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ABSTRACT*

Codebook Excited Linear Prediction [1] is a

popular analysis by synthesis technique for quantiz-
ing speech at bit rates from 4 to 16 kbps. Codebook
design techniques to date have been largely based
on either random (often gaussian) codebooks, or on
known binary or temary codes which efficiently map
the space of (assumed white) excitation codevectors.
It has been shown that by introducing symmetries
into the codebook, good complexity reduction can
be realized with only marginal decrease in perfor-
mance. In this papers we consider codebook design
algorithms for a wide range of structured codebooks.

INTRODUCTION

This paper considers CELP codebook design al-
gorithms for a variety of structured codebooks. A
structured codebook has certain properties which en-
able it to be searched faster than unstructured code-

books. The design algorithms are applied to CELP
coders, but are sufficiently general to be applied to
other distortion measures as well.

Consider the CELP analysis structure shown in
Figure 1. The long term (quantized) inverse filter
(with 2q + 1 non-zero taps), B(z), for subframe n
is given by:

q

B(z) = 1 - Z bkz-(M+k) (1)
k=-q

and the short term (quantized) inverse filter (order
p), A(z), for subframe n is given by:

P

A(z)= 1-- Zakz-k
k=l

(2)

* This work has been sponsored by the Telecommunications

Research Institute of Ontario (TRIO).

The perceptual weighting filter, which attempts to
obtain a larger signal to noise ratio in inter-formant
regions is given by:

Ap (z//3) (3)
W (z) - Ap (z/?)

where 3' and /3 are optimized based on subjective
measures, and Ap(z) is the optimum unquantized
inverse filter (for subframe n).
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Figure 1: CELP Search Procedure. The codebook
dimension, or subframe size is K_. The index

n is over all subframes, and the index k is over

all elements of a particular subframe. Thus,
8n,k is the k th element of the r_ th subframe.

Typically, Ap(z) is determined to minimize the
open loop residual energy, and B(z) is determined
(closed loop) to minimize the noise weighted error
before determination of the codebook excitation (the
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energy in Y,_,k)- The determination of these param-
eters and complexity reduction techniques based on
the structured codebooks is beyond the scope of this
paper. The interested reader is referred to [2, 3, 4,
5, 6]. Overlap is often used to reduce block coding
edge effects. That is, components of the excitation
vector near the end of a subframe have little effect on

the current subframe, but may adversely affect future
subframes. Overlap considers the influence of these
elements by letting the filters ring for Ko samples
after the last sample in the excitation vector.

The weighted mean squared error for a particular
codebook index I over a subframe (at subframe index
n) of dimension Kc with overlap Ko is given by:

E(n/)
I

T 2G(I),TH v(l)= y,_ y,_ - ,_ .r,_ ,_

+ ¢U_(I)2",rtl)TI'ITI'I v(l) (4)

where the Kc + Ko by Kc dimensional lower trian-
gular Toeplitz matrix H,_ represents the zero state
filtering operation (of W(z)/A(z)). The I th excita-
tion (column) vector v(/) is of dimension Kc, and the

(column) vectors Yn and _(t) (= G_)H,_v(t)) are of

dimension K(= Kc + Ko).

The codebook design algorithms are all based
on the Generalized Lloyd Algorithm (GLA) [7, 8, 9]
and require a sufficiently rich training sequence to
design the codebook. Due to the long memory in
i/B(z), the algorithm is not guaranteed to converge
to a local minimum. That is, the set of training
vectors 7- = {y,_} changes from one iteration to the
next. The problem arises because (for simplicity)
wc assume the training vectors do not depend on the
codevectors. Due to the long and short term predictor
memory this is not the case. In practice, convergence
is similar to the GLA, although the average weighted
mean squared error has been observed to increase
(slightly) after some iterations.

The optimum codebook is defined as that which
minimizes Equation 4 over the whole training se-
quence. We minimize:

N-1

n=0

N-1

=
n=0

+G2nV(I")THTH,_ v (1")) (5)

The index n is over all training vectors (y_), l_
is the optimum codebook index for training vector

(or subframe) n, v (1") is the optimum codevector

(for subframe n) and G,_ is the optimum gain for

codevector v (1-) (Gn = G_")). The codebook design

techniques are all based on minimization of Equation
5. All design techniques assume training vector y,_
is not a function of the current, or past codevectors.

In Section 2 we consider general codebook de-
sign. The codebook is given by Lc distinct K¢ di-
mensional codevectors. This section also considers

codebooks in which the codevectors have many zero
elements.

GENERAL CODEBOOK DESIGN

We now discuss techniques whereby near opti-
mal codebooks may be design for general, or sparse
codebooks. The technique is based on a vector quan-
tizer design algorithm using the noise weighted mean
squared error distortion measure. Due to the influ-
ence of previous codevectors on future codevectors
(via the long term predictor memory), only subop-
timal codebooks may be designed, (the error is not
guaranteed to decrease continually to a local opti-
mum). In practice, the average distortion usually de-
creases until a local optimum is found, then oscillates
slowly in the vicinity of that local optimum.

Unstructured Codebooks
The goal is to minimize Equation 5 over all pos-

sible codebooks of size Lc and dimension Kc. Given
a training sequence of N speech vectors S = {s,_},
and an initial codebook C(°) = {v(/)}, we analyze
the vectors using the CELP structure to obtain the

training set T(°) = {yn}. Essentially, we use the
initial codebook to partition the training sequence
(T(°)) into L_ cells, or regions R(J) according to the

nearest neighbour search, and compute new centroids
(or codevectors) for the regions. Cell j is comprised
of those subframes which have v(I-) = v(J) (the op-

timum codebook index at time n is j). Equation 5
can then be split up into Lc terms, one term for each
particular cell:

2
= _ Y,_- G,_H,_v (°) +

nE_(o)

2

yn - + ... +G,_H_v (1)

nET_0)

Yn - GnHnv(L-1)I2 (6)

where the summation indicates summation over the

region in which all codevectors are identical. Mini-
mization of Equation 6 is equivalent to minimizing
each term, since a particular codevector only influ-
ences the summation in its region. Furthermore, in
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each region (j), ?3 (l_) does not depend on n (since
j = ln. Thus we minimize (with respect to v0)):

e(J) E ( yTyn T (j)= - 2Gny_ Hnv

nET_O)

+G2v(J)THTH v(J)_ (7)

for each region j, 0 _< j < Lc. Since v (t_) = v0) is
a constant for each region and does not depend on
the index n, we may write:

nET_( )nET_O)

Jrv(3)T(_o2TGnH n Hn )v (;)
\nET_ )

-_- _j)2 __ 2_(3)v(j ) Jr V(3)T___(J)v(j ) (8)

where

and:

#(d)2= E yTyn (9)
nERO)

cO) = E G'_HTyn (10)
nE7_O)

l_(j) _ 2 T= GnH,_H,_ (ll)
nErO)

It can easily Ix: shown (differentiate with respect
to v(J)), that to minimize equation 8 we choose:

= (l_(J))-I e 0) (12)v(J)

which can be efficiently accomplished by using
Choleski decomposition. This is performed over all
j,O<j<Lc.

We will now have a new codebook (CO)), which
can be used in the CELP analysis structure to obtain
the training set 7"(1). Unlike typical VQ design

techniques, the training set 7-(1) will not be the same
as 7-(o). The above design algorithm is just a simple

extension of the GLA for a CELP type distortion
based on the above assumptions.

Sparse Codebook Design

To design sparse codebooks, we essentially want
to minimize Equation 8 (for each j), given the con-
straint that there are a large number of zero values
in the codevectors. We use the multipulse sequential

approach (for complexity reasons), and first compute
the optimum pulse location and gain (assuming one
non-zero value in the codevector) to minimize Equa-
tion 8.

We then iteratively add another pulse location,
and so on, until we have the desired number of non-
zero pulses in the codevector. After each iteration,
the pulse amplitudes are re-optimized.

To minimize:

e (j) ---- _J)2--2EO)Tv(J) Jr v(J)TI:_(J)v(J) (13)

, (Jh
for the first pulse position (ko) and amplitude tvj:° )
we minimize:

£(j,1) = #_3)2-2_'0)v(j)koko 4- vO)_'(J)ko_kokoVko(J) (14)

which has solution (for a particular position ko):

v0) _(J)ko
ko - 5(a)

-t_,koko

(15)

The first position is computed by trying all locations,
and choosing that which minimizes Equation 14.

Assuming the first pulse location is fixed, the
second location is chosen to minimize:

e (3'2) = o(J)2--2c(J)v(J) 2c(J)v (j) Jr " (J)_(J) " (j)
y ko ko -- kl k, _ko l"tkoko_ko

V (j) f2(?) V (j) Jr "V (j) F'(j) (J) (16)
Jr k, _'_ktkl k, Z k, ltklkoVko

v_o)"is not to be modified (as part of the search,If

for complexity reasons), then:

aO) _ v0) _,,0)
v(J) '_kl ko _kl ko

k, = 5(J)

l_'klkl

(17)

and:

(O._) - vO) _,(;) ,_2
e0,2) -2 ko '"k, koJ

-= O'y -- _(a) (18)
klkl

The mean squared error is minimized by maximiz-
ing the square of the second term. At the end of the
search for the second pulse position, the amplitudes
of the first and second pulse positions can be opti-
mized by minimizing Equation 16 with respect to the

unknown amplitudes v (j) and v (j)
ko kl "

In general, the n th pulse position is given by

computing the minimum over all pulse locations (k,d
of:

0. - v(a) fe(3)
k, ""k,_k,

E(a,n) - 2 _=0

/_(3)
k_k.

(19)
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and the pulse amplitudes are optimized by solving
(by Choleski Decomposition):

where:

15,.(J)=

and:

_(J) = (l_(J)) -1 _0) (2O)

Fv2] F4 2]= . , = (21)

/ iJ)/ If(J)
LVk, .l t. k_

kO) RO) f,O)
koko kokl " " " ll_kok_

[_(J) f_(J) e,(J)
kl ko kl kl " " " X_kl k_

: • .. _(J)
• at, kn_lk_

RO) k(:) f,O)
k_ko knkl " " " l_k_k_

(22)

The sequential multipulse search procedure is in-
herently suboptimal since it does not try all combina-
tions of pulse positions. However, a full search tech-
nique is prohibitively complex• Rather than keep-
ing a single pulse position from stage to stage how-
ever, it is clearly better to keep Mt survivors after
each stage (for the sequential optimization described
above, MI = 1).

SHIFT SYMMETRIC CODEBOOKS

A shift symmetric codebook is defined as a code-
book in which a single codevector has all but t el-
ements in common with the next codevector. The
I th codevector can be written v(O = S(t)C where C

is a Kc + t(Lc - 1) dimensional column vector (the
codebook) and S(t) is a Kc by Kc +t(Lc- 1) dimen-

sional shifting matrix with ones on the tl th (upper)
diagonal, and zeros elsewhere:

S (/) -- [OK.,tlIIK.,R%]OK.,L.-tl] (23)

where 0ffo,n is a Kc by n matrix of zeros, and IK_,Ko
is the Kc by 1(c identity matrix. With t = Kc we
obtain the general codebook discussed above.

Shift symmetric codebooks present a problem
since elements from a single codevector are included

in possibly many other codevectors. Thus, the design
algorithm must reflect this property. A modification
to the Vector Quantization (VQ) design algorithm
was utilized to account for the shift symmetric code-
books. We have:

N-1

f E(y n ,/,,2= - G,_Hnv t )) (24)
n=0

Again we assume we have an initial codebook,
but rather than partitioning the codebook into Lc cells
or regions using the nearest neighbour, minimum
distortion search criteria, we simply substitute v (t) =

S(0C into Equation 24 which yields:

N-1

= - G,_H,_St )C)
n=0

-2 2_Tc q_CTRC(Yy -- (25)

where:
N-1

4'): E= Yn Y,_ (26)
n=0

N-1

e = E G'_S(t')THTy_ (27)
n_0

(a Kc + t(Lc - 1) dimensional column vector) and:

N-1

t_ = E G_S(t")TH_HnS('")
n=0

(28)

(a square K¢ + t(L_ - 1) dimensional band matrix).

The codebook is thus given by C = tS_-lc.

which, again, can be efficiently computed using
Choleski Decomposition. Further storage and com-
putational savings can be realized by using the fact
that 1_ is a band matrix. Computation of Equation
28 and 27 can be greatly simplified by exploiting the
structure in the shifting matrix.

Sparse shift symmetric codebooks can be de-
signed by applying a multipulse procedure to Equa-
tion 25, as was done with general sparse codebooks.

VSELP CODEBOOK DESIGN

Let Lc = 2 M, where M is the number of bits
in the codebook index. The VSELP excitation can

be given by v (t) = Cb (1) where C is the VSELP

codebook (a K_ by M dimensional matrix), and b(0

(an M dimensional column vector with elements + 1)
is the I th codeword. Alternatively, yet equivalently,
the excitation can be written as v (t) = B(/)C where

17is a K¢M dimensional column vector (containing
the stacked columns of C) and B(0 is a If_ by
K¢M dimensional Toeplitz matrix, with the first row

having elements b_t) in positions Bo,kKo

Over the training sequence, we may write:

N-1

e: E (Yn - G,_H,_v't")) 2 (29)
n=0
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Substituting v (t) = B(t)C into 29 leads to:

where:

N-1

n=0

-2 _ 2eTc + cT_
---- ay

(30)

N-1

4J/ E= YnYn (3I)

n=O

N-1

_. = _ GnB(/")THTy,_ (32)
n=0

(a KcM dimensional column vector) and:

N-1

I_ = Z G_B(Z")THTH'_Bq") (33)
n----0

is a KcM by KcM dimensional matrix.

The VSELP (stacked) codebook C is computed

by solving (again by Choleski Decomposition):

C = R-lc (34)

Computation of Equation 32 and 33 can be
greatly simplified by exploiting the structure of B (l,).

RESULTS

In this section we present results of computer
simulations conducted on a 10 minute speech data-
base and a 30 second speech database. Codebooks
were trained on the large database and the perfor-
mance was computed on both databases. Objective
measures of performance included the segmental sig-
nal to noise ratio defined by:

SEGSNR = _- _ 10log10 \ls - 2] (35)

where

_,_ (36)

is the synthesiszed (20 msec) speech vector and the
noise weighted signal to noise ratio defined by:

_-_ sTs

NWSNR_ " (37)

In our examples, the CELP coder used sub-
frame dimensions of 40 samples, 2 samples of over-
lap (which was determined to be near optimal), and

frame sizes of 160 samples. The inverse filter (A(z))
was determined at the frame rate using the autocor-
relation method and quantized using interframe vec-
tor linear prediction of the line spectrum pairs fol-
lowed by scalar quantization of the error [10]. The
long term predictor was optimized closed loop to
minimize the closed loop weighted mean squared er-
ror. The pitch period was constrained to be in the
range from 21 to 148 samples. The general code-
books used the autocorrelation method discussed in

[2] (which does contain certain approximations). Our
experiments with shift symmetric codebooks consid-
ered t = 1 only, (and no approximations were used).
The design of the sparse codebooks used the tree
searched multipulse search procedure outlined above,
with Mt = 128. The sparse shift symmetric code-
books had more than 90% zero samples (52 non-zero
samples in a 512 level codebook).

Table 1 displays the performance of random
gaussian codebooks for various codebook sizes (Lc).

Codebook Size (bits) NWSNR (SEGSNR)

7 14.39 (17.13) dB

8 14.84 (17.75) dB

9 15.24 (18.21) dB

10 15.59 (18.66) dB

11 16.10 (19.26) dB

Table 1: Performance of random gaussian codebooks
of various sizes (30 second database). The values are

accurate (with 95% confidence) to within 0.1 dB.

By comparison, a 9 bit random gaussian shift
symmetric codebook obtained a noise weighted SNR
of 15.05 dB (SEGSNR=18.11 dB) and a 9 bit random

VSELP codebook obtained a NWSNR of 13.92 dB

(SEGSNR=16.83 dB). Again the values are accurate
(with 95% confidence) to within 0.1 dB.

Trained 9 bit general codebooks, sparse shift
symmetric, and VSELP codebooks (using the design
techniques discussed above) obtained performance
both inside and outside of the training sequence as
shown in Tables 2 and 3.

Outside the training sequence the performance
(NWSNR) of sparse shift symmetric codebooks is
within 0.2 dB of the general codebooks which is
within the 95% confidence intervals. Inside the train-

ing sequence the performance of the general code-

book is approximately 0.7 dB better than the sparse
shift symmetric codebooks. Imposing structure lim-
its the performance inside the training sequence but
has little effect outside the training sequence in this
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Codebook

General

NWSNR (SEGSNR)

14.67 (19.40) dB

Sparse Shift Symmetric 13.95 (18.84) dB

VSELP 13.43 (18.54) dB

Table 2: Performance of trained general, sparse shift
symmetric, and VSELP codebooks inside the training

sequence (10 minute database). The values are
accurate (with 95% confidence) to within 0.1 riB.

Codebook NWSNR (SEGSNR)

General 15.75 (18.79) dB

Sparse Shift Symmetric 15.60 (18.48) dB

VSELP 14.72 (17.84) dB

Table 3: Performance of trained general, sparse shift
symmetric, and VSELP codebooks outside the training

sequence (30 second database). The values are
accurate (with 95% confidence) to within 0.1 dB.

instance. The VSELP codebooks appear to have too

much structure and performance suffers by more than
0.8 dB both inside and outside the training sequence.
However, the performance of VSELP improves by
more then 0.8 dB after codebook design (outside the
training sequence).

The general and sparse shift symmetric trained 9
bit codebooks have objective performance virtually
equivalent to the untrained 10 bit random codebooks.
Thus, for equivalent objective performance half the
number of levels in the codebook are required, re-
sulting in a lower data rate and a lower complexity.

CONCLUSIONS

This paper considered the CELP codebook de-
sign problem for a variety of structured codebooks.
It was determined that a savings of one bit per vec-
tor could be realized with virtually no decrease in
the objective measures while decreasing complex-
ity by a factor of two. For fixed codebook sizes,
improvements of more than 0.5 dB were observed
with no increase in computational complexity. It was
observed that Vector Sum Excited Linear Prediction

had too much structure, and performance was notice-
ably inferior to the general or sparse shift symmetric
codebooks.

The structured codebook design techniques are
relatively simple, and only require Choleski Decom-
position or a relatively straightforward multipulse
algorithm. The design algorithms were applied to
CELP coders, but are sufficiently general to be ap-
plied to other distortion measures as well.
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