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ABSTRACT

A method for solving the viscous shock-layer equations for
hypersonic flows over long slender bodies is presented. The governing
equations are solved by employing a spatial-marching implicit finite-
difference technique. The two first-order equations, continuity and
normal momentum, are solved simultaneously as a coupled set. This
method yields a simple and computationally efficlent technique.

Flows past hyperboloids and sphere cones with body half angles of
five to 35 degrees are considered. The flow conditions included are
from high Reynolds numbers at low altitudes to low Reynolds numbers at
high altitudes. Detailed comparisons have been made with other
predictions and experimental data for slender body flows.

The results show that the coupling between the continuity and
normal momentum equations is essential and adequate to obtain stable and
accurate solutions past long slender bodies. Both the Cebeci-Smith and
Baldwin-Lomax turbulence models are found to be adequate for application
to long slender bodies. Using the corrected slip models, the viscous
shock-layer predictions compare quite favorably with experimental data.
Under chemical nonequilibrium conditions, the surface catalytic effects

can significantly influence the surface heat transfer,
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Chapter 1
INTRODUCTION

1.1 Physical Features of the High Mach Number Flow
A renewed interest in hypersonic aerothermodynamics has been

motivated by new vehicle concepts such as the national aero-space plane

(NASP) [1]*, and the transatmospheric vehicle (TAV) [2]. The term
"hypersonic" implies that the flight velocity is much greater than the
ambient speed of sound. An approximate classification of this flow
regime is where the freestream Mach number is greater than five. These
vehicles will encounter a variety of flow conditions which include
atmospheric flight and the transitional flow regimes. For example [3],
the TAV will take off from the Earth's surface, and enter a low Earth
orbit. The vehicle will carry out a global mission either inside or
outside the atmosphere, and eventually land back on Earth under its own
power., The range of flow conditions includes low altitude, high density
flow, to high altitude, low density flow. These conditions include the
continuum flow regime where the no-slip assumption is made. 1In addition
the transitional flow regime, where slip effects are important, must be

considered.

¥The numbers in brackets indicate references.



There are two main effects associated with hypersonic flows f4,5]:
(1) the fluid dynamic effects arising from the high velocity gas, and
(2) the real gas effects due to the high temperature gas. For
hypersonic speeds, the shock layer, which is defined as the distance
between the shock and body, is small. The boundary layer thickness
grows more rapidly because kinetic energy dissipation within the
boundary layer, which yields a high gas temperature, results in an
increase in gas viscosity and a decrease in density. Along with the
thin shock layer, the thick boundary layer creates an important
disturbance in the outer flow that gives rise to the viscous interaction
phenomenon which controls the surface pressure distribution over the
body. Moreover, for a blunt body, the shock wave is curved, leading to
large entropy gradients in the shock layer.

Compression of the gas forward of the vehicle and heat generation
due to viscous dissipation lead to elevate gas temperatures in the shock
layer. Additionally, the gas will promote chemical reaction in both the
boundary layer and the shock layer. As a result, the specific heat per
unit mass is increased considerably, and the specific heat ratios will
no longer be constant. The gas will not behave as a calorically perfect
gas. Moreover, if the shock layer temperature is sufficiently elevated,
radiation effects will become important, giving rise to a radiative flux
to the surface. The resulting heat transfer to the surface of a
hypersonic vehicle will dominate the design criteria of the vehicle.

For hypersonic speeds, Blottner [6] showed that the shock layer
flow is in chemical equilibrium and has a definite boundary layer region
for low altitude conditions. Also, the flow can become turbulent at

these conditions [7]. However, the gas may not reach the equilibrium



state for higher altitude conditions. Moreover, the boundary layer

cannot be identified because it merges with the shock wave.

1.2 Numerical Methods for Hypersonic Flow

In general, there are two methods to analyse hypersonic flow --
experimental and theoretical ., Flows in chemical equilibrium can be
simulated with small-scale laboratory experiments with corrections for
"real gas" effects, However, the chemical nonequilibrium flow around a
hypersonic vehicle operating in the upper atmosphere cannot be simulated
because it requires simultaneous reproduction of air density, flight
velocity and vehicle scale. In absence of a full-scale flight
experiment in which the thermodynamic environment is fully duplicated,
an adequate design capability for hypersonic vehicles relies on
theoretical predictions.

The great entropy gradients and the thick boundary layer in a
hypersonic flow make the classical isentropic irrotational approach and
the conventional first-order boundary layer equations inadequate to
predict the flowfield. Second-order boundary layer effects and
vorticity interaction should be considered in the flow. Three current
numerical approaches have been adopted for analysing these problems.
They are the solution of either the second-order boundary layer
equations, the full Navier-Stokes equations, or the viscous shock-layer
equations.

The simplest of these approaches is to employ the second-order
boundary layer equations [8], with matching of the first- and second-
order boundary layer and inviscid solutions at the boundary layer edge.

Although this approach has been found quite attractive for short slender



bodies [9], several computational difficulties become obvious for long
slender bodies. First, the computing time required is excessive because
one must compute the inviscid flow, the first-order boundary layer flow,
the flow due to displacement thickness, and then the second order
poundary layer flow. A second difficulty arises from strong vorticity
{interaction which may occur far downstream due to the entropy layer on
blunt long slender bodies. This entropy layer causes difficulty in the
matchup procedure between the viscous and inviscid regions because there
is a question as to what the proper edge conditions should be for the
boundary layer. This approach does not properly take into account the
swallowing of the strong entropy layer by the boundary layer [5]. The
design geometries of hypersonic vehicles are slender long bodies with
blunt noses in order to reduce heat transfer rate at the stagnation
region and reduce drag force on the body. The second-order boundary
layer equations are not desirable for this problem.

The second approach employs the steady Navier-Stokes equations
[10] and their time-dependent forms [11]. This approach successfully
provides the solution for the stagnation region of short bodies.
However, the complexity of the solution procedure due to the elliptic
nature of the equations requires excessive computing time and computer
storage, which currently limits their applications to short bodies.

Because of the difficulties encountered by the above two
approaches, attention has turned toward the third approach, the viscous
shock-layer equations. This set of equations which was developed by
Davis [12] is obtained from the full Navier-Stokes equations by keeping
terms up to second-order in the inverse square root of the Reynolds

number in both viscous and inviscid regions. It is uniformly valid to



second-order throughout the entire shock layer, hence, the viscous-
inviscid interactions and strong vorticity interactions are accounted
for in a straight-forward manner. Moreover, this set of equations is of
a hyperbolic-parabolic nature and, therefore, can be solved by using a
marching procedure similar to methods employed in boundary layer theory.
As a consequence, they can be solved for a hypersonic flow on a slender
long body without excessive computer time and storage requirements.
Moreover, this set of equations can be used to compute the viscous flow
in the subsonic blunt nose region. This is desirable for long bodles,
especially for analysing problems with chemical reactions.

The full viscous shock layer solution of Davis [12] was obtained
through an iterative relaxation process from the thin shock layer
solution. This approach encountered difficulties for the flow far
downstream, especially for the slender body. Werle et al. [13]
developed an Alternating Direction Implicit (ADI) Technique with an
artificial time coordinate to relax the shock shape from an initial
guess, Even with large relaxation factors, the instabilities were still
encountered whenever the inviscid region encompasses a significant
portion of the total shock layer thickness. The relaxations of the
shock shape in Davis [12] and Werle et al. [13] are essential due to the
slightly elliptic nature of the equations in the streamwise direction.
These instabilities do not come from the shock shape relaxing technique.

From the hypersonic small disturbance theory [14], it is shown
that the continuity, normal momentum, and energy equations become
uncoupled from the tangential momentum equation in the inviscid region.
In other words, the solution of the continuity, normal momentum and

energy equations will not depend strongly on the solution of the



tangential momentum equation. The numerical methods of Davis [12] and
Werle et al. [13] solved the governing equations separately which are
known as the cascading method. In this method, the solution of the
tangential momentum equation drives the solution of the continuity and
normal momentum equations. This method becomes improper for the flow
far downstream, especially for a slender body on which the shock layer
thickness is very thick and the inviscid region encompasses a large
portion of the shock léyer. An alternative method of solution was
suggested by Werle et al. [13]. The more adequate method is to solve
the equations simultaneously.

A fully coupled system of all the equations is a desirable scheme.
Hosny et al. [15] solved the four governing equations, namely, the
continuity, tangenéial momentum, normal momentum and energy equations,
simultaneously as a coupled set and local iterations were made to solve
for the shock stand-off distance. Gorden and Davis [16] added an
equation for the shock stand-off distance into the coupled set to
eliminate the need for local iterations. This technique is quite
appealing for perfect gas applications, But, it requires inversion of
large matrices and hence the storage and computing requirements are
quite large. Also, the system of equations will become very complicated
if chemical reactions are included. Therefore, this approach is not
desirable for long bodies.

The two second-order equations, tangential momentum and energy,
are parabolic, and there are few problems in finding the solutions to
these equations. The greatest difficulty exists in solving the two
first-order equations, continuity and normal momentum [13]). Moreover,

from the hypersonic small disturbance theory, the solution of the



tangential momentum equation becomes uncoupled with the other equations
far downstream for a slender body. A more desirable approach is to
solve the two first-order equations simultaneously as a coupled set
rather than solve all four equations as a fully coupled set. This
approach 1is quite attractive for slender body problems, especially with
real gas €ffects. The instabilities will be eliminated, and the storage
requirements and computing time may not increase excessively.

Waskiewicz and Lewis [17] coupled the two first-order equations and
reported good improvement in the solution obtained for slender (7 degree
and 10 degree) but short bodies with solutions up to 20 nose radii or
less. The effects of this technique on the flow field over a slender
long body far downstream should be investigated.

Most of the work with viscous shock-layer equations in the past
has considered either short slender or wide angle bodies. However, most
of the future vehicles will be long slender blunt bodies. The |
calculation of hypersonic viscous flows past long slender axisymmetric
blunt bodies is of prime interest to the designer of such aerospace
vehicles.

A variety of flow conditions are encountered during the
transatmospheric flight of these vehicles. The range is from low
Reynolds numbers at high altitudes to high Reynolds numbers at low
altitudes. At low altitude, the hypersonic flow over a slender body
usually becomes turbulence. Direct numerical solution of turbulent flow
cannot be obtained at the present. The prediction of turbulent effects
depends on modeling the fluctuation terms. The algebraic eddy viscosity
models are more appealing than the other models because less computer

Storage and computer time are required. The general algebraic



turbulence model which is implemented with the viscous shock layer
method is the Cebeci-Smith model [18,19]. Due to the difficulty of
determining the boundary layer edge in a hypersonic flow over a long
slender body, an alternative model, the Baldwin-Lomax model [20], is
more likely to be used. This model has been implemented in the Navier-
Stokes equations and the parabolic Navier-Stokes equations [21,22], but
not in the viscous shock-layer equations.

At high altitude, the "low density effects" become important where
they can significantly influence the lift, drag, moments and aerodynamic
heating of a hypersonic vehicle. However, not much attention has been
given to the problems encountered with low-density aerothermodynamics.
At highly rarefied gas flow conditions, the continuum approach is no
longer valid. But at slightly rarefied gas flow conditions, the
continuum approach can be extended to this flow regime if slip effects
are properly accounted for [12,23].

At high temperature, the perfect gas assumption becomes invalid.
The gases in the flow become chemically reacting, especially, at high
altitude. While flows with chemical equilibrium in.the shock layer have
been studied intensively [24,25], there are only a limited number of
analyses on flows with chemical nonequilibrium [6,26]. The effects of
finite-rate chemical reactions are not fully understood yet.

The main objective of this study, therefore, is to investigate the
solution for long slender blunt body; i.e., the continuity and normal
momentum equations are solved simultaneously as a coupled set. The
basic theoretical formulations used in this study are provided in Chap.
2. The suitability of the Cebeci-Smith and Baldwin-Lomax models for the

hypersonic flow past long slender bodies at low altitudes is examined.



examined. It is presented in Chap. 3. The low-density effects using a
perfect gas model are presented in Chap. 4. The investigation of a

chemical nonequilibrium flow is presented in Chap. 5.
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Chapter 2
BASIC THEORETICAL FORMULATION

The viscous shock-layer equations for a perfect gas [12] and for a
multicomponent gas mixture [24] are presented in this chapter. The
physical model and coordinate system for a body are shown in Fig. 2.1,
The flow in the shock layer is assumed to be axisymmetic, steady,
viscous and compressible. The shock-layer gas is assumed in local

thermodynamic equilibrium.

2.1 Governing Equations For a Perfect Gas

The viscous shock-layer equations are obtained from compressible
Navier-Stokes equations which are written in the body-oriented
coordinate system shown in Fig. 2.1. These equations are
nondimensionalized with variables which are of order one in the region
near the body surface (boundary layer) for large Reynolds number. The
same set of equations are then written in variables which are of order
one in the essentially inviscid region outside the boundary layer.
Terms in each set of equations up to second-order in the inverse square
root of a Reynolds number are kept. A comparison of the two sets of
equations is then made and one set of equations is obtained which is
valid to second order in both the outer and inner regions. A solution
to this set of equations is thus uniformly valid to second-order in the

entire shock layer for arbitrary Y. Anderson and Moss [19] used the
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eddy viscosity approximation to replace the Reynolds stresses and

turbulent heat flux to find the solution of the turbulent flow.

The

viscous shock-layer equations for a perfect gas with turbulent flow are

[19]

Continuity:
9 J
as[(r+ncose) pul

s-momentum:

%ﬁ[(1+ng)(r+ncose)JpV] =0

u_3du du uvk 1_9dp 2,0
p(1+m< 9s tv on 1+nz) 1+nk 938 € {an[“(1+€
_ _uuk 2« jecose +.0u _ _pux
1+nx] * (1+nn r'+m:=ose)[(1+E )an 1+n<]}
n-momentum:
w3y, v ey 3
P4k 3s an  1+nk an
Energy:
2
( u_dH , v oH 9 pu-vK _
Pk 3s an an 1+nk
2,3 r ¥ + Pr . 9H K jeosé
€ {an[Pr(1+e Pr,t° on + el (1+nr ¥ r+ncose)

+ Pr

U
X [§F(1+E ?F:E) 3n + ¢1}

State:

Y-1
p-(_-——)-p'r

+)_

(2.1)

ou
on

(2.2)

(2. 3)

(2.4)

(2.5)
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where

+ Pr
Pr,t

§ 2
an

uuzr
] - — (2.6)

H -
¢ = Pr[Pr T re 1+nk

(Pr,t - 1)

The molecular viscosity is given by the Sutherland's law as

u = [(1+C)/(T+C)] T3/

(2.7)
where

2

* *
C=cC/(y-1) M T, (2.8)

*
and C 1is 110.33 K for air.
The preceding equations are written in nondimensional forms where

the nondimensional variables are defined as

L I * * X % %D
s =3 /RN u=u/U p=p /pU,
x _* * ® * %
n=n/R ve=yv /U T=T/T
N ® ref
*/R* */ »* * * *
r =r /Ry p=p/p, u-u/u(Tref)
R h=h/h C_=cCi/C (2.9)
K = K = - .
RN « P P p,®

Also, the dimensionless parameters that appear in Eqs. (2.1) to (2.6)

are defined as

%® % *
Pr =y Cp/K (2.10)
Pr,t *C*/ *
r,t = uT D KT (2.11)
')
u
ref’ .1/2
€ = [5—5—] (2.12)

and

e = u/u (2.13)
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To simplify the numerical computations, a coordinate
transformation is applied to the viscous shock-layer equations. This
transformation is accomplished by normalizing the normal coordinate with
respect to the local shock standoff distance. Consequently, a constant
number of finite-difference grid points between the body and shock are
used. Also, the need for interpolation to determine shock shape and the
addition of grid points in the normal direction is eliminated as the
computation moves downstream.

The transformed variables are

s = (2.14)

n= n/nsh (2.15)

The transformations relating the differential quantities are

n' 9
9 9 sh —
2 .- =7 = (2.16)
98 14 Ny on
3 1 9
—_—- — = (2.17)
on nsh om
and
3 __..L2 (2.18)
e  n2 and
sh
where
dn
sh
néh = —EE— (2.19)

In general, a variable grid spacing is used in the E-direction - To)
that the grid spacing can be made small in the region of large
gradients. Since the spacing is not uniform in the n direction, it is

convenient to apply a transformation to the ﬁ coordinate so that the
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governing equations can be solved on a uniformly spaced grid in the

computational plane. This transformation is achieved by [26]

n = 8(35—) - g(m) (2.20)
sh

The stretching function g(n) is given by

= o=, _(1-a) B-n(2x+1)+1
g{n) =1 (a + m &n {W}] (2.21)
B-1

The first and second derivatives of Eq. (2.21) are expressed as

dg _ (1-a)(2a+1) 1 - !
)R] (CIETENE (2.22)
-1
2 a2
d_g - (1 0.)(3111*-1) { —_ 1 5 - — l 2} (2.23)
dn wn (=) [B-n(2a+1)+1] [B+n(2a+1)-1]

Equation (2.21) permits the mesh to be refined either near the body only
(a0 = 0) or equally near both the body and bow shock (a = 1/2). The
parameter B controls the amount of stretching. The coordinate n can be

obtained from inverting Eq. (2.21) and is expressed as

1-n-a
- 1-a
B+1
() -1
- 1 o= B
Nt EED (1 -8 ¢ Cp— }] (2.24)
- . 13
(§§%) + 1

This transformation keeps the body at n = 0 and the shock at n = 1 with
uniform mesh in the computational coordinate n.

After the governing equations, Egs. (2.1) to (2.6), are written in
the transformed E, n coordinates, the second-order partial differential

equations are expressed as [19]
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2 =2 —
azw ) d“g/dn” + al(dg/dn) L a, .
an2 (dg/dm)? M (4g/dm)?
o a
3 N AW
+ + 5 3 0 (2.25)

(dg/dm)?  (dg/dm)

The quantity W represents u for the s-momentum equation and H for the

energy equation. The coefficients a, to ay are written as:

s-momentum, W = u:

+ .
. = 1 3u(1+e+) s nshK(HZe ) R Ing,c088
1 u(1+e+) 3n dn (1¥ﬁnsnK)(1+s+) r nnshcose
. -
. Msn"an"PY __ PanfV (2.26)
2 + - 2 + *
e u(i+e )(1+nnshr) eu(1+e )
n.xK . + n2 K
sh du(1+e ) dg sh
%2 T T o O 3 ety emn e "
p(1+e nn g K 3 nn g, K
n2 KpV
[ + —JC030 - sh'®® (2.27)
1+nnshx r+nnshcose €2(1+;nshK)u(1*€+)
2 . =
Nsh 9 nshn dg 9
o = - [eB - 30 _CE <P] (2.28)
3 2,..= +, “9E n_ df an"- )
€ (1+nnshz)u(1+e ) sh
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2

n_. pu
0, =~ = _sh . (2.29)
€ (1+nnshx)u(1+e )
Energy, W = H:
Kn
a, = 1 2_5_.3_ [u—(1+€+_Pr—)] + ___.?_12__
1 E—(1+e+ Pr ) d® 9n “Pr Pr,t 1+ﬁhshx
Pr Pr,t
. -
. Jnshcose . nshnshnpu
r+nn_, cose 2y + Pr -
sh € Pr(1+s Pr,t)(1+"nshK)
n_pv
sh
e2—2(1+e+ Pr ) (230
Pr Pr,t
a, = 0 (2.31)
n
. sh dag 9¢ K Jeose
@3 L et Pr ) [dﬁ an * nsh(1+ﬁnshx * r+ﬁhshcos ) ¢
Pr Pr,t
n_. kvpu
+ L % 2 . 23" ] (2.32)
e dnon ¢ (1+nnshK)
n2 pu
sh
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where

2
(Pr' L -1)] = —53—“--—“1‘.—ﬁ—- (2.34)

!
¢ = 5= [Pr -1+ e =
Pr - sh dan 1+nnshx

The remaining first-order equations are written as

Global Continuity:

B—[ns,h(r";m

J dg 3
3% cose)vpul + an an {(r+nn hcose)

sh
x [(1+nan_ k)pv = n;hTqu} -0 (2.35)

n-momentum:

o __"m™Y avag, L_s
(1+ﬁnshx) Y3 nsh(1+'hshx) on dn 8 dan
9“2‘ L1 9 dg (2.36)
(1+nn hK) Don an dn ‘
State:
p = pT (Y=1)/Y (2.37)

2.2 Governing Equations for a Multicomponent Mixture
The conservation equations that describe a reacting multicomponent
gas mixture can be found in the literature [27,28]. The viscous shock-
layer equations for a nonequilibrium multicomponent gas mixture are
obtained from the conservation equations employing the same procedure as

for the perfect gas [24]. The nondimensional forms of global
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continuity, s-momentum, and n-momentum are written in the same form as

Eqs. (2.1) to (2.3) except the eddy viscosity, e+, is set to zero.
For a chemical nonequilibrium flow, the energy equation is
formulated in terms of the temperature instead of total enthalpy. In
addition to these conservation equations, the species continuity
equation and equation of state are needed to complete the set of

equations. The nondimensional forms of these equations are expressed as

[24]
Energy:
w T, 3T, _ _u %, .3, .
P p(1+nr s an) (1+nr 93 ty an)
Ns
2¢9 , 9T K Jcose , oT _ aT
€ [Bn(Kan) * (1+nx * r+ncose)K3n 121 J1Cp,13n *
Ns
Jdu Ku |2 .
MEn T Teme 17 Ly (2.39)
Species continuity:
u oC aC 2
i i . €
p( + v ) =W, -
T+nk 3s an 1 (1+nk) (r+ncose)?
) J
x {53 [ (1+nk) (r+ncose)?J, 1} (2.39)
n i
State:
*
R
p= pT(m—5) (2.40)
MC
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The nondimensional variables are as defined by Eq. (2.9) and

*/ * c*
K =K Vref’p,=
% Q*R*/ *U* 4
W, = WRe/p U, (2.41)

*

* */
Iy = JiRy Mrer

i
Using the same coordinate transformations as given for a perfect

gas, Eqs. (2.38) and (2.39) are written in the form of Eq. (2.2%). The

W in this equation represents T for the energy equation and C1 for the
species continuity equation. The coefficients a, to Ay in this case,

are given by

Energy, W =T :

N
. - 1 3¢ dg |, nsh‘ . jnshcosa ) nsh § 1 e
1 k on dfy 1+ﬁnshx r+ﬁhshcose K im1 ip,1
+ nshnshpc un “sn°997
——— -— (2.42)
€ K(1+nnshz) €K
a, = 0 (2.43)
n° n2 7 Vs
I P I U S TR : U
3 K Non on dn 1+nnshx E2K =1 i1
2 2 -
un op n u n'' n v dg 9p
. sh — - Sh sh )y —— (2.44)

2 .- 2 = |
€ K(1+nnsh<) 9 e« 1+nnshn Dgpn Nop dn 9n



2
nshpCpu

2 -—
€ |<(1+nns

o = =
i
<)

Species continuity, W = Ciz

.. 1 aPL1 SE y nshK nshcose )
1 PL.i an dm 1+ﬁnsh< r+ﬁhshcose
, =
Msh"spPY Nshf v
Y3 p T2
£ PL1(1+nnshn<) € PLi
a2 = 0
1 OoPM, dg PM n_.«x n_. coso n2
o = i —_— i ( sh sh ) sh
3 PLi an dn PLi 1+ﬁnshx r+ﬁhshcose PLi
n2 u
. = sh?
2! 2 -
€ PL1(1+nnshK)
where
- =B
PLy = % 8Py
Ns aC  dg
PM, = 35 I ab,, X —
K=1 an dn
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(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)
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Le,i i=k
Abik = (2.52)
* *
M1 Mi Ns
Le,i - [<:; Le,ik + (1 - —;) .Z Le’ijcj] i#k
M Mk J=1
J#i

*
In Eq. (2.52), L.e,ik are the multicomponent Lewis numbers and M is

molecular weight which is given by

(2.53)

The mass flux; Ji’ due to concentration gradients can be written as [29]

" Ns BCk dg
J, = === ) Ab, —5= == (2.54)
i nshPr k=1 ik 9on dnW

The equation of state is given by

* x _ *
p=pTR /M Cp - (2.55)
’

2.3 Boundary Conditions
At low altitudes, slip effects are not important. No-slip and no-
temperature-jump boundary conditions are used on the body surface. The

wall temperature and enthalpy are specified as constant. The boundary
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conditions at the shock are calculated by using the Rankine-Hugoniot
relations [12,24].

At high altitudes, the continuum flow assumption breaks down in
the region next to the wall, The no-slip and no-temperature jump
boundary conditions are no longer valid. As such, the slip and
temperature jump boundary conditions should be used.

2.3.1 Boundary Conditions on the Wall

Shidlovsky [30] has shown that at the body surface the velocity
slip and temperature jump conditions are of the same order as the
Knudsen number. The Knudsen number is defined as the ratio of the
molecular mean free path in the gas to a characteristic dimension of the
flowfield. The no-slip boundary conditions (which correspond to
continuum conditions) are obtained when Kn + 0. Howevér, when the flow
density decreases, the mean free path becomes long compared to the
characteristic length in a region next to the wall., This region is
called the Knudsen layer. Under this condition, the slip conditions
should be used.

The slip conditions are assumed to exist across the Knudsen layer.
The net fluxes of momentum and energy at the outer edge of the Knudsen
layer are equated to the difference between the incident and reflected
fluxes at the wall. These fluxes are assumed to be constant across the
Knudsen layer and are obtained from the moments of the distribution
functions. The slip conditions are then obtained from the balance
equations of these fluxes and are given by [31]

Velocity slip:

T 2-8 2 s du KU
u = I- € (= =~ —=) (2.56)
s 2 9 ,psps on 1+nk’s
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Pressure slip:

y Y 2-9 € Mg (Pg 9T
p.=1p, * (=) == 3= — (=) (2.57)
) W 515; 1 ] r TS Pq an s
Temperature slip:
1 JF‘ y 2-9 ¢ ug T
T =T += |5 (z=) ()% (z=) (2.58)
s w 242 Y1 e “Pr Esps 3n s

In the derivation of the relation for the temperature slip, it is
assumed that the internal energy is frozen during the reflection from
the wall. The parameter ® is the accommodation coefficient and its
value is taken to be unity in this study.

In the computational plane, Egs. (2.56) to (2.58) are expressed as
[621]
Velocity slip:

2

C . II 2-8 s (1 dg du _ KU
JEsps

Pressure slip:

2
4 Y ., 2-8.° %s [Ps , 1 dgaT

p. = p +——I(z)("m)5n T (— =2 7) (2.60)

s w 5 JE;' ¥-1 8 'Pr Ts Py nsh dny an s
Temperature slip:

T = T +_1- E(Y)(Z-E)ﬁ us (1 djﬂ.] (2 61)

s W 2J2 Yy=1’"% / Pr n_,_ dff an )
psps sh s

2.3.2 Boundary Conditions at the Shock

The boundary conditions at the shock are the modified Rankine-
Hugoniot relations developed by Cheng [32]. The shock equations are

obtained from one-dimensional Navier-Stokes equations which are written
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in the shock-oriented coordinate system. The tangential derivatives are
neglected as compared to the normal derivatives. Then, the shock
equations in dimensional forms are expressed as

Continuity:

3 * %
E (pv)=0 (2.62)
oft

Tangential-momentum:

* *
* *
p ¥ au* . = (1 au*) (2.63)

oft afi oft

Normal-momentum:

* * R .3
* % * *
RPN | N N R (2.64)
of oft oft aft
Energy:
** xaT"  *3p 3, *3T
pC¥W + ~ v p* = —5 (k %) *
oft af off oft
2 * 2
* %* *
R T R e (2.65)
3 3

Integrating Eqs. (2.62) to (2.65) from just behind the shock wave
to freestream, the shock conditions are obtained. The nondimensional
forms are given by
Continuity:

Pen¥sn = ~Sina (2.66)

Tangential-momentum:

€2
ush

a1

(53)

sh * ushsina = sinacosa (2.67)

Normal-momentum:

Pgn = P * sina(sina + vsh) (2.68)
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Energy:
2, u oT sina _
E (Pr aﬁ) + Tshsina 5 (nsh cosa)
sh
- séna { adl 5 sina + [(=2) alhi 1;] 15
(Y+1) =1 (1) M
- 4 } (2.69)

(Y+1)2 M: sinza

Since velocity components tangent and normal to the shock are not
the same as those tangent and normal to the body surface,
transformations are needed to relate these quantities. The
transformations are given by

ﬁsh - Ugy cos(a-8) + Veh sin(a-8) (2.70)

¥ . = —-u_. sin(a~8) + v_,_ cos(a-8) (2.71)

sh sh sh
Also, the transformations between the body-oriented and shock-oriented
coordinates are given by
3 = s cos(a-8) + n sin(a-96) (2.72)
fi = - 3 sin(a-8) + n cos(a-86) (2.73)

The derivative with respect to B is related to (s,n) coordinate as
] _ a  _ —ay 9
3 " cos(a~9) T sin(a-9) T (2.74)

Consequently, the shock conditions in the computational plane are
expressed as
Continuity:

Psn ¥gn = "3ina (2.75)
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Tangential-momentum:

dn
2 o) + T msh o ovp 1 dg 3u
€ ush{[cos(a 8) + n 3 sin(a 6)] n, ar 3n
(£§§E sin(a-8)} . + @, sina = sina cosa (2.76)
3E 7% Tan 7 Ysn :
Normal-momentum:
Pgn = P, * sina(sina + L) (2.77)
Energy:
dn
2, u - - sh - _1 dg 3T
e“ (50 gn {{cos(a=8) + 7 aE sin(a-8)] h, @7 on
oT - _ 8ina .. _
3 sin(a e)}sh + T, sina > (g, ~ cosa)
- Sigu{ by > Sin2a . [(Yf1) u(Y‘1;] 1
(Y+1) (Y+1) Mf
s
- (2.78)
(Y+1)2Misin2u
Equation of state:
Pan = YPgn/(Y"1Tg (2.79)

From Eqs. (2.76) and (2.78), it is noted that the first term in these
two equations can be neglected at low altitudes where ¢ is very small.

On the other hand, this term becomes important when ¢ is large.
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Chapter 3

HIGH REYNOLDS NUMBER PERFECT GAS FLOW

3.1 Introduction

For a hypersonic flow over a slender body at lower altitudes where
density, and hence, Reynolds numbers are high, the flow will become
turbulent. The Reynolds stresses and turbulent heat flux should be
considered in the analysis of such flowfields. These two effects
dominate the surface properties. However, at present, it is impossible
to relate these fluctuating terms correctly to the dependent variables
in the equations. Direct numerical solutions of turbulent flows cannot
be obtained without a proper modeling of the -fluctuating terms.

Many turbulence models have been developed with varying degrees of
complexity [33]. These models, generally, are developed by first
postulating a mathematical model containing undetermined constants, and
then by attempting to choose the constants to make predictions fit the
experimental measurements. Empirical turbulence models, such as the
algebraic eddy viscosity models are appealing because the storage
capacity and computing time required are much less than that for a more
sophisticated turbulence model. Also, these models provide results
which are comparable to a more complex model [33].

Two algebraic turbulence models, Cebeci-Smith [18] and Baldwin-
Lomax [20], have been used widely for calculation of the compressible

turbulent flows [19,22,25,34-36]. Both are two-layer eddy-viscosity



models and have similar forms. The primary difference between them is
the choice of length and velocity scales in the outer layer.

The boundary layer displacement thickness and boundary layer edge
velocity are used as length and velocity scales, respectively, in the
Cebeci-Smith model. The determination of the boundary layer edge is
required within the solution. However, it is difficult to define the
boundary layer edge in a hypersonic flow bécause there may not be a
constant velocity region in the shock layer. Thus, the definition of
the boundary layer edge is not well defined. Anderson and Moss used the
ratio of the local total enthalpy to freestream total enthalpy to define
the boundary layer edge [19]. It is based on the fact that the total
enthalpy is constant within the inviscid part of the shock layer. It
has been observed that with the presence of small numerical variations
of the velocity or enthalpy profile in the shock layer, there could be
sudden jumps and oscillations in the boundary layer thickness [37]. The
length scale in the Cebeci-Smith model would be affected, hence the heat
transfer to the body surface would experience oscillations that were not
physically correct.

Another definition suggested by Anderson and Moss [25] is based on
the ratio of the integral of the viscous dissipation term in the shock
layer for situations where the total enthalpy is not constant in the
inviscid region. However, the factor of the ratio is subjective.

By observing the shape of the total enthalpy profiles, Thompson et
al. [34] defined the boundary layer thickness on the same physical basis
as of Anderson and Moss [19] but in terms of the total enthalpy

gradient. It was found that this definition gave reliable boundary
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layer thickness consistently. It was superior to other definitions of
the boundary layer edge.

It has been shown that the calculated heat transfer was éensitive
to the definition used in establishing the boundary layer thickness
[37]. Due to these difficulties with the Cebeci-Smith model, it is more
appealing to use the Baldwin~Lomax model to predict the turbulent
effects, since this model does not require the determination of the
boundary layer edge. The velocity and length scales are based on the
distribution of the vorticity. The maximum value of a vorticity
function and its corresponding location, instead of the boundary layer
quantities, are used to form the velocity and length scales for the
outer layer., This model has become a popular algebraic eddy viscosity
model.

Although the Baldwin-Lomax model avoids determining the boundary
layer edge in the outer eddy viscosity formulation, several difficulties
have been encountered. First of all, there is ambiguity in determining
the peak of the vorticity function. Degani and Schiff [38] found that
there might be more than one peak in the function. Tﬁis can result in
an incorrect determination of the length scale for the outer layer if a
wrong maximum value has been picked up. This problem can be eliminated
by selecting the peak near the body surface [22,36].

The second difficulty lies in determining the two additional

constants, Cap and CKleb, in the outer formulation. Baldwin and Lomax

determined these constants by comparing results with the Cebeci-Smith
model for transonic, constant pressure boundary layer flows [20].

Visbal and Knight [36] have shown that Ccp should be decreased and CKleb
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increased for an equilibrium incompressible turbulent boundary layer

[36]. However, Knight suggested a higher value of Ccp for a compression
corner calculation at Mach 3.0 [21]. The values of Ccp and CKleb depend

on the flow Mach number [20,21,36,37]. There is no one fixed value for
all flow conditions. These values should be chosen carefully, otherwise
different heat transfer results will be predicted [37]. These
difficulties need to be investigated intensively before this model can
be relied on to hypersonic flow conditions.

In this chapter, a method for solving the flow over a blunt
slender body where the inviscid region encompasses a significant portion
of the total shock layer thickness is presented. The first order
continuity and normal momentum equations are solved simultaneously as a
coupled set rather than in a successive manner as has been utilized for
wide—angle bodies. Two of the most frequently employed algebraic
turbulence models, namely the Cebeci-Smith and Baldwin-Lomax models, are

implemented to examine their suitability for the hypersonic flow.

3.2 Basic Formulation

As indicated in Chap. 2, the steady perfect gas viscous shock-
layer equations [12] for an axisymmetric or two-dimensional body at zero
angle of attack are obtained from the compressible Navier-Stokes
equations, written in terms of a body-oriented coordinate system. They
are nondimensionalized by the variables which are of order one in the
region near the body surface (boundary layer) for large Reynolds
numbers. The same set of equations are then nondimensionalized by

variables which are of order one in the essentially inviscid region
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outside the boundary layer. Terms in each set of equations up to
second-order in the inverse square root of the Reynolds number are kept.
A comparison of the two sets of equations is then made and one set of
equations is obtained from them which is valid to second order in both
the outer and inner regions. A solution of this set of equations is
thus uniformly valid to second-order in the entire shock layer for
arbitrary Y. Anderson and Moss [19] used the eddy viscosity
approximation to replace the Reynolds stresses and turbulent heat flux
to find the solution of the turbulent flow. These equations provided
here again are in an orthogonal, body oriented, transformed coordinates
form, Eqs. (2.25) through (2.37).

The second-order partial differential equations applicable to this

study are expressed as [19]

2, =2 - -
32W ) d“g/dn” + a, (dg/dn) w a, y
an’ (dg/dm? M (agsdm?
a a
3 N W |
. R 538 - 0 (3.1)

(dg/dﬁ)2 (dg/dn)

where dg/dn and dzg/dﬁ2 are the first and second derivatives of the
stretching function g. The quantity W represents u for the s—-momentum

equation and H for the energy equation. The coefficients a, to a, are
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s-momentum, W = u:

+
. ] du(1se’) @ . g k(1+2e ) . jn , cose
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(3.2)

(3.3)

(3.4)

(3.5)
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. -
. jnshcose nshnsh"pu
r+nn_. cosé 2.y + Pr -
sh € Pr(1+€ FFTE)(1+“nshK)
e (3.6)
62—11.(1+E+_—PL—)
Pr Pr,t
a, = 0 (3.7
"sh dg 3 K jcos8
a, = [—.!i n_ ( Ml ) ¢
3 H_(1+€* Pr ) dn 9n sh™1+fin_, « r+nn_, cos
Pr Pr,t
n_, kvpu
LY dgdp __sh ] (3.8)
ez dn 3n e2(1¥ﬁn K)
sh
2
n_,.pu
sh
Q. = - (3.9)
y 2 u + Pr -
€ Pr (1+e Pr,t)(1+nnshr)
where
-“—[Pr-1+e+—ﬂ'—(l>rt-1)]—3-953—u--“—“2‘— (3.10)
¢ = pr Pr,t° "’ Ngp df 9n 1+ﬁhshx :

The remaining first-order equations are written as
Global continuity:

- Sou] + 98 2((reT
aE[nsh(r+nnshcose) pul] + ar an{(r+nnshcosa)
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X [(1+ﬁnshz)pv - n;ﬁﬁpu]} =0 (3.11)

n-momentum:

, =
n npu v dg

u v _ __sh v dg , pv v dg
(1+nnshK) 3t nsh(1+ﬁhshk) oan dn Ny an dn
- pu2|( + 1 329.&-0 (312)
(1+ﬁhshr) N on dm
State:
p = pT (Y-1)/Y (3.13)

The molecular viscosity is given by the Sutherland's law as

u = [(1+C)/(T+C) 1732 (3.14)

where

(3.15)

* *
C=¢C /(Y-1)M¢Tm

*
and C 1is 110.33 K for air.

In the preceding equations, the prime denotes the differentiation

with respect to g, and e+ is the eddy viscosity which is set equal to
zero for a laminar flow., The independent variable of transformation is

defined by

n = g(==) ~ g (3.16)
sh

The stretching function g(n), Eq. (2.21), is given by (a = 0)
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1

g(m) =1 - T 1“(%5%;%) (3.17)
zn(g 1

and its first and second derivatives are

d 1

%. 0 lgwm T ) (3.18)
ln(;:T)

2

a1 [ L1 -1 ] (3.19)

+1

&’ in(zs) F-m+1)2 (Bn-1)?

Equation (3.17) permits the mesh to be refined near the body with
the values of B near 1 giving the largest amount of stretching.
Equation (3.16) may be inverted to obtain the physical coordinate n from

the transformed coordinate n:

(._3"‘) -1

71-1—5[5'_‘1_ ] (3.20)
B+1y
=) o+

The transformation of Eq. (3.16) keeps the body at n = 0 and the shock

at n = 1 with uniform mesh in the computational coordinate n.

3.3 Boundary Conditions
At low altitude, slip effects are not important., At the wall, no-
slip and no-temperature-jump boundary conditions are used. The wall

temperature and enthalpy are specified as constant.
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The boundary conditions at the shock are calculated by using the
Rankine-Hugoniot relations. The nondimensional forms are given as
Continuity:

Pen Ysn = ~ sina (3.21)

Tangent ial-momentum:

ush = cosa (3.22)

Normal-momentum:

Py, - 12 + sine (1 - =) (3.23)
YME Psh
State
Y-1
Pep = () PgnTan (3.24)
Density
(Y+1)M2sin’q
Pon = 5 (3.25)

(Y-1)M§sin a + 2

where ush and vs are the velocity components in the tangential and

h
normal directions, respectively, in the shock-oriented coordination
system. These are related to the body-oriented coordinate as

u. =d h sin(a+Bg) + vs cos(a+B) (3.26)

sh s h

Van = = Oy cos(a+B) + vsh sin(a+B) (3.27)
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3.4 Turbulence Models

Two of the most widely used algebralc turbulence models, namely
the Cebeci-Smith (CS) and Baldwin-Lomax (BL), have been implemented in
this study. Algebraic turbulence models are more appealing because they
require less computer storage and much less computational time as
compared to the two~equation model of turbulence, such as k-e model.
Both Cebeci-Smith and Baldwin-Lomax models of turbulence employ a two~
layer eddy-viscosity formulation. The inner law is based upon Prandtl's
mixing-length concept. The outer law employs either the Clauser-
Klebanoff expression (in the Cebeci-Smith model) or an equivalent
expression (in the Baldwin-Lomax model) for computing the eddy
viscosity.

3.4.1 Cebeci-Smith Turbulence Model

The algebraic eddy viscosity (in nondimensional form) is given by

e1 n s "crossover
+
€ = . (3028)
+ - N -
€o n Nerossover
where Morossover is the value of n at which values from the inner and

outer formulas are equal.
The inner eddy viscosity is obtained from the Prandtl mixing-

length concept

& - (3.29)



39

The mixing length & is obtained by using the van Driest's proposal

stated as [18,19]

L =K, nshﬁn-exp(-n*/A*)] (3.30)

where

n._mp wu udg /2

+ sh W
n’ o= = [""sh ( 5 dﬁ.)w] (3.31)

The quantity K1 is the von Karman constant with a value of 0.4, and A+

is a damping factor expressed (for flows with a pressure gradient) as

[18,19]
At = 26(1-11.8p")71/2 (3.32)
where
! dg ap
+ 2 u ap sh -
PP=-e" = [(58) ~-—=—1 (55) () ] (3.33)
puT 98 e nsh e "dn e 9n e
and
u du dg 1/2
W
u [anh 30 a5 y (3.34)

For the outer region of the viscous layer, the eddy viscosity is

approximated by the Clauser-Klebanoff expression [18,19]

K,pu 6 Y, —
+ 2" ek i,n
eo - = (3.35)

€ U
where
n

§ u sh
Sk = IO (1 G;) @/ dn (3.36)
K., = 0.0168 (3.31)

2
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and

nshn 6 -1

; (3.38)

— = [1+5.5(

Yi’n

The boundary layer thickness, &, in Egs. (3.36) and (3.38) is
assumed to be the value of n at the point where

H, / Hy = 0.995 (3.39)

Another criterion for obtaining &, based on viscous dissipation, is the

height where

I TEE;E=T dn
: 5 Lt = 0.995 (3.40)
Io Tagram 4"
where
S €2 ey 1 dg R _ KU 112/(quct
F={e [(14e )nSh & 3n 1+ﬁnshK)]} /(1+€" )y (3.41)

Thompson et al. [34] defined the boundary layer edge at a location where

d(H, / By )/dn S 0.5 - (3.42)

All three of these criteria have been used in this study.

3.4.2 Baldwin-Lomax Turbulence Model

This model employs a formulation similar to the Cebeci-Smith model

for the inner-region eddy viscosity

™
+
L}
Fi
nN

;= 5l (3.43)
E U

where & is given by Eq. (3.30) except that A+ is replaced by A+ which is

defined as



- 26(t|/x 72 (3.44)

In Eq. (3.44), t is the local shear stress obtained from

T = €%y ((1+e+)n41§a—q-ﬁ%§——;) (3.45)
sh dn 9n sh

The magnitude of the vorticity, |w| is given by

1 3v. nn' dg 3v  (1+nn_ k) dg du
ol = I " Ty T A ) (340
sh sh sh dn 9n

The outer-eddy-viscosity approximation of the Baldwin-Lomax model
replaces the Clauser-Klebanoff formulation by the relation

K, C

+__2 cppF

wake FxLEB(™ (3.47)

2
Eu

where K, is a constant given by Eq. (3.37), Ccp is an additional

constant given as 1.6 [20] and

F
wake max ~max

The quantities Hmax and Fmax are the values at the location of the

maximum value in the vorticity function
-— -— + T+
F(n) = nshn|m|[1-exp(-n /87)) (3.49)

The Klebanoff intermittency factor, is given by

FKLEB’

c ; 6 ~1
(m) = (1+5.5(—Wm‘§-§—) ) (3.50)

FKLEB
max



where CKl = 0.3

eb
It has been found that the value of Ccp depends on the Mach

number. Baldwin and Lomax [20] chose a value of 1.6 for Ccp by

comparing with the Cebeci-Smith's turbulence model for transonic,

constant pressure boundary layer flows. However, a value of 3.0 for Ccp

is found more appropriate for hypersonic flow £371].

3.4.3 Transition Model

Both continuous and instantaneous transitions from a laminar to
turbulent flow have been included in this study. Instantaneous
transition is initialized when the local Reynolds number or momentum-
thickness Reynolds number exceeds a preselected value, Continuous

transition is effected by defining a streamwise transition intermittency

factor Yi £ which modifies the composite eddy viscosity s+ over a
4

specific distance along the body.

The factor Yi £ is evaluated by a relation developed by Dhawan and
’

Narasimha [39] as

LA 1-exp(-0.412E) (3.51)
where
"(E'EO)
£ = E;T§:TT (3.52)

The quantity 50 is the location where the transition is started and x

is approximately equal to two.
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3.5 Method of Solution

The overall method of solution employed is an implicit finite-
difference spatial—-marching method, similar to the one employed by
Davis, and Anderson and Moss [12,19]. However, the method is
implemented in this study differently because convergence problems are
encountered for slender bodies if the method of solution outlined in
these references is employed.

To simplify the numerical computations, the viscous shock-layer
equations are again transformed by normalizing most of the variables
with their local shock values. It should be pointed out that the normal
velocity, at the shock may change sign at some locations and may be near
zero at others. The normalized v-profiles in such a region are not very
well behaved and stability problems can occur if these profiles are used
in the solution procedure. Therefore, it is desirable to remove the
normalization procedure from the normal velocity profile.

When the normal coordinate is normalized with respect to the local
shock standoff distance, a constant number of finite-difference grid
points between the body and shock are used. The second order equations,
Egs. (3.1) through (3.10), are solved by using the finite difference
method. The derivatives are replaced with finite-difference expressions
in a such way that three-point central differences in the n-direction
and two-point backward differences in the E-direction occur. The

truncation terms of order Agm and either AnnAnn_ or Ann-Ann_1 are

1
neglected. The subscript n denotes the grid point along a line normal

to the body surface, whereas the subscript m denotes the grid station



along the body surface. Replacing the differential terms by the finite-

difference expressions, the governing equations are expressed as

Anwm,n-l * anm,n * anm,n+1 = Dn (3.53)
where
Ay = : - _tmathn (3.54)
n Ann_1(Ann+Ann_1) Ann_1(Ann+Ann_1)
5 . 2 ) (01 )m,n(Aﬂn-Ann-1)+ ) . w 5.55)
n AnnAnn_1 AnnAnn_.1 2’m,n AEm
2 (u1)m,nAnn—1
Cn = Bn_(An +An__.) * An_(An_+An_ ) (3.56)
n*"'n - n-l n°"n  n-1
(a)) W
4'm,n m-1,n
Py - (33)m,n * AE (3.57)

m

Equation (3.53) along with the boundary conditions constitutes a system
of the tridiagonal form, for which efficient computational procedures
are avalilable,

To avoid the instability problem encountered by the traditional
approach [12,19] and from the hypersonic small disturbance theory [14]
for a flow on a slender body, the two first-order equations —- the
continuity and normal-momentum equations -- are solved simultaneously as
a coupled set rather than in a successive manner for the pressure, p,
and normal velocity, v. The density in these equations is eliminated

through use of the equation of state. The resulting equations are
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9 - P, . 98 2 -
3 (nsh(r+nnshcose)Tu * 3 5 {(r+nn_ cose)
-— r
X [(1+nnshk)2% - nshnﬁ%]} =0 (3.58)
and
, =
ng,pu av ngpNUP av dg v dg

(1+ﬁhshr) PY3 (1+ﬁhshK) man . Pan TG

n Kuzp Y ap dg

sh
e TR T

- (T+%in 0 : (3.59)

<)

Equations (3.58) and (3.59) are expressed in the finite-difference form
at points (m,n+1/2) and (m,n-1/2) using a box scheme discussed by

Richtmyer [40]. The final forms are

Ac,n+1/2 vm,n+1 * Bc,n+1/2 vm,n * Cc,n+1/2 pm,n+1

Dc,n+1/2 pm,n = Ec,n+1/2 (3.60)
Ac,n-1/2 vm,n * Bc,n-1/2 vm,n-1 * Cc,n-1/2 pm,n
* Dc,n-1/2 pm,n—1 - Ec.n—1/2 (3.61)
AnM,n+172 Ym,ne1 * Bum,n+1/2 Vm,n ¥ CnM,n+1/2 P net
* DyM,n+1/2 Pm,n = EnM,n+1/2 (3.62)

ANM,n-1/2 vm,n * BNM.n—1/2 vm,n-1 * CNM,n—1/2 pm,n



+D (3.63)

NM,n-1/2 pm,n—1 = ENM,n—1/2

The coefficients of these equations are given in Appendix A. Eliminating
p and v alternatively in the coupled equations, Egs. (3.60)-(3.63), two
tridiagonal equations for pressure and normal veloclity are obtained as

K, P = K, (3.64)

m,n+1 * K2 pm,n * K3 pm.n-1

+ K KB (3.65)

KS vm,n+1 6 vm,n ¥ K7 vm,n-1 -

The coefficients K1 through K8 are also given in Appendix A, Equations

(3.64) and (3.65) are solved in the same way as the energy and s-
momentum equations.

By integrating the continuity equation from n=0 to n=1, a
quadratic equation for the shock standoff distance is obtained. The
density is determined by the equation of state.

The solution is started at the stagnation streamline where the
various flowfield quantities are expanded in terms of the distance, &,
along the body surface [19,26]. These series expansions reduce the
partial differential equations, Egs. (3.1) through (3.12), to ordinary
differential equations in terms of n. At a body location m, other than
the stagnation streamline, a two-point backward difference scheme is
used for the derivative with respect to £ at the point (m,n). This
again glves ordinary differential equations at location m in terms of n
for Eqs. (3.1) through (3.12). The finite-difference form of these
ordinary differential equations (obtained through the central
differences) can be solved by using the Thomas Algorithm. Figure 3.1

gives the flow chart for the solution sequence of these equations.
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shock solution at station m

'

Initial guess for all profile quantities

y

Eddy viscosity, e*

4

Solve energy equation for H and T

!

Transport property, u

Solve equation of state for P
Solve s-momentum equation for u

B!

Solve continuity equation for nsh

!

Solve continuity and n-momentum
equations simultaneously for v and p

1

Solve equation of state for P

No Yes Advance to

——f Convergence ——
‘\\\\\\v//,/’/, station m-1

Fig. 3.1 Solution sequence of viscous shock-layer equations.




The Vigneron condition [41] (for the pressure gradient in the
streamwise momentum equation) has been used for marching in the subsonic
nose region. In this condition, a portion of the pressure gradient is
treated implicitly by employing a two-point backward difference scheme.
The remainder portion of the pressure gradient is forward differenced to
allow for upstream influences.

The solution is iterated at location m until convergence is
achieved. The solution advances to the next body station, m+1, and uses
the previous converged solution profiles as initial values for starting
the solution at m+1. This procedure is repeated until a global solution
at all body locations 1s obtained.

The initial shock shape is created by the thin layer approximation

o
for a short wide-angle body (35 sphere-cone, for example). The shock
shape obtained from a full-layer solution to this body shape is then

used as an initial guess for the slender bodies in a sequential manner

by reducing the body angles in steps of 5 to 10 degrees. In place of
the shock stand-off distance used previously [17,42], its derivative in
the streamwise direction is smoothed after each global iteration.

Due to the change in sign of the normal velocity profile from
station to station, an under-relaxation scheme [43]

F=aF, +(1-&) F

, (3.66)

2

has been employed in the present work. Here F1 is the most recently

calculated physical quantity and F2 is the value obtained from the

previous local iteration. A value of & of 0.2 to 0.4 gives convergence



in most cases. In general, an under-relaxation was required only for
the pressure and normal velocity.

Depending upon the initial approximation to the shock shape
(whether obtained by using the thin shock-layer form of normal-momentum
equation or from a larger body angle solution), the first global pass

solution may be improved by subsequent global iterations.

3.6 Results and Discussions
Numerical solutions to the previously discussed viscous shock-
layer equations for the hypersonic flow over a long slender body have
been obtained. Results for laminar, transitional, and turbulent flows
of a perfect gas are compared with the experimental data and/or with

numerical solutions in the literature. The solutions are chosen for

4] (4
small body angle (5 to 35 ) hyperboloids and sphere-cones at zero-
degree angle of attack. The free stream Reynolds numbers are within the

range from 1.2 X 10“ to 3.5 X 106.

3.6.1 Comparison of the Present Method with Cascading Method

Figures 3.2 to 3.6 show the effect of solving the normal momentum
and continuity equations simultaneously in a coupled way as compared to
solving all the governing equations in a successive way [12,19].

Results of shock stand-off distance, wall pressure, and skin friection

coefficient are shown in Figs. 3.2 to 3.4 for a hyperboloid with 20°
half-body angle. It is clearly noticed that the solutions oscillate in
the downstream region with the cascading approach. It is also noticed
that this instability can be removed when coupling is implemented

between the normal momentum and continuity equations.
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Figures 3.5 and 3.6 show the results for shock stand-off distance

[}
and Stanton number distribution for a 35 sphere-cone without coupling

the two first-order equations. Oscillation in the solution is noted in
the vicinity of the tangency point where the curvature is discontinuous.
The curvature is equal to one on the spherical part and zero on the
conical part. It is important to note that coupling the two first-order
equations can stabilize the solutions at this discontinuity.

3.6.2 Comparison of the Present Method with other Predictions and Data

for Laminar flows

The results obtained by the present method (VSL2D) are compared
with another method (VSL3D) in Figs. 3.7 to 3.10. The results of VSL3D
were obtained by Thompson [ul4]. Figure 3.7 gives the convergence
nistory of the streamwise derivative of the shock stand-off distance for
the present method. It is seen that solutions do not diverge with the
subsequent global passes. Figure 3.8 presents a comparison of the
boundary layer thickness, as obtained by the VSL2D and VSL3D methods.

The boundary layer thickness is defined as the location where Ht/Ht - =

0.995. The predictions of the boundary layer thickness are quite
different by the two methods. The VSL3D results show a big jump in the
boundary layer thickness. In spite of this difference, the laminar
heat transfer and skin-friction coefficients compare well as shown in

Figs. 3.9 and 3.10.

[+]
A comparison of surface heat transfer results for a long 5
sphere-cone between the present viscous shock-layer (VSL) and
parabolized Navier-Stokes (PNS) predictions [45] 1s given in Fig. 3.11%,

The VSL results are about five to ten percent higher for most of the
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body length as compared to the PNS results. The PNS predictions employ
fourth-order explicit and second-order implicit smoothing terms, whereas
the present VSL calculations do not use any smoothing. Furthermore, the
stability of PNS solutions restricts the reduction of the normal grid
spacing adjacent to the wall (required for accurate heat transfer
predictions) if a relatively large marching stepsize is required for a
long body. Since the PNS requires a starting solution that describes
the subsonic region, any starting solution errors distort the PNS
results in the nose region. In the VSL method, the starting profiles
are created as part of the solution and, thus, the method is self-
starting.

Figures 3.12 to 3.15 show comparisons of results obtained from the

present method with available experimental data. A comparison of the

predicted pressure distributions on a 10o hyperboloid -with the
experimental data [46], as well as with the results of Hosny et al.
[15], is given in Fig. 3.12. Both predictions compare quite well with
the data. Hosny et al. [15] solved all governing'equations in a coupled
manner which may require more computational time at every point in the
flow, especially if real gas properties are included. The present
method with the coupling between the two first-order equations gives
equally accurate results. The present approach may be more appealing
for real gas calculations where local iterations are required to update
the chemical composition along with the transport and thermodynamic
properties.

The present method gives surface heat transfer rates which compare

0
quite well with the data of Cleary [47] for a 15 sphere-cone as shown
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in Fig. 3.13. As shown in Figs. 3.14 and 3.15, the present predictions

for the wall pressure distribution and surface heat transfer rate on a

0
12.84 sphere-cone agree fairly well with the experimental values of

Miller [U8,49].

3.6.3 Comparison of Predictions with different Turbulence Models and

Data for Long Slender Bodies

Cebeci-Smith [18] and Baldwin-Lomax [20] turbulence models are
implemented in the present method to predict turbulence effects.
Transition to turbulence is modeled by using the Dhawan and Narasimha

method [39].

Figures 3.16 to 3.18 show a comparison between the results for a

[
10 sphere-cone as obtained by the VSL2D and VSL3D [44] models. The

Cebeci~Smith turbulence model is implemented in both solutions. The
* »*

onset of transition is set at s /RN = 2.0. The definition of the

boundary layer edge is based on the total enthalpy (i.e., H_/H =

0.995). The results for the boundary layer thickness are shown in Fig.
3.16. Similar to the results for the laminar flow (Fig. 3.8), these
results also differ significantly with each other. However, this
difference influences the surface heat transfer rate and skin friction
coefficient predictions significantly for a turbulent flow as shown in
Figs. 3.17 and 3.18.

The length and velocity scales in the Cebeci-Smith model are
strongly dependent on the boundary layer edge location, and these
influence the surface properties. Due to this difficulty, Thompson et

al. [34] defined the boundary-layer edge location based on the gradient
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of the total enthalpy [a(Ht/Ht o) /3n]. With this definition, good

agreement between the VSL2D and VSL3D results is obtained for the
surface heat transfer rate (Fig. 3.19). The results obtained by using
the classical total enthalpy definition for the boundary-layer edge are
also shown in Fig. 3.19. It is noted that the new boundary layer

definition gives results comparable to the classical definition along a

long body [37].

) °
The results for the turbulent flow over a 9 sphere-cone are

illustrated in Figs. 3.20 to 3.25. The hemispherical portion of the
model was roughened in order to insure attainment of turbulence flow
over this region [50]. Three different definitions, which are based on
the total enthalpy, the gradient of total enthalpy, and the dissipation
modelé, for the boundary layer edge locations have been used to
calculate the turbulent heating with the Cebeci-Smith model as given in
Fig. 3.20. It is seen clearly that predictions from the total enthalpy
and total enthalpy gradient models are comparable to the experimental
data. The boundary layer thickness based on the dissipation model does
not give heat transfer predictions comparable to the classical enthalpy
model.

The Baldwin-Lomax model uses the distribution of vorticity to form
the outer length scale. It is known that there may be more than one
peak in the vorticity function [38]. Figures 3.21 to 3.23 give the
distributions of the vorticity function at three different locations,
It is seen that there is more than one peak at each location. The
correct peak that should be picked is near the body surface. The

Baldwin-Lomax model proposed originally [20] was for constant pressure
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boundary layers at transonic speeds. This model has been modified to

include the effect of pressure gradient on the damping factor A+ £37].
Results of surface heat transfer for both models are given in Fig. 3.24.

When compared to the experimental data, the original model predicts well
* *
up to the tangency point (s /RN = 1.5) in the favorable pressure

gradient region, whereas the modified model gives good predictions in
the adverse pressure-gradient region and beyond. It was, therefore,
decided to combine the two models. The predictions for the combined
pressure gradient models implemented in the Baldwin-Lomax model are
given in Fig. 3.25. Here the original Baldwin-Lomax model is used up to
the tangency point and the modified model is used afterwards. The
combined model gives very good predictions when compared to the
experimental data along the entire body length. Also included in this
figure are the predictions obtained with the Cebeci-Smith model. The

two models give almost the same surface heat transfer predictions.

o
The results for the Stanton number distributions for a 7 sphere-

cone are given in Figs. 3.26 and 3.27. The transition to turbulence is
* *
initialized at s /RN = 4.8 as given by the data of Carver [51].

Results by using the Cebeci-Smith turbulence model with two boundary
layer edge definitions based on the total enthalpy and its gradient are
shown in Fig. 3.26. Both definitions give surface heat transfer rate

predictions within 15% to the experimental data. There is an increase
* *
in the value of Stanton number at a s /RN location of about 15 by using

the total enthalpy definition for the boundary layer thickness. This is

probably due to the poor resolution of the gradients of various
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a 9° sphere-cone with turbulent flow.
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Fig. 3.22 Distribution of vorticity function at s = 2.0 for
& 9° sphere-cone with turbulent flow.
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flowfield quantities at the boundary layer edge at this body location.
This problem can be overcome through the use of adaptive grids. The
observed increase in the heating data in Figs. 3.26 and 3.27 with
increasing body location is probably due to the entropy-layer
swallowing. This trend is also visible from the theoretical
predictions. Once the swallowing is complete, the data and predictions
would probably show a decreasing trend with increasing body distance.

Since the sensitivity of the surface heat transfer rate on the
boundary layer thickness definition does not exist in the Baldwin-Lomax
turbulence model, the Stanton number distribution was obtained using
this model in Fig. 3.27. A comparison of predictions ;ith the

experimental data shows that a value of 3.0 for Ccp gives better results
as compared to the values of 2.08 suggested for M_ = 3 by Knight [21] or
the original value of 1.6 given for M _ = 1 [20]. This coefficient

which appears in the Baldwin-Lomax outer formulation is dependent upon

the flow Mach number. The value of 3 inferred here for Ccp at Mu = 8

along with the other suggested values for different Mach numbers point

to a linear dependence of Ccp on the flow Mach number in the range 1 s M

S 8. Additional comparisons with data are necessary to verify this

dependence.

0
The surface heat transfer results for a 5 sphere-cone obtained by

using the Cebeci-Smith and the modified Baldwin-Lomax models of
turbulence are illustrated in Fig. 3.28. The results of laminar flow
calculations are shown in this figure. These calculations were

performed using both the present method and the VSL3D method [34]. The

C-2
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transition was initialized at an axial location of 23.8 ft. Even though
the turbulent flow results from the two methods using the Cebeci-Smith
model are different, the VSL3D results compare with the modified

Baldwin-Lomax model very well from the end of transition.

3.7 Conclusions

Numerical solutions of viscous shock-layer equations are presented
for hypersonic laminar and turbulent flows over long slender bodies.
These results are obtained from a method which employs a spatial-
marching implicit finite-difference technique. This technique is fast
and uses partial coupling among the governing equations based on the
hypersonic small disturbance theory. The partial coupling yields a
simple and computationally efficient technique.

Detailed comparisons have been made with other predictions and
experimental data for slender body flows to assess the accuracy of the
present numerical technique. Results from the present method show that
the coupling between the normal momentum and continuity equations is
essential and adequate to obtain stable and fairly accurate solutions
past long slender bodies.

The two widely used algebraic turbulence models, namely, the
Cebeci~-Smith and Baldwin-Lomax models have been analyzed with the
present numerical technique for application to long slender bodies.
Both of these models appear adequate for such flows. Due to the
sensitivity of the Cebeci-Smith turbulence model to the boundary layer
edge location, however, it is imperative that the numerical method
should provide good resolution and accurate solutions near the boundary

layer edge. This can be a problem for long slender bodies, especially,
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if the numerical method (such as PNS) employs artificial viscosity to
damp oscillations. For this reason, the Baldwin-Lomax turbulence model,
which avoids the use of the conventional boundary layer thickness in its
formulation, appears more convenient to implement.

A correction for the pressure-gradient effect has been made to the

Baldwin-Lomax model. Constant Ccp in the outer-layer formulation has

been modified to 3.0 for the Mach 8 case. Based upon this study and
other investigations, a linear dependence of this constant on the flow
Mach number is suggested. Further comparisons with the experimental
data are needed to verify this dependence. An additional consideration
in the implementation of the Baldwin-Lomax model concerns the appearance
of two peaks associated with the two maxima in the vorticity functions
used to form the outer-layer length scale. The second peak is avoided
by choosing the first one in the region where the gradient of total

enthalpy is less than or equal to 0.5, i.e., 3(H /H/ ,)/3n 5 0.5.
’
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Chapter U
LOW REYNOLDS NUMBER PERFECT GAS FLOW

4.1 Introduction

Most future hypersonic vehicles will be operating in the upper
atmosphere, where "low density effects" will play a major role in
establishing the lift, drag, moments, and aerodynamic heating on a
hypersonic vehicle. An accurate knowledge of hypersonic
aerothermodynamics under low density conditions is required for an
accurate prediction of the aerothermal environment for the new
generation of hypersonic vehicles,

The degree of rarefaction of a low density flow is usually
expressed through the Knudsen number which is the ratio of the molecular
mean free path in the gas to a characteristic dimension of the
flowfield. The conventional continuum flow assumption is valid when
this parameter is very small in comparison to unity. The opposite limit
of very large Knudsen number corresponds to a free molecule flow in
which intermolecular collisions may be neglected. The region between
these limits is generally referred to as the transition flow regime
[52].

At highly rarefied gas flow conditions, the conventional approach
by continuum analysis is no longer valid. A more appropriate approach
is by kinetic theory of gases which can correctly describe microscopic

properties of molecules, such as the Boltzmann equation [30]. Although
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there is only one dependent variable, the distribution function for the
molecular states in the Boltzmann equation, the number of independent
variables make this approach extremely difficult to obtain analytical or
numerical solutions. An alternative is to model the gas flow at the
molecular level. The Direct Simulation Monte Carlo (DSMC) method [53]
has been found to be most readily applicable to complex engineering
problems. However, this method still requires large computational times
and computer storage.

At the slightly rarefied gas conditions, significant levels of
, molecular collisions are still present in the flowfield which make the
continuum approaches applicable except in a region next to the wall., It
is because the gradients of the macroscopic variables become so steep
that the mean free path becomes large compared to the local
characteristic length. This region is called the Knudsen layer in which
the determination of the flow properties requires the direct solution of
the Boltzmann equation matched to the solutions for the outer flow and
the wall boundary conditions. This is most conveniently done through
the use of a slip model in which slip and jump properties are used for
the boundary conditions for the conventional continuum flow equations.
These slip and jump boundary conditions for the gas and solid interface
are obtained from the balance equations for mass, momentum and energy
fluxes at the Knudsen layer edge [30-31, 5u4-55].

Not much attention seems to have been given to the problems
encountered with low-density aerothermodynamics. Davis [12] included
body and shock-slip in the viscous shock-layer analysis of a perfect-gas
flow around a hyperboloid. Davis [56] modified these slip relations for

a binary mixture. Tree et al. [57] analyzed the hypersonic ionizing
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viscous shock-layer flow past axially symmetric bodies at low densities.
Tiwari and Szema [58,59] investigated the effects of body and shock slip
conditions on the aerothermocdynamic environmént of a Jovian entry body.
Swaminathan et al. [60] and Song et al. [61] recently included the body-
and shock-slip effects for three-dimensional flows. However, their
surface slip condition for single species or multicomponent mixtures
contained some errors as explained in Ref., 31. The shock-slip boundary
conditions did not account for the derivatives of the shock quantities
in the shock-oriented>coordinate system. This introduced significant
errors in analyzing flows past slender bodies as compared to the wide-
angle bodies [62].

Gupta et al. [31] reanalysed the wall boundary conditions by using
the approach of Scott [63] and provided appropriate relations for the
various quantities with surface slip in a form which can readily be
employed for multicomponent and binary mixtures as well as a single-
species gas. These surface slip expressions have been implemented
successfully in full Navier-Stokes equations [26,62]

Under the low Reynolds number (or low density) flow conditions,
the viscous effects influence almost the entire shock layer and the
shock itself is considerably thick as compared to the high Reynolds
number (or high density) case. The complete Navier-Stokes equations are
considered appropriate for the low Reynolds number applications. But
computer storage and computational time make them are very expensive to
solve for flows around long bodies. The viscous shock-layer equations
have been shown to give good results for hypersonic flows on blunt
slender long bodies at high Reynolds number. Thus, it is desirable to

employ the viscous shock-layer equations instead of Navier-Stokes
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equations at low Reynolds number cases to reduce the computational
requirement.

In this chapter, the surface-slip relations developed by Gupta et
al. [31] and the corrected form of the shock-slip boundary conditions
[12] are implemented in the viscous shock-layer code for a perfect gas
as deseribed in Chap. 2. to obtain results for the low-density flight
conditions for long slender bodies. A detailed comparison with
experimental data and other numerical results gives an estimate of
accuracy of the present predictions. Furthermore, the range of
applicability of the viscous shock-layer solutions is ascertained by
comparing these results with those obtained from the steady-state

Navier-Stokes equations.

4.2 Flow Governing Equations
The conservation equations employed in this chapter are the steady
perfect gas viscous shock-layer equations for an axisymmetric or two-
dimensional body at zero angle of attack [12]. These equations are

written in the same forms as Eqs. (2.25) through (2.37) except that the

eddy viscosity, e+, is set to zero. Also, the stretching function g(ﬁ),

Eq. (2.21), is given by

(1-a) n {5-3(23+1)+1}] (5.1)
in(Ey +n(2a+1)-1 :
n(E:T)

gn) =1 - [a+
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The first and second derivatives of Eq. (4.1) are expressed as

d (1-a) (2a+1) 1 _ 1

E% = B+1 {[E-"n(za"ﬂ)n] W+?1(2a+1)-1]} (4.2)
tn(x=)

dzg - (1-3)(25+1)2 1 - 1 } (4.3)

—2 B+1 - - 2 - - 2 )

dn 2n(a—r) [B-n(2a+1)+1] [B+n(2a+1)-1]

Equation (4.1) permits the mesh to be refined either near the body
only (a = 0) or refined equally near both the body and bow shock (a =
1/2) when the shock becomes thick under the low density flight
conditions. The parameter E controls the amount of refinement with
values near 1 giving the largest amount of stretching. The physical
coordinate n can be obtained from inverting Eq. (4.1) and is expressed

as

1-n-a
- 1-a
B+1
( ) -1
- 1 = B
n=Tmen o8t T-n-a H (4.4)
- 1——'
g+1
(E:T) + 1

This transformation keeps the body at n = 0 and the shock at n = 1 with

uniform mesh in the computational coordinate n.
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4,3 Shock~ and Surface-Slip Boundary Conditions
At high altitudes, the continuum flow assumption breaks down in
the region next to the wall. The no-slip and no-temperature jump
boundary conditions are no longer valid. As such, the slip and
temperature jump boundary conditions should be used. The relations for
the body and shock slip conditions are provided in this section.

4.,3.1 Surface Slip Conditions

The surface slip conditions for a single-species gas as given in
Gupta et al. [31] are used as the boundary conditions on the body
surface. Since no mass injection is considered in this chapter, the
normal component of velocity at the surface is taken to be zero. The
nondimensional forms of surface slip conditions in the computational
plane, Egqs. (2.59) through (2.61), are given here again as

Velocity slip:

2
f’ 5. & ¥
u_ = % ( 8 s 1 dg ou _ KU ] (4.5)

Pressure slip:

4 Y
p_ =D, * () (&= 2 [2(— EF D) (4.6)
s W SJE;. Y1 6 "Pr Ts Pg Mgp dn 9n

Temperature slip:

1 I Y 2=-0y € s 1 oT
s w342 (7:7)(--) > (— gg___) (4.7)

In the derivation of the relation for the temperature slip, it is

assumed that the internal energy is frozen during the reflection from
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the wall. The parameter 8 1s the accommodation coefficient which is

taken to be 1 in this study.

4,3.2 Shock Slip Conditions

The boundary conditions at the shock are the modified Rankine-
Hugoniot relations developed by Cheng [32]. These relations are
obtained by integrating the one-dimensional Navier-Stokes equation
across the shock. Since velocity components tangent and normal to the
shock are not the same as those tangent and normal to the body surface,
transformations are needed to relate these quantites. The
transformations are given by

U, = u . cos(a-8) + Vg sin(a-8) (4.8)

sh sh h

¢, =-u_ sin(a-8) + v_,_cos(a-8) (4.9)

sh sh sh

where ush and vsh are the components of velocity tangent and normal to

the shock interface, respectively. The nondimensional forms of the
shock slip conditions in the computational plane, Egs. (2.75) through
(2.78), are given here again by

Continuity:

Pen Yon = ~Sina (4.10)

Tangential-momentum:

dnsh

dg

2 - - -g)] 1 dg 3u
€ ush{[cos(a 8) + n sin(a-9)] h, an an

)

+
01w
w2

sin(a-e)}sh + @, sina = sina cosa (4.11)

sh



92

Normal-momentum:

+ sina(sing + vs ) (4,12)

Psh ™ Pa h

Energy:

dn

{[cos(a-8) + 7 M gin(a-8)] —— dg 3T

u
e (5p) at Ry, an an

sh

_ o7 - _ Sina
3¢ Sinla e)}Sh + T,y sina 5

(ush

- sina { yy 2

sina + [(Y2 ) - M(Y-1)]

T (re1)?

‘ . }
(Y+1)2Misin2u

(4.13)

Equation of state:

Pop = Ypsh/(Y-1)Tsh (4.14)

The errors in the expressions used by Davis [12] have been

corrected in this study and this is discussed also by Lee et al. [62].

4.4 Method of Solution

The method of solution is similar to that implemented in Chap. 3.
The two second-order equations, s-momentum and energy, are replaced with
central differences in the n-direction and two-point backward
differences in the E£-direction. The two first-order equations,
continuity and normal-momentum, are solved simultaneously in a coupled
way. The solution is started at the stagnation point. The velocity
slip and temperature jump on the surface and at the shock are iterated
along with the corresponding governing equations. The solution is

iterated at location m until the convergence is achieved. The solution
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is then advanced to the m+1 station. Figure 4.1 presents the flow chart
for obtaining solutions with body-slip only, shock~slip only, and with
body and shock-slip.

Solutions to the steady-state Navier-Stokes equations, which are
given in Appendix B, have been obtained by first expressing them in the
body-oriented coordinate system. This procedure is the same as the one
employed with the viscous shock-layer equations. After obtaining a
solution of the viscous shock-layer equation, the higher-order terms are
evaluated using these flowfield results. These terms are held constant
during the solution for the first approximation to the Navier-Stokes
equations. The solution with this approximation is obtained at the end
of the first global pass. At the beginning of the second global pass,
the higher-order terms are reevaluated from the first global-pass
solutions. These terms are held constant again during the solution for
the second approximation obtained at the end of the second global pass.
This procedure is repeated until the flowfield results corresponding to

successive global passes converge within a specified limit [23].

4.5 Results and Discussions

Numerical solutions of the viscous shock-layer (VSL) equations for
the low-density hypersonic flow over long slender bodies are obtained.
The surface slip [31] and the recently corrected shock-slip boundary
conditions [62] are implemented in the implicit finite-difference method
used to solve the governing equations. Detailed comparisons with the
experimental data are included for several conditions. Extensive
results are provided for long slender bodies with temperature surface

conditions ranging from adiabatic to highly cooled. Also included are
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calculations from the steady-state Navier-Stokes equations. These
results provide an indication of the range of applicability of the
viscous shock-layer solutions.

4.5.1 Comparison with Experimental Data

There are only a few experimental data for the low-density, high-
energy flows available in the literature. The data of Little [46] are
still considered quite good for such flows. These data, however, are
limited to the measurements of pressure, drag, and skin friction. These
data were used extensively for comparison with the theoretical
predictions by Davis [12]. The same data have been employed for
comparison with the present results also. Figures 4.2 to 4.6 give

comparisons between the viscous shock-layer predictions and the

0
experimental data [46] for a 10 hyperboloid. With shock and body
slip, surface pressure predictions by the present method agree quite

well with the experimental data as shown in Fig. 4.2. Comparisons of

o
drag coefficients on a 10 hyperboloid for a range of values of the

rarefaction parameter € are shown in Figs. 4.3 to 4.6. Predictions of
Davis [12] are also given in these figures. It is clear that the
present predictions with the shock and body slips are in much better
agreement with the experimental data than the predictions of Davis.
Large differences in the present calculations and those of Davis are
seen with increasing values of €. These differences may be due to the
errors in the slip conditions as mentioned in Sec. 4.1.

Comparison between the predicted Stanton number distribution and

]
experimental data [64] for a 10 sphere-cone is provided in Fig. 4.7.

The present calculations with shock and body slip are in good agreement



Pwall

Fig. 4.2

1.0

0.8

0.6

0.4

0.2

96

Mg, = 9.2

Tq, =96.70°K
Reg, =90.6

Ry = 0.00127m
Tyy/Tg = 065
£ = 0.362

Present
o Experimental data (Little)

No slip
Shock and body slip

| | 1 i
8' 12 16 20
S IFlN

surface pressure distribution for a 10° hyperbololid
with € = 0.362.



97

‘Z6TT'0 = 3 yim
P1010QJadAy .01 B J0j UO}INQJJIS|P IUI[D[JJ300 Oedq

9 14 4 0
| | [ ¢0
(amn) eiep jeuawadxg o
SINeQ - --- — 0
Juasald
dijs Apoq pue yooyg —9°0
Ajuo dys Apog O o oo
Ajuo dyis syooyg
diis oN ot
¢6L’'0=3
6L0=21/M) —2'L
w1000 =Ny gy
Eivl = oy
AOL'9p = o.o._. diis Apoq pue syooyg o1
26'6 = °W Ao diis Apog ——\
Auo dijs sppoyg 8l
diis oN Lod

£ "6B14



98

*6TE°0 = 3 UIIM
pjofoquadAy .01 © JOJ UOTAINQIIISIP JUID]JI200 Beadg vy 614

J
L4 4 0 .
mw | T ¥0
v (amn) erep
v [ewawuadxy ¢
B sineq .- ---
diis Apoq pue o0ys asald <180
Kuo dyis spooys
\%
dijs oN
Ajuo djis Apo
uo dys pog 21 g
61€0=3
1ro=91M)
w,2100°0 = Ny 9't
(v o)
IS1 = e Ajuo dys Apog
HG'6G= ,L dys Apoq pue yooys
a0 dijs oN
616= W Ajuo dys yooys



99

"29€°0 = 3 yim
PloloqladAy .01 ® 4oy uofInQiaIs|p JUSJO[4J4000 Beug g'y "O1d

9 14 2 0
i I T v.o
(am17) ejep
o 0 [eluswuadxy
SR ...
juasald -18°0
diis oN
Aluo dyis yooyg
Auo dyis Apog
dys Apoq pue spoys H4er 9o
c9e0=3
so0=uM;
w/z100°0 = Ny 9’
9'06 = “oy Ajuo dys Apog
M0.96= 71 dus Apoq pue v_nmocm
g=2 IIS ON
¢6= W Ajuo dys sooys



100

zoz P
No slip
2-‘0 p
Vet Shock slip only
1.8 = Body slip only
1.6 -
- -~
-3
1.4 ~
\\~
V oo~
cD \~\
1.2 Shock and v S
body slip v
N
v
—  Present v
1.0 =t v
= - 2
v Experimental “"_ -9 .
0.8 |- data (Little) To = 152.2 °K
Re, .o - 22
RN" = 0.00127 m
0.6 - = = _
‘l'w I'I‘o 0.435
= 0169
0.4 ¢ b ¢ 1 2 1 0 | IR [ B . |
o 1 2 3 4 s 6

Fig. 4.6 Drag coefficlent distribution for a 10° hyperboloid
with € =« 0.690.



101

9U0D-343yds 01 B J0j uojINQiJISIP Jaqunu uojuels

‘%61°0 = 3 Yim

L' "By

qm»m
9 4 4 0
I I { 10°0
/ -
(uejAog) erep |elUBWHBdXT]
dijs Apoq pue 3o0yg — — - —
Auo dys Apogg —— - —
Ajuo diis syooys
dijsoN -------- 1°0
GE6L'0=3 1S
teo=9yM)
w6000 =Ny !
Lol = a,wm
NS =, 1
z8L="W




102

with the data except for the stagnation point. The experimental heat
transfer rate at the stagnation point were determined to be biased
upward due to particle impact caused by the arc heater [65].

4.5.2 Comparison with Predicted Results

Results obtained for a 22.5° hyperboloid in the stagnation region
by the present viscous shock-layer equations and the steady-state
Navier-Stokes equations are compared with those obtained by Anderson and
Moss [23] in Table 4.1. The results from tﬁese calculations compare

fairly well, especially for Cp. A maximum difference of less than ten
percent occurs between the two results at Re,_of 90 in the heat
transfer coefficient, CH' This may be due to the grid clustering

employed near the shock and body in the present calculations,

Figures 4.8. and 4.9 show comparisons for the Stanton number and
skin friction coefficient, reséectively as obtained by the present
viscous shock-layer method and that obtained by Davis [12]. Also shown
are the present results obtained from the steady-state Navier-Stokes
equations. The calculations are carried out for the stagnation point
only for different values of the Reynolds number parameter, €, which is
a measure of the degree of rarefaction. Larger values of € imply
increased rarefaction effects. The two viscous shock~layer predictions
have similar trends. However, significant differences are noticed for
large values of . The discrepancies may be due to the errors contained
in the slip equations used by Davis [12] and the current grid clustering
near the shock and body. Figures 4.8 and 4.9 also show that the viscous
shock-layer predictions deviate from the Navier-Stokes results for large

values of €. For ¢ = 1, the present viscous shock layer predictions
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give a Stanton number of 0.68, whereas the Navier-Stokes results yield a
value of about 0.9. It is clear that the Navier-Stokes predictions have
the right trend in approaching a value of 1 for the free-molecule flow
limit. These results suggest that the viscous shock-layer approximation
may not be valid for large values of €.

Figures 4.10 and 4.11 show comparisons of predicted skin-friction
coefficient and Stanton number distributions, respectively, as obtained
by the present viscous shock-layer method and that by Gordon [16]. The
comparison between these two results is quite good when the coarse grid
structure of Gordon [16] is used. The method of Gordon is fully coupled
and requires solving a 5 x 5 matrix at every point in the flowfield for
a perfect gas. The complexity and stability problems in a fully coupled
solution will be increased in analyzing a multi-species high-temperature
air flow. Also, the computational times will be considerably large for
long slender bodies by this method. The present approach, with coupling
between the normal momentum and continuity equations only, may be more
appealing for such flow conditions. Figures 4.10 and 4.11 also give
results with and without slip for a variable grid near the shock and
body surface. It is clearly seen that the computational grid-size as
well as the slip effects are important in this case.

4.5.3 Calculations for Different Altitudes and Surface Temperatures and

Range of Validity of Viscous Shock-Layer Results

An extensive test for the present computational method and the
surface and shock-slip boundary conditions is provided through the
results given in Figs. 4.12 and 4.13. The flow analyzed in these

figures is a high Mach number (M_ = 20) flow over highly cooled (Tw =
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300 K), 2.54 cm nose radius, five and ten degree sphere cones. The
free~stream conditions for very high-to-low altitude flight cases are

given in Table 4.2. Figure 4.12 gives the Stanton number distribution

4]
for a 5 sphere-cone obtained by using the viscous shock-layer equations

for different body locations. The slip effects become insignificant at
body locations greater than about ninety nose-radii or at altitudes less

than about 60 km for a wall temperature of 300 K. The Stanton number

[ ]
values with and without slip for a 10 sphere-cone as shown in Fig. U4.13

[+]
are higher than those for a 5 sphere-cone at the corresponding body

locations for a given altitude except for the stagnation point (s = 0).

At this location, the Stanton number values are almost the same for the

] (4]
5 and 10 sphere-cones, Figures 4,12 and 4.13 also indicate that for a

given altitude and body location, the slip effects are higher on the

[+] 0
conical flank portion for a 5 sphere-cone than for a 10 sphere-cone.

Further, the effect of slip increases with increasing altitude for a
given cone angle and body location.

Figures U4.14 to 4.20 show the effect of surface temperature on
stagnation-point pressure and heat-transfer coefficients. Both the
viscous shock-layer and Navier-Stokes solutions are provided in these
figures. The results presented in Figs. 4.14 to 4.17 show that the

viscous shock-layer values of Cp with no slip gradually increase from a

value of 1.84 at about 30.5 km altitude to a value of 1.88 at 100 km

altitude. The value of Cp stays constant at 1.84 for an adiabatic wall.
The viscous shock layer predictions for Cp with slip continuously

decrease with increasing altitude for a cooled surface. This trend is
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similar to the one given by the results of Davis [12]. This trend,
however, indicates that viscous shock-layer results with slip do not
approach the free molecule flow value at higher altitudes. The Navier-
Stokes results with the body and shock slip do provide the right
behavior of approaching the free molecule flow value at higher
altitudes, These results, however, first show a decrease in the value

of C_ and then an increase as the altitude increases further.

This behavior, also obtained by Jain and Adimurthy [66], is
consistent with the trend observed by Potter and Bailey [67]. Good
agreement between the Navier-Stokes results and the data of Potter and
Bailey [67] was reported by Jain and Adimurthy [66]. As can be noticed
from Figs. 4.14 to 4.17, the dip in the pressure coefficient curve is
reduced by increasing the wall temperature, For an adiabatic surface

(implying no temperature slip), there is no dip in the Cp curve, and it

increases monotonically towards the free-molecule flow value with the
increasing in the altitude. It may be mentioned here that the free-

molecule flow value of Cp as well as its asymptotic value at lower

altitudes is also influenced by the wall temperature. The free-molecule
flow value is obtained from the equations of Bird's [46]. The predicted

value of Cp from Navier-Stokes and viscous shock-layer solutions with

slip approach the asymptotic value of 1.84, which is predicted by the
inviscid modified Newtonian formulation, at lower altitudes with the
increase in surface temperature. Obviously, this asymptotic value is
obtained for a very high Reynolds number flow in absence of any slip
effects. Reducing the slip effects by increasing the wall temperature

also gives this asymptotic value at moderately high altitudes.
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The results for the stagnation-point heat transfer coefficient as
a function of the freestream Knudsen number (or altitude) are presented
in Figs. 4.18 to 4,20 for different surface temperatures. Results for a
given surface temperature show that the viscous shock-layer formulation
with or without slip does not give physically realistic results at very
high altitudes. The Navier-Stokes results with slip do approach the
free~-molecule flow value of approximately unity at very high altitudes.
With an increase in surface temperature, the surface heat-transfer rate
is decreased as expected. The effect of slip is noticeable down to an
altitude of about 60 km for the various surface temperature considered
here. Discrepancies of less than ten percent are noticeable below
approximately 75 km altitude.

Results of Figs. 4.14 to 4.20 suggest that the y}écous shock-layer

calculations with slip begin to deviate from the Navier-Stokes results

* *
with slip for freestream Knudsen number (A_ / RN) greater than about

* *
0.06. For Cp, the deviation begins at A / RN = 0.01., It may not be

appropriate to use the viscous shock-layer model even with body and

shock slip at higher altitudes.

4.6 Conclusions
Results have been obtained for the surface pressure, drag, heat
transfer, and skin-friction coefficients for hyperboloids and sphere-
cone-shaped slender bodies under varying degrees of low-density flow
conditions. Recently obtained surface-slip and corrected shock-slip
conditions are employed to account for the low-density effects. The

method of solution used for the viscous shock-layer equations is a
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partially coupled spatial-marching implicit finite-difference technique.
The flow cases analyzed include highly cooled surfaces in very high Mach
number flows. The viscous shock-layer predictions compare quite
favorably with experimental data. Results are also obtained from the
steady-state Navier-Stokes equations by successive approximations by
using the viscous shock-layer results to evaluate higher order terms for
the first approximation. Comparison between the Navier-Stokes and
viscous shock-layer results indicates that viscous shock-layer equations
even with body and shock slip do not give physically consistent results
in the stagnation region above approximately 75 km altitude for the

conditions considered in this study.
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Chapter 5

CHEMICAL NONEQUILIBRIUM FLOWS

5.1 Introduction

One of dominant aspect of hypersonic flow is high-temperature
effects. Strong compression of the gas forward of the vehicle and heat
generation due to viscous dissipation lead to increase gas temperature
in the shock layer. At high temperature, the gas will become chemically
reacting. The specific heat per unit mass is considerably increased,
the specific heat ratio will no longer equal to 1.4 and will no longer
be a constant. The assumption of a calorically perfect gas is not
appropriate; the effects of chemical reactions must be taken into
account.

From the example of atmospheric entry of the Apollo command
vehicle given by Anderson [68], the shock layer temperature predicted on
the basis of an equilibrium chemically reacting gas is a factor of 5
less than the temperature predicted on the basis of a calorically
perfect, nonreacting gas which gives an unrealistically high value of
temperature in a high Mach number flow. Two major physical
characteristics which cause a high-temperature gas to deviate from
calorically perfect gas behavior, as stated in [68], are vibrational
excitation and chemical reactions.

All chemical processes take place by molecular collisions. As the

temperature of the gas is increased, and hence the molecular collisions
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become more violent, it is probable that the diatomic molecules of

oxygen, 02, and nitrogen, N2. will be dissociated and nitric oxide, NO,

will be formed or dissociated by collisions with other particles. In
turn, collisions take time to occur. Hence, the chemical changes in a
gas require a finite time to occur. Equilibrium flows assume that the
gas has had enough time for the necessary collisions to occur. However,
there are some flight conditions frequently encountered in atmospheric
entry where the gas is not given the necessary time to come to a state
of equilibfium. Under these conditions, flows are characterized by a
chemical nonequilibrium process in the shock layer. The experimental
wall temperature measurements and resulting heat-transfer rates obtained
during the first flights of the Space Shuttle have been lower than the
predicted equilibrium values at least over the first Ad-percent of the
Shuttle length and for much of the altitude range of interest [69-72].
The flight data from the Catalytic Surface Experiment [71,73] have
verified that the lower rates can be attributed primarily to the fairly
noncatalytic nature of the Shuttle thermal protection system and not to
the unknowns in the freestream or flowfield quantities, and that the
nonequilibrium effects persist to altitudes as low as 50 km for the
orbiter.

Although measurement data can be obtained from the Space Shuttle
flights, it is very expensive for each flight. Moreover, a small scale
laboratory experiment cannot simulate the chemical nonequilibrium flow
around a hypersonic vehicle. An adequate design capability for future
transportation systems relies on numerical predictions. Among the

numerical methods available for solving the nonequilibrium flow over a
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hypersonic vehicle, the viscous shock-layer approach not only has the
advantage of requiring much less computing cost as compared to the
Navier-Stokes solutions, but it also provides accurate predictions.
This method has been used widely as a tool for engineering calculations
(24,60,61,72,74,75].

The viscous shock-layer equations for a perfect gas and for a
chemically reacting binary mixture were developed by Davis [12,56].
Based on this analysis, Moss [24] developed a code using the viscous-
shock-layer equations for a multicomponent gas mixture with chemical
equilibrium or nonequilibrium. It is shown that accurate results can be
obtained by this nonequilibrium code [24,72,74,76,77]. However, the
difficulties encountered in the case of a perfect gas are also
encountered in the nonequilibrium flow over a slender ;bng body.

Appropriate shock and wall boundary conditions must be prescribed
for the viscous shock-layer equations for chemically reacting flows, 1In
addition to surface temperature and veloeity, wall species
concentrations are needed. However, the surface heating rate in a
hypersonic nonequilibrium flow environment is strongly affected by the
surface catalytic activity (the recombination of the dissociated oxygen
and nitrogen atoms). For a dissociated nonequilibrium flow over a
finite-catalytic wall, the heating rate and the wall species
concentration is a function of the surface reaction rate coefficient (or
energy-transfer recombination coefficient) [78]. The temperature-
dependent and constant values of the coefficients for oxygen and
nitrogen surface recombination have been determined by Scott [79].

These values have been incorporated in the viscous-shock-layer code

available in [72]; however, the resulting heating predictions are only
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in fair agreement with the STS-2 experimental data. Based on STS-2
data, a new oxygen reaction rate expression has been developed by Zoby
et al. [77], and it has been shown that a better heating comparison with
experimental data can be obtained [75,77].

Thermodynamic properties and transport properties are required for
each species considered in a multicomponent gas mixtures. All these
properties are obtained from the polynomial curve-fit formulas based on
measured data. Measurements made on the Orbiter during reentry have
provided an extensive and reliable data base to improve these relations.

The primary objective of this study is to investigate the effects
of chemical nonequilibrium conditions in hypersonic flows over long
slender bodies. For this, modifications in the existing code by Moss
[24] are needed. The modifications included are:(1) tﬁé two first
order equations, continuity and normal momentum, are solved
simultaneously as a coupled set, and (2) the thermodynamic and transport
curve fit relations are modified. The effects of different wall
recombination coefficients on the predicted heat transfer are
investigated. Also, this chapter includes a parametric study on the

effects of body-angle, nose radius, and Mach number.

5.2 Analysis
The conservation equations that describe a reacting multicomponent
gas mixture can be found in the literature [27,28]. The viscous shock-
layer equations for nonequilibrium multicomponent gas mixture developed
by Moss [24] are obtained from the conservation equations employing the

same procedure as for the perfect gas [12]. For a blunt axisymmetric
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body at zero angle of attack, the global continuity, s-momentum, and n-
momentum equations in the orthogonal, body-oriented transformed
coordinates and in nondimensional form are written in the same form as

Eqs. (2.25) through (2.29), (2.35) and (2.36) except the eddy viscosity,

e+, is set to zero. For a chemical nonequilibrium flow, the energy
equation is formulated in terms of the temperature instead of total
enthalpy. In addition to these conservation equations, the species
continuity equation and equation of state are needed to complete the set
of equations. The energy and species continuity equations in the
computational plane are written in the form of Eq. (2.25). The W in

this equation represents T for the energy equation and Ci for the
species continuity equation. The coefficients a, to ay, Eqs. (2.42) to

(2.49), are given here again by

Energy, W = T:

. . 19 dg | n K . Jnshcose ) LR E s c
1 x dn dn 1+nnshx r+ﬁhshoose K a1 i’p,1
nshnshpcgun _ nshpqu (5.1)
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€ K(1+nnshr) 'S
a, = 0 (5.2)
n2 n2 n Ns
a_sn“(1ggg_§_ Ku )2_sn“ -
3 K N an dW 1+ﬁnshr ezx =1 i'i



2 2

, -
. Ulsh EE_"sh( u ngn v dgdp
2 - 2 - -
€ K(1+nnshr) % £« 1+nnshx Nan no dn 9n
2
nshpcpu
@y =T T2 =
€ K(1+nnshx)
Species continuity, W = Ci:
1 BPLi dg N nshcose
@, = PL. Bn df = ‘1+mn_. k  r+mn_ cose
i sh sh
, =
. DgnPsn™¥  TanfV
2 - 2
£ PL.i(1+nnsh|<) € PLi
a2 =0
1 93PM, dg PM n_. .« n_, cose w n2
o = i . i sh sh . i"sh
3 PLi oan dm PLi 1+ﬁhshz r+nnshcose e2PLi

n°. pu
. = - sh?
u 2 =
€ PL1(1+nnshK)
where
PL, = == AD

128

(5.3)

(5.4)

(5.5)
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(5.7)

(5.8)
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" s BCk dg
PM, = == ] Ab, — — (5.10)
i Pr k=1 ik an dn
ki
Le,i i-k
Ab,, = (5.11)
»* *
Mi Mi Ns
Le,y - [ = Le,, + (1 -=) 1 Le,iJCJ] 14k
M M, 3=
j#i

*
In Eq. (5.11), Le,ik are the multicomponent Lewis numbers and M is

molecular weight which is given by

- :

M = (5.12)

Z'(‘)
)

N
3

)
1=1

The mass flux, Ji’ due to concentration gradients can be written as [29]

x 98
5 (5.13)

The equation of state is given by

* * *
p=pTR /M C__ (5.14)

The term wi which appears in the energy and-Species continuity

equations represents the rate of production of species i due to chemical
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reactions. As discussed by Blottner [6,29] and Davis [56], the way of
the production terms are written is very important in achieving
convergence of the iteration procedure. Consequently, for the energy

equation, the production terms are written as [56]

|-

( > )k * 37 ( > )k ( Tk+1 - Tk ) (5.15)

where k denotes the iteration for which the solution is known and k+1

the iteration for which a solution is required. It is found that if an

expression of this type is not used which allows T ﬁo appear as an

unknown in the energy equation, the method will not converge at low

altitude conditions where the gas is approaching equilibrium conditions
N

[29]. The term 12?hiﬁi which appears in the energy equation, Eq. (5.3),

is written as follows:

N
s [ ) . -
121 hw, =W, + T, (5.16)

As for the species continuity equations, the production term is written

as

i .
—_—= W .1

5 (5.17)
Hence, Eqs. (5.15) and (5.17) express the production terms as a function

of temperature for the energy equation and in terms of the species mass

fraction for the species equations.
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5.3 Boundary Conditions
At the wall, the no-slip and no-temperature-jump boundary
conditions are used in this study. No mass injection is considered, the
normal component of velocity at the surface is taken to be zero. Also,

the surface total enthalpy is given as

H= )°hC (5.18)

For a nonequilibrium flow, the wall species concentration is
*
dictated by the catalytic recombination rate kw in the recombination

equation which is given by

X198 k1P o (5.19)
on dn Le 1 e2 i

* *
where kw 1" kw i / U, The catalytic recombination rate is determined
’ 1]

from the catalytic recombination coefficient (or catalytic efficiency)

Y; by [78]

K (5.20)

For a noncatalytic wall, the catalytic recombination rate of atoms is
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equal to zero [31]; hence, Eq. (5.19) becomes

aC

i
( I )w =0 (5.21)

for all the species of a multicomponent mixture. For a fully catalytic
wall, the catalytic recombination rate of each atom is equal to one
[311.

For a finite rate catalytic wall, the recombination coefficient
for oxygen and nitrogen pbased on arcjet experimental heat-transfer data

were determined by Scott [79] such as

2TUT
10271/T,,

Y, = 16.0 e (5.22)

0

and

/ *
2219 Tw

Y, = 0.071 e (5.23)

N
However, it has been noticed that the resulting heating predictions are
only in fair agreement with the STS-2 experimental data by
incorporating these coefficients [72,75]. Zoby et al. [T77] developed a
recombination coefficient for oxygen based on experimental flight, STS-

2, heat-transfer data. It is given by

-658.9/T
58.9 Tw

Y, = 0.00941 e (5.24)

0
Boundary conditions immediately behind the shock are calculated by

using the Rankine-Hugoniot relations. The nondimensional shock
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relations are the same as Egs. (3.21) to (3.23) and include

Energy:
sin a 1
han = he * = (1= —=) (5.25)
Psh
State:
R*
Pgp = pshTsh () (5.26)
C
sh "p,=
Enthalpy:
Ns ’
hy = )) Ri sn C1,en (5.27)

i=1

The chemistry across the shock wave 1is assumed to be frozen.

5.4 Chemical Composition
In this study, the chemical reaction is confined to a system of
and NO). When chemical reactions

neutral air species (0, O,, N, N

2’ 2

proceed at a finite rate, the rate of production terms w, are required.

i

For a multicomponent gas with Ns reacting chemical species and Nr

chemical reactions, the chemical equation describing the overall change

from reactants to products may be written in the general form

N Kf,r N
Zj & J *
By Sty e BB Ky (5.28)
*
K

b,r
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where r = 1,2,..¢, Nr and NJ is equal to the sum of the reacting species
(Ns) plus the number of catalytic bodies. The quantities @ L and Bi r
’ ?

are the stoichiometric coefficients for reactants and products,

*

*
respectively, whereas Kf r and Kb r are the forward and backward rate
’

*
constants. The quantities Xi denote the concentrations in moles per

unit volume. The rate of change of any species as a result of a

particular reaction is [80]

* N
e S ) (K. i
— - - n
dt* r i,r i,r f,r =1 J
N
- K 'rrJ x*BJ"") (5.29)
b,r 3=1 J

In order to find the net mass rate of production of the ith species per

unit volume, Eq. (5.29) must be summed over all reactions r. Thus,the

*
rate of production of chemical species, wi, can be expressed as

N

* % r dxi

wo=Mp 1l =) (5.30)
r=1 dt r

The chemical reactions used in this study are as follows:

r‘-1 02+M1-20+M1

r =2 N2 + M2 = 2N + M2
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r =3 N2 + N =2N + N
r =4 NO + M3 =N+ 0 + M3
r =5 NO + 0 = O2 + N
r==6 N2 +0 = NO+N

where M1, M2 and M3 are the catalytic third bodies [6]. The reaction

constants for these equations are expressed in the modified Arrhenius

form, where the forward rate is given as

* * 3.
c2 C x 10 -a
* LA o r 1 ,mole r
Kf,r =T exp(loge co,, ————;——-).—; ( 3) (4.31)
T cm
and the backward rate is given as
D2* D1* 103 B
X -
* ¥ r __r 1 ,mole, "r
Kb,r =T exp(log_ DO, )5 ( 3) (5.32)
T cm
where
N
ZJ (
a_ = a -1 5.33)
r 1=1 i,r
and
N.
J
B, = 121 By p = 1 (5.34)

The values for the coefficlents in Eqs. (5.31) and (5.32) are taken from
the compilation of experimentally determined rate constants given by
Blottner et al. [81]. For a specified temperature, density, and species
composition, Eqs. (5.29) to (5.32) are used to determine the production

rate of a multicomponent gas.
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5.5 Thermodynamic and Transport Properties

The thermodynamic properties Cp i and hi and the transport
9
properties Mi» Ki and DiJ are required for each species considered.

Since the multicomponent gas mixtures are considered to be mixtures of
thermally perfect gases, the thermodynamic and transport properties for
each species are calculated by using the local temperature and pressure.
Then the mixture properties are determined in terms of the individual
species properties.

5.5.1 Thermodynamic Properties

Values for the thermodynamic properties as a function of
temperature are obtained by using polynomial curve fits for each
chemical specles. The following polynomial equations are used:

Specific Heat

-ﬁil -a, + azT* + a3T*2 + au'l‘*3 + aST*u (5.35)
Enthalpy
h, a,T a3T*2 a,T > aST“l ag
5 =a v 5— " + =2 + ;; (5.36)

The development of these curve fits and a tabulation of the polynomial

constant (a1 to a7) are presented in [82]. These curve~fit formulas are

tabulated up to 15,000 K. However, there are many flow conditions where
the temperatures in the shock layer are much higher than 15,000 K.
Hence, these curve fit formulas have been extended to a temperature
range of up to 35,000 K by Shinn [83] based on the tabulated values

given by Browne [84,85].
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5.5.2 Transport Properties

Transport properties for viscosity and thermal conductivity are
required for each species considered in the shock layer gas. These
properties are obtained by using polynomial curve fits to the data of
Esch et al. [86]. The mixture viscosity is obtained by using the
semiempirical formula of Wilke [27]. The mixture thermal conductivity
is obtained by a method analogous to that used for viscosity [24]. A
binary diffusion model with Lewis number equal to 1.4 is used.

In addition, the transport properties of the individual species
are also obtained froﬁ the polynomial curve-fits in temperature to the
values given by Yos [87]. These data are believed to be more accurate
at the higher temperatures which are encountered in nonequilibrium
calculations. With these individual species properties, transport
properties for the gas mixture are obtained by using fﬁe methods of
Armaly and Sutton [88] for viscosity and Mason and Sa*ena [89] for

thermal conductivity.

5.6 Method of Solution

The method of solution is essentially the same as that used for
solving the viscous shock-layer equations for one component perfect gas.
The solution for the multicomponent gas mixture proceeds in exactly the
same way as given in Chap. 3 for the one component gas except a species
equation is included now.

Three second-order equations, species continuity, s-momentum and
energy, are replaced with central differences in the n-direction and
two-point backward differences in the E~direction. The two first-order

equations, continuity and n-momentum, are solved simultaneously. The
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density in these two equations are replaced by Eq. (5.14). Then these
two equations can be written in the same forms as Egs. (3.60) to (3.63).
The coefficients for a multicomponent gas mixture in these equations are
given in Appendix A. All these equations along with the boundary
conditions constitute a system of the tridiagonal form such as Egs.
(3.53), (3.64) and (3.65). The shock stand~off distance is evaluated by
integrating the continuity equation and density is obtained from the
equation of state.

For specified free-stream conditions and body geometry, a
stagnation streamline solution is obtained. With the stagnation
streamline solution providing the initial conditions, the conditions at
the shock providing the outer boundary conditions, and the conditions at
the wall taken as the inner boundary conditions, the pgmerical solution
is marched downstream to the desired body location £. At any body
station m, the converged profiles at station m-1 are used as the initial
guess for the profiles at station m. The solution is then iterated
locally until convergence is achieved. The solution is advanced
subsequently to the m+1 station. Figure 5.1 presents the procedure for

solving the governing equations for any location m.

5.7 Results and Discussions
Numerical solution to the previously discussed viscous shock-layer
equations with chemical nonequilibrium are presented and discussed.
First, comparisons of present results are made with data of STS-2 [90]
to investigate the effects of modifications of the chemical
nonequilibrium code and the heating effects of different finite-rate

oxygen surface recombination expressions. Second, results of three



sShock solution at station m

!

Initial guess for all profile quantities

y

Solve species continuity for Cl

h

Solve energy equation for T

1

Solve equation of state for p

Y

Thermodynamic and transport properties

I

Solve s-momentum equation for u

!

Solve continuity equation for ng

1 h

Solve continuity and n-momentum
equation simultaneously for v and p

No

Y

Solve equation of state for p

‘Yes
et Convergence

Fig.

Advance to
station m+1

139

5.1 Solution sequence with nonequilibrium chemistry.
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different small body-angle sphere cones are presented which demonstrate
the effects of surface catalysis and body angle. Finally, the effects
of nose bluntness, Mach number and the thermodynamic and transport curve
fit relations on surface heat transfer rate are investigated.

In the original code of Moss [24], the convergence criteria for
each body station was that the relative difference be less than 0.001
for both the temperature and tangential velocity derivatives at the
wall. In this study, the temperature, tangential velocity, pressure and
species concentration profiles are added into the convergence criteria
where the relative difference is less than 0.001 for all these profiles.

5.7.1 Comparison of the present Method with Cascading Method

Figures 5.2 and 5.3 show the results of shock standoff distance

/]
and surface heat transfer distribution over a 35 sphere cone with

finite rate chemistry. Without coupling the two first-order equations,
continuity and normal-momentum, oscillation exists in the vicinity of
the tangency point; this is the same as with the perfect gas model
(Figs. 3.5 and 3.6). This oscillation can be removed by solving the two
first-order equations simultaneously in a coupled way.

5.7.2 Comparison of the Present Method with Measured Data

Present predicted heating rates are compared with the STS-2
laminar heating data [90] for three different altitudes in Figs. 5.4 to
5.6. The viscous shock-layer equations are applied to the windward
symmetry plane by using the concept of an equivalent axisymmetric body
at zero degree angle of attack [72,77,91,92]. Results for an altitude
of 71.29 km are given in Fig. 5.4. With coupling the global continuity

and normal momentum equations, the predicted heating rates are lower
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than that without the coupling. Since the body angle is not small, the
coupling effect is not significant. It is also shown that the predicted
heating rates using the oxygen surface reaction rate expression of Zoby
et al. [77] yield better comparison with the experimental data than that
using the Scott's relation [79]. The prediction using Scott's
expression are 30 to 40 percent lower than the experimental data. The
present "equivalent" axisymmetric body results agree quite well with the
three-dimensional results which are obtained by Thompson [75]. Figures
5.5 and 5.6 give the comparisons of surface heating rate betweeh
predictions and STS-2 data at altitudes 60.56 km and 52.97 km,
respectively. With finite catalytic wall conditions, the present
predictions are in good agreement with the data over the length of the
vehicle, |

The results presented in Figs. 5.4 to 5.6 show that the flowfield
in the shock layer at high altitude is quite far from that predicted by
assuming the condition of chemical equilibrium, With decreasing
altitudes, the data and the finite rate chemistry predict the results
that approach the equilibrium value., However, near the stagnation
region some degree of nonequilibrium flow persists to altitudes as low
as 50 km, as shown in Fig. 5.6.

5.7.3 Effects of Surface Catalysis and Body Angle

[

o
Results for three sphere cones with body half-angles of 20 , 10 ,

1]
and 6 are presented to illustrate the effects of body angle and surface
catalysis. Freestream conditions are those for 53.34 km altitude and a
Mach number of 25. The bodies have the same nose radius which equals

0.0381 m. Both noncatalytic and fully catalytic surfaces are examined
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to show the limiting effects of wall catalycity on heating. Figure 5.7

/]
gives the convergence history of the shock standoff distance for a 10

sphere~cone using the present method. It does not matter whether the
initial shock shape is created from the perfect gas solution for the
same body—-angle (the solid line and the dash line) or from the chemical
nonequilibrium solution for larger body-angle (the chain line), the

shock standoff distance will converge to the same shock shape.

-] [}

The predicted heat-transfer distributions for 20 , 10 , and 6°
sphere cones are given in Figs, 5.8 through 5.13. In order to present
these results clearly, it is necessary to show them in two figures for
each body-angle., The first of these two figures is an enlarged view of
the nose region. while the second extends up to 400 nose radii. From
these figures, it is seen that the heating rates with the noncatalytic
surface may decrease more than 50 percent in comparison to that with the
fully catalytic surface on the spherical region. The differences in the
heating rates decrease in the downstream regions. With a noncatalytic
surface an appreclable amount of dissociation is present at the wall,
then a diffusion-inhibiting blanket of unrecombined atoms can pile up
near the surface and thereby reduce the heat transfer to the wall by
diffusion; this could result in a reduction of heat transfer to the
surface. On the other hand, with a fully catalytic surface the atomic
species which result from the dissociation in the high temperature air
Will recombine with oxygen and nitrogen molecules at the surface. Since
the diffusion flux of atoms toward the wall must be equal to the rate of
disappearance of atoms at the wall due to recombination there, the heat

transfer to wall by diffusion is maximum with a fully catalytic wall.
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For a real surface, some degree of catalysis is usually present, hence,
the heating rate for a finite catalytic surface is between these two
limits.

The results for the ratio of surface heating rate with
noncatalytic wall to that with fully catalytic wall for the three bodies
are shown in Figs. 5.14 and 5.15. The ratio demonstrates the maximum
potential for a surface heating-rate reduction in the presence of
dissociated nonequilibrium flow over a finite-catalytic surface. All
the three curves have the same trend. The ratios keep decreasing up to
the tangency point, then increase up to a maximum value in the
recompression region, and finally, decrease to a constant value on the
far downstream region. It is noticed that the location of the maximum
point moves downstream as the body-angle decreases; i.e., the
recompression region moves downstream as the body-anéié decreases,

For stations beyond 100 nose radii (Fig. 5.15), the results
1]
indicate less nonequilibrium effects for the slender 6 cone than the

10° and 20o cones. As shown in Figs. 5.16 and 5.17, these can be
attributed to more dissociated species present throughout the flowfield
for energy transport by diffusion to the surface for the wider angle
cone. In this body region for the lower cone angles, conditions
sufficient to produce dissociated species exist only in a small region
of the boundary layer. In the fore-cone region (Fig. 5.14), the largest
cone angle produces the smallest nonequilibrium effects as indicated by
higher values of the ratio. (This result does not imply the local or
total heating rate to the larger cone angle is less.) As shown in Figs.

5.18 and 5.19, this trend may be explained for a given nose radius, the
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flow over the smaller cone angle compared to the larger cone angle
expands rapidly and results in freezing of the flow chemistry and larger
percentages of dissociated species.

Figures 5.20 to 5.22 show the effects of body-angle on the surface
heating rates and wall pressure. Figures 5.20 and 5.21 give the heating
rates for a noncatalytic wall and for a fully catalytic wall,
respectively. The wall pressure distributions are illustrated in Fig.
5.22. Since the wall catalyticity has negligible effect on the wall
pressure, the results are presented only for tﬁe noncatalytic wall.
Decreasing the body angle can reduce the wall pressure and heat transfer
to the surface. Hence, the desirable geometries for hypersonic vehicles
are slender long bodies in order to reduce the heat transfer rate and

drag force on the bodies. It is noticed in Fig. 5.22_§hat the

o

* *
recompression regions start at s /RN = 3.0, 10.0, and 28.0 for the 20 ,

o ]
10 and 6 sphere cone, respectively, under the condition investigated.

5.7.4 Effects of Nose Bluntness and Mach Numb er

A study of the effects of nose bluntness and Mach number on the

shock standoff distance, surface heat transfer and mass concentration of

]
02 at the stagnation point of a 45 sphere cone is conducted and results
are discussed here. Freestream conditions are selected at 90 km, nose
radii are 0.305 m to 2.286 m, and Mach numbers are 30 to 36. Only
noncatalytic surface boundary condition is considered.

Figures 5.23 to 5.24 show the effects of nose bluntness on the

shock standoff distance and surface heating rate for a Mach number of

36. It 1s seen that the shock standoff distance increases and surface
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Fig. 5.16 Species concentration profiles at s = 290.0 for a
noncatalytic wall.
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Fig. 5.17 Species concentration profiles at s = 290.0 for a
' fully catalytic wall.
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Fig. 5.18 Species concentration profiles at s = 9.0 for a
noncatalvtic wall.
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Fig. 5.19 Species concentration profiles at s = 9.0 for a

fully catalytic wall.
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heating rate decreases as the nose radius increases. Figure 5.25 shows

the concentration profile of O2 for three different nose radii. Since

the shock standoff distance increéses as the nose radius increases, both
the oxygen and nitrogen molecules have more time to dissociate.
Consequently, the atomic oxygen and nitrogen concentrationé are higher
in the shock layer. Moreover, the amount of energy absorbed by the
dissociation phenomena has reduced the temperature in the shock layer
such that the heat transfer to the wall is decreased.

Figures 5.26 and 5.27 show the effects of Mach number on the shock
standoff distance and surface heating rate for a nose radius equal to
0.914 m. The shock standoff distance decreases and the surface heating
rate increases as Mach number increases. At higher Mach numbers, the
density and pressure increase across the shock wave are—larger and hence
the mass flow behind the shock wave ecan readily squeeze through a
smaller area. Moreover, the temperature increase across the shock wave
is larger as Mach number increases. As a result, a larger amount of
energy transfers in the shock layer; i.e., the amount of heat transfer
to the surface is larger. Figure 5.28 shows the concentration profile
of oxygen molecules for three different Mach numbers. At the higher
Mach numbers, oxygen dissociation increases due to the larger shock
layer temperature,

It is noted from Fig. 5.26 that the shock standoff distance
changes less and less as Mach number increases; i.e., the shock standoff
distance becomes relatively insensitive to changes in free stream Mach
number at high Mach numbers. This is an example of the Mach number

independence principle.
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Fig. 5.21 Effect of body angle on nonequilibrium heating
rate with fully catalytic wall.
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5.7.5 Effects of the Thermodynamic and Transport Curve Fit Relations

The polynomial curve-fit formulas for thermodynamic and transport
properties in [72] are based on Esch's data [82,86]. The mixture
viscosity and thermal conductivity is obtained by Wilke's formula (a27].
Values for the coefficients in these formulas are tabulated only up to
15,000 K. However, under certain conditions the temperatures in the
shock layer are considerable higher than 15,000 K. Therefore, new
polynomial curve-fit formulas for species transport properties have been
developed from the data of Yos [87,93]. The gas mixture transport
properties are obtained using the method of Armaly and Sutton [88] for
the viscosity and Mason and Saxena [89] for the thermal conductivity.
The polynomial curve-fit formulas for thermodynamic properties have been
extended to an upper temperature range up to 35,000 K by Shinn [83].
These provide accurate predictions at higher temperatﬁées encountered in
nonequilibrium calculations [26,T4,75]. The Prandtl number in the shock
layer is set equal to a constant [24,26] or is calculated from the local
thermodynamic and transport properties [75,76]. A study of the effects

of the thermodynamic and transport properties on the surface heating

rates of a 60 sphere cone is presented. Freestream conditions are those
for an altitude of 53.34 km,a nose radius is 0.0381 m and a Mach number
is 25. A noncatalytic surface boundary condition is considered.
Surface heating rate results with Yos' as well as with Esch's
transport property data are given in Fig. 5.29. The results obtained by
Thompson [34] are also shown in the figure for comparison. The Prandtl

number is computed using local thermodynamic and transport properties.
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The maximum differences between the two sets of results are about five
percent. The differences between Thompson's results and the present
results, which are obtained using Yos' data, are about nine percent.

The reason for the discrepancy may be due to using different shock shape
and normal-direction grid size. The outer boundary conditions depend on
the shock shape, and the gradients of the flowfield quantities depend on
the grid size.

Figures 5.30 and 5.31 show the surface heat transfer rates for
variable as well as constant Prandtl number. Both Yos' and Esch's data
have been used to compute the individual transport properties. The
constant Prandtl number is set equal to 0.72. The predictions for the
constant Prandtl number with Esch's data are always lower than the other
predictions. On the other hand, the bredictions for ppé variable
Prandtl number with Yos' data are the highest values. Using Yos' data,
higher surface heat transfer predictions are obtained for constant or
variable Prandtl number than that using Esch's data. The differences
between that using the variable Prandtl number with Yos' data and that
using a constant Prandtl number with the Esch's data are about ten
percent in the recompression region and about five percent on the other

locations.

5.8 Conclusions
Numerical solutions of the viscous shock~layer equations under
nonequilibrium chemistry conditions are presented for hypersonic flow
over long slender bodies. The method of solution used for the viscous
shock-layer equations is a partially coupled spatial-marching implicit

finite~-difference technique. The flow cases analyzed include
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noncatalytic, finite catalytic, and fully catalytic surfaces. Results
from the present method show that the coupling between the global
continuity and normal momentum equations is essential and adequate to
obtain stable solutions past long slender bodies. The comparisons qr
the present predictions with the STS-2 laminar heating data indicate
that the oxygen surface reaction rate expression of Zoby can give better
agreement with the flight data than the extrapolation of ground based
experimental recombination data. It {s shown that near the stagnation
region of the vehicle, some degree of nonequilibrium flow persists to
altitudes as low as 50 km.

It is shown that surface catalytic effects és well as body angles
influence significantly the surface heat transfer rates. For a
noncatalytic surface, the heating rates can decrease more than 50
percent in comparison to that for a fully catalytic sﬁfface near the
stagnat;on region. These effects become less significant in the
downstream region. It is also shown that the heating rate due to
diffusion for a smaller body-angle sphere cone is not as important as
for a larger body-angle in the downstream region.

In order to reduce surface heat transfer rate and drag force on
the bodies, the desirable geometries of hypersonic vehicles are slender
bodies with blunt noses. Although increasing the nose bluntness can
decrease the surface heating rate, it will increase the pressure drag
coefficients., Optimization should be made between the drag and heat
transfer rate.

With thermodynamic and transport properties from Esch's data and
for a constant Prandtl number, the present method always predicts lower

heating rate than that from Yos' data. For higher temperature



179

conditions, the polynomial curve-fit formulas for species transport and
thermodynamic properties based on Yos' and Browne's data can give better

predictions of surface heat transfer.
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Chapter 6
CONCLUDING REMARKS

A method for solving the viscous shock-layer equations for
hypersonic flows over long slender bodies is presented. These equations
are solved by employing a spatial-marching, implicit finite-difference
technique. The two first-order equations, continuity and normal
momentum, are solved simultaneously as a coupled set. This method
yields a simple and computationally efficient technique.

A wide range of flow conditions has been considered in this study.
This includes conditions from high Reynolds number at low altitudes to
low Reynolds number at high altitudes. At low altitudes, the hypersonic
flow over a slender body usually becomes turbulence. Two algebraic
turbulence models, Cebeci-Smith and Baldwin-Lomax, have been used with
the present numerical technique for application to long slender bodies.
At high altitudes, the low density effects become important. Recently
obtained surface-slip and corrected shock-slip conditions are employed
to account for these effects. At higher altitudes, the gas becomes
chemically reacting. Under certain conditions, the flows are
characterized by chemical nonequilibrium conditions in the shock layer.
Numerical solutions under these conditions are also obtained for long
slender bodies.

Results for different conditions are obtained for axisymmetric

bodies at an angle of attack of zero degree. Detailed comparisons have
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been made with other predictions and experimental data for slender body
flows to assess the accuracy of the present numerical technique. The
results show that the coupling between the continuity and normal
momentum equations is essential and adequate to obtain stable and
accurate solutions past long slender bodies. This is true for both the
chemically nonreacting and reacting flows.

It is shown that both the Cebeci-Smith and Baldwin-Lomax models
are adequate for application to long slender bodies. Due to the
sensitivity of the Cebeci-Smith turbulence model to the boundary layer
edge location, it is imperative that the numerical method provide good
resolution and accurate solutions near the boundary layer edge. The
Baldwin-Lomax turbulence model, which avoids the use of conventional
boundary layer thickness in its formulation, appears m@re convenient to

implement., However, it has been shown that the constant, Ccp; depends

on the flow Mach number. Based upon this study and other
investigations, a linear dependence of this constant with Mach number is
suggested. Further comparisons with experimental data are needed to
verify this dependence.

Using the corrected slip models, the viscous shock-layer
predictions compare quite favorably with experimental data. The slip
effects become insignificant in the downstream region or at altitudes
less ;han about 60 km for geometry and conditions considered in this
study. Significant slip effects are observed primarily in the
stagnation region. Comparison between Navier-Stokes and viscous shock-
layer results indicates that viscous shock-layer equations, even with

body and shock slip, do not give physically consistent results in the
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stagnation region above approximately 75 km altitude for the conditions
considered here.

The present prediction with finite-rate chemistry yields good
comparison with the STS-2 jaminar heating data. Near the stagnation
region of the vehicle, some degree of nonequilibrium flow can persist to
altitudes as low as 50 km, Under chemical nonequilibrium conditions,
the surface catalytic effects can influence significantly the surface
heat transfer. For a noncatalytic surface, the heating rates can
decrease more than 50 percent in comparison to that for a fully
catalytic surface near the stagnation region. These effects become less
signhificant in the downstream region. The heating rate due to diffusion
for a smaller body-angle sphere cone is not as important as for a larger
body-angle sphere cone in the downstream region.

For further study, it is recommended that the present method be
used to study the following physical problems

1. incorporate surface and shock slip conditions in the finite
rate chemistry code to investigate the low density effects.

2. increase the number of species, including ionized species.

3. 1incorporate a convenient radiative transfer model to
investigate the effects of radiative heat transfer in the
shock layer.

4. analyze the effects of angle of attack by developing three-
dimensional viscous shock-layer equations.

5. modify the viscous shock-layer equations with equilibrium

chemistry for long slender bodies.
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APPENDIX A

COEFFICIENTS OF CONTINUITY AND NORMAL MOMENTUM

EQUATIONS AS A COUPLED SET

The coefficients of Eqs. (3.60)-(3.65) are given in this appendix.

For a perfect gas, the coefficients in Eqs. (3.60)-(3.63) are given as
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(r+nn+1/2nshcose)(1+nn*1/2nshz)vm'n+1/2(_§)

Ann Tm,n+1/2 dn n+1/2

- _
N et/ 2(T e/ 20 gn©090)
x (T -T ) +
m,n+1 m,n Ann
u
X (%§) [um n+1/2 N um n - (Tm n+1/2)
M ne1/2 ! ! m,n+1/2
- [ - -
X Ty ner ™ Toyn?d * Psn”sn™ne1/2%n, n+1/2°0%8

vm,n+1/2"sh['<(““nn/g“shcose) + cose(1+nnshx)] (A.5)

A _ _"sh%m,n+1/2Pm,n+1/2 _
NM,n+1/2 2A£m_\(1+ﬁn+l/2nshx)

.-
"sh"n+1/2"m,n+1/2Pm,n+1/72 _ men+l/2men+1/2]

C =
SR NPUN An,
x () (A.6)
N net/2
L=
Nshm,n+1/2Pm,n+172 . "sh™n+1/2%m,n+1/2Pm,n1/72 _

B\, n+1/2 ~ 28g _, (14 n "L

n+1/2 sh A“n(1+“h+1/2nshk)
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P v
m,n+1/§ m,n+1/2](g§3 (A.T)
nn n n+1/2
T
Y-1, m,n+1/2 dg
. . 2o, Tmnez gg (A.8)
NM,n+1/2 Y L YT
T
Y-1, m,n+1/2 dg
. Lot Tmnersz ag (A.9)
NM,n+1/2 Y Ang A hq/2
n_.p 02 K
sh’m,n+1/2 m,n+1/2" |

EyM,n+1/2 SES NPPPCINY

NonYm, n+1/2Pm,n+1/2

) (A.10)
288, (14T 1/ 2Pen®)

(v

m-1,n+1 ¥ vm-l,n

For a multicomponent mixture, the coefficients Ac,n+1/2, Bc,n+1/2,

c and D are the same as Eqs. (A.1) to (A.l4) and Ec,n+1/2

c,n+1/2 c,n+1/2

is equal to Eq. (A.5) plus the following terms

_ nsh(r+nn*1/2nshcose)u

2AE -y My, ner/2

m,n+1/2 -
(Mm,n+1 Y Mm.n Mm—1.n+1

(r4ny 40/ 2Pan 030 (404 1000 ) Vi ne1/2 ag
-M_ ) - (%,
m-1,n Ann M dn

m,n+1/2 n+1/2
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(M M ). annet1/20 " Pne1/2%sn %8 U, ne1/2
m, n+1 m,n Ann Mm,n+1/2
X (Mm.n+1 - Mm.n) (A.11)
ANM,n+1/2, BNM,n+1/2 and ENM,n+1/2 are same as Eqs. (A.6), (A.7) and

(A.10). The terms CNM,n+1/2 and DNM,n+1/2 are expressed as

* T
R m,n+1/2 ,d
c = ( —)— <5 (A.12)
NM,n+1/2 c Ann dn ne1/2
m,n+1/2 “p,=
R* T +1/2 ,d )
m,n g o

D =- - ( ) — (2) (A.13)
NM,n+1/2 Ann dn n+1/2

Mm,n+1/2 Cp,w

The coefficients K1 to K8 in Eqs. (3.64) and (3.65) are given by

K, = (A ) (B

e, n+172%0M,n¢172 = A, n+1/72%¢,nv172) Be,n-1/72"M,n-1/2

= By, n-1/2%¢,n+1/2) (A.14)

K, = (Ac,n+1/ZDNM,n+1/2 B ANM,n+1/2Dc,n*1/2)(Bc,n-1/2ANM,n-1/2 -

- (A )

BNM,n-l/ZAc,n-I/Z) c,n+1/ZBNM,n+1/2 - ANM,n+1/ZBc,n+1/2
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x (B ) (A.15)

e,n~172°M,n~1/2 ~ Bum,n-1/2%¢,n-1/2

K, = - (A )(B

c,n+17220M,n+172 = MM, n+1728¢,n+1/2? Be, n-1/2"NM, n-1/2

~ By, n-172%,n-1/2’ (A.16)

)(B A

Ky =~ (& e,n-1/2"NM,n-1/2 ~

c,n+1/725M,n+172 7 MM, n+1728c,ne172

A

B )

M, n-1/2%c,n-172) = (A B

c.n+1/25MM,n+172 = M, n+1728¢,n+172

x (B ) (A.17)

e,n-1/25M,n-172 = BaM,n-1/28¢,n-1/2

Kg = (Co nerz2%M,n+172 = Cnm,n+172%,n+172) Pc, n-1725M,n-172

~ Dym,n-1/2%,n-1/2) (A.18)

= (C c )(D

e, n+17250M,n+172 = CaM,n+1728¢,n+172? e, n-172NM, n-1/2 ~

) - (C c

DNM,n—l/ch,n-1/2 c,n+1/2DNM,n+I/2 - NM,n+1/2Dc.n+1/2)

x (D (A.19)

c,n-172"M,n-172 ~ PM, n-1/2%¢,n-1/2

Kz = = (Co ne172Pum,ne172 = Cum,ne172P0,n+172) Po, n-1/ 28N, n-1/2
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~ Dy, n-1/28¢,n-1/2 (A.20)

= (C )(D

8 c,n+1/725M,n+172 = CNM,n+1/28¢,n+1727 e, n-1/25mM,-172 ~

DNM,n-l/ZCc,n-l/Z) B (Cc,n+1/2DNM,n+l/2 - CNM,n+1/2Dc,n+1/2)

x (D D ) (A.21)

c,n-l/ZENM,n-llz ~ Pym,n-1/28¢,n-1/2
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APPENDIX B

NAVIER-STOKES EQUATIONS IN THE BODY ORIENTED

COORDINATE SYSTEM

The steady-state form of the Navier-Stokes equations is taken from
Anderson and Moss [23]. For an axisymmetric or two-dimensional body at
zero angle of attack, these equations in the body-oriented coordinate
can be written in the form of Eq. (2.25). All the coefficients in Eqs.
(2.26) to (2.34) are the same except Egs. (2.28), (2.32) and (2.36) are
need to modify. This modification is given in this abbendix.

For the steady-state Navier-Stokes equations, coefficient u3

appearing in Eq. (2.25) should be replaced by al, which 1s defined as:

3
s-momentumu
2
Dsh
a' = a, + —— (HOT) (B.1)
3 3 2 s
€Y
Energy Equation
2
Dsh
qé = ag + — [u(HOT)s + (HOT)e] (B.2)

ez(u/Pr)
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where ag in Eqs. (B.1) and (B.2) is given by Egs. (2.28) and (2.32),
respectively. Abbreviation HOT in Egs. (B.1) and (B.2) represents
higher-order terms, and subscripts *s' and “e' imply terms in the s-
momentum and energy equations, respectively.
The normal momentum equation, Eq. (2.36), for the Navier-Stokes
model 1s modified to

(LHS) - (HOT)n =0 (B.3)

Eq. (2.12)

where the first term in Eq. (B.3) implies the entire left-hand side of
Eq. (2.36), and the second term represents the higher-order terms in the
n-momentum equation.

The higher-order terms appearing in Eqs. (B.1) tﬁfough (B.3) are

defined as:

e2 aC1 _ néh aC, d e2
(HOT)s = (1+%n_, k) [aa AL an 5%] - (1+%h __ k)
sh sh sh
aC n' aC 2 dC 2
x [ 2 _~— sh "2 gg] + E__3dg, e

3E “nsh an_ df nshin—dn (T+m_ &)

nl
X [1+ﬁik K * r+ﬁ§osgosa] X [%% - nSh %% %%
sh sh sh



2€2u 3(r+nn hcose) _
¥ (1+ﬁ?shx)(r+ﬁh cos6) [35 - nn;h cose]
nl
x {m— [du .5 _Sh2ucg . S
(1+ﬁhshx) non 9n dn (1+nnshx)(r+nnshcosa)
3(r+nn_ cose) _
X [ag = - n néh cose] + v[1+ﬁ: X r+%gsecose]}
sh sh
2 aC ' ac ec
(HOT) = € [lI_T‘ shallg‘i]+ _ ll_
n (1+ﬁnshx) 13 ng, 9n dn (1*nnshx)(r+nnshcose)
3(r+nn_ cose) _ 2 aC 2
|:aE sh -n n;h cose] E—— -a—-é a‘% 3—6' %%
h sh
ezxc ezc c0se
+ -1-17_-—-2 + —F—lg—é (B.S)
TN K r+ung cos
2 aC n' aC
7 _-= 7 dg
(HOT) _ = - [ - 07— 5 g2
e ?i+ﬁhshx)(r+nnsh cosf) 9k a dn
L}
) ~ 524_% [308 - L SCB 25]
(1+nnshn)(r+nnshcose) of Don 9 dn
6202
9 1 2 1 av dg.2 2 u
'3 i v 2 "[ 3n n] v 2 u{(1+ﬁnshoc)(1"+‘ﬁ‘n$l,lcose)
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3(r+nn_,_cose)

sh =, vcose
X [aE nn' . cosg] + (77 ﬁ'nshcose)]
n'
av _ = sh av dg);2
. 2 (Qz .= sh v _g)( 1 dudg _ _ ux )}
(T+n_ ) ‘3¢ "o an dn’*n_ 3n dR T+ _
- e2¢c (B.6)

"

Variables C1 through C. . appearing in Egqs. (B.4) through (B.6) are given

11

by :

y - sh au dg VK

C, =z ulmg=—= G- £] ¢ —5 (B.T)
1 3 (1+ﬁhshK) 9 ns n dn (1+nnshr)
CZ - % u{ﬁl_ %! %ﬂ M +Y"§Osgose * T +mn K)(Pg_h cos8)
sh 9N @ n sh n sh n sh
a(r+T1nsh cose)
X [aE -n n;h cos6]} (B.8)
- sh ov dg
} 1 v _ - sh 3v dg dudg . u

Cy "{(1+ﬁnsh.<) [ag an dw] ndT  1+fn_«} (B.10)
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4 u 3vdg
c5 3h, T (B.11)
2 1 3 Rsh u dg
- a u u
¢, =2y e [ - — 5 & * g os ]
6 3 (1+nnsh k) "9E Dan on dn (1+nnshx)(r+nnshcose)
3(r‘+-r'1nshcose) K cosH
- ) + i ——— ———e
x [ 3¢ nny cos9) V(1+ﬁhshK r+nnshcose]}
(B.12)
r+nn_, cosé _n!
c, = Sh 3 _ 5 _shdlce (B.13)

———— n.___
T Pr 1+nnshx 9k nsh on dn

iy [
r+nnshcose u _ < Doh 3u Qg]
1+nnshz 13 Mo on dn

(B.14)

C.omoy (- 2vdg ¥ - L [3u
9 Ngn oan dn (1+ﬁhshn) (1+ﬁhshx) 9t

n
_ = sh 3u gg
n n dn dﬁ]} (B.15)
C = 2u{(—l— v gg) _ _Vv cosé _ u
10 n, on dy r+nnshcose (1*ﬂhshn)(r+ﬂhshcose)
a(rJEnshcose) _
x [ 3% -7 n;h cos8]} (B.16)



203

L
2 1 3u - Msn du dg u
C,i == ul=—, [or - 71— = 2] +[7= ]
1 3 (1+ﬁhsh|<) F13 N on dn (1+nnsho<)(r+ﬁhshcose)
3(r+nn_, cose)

sh o= 1_3v dg

x L 3¢ n g, ¢0se] + o— = T
sh

. vl K . co36 ]}2 (B.17)

——t e
1 nnshx r nnshcose
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