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ABSTRACT

This paper discusses the implementation of an

adaptive acoustic echo canceler for a hands-free cel-
lular phone operating on a fading channel. The adap-
tive lattice structure, which is particularly known for

faster convergence relative to the conventional
tapped-delay-line (TDL) structure, is used in the ini-
tialization stage. After convergence, the lattice coeffi-
cients are converted into the coefficients for the TDL

structure which can accommodate a larger number of

taps in real-time operation due to of its computational
simplicity. The conversion method of the TDL coef-
ficients from the lattice coefficients is derived and the

DSP56001 assembly code for the lattice and TDL
structures is included, as well as simulation results

and the schematic diagram for the hardware imple-
mentation.

1.0 Introduction

Adaptive signal processing for echo cancellation
structures has a variety of usages in telecommunica-

tion applications due .to multi-path and impedance
mismatches in communication channels. Echo cancel-

lation is required especially for full-duplex voice
transmission where the microphones and speakers are

located in places such that an acoustic echo is created.
One such application is a hands-free cellular phone

which allows full duplex operation by preventing the

phone from breaking into oscillations [ l ]. The ability
to provide hands-free operation of cellular (mobile)
phones offers users a safer and more convenient way
to use their cellular phones while driving a car as

shown in Figure 1.

In the cellular phone application, there needs to be
two echo cancellers in the system, one to cancel the

phone line (electrical) echo and the other to cancel the
acoustic echo, which is the signal from the loudspeak-
er echoed back into the microphone. In this paper only

the acoustic cancellation problem is considered. Fig-
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Figure 1 Depiction of a proposed hands-free
cellular phone system

ure 2 shows the model and the hardware schematic of

the acoustic echo canceller. The adaptive algorithm

shown as the adaptive digital f'flter (ADF) block in
Figure 2 minimizes the error signal which is the dif-
ference between the actual transmitted signal and the

estimated transmitted signal by the linear combina-
tion of the received data set. When the error terms are

minimized the adaptive f'dter impulse response is said
to have converged to the impulse response of the echo

paths.
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Figure 2 Block diagram of acoustic echo canceller

An implementation of the acoustic echo canceller

for a speakerphone application to improve peffor-
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mance was introduced by one of the authors [2]. The
previous paper uses the DSP56200 cascadable adap-

tive FIR filter peripheral which implements the con-
ventional TDL structure with the least-mean-square

(LMS) algorithm for adaptation [3]. An acoustic echo
canceller needs an initialization period (training) be-
fore the phone can work properly for full-duplex op-

eration. This may require up to 5 seconds of
initialization time depending on the convergence

property of the adaptive algorithm. Although the TDL
structure [3,4] is a simple and commonly used sto-
chastic approximation-type algorithm, the conver-

gence time is slow, especially if the training signal is
narrowband or has band-limited spectral content.
Thus, pseudo-random noise that has a broad frequen-

cy spectrum is normally used for initialization. How-
ever, this type of random noise creates problems to
the user who will be able to hear it during the initial-

ization. The user will most likely interpret this noise
to be a bad (or no) connection and will hang up before
initialization is complete. In adaptive filtering appli-

cations such as hands-free cellular phone, therefore,
very rapid convergence of the adaptive coefficients is

a requirement.

The lattice structure based on the adaptive LMS

algorithm has been widely accepted for applications
where rapid transient adaptation is required and/or the
eigenvalues of the input signal are highly disparate

[5,6]. The lattice structure can be interpreted to be
self-orthogonalizing which has been shown to speed
up convergence. Cellular phones are normally used
inside a car which has smaller acoustic reverberation

and echo paths compared to the size of a office or con-

ference room in which a conventional speakerphone
must function. Thus, a fewer number of taps, which
represents the time-window for the adaptive approxi-
mation, than the conventional TDL structure can be

used for the adaptive process. However, due to the
computational complexity of the lattice-LMS algo-

rithm it is hard to apply a large number of coefficients
(stages) to accommodate 0.1 second (which is a time

window of 800 taps) of acoustic echo delay in real-
time. Thus, the lattice structure is used only for the
initialization stage and the coefficients are converted

to the TDL structure. The TDL structure is computa-
tionally efficient and can accommodate larger number
of coefficients in real-time to cancel the long delayed
echoes.

2.0 Acoustic-Echo Canceller Model

Depending on the characteristics of the car's inter-

nal acoustics, the echo may be sufficiently strong,
such that this echo must be removed at the micro-

phone input. The term used to describe the amount of

echo which can be removed by the echo canceller is
Echo Return Loss Enhancement (ERLE) and can be
defined as [2]:

[-E [y (k) 2] ]ERLE (dB) = 10log 10[__e (k) 2] (1)

where E[y (k) 2] and E [e (k) 2] are the expected

values of microphone input signal power and uncan-
celed echo signal power, respectively, as shown in

Figure 2. The desired maximum amount A goal for
ERLE is 30 dB due to ambient noise which is not cre-

ated by the echo itself [3].

Due to advances in CMOS process technology, in-
expensive adaptive digital f'dters are readily available.
The DSP56001 can run upto 830 taps of a TDL-LMS

adaptive filter at 8 kHz samples per second with 24-
bit data and coefficients. As is shown in the following
section, ERLE is a function of many parameters in-

cluding the number of taps and the precision of the co-
efficients.

3.0 Echo Cancellation Algorithms

In this section, two adaptive algorithms are de-
scribed with particular emphasis on echo cancellation
applications.

3.1 Adaptive TDL-LMS algorithm

Figure 3 shows a block diagram of the adaptive
echo canceler model which uses a TDL structure to

provide adaptive coefficient adjustment. If h i (k) are

the filter coefficients, Rxx (k) is the auto-correlation

matrix of the received line signal x(k) at time k, and

Rxy (k) is the cross-correlation vector between the re-

ceived signal x(k) and the echo signal y(k), then the
optimum f'flter coefficient vector that minimizes the

expected value of e 2 (k) in Figure 3 is given by [3]

-1
il (k) = Rxx (k)Rxy (k) (2)

where H (k) is an N-element vector consisting of the
filter coefficients at time k as

H(k) = Iho(k) hi(k) ...... hN_l(k)l T (3)

and T denotes matrix transpose. The coefficients

h i (k) are updated to minimize the error signal (resid-

ual echo), e(k), which is the transmitting line signal
from the echo canceler, e(k) can be expressed as

e (k) = y (k) - H T (k) X (k) (4)

where X(k) is the input data vector given by
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Figure 3 The tapped-delay-floe (TDL) structure

xT (k)  x(k) 1) ...... x(k-U+ 1)-] (5)

The LMS algorithm, which is one implementation

of the steepest decent method, updates the weight
vector, H(k), at each k via the following relation

H(k) = H(k- i) +ixe(k)X (k) (6)

where rt denotes the loop-gain factor (convergence

parameter). The adaptive algorithm forces the error
term toward zero. When the error terms are mini-

mized, the adaptive filter impulse response is said to

have converged to the impulse response of the echo
path.

Convergence properties and stability aspects of

the LMS algorithm have been well documented [4,7].
The general conditions in practice for the loop-gain
factor is

1
0<IX< _ (7)

tr [R_x]

where tr [Rxx ] denotes the trace of Rx,. The opti-

mized DSP56001 assembly code for the TDL-LMS

algorithm in (6) can be written as[8]:

clr a xO,x:(rO)+y:(r4)+,yO ;clear a,xO=x(n)
move x:(rO)+,xly:(r4)+,yO ;xl=x(n-1),yO-h(O)
do #N/2,1ms ;doN/2 times
mac xO,yO,a yO,b b,y:(r5)+ ;a=h(O)*x(n),b-h(O)
macr xl,yl,b x:(rO)+,xOy:(r4)+,yO;b=h(O)+e*x(n-1)

mac xl ,yO,a
macr xO,yl,b

;xO=x(n-2),yO=h(1)
yO,b b,y:(r5)+;a=a+h(1)x(n-1),b=h(1)
x:(rO)+,xly:(r4)+,yO;b=h(O)+e*x(n-1)

;xO=x(n-3),yO-h(1)
lms

move b,y:(r5)+ ;save new coeffs.
move (rO)-nO ;pointer update

where r0 is the register pointing to the input buffer
which is modulo-addressed to accommodate 768 (N)

current data points. R4 and r5 registers are pointing to

the even and odd numbered current adaptive coeffi-
cients locations, respectively. The Modifier Registers,

m0, m4 and m5 are set to be 767 (N-l), 383 (N/2-1)

and 383 (N/2-1), respectively. This TDL-LMS algo-
rithm requires only 2N+2 instruction cycles per sam-

ple period. When 768 taps are used for an acoustic
echo-canceler the processing requirement at 8 kHz of
sampling rate is 12.3 million instructions per second
(MIPS).

3.2 Adaptive Lattice-LMS Algorithm

The lattice predictor (often called as one-step pre-
dictor) structure was originally proposed by Itakura

and Saito [9] for speech analysis. The one-step pre-
dictor has also been extended to a noise-canceler con-

figuration as shown in Figure 4 [5]. If the inputs x(k)

and p(k) are stationary, then it can be shown that the

respective steady-state values of e2 (k) and v_t (k) for

TDL and lattice models are the same. The f'dter model

in Figure 4 consists of 3 stages which can be extended
to M stages for mathematical analysis purpose. Its up-

per half (solid lines) is simply the (one-step) predictor
model [6]. The lower portion (dashed lines) consists

of M additional coefficients, vr 1 _<l < M. The basic
idea involved in obtaining an adaptive algorithm is to

continuously adjust the lattice weights vl(k) and

v I (k). The v t (k) are adjusted to minimize the instan-

taneous error e_ (k) + w_ (k) via the one-step predic-

tor LMS algorithm as

vt (k+ 1) = vt(k) + ( l - 13)[et (k) wt_ t (k) + wt(k) • z_t (k)I (8)

for 1 < l < M, which we refer to as the lattice-LMS

equation for a one-step predictor. In practice, a conve-
nience choice for a 13is 13 = 1 - Ix in (7)•
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Figure 4 Lattice structure for noise-canceller

The lattice filtering computation at each stage

gives successive orthogonalization process. Thus, the
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successive coefficients can be optimized independent

of coefficients at other stages. As a result of this or-

thogonalization, the convergence rate of the lattice-

LMS algorithm is not restricted by the eigenvalue

structure of the input signal, which is not the case for

the TDL-LMS algorithm.

Next, another set of coefficients, v I (k) in Figure 4

provides the noise-cancelling substraction paths. The

individual coefficients are adjusted to minimize the

filter error s 2 (k) using a technique similar to (6).

Thus we have [10]

where I1 is a convergence parameter. Again from Fig-

ure 4 it follows that

st(k ) = St_l(k)-vi(k)Wl_l(k+ l) (10)

with so (k) = p (k). Substitution of(10) into (9) leads

to

vi(k+l) = v/(k)-21,tst(k)Wl_ l(k+l) (11)

for 1 < l < M, The DSP56001 assembly code for the

lattice-LMS adaptive filter algorithm in (9)-(11) can
be written as:

dofilt

move y:xdatain,b
move y:ydatain,a
move b,x:(rO)+ a,y:(r6)
move b,x:(r2)
do #order,endloop
move b,y:(r7)
move y:(rS),yO
move x:(r2),xl
macr -yO,xl ,a
move x:(rO),a
move b,yl
macr -yO,yl ,a
macr -xO,yO,b

move a,x:(r2)
move x:(r3),xl
mpy xl,xO,a
move a,xl

macr xl,yl,a
move x:(rO),xl
mpy xl,yO,a
macr xO,xl,a
move a,xl
macr xO,xl,a

move a,y:(r4)+
endloop

move x:(rO)-,a
move y:(r6),yO

; read in x-input
; read in y-input
; put input in array
; move input to memory

; store previous err. in memory
; put v' in yO for calculation

y:(r6),a ; put wn in xl,s state into a
y:(r4),yO ; a=Sn=Sn.l-v'wn(n+l),v in xO
a,y:(r6) ; put wn in a, store sn

; move error into y get en-1
a,xO ; a=Wn-V°en=wn+l, wn into xO
a,x:(rO)+ ; b=en+l=en-V'Wn,Store Wn+l

; store wn+l
; move 2*p. into xl

y:(r6),yl ; a=2"i.t'Wn,s state into yl
y:(r5),a ; move a into xl, k' into a
x:(r7+n7),yO ; V'n.l=v'+5.2*mu'w n
a,y:(r5)+ ; move Wn.1 into xl, store kl
b,xl ; a=Wn.l*en.l(n-1 ), e into xl
x:(r3),xO ;a=Wn.len.l(n-1 )+enwn,2p.inxO
y:(r4),a ; move a into xl, k into a

y:(r7)+,yO ; a=Vn(new)=Vn(old)+2i.t(a)
; store Vn(new)

; output from filter

; output Sn

move a,y:filtout

move yO,y:errout
jmp dofilt

where r0 points to the stored filter coefficients, w n.

The buffer for r0 is 65 (M+I) locations and is modulo

addressed. The extra location is used because new

values of the filter for the next time period are calcu-

lated before they are used in the present time period.

The r4 and r5 registers point to v and v', respective-

ly. Both are buffers of 64 (M') locations and are mod-

ulo addressed. The r7 register points to the e n values

and is 128 (2M) locations to store two time periods of

error values. The Modified Registers are used; m0 is

set to 64 (M); m4 and m5 are set to 63 (M-l); and m7

is set to 127 (2M-1). This stage requires only 1280 in-

struction cycles per sample period, which yields a

processing requirement of 10.25 MIPS at 8 kHz of

sample rate.

4.0 Echo Characteristics of Car Interior

The acoustic path can be considered as a multi-re-

flection medium with an impulse response duration.

Thus, the typical acoustics inside a car may have prac-

tically an infinite number of reflections which have

different acoustical f'fltering effects with an exponen-

tially decaying reverberation effect superimposed. In

a typical car with reasonable acoustic treatment the
reverberation time can be 0.1-0.15 seconds to reach

the reverberation signal level decreased by 10 - 20 dB.

However, when the car is moving, the background

noise level due to the noises from engine and road

may be high enough that the background noise can not

be distinguished from uncanceUed echoes due to an

insufficient number of taps in the adaptive filters.

Echo characteristics can be measured by collect-

ing reverberation and echo responses synchronized by

an impulse output signal. The impulse can be generat-
ed in software and convened into an analog signal by

a D/A convener followed by amplification to yield

the audible impulse signal. Using a microphone, the

residual analog signal can be converted to a digital

signal by an A/D converter such as the DSP56ADC16

(16-bit Sigma-Delta A/D converter). Thus, an echo

signal can be characterized by the impulse response of

an acoustic chamber, or precisely, the paths from the

loudspeaker to the microphone.

In this paper a simulated impulse response is used

in order to characterize the convergence properties of

both TDL and lattice structure. Figure 5 shows a sim-

ulated impulse response of a medium size car.
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Figure 5 Impulse response of a simulated echo path

6.0 Simulation Results

A computer simulation was performed on a SUN-
3/160 workstation, which modeled the system shown

in Figure 2. It was assumed that the received signal
was white Gaussian noise. The TDL and lattice algo-
rithm in (7), (I0) and (1 I) were used for the simula-

tion. The variables in the simulation were IX,N, and
M.

It has been shown that the convergence parameter

ix, controls the convergence rate and the mean-

square-error (MSE) of the adaptive system [4]. The
constraints on the choice of Is are given by (7). The

lattice-LMS and TDL-LMS algorithms are compared

in terms of the MSE criteria which corresponds to the
uncancelled echO. Figure 6 illustrates the MSEs of the

algorithms when Is = 0.001, N = 768 and M = 64.

Note that the lattice-LMS algorithm converges much
faster than the TDL-LMS algorithm. However, since
the lattice structure used only 64 stages compared 768

taps for the TDL structure the uncancelled echo (er-
ror) is much larger than the counterpart.

i -10 N=78B)

0 200 400 600 _00 t 000 1250

in nneec

Figure 6 Mean-square errors for the lattice and TDL

After fast initialization using the lattice-LMS al-

gorithm as shown in Figure 6, the coefficients are
converted into TDL-LMS coefficients. Consider the

equivalent M-TDL taps, defined in (3), from a set of

M-lattice coefficients in (8) and (11). When YM (k) is

an estimate of y(k) as shown in Figure 3, the corre-
sponding error can be written as

M-I

SM(k ) = y(k)-_(k) = y(k)- _ hi, MX(k-i)(12)
i=0

where hi, M denotes the ith equivalent TDL tap when

M is the total number of taps. Minimizing e_ (k) with

respect to the hi, N (new notation of h i for the follow-

ing derivation purpose), we can derive the following
recursive algorithm to find a set of equivalent TDL
taps using matrix bordering technique [11].

hi, L+ 1 = hi, L +V L+I_L+I_i, L ,i=O, 1.... L (13)

where

O_i,L+ 1 = _i.L+VL+I_L+i_i,L ,i<L+l (14)

and 0tL+I,L+ 1 = -VL+ 1 ,i=L+l .

The recursion algorithm in (13) and (14) has to ex-

tend from L=I througbL=M-1 to rind a set of M-TDL
taps. The rest of the N-M coefficients in the TDL
structure should also be initialized with zero before

starting the adaptive process with the TDL-LMS al-
gorithm.

Figure 7 shows the ERLE plots (defined in (1)). In

order to smooth the output of adaptive filter the fol-
lowing smoothing functions were used [12].

E[y2(k)] = _E[y2(k -1)] + (1-l])y2(k) (15)

E[eZ(k)] = _E[eZ(k-1)]+(1-[3)e2(k) (16)

where 13=0.99 is the smoothing parameter. Note that
the ERLE increases very rapidly at the initialization

period. After the adaptive process is converted from
lattice to TDL structure at t=150 ms, the ERLE in-

creases slowly to the optimum solution. A total of

10,000 samples, corresponding to 1.25 seconds, were
plotted to show the adaptive process when I.t = 0.001,
N=768 and M = 64.
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Figure 7 ERLE of the hybrid structure

7.0 Hardware Implementation Set-up

A block diagram of the hardware testimplementa-
tion is shown in Figure 8. The SUN-3/160 worksta-
tion downloads assembled software into the

DSP56001 Application Development System (ADS)
which, in turn, controls the Ariel ADC56000 card.

The ADS contains a DSP56001 general purpose digi-

tai signal processor chip which runs software in real

t92
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time. The Ariel card has dual A/D and D/A convert-

ers, which convert the signals of the loudspeaker, mi-
crophone and the receive/transmit lines. This
implementation allows real-time testing of the adap-

tive filter concepts discussed previously.

The DSP56001 is a Harvard Architecture digital
signal processor which has separate program and data

memories as well as buses. It currently executes one

instruction in 75 ns which means a 768-tap TDL-LMS
adaptive filter can be performed in only 115.2 Its.
This 13.5 MIPS rating is somewhat deceiving be-
cause, due to the dual buses and memories, more than

one operation occurs in each instruction cycle.

ADC$6OOOAriel /_ DSP56001 H
/ Appllcathm SUN 3/160

Board .J Development ___Work,statlon
l_ System

D/A A/D

,
d ]
Mlcrophmle

Figure 8 Hardware system set-up for experiment

8.0 Conclusions

The feasibility of implementing a full duplex
hands-free cellular phone using one DSP56001 to

cancel acoustic echo has been presented. Fast conver-
gence has been achieved during the initialization

stage with the lattice-LMS algorithm. After the lattice
coefficients are converted to the conventional TDL

structure which has 768 taps, better than 30 dB of
acoustic ERLE can be theoretically achieved using a
single DSP56001 by taking advantage of the 24-bit

coefficient precision. The experimental set-up which
will be used to verify these predictions was also de-
scribed. It is hoped that sufficient and fast echo can-

cellation performance can be achieved by controlling

the hybrid timing and the convergence parameters
with this hybrid (lattice-TDL) structure.
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