Space Station Freedom

Mr. Gilbert Keyes
President, Program Manager
Space Exploration Initiative
Boeing Commercial Space Development Company
ACCESS TO SPACE

SPACE STATION FREEDOM AND COMMERCIALIZATION

May 14, 1991
SPACE STATION FREEDOM
BALANCED COMMERCIAL ACCESS TO SPACE
EVOLUTIONARY APPROACH

- Drop Tubes/Towers (MSFC, LeRC)
- Microgravity Aircraft (KC 135)
- Suborbital Sounding Rockets (Joust, Consort)
- Orbital Rockets (COMET)
- Shuttle - Based Facilities (Middeck, SPACEHAB, Wakeshield)
- Space Station Freedom
Space Station Freedom

Elements:
- Pressurized laboratory module
- Polar platform
- Man-Tended Free Flyer (MTFF)

Systems:
- ECLSS
- Internal thermal control
- Internal audio/video

Japan

Elements:
- Pressurized laboratory module & exposed facility
- Experiment logistics module

Systems:
- Truss
- Mobile transporter (Phase I)
- Nodes (Pressure shell - MSFC)
- Airlocks

NASA/Lewis (Ohio) - Rockwell

Elements:
- Power modules - PV

System:
- Electrical power distribution

NASA/Johnson (Texas) - McDonnell Douglas

Elements:
- Mobile servicing center (Phase I)

Canada

Elements:
- Mobile servicing center (Phase I)

NASA/Marshall (Alabama) - BOEING

Elements:
- Pressure shells for nodes
- U.S. Laboratory module
- Habitation module (outfitting TD by JSC)
- Logistics module (press & unpress)
Phased Space Station Freedom Program

Future evolution

2000 – 8-man crew capability, all systems
(Proposed)

1999 – Permanently manned with 4 crew

1998 – International modules, expanded capabilities

1996 – Man-tended operations begin

1995 – First element launch

Budget pressure

Restructuring

Augustine Committee
Man-Tended Capability

Science mode like Spacelab with equipment on orbit all year

Shuttle-based crew operates experiments during two 2-week visits per year

<table>
<thead>
<tr>
<th></th>
<th>Spacelab</th>
<th>Man-Tended Capability Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>User racks on orbit</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Days/year of operation</td>
<td>39</td>
<td>365</td>
</tr>
<tr>
<td>Available crew</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Average user power (kW)</td>
<td>2.5-3.5</td>
<td>12-45</td>
</tr>
</tbody>
</table>

Add power, truss, logistics, and international modules during this phase
Permanently Manned Capability

Science mode like Skylab or Mir with more power, international laboratories, and logistics

4-person crew rotates every 2 to 3 months

<table>
<thead>
<tr>
<th></th>
<th>Skylab</th>
<th>Mir* (estimated)</th>
<th>Permanently Manned Capability Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>User racks on orbit</td>
<td>295 m³ workshop</td>
<td>10-25</td>
<td>14-45</td>
</tr>
<tr>
<td>Available crew</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Average user power (kW)</td>
<td>7.5</td>
<td>5-10</td>
<td>31-54</td>
</tr>
</tbody>
</table>

Add habitation modules, environmental control systems, and user systems during this phase
Eight-Man Crew Capability

Full power and three laboratories with 8-person international crew

8-person crew rotates every 2 to 3 months

<table>
<thead>
<tr>
<th></th>
<th>Mir* (estimated)</th>
<th>Freedom Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>User racks</td>
<td>10-25</td>
<td>60</td>
</tr>
<tr>
<td>Available crew</td>
<td>2-3</td>
<td>6</td>
</tr>
<tr>
<td>Average user power (kW)</td>
<td>5-10</td>
<td>30</td>
</tr>
</tbody>
</table>

• Ready for growth missions
• Commercial processing
• Life sciences
• Missions from planet Earth
Standard Payload Rack Dimensions

889 mm

2026 mm

1054 mm
Resource Capabilities

<table>
<thead>
<tr>
<th></th>
<th>Man Tended</th>
<th>Permanently Manned</th>
<th>Eight-Man Crew</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Size</td>
<td>7 with Orbiter docked</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Power, kW</td>
<td>18.75</td>
<td>56.25</td>
<td>75</td>
</tr>
<tr>
<td>Pressurized Volume, m³</td>
<td>100</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>User Racks</td>
<td>15</td>
<td>46</td>
<td>60</td>
</tr>
<tr>
<td>Thermal Control</td>
<td>3°C</td>
<td>3°C and 17°C</td>
<td>3°C and 17°C</td>
</tr>
<tr>
<td>Process Fluids</td>
<td>Vacuum vent</td>
<td>Vacuum vent</td>
<td>Vacuum + Ultrapure water</td>
</tr>
<tr>
<td>Pressurized Logistics Modules</td>
<td>8-rack</td>
<td>8-rack + 20-rack</td>
<td>8-rack + 20-rack</td>
</tr>
</tbody>
</table>
BOEING COMMERCIAL PROJECT

(JOINT ENDEAVOR AGREEMENT)
CRYSRTALS BY VAPOR TRANSPORT EXPERIMENT (CVTE)

- Joint Endeavor Agreement signed with NASA - May 1986
 - Entitles Boeing to three Shuttle experiment flights and options for two more
 - Quid pro quo entitles NASA to samples in CVTE furnaces
- Purpose of CVTE is to investigate materials processing technologies in microgravity
 - Build and integrate hardware
 - Initial investigations focus on vapor transport processing of electro-optic materials
 - Assess commercial viability of materials processing
- First flight scheduled for STS-49 - April 1992
- Program challenges
 - Integration to a manned flight system
 - Interface requirements and schedule changes
CVTE – A Cooperative Venture

CCDSs
- Science/research support
- Material samples

Boeing
- Design, test, performance and safety of CVTE payload
- Specimen processing
- Integration and mission support
- MAR/CVTE ICD certification
- Flight data recording
- Post flight report

Quid pro quo specimens

Code C – JEA
- Three experimentation flights
- Two optional commercial prototype flights

JSC
- Integration and mission management
- Crew support

MSFC
- JEA management
- Science support

KSC
- Final assembly, installation, and checkout

Furnace

MAR

Camera equipment

Computer

Electronics

Integration and crew
COMMERCIAL SPACE PROJECTS
INTERFACES

NASA

Infrastructure, Interfaces, specs, integration & safety criteria

Cost, policy, legal, proprietary & other limiting factors

Science/User Requirements

Hardware Design & Fabrication

ACADEMIA

INDUSTRY
LESSONS LEARNED
LESSONS LEARNED
ESSENTIAL ELEMENTS FOR SPACE STATION COMMERCIALIZATION

- Stable and Encouraging Pricing Policy
- Firm Commitments for Manifesting Payloads and Use of Infrastructure
- Established Requirements and Specifications
- Streamlined Management and Documentation
- Coordinated Interfaces Between NASA, Industry and Academia
STABLE AND ENCOURAGING PRICING POLICY

- Early establishment of pricing policy for SSF needed to permit commercial business analysis (cost/benefit)
- Pricing policy should be encouraging to commercial interests
 - Options may include initial reimbursement for direct services only, deferred payments, payments from revenue, and quid pro quo arrangements (such as used with Joint Endeavor Agreements for the Shuttle)
 - May not be able to provide long term pricing policy today, but NASA should establish "limited period" pricing policy
FIRM COMMITMENTS FOR MANIFESTING PAYLOADS AND USE OF INFRASTRUCTURE

- Important to know that you have guaranteed opportunity to fly within certain time period
 - Investment decisions based on prospective returns and payback periods
 - If opportunity to fly in space is in question, business interests will not support project
- Similarly, guaranteed access to adequate resources (eg - power, volume, time) on orbit is critical to commercialization
ESTABLISHED REQUIREMENTS AND SPECIFICATIONS

- Designers, developers and users of Space Station Freedom based hardware need baselined requirements and specifications early to efficiently take full advantage of its resources
 - Unclear or changing requirements results in inefficient and costly designs and redesigns
- Restructured Space Station Freedom presents opportunity to establish and disseminate user requirements
- Academic and industrial users need to become knowledgeable of the requirements so they scope their projects properly
STREAMLINED MANAGEMENT AND DOCUMENTATION

- Single layer of both management and requirements documents are crucial to efficient, lower cost, and timely development of commercial projects

- Interface, integration and safety documents for users prepared by multiple offices and NASA Centers causes confusion
COORDINATED INTERFACES BETWEEN NASA, INDUSTRY AND ACADEMIA

- Coordinate hardware and programmatic requirements and interfaces to optimize use of Space Station Freedom resources and economize the commercialization project are needed early.

- Coordination applies to both government provided hardware projects as well as commercially developed hardware.
 - In the case of government procurement programs, input from science and industrial user communities is important to meaningful capability built into hardware.
 - Industry funded programs overlook important requirements due to lack of NASA incentive to communicate.
RECOMMENDATIONS

- NASA needs to establish early pricing policies, administrative procedures, and cooperative agreements to encourage commercialization

- System for "guaranteeing" access to Space Station Freedom needs to be developed; otherwise, business risk is too high

- Interface control documentation and payload accommodations books need to be published early to permit designers and users to properly scope their projects

- Integration management and documentation should be out of one office or Center (e.g., Space Station Freedom Office) without allowing cross-referencing, duplication or modification by other offices or NASA Centers

- Coordinate and develop interface requirements, pricing policies, procedures, etc. to encourage cooperation between NASA, commercial, and academic communities
SUMMARY

- Space Station Freedom has abundant resources and can serve as important element in commercialization of space

- NASA, Industry and Academia cooperation is key to successful commercial ventures - CCDS's serve as a role model

- Lessons learned to date, by Boeing and others, ought to be incorporated into Space Station Freedom commercialization planning

- NASA can best stimulate commercialization with early pricing and use policy and early documentation of interfaces and requirements for Space Station Freedom use

- Commercial space strategy should include consideration of commercialization of Space Station Freedom systems and services