that the predicted
Q

heating rates using the oxygen surface reaction rate expression of Zoby

et al. [77] yield better comparison with the experimental data than that

using the Scott's relation [?9]. The prediction using Scott's

expression are 30 to 40 percent lower than the experimental data. The

present "equivalent" axisymmetric body results agree quite well with the

three-dimensional results which are obtained by Thompson [75]. Figures

5.5 and 5.6 give the comparisons of surface heating rate between

predictions and STS-2 data at altitudes 60.56 km and 52.97 km,

respectively. With finite catalytic wall conditions, the present

predictions are in good agreement with the data over the length of the

vehicle.

The results presented in Figs. 5.4 to 5.6 show that the flowfield

in the shock layer at high altitude is quite far from that predicted by

assuming the condition of chemical equilibrium. With decreasing

altitudes, the data and the finite rate chemistry predict the results

that approach the equilibrium value. However, near the Stagnation

region some degree of nonequilibrium flow persists to altitudes as low

as 50 km, as shown in Fig. 5.6.

5.7.3 Effects of Surface Catalysis and Body Angle

O O

Results for three sphere cones with body half-angles of 20 , 10 ,

O

and 6 are presented to illustrate the effects of body angle and surface

catalysis. Freestream conditions are those for 53.34 km altitude and a

Mach number of 25. The bodies have the same nose radius which equals

0.0381 m. Both noncatalytic and fully catalytic surfaces are examined
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to show the limiting effects of wall catalyclty on heating. Figure 5.7

O

gives the convergence history of the shock standoff distance for a 10

sphere-cone using the present method. It does not matter whether the

initial shock shape is created from the perfect gas solution for the

same body-angle (the solid llne and the dash llne) or from the chemical

nonequillbrium solution for larger body-angle (the chain llne), the

shock standoff distance will converge to the same shock shape.

O O O

The predicted heat-transfer distributions for 20 , 10 , and 6

sphere cones are given in Figs. 5.8 through 5.13. In order to present

these results clearly, it is necessary to show them in two figures for

each body-angle. The first of these two figures is an enlarged view of

the nose region, while the second extends up to 400 nose radii. From

these figures, it is seen that the heating rates with the noncatalytlc

surface may decrease more than 50 percent in comparison to that with the

fully catalytic surface on the spherical region. The differences in the

heating rates decrease in the downstream regions. With a noncatalytlc

surface an appreciable amount of dissociation is present at the wall,

then a dlffuslon-lnhlbltlng blanket of unrecombined atoms can pile up

near the surface and thereby reduce the heat transfer to the wall by

diffusion; this could result in a reduction of heat transfer to the

surface. On the other hand, with a fully catalytic surface the atomic

species which result from the dissociation in the high temperature air

will recombine with oxygen and nitrogen molecules at the surface. Since

the diffusion flux of atoms toward the wall must be equal to the rate of

disappearance of atoms at the wall due to recombination there, the heat

transfer to wall by diffusion is maximum with a fully catalytic wall.
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For a real surface, some degree of catalysis is usually present, hence,

the heating rate for a finite catalytic surface is between these two

limits.

The results for the ratio of surface heating rate with

noncatalytic wall to that with fully catalytic wall for the three bodies

are shown in Figs. 5.14 and 5.15. The ratio demonstrates the maximum

potential for a surface heatlng-rate reduction In the presence of

dissociated nonequllibrium flow over a finlte-catalytic surface. All

the three curves have the same trend. The ratios keep decreasing up to

the tangency point, then increase up to a maximum value in the

recompression region, and finally, decrease to a constant value on the

far downstream region. It is noticed that the location of the maximum

point moves downstream as the body-angle decreases; i.e., the

° ..

recompression region moves downstream as the body-angle decreases.

For stations beyond 100 nose radii (Fig. 5.15), the results

O

indicate less nonequllibrlum effects for the slender 6 cone than the

O O

10 and 20 cones. As shown in Figs. 5.16 and 5.1.7, these can be

attributed to more dissociated species present throughout the flowfleld

for energy transport by diffusion to the surface for the wider angle

cone. In thls body region for the lower cone angles, conditions

sufficient to produce dissociated species exist only in a small region

of the boundary layer. In the fore-cone region (Fig. 5.14), the largest

cone angle produces the smallest nonequllibrlum effects as indicated by

higher values of the ratio. (This result does not imply the local or

total heating rate to the larger cone angle is less.) As shown In Figs.

5.18 and 5.19, thls trend may be explained for a given nose radius, the
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flow over the smaller cone angle compared to the larger cone angle

expands rapidly and results in freezing of the flow chemistry and larger

percentages of dissociated species.

Figures 5.20 to 5.22 show the effects of body-angle on the surface

heating rates and wall pressure. Figures 5.20 and 5.21 give the heating

rates for a noncatalytic wall and for a fully catalytic wall,

respectively. The wall pressure distributions are illustrated in Fig.

5.22. Since the wall catalyticity has negligible effect on the wall

pressure, the results are presented only for the noncatalytic wall.

Decreasing the body angle can reduce the wall pressure and heat transfer

to the surface. Hence, the desirable geometries for hypersonic vehicles

are slender long bodies in order to reduce the heat transfer rate and

drag force on the bodies. It is noticed in Fig. 5.22 that the

W o

recompression regions start at s /RN - 3.0, 10.0, and 28.0 for the 20 ,

O O

10 and 6 sphere cone, respectively, tmder the condition investigated.

5.7.4 Effects of Nose Bluntness and Mach Number

A study of the effects of nose bluntness and Math number on the

shock standoff distance, surface heat transfer and mass concentration of

O

02 at the stagnation point of a 45 sphere cone is conducted and results

are discussed here. Freestream conditions are selected at 90 km, nose

radii are 0.305 m to 2.286 m, and Mach numbers are 30 to 36. Only

noncatalytle surface boundary condition is considered.

Figures 5.23 to 5.24 show the effects of nose bluntness on the

shock standoff distance and surface heating rate for a Math number of

36. It is seen that the shock standoff distance increases and surface
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Fig. 5.16 Species concentration profiles at s = 290.0 for a
noncatalyttc wall.
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heating rate decreases as the nose radius increases. Figure 5.25 shows

the concentration profile of 02 for three different nose radii. Since

the shock standoff distance increases as the nose radius increases, both

the oxygen and nitrogen molecules have more time to dissociate.

Consequently, the atomic oxygen and nitrogen concentrations are higher

in the shock layer. Moreover, the amount of energy absorbed by the

dissociation phenomena has reduced the temperature in the shock layer

such that the heat transfer to the wall is decreased.

Figures 5.26 and 5.27 show the effects of Math number on the shock

standoff distance and surface heating rate for a nose radius equal to

0.914 m. The shock standoff distance decreases and the surface heating

rate increases as Math number increases. At higher Math numbers, the

density and pressure increase across the shock wave are larger and hence

the mass flow behind the shock wave can readily squeeze through a

smaller area. Moreover, the temperature increase across the shock wave

is larger as Math number increases. As a result, a larger amount of

energy transfers in the shock layer; i.e., the amount of heat transfer

to the surface is larger. Figure 5.28 shows the concentration profile

of oxygen molecules for three different Math numbers. At the higher

Math numbers, oxygen dissociation increases due to the larger shock

layer temperature.

It is noted from Fig. 5.26 that the shock standoff distance

changes less and less as Math number increases; i.e., the shock standoff

distance becomes relatively insensitive to changes in free stream Math

number at high Math numbers. This is an example of the Math number

independence principle.
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5.7.5 Effects of the Thermodynamic and Transport Curve Fit Relations

The polynomial curve-fit formulas for thermodynamic and transport

properties in [72] are based on Esch's data [82,86]. The mixture

viscosity and thermal conductivity is obtained by Wilke's formula [27].

Values for the coefficients in these formulas are tabulated only up to

15,000 K. However, under certain conditions the temperatures in the

shock layer are considerable higher than 15,000 K. Therefore, new

polynomial curve-flt formulas for species transport properties have been

developed from the data of Yos [87,93]. The gas mixture transport

properties are obtained using the method of Armaly and Sutton [88] for

the viscosity and Mason and Saxena [89] for the thermal conductivity.

The polynomial curve-fit formulas for thermodynamic properties have been

extended to an upper temperature range up to 35,000 K by Shlnn [83].

These provide accurate predictions at higher temperatures encountered in

nonequillbrlum calculations [26,74,75]. The Prandtl number in the shock

layer is set equal to a constant [24,26] or is calculated from the local

thermodynamic and transport properties [75,76]. A study of the effects

of the thermodynamic and transport properties on the surface heating

O

rates of a 6 sphere cone is presented. Freestream conditions are those

for an altitude of 53.34 km,a nose radius is 0.0381 m and a Mach number

is 25. A noncatalytic surface boundary condition is considered.

Surface heating rate results wlth Yos' as well as wlth Esch's

transport property data are given in Fig. 5.29. The results obtained by

Thompson [34] are also shown in the figure for comparison. The Prandtl

number Is computed using local thermodynamic and transport properties.
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The maximum differences between the two sets of results are about five

percent. The differences between Thompson's results and the present

results, which are obtained using Yos' data, are about nine percent.

The reason for the discrepancy may be due to using different shock shape

and normal-directlon grid size. The outer boundary conditions depend on

the shock shape, and the gradients of the flowfield quantities depend on

the grid size.

Figures 5.30 and 5.31 show the surface heat transfer rates for

variable as well as constant Prandtl number. Both Yos' and Esch's data

have been used to compute the individual transport properties. The

constant Prandtl number is set equal to 0.72. The predictions for the

constant Prandtl number with Esch's data are always lower than the other

predictions. On the other hand, the predictions for the variable

Prandtl number with Yos' data are the highest values. Using Yos' data,

higher surface heat transfer predictions are obtained for constant or

variable Prandtl number than that using Esch's data. The differences

between that using the variable Prandtl number with Yos' data and that

using a constant Prandtl number with the Esch's data are about ten

percent in the recompression region and about five percent on the other

locations.

5.8 Conclusions

Numerical solutions of the viscous shock-layer equations under

nonequilibrium chemistry conditions are presented for hypersonic flow

over long slender bodies. The method of solution used for the viscous

shock-layer equations is a partially coupled spatial-marching implicit

flnite-difference technique. The flow cases analyzed include
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noncatalytic, finite catalytic, and fully catalytic surfaces. Results

from the present method show that the coupling between the global

continuity and normal momentum equations is essential and adequate to

obtain stable solutions past long slender bodies. The comparisons of

the present predictions with the STS-2 laminar heating data indicate

that the oxygen surface reaction rate expression of Xoby can give better

agreement with the flight data than the extrapolation of ground based

experimental recombination data. It is shown that near the stagnation

region of the vehicle, some degree of nonequillbrlum flow persists to

altitudes as low as 50 km.

It is shown that surface catalytic effects as well as body angles

influence significantly the surface heat transfer rates. For a

noncatalytlc surface, the heating rates can decrease more than 50

percent in comparison to that for a fully catalytic surface near the

stagnation region. These effects become less significant in the

downstream region. It is also shown that the heating rate due to

diffusion for a smaller body-angle sphere cone is not as important as

for a larger body-angle in the downstream region.

In order to reduce surface heat transfer rate and drag force on

the bodies, the desirable geometries of hypersonlc vehicles are slender

bodies with blunt noses. Although increasing the nose bluntness can

decrease the surface heatlng rate, It will increase the pressure drag

coefficients. Optimization should be made between the drag and heat

transfer rate.

With thermodynamic and transport propertles from Esch's data and

for a constant Prandtl number, the present method always predicts lower

heating rate than that from ¥os' data. For higher temperature
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conditions, the polynomial curve-fit formulas for species transport and

thermodynamic properties based on Yos' and Browne's data can give better

predictions of surface heat transfer.
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Chapter 6

CONCLUDING REMARKS

A method for solving the viscous shock-layer equations for

hypersonic flows over long slender bodies is presented. These equations

are solved by employing a spatial-marchlng, implicit flnlte-difference

technique. The two first-order equations, continuity and normal

momentum, are solved simultaneously as a coupled set. This method

yields a simple and computationally efficient technique.

A wide range of flow conditions has been considered in this study.

This includes conditions from high Reynolds number at low altitudes to

low Reynolds number at high altitudes. At low altitudes, the hypersonic

flow over a slender body usually becomes turbulence. Two algebraic

turbulence models, Cebeci-Smith and Baldwin~Lomax, have been used with

the present numerical technique for application to long slender bodies.

At high altitudes, the low density effects become important. Recently

obtained surface-slip and corrected shock-slip conditions are employed

to account for these effects. At higher altitudes, the gas becomes

chemically reacting. Under certain conditions, the flows are

characterized by chemical nonequillbrlum conditions in the shock layer.

Numerical solutions under these conditions are also obtained for long

slender bodies.

Results for different conditions are obtained for axisymmetric

bodies at an angle of attack of zero degree. Detailed comparisons have
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been made with other predictions and experimental data for slender body

flows to assess the accuracy of the present numerical technique. The

results show that the coupling between the continuity and normal

momentum equations is essential and adequate to obtain stable and

accurate solutions past long slender bodies. This is true for both the

chemically nonreactlng and reacting flows.

It is shown that both the Cebeci-Smlth and Baldwtn-Lomax models

are adequate for application to long slender bodies. Due to the

sensitivity of the Cebeci-Smith turbulence model to the boundary layer

edge location, it is imperative that the numerical method provide good

resolution and accurate solutions near the boundary layer edge. The

Baldwln-Lomax turbulence model, which avoids the use of conventional

boundary layer thickness in its formulation, appears more convenient to

implement. However, it has been shown that the constant, Cop , depends

on the flow Math number. Based upon this study and other

investigations, a linear dependence of this constant with Mach number is

suggested. Further comparisons with experimental data are needed to

verify this dependence.

Using the corrected slip models, the viscous shock-layer

predictions compare quite favorably with experimental data. The sllp

effects become insignificant In the downstream region or at altitudes

less than about 60 km for geometry and conditions considered in this

study. Significant sllp effects are observed primarily in the

stagnation region. Comparison between Navler-Stokes and viscous shock-

layer results Indicates that viscous shook-layer equations, even with

body and shock sllp, do not give physically consistent results in the
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stagnation region above approximately 75 km altitude for the conditions

considered here.

The present prediction with flnlte-rate chemistry yields good

comparison with the STS-2 laminar heating data. Near the stagnation

region of the vehicle, some degree of nonequillbrlum flow can persist to

altitudes as low as 50 km. Under chemical nonequillbrlum conditions,

the surface catalytic effects can influence significantly the surface

heat transfer. For a noncatalytlc surface, the heating rates can

decrease more than 50 percent in comparison to that for a fully

catalytic surface near the stagnation region. These effects become less

significant in the downstream region. The heating rate due to diffusion

for a smaller body-angle sphere cone is not as important as for a larger

body-angle sphere cone in the downstream region.

For further study, it Is recommended that the present method be

used to study the following physical problems

I. incorporate surface and shock sllp conditions in the finite

rate chemistry code to investigate the low density effects.

2. increase the number of species, including ionized species.

3. incorporate a convenient radiative transfer model to

investigate the effects of radiative heat transfer in the

shock layer.

4. analyse the effects of angle of attack by developing three-

dimensional viscous shock-layer equations.

5. modify the viscous shock-layer equations with equilibrium

chemistry for long slender bodies.
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APPENDIX A

COEFFICIENTS OF CONTINUITY AND NORMAL MOMENTUM

EQUATIONS AS A COUPLED SET

The coefficients of Eqs. (3.60)-(3.65) are given in this appendix.

For a perfect gas, the coefficients in Eqs. (3.60)-(3.63) are given as

Ac, n+I/2 = (r+nn+ I/2nsh °°sBAnn)(I+nn+; /2nshK ) (_) n+1/2 (A. I)

m

(r+nn+112nshC°SB)(1+nn+112nsh¢)
Bc'n+I/2 = - Ann ( )n+I/2 (A.2)

C
c,n+I12

nsh (r+nn+ 1/2nsh cose )Umrn+ I/2
m +

2A_'m-I Pro,n+I/2

(r+_n+I/2nshc°sO)(1+_n+I/2nshK) Vm_n+I/2

Ann Pro,n+I/2

nsh (r+nn+ I/2nshc°s e)nn+ I/2urn,n+ I/2](_._) (A.3)
Ann Pro,n+I/2 n+I/2
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D
e,n+I/2

. nsb(r+_n+I/2nshC°se)Um, n+1/2

2A£m-1 Pm,n+I/2

[ (r+_n+ 1/ 2nsh c°s6 ) ( 1+_n+ 1/ 2nsh K ) Vm, n+ 1/ ?

Ann Pro,n+1/2

nsh(r+nn+l/2nshcOse ) nn+l/2Um,n+l/_]
Arln Pro, n+1/2 (_)n+1/2

(A.4)

E
c,n+1/2 . nsh(r+"nn+l/EnshC°Se) Um,n+l/2(Pm_l, n )

2A_;m-1 Pro,n+1/2 n+l + Pro-1,

nsh(r+nn+ 1/2nsh c°sB )

x {urn, n+ I + U,n - U=-I ,n+1 - urn_l,n _ (_m,n+l./2)
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x [Tm,n+ 1 + Tm, n - Tm_l,n+ 1 - Tm_l,n]} _

nShUmpn.+I/2
2A_m_ I [:(r+'nn+inshC°SS)m + (r+"nnnshcoSe)m -

(r+_n+lnshC°SS)m-1 - (r+_nnshO°SS)m-1 :] +
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(r+-nn+I/2nsh c°sO )(I÷-6n+I/ 2nsb K )Vm, n+ I/ 2 (_)

An n Tm,n+I/2 n+I/2

nsh-nn+1/ 2(r +nn+ I/ 2nsh °°sO )

X (Tin,n+ I -'I'm, n) + &n n
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n+I/2

sh shnn I/2 um,x (Tm,n+ I - Tm,n)] + n' n + n+i/2 e°sB

vm, n+ I/2nsh [< (r+nn+ I/2nsb c°se )
oose(1+-nnsh_)] (A.5)

nshUm, n+ 1/2Pro, n+l / 2 _

ANM,n+I/2 " 2AF,m_ 1 (l+3fn+l/2nsh K)

nslann+ 1/ 2urn, n+ 1 / 2Pmr n+ 1/ 2 _ Pro, n+ 1/ 2Vm, n+ 1/2]
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t= '' T _ "IF
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Pm_ n+112Vmen+I/2] (_ n+ I
Ann /2

(A.?)

CNM,n+I/2
.Y-I.Tm,n+I/2,d_)

" (T) An n _d_ n+I/2
(A.8)

.- (¥_1)Tm,n+11_(rig)
BNM,n+I/2 An n d_ n+I/2

CA.9)

KNM,n+I/2

2

nshP m,n+ I/2urn,n+ I/2K

(I+Tin+i/2nsh_:)

nshUm, n+I/2Pm,n+112

2A_m_ I(I+Wn+1 /2nshK )
(Vm-l,n+1 + Vm-l,n ) (A.IO)

For a multicomponent mixture, the coefficients Ac,n+i/2, Bc,n+i/2,

Cc,n+112 and Dc,n+i/2 are the same as Eqs. (A.I) to (A.4) and Ec,n+i/2

is equal to Eq. (A.5) plus the following terms

nsh( r+nn+ I/2nsh c°s8 )Um, n+112

2A_m- I Mm,n+I/2
(Mn+1 + Mm, n - Mm-1, n+1

(r+_n+ 1/2nshCOSO )(1+nn+l/2nsh _) Vm, n+l/2. (d._)
- Mm-l,n) - Ann Mm,n+l/2 n+1/2
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nsbn n+ I/ 2(r+_n+ I/2nsh c°sB )urn,n+ I/ 2

x (M,n+1 - Mm, n) + An n Mm,n+I/2

x (Mm, n+ I - Mm, n)
(A.11)

and are same as Eqs. (A.6), (A.7) and
ANM, n+I/2, BNM, n+I/2 ENM, n+I/2

(A.10). The terms CNM,n+I/2 and DNM,n+I/2 are expressed as

* T

CNM,n+I/2 . ( R . ) m_n+l/2Ann (dd__)
M C n+1/2

m,n+l/2 p,=

(A.12)

* )Tin,DNM,n+I/2 _ ( R n+1/2 ( )
" w An nM C n+I/2

m,n+l/2 p,=

(A.13)

The coefficients K 1 to K8 in Eqs. (3.64) and (3.65) are given by

K 1 - (Ao,n+I/2CNM,n+I/2- ANM,n+I/2Ce,n+I/2)(Bo,n_I/2ANM,n_I/2

- BNM,n_I/2Ae, n+1/2 )
(A.14)

K2 " (Ao,n+I/2DNM,n+I/2 - ANM,n+I/2Do,n+I/2 ) (Bc,n-1/2ANM,n-1/2

BNM,n_l/2Ac,n_l/2 ) - (Ao,n+I/2BNM,n+I/2- ANM,n+l/2Bc,n+l/2 )
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x (Be,n_I/2CNM,n_I/2- BNM,n_I/2Ce,n_I/2 )
(A.15)

K 3 " - (Ao,n+I/2BNM,n+I/2- ANM,n+I/2Be,n+I/2)(Be,n_I/2DNM,n_I/2

- BNM,n_I/2Dc,n_I/2)
(A.16)

K 4 - - (Ao,n+I/2ENM,n+I/2 - ANM,n+I/2Eo,n+I/2)(Bo,n_I/2ANM,n_I/2 -

BNM,n_I/2Ao,n_I/2) - (Ae,n+I/2BNM,n+I/2 - ANM,n+I/2Be,n+I/2 )

x (Be,n_I/2ENM,n_I/2- BNM,n_I/2ge,n_I/2 ) (A.I?)

K5 - (Co, n+I/2ANM,n+I/2- CNM,n+I/2Ao,n+I/2)(Do, n_I/2CNM,n_I/2

- DNM, n_i/2Co, n_i/2 )
(A.18)

K6 - (Ce,n+I/2BNM,n+I/2 - CNM,n+I/2Be,n+I/2 )(De,n_I/2CNM,n_I/2 -

DNM,n_I/2Co,n_I/2) - (Co,n+I/2DNM,n+I/2 - CNM,n+I/2Do,n+I/2)

x (Do,n_I/2ANM,n_I/2 - DNM,n_I/2Ao,n_I/2) (A.19)

K? - - (Cc,n+I/2DNM,n+i/2 - CNM,n+I/2Do,n+I/2 )(DO,n_I/2BNM,n_I/2
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- DNM,n_I/2Be,n_I/2) (A.20)

K 8 = (Cc,n+I/2ENM,n+II2 - CNM,n+I/2Ec,n+I/2 )(Dc,n_I/2CNM,_I/2 -

DNM,n_I/2Cc,n_I/2 ) - (Cc,n+I/2DNM,n+I/2- CNM,n+I/2Dc,n+I/2)

x (Do, n_I/2ENM,n_I/2- DNM,n_I/2Eo,n_I/2)
(A.21)
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APPENDIX B

NAVIER-STOKES EQUATIONS IN THE BODY ORIENTED

COORDINATE SYSTEM

The steady-state form of the Navler-Stokes equations is taken from

Anderson and Moss [23]. For an axlsymmetrlc or two-dlmensional body at

zero angle of attack, these equations in the body-orlented coordinate

can be written in the form of Eq. (2.25). All the coefflclents in Eqs.

(2.26) to (2.34) are the same except Eqs. (2.28), (2.32) and (2.36) are

need to modlfy. This modification is given in this appendix.

For the steady-state Navier-Stokes equations, coefficient a 3

appearing In Eq. (2.25) should be replaced by a_, which is defined as:

s-momentumu

2
nsh

a_ " a3 +'-_- (HOT)s
¢P

(B.1)

Energy Equat ion

2

nsh

a_ = a3 + [u(HOT) s + (HOT) e ]
e2(plPr)

(B.2)
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where a3 in Eqs. (B.]) and (B.2) is given by Eqs. (2.28) and (2.32),

respectively. Abbreviation HOT in Eqs. (B.I) and (B.2) represents

higher-order terms, and subscripts " s' and" e' imply terms in the s-

momentum and energy equations, respectively.

The normal momentum equation, Eq. (2.36), for the Navier-Stokes

model is modified to

(LHS)Eq. (2.12) - (HOT)n = 0 (B.3)

where the first term in Eq. (B.3) implies the entire left-hand side of

Eq. (2.36), and the second term represents the higher-order terms in the

n-momentum equation.

The hlgber-order terms appearing in Eqs. (B.I)through (B.3) are

defined as:

(HOT)
2 ac 1 n' ac, dg 2

c ]
S (1+_nShK) [_ _ sh d-_ ¢= nsh an (1+n--hshK)

ac 2 n' ac2 _ 2 ac 3 2x [-_-----6sh ]+ _ _+ _,,
nsh an nsh an d_ (1+l_nshK)

2_ cose ] x av n_ av_]
x [1+_nsh K + r+_nshOOS8 [_ - _ nsh an dW



2OO

2e 2p a (r+nnshCOSB )

(I+_nshK) (r+_shCOSe) [a_
- 7rash cosB]

n !

I au sh au d___.]_ u

x {(1+_--_nshK) [_--_--nsh a'6 d. (1+nnshK--)(r+_nshCOS8)

(r+_nshC°se ) - K

x [a_ - n n' cos0] + v[sh I+_nshK

cosB

r+_nshCose] }

¢2 ac 4 n' ac 4

(HOT) n - (1+n_--_shW:)[_-- - -6 nshsh _n _'_] +

¢ 2C_

(I+_n shK) (r+_n sh cose )

a(r+_nshCOSe)
- _ n' COSB] +

sh

e2 aCs-.d__ ¢2 ac6 dg

nsh an dW nsh an d_

¢2_C 9 ¢2C10cose
÷

1+_nshK r+_nshCose

(B.5)

2
E

(HOT) e - (1+n-nshK)(r+_nsh

ac 7 n' ac7

oose) - s__hhnsh _ d_ ]

2
E

(1+_nsh_)(r+WnshCOSe)

aC8 n' ac 8

nsh _ d_ ]

÷

22

9¢Ci

8 p + 2¢2p[,I av _]2 2e2p{ u
nsh an + (1+Bnsh_) (r+Wnshcose)
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_(r+_nsbC°SB) - n' cosB] +

x [b_ -- - n sh

2vcos% }
(_-+ W nshc°se)

(B.6)
2

-¢ C11

Ci through C11 appearing in Eqs. (B._) through (B.6) are givenVariables

by :

C I

n'

I au _ sh _u vK_ + +_.sh_
(B .7)

v cosB

2 _ _v d_ + _ _sh c°se
sh

u
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