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CONTROLLING FLEXIBLE ROBOT ARMS USING A HIGH SPEED DYNAMICS PROCESS

AWARDS ABSTRACT

A robot manipulator controller for a flexible manipulator

arm having plural bodies connected at respective movable

hinges and flexible in plural deformation modes

corresponding to respective modal spatial influence vectors

relating deformations of plural spaced nodes of respective

bodies to the plural deformation modes, operates by

computing articulated body quantities for each of the

bodies from respective modal spatial influence vectors,

obtaining specified body forces for each of the bodies, and

computing modal deformation accelerations of the nodes and

hinge accelerations of the hinges from the specified body

forces, from the articulated body quantities and from the

modal spatial influence vectors. In one embodiment of the

invention, the controller further operates by comparing the

accelerations thus computed to desired manipulator motion

to determine a

specified body

discrepancy. The manipulator bodies

characterized by respective vectors of

hinge configuration variables, and

motion discrepancy, and correcting the

forces so as to reduce the motion

and hinges are

deformation and

computing modal

deformation accelerations and hinge accelerations is

carried out for each one of the bodies beginning with the

outermost body by computing a residual body force from a

residual body force of a previous body, computing a

resultant hinge acceleration from the body force, and then,

for each one of the bodies beginning with the innermost

body, computing a modal body acceleration from a modal body

acceleration of a previous body, computing a modal

deformation acceleration and hinge acceleration from the

resulting hinge acceleration and from the modal body

acceleration. ISerial N_. _/____ _- /
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CONTROLLING FLEXIBLE ROBOT ARMS USING A HIGH SPEED

DYNAMICS PROCESS

BACKGROUND OF THE INVENTION

10

Origin of the Invention:

The invention described herein was made in the performance of work under a

NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in

which the contractor has elected not to retain title.

15

2O

Technical Field:

The invention relates to robot manipulators and more particularly to a method

and apparatus for controlling robot arms having flexible links using a high speed recursive

dynamics algorithm to solve for the accelerations of link deformation and hinge rotations

from specified body forces applied to the links.

Background Art:

25

Controlling robot manipulator arms is a well-known problem and has been de-

scribed in a number of publications. The invention herein will be described with reference

to the following publications by referring to each publication by number, such as Ref.[1],

Ref.[2], or simply [1] or [2], for example.
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The invention uses spatial operators to develop new spatially recursive dynamics

algorithms for flexible multibody systems. The operator description of the dynamics is

identical to that for rigid multibody systems. Assumed-mode models are used for the

deformation of each individual body. The algorithms are based on two spatial opera-

tor factorizations of the system mass matrix. The first (Newton-Euler) factorization

of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix

evaluation, and composite-body forward dynamics for the system. The second (Inno-

vations) factorization of the mass matrix, leads to an operator expression for the mass

matrix inverse and to a recursive articulated-body forward dynamics algorithm. The

primary focus is on serial chains, but extensions to general topologies are also described.

A comparison of computational costs shows that the articulated-body forward dynamics

algorithm is much more efficient than the composite-body algorithm for most flexible

multibody systems.



1. Nomenclature

We use coordinate-free spatial notation ( [1, 2]) in this specification. A spatial velocity

of a frame is a 6-dimensional quantity whose upper 3 elements are the angular velocity

and whose lower 3 elements are the linear velocity. A spatial force is a 6-dimensional

quantity whose upper 3 elements are a moment vector and whose lower 3 elements are a

force vector.

10

15

A variety of indices are used to identify different spatial quantities. Some examples

are: V,(jk) is the spatial velocity of the jth node on the k th body; V,(k) = col{V,(jk)} is

the composite vector of spatial velocities of all the nodes on the k th body; V, = col{V,(k))

is the vector of spatial velocities of all the nodes for all the bodies in the serial chain. The

index k will be used to refer to both the k th body as well as the k th body reference frame

_k, with the usage being apparent from the context. Some key quantities are defined

below in accordance with Figures la and lb.

2O

25

30

General Quantities:

= [x] × E _;:3×3 _ the skew-symmetric cross-product matrix associated with

the 3-dimensional vector z

dx

= d---/- the time derivative of x with respect to an inertial frame

- the time derivative of z with respect to the body-fixed (rotating) frame

- a block diagonal matrix whose k th diagonal element is z(k)

- a column vector whose k th element is x(k)

¢(x,y)

C _3 _ the vector from point/frame x to point/frame y

=(I0 l'(x'Y) ) E _×6 - the spatial transf°rmati°n °perat°r whichtrans-I

forms spatial velocities and forces between points/frames x and y

Individual Body Nodal Data:

ns(k) - number of nodes on the k th body

- body reference frame with respect to which the deformation field for the

k th body is measured. The motion of this frame characterizes the motion of

the k th body as a rigid body.
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6,,,(jk)

6,,(jk)

u(jk)

ff (j_, )

P(jk)

m(jk)

M,(jk)

M,(k)

K,(k)

Individual

:V(k)

. jth node on the k th body

E _ - vector from 9z'k to the location (before deformation) of the jth node

reference frame on the k th body

E _ - translational deformation of the jth node on the k th body

= lo(k,jk) + ,Sdjk) E _,3. vector from _'k to the location (after deformation)

of the jth node reference frame on the k th body

E _3 . deformation angular velocity of the jth node on the k th body with

respect to the body frame .T,

• _,3 _ deformation linear velocity of the jth node on the k th body with

respect to the body frame 9r'k

• _ - the spatial displacement of node j_. The translational component of

u(jk) is 6_(jk), while its time derivative with respect to the body frame .T'k is

• _;y3x3 _ inertia tensor about the nodal reference frame for the jth node on

the k th body

• _ - vector from the nodal reference frame to the node center of mass for

the jth node on the k th body

- mass of the jth node on the k th body

( ,.7(jk) rn(jk)[_(j_,) ) _z,×6= --m(jk)_(jk) rn(jk)I • - spatial inertia about the nodal

reference frame for the jth node on the k th body

diag{M,(jk)} • _,s,,,l_)x_,,,{J,)- structural mass matrix for the k th body

• _.o(,)x6,,.{_) _ structural stiffness matrix for the k th body

Body Modal Data:

- number of assumed modes for the k th body

= n,,,(k)+ 6 - number of deformation plus rigid-body degrees of freedom for

the k th body

• _,_.,(k) _ vector of modal deformation variables for the k th body
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n (k)

w(k)

n(k)

E _Rs - modal spatial displacement vector for the t th mode at the j_h nodal

reference frame

J k R sx_"_(k)= [II{(k),..., II,,,,(k)( )] E - modal spatial influence vector for the

j_h node. The spatial deformation of node jk is given by u(jk) - IP(k)rl(k).

= col(Hi(k)} E _,,,o(k)x,,,,,(k) _ the modal matrix for the k th body. The r th

column of II(k) is denoted II,(k) E _,,,(k) and is the mode shape function

for the r th assumed mode for the k th body. The deformation field for the

k th body is given by u(k) = H(k)rl(k), while fi(k) = II(k)6(k).

E _,_V(k)×iV(k) _ modal mass matrix for the k th body.

C _'(_)x_r(k) _ modal stiffness matrix for the k th body.

Multibody Data:

N - number of bodies in the serial flexible multibody system

= _kS=l J_?'(k) - overall degrees of freedom in the serial chain obtained by

disregarding the hinge constraints

- number of degrees of freedom for the k th hinge

= n=(k) + nr(k)- number of deformation plus hinge degrees of freedom for

the k th body

A; = E_=I A/'(k) - overall deformation plus hinge degrees of freedom for the

serial chain

dk - node on the k th body to which the k th hinge is attached

tk - node on the k th body to which the (k - 1) th hinge is attached

Ok - reference frame for the k th hinge on the k th body. This frame is fixed to

node dk.

O + - reference frame for the k th hinge on the (k + 1)th body. This frame is fixed

to node tk+_.

E _R"'lk) - vector of configuration variables for the k th hinge

E _R'_'tk) - vector of generalized velocities for the k th hinge
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,xv(k)

H'(k)

,_(k)

x(k)

v(k)

v(ok)

v(oI)

v.(jk)

,_.(jk)

v,,,(k)

,_,,,(k)

a,,,(k)

b,,,(k)

fro(k)

f.(jk)

f(k)

T(k)

(a.(k) )= A,,(k) E _ - relative spatial velocity for the k th hinge defined as the

spatial velocity of frame Ok with respect to frame O +

E _×,,,(k) _ joint map matrix for the k th hinge, whose columns comprise the

unit vectors of the hinge. We have that Av(k) = H'(k)fl(k).

= (rl(k)o(k) ) E _i._'_'(k) - vector of (deformation plus hinge)generalized config-
\ /

uration variables for the k th body

= (ri(k) ) E _Tc(k) - vect°r °f (def°rmati°n plus hinge) generalized vel°c-fl(k)

ities for the k th body

=V(Y'k)= (w(k) )v(k) E _s _ spatial velocity of the k th body reference frame

Y'k, with w(k) and v(k) denoting the angular and linear velocities respectively

of frame -_'k

E _6 _ spatial velocity of frame Ok

E _6 _ spatial velocity of frame O +

E _6 _ spatial velocity of the jta node on the k ta body.

E _ - spatial acceleration of the jth node on the k th body.

(_(k)) _( k)= V(k) E - modal spatial velocity of the k th body

= _'m(k) E _,V(k) _ modal spatial acceleration of the k th body

E _(k) _ modal Coriolis and centrifugal accelerations for the k th body

E _,_(k) _ modal gyroscopic forces for the k ta body

E _(k) _ modal spatial force of interaction between the k th and

(k + 1) th bodies

E _s _ spatial force at node jk

E _6 _ effective spatial force at frame Y'k

E i_ v'(k) - generalized force for the k th body
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.a(k)

= H(k)ff(Ok, k) E _,,,(k)xs _ joint map matrix referred to frame .T'k for the

k th hinge

(,-)= 0 H_(k) E _O¢(k)×:V(k) _ (deformation plus hinge) modal joint

map matrix for the k _h body

( [IIt(k)]" ) _(k)x6= if(k, tk) E - relates spatial forces and velocities between node

tk and frame .T'k

B(k + 1,k)

¢(k + 1,k)

= [0,

node tk+ 1 and frame _'k

¢(tk+l, k)] E _6×_(k) _ relates spatial forces and velocities between

0 [IIt(k + 1)]'¢(tk+,,k) ) _t_V(k+_)×_,(k )=A(k+l)B(k+l,k)= 0 ¢(k + 1,k) E -the

interbody transformation operator which relates modal spatial forces and

velocities between the k th and ( k + 1) th bodies

/ 0/C(k, k - 1) = ¢(tk, k - 1) E _6,_.(_)x6

0

B(k) = [¢(k, lk), ¢(k, 2k),..., ¢(k,n,(k))] E _sXS, o(k) _ relates the spatial velocity

of frame .Tk to the spatial velocities of all the nodes on the k th body when

the body is regarded as being rigid

.M E _v'x_ _ the multibody system mass matrix

C E _; - the vector of Coriolis, centrifugal and elastic forces for the multibody

system

2. Introduction

3O
The invention uses spatial operators ( [1, 2]) to formulate the dynamics and develop

efficient recursive algorithms for flexible multibody systems. Flexible spacecraft, limber

space manipulators, and vehicles are important examples of flexible multibody systems.

Key features of these systems are the large number of degrees of freedom and the com-

plexity of their dynamics models.
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Someof the goalsof the invention are: (1) providing a high- level architectural

understandingof the structure of the massmatrix and its inverse;(2) showingthat the

high-levelexpressionscanbeeasilyimplementedwithin the very well understoodKalman

filtering and smoothing architecture; (3) developingvery efficient inverseand forward

dynamics recursive algorithms; and (4) analyzing the computational cost of the new

algorithms. Accomplishingthesegoalsadds to the rapidly developingbody of research

in the recursivedynamicsof flexible multibody systems(see [3,4, 5]).

It is assumedthat the bodiesundergosmall deformationsso that a linear model

for elasticity canbeused. However,largearticulation at the hingesis allowed. No special

assumptionsare made regardingthe geometryof the componentbodies. To maximize

applicability, the algorithms developedhere use finite-element and/or assumed-mode

modelsfor body flexibility. For notational simplicity, and without any lossin generality,

the main focusof this specificationis on flexible multibody serial chains. Extensionsto

tree and closed-chaintopologiesarediscussed.

In Section 3 we derive the equationsof motion and recursive relationships for

the modal velocities, modal accelerations, and modal forces. This section also contains

a derivation of the Newton-Euler Operator Factorization of the system mass matrix. A

recursive Newton-Euler inverse dynamics algorithm to compute the vector of generalized

forces corresponding to a given state and vector of generalized accelerations is described

in Section 4.

In Section 5, the Newton-Euler factorization of the mass matrix is used to develop

a partly recursive composite-body forward dynamics algorithm for computing the gener-

alized accelerations of the system. The recursive part is for computing the multibody

system mass matrix. This forward dynamics algorithm is in the vein of well-established

approaches ( [6, 7]) which require the explicit computation and inversion of the system

mass matrix. However, the new algorithm is more efficient because the mass matrix is

computed recursively and because the detailed recursive computations follow the high-

level architecture (i.e. roadmap) provided by the Newton-Euler factorization.

In Section 6 we derive new operator factorization and inversion results for the

mass matrix that lead to the recursive articulated-body forward dynamics algorithm. A

new mass matrix operator factorization, referred to as the Innovations factorization,

is developed. The individual factors in the innovations factorization are square and
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invertible operators. This is in contrast to the Newton-Euler factorization in which the

factors are not squareand thereforenot invertible. The Innovations factorization leads

to an operator expressionfor the inverseof the massmatrix. Basedon this expression,

in Section 7 we developthe recursivearticulated body forward dynamics algorithm for

the multibody system.This algorithm is an alternative to the composite--bodyforward

dynamicsalgorithm and requiresneither theexplicit formation of the systemmassmatrix

nor its inversion.The structure of this recursivealgorithm closelyresemblesthosefound

in the domainof Kalman filtering and smoothing ([8]).

In Section 8 we compare the computational costs for the two forward dynamics

algorithms. It is shown that the articulated body forward dynamics algorithm is much

more efficient than the composite body forward dynamics algorithm for typical flexible

multibody systems. In Section 9 we discuss the extensions of the formulation and

algorithms in this specification to tree and closed-chain topology multibody systems.

SUMMARY OF THE INVENTION

2O

25

3O

A robot manipulator controller for a flexible manipulator arm having plural bodies

connected at respective movable hinges and flexible in plural deformation modes corre-

sponding to respective modal spatial influence vectors relating deformations of plural

spaced nodes of respective bodies to the plural deformation modes, operates by com-

puting articulated body quantities for each of the bodies from respective modal spatial

influence vectors, obtaining specified body forces for each of the bodies, and computing

modal deformation accelerations of the nodes and hinge accelerations of the hinges from

the specified body forces, from the articulated body quantities and from the modal spatial

influence vectors. In one embodiment of the invention, the controller further operates by

comparing the accelerations thus computed to desired manipulator motion to determine

a motion discrepancy, and correcting the specified body forces so as to reduce the motion

discrepancy.

Computing the articulated body quantities is carried out for each body beginning

at the outermost body by computing a modal mass matrix, computing an articulated

body inertia from the articulated body inertia of a previous body and from the modal

mass matrix, computing an articulated hinge inertia from the articulated body inertia,

computing an articulated body to hinge force operator from the articulated hinge inertia,

computing a null force operator from the articulated body to hinge force operator. This
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is followed by revising the articulated body inertia by transforming it by the null force

operator.

The manipulator bodies and hingesare characterizedby respective vectors of

deformationand hingeconfigurationvariables,and computing modal deformation accel-

erationsand hingeaccelerationsis carried out for each one of the bodies beginning with

the outermost body by computing a residual body force from a residual body force of

a previous body and from the vector of deformation and hinge configuration variables,

computing a resultant hinge acceleration from the body force, the residual body force

and the articulated hinge inertia, and then, for each one of the bodies beginning with

the innermost body, by computing a modal body acceleration from a modal body ac-

celeration of a previous body, computing a modal deformation acceleration and hinge

acceleration from the resulting hinge acceleration and from the modal body acceleration

transformed by the body to hinge force operator.

Computing a resultant hinge force is followed by revising the residual body force

by the resultant hinge force transformed by the body to hinge force operator, and com-

puting a modal deformation acceleration and hinge acceleration is followed by revising

the modal body accleration based upon the modal deformation and hinge acceleration.

The computing is performed cyclically in a succession of time steps, and the vector of

deformation and hinge configuration variables is computed from the modal deformations

and hinge accelerations of a previous time step, or is derived by reading robot joint

sensors in real time.

In a preferred embodiment, the articulated body inertia, the articulated hinge

inertia, the body to hinge force operator, the null force operator, the body force, the

residual body force, the resultant hinge acceleration and the resultant hinge force are

each partitioned into free and rigid versions. This embodiment operates by computing the

flexible version of the resultant hinge force from the applied body force, and computing

the flexible version of the residual body force and from the rigid version of the residual

body force transformed by the modal spatial influence vector. The articulated body

inertia is decomposed into rigid-free and rigid-rigid coupling components, and the rigid

version of the residual body force is revised based upon a function of the rigid-rigid and

rigid-free coupling components of the articulated body inertia and a flexible version of the

articulated body inertia. This embodiment decomposes the manipulator's modal mass

matrix into rigid-free and rigid-rigid coupling components and computes the rigid-rigid
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and rigid-free coupling componentsof the articulated body inertia from respectiveones

of the rigid-rigid and rigid- free couplingcomponentsof the modal massmatrix.

In this embodiment,freeandrigid versionsof a deformation and hinge modal joint

map matrix are computed for each body so that the flexible version of the articulated

hinge inertia is computed from the articulated body inertia transformed by the flexible

version of the corresponding deformation and hinge modal joint map matrix, the rigid

version of the articulated body inertia is computed from a function of the rigid-rigid

and rigid-free coupling components of the articulated body inertia transformed by the

flexible version of the corresponding deformation and hinge modal joint map matrix,

the rigid version of the articulated hinge inertia is computed from the rigid version of

the articulated body inertia, and the rigid version of the body to hinge force operator

is computed from the rigid versions of the articulated body inertia and the articulated

hinge inertia. The free and rigid versions of the deformation and hinge modal joint map

matrix are formed by computing a joint map matrix corresponding to unit vectors of the

hinges and computing the deformation and hinge modal joint map matrix from the joint

map matrix and from the modal spatial influence vector.

In this embodiment, the flexible version of the resulting hinge acceleration is

computed from the flexible versions of the articulated hinge inertia and resulting hinge

force, and the rigid version of the resulting hinge acceleration is computed from the rigid

versions of the articulated hinge inertia and resulting hinge force. The residual body

force is revised in this embodiment by adding to the residual body force a product of the

rigid versions of the resultant hinge force and the body to hinge force operator.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure la is a simplified diagram of a portion of a robot manipulator having

flexible links, and illustrating the coordinate system employed in one embodiment of the

invention.

Figure lb is a simplified diagram illustrating the finite element analysis employed

in the invention, in which the displacement of plural spaced nodes along the length of a

flexible link follows a well-recognized pattern for each mode of flexibility.

Figure 2 is a block diagram illustrating how the articulated body quantities are

produced in one embodiment of the invention.
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Figure 3 is a block diagram illustrating an articulated body forward dynamics

algorithm for flexible link manipulators in accordancewith the present invention.

Figure 4 is a block diagramillustrating the processof the invention for controlling

a robot manipulator having flexible links.

Figures5aand 5bconstitute a block diagram illustrating a preferredembodiment

of the articulated body forward dynamicsalgorithm employedin the processof Figure 4.

Figure 6 is a simplified schematic block diagram of apparatus embodying the

presentinvention.

DETAILED DESCRIPTION OF THE INVENTION
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3. Equations of Motion for Flexible Serial Chains

In this section, we develop the equations of motion for a serial flexible multibody system

with N flexible bodies. Each flexible body is assumed to have a lumped mass model

consisting of a collection of nodal rigid bodies. Such models are typically developed

using standard finite element structural analysis software. The number of nodes on the

k th body is denoted n,(k). The jth node on the k th body is referred to as the j_h node.

Each body has associated with it a body reference frame, denoted _'k for the k th body. The

deformations of the nodes on the body are described with respect to this body reference

frame, while the rigid body motion of the k th body is characterized by the motion of

frame .Tk.

The 6-dimensional spatial deformation (slope plus translational) of node jk (with

respect to frame _'k) is denoted u(jk) E _. The overall deformation field for the k th body

is defined as the vector u(k) = col{u(jk)} E _,_.(k). The vector from frame _'k to the

reference frame on node jk is denoted l(k,jk) E _,3.

With Ms(jk) E _s×6 denoting the spatial inertia of the jth node, the struc-

tural mass matriz for the k th body Mo(k)is the block diagonal matrix diag{M,(jk)} e

_n,(k)×_,(_). The structural stiffness matriz is denoted Ks(k) E _e,_,(k)×6,,o(k). Both

M,(k) and K,(k) are typically generated using finite element analysis.

As shown in Figure l a, the bodies in the serial chain are numbered in increasing

order from tip to base. We use the terminology inboard (outboard) to denote the direction
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along the serial chain towards (awayfrom) the basebody. The k th body is attached on

the inboard side to the (k + 1) th body via the k th hinge, and on the outboard side to

the (k- 1) th body via the (k- 1) th hinge. On the k th body, the node to which the

outboard hinge (the (k- 1) th hinge) is attached is referred to as node tk, while the node

to which the inboard hinge (the k th hinge) is attached is denoted node dk. Thus the

k t_ hinge couples together nodes dk and tk+l. Attached to each of these pair of adjoining

nodes are the k th hinge reference frames denoted Ok and O + , respectively. The number

of degrees of freedom for the k th hinge is denoted n_(k). The vector of configuration

variables for the k th hinge is denoted O(k) E _,_(k), while its vector of generalized speeds

is denoted fi(k) E _,,r(k). In general, when there are nonholonomic hinge constraints,

the dimensionality of fi(k) may be less than that of 6(k). For notational convenience,

and without any loss in generality, it is assumed here that the dimensions of the vectors

6(k) and 8(k) are equal. In most situations, 8(k) is simply 0. However there are many

cases where the use of quasi-coordinates simplifies the dynamical equations of motion

and an alternative choice for _(k) may be preferable. The relative spatial velocity Av(k)

across the hinge is given by H'(k)fl(k), where H'(k) denotes the joint map matrix for

the k th hinge.

Assumed modes are typically used to represent the deformation of flexible bodies,

and there is a large body of literature dealing with their proper selection. There is however

a close relationship between the choice of a body reference frame and the type of assumed

modes. The complete motion of the flexible body is contained in the knowledge of the

motion of the body reference frame and the deformation of the body as seen from this

body frame. In the multibody context, it is often convenient to choose the location of

the k th body reference frame .T'_ as a material point on the body and fixed to node dk

at the inboard hinge. For this choice, the assumed modes are cantilever modes and node

dk exhibits zero deformation (u(d_) = 0). Free-free modes are also used for representing

body deformation and are often preferred for control analysis and design. For these

modes, the reference frame .T'k is not fixed to any node, but is rather assumed to be

fixed to the undeformed body, and as a result all nodes exhibit nonzero deformation.

The dynamics modeling and algorithms developed here handle both types of modes,

with some additional computational simplifications arising from Eq. (1) when cantilever

modes are used. For a related discussion regarding the choice of reference frame and

modal representations for a flexible body see [9].

We assume here that a set of nm(k) assumed modes has been chosen for the
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k th body. Let II_(k) • _ denote the modal spatial displacement vector at the j_h node

for the r th mode. The modal spatial displacement influence vector IP(k) • _x,_,_k) for

the j_h node and the modal matriz II(k) E 8t*'_°lk)×''_(k) for the k th body are defined as

follows:

J• =d
The r th column of II(k) is denoted II,(k) and defines the mode shape for the r th assumed

mode for the k th body. Note that for cantilever modes we have

rI (k) =0 for r = 1-"nm(k) (1)

With r/(k) • _,,=(k) denoting the vector of modal deformation variables for the k th body,

the spatial deformation of node jk and the spatial deformation field u(k) for the k th body

are given by

u(jk) = FiJ(k)r/(k) and u(k)= II(k)r/(k) (2)

The vector of generalized configuration variables O( k ) and generalized speeds x( k )

for the k th body are defined as

= O(k) • and x(k)= _(k) • (B)

where A/'(k) _ n,,,(k) + nr(k). The overall vectors of generalized configuration variables

0 and generalized speeds X for the serial multibody system are given by

0 _col O(k •_¢ and X=col x(k E_c (4)

where Af _= _N=1A/'(k) denotes the overall number of degrees of freedom for the multi-

body system. The state of the multibody system is defined by the pair of vectors {0, X}.

For a given system state {0, X}, the equations of motion define the relationship between

the vector of generalized accelerations _ and the vector of generalized forces T E _ for

the system. The inverse dynamics problem consists of computing the vector of general-

ized forces T for a prescribed set of generalized accelerations _. The forward dynamics

problem is the converse one and consists of computing the set of generalized accelerations

resulting from a set of generalized forces T. The equations of motion for the system

are developed in the remainder of this section.

3.1 Recursive Propagation of Velocities

Let V(k) • _R6 denote the spatial velocity of the k th body reference frame _"k. The

spatial velocity V,(t_+_) • _6 of node tk+_ (on the inboard of the k th hinge) is related to
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the spatial velocity V(k + 1) of the (k + 1) th body reference frame .Tk+l, and the modal

deformation variable rates _(k + 1) as follows:

Y,(tk+a) = ¢'(k + 1,tk+_)Y(k + 1) +,}(tk+l)

= ¢'(k + 1,tk+_)V(k + 1) + IIt(k + 1),}(k + 1)

The spatial transformation operator ¢(x, y) (5 _×6 above is defined to be

(5)

(6)

where l(x, y) E _3 denotes the vector between the points x and y. Note that the following

important (group) property holds:

¢(z,y)¢(y,z) = ¢(z,z)

for arbitrary points x, y and z. As in Eq. (5), and throughout this specification, the

index k will be used to refer to both the k th body as well as to the k th body reference

frame _'k with the specific usage being evident from the context. Thus for instance, V(k)

and ¢(k, tk) are the same as U(.Tk), and ¢(._'k, tk) respectively.

The spatial velocity V(O +) of frame 0 + (on the inboard side of the k 'h hinge) is

related to V.(t_+l) via

v(o I) = ¢'(t_+,, Ok)V.(tk+,) (r)

Since the relative spatial velocity Av(k) across the k th hinge is given by n*(k)fl(k), the

spatial velocity V(Ok) of frame Ok on the outboard side of the k °' hinge is

V(Ok) = V(O +) + H*(k)B(k)

The spatial velocity V(k) of the k th body reference frame is given by

(s)

v(k) = ¢'(Ok, k)V(Ok) - ¢,(dk)

= ¢*(Ok,k)V(Ok)- IId(k)C?(k)(9)

Putting together Eq. (5), Eq. (7), Eq. (8) and Eq. (3.1), it follows that

Y(k) = ¢'(k+ 1,k)Y(k+ 1)+¢'(t_+,,k)W(k+ 1),}(k+ 1)

+¢'(Ok,k)H'(k)_(k)- IId(k)O(k) (10)
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Thus with )_7'(k) zx= n,,,(k)+6, and using Eq. (10), the modal spatial velocity V,,,(k) E _,_(k)

for the k th body is given by

Vm(k) _= ( V(k)rl(k)) =_.(k+l,k)Vm(k+l)+n.(k)x(k)E_,7(k) (11)

where the interbody transformation operator _(., .) and the modal joint map matrix 7"[(k)

are defined as

where

Note that

where

¢(k + 1, k) =zx ( 00 [IIt(kff(k+ 1)]'$(tk+,,k)+1,k) )

_(k) A i I -[n_(k)] • '_o H/k) ] • _k_x_kl

H_(k) _-H(k)¢(Ok, k) • _nr_klx6

¢(k + 1,k)= A(k + 1)B(k + 1,k)

.4(k)_ ([n'(k)]" ) _¢k_x6¢(k, tk) • and 13(k + 1,k) _ [0,

Also, the modal joint map matrix _(k) can be partitioned as

• _._'(k+l)x_(k) (12)

(13)

(14)

¢(t_+,,k)] • _gCk_ (15)

25

3O

where

• _(k)×_(k)

7_i(k ) _ [I, -[Ha(k)] "] • _-=lkl×_{k) and 7"/,(k) =_ [0,

With AT' = E_=I )i_'(k), we define the spatial operator E¢ as

(16)

H(k)¢(O_, k)] • _,,_{klx_(k)

(lr)

0 0 0 0 0'_

J

¢(2, 1) 0 ... 0 0

0 ¢(3,2) ... 0 0

• . .,, " .

0 0 ... ¢(g,N-1) 0

• _'x_' (18)
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Usingthe fact that £¢ is nilpotent (i.e. £_ = 0), we define the spatial operator ¢ as

I 0 ... 0 /

_(2, 1) I 0
# =" [I- E,]-1 = / + E¢+ ... + E_-' = ... • _xx_

: " • o •

I)(N,a) q)(N,2)... I

(19)

I0

where

O(i,j)_¢(i,i-1) .-. _(j+l,j) for i>j

Also define the spatial operator "g _ diag{7"/(k) } • _¢x:V. Using these spatial operators,

and defining Vm a_ col{V,_(k)} e _, from Eq. (11)it follows that the spatial operator

expression for Vm is given by

Vm = ¢'_'X (20)
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3.2 Modal Mass Matrix for a Single Body

With V_(j_) e _R6 denoting the spatial velocity of node jk, and V,(k) _ col{V,(jk)} •

_,,o(k) the vector of all nodal spatial velocities for the k th body, it follows (see Eq. (5))

that

where

v,(k) = B'(k)V(k)+ a(k) = In(k), B'(k)]V_(k) (21)

B(k) _ [¢(k, l_),¢(k,2k),-.. ,¢(k, no(k))] • _6x6,,.(k) (22)

Since Ms(k) is the structural mass matrix of the k th body, and using Eq. (21), the kinetic

energy of the k th body can be written in the form

where

Mm(k) zx

_V:(k)M,(k)V_(k) = 1V_,(k)M,,,(k)V,_(k)

M_I(k) M_,_(k) • _,_'(k)×:_Ik)

n'(k)M,(k)n(k) n'(k)Mo(k)B'(k) )B(k)M,(k)n(k) B(k)M.(k)B'(k)

(23)

Corresponding to the generalized speeds vector x(k), M,,,(k) as defined above is the modal

mass matriz of the k th body. In the block partitioning in Eq. (23), the superscripts f and

v denote the flezible and rigid blocks respectively. Thus M_l(k) represents the flex/flex

coupling block, while M_(k) the flex/rigid coupling block of Mm(k). We will use this
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notational convention through this specification. This partitioning is readily carried out

by simply recognizing that the M_1(k) block is a square matrix of dimensionality equal

to the number of deformation modes while the M_r(k) block is a square 6-by-6 matrix.

Note that M_r(k) is precisely the rigid body spatial inertia of the k th body. Indeed,

M,,,(k) reduces to the rigid body spatial inertia when the body flexibility is ignored, i.e.,

no modes are used, since in this case n,,,(k) = 0 (and II(k) is null).

Since the vector l(k,jk) from _'k to node jk depends on the deformation of the

node, the operator B(k) is also deformation dependent. From Eq. (23) it follows that

while the block .M_ 1 (k) is deformation independent, both the blocks M_*(k) and M,_'(k)

are deformation dependent. The detailed expression for the modal mass matrix can

be defined using modal integrals which are computed as a part of the finite-element

structural analysis of the flexible bodies. These expressions for the modal integrals and

the modal mass matrix of the k th body can be found in [10]. Often the deformation

dependent parts of the modal mass matrix are ignored, and free-free eigen-modes are

used for the assumed modes II(k). When this is the case, M_*(k) is zero and M_l(k) is

block diagonal.

3.3 Recursive Propagation of Accelerations

Differentiating the velocity recursion equation, Eq. (11), we obtain the following recursive

expression for the modal spatial acceleration am(k) E _(k) for the k th body:

°tm(k)_=l/'(k)=(_(k)) =_'(k+l'k)a_(k+l)+7"l'(k)_(k)+a''(k)ct(k) (24)

where a(k) = V(k), and the Coriolis and centrifugal acceleration term a_(k) E _vv(k) is

given by

a_(k) = d_"(kdt + l'k)v_(k + 1) + dt x(k) (25)

The detailed expressions for a,_(k)can be found in [10]. Defining am = col{am(k)} E

and _m = col(_(k)} E _7, and using spatial operators we can rexpress Eq. (24)in the

form

= + (26)

The vector of spatial accelerations of all the nodes for the k th body, a,(k) _ col{a,(jk))

E _6,,,Ik) is obtained by differentiating Eq. (21):

= = [ri(k), + a(k) (2r)
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dt

(28)
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3.4 Recursive Propagation of Forces

Let f(k - 1) • _ denote the effective spatial force of interaction, referred to frame

_'k-l, between the U h and (k- 1) th bodies across the (k- 1) th hinge. Recall that the

(k- 1) _h hinge is between node tk on the k th body and node dk-1 on the (k- 1) th body.

With fs(jk) • _ denoting the spatial force at a node jk, the force balance equation for

node tk is given by

f_(tk) = ¢(tk, k--1)f(k--1)+Ms(tk)a,(tk)+b(tk)+fg(tk) (29)

For all nodes other than node tk on the k th body, the force balance equation is of the

form

f,(jk) = M,(jk)a,(jk) + b(jk) + fK(jk) (30)

In the above, fK(k) = K,(k)u(k) • _,_°(k} denotes the vector of spatial elastic strain

forces for the nodes on the U h body, while b(jk) • _ denotes the spatial gyroscopic force

for node jk and is given by

( &(Jk)"7(Jk)w(Jk) ) R6 (31)b(fi,) = m(jk)&(jk)5.,(fi,)p(fi,) •

where w(jk) • _ denotes the angular velocity of node jk. Collecting together the above

equations and defining

C(k,k- 1) _ e(t_,k- 1) • R6.._ and b(k) _ _l b(A) • _._1 (32)

0

it follows from Eq. (29) and Eq. (30) that

L(kl = C(Lk- 1)/(k - a) + M,(k)_,(k) + b(k) + K,(k)u(k) (33)

where f,(k) _ col{f,(jk)} • N6,,°(k). Noting that

f(k) = B(k)f,(k) (34)
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and using the principle of virtual work, it follows from Eq. (21) that the modal spatial

forces f,,(k) E _,,_(k) for the k th body are given by

- B(k) f,(k) - f(k)

Premultiplying Eq. (33) by

to the following recursive relationship for the modal spatial forces:

fro(k) = B(klC(k, k f(k - 1)+ M,_(k)_m(k)+ b,_(k)+ Km(k),_(k)

= ([Ht(k)]*)q_(tk'k-1)f(k-1)+Mm(k)a''*(k)+bm(k)+Km(k)o(k)¢(k,tk)

= _(k,k- 1)fro(k- 1)+ Mm(k)am(k)+b_(k)+ K,n(k)_(k) (36)

Here we have defined

bin(k)_ (

and the modal stiffness matrix

rI.(k) )B(k) and using Eq. (23), Eq. (27), and Eq. (35)leads

n-(k) )B(k) [b(k)+ M,(k)a(k)] Z _V(k) (at)

Kin(k) ,, (n'(k)go(k)n(k)O)= 0 0 _ _(k),_(k) (as)

The expression for K,_(k) in Eq. (38) uses the fact that the columns of B*(k) are indeed

the deformation dependent rigid body modes for the k th body and hence they do not

contribute to its elastic strain energy. Indeed, when a deformation dependent structural

stiffness matrix Ko(k) is used, we have that

Ko(k)B'(k) = 0 (39)

However the common practice (also followed here) of using a constant, deformation-

independent structural stiffness matrix leads to the anomalous situation wherein Eq. (39)

does not hold exactly. We ignore these fictitious extra terms on the left-hand side of

Eq. (39).

The velocity-dependent bias term b,,, (k) is formed using modal integrals generated

by standard finite- element programs, and a detailed expression for it is given in [10].

From Eq. (36), the operator expression for the modal spatial forces fm _ col{f_(k)} E

_" for all the bodies in the chain is given by

fm= ¢(M,,,_,,, + b,_ + Kmtg) (40)
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where

From the principleof virtual work, the generalized forces vector T 6 _ for the multibody

system is given by the expression

T=_f,,, (41)

3.5 Operator Expression for the System Mass Matrix

Collecting together the operator expressions in Eq. (20), Eq. (26), Eq. (40) and Eq. (41)

we have:

Vm - _'H'X

am =

f,,, = ¢(M,,,a,,, + b_ + K,,,O) = ¢M,,,¢'9i'_ + ep(M=¢'a_ + b,,, + K=O)

T = 7-l fro = TICM,,,¢'TI'_ + ?t¢(M,,,¢'am + b,,,)

= .M +c

where

.M =_ 7/¢M_0"9/" E _×x

(42)

and C _ Tl¢(M, nO'a,,, + b,_ + K,_O) E _r (43)

Here A4 is the system mass matrix for the serial chain and the expression 7"/¢Mm¢'T/"

is referred to as the Newton-Euler Operator Factorization of the mass matrix. C is the

vector of Coriolis, centrifugal, and elastic forces for the system.

It is noteworthy that the operator expressions for .M and C axe identical in form

to those for rigid multibody systems (see [1, ll]). Indeed, the similarity is more than

superficial, and the key properties of the spatial operators that are used in the analysis

and algorithm development for rigid multibody systems also hold for the spatial operators

defined here. As a consequence, a large part of the analysis and algorithms for rigid

multibody systems can be easily carried over and applied to flexible multibody systems.

This is the approach adopted here.

4. Inverse Dynamics Algorithm

This section describes a recursive Newton-Euler inverse dynamics algorithm for comput-

ing the generalized forces T, for a given set of generalized accelerations _ and system
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state {_, X}. The inverse dynamics algorithm also forms a part of forward dynamics

algorithms such as those based upon composite body inertias or the conjugate gradient

method ([12]).

Collecting together the recursive equations in Eq. (11), Eq. (24), Eq. (36) and

Eq. (41) we obtain the following recursive Newton-Euler inverse dynamics algorithm:

Ym(N+ 1)= 0, _m(N+l) = 0
fork =

vm(k)
_m(k)

end loop

° °° 1

= ¢'(k + 1,k)Vm(k + 1) + 7-l'(k)x(k )

= ¢'(k + 1,k).m(k + 1)+ U'(k)_(k) + am(k)

fro(0)=0
fork = 1..-N

fro(k) = ¢(k,k- 1)f,,,(k- 1) + M,,,(k)a,,,(k) + bin(k) + Km(k)t_(k)

T(k) = 7"l(k)fm(k)

end loop

(44)

The structure of this algorithm closely resembles the recursive Newton-Euler inverse

dynamics algorithm for rigid multibody systems (see [13, 1]). All external forces on

the k th body are handled by absorbing them into the gyroscopic force term b,,,(k). Base

mobility is handled by attaching an additional 6 degree of freedom hinge between the

mobile base and an inertial frame.

By taking advantage of the special structure of O(k + 1, k) and _(k) in Eq. (12)

and Eq. (13), the Newton-Euler recursions in Eq. (44) can be further simplified. Using

block partitioning and the superscripts f and r as before to denote the flexible and rigid

components or versions of the various quantities, we have that

V,_(k) , am(k)= , fm(k)= and T(k)=a_(k) f,_(k) ' T"(k)

It is easy to verify that Eq. (45) below is a simplified version of the inverse dy-30
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namics algorithm in Eq. (44).

V,_(N + 1)= 0, a,,(N + 1) = 0

fork = N...1

V2(k) = ,i(k)

V,_(k) = _b*(tk+l,k).A'(k + 1)Vm(k + 1) + H_-(k)_(k) - IId(k)_(k)

-re(k)
end loop

fork =

fro(k)

T(k) =

end loop

= ;/(k)
= ¢'(tk+,,k)A'(k + 1)a=(k + 1) + H_-(k)h(k)- IId(k)_(k) + a_(k)

f (0) =o
1...N

= .A(k)¢(tk, k - 1)f,_(k - 1) + M,_(k)am(k) + b,,,(k) + K,,,(k)O(k)

Tl(k)

(45)

In the foregoing algorithm, _(k) and fi(k) are the modal deformation velocities and accel-

erations, respectively, computed from the results obtained for a previous time step by a

forward dynamics algorithm of the type described below herein. Flexible multibody sys-

tems have actuators typically only at the hinges. Thus for the k th body, only the subset

of the generalized forces vector T(k) corresponding to the hinge actuator forces T'(k) can

be set, while the remaining generalized forces T!(k) are zero. Thus in contrast with rigid

multibody systems, flexible multibody systems are under-actuated systems ([14]), since

the number of available actuators is less than the number of motion degrees of freedom in

the system. For such under-actuated systems, the inverse dynamics computations for the

generalized force T are meaningful only when the prescribed generalized accelerations )_

form a consistent data set. For a consistent set of generalized accelerations, the inverse

dynamics computations will lead to a generalized force vector T such that TI(.) = O.

5. Composite Body Forward Dynamics Algorithm

The forward dynamics problem for a multibody system requires computing the gener-

alized accelerations _ for a given vector of generalized forces T and state of the system

{0, X}. The composite body forward dynamics algorithm described below consists of the

following steps: (a) computing the system mass matrix .A4, (b) computing the bias vector
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0, and (c) numerically solving the following linear matrix equation for :_:

= T-C (46)

Later in Section 6 we describe the recursive articulated body forward dynamics algorithm

that does not require the explicit computation of either .M or 0.

It is evident from Eq. (46) that the components of the vector C are the generalized

forces for the system when the generalized accelerations :_ are all zero. Thus ¢Y can be

computed using the inverse dynamics algorithm in Eq. (45). We describe next an efficient

composite--body-based recursive algorithm for the computation of the mass matrix .M.

This algorithm is based upon the following lemma which contains a decomposition of

the mass matrix into block diagonal, block upper triangular and block lower triangular

components.

15

20

25

Lemma 5.1: Define the composite body inertias R(k) ff _(k)×:_(_) recursively for

all the bodies in the serial chain as follows:

R(0) =0

fork = 1-..N

R(k) = _P(k,k- 1)R(k- 1)¢*(k,k- 1) + Mm(k)

end loop

Also define R _ diag{R(k)} E _:_×_. Then we have the following spatial operator

decomposition

(47)

¢M,,,¢" = R+ _R+ R_" (48)

where_ _¢-I:

Proof: See Appendix A. II

3O

Physically, R(k) is the modal mass matrix of the composite body formed from

all the bodies outboard of the k th hinge by freezing all their (deformation plus hinge)

degrees of freedom. It follows from Eq. (43) and Lemma 5.1 that

M = 7-/¢M_¢'7-/" = "HR_" + 7"/_R7-/" + 7-/R_°7-/* (49)

Note that the three terms on the right of Eq. (49) are block diagonal, block lower tri-

angular and block upper triangular respectively. The following algorithm for computing
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the mass matrix .M computes the elements of these terms recursively:

for k

n(k)

n(0) =0
= 1...N

= ¢(k,k- 1)n(k- 1)O'(k,k- 1) + M,,,(k)

= A(k)¢(tk, k- 1)/ff_(k - 1)¢'(tk, k- 1).A'(k)+ M,_(k)

end loop

= R(k)W(k)
= U(k)X(k)

forj =

X(j)

M(j,k)

end loop

(k+l)...N

= ¢(j,j- 1)X(j- 1) = .A(j)¢(t_,j- 1)Xr(j- 1)

= .M*(k,j)= 7i(j)X(j)

(50)

The main recursion proceeds from tip to base, and computes the blocks along the di-

agonal of .M. As each such diagonal element is computed, a new recursion to compute

the off-diagonal elements is spawned. The structure of this algorithm closely resembles

the composite rigid body algorithm for computing the mass matrix of rigid multibody

systems ( [12, 8]). Like the latter, it is also highly efficient. Additional computational

simplifications of the algorithm arising from the sparsity of both 7"If(k) and Tl,(k) are

easy to incorporate.

6. Factorization and Inversion of the Mass Matrix

25

3O

An operator factorization of the system mass matrix .M, denoted the Innovations Oper-

ator Factorization, is derived in this section. This factorization is an alternative to the

Newton-Euler factorization in Eq. (43) and, in contrast with the latter, the factors in the

Innovations factorization are square and invertible. Operator expressions for the inverse

of these factors are developed and these immediately lead to an operator expression for

the inverse of the mass matrix. The operator factorization and inversion results here

closely resemble the corresponding results for rigid multibody systems (see [1]).

Given below is a recursive algorithm illustrated in Figure 2 which defines some

required articulated body quantities. In the following algorithm, P(k) is the articulated

body inertia of body k, D(k) is the articulated hinge inertia of hinge k, G(k) is a body

to hinge force operator of body and hinge k, and y(k) is a null force operator for hinge

k which accounts for the component of applied force resulting in no hinge acceleration.
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I P+(0)=0

fork = 1..-N

P(k)

D(k)

a(k)

I K(k+l,k)

P+(k)

•(k+ 1,k)
end loop

= _(k,k- 1)P+(k - 1)_'(k,k - 1) + M_(k) E _7(k)x_(k)

= _t(k)e(k)W(k) • _v(,),_(,)
= p(k),H.(k)n-l(k) • _'(k)×_C(k)

= ¢(k + 1,k)G(k) e _V(*),_(k)
= 1- a(k)_(k) e _X(k),_(k)
= _(k)P(k) • _(k)x_'(k)

(51)

The operator P • _R:Wx_ is defined as a block diagonal matrix with the k th diagonal

element being P(k). The quantities defined in Eq. (51) form the component elements of

the following spatial operators:

D a__ 7"/Pn* = diag{D(k)} • _¢x_¢

C a= P_'D-' = diag{C(k)} • _x_¢

_= 1 - aT'/= diag{_(k)} • R 'V*_'

The only nonzero block elements of K and E, are the elements' K(k + 1, k)'s and qJ(k +

1, k)'s respectively along the first sub-diagonal.

25

30

where

As in the case for £_, g'¢ is nilpotent, so we can define the operator @ as follows:

I 0 ... 0)

q_ =a (I-£,_)-' = @(2,1) I 0 • _x_
: : •

• (N, 1)*(N, 2) I

(53)

ol(i,j) a_ q(i,i- 1) ... q_(j + 1,j) for i > j

The structure of the operators E, and • is identical to that of the operators E® and ¢

respectively except that the component elements are now _ (i, j) rather than 0(i, j). Also,

the elements of qJ have the same semigroup properties as the elements of the operator

• , and as a consequence, high-level operator expressions involving them can be directly
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mapped into recursivealgorithms, and the explicit computation of the elementsof the

operator 9 is not required.

The InnovationsOperator Factorization of the massmatrix is defined in the following

lemma.

10

Lemma 6.1:

.M = [I + 7"t_K]D[I + 7-l,_K]" (54)

Proof: See Appendix A. II

15

Note that the factor [I + H(PK] E _¢'×x is square, block lower triangular and

nonsingular, while D is a block diagonal matrix. This factorization provides a closed-

form expression for the block LDL" decomposition of .M. The following lemma gives the

closed form operator expression for the inverse of the factor [I + 7"/¢K].

2O

Lemma 6.2:

[] + 7/¢K]-' = [I - HgK] (55)

Proof: See Appendix A. II

25
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It follows from Lemmas 6.1 and 6.2 that the operator expression for the inverse of the

mass matrix is given by:

Lemma 6.3:

A4 -_ = [I- H$K]'D-I[I - 7"l_lK] (56)

|

Once again, note that the factor [1 - 7"fqJK] is square, block lower triangular and

nonsingular and so Lemma 6.3 provides a closed-form expression for the block LDL °

decomposition of .M-1.
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7. Articulated Body Forward Dynamics Algorithm

10

We first use the operator expression for the mass matrix inverse developed in Section 6 to

obtain an operator expression for the generalized accelerations X. This expression directly

leads to a recursive algorithm for the forward dynamics of the system. The structure of

this algorithm is completely identical in form to the articulated body algorithm for serial

rigid multibody systems. The computational cost of this algorithm is further reduced

by separately processing the flexible and hinge degrees of freedom at each step in the

recursion, and this leads to the articulated body forward dynamics algorithm for serial

flexible multibody systems. This algorithm is an alternative to the composite--body

forward dynamics algorithm developed earlier.

The following lemma describes the operator expression for the generalized accel-

erations _ in terms of the generalized forces T.

15

Lemma 7.1:

= [I- 7"ICK]'D-'[T- n_{KT + Pa. + b,,, + Kmtg}] - K*@'a_ (57)

20
Proof: See Appendix A. II

25
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As in the case of rigid multibody systems ( [1, 2]), the direct recursive implemen-

tation of Eq. (57) leads to the following recursive forward dynamics algorithm illustrated

in Figure 3. In the following algorithm, z(k) is a residual body force on body k, e(k) is

the resultant hinge force on hinge k, v(k) is the resultant hinge acceleration of hinge k

and z+(k) is the revised residual body force on body k:

z+(0) =0
fork = 1...n

z(k) = ¢(k,k- 1)z+(k - 1)-4-P(k)a.,(k)+b,,,(k)+ K,,,(k)t_(k)

e(k) = T(k)- l"l(k)z(k)

t,(k) = D-'(k)e(k)

z+(k) = z(k) +
end loop

(5s)
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o,,,,(.+ 1)-o
fork =

°+,t,(k)

if(k) -

end loop

n, °° 1

- _'(k + 1,k)a,_(k + 1)

.(k)-
+ + an(k)

The structure of this algorithm is closely related to the structure of the well known

Kalman filtering and smoothing algorithms ([8]). All the degrees of freedom for each

body (as characterized by its joint map matrix 7"/'(.)) are processed together at each

recursion step in this algorithm. However, by taking advantage of the sparsity and

special structure of the joint map matrix, additional reduction in computational cost is

obtained by processing the flexible degrees of freedom and the hinge degrees of freedom

separately. These simplifications are described in the following sections.

7.1 Simplified Algorithm for the Articulated Body Quantities

Instead of a detailed derivation, we describe here the conceptual basis for the separation

of the modal and hinge degrees of freedom for each body. First we recall the velocity

recursion equation in Eq. (11)

Vm(k) = ¢'(k + 1,k)V,n(k + 1) + 7"l"(k)x(k) (59)

and the partitioned form of 7"/(k) in Eq. (13)

7_(k) = (7ts(k))7_,(k) (60)

Introducing a dummy variable k', we can rewrite Eq. (59) as

V_(k') = ¢'(k + 1,k')V,,,(k + 1) + 7"l_(k)_(k)

V,n(k) = ¢b'(k',k)Vm(k ') + 7"[:(k)fl(k) (61)

where

¢(k + 1,k') _= ¢(k + 1,k) and ¢b(k',k) zx I

Conceptually, each flexible body is now associated with two new bodies. The first one

has the same kinematical and mass/inertia properties as the real body and is associated

with the flexible degrees of freedom. The second body is a fictitious body and is massless

and has zero extent. It is associated with the hinge degrees of freedom. The serial chain

now contains twice the number of bodies as the original one, with half the new bodies
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being fictitious ones. The new 7"/"operator now has the samenumber of columnsbut

twice the number of rows as the original "H" operator. The new q_ operator has twice

as many rows and columns as the original one. Repeating the analysis described in the

previous sections, we once again obtain the same operator expression as Eq. (57). This

expression also leads to a recursive forward dynamics algorithm as in Eq. (58). However

each sweep in the algorithm now contains twice as many steps as the original algorithm.

But since each step now processes only a smaller number of degrees of freedom, this

leads to a reduction in the overall cost. In the following algorithm, the subscript r

denotes the rigid component or version of the subscripted quantity while the subscript

f denotes the flexible component or version of the subscripted quantity. Thus, "Hl(k ) is

a matrix including the corresponding modal spatial influence vector, while 7"[,(k) is a

matrix including the corresponding transformed joint map matrix. The new algorithm

(replacing Eq. (51)) for computing the articulated body quantities is as follows:

15
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for k

P+(O) =0

= 1...N

r(k) =
P(k) =

Of(k) =

cf(k) =
_f(k) =
P_(k) =

B(k,k- 1)P+(k - 1)B*(k,k- 1) E _sx6

.A(k)F(k)A'(k) + Mm(k) __ _(klx_{k}

7"iI(k)P(k)'H*l(k) E _,,,,,(k)x,,,,,(k)

P(k)7"l_t(k)DT_(k) E _,V(k)xn=(k)

I- Gf(k)_f(k) e _v(_)xxr(k)
_j(k)P(k) e _(k)xXr(k) (62)

D,(k)

G.(k)
_r(k)

P+(k)

_,(k+ 1,k)
end loop

= U_(k)P_(k)U:(k) e _..(k)x.r(k)
= P_(k)_:.(k)D71(k) E _,,V(k)×,,,(_)

= I- G.(k)U.(k) e _.V(k)xXr(k)
= _.(k)P_(k) _ _V(_)_(_)
= ¢(k + 1,k)_(k) _ _.V(k)_Xr(k)

We now use the sparsity of B(k + 1, k), 7"[](k) and "H,(k) to further simplify the above

algorithm. Using the symbol "x" to indicate "don't care" blocks, the structure in block

partitioned form of some of the quantities in Eq. (62) is given below. In the following

algorithm, the subscripts f and r have the same significance as that discussed previously

herein, the subscript R denotes another rigid version of the subscripted quantity (defined

below), while P'f(k) and P_'(k) denote the blocks of the articulated body inertia P(k)

partitioned in the same manner as that discussed previously herein with reference to the
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partitioning of the modal massmatrix in Equation (23):
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2O

e,(k)

= ¢(tk, k- 1)P+(k - 1)¢'(tk, k- 1), (P+(k) is defined below)

( x ) where g(k)=p(k)D71(k)6_ 6x"''(k)aCk) '

and #(k) _a_[P'Y(k), P"(k)]7"l'l(k) 6 _6x..(k)

(× ×)= x Pa(k) , where PR(k)= P"'(k)- g(k)p'(k) 6 _s×6

Dr(k) = H:r(k)PR(k)H_(k) 6 _nr(k)x,rCk)

GR(k) ) ' where GR(k) _= Pa(k)H)(k)D-_l(k) 6
G,(k) Rs,,.r(k)

I×)_,(k) 0 _n(k) ' where _R(k)= I-Ga(k)H.r(k) • _6×6

P+(k) x P+(k) , where P+(k) = gR(k)PR(k) • _6x6

Using the structure described above, the simplified algorithm for computing the articu-

lated body quantities is as follows:

25

30

p,_(0)= 0
fork = 1-.-N

F(k) = ¢(tk, k-1)P+(k -1)¢'(tk,k-1)

P(k) = A(k)F(k).A'(k) + M.,(k)

Dl(k ) = 7_1(k)P(k)Tl*1(k)

/_(k) = [P'l(k), P"(k)]7-l_(k)

g(k) = p(k)D71(k)

Pn(k) = P"'(k)-g(k)p'(k)

Da(k) = Hj:(k)PR(k)H_(k)

Gn(k) = Pn(k)H_(k)n_(k)
_a(k) = I- Ga(k)HT(k)

P_(k) = _R(k)PR(k)

end loop

(63)
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7.2 Simplified Articulated Body Forward Dynamics Algorithm
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The complete recursive articulated body forward dynamics algorithm for a serial flexible

multibody system follows directly from the recursive implementation of the expression in

Eq. (57). The algorithm consists of the following steps as illustrated in Figure 4: (a) a

base-to-tip recursion as in Eq. (45) for computing the modal spatial velocities V,n (k) and

the Coriolis and gyroscopic terms am(k) and bin(k) for all the bodies; (b) computation

of the articulated body quantities using Eq. (78) and Eq. (63); and (c) a tip-to-base

recursion followed by a base-to-tip recursion for the joint accelerations _ as described

below and illustrated in Figures 5a and 5b:

z_(O)=o
fork = 1...N

z(k) = (zy(k))zr(k)

= .A(k)d_(tk,k - 1)z+(k - 1) + bm(k) + K_(k)O(k) E _(k)

,.f(k) = Tl(k )- zl(k) + [lid(k)] .z,.(k) E _n,,,(k)

.:(k)= D)"(k)_/(k) • _.=(k)

z,_(k) =
_(k) =

.R(k) =
z_(k) =

end loop

zr(k) + g(k)el(k ) + PR(k)amR(k) • _6

n_l(k),R(k) • _?..(k)

zR(k) + GR(k),R(_:) •

c_,..(N + 1) = 0

fork = N-.-1

3(k) = ,.,R(k)- C;_(k),_,_(k)• _-.(_)
_R(k) = o,_(k)+ Ui-(_:)h(k)+ -=R(k) •

l ;/(_:1 = .((_:1-:(k)o,R(_:) • i"'(_)
q(k) • _X(_)

,_..(k) = ,_,(k)- rI_(k)_(k)
end loop

(64)

The recursion in Eq. (64) is obtained by simplifying the recursions in Eq. (58) in the same

manner as described in the previous section for the articulated body quantities. The rigid

Coriolis and centrigugal acceleration amR(k) is given in Appendix C below herein.

In contrast with the composite body forward dynamics algorithm described in
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Section5, the articulated body forward dynamicsalgorithm doesnot require the explicit

computation of either A4 or C. The structure of this articulated body algorithm closely

resemblesthe recursivearticulated body forward dynamicsalgorithm for rigid multibody

systemsdescribedin references( [15, 1]).

The articulated body forward dynamics algorithm has been used to develop a

dynamics simulation software package (called DARTS) for the high-speed, real-time,

hardware--in-the--loop simulation capability for planetary spacecraft. Validation of the

DARTS software was carried out by comparing simulation results with those from a stan-

dard flexible multibody simulation package ([6]). The results from the two independent

simulations have shown complete agreement.

A System Embodyin_ the Invention:

Referring to Figure 6, a robot manipulator 100 having flexible links (bodies), such

as the manipulator illustrated in Figures la and lb, includes joint servos 110 controlling

respective articulating hinges of the manipulator. A robot control computer 120 includes

a processor 125 which computes the articulated body quantities of the manipulator 100

from the current state of the manipulator 100 using the process of Figure 2. The current

state of the manipulator 100 is also used by a processor 130 to compute the Coriolis

and centrifugal accelerations and gyroscopic forces of the manipulator links using the

algorithm of Equation (44). A set of link (body) forces is specified to a processor 135. The

processor 135 uses the specified body forces, the articulated body quantities computed by

the processor 125 and the gyroscopic and Coriolis terms computed by the processor 130

to compute the deformation acceleration of the finite element nodes of each link (body)

and the acceleration of each hinge by executing the algorithm of Figures 5a and 5b.

In one embodiment of the invention described above with reference to Figure 4,

the procesor 135 repeats its operation over successive time steps, and the configuration

vectors of the manipulator 100 required by the processors 125 and 130 are computed by

a processor 140 from the accelerations computed by the processor 135 for the previous

time step. In an alternative embodiment of the invention, the hinge configuration vectors

are derived by the processors 125 and 130 directly from joint sensors 142 on the hinges

of the manipulator 100.

As one example of the application of the results computed by the processor 135,

a desired robot motion is defined by a set of user-specified node deformations and hinge
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accelerationsfor a successionof time steps. The node deformationsand hinge accelera-

tions computedduring eachtime stepby the processor135arecomparedby a processor

144with a desireduser-specifiednodedeformationsand hinge accelerationsfor the cor-

responding time step to determinean error and to correct the specifiedbody forcesto

reducethe error using well-knownfeedbackcontrol techniques. Such feedbackcontrol

techniques are well-understood in the art and need not be described herein. The cor-

rected body forces are then stored for later (or immediate) conversion by a processor 146

to joint servo commands for transmittal to the joint servos 110.
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8. Computational Cost

This section discusses the computational cost of the composite body and the articulated

body forward dynamics algorithms. For low-spin multibody systems, it has been sug-

gested in [16] that using ruthlessly lineavized models for each flexible body can lead to

significant computational reduction without sacrificing fidelity. These linearized models

are considerably less complex and do not require much of the modal integral data for

the individual flexible bodies. All computational costs given below are based on the

use of ruthlessly linearized models and the computationally simplified steps described in

Appendix B.

Flexible multibody systems typically involve both rigid and flexible bodies and,

in addition, different sets of modes are used to model the flexibility of each body. As

a consequence, where possible, we describe the contribution of a typical (non--extremal)

flexible body, denoted the k th body, to the overall computational cost. Note that the

computational cost for extremal bodies as well as for rigid bodies is lower than that for

a non--extremal flexible body. Summing up this cost for all the bodies" in the system

gives a figure close to the true computational cost for the algorithm. Without any loss in

generality, we have assumed here that all the hinges are single degree of freedom rotary

joints and that free-free assumed modes are being used. The computational costs are

given in the form of polynomial expressions for the number of floating point operations

with the symbol M denoting multiplications and A denoting additions.
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8.1 Computational Cost of the Composite Body Forward Dynamics Algo-

rithm

The composite body forward dynamics algorithm described in Section 5 is based on

solving the linear matrix equation

M:_= T-C

The computational cost of this forward dynamics algorithm is given below:

10

15

20

1. Cost of computing R(k) for the k th body using the algorithm in Eq. (50) is

[48n,,(k) + 90IM + [n_(k) + _n,,,(k) + 116]A.

2. Contribution of the k th body to the cost of computing .M (excluding cost of R(k)'s)

using the algorithm in Eq. (50) is

{k[12n_(k) + 34nm(k) + 131} M + {k[lln_(k) + 24nm(k) + 13]} A.

3. Setting the generalized accelerations _: = 0, the vector C can be obtained by using

the inverse dynamics algorithm described in Eq. (45) for computing the generalized

forces T. The contribution of the k th body to the computational cost for C(k) is

{2n_(k) + 54n_(k) + 206} M + {2n_(k) + 50rim(k) + 143} A.

4. The cost of computing T - C is {.IV'} A.

5. The cost of solving the linear equation in Eq. (46) for the accelerations :_ is

{'  x}M +_A/" +FA r - +{l_N'a AP-

25
The overall complexity of the composite body forward dynamics algorithm is O(A/'3).

8.2 Computational Cost of the Articulated Body Forward Dynamics Algo-
rithm

30

The articulated body forward dynamics algorithm is based on the recursions described

in Eq. (78), Eq. (63) and Eq. (64). Since the computations in Eq. (78) can be carried out

prior to the dynamics simulation, the cost of this recursion is not included in the cost of

the overall forward dynamics algorithm described below:

1. The algorithm for the computation of the articulated body quantities is given in

Eq. (63). The step involving the computation of D-l(k) can be carried out either
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by an explicit inversionof D(k) with O(n3(k)) cost, or by the indirect procedure

described in Eq. (63) with O(n_(k)) cost. The first method is more efficient than

the second one for n,,(k) < 7.

• Cost of Eq. (63) for the k th body based on the explicit inversion of D(k) (used

when n,,,(k) < 7) is

{_n3(k) + _n_(k)+ _---_n_(k)+ 180} M+{_n3_(k)+ _n_(k)+ -_n,,.,(k)+ 164}

• Cost of Eq. (63) for the k th body based on the indirect computation of D-l(k)

(used when n_(k) > 8)is {12n_(k)+ 255n_(k) + 572} M+{13n_(k) + 182rim(k)

2. The cost for the tip-to-base recursion sweep in Eq. (64) for the k th body is

{n_(k) + 25nm(k) + 49} M + {n_(k) + 24nm(k) + 50} h.

3. The cost for the base-to-tip recursion sweep in Eq. (64) for the k th body is {18nm(k) + 52

{19rim(k) + 42} A.

The overall complexity of this algorithm is O(Nn_), where nm is an upper bound on the

number of modes per body in the system.

From a comparison of the computational costs, it is clear that the articulated body

algorithm is more efficient than the composite body algorithm as the number modes and

bodies in the multibody system increases. The articulated body algorithm is faster by

over a factor of 3 for 5 modes per body, and by over a factor of 7 for the case of 10 modes

per body. The divergence between the costs for the two algorithms becomes even more

rapid as the number of bodies is increased.

25 . Extensions to General Topology Flexible Multibody Sys-

tems

30

For rigid multibody systems, [11] describes the extensions to the dynamics formulation

and algorithms that are required as the topology of the system goes from a serial chain

topology, to a tree topology and finally to a closed-chain topology system. The key to

this progression is the invariance of the operator description of the system dynamics to

increases in the topological complexity of the system. Indeed, as seen here, the operator

description of the dynamics remains the same even when the multibody system contains

flexible rather than rigid component bodies. Thus, using the approach in [11] for rigid
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multibody systems,the dynamicsformulation and algorithms for flexible multibody sys-

ternswith serial topology canbeextendedin a straightforward manner to systemswith

tree or closed-chaintopology. Basedon theseobservations,extending the serial chain

dynamics algorithms describedin this specification to tree topology flexible multibody

systemsrequiresthe following steps:

10

1. For each outward sweepinvolving a base to tip(s) recursion, at each body, the

outward recursionmust be continuedalongeachoutgoing branch emanatingfrom

the current body.

2. For eachinward sweepinvolving a tip(s) to baserecursion,

at each body, the recursionmust be continued inwards only after summing up

contributions from eachof the other incoming branchesfor the body.

15
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A closed-chaintopology flexiblemultibody systemcanbe regardedasa tree topol-

ogysystemwith additional closureconstraints.As describedin [11],the dynamicsalgo-

rithm for closed-chainsystemsconsistsof recursionsinvolving the dynamicsof the tree

topology system,and in addition the computation of the closureconstraint forces. The

computation of the constraint forcesrequiresthe effective inertia of the tree topology

systemreflectedto the points of closure.The

algorithm for closed-chain flexible multibody systems for computing these inertias

is identical in form to the recursive algorithm described in [11].

I0. Conclusions

This invention uses spatial operator methods to develop a new dynamics formulation for

flexible multibody systems. A key feature of the formulation is that the operator descrip-

tion of the flexible system dynamics is identical in form to the corresponding operator

description of the dynamics of rigid multibody systems. A significant advantage of this

unifying approach is that it allows ideas and techniques for rigid multibody systems to be

easily applied to flexible multibody systems. The Newton-Euler Operator Factorization

of the mass matrix forms the basis for recursive algorithms such as those for the inverse

dynamics, the computation of the mass matrix, and the composite body forward dynam-

ics algorithm for the flexible multibody system. Subsequently, we develop the articulated
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body forward dynamicsalgorithm, which, in contrast to the compositebody forward dy-

namicsalgorithm, doesnot require the explicit computation of the massmatrix. While

the computationalcostof the algorithmsdependson factors suchasthe topology and the

amount of flexibility in the multibody system, in general, the articulated body forward

dynamicsalgorithm is by far the moreefficientalgorithm for flexible multibody systems

containingevena smallnumberof flexiblebodies.All of the algorithmsarecloselyrelated

to thoseencounteredin the domainof Kalman filtering and smoothing. While the major

focus in this specificationis on flexiblemultibody systemswith serialchain topology, the

extensionsto tree and closedchain topologiesare straightforward and are describedas
well.

While the invention hasbeendescribedin detail by specificreferenceto preferred

embodimentsthereof, it is understoodthat variations and modifications may be made

without departing from the true spirit of the invention.

2O
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30
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Appendix A: Proofs of the Lemmas

At the operator level, the proofs of the lemmas in this publication are completely analo-

gous to those for rigid multibody systems ( [1, 2]).

Proof of Lemma 5.1: Using operators, we can rewrite Eq. (47) in the form

i_ = R- £,R£_ (65)

From Eq. (19) it follows that ¢£, = _'_¢ = _ - I = 8. Multiplying Eq. (65) from the

left and right by (I) and (I)* respectively leads to

(I)Mm(I)" = (I)R(I)" - (I)£¢R£;(I)* = (8 + I)R(_ + I)" - CR " = R + +

|

Proof of Lemma 6.1:

recursion for P(.) in Eq. (51) can be rewritten in the form

Aim = P- £,_P£_, = P-£,PC._, = P- £¢P_¢_, + KDK"

Pre- and post-multiplying the above by (I) and ¢* respectively then leads to

¢M,,,¢" = P + _P + PC* + CKDK*¢*

Hence,

=_

It is easy to verify that yPV" = yP. As a consequence, the

(66)

.A4 = 7-l¢M,,,_I,'7-l" = 7-l[P + _,P + P+" + ¢KDK'¢']_"

= D + 7"tCKD + DK'ep'7-l" + 7-IOKDK'+'_" = [I + 7-[¢K]D[I + "H(I)K]*

I

Proof of Lemma 6.2: Using a standard matrix identity we have that

[I + 7-l¢K] -1 = I- ?'l¢[I + KT-E¢]-IK

Note that

qJ-1 = I - £, = (I - Ca) + £¢G'H = (I,-_ + KT-/

from which it follows that

_-1¢ = I + KH¢

(67)

(68)
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Using thiswith F__I. (67) itfollowsthat

[I+ _K] -_= I- _[_-_]-'K = I- _K

41

|

Proof of Lemma 7.1: From Eq. (42) and Eq. (43), the expression for the generalized

accelerations :_ is given by

= .Ad-'(T-C)= [I- _@KI'D-'[I- 7"t@KI[T- 7"t_,[M=+'a_ + b,. + Kmd]] (09)

From Eq. (68) we have that

[_- _K]_¢ = _[_-_ - K_]¢ = _ (70)

Thus Eq. (69) can be written as

= [I- _K]'D-_[T- U_[KT + Mm¢'a,_ + bm + K_O]] (71)

From Eq. (66) it follows that

Aim = P-£,_PF_,_ =_ CM,_* = _P + P(_" (72)

and so Eq. (71) simplifies to

:_ = [I - 7"t@K]*D-1[T - 7"I@[KT + Pa,,, + b_ + g,,,O]- 7"lP_,*a_] (73)

From Eq. (68) we have that

[I- 7"I¢K]'D-'7"IP_" = [I- 7"I_K]*K*¢* = K*@*[@-* - KT_]*_* = g*¢" (74)

Using this in Eq. (73) leads to the result. |

3O
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Append B: Ruthless Linearization of Flexible Body Dynam-
ics
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It has been pointed out in recent literature ( [17, 16]) that the use of modes for modeling

body flexibility leads to "premature linearization" of the dynamics, in the sense that

while the dynamics model contains deformation dependent terms, the geometric stiffening

terms are missing. These missing geometric stiffening terms are the dominant terms

among the first-order (deformation) dependent terms. In general, it is necessary to take

additional steps to recover the missing geometric stiffness terms to obtain a "consistently"

linearized model with the proper degree of fidelity. However for systems with low spin

rate, there is typically little loss in model fidelity when the deformation and deformation

rate dependent terms are dropped altogether from the dynamical equations of motion (

[16]). Such models have been dubbed the ruthlessly lineavized models. These linearized

models are considerably less complex, and do not require most of the modal integrals

data for each individual flexible body.

am(k), and bin(k) are as follows:

Mm(k) ,_, M°(k), am(k)

In this model, the approximations to Mm(k),

(0)aOR(k) , and bin(k) _ b°(k) (75)

With this approximation, Mm(k) is constant in the body frame, while am(k) and bin(k)

are independent of r/(k) and _(k). With this being the case, the formation of D -1 in

Eq. (51) can be simplified. Using the matrix identity

[m + BCB']-' = A -1- A-'B[C-' + B'A-'B]-'B*A-' (76)

which holds for general matrices A, B and C, it is easy to verify that

D71(k ) = A(k) - T(k)[F-'(k) + fl(k)]-'(k)T*(k) (77)

where the matrices A(k), Q(k), and T(k) are precomputed just once prior to the dynam-

ical simulation as follows:

30

fork =

A(k) =
((k) =
T(k) =

=
end loop

"'°Y

[7"tl(k)Mm(k)7"l_(k)]-' E _×"¢

A(k)((k) E _×6

(78)

Using Eq. (77) reduces the computational cost for computing the articulated body inertias

to a quadratic rather than a cubic function of the number of modes.
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Appendix C: Expressions for Mm(k), am(k) and bin(k)
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The modal spatial displacement influence vector IIJ(k) for node jk has the structure:

iiJ(k) = (M(k))Tj(k) • _6xn,,,(k) (79)

The components of the vectors _J(k) • _,.3×,_,_(k) and 7J(k) E _3×,,,.(k) are the modal slope

displacement influence vector and the modal translational displacement influence vector

respectively for node jk. They define the contribution of the various modes to the slope

(or differential change in orientation) and translational deformation for the jtkh node on

the k th body. Define

_v(jk) zx 7j(k)r_(k) • _y3, and _t(jk) a= 7j(k)rl(k) • _3 (80)5,_(jk) a= M(k)iT(k) • _,z,

Note that

l( k, jk ) = lo(jk) + ,5,(jk)

where Io(jk) denotes the undeformed vector from frame .T'k to node jk. Note that Mo(jk)

denotes the spatial inertiaof the jth node on the k th body and is given by

( "7 (Jk ) m(jk )P(Jk ) ) _RS×6Mo(jk) = --m(jk)_(jk) m(j_)I • (81)

C.1 Modal Integrals for the Individual Bodies

25

3O

Defined below are a set of modal integrals for the k th body which simplify the computation

of the modal mass matrix Mm(k) and the bias vector b_(k). These modal integrals can

be computed as a part of the finite-element structural analysis of the individual bodies.

n,(k)

j-.---lk

n,(k)

pko _= [1/m(k)] __, m(jk)[p(jk)-4- lo(k,j_)] • _z
j=lk

no(k)

p (r) [1/m(kl] • f
j----lk

,,,(k)

Sk(r ) zx _ m(jk)[_/_(k)- jh(/k)a_(k)] • _,3
j=lk

n,(/_)

F0k(r) _ _ ff(jk)$Jr(k) + m(jk)[[o(k,jk) + th(jk)lTJ(k)- m(jk)io(k, jk)_(jk))d_(k) •
jmlk

re(k) _= _ m(j_)
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7" -'-

T

s_(,,_)

Kf( )7"_.S ---

R,*() '_r ----

,_,(k)

m(Jk)_J,(k)[7_(k)- i6(jj,)A_(k)] E
j----lk

n,(k)

_-_ [A_(k)]*J(Jk)AJ(k) + m(jk)[A_(k)]*_(jk)7_(k) + m(jk)[._(k)]*_(j;_)7J,.(k )
J=lk

m(Jk)[7¢(k)]"ri(k) e _'
n.(k)

- _ J(Jk)-m(jk)[lo(k,j_,)[o(k,jk)+ f_(jk)io(k,jk) + io(k,jk)_(jk)] E fx
j=Ik

n,(k)

-- _., m(jk)S¢(k)[lo(k, jk) + p(j_)] E R a×3
J=Ik

._.(k)

j=Ik

n.(k)

[m(jk)P(Jk)_(k)]×lo(k, Jk)- ,J'(jk)A_(k) E _3×3
J=lh

n.(k)

[m(Jk)f_(Jk)A_(k)]×SJ(k) e _x3
j_lk

n,(k)

_-, 2"[°(k, Jk)[m(jk)P(J_)AJ,.(k)] x - ,.7"(jk)A_(k) + A_(k)ff(jk) E _×3
j=lk

._.(k)

2[S_(r)]*- _ [l¢(k)j(A ) + J(A)l_(k)]
j=l,.

,.(k)

2z/_(k)[m(jk)P(J_)A_(k)] x = 2[S_(r,s)]" 6. R,3_3
•,/= |k

n.(/)

j=D.

n,(_)

R_(q,r,s) zx

w_( ) 1'

._.(_)

_ -rn(j_)_(k)A_(k)_(j_)_._(k)_ _3

n.(i¢)

j----la

n.(_)

j=lk

n,(_)

-[1�re(k)] _ m(j_)iJ(k)_(jk)a;(k) e
j=la
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T3k(q,r,s)

Note that

Also define,

..(k)

__, [m(jk)_/¢(k)_(jk) + J(jk)i_(k)]_{(k) E
j=lk

no(k)

[m(jk)_(jk)_(k)- i_(k)J(jk)l_(k) E _R_
j=lk

no(k)

__, [t_(kll'[m(jk)SJ(k)_(jk) + J(jk)_(k)]M(k) • _'
jmlk

Gk(r,s) = Ck(s,r) and J2k(r,s) = ,]_(s,r)

n._(k)

p(k) _ po_ + _ p,(_)_(s) •
$=1

,,._(k)

Fk(r) a= Fok(r) + _ F_(r, slrl(s) • _3
$----1

,,..(1,)

Nk(r) a [J_(r)+ _ J_(r,s)rl(s)]'•_ ×a
$=1

_.,(k)

j(k) _ j?+ _ [j_(,)+ {y,_(,)}.]_(,)+
r-----1

20

25

C.2

E::_):E_:__)J2(,, _),(,),(_) • _V,_

s*(,) _ st(_) + Z::_(*)s_(,,_),(_) • _*_

= ,¢-'_nm (k) r,."k/ _X3Kk(r ) z_ K_(r) + 2_.,,_-1 I'I2(7",'S)T]('S) •

R_(_,*) _ N(_,,) + Z_:_') R_(q,_,,),(q) • _(sa)

Modal Mass Matrix

3O

We have from Eq. (23) that the modal mass matrix of the k th body is given by

ira(k) = B(k) M.(k)[II(k), B'(k)]= B(k)M.(k)II(k)

( M41(k) M_(k) )= i:J(k) i::(k) • _v(_)_(_)

II'(k)M,(k)B'(k) )B(k)M,(k)B'(k)

(s4)

Define the matrices:

pl_ _ [p_(1), ...p_(nra(k))] • _Ra×''_(k)
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F0 k A

F k __

E k _a_

[Fok(1), . .. Fko(n,,,(k))] • R3×'_,-(k)

[Fk(1), -.. Fk(n_(k))] E _3x,,,,,0,)

[Ek(1), ... Ek(n_(k))] • R3x"m(k) (85)

Also define the matrix G k E R "'(k)×'_m(k) so that its (r, s) th element is given by the modal

integral Gk(r, s).

10

15

Using these matrices, and Eq. (84), it is easy to establish that

M_s(k)=a k, M,_J(k)= Ek , and M2(k)- -m(k)_(k)

Hence, in block partitioned form

M,n(k) =

G k [Fk]"

I

[E_]"

F_ m(k)_(k)
E k m(k)]

m(k)_(k) )m(k)I

20

e k [_]" [Ek]"

Fo_ Jo_ m(k)_o_
Ek -m(k)_o_ m(k)_

M°_(k)

25

30

o [F_v]" o
+

Fir] Z_:_k)IJ_(r) + [fl?(r)]'lrl(r) m(k)[p_y(k)] x

o -m(k)[p_v(k)]X o
M_m(k)

(
0 0 0

+ (86)

0 0 0,
%

Mi(k)

The superscript i = 0, 1,2 in M_(k) denotes the order of dependency of the terms on the

deformation variables.
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C.3 Expression for am(k)
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In this section we derive explicit expressions for the Coriolis and centrifugal acceleration

term am(k). Since

it follows from Eq. (12) and Eq. (79) that

(o_,(k+ 1,k) = o

/°= 0

0

Recalling that the spatial velocity of frame _k is

V(k)=(w(k) )v(k)

[n,(k + 1)]'$(tk+1:k)¢(k++ 1,k)[h'(k+ 1)]'¢(t_+1,k) )

[A'(k + 1)]"

0

0 0

[]ht(k + 1)]*'[(tk+l,k)+[zrt(k + 1)]" + [At(k + 1)]*_(ta+l, k
%

l(k + 1,k)

where w(k) and v(k) denote the angular and linear velocity respectively of .T'k we have

that

fiJ(k)= (iJ(k)_j(k)) = (_(k)_j(k)_(kW(k) )
And thus

0

25

30

_'(k + 1,k)Vm(k + 1) = _b(k + 1)8_(tk+l)

-[(tk+z,k)&(k + 1)_,_(tk+_)+ &(k + 1)6v(tk+l)

+_,_(tk+_)i(tk+_,k)+&(k + 1)i(k + 1, k)

The vector above has been partitioned so that the term on the top corresponds to modal

accelerations, the term in the middle to the angular acceleration and the term at the

bottom to the linear acceleration of the body. Also

i(k + 1,jk+_) = &(k + 1)l(k + 1,jk+l)+

di.(jk+l)and

i(tk+_,k) = &(tk+a)l(tk+,,k) + A.(k)- _.(dk)+ £,_(k)l(Ok, k)

= [&(k + 1)+_,,(tk+_)]l(tk+l,k)+ A.(k)- 8.(dk) + A,_(k)l(Ok, k)
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where

Thus

i(k + 1,k)

_(k) = H'(k)a(k)

i(k + 1,tk+l) + i(t_+_,k)

g;(k+ 1)/(k + 1,k) + 5_(tk.l) + _.,(tk+l)l(tk+l,k) + A_,(k)

-_(d_ ) + A_(k)l(Ok,k)

(sT)

10

15

Also

and

Thus we have that

° o)= -_d(k) Jq;_(k)

= (d.,(Ok)0 ff.,(Ok)O) H'(k)

= _(Ok)l(Ok, k)--_o(dk)

0

20

25

30

_'(k)x(k) = ,:,(O_)A_(k)- _,(k),_(d_)

From Eq. (25) and the above expressions it follows that

dO'(k + dT_'(k)
l'k)v,,,(k + 1) + ----'--ZT--_x(k)=

dt

where

a,_(k) (s8)

amR(k) _=

&(k + lfiS,_(tk+,) +&(k)A,,,(k)--&(Ok)_,,,(dk)

_(k + 1)[&(k +l)'(k + 1,k)+ 28,,(tj,+,)] + [&(tk+,)+ g;(Ok)] [v(k)- v(O +

+ [g;(k + 1)+ _w(tk+l)]_,_(tk+l)l(tj,+l,k)

_(k)ZX_(k) )
...............................

d.,(k + 1)&(k + 1)/o(k + 1,k)+ [&(k + 1) + &(k)][v(k)- v(O+)]
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+

_(k + 1) [_(k + l)[Sl(tk+1)- _t(dk)] + 2&,(tk+1)] (89)

+ [,L(t,,+,)- L(d,,ll[,,(k)- v(Ol)](9o)

+ &(k + 1)_(tk+l)lo(tk+l,k)- 2A_(k)6_(dk)aL.Ckl

+ 0 )
&(k + 1)_(tk+l)cSl(tk+l) + _.,(tk+l)_.,(tk+l)lo(tk, k -- 1) + _5_(dk)5,,(dk)

.iR(k)

+ o )....................................... (91)

In the above, a°R(k) denotes the deformation independent part of the Coriolis

acceleration, while alma (k), a_R (k) and a_R (k) denote the parts whose dependency on

the deformation is up to first, second and third order respectively.

20 C.4 Expression for b._(k)

25

We have from Eq. (28) that

d[IP(k),
a(jk) =

Since,

¢'(k'Jk)]Vm(k) = fF(k)fl(k) + ¢'(k, jk)V(k)
dt

i(k,jk) = &(k)l(k,jk) + 8.(jk)

30

it follows that

_(jk) =

Also from Eq. (31) we have that

_,(k)5,_(jj,)

&(k)[&(k)l(k,jk) + 2g.(jk)]

&(jk)fl(jk)w(jk) )
b(j_) .......................................

m(jk )&(jk)&(j_)p(jk)
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Thus,

b(jk) + M,(jj,)a(jk)

&(jk )J (jk )w(jk ) + J (jk )_o(k )if,,,(jk ) "t- m(jk )_(jk )&( k ) [&( k )l( k, jk ) + 28_(jk)]

m(jk){ - _(jk )&( k )if,.,(jk ) + _,,,(jk )Sw(jk )P(jk ) + _.,(jk )&( k )p(jk )

+go(k)[_o(k){l(k, jk) + p(jk)} + _,,,(jk)P(jk) + 25_(jk)] }

(92

10

15

From Eq. (37) we write

n-(k) )bin(k) = B(k) [b(k)+ M,(k)a(k)]_=

b,_(1)

b_

bt

(ga)

We develop expressions for bk(r), bk and bk in Eq. (93) below. From Eq. (92) and Eq. (93)

we have that

2O

n.(k)

b_(r) = y_-w*(k)X¢(k),.g(jk)w(k)
j----lk

25

3O
+ w'(k)[m(j_,)_(jk)._¢(k)l × [-i(k,jk)w(k)+ 2_.(jk)]

+ m(Jk)[%(k)] p(3_,)tS,_(j,)w(k)

- m(jk)w*(k)Zy¢(k)[- {i(k, jk) + [_(jk)}w(k) + 2ti.(jk)]

J " " " " " " _(jk)w(k)p(jk) + 5J(k)_,_(jk)p(jk)}+ m(jk)[%(k)] {_5,,(.TJ,)/5,_(gk)pOk)+
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= E_.___)-_-(k)i,;(k)J(j.)_o(k)

(o4)

-_o'(k)[m(jk)_(j_)_';(k)Vi(k,J_)_(k)(05)

+ w'(k)rn(jk)_¢(k){'l(k,jk) +/3(jk)}w(k)(96)

+ 2 _o'(k)[rn(j_)_(j_),V,(k)l __(jk)(07)

- 2_'(k)m(jk)_,i,(k)_(jk)(98)

-[£¢(k)]*J(jk)_(jk)w(k)(99)

+ m(jk)[_/_(k)]'f_(jk)_(Jk)w(k)(100)

-t- 6_(jk )" ff (jk )_( k )w( k )(101)

-_i_(j_ )" _( k)ff (j k)a_( k)(102)

+ m(jk)_5...(jk)'_/_(k)p(Jk)_(J_,)(103)

+ lf.,(jk)°ff(jk)_i.(k)_.,(Jk)(104)

• j I _ .+ m(jDt%(k)l 6,.(2k)&(k)p(jk)(105)

+ m(jk )[%i(k )]*&( k )_,,,(jk)P(jk )(106)

Using the modal integrals defined in Section C. 1, the above terms can be expressed

in the following manner:

1971+ 102 = -w'(k) __, T_(s.r)il(s)
$----1

1 _[grl+_+lm=-_,'(k} E,"2_ h, [r_(,.,)+w_(_.,)+w_'(,.,)],i(,)

94 + 95 =-_'(k)S_(_)_(k)

96 = -w'(k)Nk(r)w(k)(107)
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103+ 104= _._=(k)_.'_k)Tak(q,r,s)_(q)il(s )

100 + 105 = 106
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98 + 100 + 105 + 106 = -2 w*(k)Z_": (k) Fk(s,r)il(s)Using these, it follows that

where

= -w*(k)[Sk(r)+ N_(r)]w(jk)-w'(k) _. Qk(r,s)fl(s ) + _.
j=s t/=l

,,re(k) ,,.,(k)

-w*(k)[Sk(r)-I- ik(r)]w(jk)-4- Z E T3k(q,r,s)fl(q)¢l(s)
q=l $----1

n.,(k)

-w'(k) _. [Tk(s,r) + T_(s,r) + W_(r,s) + Wk(s,r) + 2F_(s, rl]fl(S)
j=s

.m(k) n,,,(_) .,,,,{k)

__. Tak(q,r,s)il(q)fl(s)

(lO8)

Qk(r,s) _ T_(s,r) + Tk(s,r) + Wk(r,s) + W_(s,r) + 2Fk(s,r) (109)

Once again from Eq. (92) and Eq. (93) we have that

,,.(k)

&(jk)ff(jk)W(jk) + ff(jk)g:(k)g_(jk) + m(jk)_(jk)&(k)[&(k)l(k, jk) + 2gv(jk)]
j=lk

+m(jk)l(jk){ -- p(jk)&(k)_(jk) + &(k)[&(k){l(k,jk) + P(jk)} + 2_v(jk)]

+_,o(jk )_(jk )P(jk ) + _,,(jk )&( k )p(jk ) + £a( k )_,,,(jk )p(jk )}

25
= _='(k 2 5:(k)[ff(jk)- m(jk)(f_(j,)l(k,jk)+ l(jk)_(k,j_)+ l(j,)l(k, jk))] w(k)(ll0)

-2 m(jk)[i(jk) + _(jk)] _(jk)u(k)(111)

-J(jk)_(jk)w(k)(112)

30
+ 6_(j_)O'(k)w(k)(ll3)

+ i(jk)m(j,)O(jk)6_(jk)w(k)(ll4)

+ O(k)fl(jk)6_(jk)(ll5)

+ _(jk)fl(jk)_(jk)(ll6)
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+ i(jk)m(jk )_,_(jk )_,o(jk )P(jk )(117)

+ m(jk)l(jk)L(jk)&(k)p(jk)(ll8)
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+ m(jk)l(jk)&(k)_(jk)p(jk)(llg)

Once again, using modal integrals, the above terms can be reexpressed in the

following manner:

112 + 113 + 114 + 118 + 119

116 + 117

This results in the following expression

b_ =

110 -- w*(k),.7(k)w(k)

r ]
n,.(k)

= _ Kk(r)0(r)w(k)
r----1

..,(k)

115 = co(k)_ R_(,)O(,)
r----1

,,.,(k) ,,.,(k)

= E E n_(,,,)_(,)0(_)
r=l s=l

,,,.(k)

co(k)cr(k)_(k)+ _ [2/_(,) + K%)] 6(,)_(k)
rml

,_,.(k) ,_,.(k) ,,,.(k)

+co(k)_ R_(,.),_(,.)+_ _ R%,_),_(,')O(_)
r=l r--1 s=l

(120)

(121)

25

Using Eq. (92) and Eq. (93) it also follows that

n.tk)

b_ = _ --m(jk)_(jk)co(k)5,._(jk) + m(jk)co(k)lco(k){l(k,jk) + P(jk)} + 2_(jk)]
j-----lh

+m(jk)_(j_ )$_(jk)p(j_) + m(j_)$_(jk)_(k)p(j_) + m(jk)co(k)_,_(jk)p(jk)

30
= E_'=(/'2--m(jk)_(jk)co(k)5,,,(jk)(122)

+ m(jk)co(k)co(k){l(k,jk) + p(jk)}(123)

+ m(jk)_,,(jk)6_(jk)p(jk)(124)

+ 2m(jk)co(k)_(jk) (125)
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+ m(jk )_,(jk)&(k)p(jk )(126)

10
and thus

b_ =

+ m(jk)&(k)_,_(jk)p(jk)(127)Using the modal integrals we have that

123 = m(k)&(k)&(k)p(k)

_,m(k) ,_m(k)

124 = m(k) _ _., L(r,s)_(r)¢?(s)
r=l s=l

,,..(k)

122 + 125 + 126 + 127 = 2_(k) Y_ Sk(r)r}(r) (128)

,_m(k) ,,re(k) ,,,,,(k)

m(kl_(kl_(klp(k)+ _(k) _ Ek(,)_(,) + re(k) _
r=l r=l s=l

L(r,s)il(r)_(s)

(129)

15

20

Putting together Eq. (108), Eq. (121) and Eq. (129) we have that

-w'(k)[S_(1) + J?(1)]w(k)

-_.(k) [s_(n.(k)) + J_(n_(k))]_(k)
b_(k) =

m(k)_(k)_(k)po(k)
• y

b°(k)

25

3O

+

-w*(k) E'_: (k, [Qk(1,s)il(s) + {S_(1, s)+ ,J'_(1, s)}r/(s)]

-_-(_)z:::_,[o_(_(_),_)_(_)+{s_(_(_),_)+_:(_.(_),_)},(_)]

+_(klR_(_),i(,)]

&(k)[m(k)&(k)p_rl + 2Ekr)]

b_k)
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+

(x3o)

0

0

E_k) E_ k) E_ k) P_(q, r, s)Tl(q)_(r)_(s)

0

b_(k)

20

25

30



CONTROLLING FLEXIBLE ROBOT ARMS USING A HIGH SPEED
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ABSTRACT OF THE INVENTION

A robot manipulator controller for a flexible manipulator arm having plural bodies con-

nected at respective movable hinges and flexible in plural deformation modes correspond-

ing to respective modal spatial influence vectors relating deformations of plural spaced

nodes of respective bodies to the plural deformation modes, operates by computing ar-

ticulated body quantities for each of the bodies from respective modal spatial influence

vectors, obtaining specified body forces for each of the bodies, and computing modal

deformation accelerations of the nodes and hinge accelerations of the hinges from the

specified body forces, from the articulated body quantities and from the modal spatial

influence vectors. In one embodiment of the invention, the controller further operates by

comparing the accelerations thus computed to desired manipulator motion to determine

a motion discrepancy, and correcting the specified body forces so as to reduce the motion

discrepancy.

The manipulator bodies and hinges are characterized by respective vectors of

deformation and hinge configuration variables, and computing modal deformation accel-

erations and hinge accelerations is carried out for each one of the bodies beginning with

the outermost body by computing a residual body force from a residual body force of

a previous body and from the vector of deformation and hinge configuration variables,

computing a resultant hinge acceleration from the body force, the residual body force

and the articulated hinge inertia, and then, for each one of the bodies beginning with

the innermost body, by computing a modal body acceleration from a modal body ac-

celeration of a previous body, computing a modal deformation acceleration and hinge

acceleration from the resulting hinge acceleration and from the modal body acceleration

transformed by the body to hinge force operator. The residual body force is revised

based upon the resultant hinge force. The modal body accleration is revised based upon

the modal deformation and hinge acceleration.
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COMPUTE MODAL MASS MATRICES OF ALL BODIES]
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COMPUTE ARTICULATED BODY INERTIA FROM THAT OF

PREVIOUS BODY AND FROM MODAL MASS MATRIX

COMPUTE ARTICULATED HINGE INERTIA FROM

ARTICULATED BODY INERTIA

COMPUTE ARTICULATED BODY TO HINGE FORCE

OPERATOR FROM ARTICULATED HINGE INERTIA

COMPUTE NULL FORCE OPERATOR FROM

ARTICULATED BODY TO HINGE FORCE OPERATOR

FIG. 2



I BEGIN AT OUTERMOST BODY AND HINGE I

- i
COMPUTE RESIDUAL BODY FORCE FROM THAT OF PREVIOUS

BODY, FROM MODAL GYROSCOPIC FORCE AND FROM THE
DEFORMATION / HINGE CONFIGURATION VECTOR

t

I OBTAIN BODY FORCE ON CURRENT BODY I
t

COMPUTE RESULTANT HINGE FORCE FROM BODY FORCEI
AND FROM RESIDUAL FORCE I

t

I
I REVlSE RESIDUAL BODY FORCE BASED UPON RESULTANTFORCE AND THE BODY TO HINGE FORCE OPERATOR

COMPUTE RESULTANT HINGE ACCELERATION FROM I
RESULTANT BODY FORCE AND HINGE INERTIA I

f
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COMPUTE MODAL BODY ACCELERATION FROM MODAL
BODY ACCELERATION OF PREVIOUS BODY USING THE

INTER BODY TRANSFORMATION OPERATOR

t
COMPUTE DEFORMATION / HINGE ACCELERATION FROM

RESULTANT HINGE ACCELERATION AND FROM THE
MODAL BODY ACCELERATION

t
REVISE MODAL BODY ACCELERATION BASED ON THE

DEFORMATION / HINGE ACCELERATION AND THE MODAL
CORIOLIS AND GYROSCOPIC ACCELERATION

t
GO TO NEXT L.

_IBoDY AND HINGEI_

FIG. 3

NO{ LAST BODY
AND HINGE ?

OUTPUT DEFORMATION / HINGE I

ACCELERATIONS OF ALL HINGES / BODIES I



BEGIN AT FIRST TIME STEP t ll

COMPUTE MODAL SPATIAL VELOCITIES CORI IS AND
GYROSCOPIC ACCELERATIONS AND GYROSCOF FORCES

FROM THE MODAL DEFORMATION VELOCITIES AND FROM
THE MODAL DEFORMATION AND HIN(

ACCELERATIONS OF THE PREVIOUS STEP

i
COMPUTE ARTICULATED BODY QUANTITIES INCLUDING

SIMPLIFIED ARTICULATED BODY QUANTI ES

(FIG.?.)
E

OBTAIN BODY FORCES #OR CURRENT TIM" STEP

COMPUTEDEFORMATION/ HINGEACCELEI
FROM BODY FORCES WITH SIMPLIFIED FORWARD

DYNAMICS ALGORITHM
(FIG.5)

i
COMPUTE ROBOT MCTION VECTORS FROM

DEFORMATION / HINGE ACCELERATIONS

COR_ YES _ NO

FORCES FOR I_--< ERROR_
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BEGIN AT OUTERMOST BODY AND HINGE I

= ,' FIG. 5 a

COMPUTERESIDUALBODY FORCE FROM THAT OF PREVIOUS
BODY AND FROM THE MODAL GYROSCOPIC BODY FORCE

AND THE DEFORMATION / HINGE CONFIGURATION VECTOR

T
COMPUTE FLEX COMPONENT OF THE RESULTANT HINGE
FORCE FROM THE FLEX COMPONENTS OF THE BODY AND

RESIDUAL BODY FORCES AND FROM THE RIGID COMPONENT
OF THE RESIDUAL FORCE TRANSFORMED BY THE MODAL

SPATIAL INFLUENCE VECTOR

T
COMPUTE THE FLEX COMPONENT OF THE RESULTANT HINGE

ACCELERATION FROM THE FLEX COMPONENTS OF THE
ARTICULATED HINGE INERTIA AND RESULTANT HINGE FORCE

T
COMPUTE PARTITIONED RESIDUAL BODY FORCE FROM THE

RIGID COMPONENT OF THE RESIDUAL BODY FORCE, THE
FLEX COMPONENT OF THE RESULTANT HINGE ACCELERATION,

THE PARTITIONED ARTICULATED BODY INERTIA AND THE
PARTITIONED MODAL CORIOLIS AND CENTRIFUGAL ACCELERATION

T
COMPUTE THE PARTITIONED RESULTANT HINGE FORCE FROM

THE PARTITIONED BODY FORCE AND THE PARTITIONED
RESIDUAL BODY FORCE

T
COMPUTE THE PARTITIONED RESULTANT HINGE ACCELERATION
FROM THE PARTITIONED HINGE INERTIA AND THE PARTITIONED

RESULTANT HINGE FORCE

t
REVISE THE PARTITIONED RESIDUAL BODY FORCE BASED UPON

THE PARTITIONED RESULTANT HINGE ACCELERATION TRANSFORMED
BY THE PARTITIONED BODY TO HINGE FORCE OPERATOR

T
I GoToNEXT L NO/ _STBODY\ YES
I BODY AND HINGE F _AND HINGE ?/ "-



I BEGIN AT INNERMOST BODY AND HINGE I

COMPUTE THE HINGE ACCELERATION VECTOR FROM THE
PARTITIONED RESULTANT HINGE ACCELERATION AND FROM

THE PARTITIONED MODAL SPATIAL BODY ACCELERATION

JE
REVISE PARTITIONED MODAL SPATIAL BODY ACCELERATION
BASED UPON THE HINGE ACCELERATION VECTOR AND THE

PARTITIONED MODAL CORIOLIS AND CENTRIFUGAL ACCELERATION

COMPUTE THE MODAL DEFORMATION ACCELERATION FROM
THE FLEX COMPONENT OF THE RESULTANT HINGE

ACCELERATION AND FROM THE PARTITIONED MODAL
SPATIAL BODY ACCELERATION

COMPUTE THE MODAL SPATIAL BODY ACCELERATION FROM
THE MODAL DEFORMATION ACCELERATION, THE PARTITIONED

MODAL SPATIAL BODY ACCELERATION AND FROM THE
MODAL DEFORMATION ACCELERATION TRANSFORMED BY THE

MODAL SPATIAL INFLUENCE VECTOR

GO TO NEXT NOBODY AND HINGE FIG. 5 b

FORM DEFORMATION / HINGE ACCELERATION VECTOR
FROM THE HINGE ACCELERATION VECTOR AND MODAL

DEFORMATION ACCELERATION OF ALL BODIES AND HINGES
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