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SLEW MANEUVERS OF SPACECRAFT CONTROL
LABORATORY EXPERIMENT (SCOLE)

Y.P.Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte

Charlotte, NC 28223

SUMMARY

This is the final report on the dynamics and control of slew maneuvers of the
Spacecraft COntrol Laboratory Experiment (SCOLE) test facility initiated and
developed by the Spacecraft Controls Branch at NASA Langley Research Center.
The report includes the work done under grant period from November 1st., 1984
through April 30th, 1992. Although the final experimental work to be performed
on the test facility is scheduled to be done in May 1992, the report includes all
theoretical and numerical work upto the closing date of the grant. A supplemen-
tary report will be issued on the experimental work after the remaining work is
completed. In the appendix, two current publications on the grant work are
included and the other publications based on the grant work are cited in the refer-
ences.

The report documents the basic dynamical equation derivations for an arbi-
trary large angle slew maneuver as well as the basic decentralized slew maneuver
control algorithm.

The dynamics and control of slew maneuver of NASA Spacecraft COntrol
Laboratory Experiment (SCOLE) test facility are developed in terms of an arbi-
trary maneuver about any given axis. The set of dynamical equations incorporate
rigid-body slew maneuver and three-dimensional vibrations of the complete
assembly comprising the rigid shuttle, the flexible beam, and the reflector with an
offset mass. The analysis also includes kinematic nonlinearities of the entire
assembly during the maneuver and the dynamics of the interaction between the
rigid shuttle and the flexible appendage. The final set of dynamical equations
obtained for slewing maneuvers are highly nonlinear and coupled in terms of the
flexible modes and the rigid-body modes.

The equations are further simplified and evaluated numerically to include the
first ten flexible modes and the SCOLE data to yield a model for designing con-
trol systems to perform slew maneuvers.

The control problem formulation incorporates the nonlinear dynamical equa-
tions and is expressed in terms of a two-point boundary value problem utilizing a
quadratic type of performance index.

The two-point boundary value problem is solved as hierarchical control
problem with the overall system being split in terms of two subsystems, namely
the slewing of the entire assembly and the vibration suppression of the flexible
antenna. The coupling variables between the two dynamical subsystems are
identified and these two subsystems for control purposes are treated
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independently in parallel at the first level. Then the state-space trajectory of the
combined problem is optimized at the second level.

1. INTRODUCTION

The primary control objective of the Spacecraft Control Laboratory Experi-

ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-like

configuration towards a fixed target under the conditions of minimum time and

limited control authority [1]. This problem of directing the LOS of antenna- like

configuration involves both the slewing maneuver of the entire assembly and the

vibration suppression of the flexible antenna-like beam. The study of ordinary

rigid-body slew maneuvers has received considerable attention in the literature

[2,3] due to the fact that any arbitrary large-angle slew maneuver involves

kinematic nonlinearities. This is further complicated in the case of SCOLE by vir-

tue of a flexible appendage deployed from the rigid space shuttle. The dynamics

of arbitrary large-angle slew maneuvers of SCOLE model are derived in this

report as a set of coupled equations with the rigid-body motions including the

nonlinear kinematics and the vibratory equations of the flexible appendage.

The dynamical equations of slewing maneuvers of this large flexible space-

craft are developed by writing the total kinetic and potential energy expressions

for the entire system. The energy expressions are further utilized in formulating

Lagrange's equations which are expressed in terms of non-generalized co-

ordinates using an inertia! co-ordinate system and a body-fixed co-ordinate sys-

tem at the point of attachment of the flexible beam to the shuttle. The generic

model used for this analysis consists of a distributed parameter beam with two

end masses. The three dimensional linear vibration analysis of this free-free beam

model with end masses [4] is incorporated together with rigid-slewing maneuver

dynamics which are written in terms of four Euler parameters [5] and angular
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rotation about an arbitrary axis of rotation to yield the final set of highly nonlinear

and coupled equations. In the derivation of the equations, it is assumed that the

vibratory analysis is for small motions. These nonlinear and coupled dynamical

equations are used in this article to study the slew maneuver control in terms of a

hierarchical feedback control scheme.

The control problem of slewing maneuvers of this large flexible spacecraft is

developed by using the two-point boundary value problem in terms of the rigid-

body slewing and the vibration suppression of the flexible appendage as two

separate dynamical subsystems. A decentralized optimal control scheme is util-

ized in order to solve individual boundary-value problem for each of the two sub-

systems by defining their state variable models and incorporating the coupling

variables between the two subsystems in these models. Also, the boundary condi-

tions of the overall system are reworked in terms of boundary conditions of each

subsystem. A quadratic performance index is utilized for the overall system and is

subsequently expressed in terms of a sum of two individual performance indices

of the subsystems.

The basic algorithm for obtaining an optimal closed-loop state feedback

sceme involves using a trajectory in terms of a vector of Lagrange multipliers as

an initial guess at level two. This is used at level one in quasilinearization appli-

cation.

The two-point boundary value problem for each subsystem is solved at level

one by using a quasilinearization technique as a trajectory optimization problem.

In the quasilinearization procedure, starting from an initial guessed state trajec-

tory, successive linearizations are performed of state equations in such a way that

the final solution of the state trajectory is within an acceptable degree subject to

boundary conditions. The state vector definition at this level is an augmented

state vector which includes both system states and costates.
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These optimum solutions of the system trajectories are utilized at level two

to yield the updated trajectory of the vector of Lagrange multipliers of the overall

system to be used for quasilinearization process at level one. The basic steps of

the algorithm are repeated to optimize this second level trajectory with respect to

prespecified error criterion to obtain an optimal feedback law.

2. LIST OF SYMBOLS

a (z) Position vector of mass element on the beam from the point
of attachment

B Damping matrix

C Inertial frame to body-fixed frame transformation

c Position vector from the point of attachment to the mass center
~ of the beam

D Mass density of the beam

d(z,t) Displacement vector of mass element in the body-fixed frame

E Modulus of Elasticity

F0(f) Force applied at the orbiter mass center

F_2(t) Force applied at the reflector mass center

G0(0 Moment applied about the orbiter mass center

Gv Modulus of rigidity for the beam

/ Beam cross section moment of inertia

lx Beam cross section moment of inertia, roll bending

Iy Beam cross section moment of inertia, pitch bending

10 Equivalent mass moment of inertia

/1 Mass moment of inertia matrix of the shuttle

12 Mass moment of inertia matrix of the reflector

/ Mass moment of inertia matrix of the beam

K Stiffness matrix

L The Length of the beam
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M Angular velocity vector transformation

My Effective moment applied at the reflector e.g.

m Total mass of the flexible beam

m i Mass of the orbiter

m 2 Mass of the reflector

N The total number of subsystems

n The maximum number of modes considered

Q The generalized force vector

Qi Generalized coordinates

R_ Position vector of the mass center of the orbiter in the inertial
~ frame

r Position vector from the orbiter mass center to the point of
~ attachment

rx x co-ordinate of the reflector mass center in the body-fixed
frame

ry y co-ordinate of the reflector mass center in the body-fixed
frame

T Total Kinetic Energy

U Total Potential Energy

ux(z,t) The beam deflection in x direction referred to the body-
fixed frame

uy(z,t) The beam deflection in y direction referred to the body-
fixed frame

MY(Z,O The torsional deflection about z axis in the body-
fixed frame

Ui Control vector of ith system

V Velocity vector of the mass center of the orbiter in the body-
~~ fixed frame

V0 Velocity vector of the point of attachment in the body-
fixed frame

Xi State vector of ith system

zj Vector of interconnecting variables
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p Mass per unit length of the flexible beam

Y Vector representing the axis rotation during the slew
- maneuver

(jjjo i th Eigenfunction corresponding to ux

tyyi i th Eigenfunction corresponding to uy

<()v,- i th Eigenfunction corrsponding to «v

9 The attitude of the orbiter in the inertial frame

^ Slew Angle

(0 The angular velocity of the orbiter in the inertial
~~ frame

Q The angular velocity of the reflector in the inertial
frame

e Vector of Euler parameters

S(z-zy) Direc delta function

O(A,) Dual functional for two-point boundary value problem

A, Vector of Lagrange multipliers

£ Damping ratio
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3. ANALYTICS
Co-ordinate Systems

The motion of SCOLE assembly when considered as a rigid body in space

has six dynamic degrees of freedom: three of these define the location of the mass

center, and three define the orientation (attitude) of the body. The motion of this

rigid body is goverened by newtonion laws of motion expressed in terms of

changes in linear momentum and angular momentum. These relationships are

valid only when the axes along which the motion is resolved are an inertial frame

of reference [9,10]. To define the orientation of the orbiter in space, a set of

orthogonal axes fixed in the body is utilized. Then the attitude of the orbiter is

defined in terms of the angles (61,82,63) between the body- fixed axes and the

inertial co-ordinate axes. The body-fixed frame origin is located at the point of

attachment of the flexible appendage with the rigid shuttle for this analysis (Fig.

1).

The transformation from the inertial frame to the body-fixed frame is given

by the matrix, C as developed in figure 2 where if i, j, k represent the dexteral

set of orthogonal unit vectors fixed in the body- fixed frame and 61 is the rotation

about i, 62 is the rotation about j and 63 is the rotation about k. These rotations

are carried out successively as shown in figure 1 and the matrix C is given as

0

Thus CT is obtained as

Cr=

0

0 -si
0 1 0

sin92 0 cos 62

1 0 0
0 cos6i sin6i
0 -sin 61 cos6i

0)

COS6iCOS&2

(2)
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In order to completely define the attitude (orientation), it is needed to relate

the rotation angles 61, 62, and 83 to the angular velocity components (o>i, o>2, 003)

of the orbiter. One way of obtaining the required relations is via body-three

angles method [5] which was utilized in developing C matrix in equation (1) and

these relations are

81 =

02 = ( G3iSin03+CQ2COS63) (3)

03 = -c

Thus, the angular velocity of the orbiter can be obtained in the inertial frame

by means of the following transformation

CQ = Me (4)

where the transformation MT is given as

MT =
COS02COS03 Sin03 0
-COS02Sin03 COS03 0 (5)

sin02 0 1

Although the body-three angles method is used here for obtaining the

transformations C and M, there are three other methods which can be used to

obtain the same transformations. A detailed discussion of all the methods is given

in reference [5] and a summary of the transformations using the remaining three

methods is given in the Appendix.

Kinetic Energy

If the position vector of the mass center of the orbiter in the inertial frame

(Fig. 3), R, is given as
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R =
Rx
RY

Rz
(6)

then the velocity of the mass center in the inertia! frame is

Rx
RY
Rz

This velocity can be transformed in the body-fixed frame as

(7)

V<0 = C
Rx
RY
Rz

(8)

The velocity of the point of attachment in the body-fixed frame is

V0 = V+coxr (9)

where r is the vector from orbiter mass center to the point of attachment.

Defining the position vector (Fig. 4), a, of a mass element on the beam from

the point of attachment (origin of the body-fixed frame) before deformation as

a = (10)

and the displacement vector of this mass element as

ux(z,t)

0
(11)

the position vector after deflection is given as a+d. The kinetic energy in the
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beam [6] is

= (1/2) mVlV0 + (1/2) wr[/]co-mVor[c]co+(l/2) J dTddm

Vj I ddm+cor J addm+(1/2) J [ ux' uy' uJ dl (12)

where the vector c is from the point of attachment to the mass center of the beam

and if it is assumed that the beam is a thin rod, then it is given as

c =

= (1/m) J adm =
0
0

-L/2
(13)

and using the skew symmetric form for the vector cross product for any two vec-

tors c and co (in the same reference frame) as

cxco = [c ] co

c =
0 -c2 cy
cz 0 -cx

-cy cx 0
(14)

also, the moment of inertia matrix is given as

= (l/3)pL3
1 0 01
0 1 0
0 0 0

(15)

where p is the mass per unit length of the beam. The last term in the equation (12)

corresponding to torsional motion is given as

«1
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l/2(pek).y2 0 0
0 l/2(pds)s2 0
0 0 0

The kinetic energy equation (12) can be simplified as

r1=(l/2)pLV;JV0+(l/6)pL3(

where

Mi

1=1 J=l

/=!

(16)

(17)

1=1

1=1

1=1
n

1=1
L

0
L

0
L

^ r 1
= J ^>i'

f\ v J

(18)
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and

0(0 = P

0

(19)

P(0 = P

1=1

I, P lift
1=1

o

(20)

The expressions foTpu,p2i,P3i,P4i,P5i, andpg,- are developed as follows. Note

that

where P,=
El

1/4

Since for SCOLE configuration EIX = EIy and P« = P,-y , El and P, are used

for both §xi(s) and (JJ-y/Cs1)- However, this may not be true for other configurations.

o
L

P2i =

u = -—£ -
ptL L

0

(21A)

Defining (Xj = P/L



-13-

i r
P l f- a,L [ A*

similarly,

— Cxi J

1 [_A cosg

P2i =

P3i =

Similarly,

P4i =

(21B)

_Lf •OOCll 1 » • f I /J . CIT^ h 1 » • 1 1 ^J I ̂ m m i ^ t I• ^ v^ vi » vollLJii^ ^r iX vi oAlIil tji f y ^r ̂ 1 vi v^ v/ 1

[ -A^-cosa,- +J3)),-sinaj +Cy/cosha,- +Dy/- sinha,- +Ayi- Cyi
J

L

0
L

p4i = }s$yi(s)ds
0

can be given as

sinpjL Lcosp,L
2 3. +c*i

Lcoshp/L sinhp/L
Ca . ft P? j

cosp,L Lsinp,-L i

P? + R p? +

Lsinhp,-L coshp,L
T^[ ft " P? +

L2sina,- L2cosa/ L2cosa,- L2sina,- L2

+/J;a- _ + 9 H
a,- «/ af a, af

L2cosha,- L2 sinha/

a, a?

sinp/L Lcosp/L
ft2 ~ ft- +£yi'
P/ P*

Lcoshp,L sinp,L
C)l[ P. P? J

L2sinha,- L2cosha,

* a, ~ a?

cosp/L Lsinp/L i

P? + P.- P? T

Lsinhp/L coshp.-L
W*L ft P2 Tt

L2sina,- L2cosa/ ^ L2cosa,- L2sina,- ^2

a2 a« yi a2 ct/ a2

(22A)

(22B)

P?J <23A)

h

h - \^JO)
af

/"O/1 A \

)? J (24A)

h
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L2cosha/

a,

L2sinha/

a?
+Dyt

L2sinha/ L2cosha,
a, a2

Lr ( 12

L2

'a2
(24B)

ds
0
L
f f V

P6i = J Styyi (S)\
0 l J

and these can be shown to be

laa 6 2
1

2 40;
•)sin2p/L

-2L

—sin2p,L+
^

—

(cosp/Lsinhp,-L)+(sinpjLcoshp,-L)

-2L sinp,Lcoshp,L

J_

P/

(cosp,-Lsinhp/L)-(sinp,'Lcoshp/L)

(cosp,-Lcoshp/L)+(sinp/Lsinhp,-L)

J_

Pi
(cosp,-Lcoshp,-L)-(sinp,-Lsinhp/L)

6 2

+2L

(sinp/L sinh P/L )-(cosp,-L cosh P/L )

cosp/Lsinhp/L

+2L

J_

P/
(cosp,-Lcoshp/L)

+(sinp,-LsinhptL) JL

fo

(sinp,Lcoshp,-L)-(cospjLsinhp,-L)

cosp,-Lcoshp,-L
J_

P/
(cosp,Lsinhp,-L)
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+C1

-(sinp,Lcoshp,-L)

P/^2 1
P/Lcosh2p,L+(-sV-+—

-

.A .f-rrl \^ P,L

(25)

p/L

(cosp,Lsinhp/L)+(sinp/Lcoshp,-L)

&

(cosptLcoshp,-L)+(sinp,-Lsinhp,-L)

-2L sin

-2L

(cosp,-Lcoshp,-L)-(sinpjLsinhp,-L)

sinp/Lcoshp,-L

—
Pi

(sinp/Lsinhp,-L)-(cosp,-Lcoshp,L)

J_

P/

+2L

(cosp,-Lcoshp,-L)+(sinp,-Lsinhp,L)

cosp,Lsinhp,-L

1

(sinp,Lcoshp,-L)-(cospjLsinhp,-L)

J_

Pi

-yi

y* y

+2L cospjLcoshp,-L

(cosp/Lsinhp/L)-(sinp,-Lcoshp,-L)

P/^2 1 , .
plLcosh2p,-L+(±i;—+-^-)sinh2pl-L-—

2 4p,-

p,L
cos2p,-L-—sinh2p,-L+—r-cos2p,-L--r-

^ ^ *P/ rl
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D( pjLcos2pJ-L+(±1: (26)

The equations (25) and (26) can alternatively be derived by replacing P,- = —*-.
L~t

The kinetic energy of the reflector is

T2 = (1/2)
(27)

where m2 is the mass of the reflector and 72 is the mass moment of inertia matrix

of the reflector. The deflection vector d(L) at the mass center of the reflector is

given as

(28)u(L)
ux'(L)rx + uy'(L)ry^

and the position vector from the point of attachment to the reflector mass center is

given by

-L
(29)

Thus,

d(L) = uy(L) + rxU
ux'(L)rx + uy'(L)ry

(30)

The angular velocity of the reflector in the inertial co-ordinate system Q can be

shown to be

= (0 + Uy

u\
(31)
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The equation (27) can be simplified as

T2 = (1/2) m2L

m2 Z Z $

Z Z

[/=!;=!

iilj \ +(1/2) P7/ 2P +(1/2) co7/ 2co
J

(32)

where

.1=1 1=1 1=1

The kinetic energy of the shuttle, T0 , is given as

(33)

T0 = (1/2) miV r co (34)

where w i is the mass of the shuttle and / 1 is the mass moment of inertia matrix of

the shuttle.

The total kinetic energy is given as

T = T0+Tl+T2 (35)

This can be simplified as

T = (1/2) m0V
TV+^ f //] K+U/2) o)r f /J co+pL £ <??+VTa

n
z

1=1
(36)

where
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:(
m =

/<,=/!+(1/3) pL3 0 1 0
0 0 0

+l2+J2~pLrr-pLrc-

The term 7 2 in this equation can be shown to be:

/2 =
-rxry rxL

ryL
r L r L

The total kinetic energy expression can be further simplified as

T = (1/2) m0V
 TV+uT \ H\ V+(l/2) co7 [ /J w+ VT \ A

where

AI \q =a+m2d(L)

\ A 2 \ q = ra+p+m2^(

M-
In this equation

^/(L
0
0

<J>«U
0
0

) 0
<j>,/(L)

0 <j

) 6
<J),-/(L)

0 (

0
0

M£)

6
0

ML>

(37)
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Here i=2,3, ..... ,n. The number n indicates the total number of flexible modes con-

sidered.

Equations of motion

Lagrange's equations of motion for the case of independent generalized co-

ordinates qk are

BT W . ,
(* = 1,2, ...... ,n) (38)

& dqk

where, T = T(q,q) is the kinetic energy

U = U(q) is the potential energy, and

Qk are the generalized forces arising from nonconservative sources.

The generalized co-ordinates are:

RX,RY>RZ ~ position of orbiter mass center relative to inertial frame origin.

01.62,6s - roll, pitch and yaw angles of orbiter.

q\,qi, ..... ,qn - modal deformation co-ordinates for the beam.

The previous kinetic energy expression developed in equation (37) is given

in terms of nonholonomic velocities V and to, and generalized velocities q. Using

the notation T(V,(B,q) for this kinetic energy expression and T for kinetic energy

expression in terms of generalized velocities, the equations of motion are

developed. Thus, equation (37) is rewritten as

T = (1/2) m0 V
TV + G>r f H\ V + (1/2)(0T [ 7 J G> + VT \ A 1 1 q (37)

(a) Translational Equations

From the chain rule applied to equation (37) using equation (8), one gets
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ar

ar

ar

ar

ar
(39)

Also, the generalized forces are CF_(t) where

(4°)

F_0(t) represents the force applied at the orbiter mass center and F2(f) represents

the force applied at the reflector mass center. From Lagrange's equations

dt
ar CC

and from equation (37)

dV

Substituting equation (42) in (41),

m0V-Hto+A i'q = -CCT(m0V-Hu+A

This can be rewritten as

(41)

(42)

(43)

where the nonlinear term N j is given as

T= -CC1(m0V-Ha>+Aiq)
- -®(m0V-Hw+Aiq) ~

Here, & - CCT.

(44)

(45)

(b) Rotational Equations :
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From equation (4)

(0 =

Again using the chain rule

ar
ae

= M 2L
3(0

Also

ar

ar
ae3

ae2

ae3

il
dv

aof

acor

ae2

ar

It can be shown that

and

= VTCae/ - ae/

(46)

(47)

(48A)

and

!S2L = tfu-i M. i
ae,- - ae, =1,2,3,

ar
ae

- ae!

- ae2

- ae3

il
av

ae

ae
or _^ae3

aco

(48B)

(49)
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From equation (37),

dT_

dco
= HV (50)

and as before

ar
(42)

Using the Lagrange's equations

d_
dt

97

80 86 =M^ (51)

where G_ is the net moment about the mass center of the orbiter with respect to the

body-fixed frame. It is given as

G = G0 + (r+a)xF2 (52)

Gp is the external moment applied about the mass center. Eqation (51) can be

simpified by substituting equations (42),(49), and (50) together with the relation-

ship developed in (46) as

(53)

where the nonlinear term #2 is given as

N 2 = M
9C

VTC- Ca03

ay

orM l

a/AT1 ^ae
_ ^ae3

-M
ar
aw . (54)

(c) Vibration Equations of the Beam
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Since T in equation (37) is given in terms of q which is a vector of general-

ized velocities,

BT

and

dq dq

ar
dq

The potential energy in the beam is given by

U = (l/2)qTKq

where the stiffness matrix K is given as

K =
\ 0

ku
0\

and

(55)

(56)

(57)

GV represents the modulus of rigidity of the beam and Pyi =

D is the mass per unit volume (mass density) of the beam. Thus,

Dcof
where

9(7
(58)

Using the Lagrangian Equations (38) and assuming that F^ = 0,
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+ A3 'q=-Kq . (59)

(d) Motion Stiffness

As noted in references (27,28), generalized active forces associated with

motion stiffness must be taken into account in order to obtain dynamical equa-

tions for performing large arbitrary maneuvers. This provides the mechanism of

compensating errors caused by premature linearization during the modal analysis

for an arbitrary flexible body undergoing the most general large rotation and

translation.

For a mass element on the beam from the point of attachment (origin of the

body-fixed frame) before deformation, the translational velocity in the inertial

frame is as given as

Va = Vp + w x (a + d) + d(z,t) (60)

where V0 is given by equation (9). The corresponding angular velocity in the iner-

tial frame of the mass element is given as

cofl = w + p(z,0 - (61)

where

0
0

and My(z,0 is the torsional displacement of the beam.

Differentiation of the right-hand side of equation (61) with respect to t yields the

acceleration of mass element in the inertial frame as

aa = V_0 + (bx(£+d) + rf(z,0 + co x | V0 + cox(a +d)+2d(z,t) 1 (62)
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Similarly the angular acceleration of the mass center in the inertial frame follows

from equation (4).

a° = <i) + a) x p(z,0 + p(z,0 (63)

Equation (62) can be simplified as

aa = V + cox((Q x r) + co x (a + d) + d(z,t)

+ cox \V + coxr + cox(a + rf) + 2d(z,0 (64)

The inertia forces associated with acceleration in equation (64) can be given as

*~l

F* - -J(pdz)aa - m2afl(L)
0

and the inertia moment associated with angular acceleration is

(65)

G* =- -coa(L)x (66)

The inertia force obtained in equation (65) is added to the right hand side of equa-

tion (44) and the inertia moment of equation (66) is similarly added to equation

(53).

(e) Slewing Equations

If it is considered to perform a slew maneuver about an arbitrary axis y and

the slew angle to be £, then the slew maneuver can be expressed in terms of four

Euler parameters. These four Euler parameters are defined as

e = £2
£3

£4 =

= X, s in- - (67)

(68)
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and their derivatives with respect to time are given as

-- = (£4CO + exco) (69)

(70)

The four Euler parameters can be related to the angular velocity components

of the rigid assembly as

EI
£2
£3
£4

EI £4 -e3 £2
£2 £3 £4 -£i
£3 -E2 £l £4
£4 -EI -62 -£3

0
G)i

0)2

0)3

(71)

If a slew maneuver is considered to be purely rotational, then the transla-

tional velocity and acceleration can be shown to be negligible during the slew

maneuver and only the rotational and vibration equations are reqired for the

analysis and they are simplified by setting V= 0 in both (53) and (59) and are writ-

ten as follows

(72)
(73)

where,

G(0 is the net moment applied about the mass center of the orbiter and is

given by the following equations (figs. 3 & 4)

A2q = G(f) + JV2(a>)
+ Ai'q + Kq = Q(t)

= Go(0 + (r + a)xF2 . (74)

Also, <2(0 represents the generalized force vector which is given by the following

equation
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m
Gyi

( G/*2(0 + Q/y2(0) + QX2 + Qy2 + Q

GjfoCO)

where, the generalized force components are given as

L,

QJXi = \F
0
L

and

(75)

(76)

(77)

(78)

Here, FjX(z,t) is the .r component of the concentrated force applied at location j

on the flexible antenna and Fjy is the y component of that force.

Also,

(79)

Here, ^2 is the force applied at the reflector C. G.

Thus,
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+ F2yrx + M2v (80)

The location of reflector C. G. is given by coordinates (rx,ry) and M-^

represents the external moment applied at the reflector C. G.

Thus equations (79) - (80) completely represent the dynamics of the slew

maneuver. These equations are nonlinear and coupled including both the rigid-

body dynamics and the dynamics of the flexible appendage with kinematic non-

linearities. It is important to note that the nonlinear term #2(0*) is dependent on

the rotational velocity and as a result determined by the slew maneuver rate. Thus

the basic slew maneuver stretegy has to be developed before this term can be

linearized.

(f) Vibration Equations of the Beam with Damping

If damping is included in the derivation of vibration equations of the beam,

then the damping effect can be expressed in terms of frictional forces. These are

nonconservative, retarding forces and are assumed to be proportional to the gen-

eralized velocities. In deriving the vibration equations by means of Lagrange's

equations, the following function is introduced

. (81)

It also has a positive definite quadratic form similar to the kinetic and poten-

tial energy expressions.

With this definition, Lagrange's equations assume the form

(*-IA ») (82)
dqk

 3ft dqk 3ft
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Again, as before

ar = AlV + Ala +

and

= Kq

and it can be seen from (81) that

dq
= Bq

where the damping matrix B is symmetrical and is given as

B =

\ \

bn\ bn2 . . bnn

The vibration equations are given as

A\V_ + Ajtt + Ai'q + Bq = - Kq + Q(t)

The slewing equations (72) and (73) would be modified as

/2a> + A2q =

Nonlinear Term in the Rotational Equations

(55)

(58)

(83)

(84)

(85)

(86)

(87)

The nonlinear term ^V2 in the rotational equations (72) and (86) during the

slewing maneuver is simplified as
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N 2 = M

or

oo7

„
30

_.
362

r-l 303
-M (88)

where

(89)

~ = '^k[Hoisi
302 COS02

= — (co2cos02) (-C0icos02) 0
COS09 L J393 COS02

(90)

(91)

Since the transformation matrix, M , is a function of 02 and ©3, the time

derivative of M can be expressed by the chain rule as

3M X A 3M
"TT~02 + ~^7302 303

(92)

From equation (5)

3Mx
302 2

0
0

0
0

(cos03)03

0
(-sin03)e3

0

0
0

(93)

(94)

Substituting these equations (93) and (94) in (92)
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+(-cay 628^63)63
(cos83)63

0

From equation (4), this can also be expressed as

0

(00562)62"
0
0

(95)

A/ =
00562

(-
+00300582) +0)300562)

0

00562(0)1005625^163+0)20088200563)

0

0

0

r-lAlso, M is given as

(96)

AT1 =
00582

cos03 00562 sin63
-sin03 0056200563

0 0 cos82

Thus, the nonlinear term Af 2 can be rewritten as

(97)

Where the term A '3 is
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A'3(co,6) =

0

ae2

or

-M

903
J

N2 = A'3(co,0)/0co + A'3(co,0)A2<7

(98)

where A4 depends on the rigid-body slewing and is nonlinear in terms of co and 0.

The second term relates the coupling between the rigid-body slewing and the

flexible modes. This equation can be further simplified in terms of Euler parame-

ters by relationships developed in appendix II as

W 2 = A 6 ( c o , e ) + A 7 ( a > , e ) < ?

where E is the Euler vector comprising all four Euler parameters,

(99)

From equations (72) and (73) and by defining A = A2
TI0

 l A2 + A3 , the

following equations are obtained

(0 = 7, -l A2A~ lBq +A2A~ lKq A

h

2A~1A2
T1

tt2(o>,e)

ro~l + h G(t)

(100)

q = A-lBq-A-lKq-A-lA2
TI0-lG(t) + A^

(101)

It is assumed that control forces applied for vibration suppression has negli-

gible effect on rotational maneuver of the spacecraft in developing equations

(100) and (101). Also, /3 represents 3x3 identity matrix in these equations.
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Subsystems and State Variable Models

The two dynamical subsystems considered for decentralized control are the

dynamics of the slewing of the rigidized SCOLE assembly and the vibration

dynamics of the flexible antenna. These subsystems are represented by subscripts

I and II respectively for subsequent analysis.

The following are the definitions of state variables and control variables for

subsystem I.

xj5 A coi; *76 A 0)2; */7Aa>3;

•

AG2 ; w/3 AG3 .

The interconnecting variables from the second subsystem to reflect the cou-

pling between the subsystems are defined as

A xu i ; z/2 A Xn2 ; z/3 A *773 ; z/4 A xjI4 ; z/5 A 0;

AO ; z / 7 A O ; z / 8 A O ; z / 9 A O ; z/1 0AO.

The following state equations are obtained for subsystem I using these

definitions

XI 1
•

M i

Xl3

f 4

"*/ 5
•

^Vi o

A?..
*78

XJ9
*

=

o. /); o
— U '- - -

o! o« o .

_

XI 2

X]-i

XI4

XI 5

XI 6

~x J ~
XI9

[xno\

-

o| o ]_o
Ol 5 2 i ^3--i ,- -
/! o ! o

1

"71

«72

"z/l"

"z/f"
Z/4
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(102)

/3J .

For the second subsystem which is the flexible appendage of the entire sys-

tem, the first two flexible modes are considered and the corresponding state vari-

ables and control variables are defined as

"771 A Qi\ M// 2Ae 2 ; .

As in the previous case, the coupling between the two subsystems is derived

in terms of the following interconnecting variables from the first subsystem.

Z77iAx/ i ; z//2Ax/2; 2/73^

Z//4 A X/4',

z//5 A xI5; z//6AA:/6; 2/77 A

2777 A ^/8; Z//9 A Xj<)\ ZjjIQ A Xj 10 .
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The following are the state equations of this subsystem.

•

X/I2

XJJ3

XII4

0

-A"'1"

+

; /
K \ -A~1B

0

t-l A Tt -
~ 2 o

"

„

1
.

•

X/I2

~x~in
X/I4

Ni(z*• 2, \*^j

-Ui

... y

0 0

A'1 » -A-1A2
r/0~

1

//9 Z//1! Z//4 Z//S Z//A Z/n/

w//r
7 rr o^7/8

.2//10

)
/ (103)

The Optimal Control Problem

A general problem for the optimal control of interconnected dynamical sys-

tems like large flexible spacecrafts can be formulated as

Minimize J
w.r.t. U

) i=l,2,...,N (104)

where Xj is the «,- dimensional state vector of the ith subsystem, «,- is the

corresponding m/ dimensional control vector and z,- is the r,- dimensional vector of

interconnection inputs from the other subsystem. The integer N represents the

total number of subsystems and the scalar functional J is defined by

N
Pi ( $

tt
J LI [ 3<0.i(K0.3(o] dt
*0

(105)

where L,- JC/(0»Mj(0»£i(0 is tne performance index at time t for i = 1,2,..,N sub-

systems. The functional J defined in equation (105) is to be minimized subject to

the constraints which define the subsystem dynamics, i.e.

=fi
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(106)

Also, the minimum of J must satisfy the interconnection relationship

N

j = l
(107)

The Open-loop Hierarchical Control

Using the method of Goal Coordination or infeasible method [17,22], we

consider another problem which is obtained by maximizing the dual function

<P( X) with respect to X,(0 (t0 < t < tf ), where

3>( X) = Min

x,u,z

subject to constraints in equations (106) and (107). Here

(108)

x =

X i

•

XN

u =

M I

•

UN

z =

£i

•

?_N

(109)

Also, A, in equation (108) is a vector of Lagrange multipliers which is given as

(110)

N
Pi (x_i(tf) ) + )Li ( J5,M/,zf>0 dt J ) df (111)
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j = 1.2...JV

Rewriting this functional J as

N

1=1

N
J = L/,-

J= l
tt

i(xi( */)) + J L/ (xj,ui,zi,

where,

(112)

V
}[ L; (x/.M/.z/.f ) + XTG,- (x/.z/.f) ]
*o

dt (113)

and where A,rG;,-*(x_i,Zj,t) has been refactored into the form X,r Gi(xj,Zi,t ), i.e.

into a form separable in the index i.

Thus,

(114)
1=1

Then by the fundamental theorem of strong Lagrange duality [25]

min / =max O ( A , ) , i = l,2,...,N.
Uf X

(115)

Thus an alternative way of optimizing / is to maximize O (X) .

From equation (112), for a given X, ( t ) , t0 < t < tf, the functional / is separ-

able into N independent minimization problems, the ith of which is given by

Min Ji = PI ( */
tr
J [ Li ( Xi,Ui,Zi ) + WCt ( xj tzj ) j
'rt

dt (116)
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subject to

Xi=f t (x i , u i t z i ) , t 0 < t < t f

(117)

This leads to a two-level optimization structure where on the first level, for

given X, the N independent minimization problems described in equations (116)

and (1 17) are solved and on the second level, the X (0 ( t0 < t< tf ) trajectory is

improved by an optimization scheme like the steepest ascent method, i.e. from

iteration jloj+l

X (0> +1 = X (r y + a-'' + dJ (t) t 0 < t < t f (118)

where

dJ = V <D( X(0) = EG, U-,z,-) , (119)
/=!

V O ( X) is the gradient of O ( X) , a, > 0 is the step length and dj is the steepest

ascent search direction. At the optimum <&— > 0 and the appropriate Lagrange

multipier, X , is the optimum one.

The development of this algorithm depends on the assertion Max 4>( X) =

min / and this may not be valid for all nonlinear systems. Consequently, lineari-

zation of GI , and linearized equations for.// may be required for constraints to be

convex and convexity of the constraints is necessary to prove this assertion.

Nevertheless, the method is attractive from the standpoint of simplicity and that

the dual function is concave for this nonlinear case. This ensures that if the dual-

ity assertion is valid, the optimum obtained is the Global Optimum.
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On the first level, since equation (116) is to be minimized subject to equation

(117), the necessary conditions lead to a two point boundary value problem from

which an open loop optimum control could be calculated. However, it is desirable

to calculate a closed loop control and for this the quasilinearization approach can

be utilized at level one for all subsystems. Thus an iterative scheme can be set up

whereby an initial trajectory of X (0* , t0 < t < tf is guessed at level two and pro-

vided to level one. At level one the two-point boundary value problems of the

subsystems are solved by quasilinearization. The state and control trajectories of

all the subsystems obtained at level one are sent to level two. The test for

optimality based on equation (119) is conducted at level two and if this is not

satisfied, equation (118) is used to obtain the new X (t) for the next iteration.

Subsystem Closed Loop Controllers

The closed loop controllers are obtained at the first level by solving the two-

point boundary value problems of the subsystems utilizing the quasilinearization

procedure. As noted in equations (116) and (117), the first level problem for the

ith subsystem is

For given X(f) , t 0 < t < t f ,

tt
Pi [ *«('/)] + J [AC xj,u t,zt) + kTGi( xhzf) ] dt

to

mm

X_t, «/,£,'

subject to

Xs = fi ( Xs U- Z- ~\ t <t <tf_' sJ ̂  _''_''_' ' ' 0 — J

(116)

(117)
xi ( t 0 ) = xio -
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For this problem, the Hamiltonian //,• can be written as

For a given K, the state and costate equations become

with

= 0

(120)

(121)

(122)

(123)

It is assumed here that using the equations (122) and (123), it is possible to

obtain the control «,- and the interconnect variable vector z,- which is an explicit

function of rj; and xj, i.e.

(124)
z f =di(xi , ' i \ i )

Using these relationships for «,- and z,- in equations (121) and (122), the following

equations are obtained

i ) , t 0 < t < t f

\ i ) , t 0 < t < t f

(125)

(126)

with the boundary conditions

(127)

and from the transversality conditions
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• (128)

Quasilinearization Procedure

The two-point boundary value problem of ith subsystem is given by equa-

tions (125) and (126) subject to boundary conditions of equations (127) and (128).

This problem is solved by quasilinearization technique as follows.

Defining y = -'
— Ml

equations (125) and (126) can be rewritten as

o] • (129)

In the quasilinearization procedure, starting from an initial guessed trajec-

tory for y = yj (/) , successive linearizations are performed of equation (129) in

such a way that the final linear equation fory solves equation (129) to an accept-

able degree subject to boundary conditions (127) and (128) which could be

expressed in a more general form as

jU)%=y (130)

y_(tf)TAf = bfT (131)

where A0 , Af are 2n x n matrices.

The linearized equation of (129) about a trajectory y = yi (t ) is obtained by

Taylor series expansion as

_ _ *¥ (132)

where J (y7) is the Jacobian of F_ \y( t) L t0 < t< tf, at yj and ]F represents the
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contribution of the higher order terms. Neglecting these higher order terms, the

following linear equation is obtained

y = F(yi) + J (y - i ) (y — yj) • (133)

If the initial guessed trajectory yi while satisfying equations (130),(131) and

(133) does not satisfy equation (129), then an iterative search can be utilized to

obtain a better linearizing trajectory by various methods discussed in references

19,20, and 21. This iterative search is given by noting that equation (133) can be

written by expanding individual equations (118) and (119) by Taylor series

expansion about a known trajectory */(/), T|/(0» t e [ to>tfl » and retaining terms

of up to first order. The linearized reduced differential equations are

*f— = at f V (0, V (Ol +- l~ — J - ( */ (0 ,TI/ (0 )
-

[ *F+1) (0 - */ (OJL J

(134)

= bt f v aw (ol +
~ I ~ — J ( *{ (0 .ii/ (0 )~ f *F+1) w - 3 col

L J

(135)

These differential equations can be rewritten as1

(136)

(137)

or, in the partitioned matrix form,

(138)
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where the matrices

da; da;
-r-5-, A12(OA-r~-
OXj ™ OT|,

and

£ i> A - A n (t)xjJ(t) - A i2(OTl/7(0 + %
(139)

A - '

are evaluated at*jj(0, T|;7(0 and hence are known functions of time.

The method of complementary functions [24] can be incorporated with this

linearization of the differential equations in the implementation of iterative

search.

An initial guess, xf, r)/°, t e [ t0, tf], is used to evaluate matrices in equa-

tions (139) at the beginning of the first iteration. In the next step, n sets of solu-

tions to the 2n homogeneous differential equations

(140)

are generated by numerical integration. For (/+!) st iteration, these solutions are

denoted by XfH1,i\iHl; xf
H2, r\iH2\ ____ j^-77", r\iHn. The boundary conditions

used in generating these solutions are

= l O O . . . O
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(142)

= ooo ...

Next, one particular solution at (y + 1) denoted by xf , TJ,-^, is generated by numer-

ically integrating equation (138) from t0, to tf, using the boundary conditions

xf(to) =£o» TlAk) = 0- Then, the complete solution of equation (138) can be

obtained by using the principle of superposition and is of the form

= c i X j . ( t ) + c 2 X i ( t ) + .... + cnxin(t) + xf(t) (143)

(144)

where the values of c i , c2 , . . . . , cn which make T|/l+1(f/-) = "H/ are to be deter-

mined. To find these values of c\ , c2 , . . . • , cn, we let t = // in equation (144)

and write it as

TV = f Ti/^1^/) n/1
— |̂

Here, c A c i c2 • • • • cn\ is unknown. Solving for c yields

(146)

It is important to note that the indicated matrix inversion in equation (146)

has to exist in order to solve for c. Substituting this solution of c into equations

(143) and (144) gives the 0+0 st trajectory. This completes one iteration of the

quasilinearization algorithm and this trajectory can be further utilized to begin

another iteration, if required. Generally, the iterative scheme is terminated by

comparing the j th and j+l st trajectories by calculating the norm shown in the

following equation and comparing it with a preselected termination constatnt, p.
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.0+D \.J (147)

Closed Loop Control

In order to obtain the closed loop control, the solution of the linearized equa-

tion (133) can be written as

(148)

where <|) is the state transition matrix of the system in equation (133). Rewriting

equation (148) in terms of solutions of states and costates and replacing the

integral terms by /?,- (0

(149)
Xi (tf)

T\i (tf~)
=

<hi (*/, 0 <l>i2 (tf, 0
<!>21 (tf, t) $22 (tf, t)

' xt (t)
*\i (0

+
Pn (0
Pi2 (t)

From equations (128) and (149)

% , t^Xj (tf, 0 + $22 (tf, t)T\i (0 + Pi2 (150)

Thus,

t\t (0 = $22

= $22 l (151)

It is important to note here that $22 1 always exists since it is a principal

minor of the state transition matrix.

Substituting equation (151) into equation (124)
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i (x{, f) . (152)

4. NUMERICAL DATA

The analytics developed in the previous section are utilized together with the

basic SCOLE data [1] and the three dimensional linear vibration analysis [4] to

generate the following numerical data.

mi = 6366A6slugs. ; w2 = \2A2slugs. ; p = 0.0955slugs/ft. ; L = 130ft.

\ (EI)X = (ET)y = (£/) = 4E+llb-ft2;

[ 0.036 1
r= -0.036
~ I -0.379J

c =
0
0

-65.0

/i =
905443.0 0.0 145393.0'

0.0 6789100.0 0.0
145393.0 0.0 7086601.0

\ 18000.0 -7570.0 0.0 '
-7570.0 9336.0 0.0

0 0.0 27407.0

The three dimensional vibration analysis is given in terms of the first ten

modal frequencies and mode shapes in table 1. Here,
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a, =
4 1

El

Using these data the following matrices are obtained.

1216640 -1.530307 175667.1'
-31.66433 7082976 -52474.84

175690 -52503.9 7131493
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Tablel

First Ten Flexible Modes of SCOLE Model

THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS
MODE No.

FREQ. (HZ.)
a

Ax
Bxcx
Dx
Ay

By

Cy

Dy

Ay

By
MODE No.

FREQ. (HZ.)
a

Ax
Bxcx

Ay

EL
Cy

Dy

0m

A*
B™

MODE No.
FREQ. (HZ.)

a
Ax
Bxcx

Ay

By
Cy

D
Ofy

" W

By

1

0.27804240E-KX)
0.12012084E+01
0.16282665E+00

-0.19670286E+00
-0.16983450E+00
0.19616259E+00

-0.10274618E-01
0.57579 133E-02
0.11810057E-01

-0.57220462E-02
0.19360955E-01

-0.50748354E-01
0.13978018E-04
3
0.81300189E+00
0.20540387E+01
0.40868 188E-01

-0.61958845E-01
-0.41309992E-01
0.61880796E-01

-0.22438404E-01
0.36509234E-01
0.24390447E-01

-0.36464758E-01
0.5661 1842E-01
0.92698901E-01

-0.87320799E-05
5
0.20536300E-K)!
0.32645546E+01
0.99278129E-01

-0.92344553E-01
-0.99442145E-01
0.92225801E-01

-0.57396019E-01
0.53976008E-01
0.58114853E-01

-0.53906980E-01
0.14300062E+00

-0.16588614E-02
0.61861804E-07

2
0.31357296E+00
0.12756518E+01
0.3885529 1E-02

-0.14998387E-01
-0.43321018E-02
0.14985820E-01
0. 1421978 1E+00

-0.22695797E+00
-0. 19283 105E+00
0.22644561E+00
0.21835058E-01
0.31115282E-01

-0.75992337E-05
4
0.11856099E+01
0.24804687E+01
0.80641794E-01

-0.67233377E-01
-0.80913938E-01
0.67 1063 16E-01
0.13728679E+00

-0.11746932E+00
-0.14085209E+00
0.11725057E+00
0.82557693E-01

-0.16158934E-03
0.10437718E-07
6
0.497 16090E+01
0.49716090E+01
0.45739784E-01

-0.4636558 1E-01
-0.45763 106E-01
0.46329676E-01
0.78612940E-01

-0.79952853E-01
-0.78914485E-01
0.7989 1039E-01
0.33165303E+00

-0.93394833E-05
0.1501721 1E-09
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THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS
MODE No.

FREQ. (HZ.)
a

A
Bxcx
Dx
Ay

By

Cy

Dy
ttm

Ay
By

MODE No.
FREQ. (HZ.)

a
A*
Bxcx

A]

Cy

Dy

(V

A^
By

7
0.55157833E+01
0.53501560E+01
0.81311804E-01

-0.82056569E-01
-0.81344923E-01
0.81997259E-01

-0.47145439E-01
0.47703590E-01
0.47289807E-01

-0.47669 155E-01
0.38408 110E-KX)

-0.23855560E-02
0.33122041E-07
9
0.12890442E+02
0.81789349E+Q1
0.78743585E-01

-0.78755259E-01
-0.78752483E-01
0.787 17693E-01

-0.45569244E-01
0.45609474E-01
0.45607884E-01

-0.45587726E-01
0.89760145E+00
0.94995483E-03

-0.56437766E-08

8
0.12281249E+02
0.79833305E+01
0.44835061E-01

-0.44834914E-01
-0.44840508E-01
0.448 13000E-01
0.77404756E-01

-0.77465629E-01
-0.77475327E-01
0.77427782E-01
0.8551 8 143E-KX)
0. 1583037 1E-05

-0.987 15017E-11
10
0.23679520E+02
0.11085347E+02
0.44348498E-01

-0.44367373E-01
-0.443505 11E-01
0.4435 1763E-01
0.76707490E-01

-0.76762782E-01
-0.76733612E-01
0.76735779E-01
0.16488784E+01

-0.51105957E-06
0.16528495E-11
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0.12927£ +2
-0.46332E-1
-0.56706£-1
-0.2367 IE-I
-0.24099£0
0.32322£-2
0.12271£0

-0.11158£-2
-0.57067£-1
0.12044£-2

-0.46332£-1
0.12931£+2
0.50634£-1
-0.48234£-1
0.13228£0
0.65114£-2
-0.71133£-1
-0.23852£-2
0.34303E-1
0.10106E-2

-0.56706E-1
0.50635£-1
0.13644E+2
-0.29553£-2
-0.30599£0
-0.41218E-3
-0.19374JS-1
0.2245 IE -3
0.65492E-1
0.54187£-3

-0.2367 IE-I
-0.48234£-1
-0.29552£-2
0.12541£+2
0.448486£-2
-0.11644£-1
-0.14618£-2
0.42121£-2
0.40936£-3
-0.23616£-2

-0.24099£0
0.13228£0
-0.30599£0
0.44849£-2
0.1324£+2

-0.22449£-3
-0.32102£0
-0.10488£-3

0.11851£0
-0.18768£-2

0.32323£-2
0.65114£-2
-0.41218£-3
-0.11644£-1
-0.22449£-3
0.12432£+2
0.17594£-3
-0.57146£-3
-0.10095£-3
0.31955£-3

0.12271£0
-0.71133£-1
-0.19374£-1
-0.14618£-2
-0.32102£0
0.17594£-3
0.12606£+2
0.82787£-5
-0.67559£-1
0.76582£-3

-0.11158£-2
-0.23852£-2
0.2245£-3
0.42121£-2
-0.10488£-3
-0.57146£-3
0.82787£-5
0.12425£+2
0.10423£-4
-0.11519£-3

-0.57067£-1
0.34302£-1
0.65491£-1
0.40936£-3
0.11851£0

-0.10095£-3
-0.67559£-1
0.10429£-4
0.12477£+2
-0.2948£-3

0.12045£-2
0.10106£-2
0.54187£-3
-0.23616£-2
-0.18768£-2
0.31955£-3
0.76582£-3
-0.11519£-3
-0.2948£-3
0.12423£+2

0.7142542£2
0.2384121£+3
-0.5915277£+2
0.2843785£ +3
-0.3872402£+3
-0.2010108£2
0.1731334£+3
0.1495208£+2
-0.81759£+2

-0.3200308£+1

-0.3890922£+3
-0.3622244£ +2
-0.1761796£+3
-0.4696011£ + 1
0.6004922£ +2
0.3311526£2
0.7672109£+2
-0.2067402£+2
-0.6396428£+2
0.1692286£+2

0.9536207£+1
0.2742315£+1
0.2077235£2
0.1623039£ + 1

-0.1236509£+1
-0.1009266£+1
-0.4794385£+1

0.6422631£0
0.3995166£1
-0.4793963£0
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The stiffness matrix K is calculated using equation (57) and the mode shape

coefficients given in Table 1. This matrix is a diagonal matrix and is represented

in terms of the diagonal elements as

V

=0.3666744£2
= 0.4647383£2

£ 4 4 = 0.687065 IE 3
ks'tS = 0.2065265£4
£6'6=0.1114602£5
k 7J= 0.14901 14£ 5
£8'8 = 0.7391932£5

*iO,io=0.2748996E6

The damping matrix B used for this analysis is a diagonal matrix and for

damping ratio £ = 0.003, it is calculated to be

b u =0.9685964^-3
b 2,2 = 0.1088608£-2
b^ - 0.2834016£-2
b4'A = 0.4256808E-2
65^5 = 0.7387177£-2
be,6 = 0.1719014E-1
b7'tl = 0.1984237E-1
bij = 0.4421234£-1
b9[9 = 0.4633434E-1

&io!io=0.8527647£-l

B =
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Spacecraft Control Experiment (SCOLE)

FIGURE 1



- 55 -

XB]TXB

ZB3=ZB2

(c) (d)

(a) Axes in reference position (b) First rotation-about x axis
(c) Second rotation-about y axis (d) Final rotation-about z axis

FIGURE 2
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Figure 3- Position Vectors in Inertial Frame
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d(-L,t)

Figure 4- Vectors in Body-fixed Frame
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APPENDIX I

The following is a summary of transformations between inertial frame and

body-fixed frame. Here, s,- and Q (/= 1,2,3) denote sin6,- and cos9/ (/= 1,2,3)

respectively.

(a) Space-three Angles

C =

MT =
1 0 -S2
0 Ci

0 -Si

(b) Space-two Angles

C =
C2

1 0 C2

0 C\

0 -J

(c) Body-two Angles

C =
C2

C2 0 1

^3 0
-53 0
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APPENDIX II

The transformation that relates the orientation angles 6 to Euler parameters e

is a nonlinear transformation. This transformation is developed for body-three

angles representation in this appendix and similar transformations can be derived

for other three representations, namely space-three angles, space-two angles, and

body-two angles.

(a) For sin92 * 1 :

- < 82 < , then

62 = sin 1 I 2(e3ei + e2e4)l .

If(cos6icos82)>0,then

01 = sin

If ( cos9icos92) < 0, then

-2(6263-6164)

cos sin 1 2(6381 +£084 )

61 =TI-sin

If(cos02cos93)>0,then

-i

COS sin l I 2( e3ei + e2E4 ) 1

63 = sin
-2 faei - 6364 )

cos sin l 2( £381 + £3£2 )

(A.1)

(A.2)

(A.3)

(A.4)
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If (cos02cos03) < 0, then

63 = n - sin-1 -2 (£162-63 £4)

cos sin 1 2( 6361 + 6362 )

(A.5)

n
(b) For s in92=±l , 62 is a constant. For sin62 = 1, 62 = T- However, if

n
sin02 = -1, then 02 = -~. For this case, if ( sin01sin82sin83 + cos03cos0i ) > 0,

then

01

If ( si

= sin"1 I 2 ( £263 + £164 ) I

< 0,then

(A.6)

01 = n - sin"1 2 ( 6263 + 6164 )

For this entire case, 03 = 0 .

(A.7)
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NASA SCOLE System

by Output Feedback

Misbahul Azam, Sahjendra N. Singh, Ashok Iyer

Department of Electrical and Corn-peter Engineering
University of Nevada Las Vegas

Las Vegas, NEVADA 89154

and
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Abstract

We treat the question of large rotational maneuver and vibration
stabilization of NASA Spacecraft Control Laboratory Experiment sys-
tem (SCOLE). The mathematical model of SCOLE system includes
the dynamical equations for rigid body slew maneuver and three-
dimensional vibration of the rigid shuttle, the flexible beam and the
reflector with an offset mass. The design approach taken here is to
decompose the rigid mode control from vibration stabilization. Feed-
back input (Shuttle torque)-output (attitude angles) map linearization
technique is used for designing attitude control system for large-angle
slewing. Linearization of input-output (i-o) map is accomplished by
nonlinear inversion theory. It is shown that attitude control system
assymptotically decouples the flexible dynamics and linear feedback
law is easily designed for vibration suppression. For the synthesis of
the control law an observer is designed. Simulation results are pre-
sented to show in the closed-loop system large angle maneuver can be
accomplished using only the measured state variables .
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1. Introduction

An important class of shuttle deployed payloads consists of cantilevered
beam-like structures with massive tip bodies. A design challange was posed
by Taylor and Balakrishnan [I] for the control of such a system. In the design
challange, the Spacecraft Control Laboratory Experiment (SCOLE) was set
up by NASA Langley Research Center to provide a standerd configuration
to test control laws for investigators.

The laboratory apparatus includes the Space Shuttle (orbiter) connected
by a long (130ft) flexible beam to hexagonal antenna or reflector, as shown
in Fig. 1. The reflector and Shuttle are treated as rigid bodies. When
the Shuttle maneuvered, the flexible modes of the beam are excited. Two
force actuators and a torquer have been provided to exert sufficient force to
suppress the unwanted vibration of the beam.

The design challange attracted the attention of many researchers. Re-
search related to both dynamics and control system design has been per-
formed and reported in litrature and SCOLE workshops at NASA Langley
Research Center [2-10]. Nonlinear invertibility theory has been used in [11-
12] for designing controller for a simplified spacecraft system. For such a
system adaptive control system and sliding mode controllers have been also
designed to compensate for parameter uncertainty and disturbance torques
acting on the spacecraft [13-14].

We treat the question of large-angle rotational maneuver and elastic mode
stabilization of SCOLE system based on input (Shuttle torque)-output (at-
titude angles) feedback linearization for attitude control and linear feedback
for vibration suppression. An i-o feedback linearizing control law is derived
by using the inversion theory for nonlinear dynamical systems. The tn-
verse technique gives rise to decouple linear attitude dynamics and allows
independent control of attitude angles. The use of inversion theory has an
additional advantage since the elastic dynamics of the SCOLE configuration
representing transverse vibration in two orthogonal plans and the torsional
deformation of the elastic beam are assyptotically decoupled from the rigid
mode dynamics. Since as usual only small elastic deformations are assumed
here, the decoupled elastic dynamics are linear. Using linear control theory
stabilizer is then designed for elastic mode stabilization. For the synthesis



- 64 -

of the controller only attitude angles, angular rates, tip elastic deflection
components and torsion deflection at the tip of the beam are assumed to be
measured by sensors. An observer is designed to estimate the elastic modes
and their derivatives, and these are used for synthesizing the control law.
Although the design approach has similarity to that of [11], this study differs
in several ways. The mathematical model considerably differs from that of
[11] since the end body combined here has mass and inertia also torsional
modes are included. Furthermore, representation of elastic deformation dif-
fers from [11]. The design of observer has led to realistic implimentation
of control law in this paper using measured variables. The control of [11]
requires knowledge of the complete state vector.

The organization of the paper is as follows. Section 2 presents the math-
ematical model. Inverse attitude control law is derived in section 3. Section
4 presents elastic mode stabilizer. Observer design is presented in section 5
and finally section 6 presents simulation results.

2. Mathematical Model of SCOLE System

We shall be interested in the rotational and elastic dynamics of SCOLE
system in this study. To describe the orientation of the orbiter a body fixed
orthogonal coordinate system with axes x,y,z is utilized. The attitude of the
orbiter is defined by a sequence of rotation #i,025$3 (roll,pitch,yaw), with
respect to an inertial coordinate system. The body-fixed coordinate frame
has its origin at the point of attachment of the flexible appendage with the
rigid Shuttle for this study.

The orientation of the orbiter is completely described by the differential
equations relating the rotation angles and the angular velocity components

of the orbiter which are

where

and

MT =

e = M-TU>

M-T = (MTYl

COS02COS&3 sin&3 0
—cos02sin03 cos#3 0
sin0-2 0 1

(i)
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The elastic beam is allowed to' undergo transverse elastic deformations along
axes x and y, and torsional deformation about axis z. Elastic deformations
are assumed to be linear combinations of admissible functions <f>xi(s),<f>vi(s)
and ^,-(s), i=l,2,3,...,n, where s denotes the distance on the beam from
the attachment point of the beam and the orbiter. The chosen admissible
functions are

Q. ~S Q. ' S Q. ' & Q. ' S
- -f Cxisinh-^~ + Dxicosh-^- (2)

<f>yi(s) = Ayisin-^- -f Byicos-j- + Cyisinh-j- + Dyicosh-^- (3)
Li Li Li Li

s s
<j>4i(s) — A^isina^i— + B^cosa^ — (4)

Li Li
The parameters Ax^ y4y,-, a,- etc, are explained in [5].

The elastic deformations are explained as linear combinations of admis-
sible functions as

t=l
n

where ux, uy are the elastic deformations along x, y axes and u^ is the tor-
sional deformation about z-axis respectively. Here g,(t), i=l,2,3,..,,n, are the
modal deformation co-ordinates for the beam. Define u> = (u>i,u>2,(^3)T,q =
(9ii?2, — ,9n)T (T denotes transposition). Let GO = (Goi,Go2, GQZ)T be the
external torquue vector applied on the orbiter, F = (Fx,Fy)

T be the exter-
nal control forces applied at the reflector center of the mass and M^r be the
moment applied about z-axis at the reflector center of mass.

The equations of motion are obtained by using Lagrangian approach. For
this, the expressions for the kinetic and potential energies are first obtained.
The potential energy includes the strain energy due to transverse bending
as well as due to torsional deformation of the elastic beam. The complete
equations of motion describing rotational and elastic behavior of the SCOLE
system have been derived in [5] (Readers may refer for the details). In this
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study we shall be interested only in the rotational and elastic dynamics.
These are

12

where 0 = (0i,02j03)T> K is the stiffness matrix, N2 is a nonlinear vector
function, B,- (i=li2,3l...,n) are the constant input matrices, u = (Gj, FT, M^r)

T €
.R6 is the control input vector and

P f T P 1
J?l ^^ I J Qy 3 *^1 2 I

BI = [Onx3 -022J

Here I and O denote identity and null matrices of indicated dimensions. The
matrix D

f 7- A. I
D =

is possitive definite symmetric matrix.
Defining the state vector x=(0T,uT,qT,qT)T € R^.no = (In 4- 6), one

can obtain a state variable representation from (8) of the form

x = f(x) + Bu (9)

/(x) = ((M-Tu}T, /J(x), ?r, /f(x)f (10)

/u/(z),/,(z) and B are easily determined by comparing (8) and (9).
Let the controlled output vector be

y = e = c(x) (11)

and yc(t) € R3 be any given reference trajectory. We are interested in deriv-
ing a control law such that in the closed-loop system the output y(t) tracks
the reference trajectory yc(t), and elastic modes are stabilized. This design
objective will be accomplished by designing an inverse attitude controller for
the orbiter for attitude angle tracking using orbiter moments; and an elastic
mode stabilizer for vibration suppression using tip body external forces and
moments.
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3. Inverse Attitude Control

In this section the design of control system for attitude trajectory tracking
is considered. To derive the control law the inversion of the input (Go)-
output (6) map is considered. In the following, an inversion algorithm [15-
16] will be used to obtain an invertible system which will give the structure
of the controller. This algorithm essentially gives a systematic procedure
for obtaining a sequence of systems by the differentiation of the output and
applying nonlinear transformations. Although, the algorithm is applicible
for more general systems, the actuator dynamics have been neglected here
for simplicity.

Let Bfl be the first three columns of matrix B and B = [Bg Br]. Then
the system (9) can be written as

x(t) = f(x,uT) + Baug (12)

where

and

In the following we define certain operators which will be useful in the
sequel. For the vector function c(x), we define

Lf(c)(x) = (dc(x)/dx]f(x)

L*(c)(x) = L,(Ls(c)}(x) (13)

LB,Lf(c)(x) = [dLf(c}(x}ldx]B9

Differentiating y and using (12) gives System 1 and System 2 of the form
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System 1:

x(t) = f(x,uT) + Bgug

z, = L}(c}(x) (14)

System 2:

x(t) = /(z,ur) + Baua

z2 = L](c}(x,uT} + D*(x}ug (15)

where L*(c)(x) is easily obtained using definition (13), z\ = y, z2 = j?» and
D*(x) = LBgLj(c)(x). Let R be the 3x3 submatrix formed by the first three
rows and first three columns of D~l . Then it can be easily seen that

D" = M~TR (16)

We shall be interested in a region ft of the state space where ft= {r.
62 ^ T i 7r/2}. We notice that R is nonsingular and M~T exists in ft. Thus
D* is invertible in ft and each component of the output has relative degree
2. The inversion algorithm terminates here; and System 2 is invertible.

Following [11], in view of (15), one obtains an i-o feedback linearizing
control of the form

ua = D-l\-L}(c)(x) - PJ - Pj - P0xa + ec] (17)

where P,- = diagfaj), i=0,l,2; j=l,2,3; 0=(0 — 6C) is the tracking error and
xa is the integral of the tracking error, t'.e,

x. = 8 (18)

The nonlinear control law includes proportional, derivative and integral
(PID) type feedback. Integral feedback of trajectory error introduces robust-
ness in the control system.

Substituting control law (17) in the output equation (15), gives

~e + p2'e + p^e + POXS = o (19)
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which can be differentiated to 'yield

e +p2~0 + pl § + P00 = o (20)
It is obvious from (20) that each component 0i(t)=(0i(t) — 0d(t)) can be
independently controlled where 0C = (0ci,0c2>0c3)r- Let the characteristic
polynomial associated with 0, in (20) is of the form

(S + Ad)(5
2 + Z^UnciS + (£,.) = 0 (21)

The matrices Pi are easily determined from (21). The parameters Aa-, £„-,
and u:nci are chosen such that (20) is assymptotically stable.

The inverse attitude control law causes tracking of the command trajec-
tory Oc. Indeed if matching conditions

0(0) = 0

0(0) = 0 (22)

1(0) = 0

are satisfied; one has 0(0 = 0C(0> *^0> anc* ^(0 1S exactly reproduced.
However, slewing of the spacecraft excites the flexible modes and it becomes
essential to damp the elastic oscillations so that the target in the space is
tracked.

4. Elastic Mode Stabilizer

We assume in this section that the reference trajectory is such that
0C(0 —» 0*, where 0* corresponds to a desired terminal orientation of the
orbiter and 0C —»0, 0C —+0, as t—» oo. For such a trajectory, in the closed-loop
system, one has 0(0 -» 0C -* 0*, and 0(0 -»0, u(t) -»0, 0(0 -» 0, as t -» oo.
Interestingly, in the closed-loop system, in view of (8), the elastic dynamics
are assymptotically decoupled, and reduces to

A3q = -Kq + 522«r (23)

Defining z=(qT, qT), one obtains a state variable for (23) as

^ _ I °nxn ^nxn 1 z + [ f | Ur (24)
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= Aez -f Beur

For the stabilization of (24), one can use linear quadratic optimization or
pole assignment technique. We have chosen pole assignment technique in
this study. The closed-loop poles are chosen to be located at -.2±.lj,
-.2±.3j, -.2±.5j, and -.2±.7j
The linear feedback control law is

ur = -Fez (25)

The closed-loop system matrix Aec = (Ae — BeFe) is a Hurwitz matrix.
It is interesting to note that use of inverse attitude controller simplifies

the stabilization problem to a linear design problem of a lower order system
and this design is carried out independently.

5. Observer Design

The control laws (17) and (25) require knowledge of complete stste vari-
ables. We assume that only measured variables are 6, u>, and the elas-
tic deformation ux(L), uy(L), and u^(L) at the tip of the beam. For the
synthesis of the controller, it is essential to construct the variables q and
q. With these measurements, the system (8) can be considered as an on-
line linear time-varying system since the nonlinear function is of the form
TVj = -/V2c(0,0,ti>) + Nij(B,Q,ijj}q which is linear in q and N^j depends on
measured variables. However, design of observer for a time varying system
is not easy. Since 7V2 contains terms of second order in derivatives of 0,-, and
<7,-; NIJ is small and , therefore, it can be neglected for simplicity in design
of the observer.

Setting JV2/g=0 in NI in (8); one obtains the following equation for elastic
modes

where Ry consists of last n rows of D l. Since A^c>
 and u are known, a state

variable representation of (26) is

T 1

(27)
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where g is obtained from (26), R2 = [#21 -#22], and R& is n x n matrix.
The associated measurement equation is linear function of q of the form

Vm = Cmq (28)

Define Am as

A -[ ° 71m — z? if n[ —ti-iii\ U J

then the state observer takes the form

'z = Am2 + 9(0,6,u,u) + H(ym-Cmz) (29)

where I is the estimate of state z, and the matrix H is determined such that
the matrix (Am — HCm) is Hurwitz. Again, the matrix H can be found using
LQR or pole assignment technique. In this study, we use the pole assignment
technique.

The observation error z — (z — z) satisfies

'z = (Am-HCm)z (30)

which is assymptotically stable and z(t} —> z, as t — » oo. For simulation
matrix His chosen such that the observer poles (eigen values of [Am — HCm})
are at -8 ± 4j, -8 ± 6;, -8 ± 8j, -8 ± 10;.

For the synthesis of the controller, 9, q in control law (17) and (25) are
replaced by q and q. The complete closed-loop system is shown in Fig. 2.

6. Simulation Results

We present here the results of digital simulation for various initial con-
ditions and parameters. The appendix lists the maximum limits of control
inputs system. The mass of the antenna is 400/6s, and the mass of the Shuttle
body is2.050x!05/6s[8].

For tracking a representative command reference trajetory is generated
using a third order filter

0d +(2C«o;nc,- + Xd)!) + 2(Cc,u>nC,-Ac, + u^Bci + "LWci = "LW (31)

such that its poles are at -Ac,- and {— C«wnri ± j^nc«(l — C«)^2}- The para-
maters chosen are Cct = -707, and u>nct- = \d/Cd- By a prorer choice of ACT-,
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one can obtain desireable fast reference attitude trajestories for ticking. The
terminal angles 0* are chosen 4°, 10°, and 25° (roll, pitch, and yaw respec-
tively).

(a) Trajectory Control: Stabilizer Open Loop

In order to observe the behavior of the closed-loop system (8),
(17), and (18), this simulation was done without the stabilizer.
In this case the forces and moment M^. are zero. The initial
conditions were set as 0(0)=0, u>(0)=0, z,(0)=0, q(0)~Q, ?(0)=(-
.!,-.!,-.!,-.!), q = q = 0. The elastic mode error (q(Q) — q(Q)) was
introduced to examine the state reconstruction ability of the ob-
server. Only measured and estimated states are used for synthesis
of the contrller. Selected response plots are shown in Fig. 3. The
response time for the 6 is nearly 20 seconds. The simulation re-
sults show the periodic and bounded oscillations of elastic modes
and control moments as expected.

(b) Trajectory Control: Stabilizer Loop Closed

The complete closed-loop system including the stabilizer (24), and
(25) was simulated. The initial conditions and inverse controller
parameters of case (a) were retained. The selected simulation re-
sults are shown in Fig. 4. The attitude angle response remained
very similar to those of case (a). The stabilizer was switched at
20 seconds. The stabilizer exerts a force in both x and y axes
which causes a sudden change in responses when it is switched
on. The poles of the stabilizer are properly selected such that
the elastic oscillations are rapidly suppressed. Although, one can
design a stabilizer for even faster stabilization, this will require
larger control forces and moments. We notice only a small elas-
tic deformation. Of course, the actual deformation will be more
since the contribution of residual modes need to be added. We
observed smooth attitude trajectory following and elastic mode
stabilization.
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7. Conclusion

The control of slewing maneuvers of NASA SCOLE system was consid-
ered. The design was accomplished by decomposing the slew maneuver prob-
lem from the elastic mode stabilization problem. Orbiter orientation control
system was designed using nonlinear i-o map inversion theory. Using the
inverse attitude controller any smooth attitude trajectory can be followed.
The inverse controller includes PID feedback of attitude errors. Stabiliza-
tion of elastic modes was accomplished by a linear stabilizer using end body
forces and moment. Interestingly, the design of stabilizer was carried out off-
line seperately. For the synthesis of the controller, a linear state estimater
was designed using elastic deformations of the beam at the tip. Extensive
simulation results showed that the large maneuvers of the spacecraft can be
performed to follow precise attitude trajectories and elastic modes can be
stabilized using only output feedback.
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SLAPPENDLX

• CONTROL LIMITS

G0(t) = 100,000 ft-lbs (moment applied at the orbitr mass center)
Fo(t) = 800/65 (force applied at the orbiter mass center)
M^r = 100,000 ft-lbs (moment applied at the reflector e.g.)

• FIRST FOUR FLEXIBLE MODES OF SCOLE MODEL

THREE DIMENSIONAL MODE SHAPJ
MODE No.

FREO. (Hz.)
a
A,
B*
c*
Dx

A,
B,
Cy

D,
a*
*4
B*

MODE No.
FREO. (Hz.)

a
A,
B*
c,
D*
A*
B,
c,
D,
a*
A*
B*

1
0.27804240E+00
0.120 12084E+01
0.16282665E-hOO

-0.1%70286E+00
-0.16983450E-IOO
0.1%16259E400

-0.10274618E-01
0^7579 133E-02
0.1 181005 7E-01

-0^7220462E-02
0.19360955E-01

-0.50748354E-01
0.13978018E-04
3
0.81300189E-HOO
0^0540387E+01
0.40868 188E-01

-0.61958845E-01
-0.41309992E-01
0.61880796E-01

-0^2438404E-01
O36S09234E-01
0^439044 7E-01

-0.36464758E-01
O56611842E-01
0.92698901E-01

-0.87320799E-05

E CHARACTERISTICS
2
0.31357296E+00
0.1275651 8E+01
03885529 1E-02

-0.14998387E-01
-0.4332 10 18E-02
0.14985820E-01
0.142 1978 lE-^00

-0.22695797E+00
-0.192 83 105E+00
0^264456 1E+00
0^1835058E-01
0.311 15282E-01

-0.7599233 7E-05
4
0.11856099E+01
0^4804687E+01
0.8064 1794E-01

-0^7233377E-01
-0.809 13938E-01
0.671 063 16E-01
0.13728679E+00

-0.11746932E+00
-0.140 85 209E+00
0.1 172505 TE-eOO
0.82557693E-01

-0.16158934E-03
0.1043771 8E-07
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• MATRICES A3 AND A?

A,=

0.45879E+2 0.36305E-1 -0.89042E-1
0.36305E-1 0.6211E+2 0.11263EO

-0.89042E-1 0.11263EO 0.32737E+2
-0.14067EO -0.1471EO -0.6392E-1

-0.14067EO
-0.147LEO

-0.6392E-1
0.2547E+3

-0.2133821£0
0.3808921E+3

-0.1808478£+3
0.1423380E+3

-0.3687057E-I-3 -0.725390LE-1
-0.3030935E+2 -0.8427658E-1
~0.1318596E-f3 -0.125799EO
-0.113585LE+1 -0.236 7351£-1

* 0.2820217£0
* 0.3574692EO
* 0.2412807E1
" 0^285116£1
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• CAPTIONS FOR FIGURES

Fig. 1:
SCOLE configuration showing the three-body model, coordinate sys-
tem, and actuator control points.

Fig. 2:
Block diagram of the system.

Fig. 3:
Trajectory control: Stabilizer open loop

(a) Attitude angles.
(b) Control moments GQ.
(c) Torsional deformations, u^,.
(d) State errors, (qi - $1), (q2 - fa).

(e) Resultant tip defflection, Ju^. + u

Fig. 4:
Trajectory control: Stabilizer closed loop

(a) Control moments GQ.
(b) Control forces F.
(c) Control moment M^T.
(d) Torsional deformations, u^.

(e) Resultant tip defflection, Ju*. -f
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Abstract

The question of rotational maneuver and vibration stabilization of NASA
Spacecraft Control Laboratory Experiment (SCOLE) System is considered.
The mathematical model of SCOLE system includes the rigid body dynamics
as well as the elastic dynamics representing transverse and torsional defor-
mations of the elastic beam connecting the orbiter and end body (reflector).
For the rotational maneuver, a new control law (orbiter control law) is de-
rived using orbiter input torque vector. Using this control law detumbling
and reorientation maneuvers of SCOLE system are accomplished, however,
this excites the elastic modes of the beam. Interestingly the orbiter con-
trol law asymptotically linearizes flexible dynamics. Using the linearized
model, a linear feedback control law is designed for vibration suppression.
An observer is designed for estimating the state variables using sensor out-
puts which are used for the synthesis of the control law. Simulation results
are presented to show that in the closed-loop system detumbling and re-
orientation maneuvers can be accomplished and the effect of control and
observation spillover is insignificant .
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1. Introduction

An important class of shuttle deployed payloads consists of cantilevered beam-

like structures with massive tip bodies. A design challenge was posed by Taylor

and Balakrishnan [1] for the control of such a system. In the design challenge,

the Spacecraft Control Laboratory Experiment (SCOLE) was set up by NASA

Langley Research Center to provide a standard configuration to test control laws

for investigators.

The laboratory apparatus includes the Space Shuttle (orbiter) connected by a

long (130ft) flexible beam to a hexagonal antenna or reflector, as shown in Fig.

1. The reflector and Shuttle are treated as rigid bodies. When the Shuttle is

maneuvered, the flexible modes of the beam are excited. Two force actuators and

a torquer have been provided to exert sufficient force and moment to suppress the

unwanted vibration of the beam.

Research related to both dynamics and control system design has been per-

formed and reported in literature, NASA reports, and SCOLE workshops [2-10]

at NASA Langley Research Center. Nonlinear invertibility theory has been used

in [11-12] for designing controller for a simplified spacecraft system. Recently, this

approach has been extended for the control of SCOLE system [12].

In this paper, Control System design for reorientation and detumbling maneu-

vers and elastic mode stabilization of SCOLE system is considered. A new Orbiter

Control Law is derived such that detumbling maneuver and attitude control of or-

biter can be accomplished using shuttle input torque. Using this control law, any

given reference angular velocity trajectory, u;r, can be reproduced by the control

system during detumbling maneuver. Furthermore, by a judicious choice of the
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reference trajectory u>r(<), desired orientation of orbiter can be attained inspite of

the elastic oscillations of the beam caused due to maneuver of the space vehicle.

In the closed-loop system including the orbiter control law, the elastic dynamics

of the SCOLE configuration representing transverse vibration in two orthogonal

planes and the torsional deformation of the elastic beam, are asymptotically de-

coupled from the rigid mode dynamics. Using linear control theory, a stabilizer

is designed for elastic mode stabilization. For the synthesis of the controller only

attitude angles, angular rates, tip elastic deflection components and torsion deflec-

tion at the tip of the beam are assumed to be measured by sensors. An observer

is designed to estimate the elastic modes and their derivatives, and these are used

for synthesizing the control law.

The organization of the paper is as follows. Section 2 presents the mathematical

model. The orbiter control law is derived in section 3. Section 4 and section 5

present elastic mode stabilizer and observer design, respectively, and finally section

6 presents simulation results.

2. Mathematical Model of SCOLE System

A body fixed orthogonal coordinate system with axes i, y, z is utilized to de-

scribe the orientation of the orbiter. The body-fixed coordinate frame has its origin

at the point of attachment of the flexible appendage with the rigid Shuttle for this

study. The attitude of the orbiter is defined by a sequence of rotation #i,02>#3

(roll,pitch,yaw), with respect to an inertial coordinate system.

The orientation is completely described by the differential equation

0 = M-T(0)u (1)

where T denotes transposition and

u = (u;1,u;2,u;3)r, 6 = (^Af, M~T = (MT)~l



- 93 -

and

MT, — —cos&2sin&3 cos&3 0
sinOi 0 1

Often the arguments of functions will be suppressed for simplicity. Equation (1)

relates the rotation angles and the angular velocity components (wi,W2,W3) of the

orbiter. It is seen that MT becomes singular at 0^ = ±(?r/2) for the chosen choice

of rotations of the coordinate systems. However, this singularity can be avoided

by a choice of different sequence of rotations of coordinate frames if it is required.

In the following we shall be interested in the region of state space fl in which

61 ± ±7T/2.

The elastic beam undergoes transverse elastic deformations along axes x and

y, and torsional deformation about axis z. Elastic deformations are assumed to be

linear combinations of admissible functions ^xt(s),^v<(.s) and <j>j,i(s), i=l,2,3,...,n,

where V denotes the distance on the beam from the attachment point of the

beam and the orbiter. Here it is assumed that elastic deformations are adequately

represented by n modes. The admissible functions <f>xi(s),<f>vi(s) and <j>^,i(s) are

<t>xi(s) = Axisin-j- + Bxicos-j- -f Cxisinh-j- + Dxicosh~j- (2)

• Q*s r> Q«S /-» • La«5 n i^t'S4>yi\$) = AyiStn——(- Byicos——[- UyiSinn——f- Dyicosn—-— (3)
I j I j I j fj

. s s
'Z« ' 'Z-

The parameters /lr,-, y4y,-,ai etc, are explained in [6].

The elastic deformations are expressed as linear combinations of admissible

functions as

t=i
n

i=l
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(7)
1=1

where ttr»
uy a^6 the elastic 'deformations along i,y axes and u^ is the torsional

deformation about z-axis, respectively. Here q,-(t), i=l,2,3,...,n, are the modal

deformation co-ordinates for the beam. Define g=(<7i,<?2, •••>gn)7\ the elastic modes

vector, and Go = (Goi, £021 GQZ)T the external torque vector applied on the orbiter.

jP = (FxyFy)T is the external control force vector applied at the reflector center

of the mass and M^r is the moment applied about z-axis at the reflector center of

mass.

The complete equations of motion describing rotational and elastic behavior of

the SCOLE system have been derived in [6] using Lagrangian approach (Readers

may refer for the details). In this study we shall be interested only in the rotational

and elastic dynamics. These are

where K is the stiffness matrix, 7V2 is a nonlinear vector function, Bi (i=l,2) are

the constant input matrices, u = (G% , FT, M^r)
r € P? is the control input vector

and

B\ = [/3x3 #12]

BI = [OnX3 -622]

The matrices /o, Ai, and Bi have been derived in [6], and 7 and 0 denote identity

and null matrices of indicated dimensions. The matrix D

is positive definite symmetric matrix.
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We are interested in deriving control laws such that in the closed-loop system

detumbling and reorientation maneuvers can be performed.

Detumbling Maneuver:

Let a reference angular velocity trajectory a>r, be given such that u>r(t) —» 0, as

t —» oo. We are interested in deriving a control law such that in the closed-loop

system u(t) = u(t) — ur(t) —» 0, as t —» oo, and the elastic modes are stabilized.

The derivation of orbiter control torque vector for uv trajectory tracking will be

based on nonlinear inversion of an input-output map.

Reorientation Maneuver:

Let 0T(t} be a given reference attitude trajectory, such that 0T(t) —* $*, a desired

attitude angle, as t —» oo. We are interested in deriving a control law such that in

the closed-loop system 6(t) -* 0T(t), as t —* oo, and elastic modes are stabilized.

The rotational maneuver to attain desired orientation will be accomplished by a

judicious choice of u> r(t) in the detumbling control law.

3. Control Laws for Rotational Maneuver

In this section, control laws for rotational maneuvers will be derived.

3.1 Detumbling Maneuver:

Here first the design of control system for ur trajectory tracking is considered.

To derive the control law the inversion of the input (Go)- output (u>) map is

considered. For the inversion of input-output (1-0) map, we consider the derivative

of u from (8) which is

u = Rn(Ni(0,6,w,q) + BlU] + Rn[-Kq + B2u] (9)

where D~l=(Rij), i,j = 1,2 and Rij are submatrices of D~l of appropriate dimen-

sions. Define ur=(FT', M^}T\ and ug = GQ. Then in view of the special form of
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matrices #,, it follows that

* = (Ru{N2(8,0,u;q) + 512ur} + Ru{-Kq + £22ur}] + Ruug (10)

= a*(0, 0, w, 9, 4, ur) + #nua

where

a* = Rn{Ni + 512ur} + Rn{-Kq + B22ur}

Since it is desired to track the reference trajectory u>r, we choose a control law ug

of the form

ug = R^[-a*-Xu>(t) + ur(t)] (11)

where A > 0. Substituting control law (11) in (10) gives

£(*) = -\u(t) (12)

Solving (12) gives,

u(t) = exp(-\t)u(Q).

Thus <jj(t) — » u;r(i), as < — > oo; and if <2>(0)=0, it follows that w(<) = uv(0> for all

< > 0. By choosing suitable smooth trajectory w r(<) converging to zero, one can

accomplish desirable detumbling maneuver. If u> r(<) — * 0 as £ — > oo; then ^(<) — > 0

and 8(t) — » ^j, a constant vector. In such a case when detumbling maneuver is

completed, the orbiter attains a fixed orientation.

3.2 Reorientation Maneuver:

Now we shall derive a control law ug such that 6(t) —* Or(t), a given reference

attitude trajectory, as t -» oo, giving a desired orientation of the orbiter. This will

be accomplished by a suitable choice of reference trajectory u>r(<) in the detumbling

control law (11), such that the desired orientation is asymptotically attained.
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Since in the closed-loop system (8) and (11), u?(t) — > uv(0> we have that

M~1(^)w(t) — >M~1(0)u;r(i), as f — » oo. Thus the asymptotic relationship between

6 and w obtained from (1) is

9 = M~T(0)ur (13)

as t — » oo. Since it is desired to track 6r(t), in view of (13), it follows that a

suitable choice of wr is

u;r = MT(0)(-tiO + Or] (14)

where \i > 0, and 0 = (0 - 6r).

From equation (1), we have

ie + 9r)] (15)

which yields

'0 = -p§ + M-T(8)u (16)

Since for any choice of w,(<), in the closed-loop system including the control law

(11), w — > 0 as < — » oo, asymptotically (16) reduces to

^ = -/i« (17)

It is interesting to note that by a proper choice of reference trajectory ur as given

in (14), one obtains a first order linear differential equation asymptotically for the

attitude angle tracking error. It is obvious from (17) that for any w(0), wr(0), 0(0),

and 0r(0); 0(t) — > 0, as t — » oo. Let 0 = 0* corresponds to a desired orientation

of the orbiter. Thus if 0r(t) -> 0*, then 0(t) -» 0', as t -» e», and the desired

orientation of the orbiter is attained.

Furthermore, with the choice of u>(0) = 0 and 0(0) = 0, it follows from (12)

that u(t) = 0 for all t > 0. Then substituting u>(*)=0 in (16), and using 0(0)=0, it
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follows that 6(t) = 0 for all t > 0, and in the closed-loop system trajectories uT(t)

and 9r(i) are exactly reproduced for all t > 0. This way, the SCOLE system can

be maneuvered to attain specified time-varying orientation at each instant t > 0,

which is useful for tracking a rotating target in space.

The control law for reorientation maneuver is obtained by combining (11) and

(14) which is

(18)

where M(0,0) = [(3Mj/d0)0], i,j=l,2,3 and A/,-,- are the elements of the matrix

M.

We notice from (18) that the second order derivative of 0T is required in the

control law. For this purpose one can choose a third order attitude angle command

generator of the form (i= 1,2,3)

"e\i +(2Cr,0>nr,- + Ar,)0r,- + 2(Cr,U>nr, Art- + WJ|r,.)£r,- + U^-A^H = U& , Ar,^* (19)

where 6T = (0Ti,0r2,0r3}T- The parameters £•«? Ar,-, and u;nr, are appropriately

chosen to obtain desired reference trajectory 6T(t] terminating at 9*. It can be

easily varified that the poles associated with (19) are at -Art- and {— CnWnrt ±

4. Elastic Mode Stabilizer

We note that when the detumbling controller (11) is used, u>(t) — * 0, and

u(i) -» 0, as t — » oo for an approriate choice of uv(<). Also in the closed-loop

system including the reorientation controller (18), one can choose Or(t) such that

0(t) -> 6*, 9(i) -> 0, u(t) -f 0, and u(t) -» 0, as t -> oo. However, rotational

maneuvers cause transverse and torsional vibrations of the beam. Thus it becomes

necessary to design a stabilizer so that the elastic modes can be stabilized.
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In this section the design of an elastic mode stabilizer is considered. Since

in the closed-loop system (8) and (11) or (8) and (18), u(t) -» 0 and u(t) -» 0,

irrespective of the elastic oscillation of the beam; it follows from (8) that the elastic

dynamics get asymptotically decoupled from the rigid dynamics as t — * oo. Setting

u(t) = 0 in (8), gives the decoupled elastic dynamics of the form

A3q = -Kq + Bvur (20)

For the damping of the vibration, it is necessary to stabilize system (20).

Define z=(<jT,4T), to obtain a state variable form from (20) as

. f Onxn / B X «1 ,f 0 1
2 = -A~1K n \ Z + \ A-1R,* \Ur

-^S A Un Xn -^3 -D22

= AtZ + BeUr

where matrices Ae, and Be are defined by (21). For the stabilization of (21), linear

quadratic optimization or pole assignment technique can be used. We have chosen

pole assignment technique in this study. The linear feedback control law is

ur = -Fez (22)

The matrix Fe is chosen such that the closed-loop matrix Aec = (Ae — BeFe) is a

Hurwitz matrix and has specified eigenvalues. It is interesting to note that the use

of arbiter attitude controller simplifies the stabilization problem to a linear design

problem of a lower order system and this design is carried out independently.

Although, the control laws ug and ur have been derived independently and the

derivation of ur is based on a reduced order linear model, boundedness of elastic

modes can be established in the complete full order closed-loop system for any

bounded trajectory u}r(t) and ur(t). In the following we shall obtain a bound on

the elastic modes.
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In the closed-loop system with control law ua of (11), we note that u> — + 0 as

t — * oo. The elastic dynamics obtained from the systems (8), (11), and (22) are

given by

z = Aecz + Bau (23)

where B,=[0 (-Aj 1A%)T]T. Using u = u>r - Xu obtained from (12), (23) gives

z = Aecz + B,(ur - Aw) (24)

The solution of (24) is

Z(t) = 4>(t - t0)Zo + I <f>(t - T)B,(ur - \U>)dT (25)
Jto

where ZQ — z(to) and the transition matrix <j>(t] associated with the matrix Aec is

given by

4>(t) = exp(Aect)

We assume in the following that wr and ur are bounded. Furthermore, the

solution of (12) gives, ||w|| = e~A'||o;(0)|| < oo, where ||.|| denotes the Euclidean

norm of a vector. Thus it follows that there exists a function ^(t) < oo such that

for all t > 0.

\\B.(ur - Aw)|| < 7(0 < To < oo

where 70 is a constant. Since Aec is a Hurwitz matrix \\<j>(t — U)\\{ <

for some m > 0 and a > 0, where ||.||< is the induced matrix norm [13]. Let

u<i = wr — AcD

gives (t0 > 0)

= wr — AcD and z(to) = ZQ. Taking the norm and using triangle inequality, (25)

< \\*(* - <o)IMMI
t0

^\ \zo\ \ + m /" t'^-^
Jt0
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<m(||*0 | |+a~So)<oo (26)

This proves that in the closed-loop system q(t) and q(t) are bounded provided

that the reference trajectory is such that uT(t) and uv(<) are bounded functions

and (26) gives a bound on ||z(<)||.

For a choice of a reference trajectory u>r(<) in the closed-loop system with the

detumbling control law, for which ur(t) —> 0 and wr(0 —» 0, as t —» oo, u(t) and

u(t) —* 0 as well, as t —» oo. In such a case, in the closed-loop system, it is obvious

from (23) that z(t) —»• 0 as t —> oo, since /4ec is Hurwitz matrix.

The stabilizer has been designed by setting u>(t) = 0 in (8). Since u(t) and u(i)

asymptotically tend to zero for a proper choice of ov(t), a question arises: at what

instant should the elastic mode stabilizer-loop be closed? According to (26), if the

stabilizer is switched at the instant <o, following a rotational maneuver command

beginning at t = 0, the elastic modes remain bounded for all t > <0> provided

z(to) is bounded. However, since the stabilizer is not in the loop during the period

[0,<o]> divergent elastic oscillations will result during this period in the system

(23) in which Aec=Ae (since Fe = 0, i.e; zero stabilization signal) if the reference

trajectories ur(t) happen to contain sinusoidal signals of frequencies coinciding

with the natural frequencies of vibration of the beam. These natural frequencies

of oscillation are given by the purely imaginary eigenvalues of the open-loop matrix

At- Thus it is preferable to keep the stabilizer loop closed from the instant i = 0

to avoid structural resonance.

5. Observer Design

In this section, the design of an observer to estimate the states is considered.

The estimation of state is necessary so that the controller can be synthesized using
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measured signals. In this study it is assumed that the only measured variables

are 0, u;, and the elastic deformations ux(L), uy(L), and u^(L) at the tip of the

beam. The variable 0 is computed using (1). For the synthesis of the controller,

it is essential to estimate the variables q and q. With these measurements, the

system (8) can be considered as an on-line linear time-varying system since the

nonlinear function is of the form N? = N2C(0,6,u) + N2f(8,Q,u)q which is linear in

q and N^f depends on measured variables. It is interesting to note that NI contains

terms of second order in derivatives of #,, and 9,; therefore, NIJ can be neglected

for simplicity in design of the observer. We shall make this simplification, since

designing observer for the nonlinear model is extremely difficult.

Setting Nifq=Q in _/V2; one obtains from (8) the following equation for the

elastic modes

where R-i consists of last n rows of D~ l. Since A^o and u are known, a state

variable representation of (27) is

where g is easily obtained from (27), R? = [R2\ #22], and R^ is an n x n matrix.

The associated measurement equation is linear function of q of the form

Vrn = Cmq (29)

where ym=(ux(L), Uy(L), u^(L))T. Cm is computed using (2)-(7). Since the system

(28) is linear and the function g can be measured on-line, one can design an

observer using linear control theory.

Define Am as

A -m ~
7
r\0
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then the state observer takes the form

z = AriZ+g(0,0 tu,u) + H(ym-Cmz) (30)

• T
where z — (qT, q )T is the estimate of state z, and the matrix H is determined such

that the matrix (Am — HCm) is Hurwitz. In this study, we use the pole assignment

technique to obtain feedback matrix H,

The observation error z = (z — z) satisfies

k = (Am - HCm)z (31)

which is asymptotically stable and z(t) —* 0, as t —> oo.

For the synthesis of the controller, <?, q in control law (11), (18), and (22) are

replaced by the estimated variables q and q. The complete closed-loop system is

shown in Fig. 2.

6. Simulation Results

We present here the results of digital simulation. The numerical values of

various matrices /o, A%, K, B\, BI and Cm, and the complete expression of

nonlinear function N? have been taken from [6]. Here we set n = 8. The appendix

lists the maximum limits of control inputs. The mass of the antenna is 400/is, and

the mass of the Shuttle body is 2.050xl05/6s [8].

We chose A = /* = 0.55 for reorientation control law and detumbling control law.

For tracking, a representative command reference attitude trajectory is generated

using filter (19) with parameters Ar, = 0.55 £„• = .707, and u>nr, = Ar,/£r,-. The

terminal angles 0* (i=l,2,3), are chosen as 15°, 14°, and 13° (roll, pitch, and yaw,

respectively). Since in the practical situation, the control magnitudes are limited,

we have introduced control saturation functions in digital simulation. In this study,

the initial conditions are 0(0) = 0, and q(0) = q(Q} = 0. The observer poles are
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placed at -18 ±j 1.2424, -18±j2.1571, -18 ±;4.7615, -18 ±;7.4541, -18±

J12.5634, -18 ± j'29.9435, -18 ± J34.3916, and -18 ± ;77.1321. The stabilizer

poles are located at -1.2 ± jl.6841, -1.2 ± ; 1.8951, -1.2 ± j'4.8035, -1.2 ±

J7.4018, -1.2±;12.4961, -1.2±j29.9426, -1.2±j34.3913, and-1.2±;77.1313,

by using pole placement technique. These pole locations have been selected by

trial and error and by observing the simulated response.

(a) A Detumbling Maneuver:

For detumbling maneuver, an exponentially decaying reference trajec-

tory of the form u> r(t) = u>r(Q)exp(—0.52) for tracking was consid-

ered. The initial conditions were w(0) = (3,2, l)r degrees/sec, and

wr(0) = (5,4.5,4)r degrees/sec. The initial conditions of the observer

were &(0) = (-0.01) and $,.(0) = 0, i=l,2,....,8. Thus q(0) = (0.01)

and initial tracking error w(0) = (-2,-4.5,-3)T degrees/sec. Selected

responses are shown in Fig. 3. It is interesting to observe that inspite

of the control saturation and the use of only estimated states in the

control law, the tracking error tends to zero in about 10 seconds. We

observe that 9 converges to a constant value as predicted, and elastic

modes oscillations are suppressed.

(b) A Reorientation Maneuver:

Simulation was done to examine the reorientation maneuver capability

of the controller. For this purpose, the tracking of the reference attitude

trajectory, 6T(t), terminating at 6*(t} = (15°, 14°, 13°)r was considered.

The initial conditions were the same as described in case (a). The

selected responses are shown in Fig. 4. The response of an estimated

state was somewhat similar to those of case (a). Here the attitude angle

response 0(t) closely followed the reference attitude trajectory 9T(t), but



- 105 -

state was somewhat similar to those of case (a). Here the attitude angle

response 6(t) closely followed the reference attitude trajectory & r(t), but

due to the control limits and the state estimation error, there was a small

error in 9 tracking. The attitude angle 6 converged to 0* and elastic

oscillation was suppressed in less than 10 seconds.

(c) Effect of the Modal Error: The Spillover:

Simulation was done to examine the effect of control and observation

spillover by assuming that the actual dynamical model of SCOLE Sys-

tem has 10 elastic modes qi(t). However, the controller, designed for the

lower order model having only 8 elastic modes, was retained. To include

the effect of observation spillover, the measured signal ym(t) in the ob-

server (30) was replaced by ym = Cmaqa, where qa = («?i,?2, ••••,9io)T-

Here Cmo is a 3 x 10 output matrix whereas Cm is a 3 x 8 matrix.

The initial conditions of case (6) were retained except <?,(0) = (—1.1),

1=1,2,3,....,8; u(Q) = 0; and g,(0) = q = 0, i=l,2,3,....,10. Selected

responses are shown in Fig. 5. We observe only a small effect of model

truncation on on the controller. Stable responses were obtained. The

desired orientation is attained in about 30 seconds. Bounded and con-

vergent oscillation of the beam was observed in the simulation. These

oscillatory responses are insignificant after 100 seconds. However it

should be noted that the structural damping (which has been neglected

in the study) will cause the dissipation of energy and eventually even

these insignificantly small oscillations will vanish.

7. Conclusion

The control of slewing maneuvers of NASA SCOLE system was considered.
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The design was accomplished by decomposing the slew maneuver problem from

the elastic mode stabilization problem. Orbiter control system were for detum-

bling and reorientation maneuvers. The orbiter attitude controller was obtained

by a judicious choice of reference angular velocity trajectory in the detumbling

control law such that any smooth attitude trajectory can be followed. Stabiliza-

tion of elastic modes was accomplished by a linear stabilizer using end body forces

and moment. For the synthesis of the controller, a linear state estimater was de-

signed using elastic deformations of the beam at the tip. Extensive simulation

results showed that rotational maneuvers of the spacecraft can be performed to

follow precise angular velocity or attitude trajectories and elastic modes can be

stabilized using only output feedback.
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9. APPENDIX

• CONTROL LIMITS

Go(t) = 100,000 ft-lbs (moment applied at the orbiter mass center)

Fo(t) = 800/is (force applied at the orbiter mass center)

Af^r = 100,000 ft-lbs (moment applied at the reflector e.g.)

• CAPTIONS FOR FIGURES

Fig. 1:

SCOLE configuration showing the three-body model, coordinate system, and

actuator control points.

Fig. 2:

Block diagram of the system.

Fig. 3:

Detumbling Control Law:

(a) Attitude angles.

(b) Control moments GQ.

(c) Control forces F.

(d) Angular velocity u.

(e) Tracking error u

(f) Control moment M^r.
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Fig- 4:

(a) Mtitue angles-

(b) Control moments Go-

(C) Control forces F.

(d) Tracking error §.

(e) Control moment

(t) Torsio^l detotmatio->s,,

U)Kes*ntt*^ecUon,

Fig 5' 1 T avr Spillover:
Reorientation Control Law.

(a) Attitude angles-
(b)Torsional deformations,,,-

1 , fo deflection,^ Resultant tip ^e
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