1 GHZ DIGITIZER FOR SPACE BASED LASER ALTIMETER

FINAL REPORT

16 October 1991

Prepared For:

NASA GODDARD Space Flight Center
Greenbelt, Md. 20771

Contract No.: NAS5-30626
Project Manager: Jack Bufton

Submitted By:
Amerasia Technology, Inc.
2248 Townsgate Road
Westlake Village, CA 91361

Principal Investigator
Edward J. Staples

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Phase II Objective</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0 Program Summary</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Initial Technical Approach</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Technical Problems Encountered and Possible Solutions</td>
<td>2-1</td>
</tr>
<tr>
<td>2.3 Selected Technical Approach</td>
<td>2-3</td>
</tr>
<tr>
<td>3.0 Work Accomplished</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Summary</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Characterization of the AN1000H Hybrid</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.1 Design of the Test Circuit</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.2 16-Way Active Multiplexer Design</td>
<td>3-10</td>
</tr>
<tr>
<td>3.3 System Description</td>
<td>3-11</td>
</tr>
<tr>
<td>3.3.1 Signal Input Stage</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.2 Staggered Clock Generation</td>
<td>3-17</td>
</tr>
<tr>
<td>3.3.3 Analog Memory and Presampler</td>
<td>3-18</td>
</tr>
<tr>
<td>3.3.4 Microprocessor Interface and Communications Circuit with Host</td>
<td>3-19</td>
</tr>
<tr>
<td>Computer</td>
<td></td>
</tr>
<tr>
<td>3.3.5 Power Supply Duty Cycle Control</td>
<td>3-20</td>
</tr>
<tr>
<td>3.4 Testing</td>
<td>3-21</td>
</tr>
<tr>
<td>3.4.1 Characterization of the AN1000H Hybrid</td>
<td>3-21</td>
</tr>
<tr>
<td>3.4.2 System Tests</td>
<td>3-22</td>
</tr>
<tr>
<td>3.4.3 Special Operations Instructions and Notes</td>
<td>3-24</td>
</tr>
<tr>
<td>4.0 Conclusions and Recommendations</td>
<td>4-1</td>
</tr>
</tbody>
</table>

I. Appendix 1
II. Appendix 2
III. Appendix 3
IV. Appendix 4
V. Appendix 5
1.0 PHASE II OBJECTIVE

The overall objective of this Phase II Program is to develop, design, fabricate, and test a feasibility model of a low power 1 GHz Waveform Digitizer. The Digitizer is intended for analyzing data collected via a space based Laser Altimeter. It has a 6-bit resolution, and is equipped with a 1 GHz surface acoustic wave (SAW) oscillator, and a random access buffer memory to interface with the 8-bit parallel bus of the altimeter system computer. Low power consumption is obtained by cutting off the power supply during the absence of data from the altimeter, thus lowering the duty cycle of power utilization.

The following technical objectives were specified for the implementation of the 1 GHz Waveform Digitizer feasibility model.

Functions:
(1) Perform analog-to-digital conversion
(2) Transfer digital data to system computer via a random access memory and an 8-bit parallel bus (DMA)
(3) Provide a 1 GHz system timing clock

Inputs:
(1) Signal bandwidth: DC to 350 MHz
(2) Signal pulsewidth: 4 to 10 Nanoseconds
(3) Repetition frequency: 40 Hz
(4) Input impedance: 50 Ohms, nominal

Outputs:
(1) Sampling rate: 1 Gigasamples/second
(2) Resolution: 6 bits
(3) Clock frequency: 1 Ghz
(4) Number of samples: 128/second

Power supply:
(1) Average power consumption: 1.5 Watts
(2) Duty cycle: 2.5 %
(3) Available supply voltages: 5V, -5.2V, -2V, and 12V
2.0 PROGRAM SUMMARY

2.1 Initial Technical Approach

A system diagram of the initial approach is shown in Figure 2-1. Two Tektronix flash 8-bit A/D-converters (TKAD10C) were selected to digitize the input signal. Each is capable of 500 Megasamples/second operation. By paralleling these converters an effective 1 Gigasample processor is obtained. The converters have 7-bit accuracy, as specified by its manufacturer. The digitized data can be stored in 32 RAMs, each being an 8-bit 30 MHz device. Alternatively, eight 4-bit 250 MHz RAMs were considered. Write and Read activities in the RAMs are controlled by an address counter as shown. Sampled data is transferred to the system computer via DMA type bus interface. Timing is derived from a 1 GHz SAW oscillator and distributed to the converters counters, and computer interface bus.

2.2 Technical Problems encountered and Possible Solutions

It was found later that the total set-up and hold time of the high speed memories (RAM) is equal to the access time (4 nanoseconds), hence there is no allowance for any timing errors during acquisition at full speed. The following solutions were considered to overcome this problem:

1. Replace the RAMs with high speed multistage (128) shift registers utilizing gate array technology
2. Use 16 RAMs in place of the original 8, allowing for half speed clocking.
3. Incorporate hybrid memory technology.

The first approach was investigated and found to be technically risky and not cost effective, due to the associated nonrecurring engineering cost. The second approach would increase the systems parts count, resulting in higher power consumption and reduced reliability. An existing hybrid memory and data sampling device (AN1000H) was found that is useable and met the technical requirements. This device is manufactured by Analytek and used in their Gigasample data acquisition systems. Therefore, there is minimal technical risk involved with the application of this device. In addition, the devices are readily available.
Figure 2-1, 1 Gigasample/sec. Digitizer System Diagram
2.3 Selected Technical Approach

A system diagram of the selected technical solution is shown in Figure 2-2. In this approach fast analog storage is provided by the AN1000H hybrids, which is followed by a slow readback via an A/D Converter at a moderate speed. The analog memory is made up of 4 hybrids. Each hybrid consists of four channels containing 256 randomly addressable charge storage capacitors capable of storing an analog voltage of ±2 volts with a resolution of ±1 millivolt. Each channel can operate at 62.5 Megasamples/second. By delaying the data and clock signals appropriately the system can be designed for 16 channels, equally spaced within one 16 nanosecond window, giving 1 nanosecond resolution. Fast sample/hold presamplers on each channel insure adequate aperture parameters to make the acquired signal meaningful at this rate.

Initially the input signal was delayed in increments of one nanosecond via a 16-tap delay line. This approach was not satisfactory because of differences in losses among multiple taps, although small between two adjacent taps, are excessively large thus deteriorating the acquisition accuracy of the digitizer. Moreover, stripline implementation of the tapped delay line is adversely effected by temperature due to expansion and contraction. This problem was resolved by offsetting the acquisition instants of each channel of the hybrids by one nanosecond, respectively.
Figure 2-2, Lola A/D Converter Block Diagram
3.0 WORK ACCOMPLISHED

3.1 Summary

During the Phase II development program a feasibility model of the 1 GHz Digitizer was designed, fabricated and tested. Hardware system testing was not fully completed due to limited funding. Preliminary testing of the A/D function of the hardware demonstrated satisfactory results. A software package for data processing and interface with the host computer was developed but not tested. Source code listing of the software is attached in Appendix 1.

The 1 GHz SAW clock required for system timing is included, and a timing interface circuit was designed and built as part of the hardware printed circuit board. Average power consumption is within the specified limit, while power up and power down timing were satisfactorily tested.

As mentioned earlier, initially the design was based on utilizing Tektronix's flash A/D converters (TKAD10C). For this purpose a clock distribution circuit was designed, the results of which are shown in Appendix 2. The 1GHz oscillator which was acquired for this purpose is also useable in the final design.

The hybrid devices (AN1000H) used in the final design were characterized. For this purpose a test circuit was designed and built. A schematic diagram showing the test circuit and the printed circuit board are shown in Figures 3-1 and 3-2. The results are shown in Appendix 3. During this effort one hybrid, containing 4 channels, was tested by characterizing its transfer function and input-output signal waveforms from 150 KHz to 1 GHz. Each channel of the hybrid contains 256 cells. Each of these cells have variations in gain and offset, consequently the output (sampled data) waveform becomes noisy. Corrections were made and the accompanying result shown, where the waveform is considerably cleaner.

A tapped delay line for the purpose of distributing the input signals with one nanosecond offsets to all the 16 channels of the hybrids was designed and built. This implementation is shown in Figure 3-3 and 3-4; it is basically a transmission line with 16 one nanosecond taps, constructed on epoxy fiberglass (G-10) material utilizing microstrip technique. The result of this implementation was not satisfactory due to dielectric and copper losses. A second version was built utilizing duroid printed circuit board, as shown in Figure 3-5. This implementation was also not satisfactory. Finally the approach was abandoned and this problem resolved by staggering the timing of each channel by 1 nanosecond. The test results of the delay line implementations are shown in Appendix 4.
In what follows the development of the 1 GHz Digitizer utilizing the AN1000H hybrid chips are described. It includes the characterization of these chips prior to hardware design, design of the Digitizer circuit, and software for control and interface with the system computer.
Figure 3-1, Lola Test Circuit
Figure 3-2, Test Circuit Layout
Figure 3-3, 16-Way Active Multiplexer
Figure 3-4, Microstrip Delay Line with pads for JFET mounting.
Figure 3-5, Goddard Delayline

3-7
3.2 Characterization of the AN1000H Hybrid

3.2.1 Design of the Test Circuit

The test circuit is shown in Figure 3-1 and 3-2. Since the objective is to characterize the AN1000H hybrid analog memory module, the design includes only one chip. Each hybrid has four inputs; in the 1 Gigasample Digitizer four hybrids are used and data is acquired via a 16-way multiplexer. Multiplexing is accomplished by a combination of delays in the timing and data paths such that the data latched by each of the inputs is staggered by one nanosecond referenced to time of actual occurrence. In order to achieve this, the presamplers in the hybrids must be fast enough to accurately take their samples. In addition the internal delay times must be known and included in the overall timing delay consideration.

The sampling window and timing is determined accurately in a single hybrid. The sampling waveforms should be the same as if it were one of four hybrids in the final system. The delays should be identical or at one nanosecond intervals so as to represent one or more noncontiguous repetitive samples out of the full set. Identical timing was chosen since it would provide the easiest method of determining channel to channel variations in both timing and amplitude.

In this test circuit on-board microprocessor is not included. The final circuit, however, will be controlled by a combination of microprocessor and dedicated logic, which will also unload and correct the data. Part of our objective is to determine the necessary corrections, therefore raw data is being collected. The on-board A/D converter is connected to a general purpose parallel port on an MS-DOS computer where simple programs in BASIC or C can be used to unload and save the data for further analysis. Analysis will include gain, offset and timing errors for each channel, offset and gain, offset and linearity errors for each memory cell, as well as input frequency versus amplitude errors for each memory cell, to check the sampling accuracy.

The power and control circuitry is not needed in the test board. It has been designed with adequate power and heat dissipation capacity for 100% duty cycle. Power down circuitry will be added later to determine its effect on performance and to determine minimum turn-on and turn-off times.

Since only four channels are being driven, a resistive divider is used to provide adequate impedance match. A signal function generator is used as a test source.

Referring to the circuit in Figure 3-1, several power voltages are required and a number of timing signals as shown in Figure 3-6. The hybrid needs Vtt for termination of the ECL inputs, Vsub for substrate biasing and Vofs as a fixed DC offset to the signal paths.
WRITE (LOAD) CYCLE TIMING

1 GHz Clock

.5 GHz

S-R bit 0

S-R bit 7

S-R bit 2

DCLK

Load

End1-4

Sload

(FF1)

(FF2)

RSR

LSR

START1-8

512 & 534

This signal inverted in TEST2 & BUS1

READ (UNLOAD/CONVERT) CYCLE TIMING

TTL CLOCK (8 MHz)

IY

I2Y

UNLOAD

RSR

START2-1

HOLD / TRACK

Combined with RSR above
 Voltages needed for sensitive analog portions of the circuit are isolated from noise of the digital circuitry by ferrite beads and bypass capacitors. There are two analog grounds, one at the input of the hybrid and the other between the hybrid and the A/D converter. Isolated analog sections of each plane have been created by partitioning the planes.

The timing signals are summarized in the timing diagram shown in Figure 3-6. The AN1000H collects samples during the high portion of the S_{12} and S_{34} signals. These samples are latched in the presampler on the falling edge of S_{12} and S_{34}. The data in the presampler is transferred to a memory cell during DCLK high, and latched on the falling edge of the DCLK. The relationship between S_{12}, S_{34} and DCLK should be such as to maximize the time from the falling edge of DCLK. DCLK also clocks the shift registers used to select the next memory cell for writing. These registers are cleared when RSR and RST1 are low and start counting when LSR and START-X go low, loading a 1 bit into the fast row and slow column shift registers respectively. ORST is the same signal as RSR. All analog memory locations are reset on the rising edge of ORST. END1-4 is used to determine the end of the collection (WRITE) phase, so that the unload phase can be started. O2S is used to synchronize the START-X signals. RST2 is held high to prevent read attempts during the collection phase.

3.2.2 16-Way Active Multiplexer Design

Distribution of signals and time delay to drive the hybrids is accomplished by a 16-Way Multiplexer. System requirements and characteristics of the AN1000H hybrid dictate the performance requirement of the multiplexer. Following are the design objectives:

Input parameters:
- $0 \pm 360 \text{ mV (720 mV P-P)}$
- DC-350 MHz
- 50 Ohms, Impedance
- VSWR 1:8, maximum

Output parameters:
- 16 Outputs
- 1 ns delay between each output
- $0 \pm 360 \text{ mV}$
- DC-360 MHz, flat frequency response
- 50-Ohm impedance load (50 Ohms shunted by 4.7 pF)
- VSWR 1.8:1 maximum

3-10
Power Supply:
5 VDC
-5.2 VDC

The design of the multiplexer is shown in Figure 3-3. The signal distribution and delay requirements are achieved by tapping a microstrip transmission line at 16 points, each 1 ns apart. The line is meandered to reduce layout length and is adequately spaced to reduce coupling between adjacent segments. Circuit loading at the taps is minimized by using JFET buffer amplifiers with high input resistance and low gate-source capacitance. Current gain is supplied by a bipolar transistor output stage.

The circuit is built on a 31-mill microstrip board utilizing G10 dielectric material. The delay line is shown in Figure 3-4. Surface mount packaged JFETs are used. Initially, test data is taken with 3.3 pF chip capacitors simulating the gate capacitance of the JFETs. The test results, showing group delay and insertion loss as a function of frequency, are shown in Appendix 4. These measurements show that the transfer characteristic of the delay line has a 3dB slope down to 350 MHz, which is too large to meet system performance objectives. A second design, shown in Figure 3-5, was tested. In this design lower loss dielectric material (Duroid) was used. A slope of 1.2 dB was obtained, which is smaller but still considered unacceptable. Therefore, this approach was abandoned, and the problem is resolved by sampling the input signal at sampling times staggered by 1 ns from channel to channel.

3.3 System Description

The 1 GHz Digitizer system block diagram is shown in Figure 2-2, and the detailed circuit diagrams are shown in Figures 3-7 through 3-10. A short duration of the input signal is stored as discrete analog samples in a set of AN1000H Hybrids. There are four hybrids, each of which has four channels. Each channel can capture a signal with picosecond precision using fast pre-samplers, but requires a 16 ns cycle to store the sample. The four hybrids provide 16 channels, each staggered by 1 ns thus acquiring a new sample every nanosecond. The pre-sampler clocks are brought out of the hybrids in pairs, allowing for eight different clocks (two nanoseconds apart). The two channels sharing the same clock are connected to different signal paths, one having an extra 1 ns of coax delay in it. Each channel is 256 cells deep, resulting in a total acquisition of 4096 samples, or over 4 microseconds of data. No attempt has been made to shorten the acquisition cycle. After the samples are collected, a readout phase begins, which transfers the successive sample of each channel to a fast 12 bit A/D converter. Only a small fraction of the 4096 samples are actually needed, but the four
channels on each hybrid are arranged such that one must be completely read before the next one can be started. The time (and power consumption) of this requirement is minimized by rapidly clocking out the samples before and after the desired segment, and slowing the clock to the speed of the A/D converter for the samples which are actually needed. This process is currently implemented using fixed constants, but could be modified to identify the region of interest, with a small increase in on time. The cells beyond the end of the region of interest in the fourth channel in each hybrid do not need to be clocked out at all, so the closer the desired data is to the beginning of the buffer, the less time will be required in the unload phase. The readout clock and A/D converter control are generated in software in the microprocessor. This is a full time task during that interval, and could not have even been considered on a slower processor. For this reason, no processing is done until the readout is completed. Upon completion, the data is scaled by gain and offset values stored from a calibration sequence and transferred to the host system. Calibration consists of starting the calibration sequence, providing a fixed voltage input, doing an acquisition cycle, providing the value of the fixed voltage, changing the voltage, and repeating the process as many times as desired (3 minimum, 16 maximum, 6 to 10 suggested). A final call to the calibration routine converts the accumulated summations into slope and intercept parameters for each cell. Separate calibration data is necessary for each cell because of variations in the sample and hold capacitors which store the samples. The host system communicates with the A/D system by means of a 16-bit bi-directional data bus with 6 handshaking wires. A command set is provided that allows not only calibration and operation, but also allows reading and writing (except EPROM) all data memory and code memory addresses, individually or by blocks, and input or output to any I/O address. Extra commands are reserved which are initially NOP's but can be patched to provide added functionality, even in flight.

In order to minimize power consumption and heat dissipation, power duty cycling has been implemented. Many of the power requirements, including all of the GaAs and ECL logic are needed only during the four microseconds of acquisition. These are known as the write loads. Several other voltages are needed only during acquisition and readout. These are known as the read loads. All switched voltages turn on within 5 microseconds, and are designed to be stable within 10 microseconds. Another 10 microseconds is allowed for the circuitry drawing the power to stabilize. Ten microseconds is allowed as a trigger window, and another 10 microseconds for the acquisition and shutdown of the write loads. The read loads remain in for several milliseconds, depending on the size and position of the data to be unloaded.
Figure 3-9, Lola A/D Converter
Figure 3-7, Lola A/D Converter
Figure 3-10. Lola A/D Converter
3.3.1 Signal Input Stage

The input amplifier is constructed in two sections, as shown in Figure 3-7, each having two stages. The sections are identical except that one section has no delay, the other a one nanosecond coaxial delay line. The first stage is a buffer amplifier which provides minimal loading of the input signal to allow bridging of the two stages, and low enough output impedance to drive the eight second stage amplifiers in parallel. The input signal is terminated in 50 ohms at the end of the 1 nanosecond length of coax. The second stage provides minimal loading to the first stage and a 50 ohm output to match the hybrids. A wideband amplifier having a frequency response which is flat from DC to 350 MHz pushes the state of the art in semiconductors and integrated circuits. It would be much simpler if DC coupling were not required, or if a DC offset could at least be tolerated. DC coupling was a requirement partly to simplify calibration, and partly because any coupling capacitors which could charge and stabilize during the 20 microsecond turn on time would not pass low enough frequencies to leave the pulses being measured undistorted. Operational amplifiers represent the most straightforward method of providing DC coupling without significant offset. The recent development of current feedback op-amps allows their use to frequencies in excess of 300 MHz. The CLC 409 was chosen for this application. With careful construction practices it can be built into a system which is fairly flat to 350 MHz.

3.3.2 Staggered Clock Generation

In order to acquire samples with 1 ns resolution, a 1 Ghz clock with fast rise and fall times must be the basis of the timing logic. A SAW oscillator was used for this purpose. The oscillator is connected to a power splitter which provides an external output for other uses, and a clock signal to a GaAs shift register. The shift register is connected to circulate a pattern of 8 zeros followed by 8 ones. By tapping this signal at various stages, the four 16 ns clocks were provided (one for each hybrid, four nanoseconds apart). The eight pre-sampler clocks come from GaAs gates which generate pulses based on the time it takes for the basic clock transition to pass from one tap of the shift register to a tap two stages later. This provides a 2 ns wide clock pulse every 16 ns. Eight of these gates provide pre-sampler clocks staggered by 2 ns intervals.
3.3.3 Analog Memory and Presampler

The heart of the system is the set of AN1000H hybrids. Each of these memories have four signal inputs, two pre-sampler clock inputs, one data transfer clock input, and various control signals, as shown in Figure 3-8. The control signals are generated by TTL logic derived from the trigger signal and the data transfer clock for the first hybrid. The control signals must be delayed by 4 ns per hybrid. This is done by re-clocking them for each of the other hybrids, using a 47AC174 quad D flip-flop clocked from that hybrid's data clock. All pre-sampler and data clocks are routed over 50 ohm controlled impedance traces whose paths are match to within 2/1000 inches to minimize external channel to channel skew. The internals of the hybrids exhibit some skew, as was shown earlier. It has been assumed that this skew is consistent from device to device. The signal inputs to the hybrids from the front-end amplifier are connected via pieces of semi-rigid .141" coax cable. The pieces are all the same length, except for variations calculated to compensate for the internal skew. The following table shows this:

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>RELATIVE DELAY</th>
<th>CABLE LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200 ps</td>
<td>+.9"</td>
</tr>
<tr>
<td>2</td>
<td>0 ps</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>135 ps</td>
<td>+.6"</td>
</tr>
<tr>
<td>4</td>
<td>260 ps</td>
<td>+1.2"</td>
</tr>
</tbody>
</table>

The hybrids require numerous voltages (see Figure 3-8), all of which are duty cycle switched, some write cycle only, other stay on until the end of the read cycle. The read cycle also has its own clock and control signals which are derived from I/O circuitry on the microprocessor. This approach simplifies the hardware, and adds flexibility. The analog output is shared between all sixteen channels on all four hybrids. It consists of a differential amplifier with feedback, followed by a gain stage, which drives an A/D converter. The A/D converter has 5 volt and 10 volt inputs which are tied together to give a three volt full scale sensitivity. Its input is bipolar, which fits well with the output of the hybrids. No offset was included. The A/D converter has a built in sample and hold, and is very easy to use. Each read starts a new conversion. This does mean that a priming read must be given, or conversely, the first data element is discarded, and an extra read is done at the end. The 5 volt supply to the A/D converter had to be left on all the time because the converter is connected to the computer data bus. A bus buffer chip would have solved this had it been anticipated. The -12V supply is switched. Because the original intention was to switch the...
+5V supply also, the reference voltage is filtered with a much smaller capacitor than the recommended 47 uf. This may need to be changed if it adds too much noise.

3.3.4 Microprocessor Interface and Communications Circuit with Host Computer

The microprocessor is a UT1750AR RAD hard RISC processor, as shown in Figure 3-9. It uses a Harvard architecture, having separate code and data memory. Only the lower 16 bits of the code address are decoded, with the first 32k being EPROM and the last 32k SRAM. The only thing in SRAM by design is a command jump table and a few small utility code fragments. These are copied from the EPROM. The remainder of the SRAM is reserved for extensions, including in-flight modifications. The data memory consists of 64k bytes of fast CMOS SRAM. The original intention was only to populate the first half. Most of this is used up by calibration tables and the data buffer. The second half is unused at present. An RS-232 serial port is built into the processor, but is of limited use because it does not generate interrupts. It is not needed in this application, although a level translator and connector have been added to allow for its use. If it is not used, it may be desirable to cut the power jumpers to this chip to lower the power consumption. I/O decoding is done with a 74AC138. In addition two 74HC259's provide latched output discretes which are set by writing (anything) to a specific I/O address, and cleared by writing to one address lower. U75 deserved particular mention because its clear input comes from U76-QT. This means that when U76-Q7 is high, U75 acts like a decoder, with all outputs low, except for the one being addressed at a particular moment (if any). This allows short positive pulses to be output instead of levels, which is used to generate the fast two phase read clock used to skip cells. The other outputs of U75 have been inverted as necessary so that their cleared state would be compatible with this operation. Two 74HC573's provide a 16 bit status word. The low byte contains various handshake signals, while the upper byte is a copy of the read and write end signals of all four hybrids. These latter signals are not likely to be used in operation, but are useful for testing. U72 may be optionally removed for in flight use to conserve power, although its consumption is minimal, mostly derived from the extra capacitive loading it provides to the bus. Host communication is provided by U79 - U82 (74HC574's) and U83 (status latches). The protocol for this is described elsewhere, and a listing of the software is given in Appendix 1. Notice that U83 is level sensitive, and responds to the leading edge of the pulse. This means that pulses should be less than 500 ns wide so the micro does not have time to start a new operation before the old operation is completed externally.
3.3.5 Power Supply Duty Cycle Control

The power supply consists of three sections. The first is fixed voltages. The microprocessor subsystem needs a constant source of +5V. The 1 Ghz oscillator and the RS-232 level shifter need a constant source of +12 V. The second category is switched versions of input voltages. In addition to the above voltages, 6.5V, -5.2V, and -12V, are provided to the system. These voltages and +5V are switched by power mosfets as needed for the write loads and read loads. In each case the switching signal passes through a capacitor to insure that it will time-out in hardware in case of a microprocessor upset or glitch. The third category is switched derived voltages. The write loads need, in addition to the above voltages, +5.3 V, -2 V, -3.4 V, and -4 V, as well as two offset bias voltages. These are generated by power mosfets controlled by op amps. An LM385-2.5 is used as a precision reference. The original intention was to power it on and off for the 40 microseconds of the write cycle. However, it has several internal capacitors which cannot charge that rapidly, so it is left on, lightly loaded all the time. A copy of the write power control signal is current limited in a 110 ohm resistor and clamped by this regulator. This signal provides a regulated pulse to the op amps controlling the mosfets. When this signal is off, the op-amps shut off the mosfets, and when it is on they regulate the output of the mosfets to the desired voltage. Extra resistors and capacitors were required to provide closed loop stability of the op-amp circuits, while at the same time providing the rapid turn on and settling needed by the loads. The pulse which is clamped by the LM385-2.5 is also capacitor coupled to provide a hardware time-out. This is especially important here because the mosfets which are regulating must dissipate power and are not heat sunk for continuous dissipation. Also the write loads, especially the GaAs, are not heat sunk for continuous dissipation. IT IS VERY IMPORTANT NOT TO BYPASS THIS DUTY CYCLE LIMITING.

The decision of which voltages to require as inputs and which to derive was based on power consumption considerations. All constant power sources were made inputs, since any regulator drops in these would represent full time power consumption and heat losses. It is assumed that these voltages can be generated externally with high efficiency switching power converters. Second, all voltages that would represent a major drop from the next higher available voltage are required as inputs. The +6.5V input for instance would be very inefficient to derive from +12V. The remainder of the voltages are derived from these voltages, using the mosfet regulator/switches. The voltages are all write cycle loads having a 40 microsecond duration and a .1% duty cycle, so the losses in the regulator represent a very small fraction of the total power consumption.
3.4 Testing

3.4.1 Characterization of the AN1000H Hybrid

The hybrid is characterized in the test circuit shown in Figure 3-1. It is clocked at 62.5 MHz, which is the DCLK clock. The same clock rate is used for the presampler inputs, which are 2 ns wide. The difference between this test circuit and the final implementation of the 1 GHz Digitizer is that the latter consists of four hybrids, for a total of 16 inputs, while the signal to each input are delayed by a different amount, with the differences being exactly 1 ns apart. This provides 16 equally spaced (1 ns) signals every 16 ns (at 62.5 MHz). For initial testing the test circuit was connected to a 20 MHz function generator, set to produce SINE, SQUARE, and TRIANGLE waveforms at various frequencies. The analog memories (in the hybrids) is filled from this source (all four channels in parallel), and then read out (sequentially) using a 400 Msamples/s 6-bit digital oscilloscope to observe the waveform. Plots from the digital oscilloscope are given in Appendix 3. A full set of 256 samples requires 4.096 microseconds to collect, and sequentially reading back the 1024 samples takes 9 milliseconds. Therefore the frequency of the input signal is reduced by approximately 500 to 1.

In this procedure there are several limitations. The four inputs are resistively isolated, causing significant loss of signal, hence requiring maximum output from the function generator. Consequently, little room is left for baseline offset, and may have contributed to some clipping of the waveform. In addition, the oscilloscope resolution of 6 bits tends to exaggerate the noise content of the waveform. The signal would normally be sampled by a sampling A/D converter just before each transition, when it is most stable. The oscilloscope, however, shows all the waveform settling and glitches, which otherwise would not be digitized. To isolate the digital from the analog signals two planes are used, which are segmented. The test results are given in Appendix 3. Figure A3-1 shows the input signal (lower trace) captured by the test circuit. The upper trace is a frame sync signal which defines the beginning and end of the capture interval. The input signal was a portion of the rising half of a 100 KHz triangular wave. The noise on the signal shows the typical resolution and noise of the oscilloscope.

Figure A3-2 shows the output (readback) signal resulting from the input signal. Similarly, the upper trace shows the frame sync (read frame) signal used to define the beginning and end of the readback interval. Notice that there are four copies of the input signal, corresponding to the sequential readback of the four channels. These four copies should be identical. The end purpose of this test circuit is to quantify channel to channel...
variations. In Figure A3-3 the same signal as in Figure A3-2 is shown using a faster timebase so that the first channel is given an expanded view. This allows a detailed look at signal variations and noise. Figure A3-4 shows an even faster timebase, so that the individual cell readout is clearly visible. Cell changes occur at 9-microsecond intervals. Notice in the latter two cases, while there is considerable noise on the signal, the largest spike occurs immediately after a cell transition followed by one occurring near the midpoint of the cell. The last microsecond before a transition remains relatively noise free. This is the point for optimum sampling and digitization.

A 2 MHz triangular input signal is shown in Figure A3-5, and its corresponding output waveform is shown in Figure A3-6. The three discontinuities appearing at the output are not errors, but represent the transition from one channel to another. In order to show this boundary, the input signal frequency is chosen not to be a multiple of the sampling window. With a 1 MHz input sinewave, the output is shown in Figure A3-7. The channel to channel transitions are even more clearly visible. In Figure A3-8, the same output is shown with a faster timebase to show only one channel output. The input sinewave frequency is increased to 20 MHz and the resulting output is shown in Figure A3-9. Since there is no output filtering, the beat frequency between this signal and the 62.5 MHz clock is perceptible in the output waveform. The top trace belongs to the sample/hold clock used by the A/D converter which samples the output. The sample phase ends with the negative edge of this clock, which occurs immediately before the cell transition of the hybrid. The first two clock pulses are part of the initialization process, thus do not present valid data.

From the test results several conclusions are drawn. First, the basic concept is viable. The test circuit captures and reproduce the waveforms. Second, the signal-to-noise ratio is adequate for the intended application. Third, there is some channel to channel offset which needs to be dealt with during calibration. In the remaining test results, given in Appendix 3, further test and analysis are performed with input signal frequencies up to 1 GHz. Output waveforms are displayed with errors due to offset and gain variations. Their corrected versions are also given.

3.4.2 System Tests

A number of tests and considerable debugging of the system were performed, although it was not 100% functional or tested when the funding ran out. The microprocessor and support logic and memory have been fully tested and are fully functional. The intended software has been written, a listing is given in Appendix 1. The startup and monitor code have been fully tested and debugged. The one addition which might be made in this area
would be self-test routines, such as RAM test, EPROM checksum, and as much I/O testing as the design allows for. The conversion cycle routines have been partially tested. The cycle progresses properly without any time-out or errors. The write cycle appears to initialize the system properly, and respond to status properly. The read cycle seems to generate the proper clock and control signals, operate the A/D converter properly, store data in the correct place and scale and output it correctly. Because no calibration has been done and not useful data retrieved, this section is less than fully tested. It has been determined that output data is dependent on input signal, but with the limited amount of testing done, it was not obvious that the output data was a reasonable representation of the input signal. The calibration routine has not been tested at all, and is not guaranteed crash free at this time. A copy of the C code (known to work) from which this routine was derived will be provided with the system as an aid to understanding and debugging this routine. The C code is based on processing one cell at a time from several files, each containing data at a different calibration point. The 1750 code by contrast was designed to accumulate the necessary intermediate values for each cell, one calibration point at a time, and then transform the result to slope intercept form afterward. The power circuitry has been tested. All power supply voltages achieve nominal value within 5 microseconds after turn on. Turn off decay depends on the current drawn by the load, and the number and size of the bypass capacitors across it. Current from the source stops within a microsecond or two after the shutdown command. The hardware time-out circuitry has also been tested and works properly. The signal input circuitry has been tested, both with static power and duty cycled. The value of the feedback resistors has been optimized for maximally flat frequency response. The trace between the first and second stages was found to be inadequate at 350 MHz, and had to be supplemented with a wire. The amplifiers furthest from the source were showing more attenuation. No testing has been done on the coax path length. This testing cannot be done until calibrated signals are available from the system. The test procedure should consist of calibrating the system (DC) and then placing a sine or triangle wave of 20 to 50 MHz and full scale amplitude into the system and examining the output data graphically. Timing errors will result in certain segments of the resulting waveform being higher or lower than they should be. A short path will cause a rising slope to appear higher than expected, and a falling slope to appear lower. This is in contrast with gain errors which will always appear closer to (or further from) the midpoint than expected, or offset errors which will always appear higher (or lower) than expected. If every other channel is off, the 1 ns delay coax will need trimming. If random channels are off, the coax between the input amplifier and that channel must be trimmed.

The clock and control signals have been examined. It is not possible with the available equipment to fully check out the GaAs clock signals for duty cycle and phasing in a
pulsed system. This is because the available oscilloscope is not fast enough for real time sampling, and the pulsed signal was not long enough to be captured using repetitive equivalent sampling. The signals were verified to be present and on frequency, while the control signals were verified to be present and appropriately timed. The write cycle was measured at 40 microseconds, and the read cycle at 2.8 ms (this is sample size dependent). The read clock was checked, the fast clock was 840 ns and the slow clock was 3.3 microseconds. Both had the expected number of pulses for the skip and sample values used, and were checked with different values. The START-2 signals were check and found to be inserted properly. No check was made of any end signals, although since the software does not read out the trailing skipped values from channel four of the hybrids, no end signal would have been visible unless all channels were read.

3.4.3 Special Operations Instructions and Notes

The power inputs are assumed to turn-on simultaneously. If it is necessary to sequence them for external reasons, the order should be +5 and +12 first -5 second and then +6.5. The -12 can be turned on anytime with or after +12. There is hardware and partial software support for software triggering of a conversion cycle. This is included for testing and calibration purposes. The variable SoftTrig is set to 0 (disabled) on a cold reset. It may be changed to non-zero using the monitor write instruction. When it is non-zero, the software does not wait for a hardware arm signal, and supplies an internal hardware trigger to start an acquisition cycle. This trigger is generated approximately 30 microseconds after the acquisition command is given by the host, when SoftTrig is non-zero. All testing if the system has been done using this method of triggering. It is possible, and may prove desirable, to eliminate the hardware ARM command. Since the host system is likely to have control over the subsystem responsible for the data to be collected, it could issue the acquisition command at the time the system needs to be armed. One easy way to implement this change is to separate the bits of the SoftTrig variable such that one bit is used to skip the ARM check and another to force a software trigger. Presently both tests simply check for a non-zero value. In Appendix 5 the description of hardware interface with the system computer is given.
4.0 CONCLUSIONS AND RECOMMENDATIONS

The design of the 1 GHz Digitizer for Space Based Laser Altimeter has been completed. A feasibility model was built, and partially tested. Testing was not completed because of the limited funding available at this time. However, a unique method of digitizing wideband signals (350 MHz) with very low average power consumption was developed and proven to be feasible. The heart of the system is a state-of-the-art hybrid memory chip (AN1000H) with built in presamplers. Sufficient hardware testing has been performed to give assurance that the developed technique is feasible. Because of the much lower power consumption achieved as compared to the initially expected amount, a continuous 1 GHz timing output (from a SAW oscillator) is afforded within a limited power budget. A software package to control various functions within the digitizer and to communicate with a host system computer was also developed. Unfortunately, the allowable budget would not permit debugging and testing of the software. Because the status of the digitizer is so close to completion, it is recommended to extend funding of this project to complete all necessary testing and packaging to obtain a working model. At this point technical risk is minimal if not nonexistent. At the completion of this feasibility model, the logical action is to develop a space qualified unit for future space exploratory missions.
This file is designed to be assembled with CROSSI6 meta-assembler
; version 2.0

File created 9 August 1991
; by Wilton Helm
; last modified on 10 September 1991

Contains stand-alone UT750AR assembly language code in native
; mode to control a 1 Gs/s A/D converter system using Analytek
; hybrid analog memory modules in a 16-way interleaved fashion.

Code memory map is as follows (addresses are 16 bit words):
; 00000h to 000FFh is EPROM containing startup and core code.
; 00000h to 000FFFh is SRAM containing linking tables loaded from
; EPROM and dynamically added code modules.
; 00000h and up are not decoded and wrap into above areas.

A separate 64k x 16 bit data address space is populated with
; SRAM, and used as described by data equates below.

A separate I/O space is decoded as described by I/O equates below.

Special note should be given to the hardware signals O1Y and O2Y
; which are a two-phase, non-overlapping readback clock
; generated in software. There are two modes of generating this
; signal. For skipping cells, a high speed mode is used where
; U75 is placed in non-latching decode mode (by asserting its
; CLEAR pin). Writes to O1YHI and O2YHI in this mode generate
; pulses on the respective lines. For reading cells, the CLEAR
; is removed and O1Y and O2Y become latching outputs which must
; be set by O1YHI and O2YHI respectively, and cleared by O1YLW
; and O2YLW respectively. These commands are interspersed with
; suitable timing waits, A/D reads and loop control commands.

Note that the assembler used makes no distinction between
; code and data objects. Both share the same symbol table space.
; It is up to the programmer to use symbols appropriately. Code
; space symbols are used only with LRI and STRI instructions.

The assembler uses one possibly non-standard mnemonic form. I
; could not see a way to differentiate between:
; sar R0,R4 ;shift right 4 places
; and
; sar R0,R4 ;shift right by amount specified
; ;in register 4
; so I adopted the following convention for the former case:
; sar R0,R+4 ;shift right 4 places
; and for consistency:
; sar R0,L+6 ;shift left 6 places

WDLN 2 ;word length (width in bytes) for the 1750
CPU "UT750AR.TBL" ;table of mnemonics to use for 1750

;CODE SPACE SRAM EQUATES

000000 equ 8000h ;start of RAM code space
000008000 equ 8000h ;address table for command execution
000008010 equ 8010h ;address to return to after command execution
000008011 equ 8011h ;address of warm start routine.
000008012 equ 8012h ;routine to post checksum changes
00000FFFF equ 0FFFFh ;end of RAM code space
DATA MEMORY EQUATES

CodeChk: equ 0h ; 32 bit sum of code RAM
Samples: equ 2h ; number of samples to keep (per chan)
Skip: equ 3h ; number to skip before starting (per chan)
SoftTrig: equ 4h ; non-zero if software trigger should be given
CalFlag: equ 5h ; non-zero if calibration in process
CalVSum: equ 6h ; summation of correct calibration values
CalCnt: equ 7h ; count of number of calibration values used
CalSKH: equ 8h ; Hold value for skip, used during calib.
CalSaH: equ 9h ; Hold value for samples, used during calib.

ADBuf: equ 1000h ; from \(y = m \cdot x + b \)
ADGain: equ 2000h
ADOs: equ 3000h ; b
CalSums: equ 3000h ; used for curve fitting, overlays gain
CalSkS: equ 3000h ; used for curve fitting, overlays offset
CalVctr: equ 5000h ; used for curve fitting. SqrS and Vctr

; ending at 6FFFh ; values are two words wide

I/O ADDRESS EQUATES

DMA: equ 40h ; DMA write and read word to host
Status: equ 50h ; read to get system peripheral status:
Cmd: equ 31h ; b0 = 1 when host is giving command
CTS: equ 30h ; b1 is RS-232 handshake (CTS)
InEmpty: equ 29h ; b2 is DMAACK (0 = DATA read by host)
OutFull: equ 28h ; b3 is DMAKAV (0 = DATA ready to read)
ABusy: equ 27h ; b4 = 0 if A/D conversion finished
ConvBusy: equ 26h ; b5 = 0 at end of read cycle
AcqBusy: equ 25h ; b6 = 1 when triggered and 0 at
end of write cycle

NotArm: equ 24h ; b7 = 0 for ARM system request
NotREnd1: equ 23h ; b8 is *END1-1 from hybrid
NotREnd2: equ 22h ; b9 is *END2-2 from hybrid
NotREnd3: equ 21h ; b10 is *END2-3 from hybrid
NotREnd4: equ 20h ; b11 is *END2-4 from hybrid
NotREnd1: equ 19h ; b12 is *END1-1 from hybrid
NotREnd2: equ 18h ; b13 is *END1-2 from hybrid
NotREnd3: equ 17h ; b14 is *END1-3 from hybrid
NotREnd4: equ 16h ; b15 is *END1-4 from hybrid

The following addresses are activated by
; writing. The value written is ignored,
; only the address matters.

RstWrOEn: equ 50h ; resets the write logic which is not
; needed during read
RstWrODis: equ 51h ; releases reset
RstWrEn: equ 52h ; resets write logic which must not
; be reset during read
RstWrDis: equ 53h ; releases reset

WrPwrDn: equ 54h ; removes power from write logic
WrPwrUp: equ 55h ; applies power to write logic
RdPwrDn: equ 56h ; removes power from read logic
RdPwrUp: equ 57h ; applies power to read logic

(NOTE: RDPwr is needed for Write as well)

TrigDis: equ 58h ; prevents trigger signal from
; starting a conversion

TrigEn: equ 59h ; allows trigger signal to start a conversion
StartEn: equ 5Ah ; software trigger
StartDis: equ 5Bh ;end of software trigger
StatOff: equ 5Ch ;indicates next word to host is data
StatOn: equ 5Dh ;indicates next word to host is status
FastRead: equ 5Eh ;turns 6X writes into pulses
;this allows 01Y and 02Y to operate
;faster for skipping cells not needed in hybrids
SlowRead: equ 5Fh ;changes 6X writes into latched data
;this mode is needed for all
;handshaking to hybrids, and for actual
;data reading
ResRdSt: equ 60h ;reading this address resets (1) status b3

RstRDIs: equ 60h ;more write strobe addresses
RstREN: equ 61h ;releases RST2 reset
O1YLow: equ 62h ;resets hybrid read logic
O1YHi: equ 63h ;sets O1Y clock line low
;sets O1Y clock line high
;during fast read, pulse this for O1Y
;sets O2Y clock line low
;sets O2Y clock line high
;during fast read, pulse this for O2Y
RdiDis: equ 68h ;trailing edge of START2-1 signal to hybrid
RdiEn: equ 69h ;leading edge of START2-1 signal
Rd2Dis: equ 6Ah ;trailing edge of START2-2 signal to hybrid
Rd2En: equ 6Bh ;leading edge of START2-2 signal
Rd3Dis: equ 6Ch ;trailing edge of START2-3 signal to hybrid
Rd3En: equ 6Dh ;leading edge of START2-3 signal
Rd4Dis: equ 6 Eh ;trailing edge of START2-4 signal to hybrid
Rd4En: equ 6Fh ;leading edge of START2-4 signal
AD: equ 70h ;reads A/D converter and starts next conversion
SWINT: equ 70h ;write this address to generate a
;software interrupt - used to disable ints.

;REGISTER USEAGES
; R0 Short term temporary use
; R16 Subroutine return address register
; R18 Interrupt return address register
; (return registers need only be 16 bit in this system,
; since there is only 64k of code space.)

;PROGRAM CONSTANTS
IntMask: equ 0 ;change later to allow desired ints.

;ERROR CODES
OKStat: equ 0h ;OK status word
WarmStat: equ 1h ;Reset caused a warm start
ColdStat: equ 2h ;Reset caused a cold start
Cmpltd: equ 4h ;Command completed
IllData: equ 5h ;Data rcvd when command expected
NoData: equ 6h ;Command rcvd when data expected
Write: equ 7h ;Command rcvd before requested data sent
Aborted: equ 8h ;Command rcvd during A/D cycle
NoTrig: equ 9h ;Status word: no trigger after arm
NoLoad: equ 0Ah ;Analog write cycle failure
AccCal: equ 0Bh ;A/D cycle completed, but no data because
;calibration cycles have been requested

org 0
Init: otr ACC,RstWrEn ;value in ACC doesn't matter
00001 1BF0052 otr ACC,RstWrEn ;set all resets and power down
00004 1BF0054 otr ACC,WrPwrDn
00006 1BF0056 otr ACC,TrigDis ;disable triggering
00008 1BF0058 otr ACC,StartDis ; and software trigger
0000A 1BF005B otr ACC,StatOff ;no status word ready
0000C 1BF005C otr ACC,FastRead ;this resets RstRDIs, O1YLow, O2YLow,
0000E 1BF005E otr ACC,SlwRead ;undo above resets
00010 1BF005F otr ACC,RstREn ;Leave Read reset active
00014 97F0 inr ACC,TAH ;stop timers
00015 97F1 inr ACC,TBH ; set up any hardware needed for interrupts
00016 141F0050 inr RO,STATUS ;get status word and check Command bit
00018 D81F tbr RO,Cmd
00019 FE88 br NE,cold ;if set, force cold start
0001A 0000 nop
0001B OE3F02C0 call R16,Chksum ;test code RAM
0001D 045F0000 lr R2,CodeChk
0001F 047F0001 lr R3,CodeChk+1 ;get comparison value
00021 3E12 cmp XRO,XR2
00022 7D1F0020 jc EQ,warm ; OK, matches
00024 0000 nop ; no match, restart from scratch
00025 001F02CB cold: mov RO,Image ;block move RAM constants from EPROM
00027 003F8000 mov R1,ImgDst
00029 03E0 coldlp: mov ACC,R0
0002A 845F lri R2
0002B 03E1 mov ACC,R1
0002C 8840 strl R2
0002D A001 add R0,1
0002E 3C1F02E7 cmp R0,ImgEnd
00030 FC98 br LT,coldlp
00031 A021 add R1,1 ;(used if br)
00032 0E3F02C0 call R16,Chksum ;checksum entire code RAM
00034 081F0000 str R0,CodeChk ;save result
00036 083F0001 str R1,CodeChk+1
00038 83E0 mov ACC,IntMask ;set up interrupt mask
00039 9BES otr ACC,DK
0003A 0E3F0205 call R16,Ca10 ;initialize calibration table
0003C 8000 mov R0,0
0003D 081F0003 str R0,Skilp
0003F 081F0004 str R0,SoftTrig
00041 8002 mov R0,ColdStat
00042 FF86 jc X,startcom
00043 0000 nop
00044 03FF8011 warm: mov ACC,WarmLink ;get address of user warm start
00046 841F lri R0
00047 0E20 call R16,R0 ;execute it (will not return
00048 8001 ; but will jump (call) warmend)
00049 8001 warmend: mov R0,WarmStat
00049 startcom: ; omit for now otr ACC,ENBL ;turn on interrupts
00049 1BF005D otr ACC,StatOn ;set status flag
0004B 181F0040 otr R0,DMA ;output status word regardless of
0004D 181F0040 otr R0,DMA ;handshaking
; REGISTER USAGE BY MONITOR
; Rl low portion of address being accumulated
; XR2 starting address for range
; XR4 ending address for range
; R6 non-zero if address is in code space
; R7 data portion of command word
; ACC command / jmp address

0004F 8020 monitor: mov R1, O
00050 8241 ; set low portion to zero initially
00051 8280 ; set starting address of 1
00052 80C0 ; and ending address of 0 (done)
00053 141F0050 nextword: inr RO, Status
00055 D1D ; see if data available
00056 FE9C br me, nextword ; no, wait
00057 D81F br RO, Cmd ; yes, test for command sequence
00058 14FF0040 inr R7, DMA ; get command
00059 0007 jcleq, statout ; not command, error
0005A 7D1F0093 mov R0, R7 ; (error msg - needed if jcleq)
0005C 8005 mov R0, I11Data ; set to command area
0005D 0007 and R0, OFFFFh ; copy to command area
0005E 40FF00FF and R7, OFFFH ; strip data section
00060 40FF0000 and RO, 0FF00h ; strip command section
00062 E803 scr RO, L+4 ; shift command down
00063 03E0 mov ACC, RO ; form table address
00064 47FE8000 or ACC, CmdJmp ; get rest of command
00066 841F lri RO ; get jump address
00067 0C00 call RO, RO ; go there, does not return here

00068 80CF CodeLow: mov R6, 15 ; set code space flag (0)
00069 7F9FPE8 jc x, nextword ; get rest of command
0006B 0027 mov R1, R7 ; set 12 low bits (jump taken)

0006C 80C0 DataLow: mov R6, 0 ; set data space flag (1)
0006D 7F9FPE4 jc x, nextword ; get rest of command
0006F 0027 mov R1, R7 ; set 12 low bits (jump taken)

00070 0047 StHlRng: mov R2, R7 ; place upper bits in starting address (2)
00071 8060 mov R3, 0
00072 E25C slr XR2, R+4 ; shift right 4
00073 4641 or XR2, R1 ; and combine with low bits
00074 7F9FPE4 jc x, nextword ; get rest of command
00076 8020 mov R1, 0 ; clear low bits for end adr (jump taken)

00077 0047 StHlRd: mov R2, R7 ; place upper bits in starting address (3)
00078 8060 mov R3, 0
00079 E25C slr XR2, R+4 ; shift right 4
0007A 4641 or XR2, R1 ; and combine with low bits
0007B 7F9FPE3F jc x, MonRd ; go read it and put on bus
0007D 0292 mov XR4, XR2 ; set end = beg for one word (jump taken)

0007E 0047 StHlWr: mov R2, R7 ; place upper bits in starting address (4)
0007F 8060 mov R3, 0
00080 E25C slr XR2, R+4 ; shift right 4
00081 4641 or XR2, R1 ; and combine with low bits
00082 7F9FPE55 jc x, MonWr ; wait for data and write it
; CMD 5
Execute: mov R2,R7 ;place upper bits in starting address (5)
 mov R3,0
 slr XR2,R+4 ;shift right 4
 or XR2,R1 ;and combine with low bits
 mov R16,monitor ;set up return address
 call R4,XR2 ;indirect jump, return is:
 ; CALL R16,R16
 ;which will re-enter the monitor

; CMD 6
EndHdr: mov R4,R7 ;place upper bits in ending address (6)
 mov R5,0
 slr XR4,R+4 ;shift right 4
 jc x,MonRd ;go read it and put on bus
 or XR4,R1 ;combine with low bits (jump taken)

; CMD 7
EndHwr: mov R4,R7 ;place upper bits in ending address (7)
 mov R5,0
 slr XR4,R+4 ;shift right 4
 jc x,MonWr ;wait for data and write it
 or XR4,R1 ;combine with low bits (jump taken)

; CMD 8
IOrd: jc x,MonSnd ; (8)
 inr R0,R7 ;read I/O, and put on bus (jump taken)

; CMD 9
IOWr: inr R0,Status ;see if data available (9)
 tbr R0,InEmpty
 br ne,IOWr ;no, wait
 tbr R0,Cmd ;yes, is it data or command
 jc ne,statout ;command, error - don't continue
 mov R0,NoData ; (error msg - needed if jc)
 inr R0,DMA ;data, read it
 jc x,monitor
 otr R0,R7 ;output data to I/O address (jump taken)

; CMD A
SetSkrp: slr R7,R+4 ;truncate modulo 16 (10)
 str R7,skip ;and divide by 16 to get
 jc x,monitor ;skip value per channel
 nop

; CMD B
ManAcq: add R7,15 ;round up modulo 16 (11)
 slr R7,R+4 ;and divide by 16 to derive
 cmp R7,0
 br le,ManLim ;don't allow 0 or negative value
 cmp R7,100h
 br le,ManOk ;or more than 4096 (/16)
 nop
 mov R7,7 ;default to 128 (7 * 16) if invalid
 str R7,Samples ;number of cells per channel
 jc x,Arm ;start conversion cycle
0000004F = ; CMD C
 AutoAcq: equ monitor ;reserved

000BC 3E54 MonRd: cmp XR2,XR4 ;more data to send?
000BD 7E1F0030 jc CT,statout ; no, return completed status
000BF 8004 mov R0,Cmpltd ; (used if jc)
000C0 44C6 or R6,R6 ;code or data?
000C1 FD04 br eq,MonRdta ; data
000C2 03F2 mov ACC,XR2 ; code, read next word to send
000C3 841F lri R0
000C4 FF82 br x,MonNxtR
000C5 0000 nop
000C6 0412 MonRdta: lr R0,XR2 ; data, read next word to send
000C7 A241 MonNxtR: add XR2,1 ;ready for next pass
000C8 143F0050 MonSnd: inr R1,Status ;get status word
000CA D83D tbr R1,InEmpty ; see if data rcvd
000CB FD09 jc eq,snerr ; yes, should not have been
000CC D83C tbr R1,OutFull ; buffer empty?
000CD FE9A jc ne,MonSnd ; no, wait
000CE 0000 nop
000CF 181F005C otr R0,StatOff ; place in data mode
000D1 181F0040 otr R0,DM ; send data
000D3 7F9FFFE7 jc x,MonRd ; try again
000D5 8005 snderr: mov R0,Il1Data
000D6 7F9F0017 jc x,statout
000D8 0000 nop

000D9 141F0050 MonWr: inr R0,Status ; get status word
000DB D81D tbr R0,InEmpty ; see if data rcvd
000DC FE9C br ne,MonWr ; no, wait for it
000DD D81F tbr R0,Cmd ; yes, data or command?
000DE 7E9F000F jc ne,statout ; command, error
000EO 8006 mov R0,NoData ; (error msg - needed if jc)
000E1 141F0040 inr R0,DM ; data, read it
000E3 44C6 or R6,R6 ; code or data memory?
000E4 FD04 br eq,MonWdta ; data
000E5 03F2 mov ACC,XR2 ; code, write word
000E6 8800 str R0
000E7 FF82 br x,MonWrNxt
000E8 0000 nop
000E9 0812 MonWdta: str R0,XR2 ; data, write word
000EA A241 MonWrNxt: add XR2,1 ; ready for next pass
000EB 3E54 cmp XR2,XR4 ; more to come?
000EC 7D9FFFE7 jc LE,MonWr ; yes, continue
000EE 8004 mov R0,Cmpltd ; no, return completion

000EF 8040 statout: mov R2,0 ; timeout in case host not unloading buffer
000F0 143F0050 inr R1,Status ; get status word
000F2 D83C tbr R1,OutFull ; buffer empty?
000F3 FD03 jc eq,statol ; yes, proceed
000F4 A041 add R2,1 ; no, increment timer (65536 is fail)
000F5 FE99 jc ne,statout ; 100 ms. time limit, not out
000F6 0000 nop ; ran out, force output
000F7 181F005D statol: otr R0,StatOn ; place in status mode
000F9 181F0040 otr R0,DM ; send data
000FB 7F9FFFE7 jc x,monitor ; status sent, return to monitor
000FD 0000 nop ; as a recovery

; R0 temp
; R1 temp
0000E 041F0004

Arm: lr R0,SoftTrig ;If Software triggered, don't
 or R0,R0 ; wait for hardware arm
 br NE,PwrUp

00010 0000

nop

00013 111F0050

inr R0,Status ;Wait for hardware Arm status

00015 DB18

tbr R0,NotArm

00016 FD09

br eq,PwrUp ; Arm request received

00017 D81D

tbr R0,InEmpty ; No Arm request yet, check for abort

00018 FE95

br ne,Arm ; No data ready, loop

00019 D81F

tbr R0,Cad ; Data ready, is it command

0001A 7E9FFFE3

jc ne.statout ; Command, give abort status

0001C 8008

mov R0,Aborted

0001D 7F9FFFE0

jc x,statout ; Data, abort with data error

0001F 8005

mov R0,111Data

0001F 8005

PwrUp: otr ACC,WrPwrUp ; Turn on power to all A/D system

0001F 1BFF0007

otr ACC,RstWrEn

0001F 1BFF0008

otr ACC,TrigDis ; disable triggering

0001F 1BFF000B

otr ACC,StartDis ; disable SW trigger initially

0001F 1BFF000E

otr ACC,FastRead ; Reset read latches

0001E 101FFFD2

movc R0,-46 ; wait 20 us for power to settle

0001F 0C9F

ArmLp: br 1t,ArmLp ; loop time 4 cycles = 1/3 us.

0001F 8005

add R0,1 ; (less 16 cycles allowed for setup below)

0001F 1BFF000F

Enable: otr ACC,SlowRead ; end read latch reset

0001F 1BFF0010

otr ACC,RstREn ; hold read logic reset

0001F 1BFF0013

otr ACC,RstWrdis ; end write reset condition

0001F 1BFF0015

otr ACC,RstWrODis

0001F 1BFF0059

otr ACC,TrigEn ; allow triggering

0001F 041F0004

lr R0,SoftTrig ; see if SW trigger needed

0001F 4400

or R0,R0

0001F FD07

br EQ,Trigger ; no

0001G 0000

nop

0001G 101FFFD2

movc R0,-30 ; yes, wait 10 more us.

0001G 0C9F

EnLp: br 1t,EnLp

0001G A001

add R0,1

0001G 1BFF005A

otr ACC,StartEn ; and then trigger it

0001G 03FFFD12

Trigger: mov R1,-750 ; start 1 ms loop waiting for trigger

0001G 141F0000

TrigLp: inr R0,Status ; 16 cycle loop

0001G D819

tbr R0,Acqbusy ; see if triggered

0001G 7E9FF004

jc NE,Collect ; yes

0001G A021

add R1,1 ; no, count time. Time out?

0001G FC99

br LT,TrigLp ; no, loop

0001G 8009

mov R0,NoTrig ; yes, exit with error code

0001G 1BFF005B

shutdn: otr ACC,StartDis ; end software trigger

0001G 1BFF0058

otr ACC,TrigDis ; disable triggering

0001G 1BFF0050

otr ACC,RstWrEn ; Reset and power down everything

0001G 1BFF0052

otr ACC,RstWrEn

0001G 1BFF0061

otr ACC,RstREn

0001G 1BFF0054

otr ACC,WrPwrDn

0001G 1BFF0056

otr ACC,RdPwrDn

0001G 7F9FF99E

jc X,statout
;start 20 us. timing
mov R1,-17

;14 cycle loop
inr R0,Status
br EQ,Unload
add R1,1
br NE,CoILp
not out
mov R0,NoLoad
timed out, error
jc x, shutdn

;still acquiring?

; no.
unload it

; yes, time it

; not out;
timed out, error
; shut stuff off and post error

;Reset write logic

;prevent further triggering
;(this must occur after RstWrOEn)

;end software trigger pulse if given

;Turn off write power

;End Read Reset

;number of hybrids

;set ptr to buffer

;load O1YHI address into register

;set up start address for this hybrid

;The next section of code ...

;Do one clock cycle

;Do second cycle

;which ends here, may be able to be simplified.
; some of the Analytec documentation indicates that
; the start pulse is positive edge triggered inside the
; analog memory chip. If this is so, the above code
; need only trigger it initially and the go directly
; into fast read mode to skip unused cells at the beginning.
; It would look like this:

;this eliminates the need for
;RstRDIs as well

;send out start pulse

;then skip 0 or more cells using fast read, which is already
; set up.

;number of channels per hybrid

;number of cells to skip initially

;test for zero

;set up second register needed

;set to fast mode

;decrement and test counter (2 cy)

;Phase 1 pulse (3 cy)
br NE, SkipLP ; loop as needed (2 cy)
otr ACC, R9 ; Phase 2 pulse, even if br taken (3 cy)
; this loop is 10 cycles long, so
; skips a cell every 833 ns.

Read: otr ACC, SlowRead ; return to slow mode
otr ACC, R8 ; start a cycle to prime the A/D
mov R9, 02YLow ; set up address needed by slow read
otr ACC, 01YLow

otr ACC, R9 ; (1 + 3 cy)

lr R13, Samples ; # to read (3 cy)

otr ACC, R8 ; Phase 1Y High (3 cy)
nop ; waste time (2 cy)

otr ACC, R8 ; Phase 1Y Low (3 cy)
nop ; waste time (2 cy)

mov R0, 01YLow ; (2 cy)

otr ACC, R0 ; Phase 1Y Lo (3 cy)

mov R0, 02YHi ; (2 cy)

mov R1, AD ; (2 cy)

sub R13, 1 ; loop counter (2 cy)

otr ACC, R0 ; Phase 2Y Hi (3 cy)
inr RO, R1 ; Read A/D & restart (3 cy)

str RO, R10 ; Store value in buf (3 cy)

NOTE: full 16 bits stored, top four are not valid and must be stripped before use.

otr ACC, R9 ; Phase 2Y Low (3 cy)
jc NE, Rph0 ; jmp based on R13 (4 cy)

add RO, 1 ; update bufad (2 cy) always

sub R11, 1 ; see if more channels in this hybrid

jc NE, NxtHyb ; no, go to next one

lopt R0, 0000 ; yes

lr R0, Samples ; number of cells skipped is 256 -

mov R13, 255 ; the number to be read, -1 for bogus

sub R13, RO ; read used to unload A/D last time

jc LT, RphAll ; if all cells to be read, don't skip part of the skipped area will be the

jc XR, Skiplgn ; remainder of this channel, the rest will be the first of the next chan.

sub R12, 1 ; NxtHyb:

jc NE, NewHyb

op RO, 0000

otr ACC, RstREn ; reset read logic and
otr ACC, RstWEn ; remaining write logic,
otr ACC, RdPwrDn ; and power it down

lr R0, CalFlag ; Is calibration in progress?

jc NE, statout ; yes, return status

; DO NOT attempt to correct data and
; return it if calibration is in process.
; The results will be at best garbage.
; At worst it might cause an overflow
; or underflow error.

; Now clean up and output the values using the following pseudo-code:
FOR cell = 0 to Samples - 1 ;cell within each channel
For chan = 0 to 15 ;channels multiplexed
 data = ADBuf[chan * Samples + cell] ;raw data
 gain = ADGain[chan * 256 + cell + skip] ;gain correction
 ofs = ADOffs[chan * 256 + cell + skip] ;offset correction
 res = (data * gain) / 4096 - offset ;corrected value

Notes:

1. Gain and offset values exist for all cells, data values exist only for requested cells, thus providing the tables with two different size multipliers.
2. Values were collected in Hybrid unload order for maximum unload speed, and thus minimum power consumption. The data is interleaved throughout the 16 channels on the four hybrids, and thus must be retrieved in a different order so as to come out in true time order.
3. The gain values have been multiplied by 4096 to allow scaling both upward and downward. The multiply should be done in a 32 bit register and then the result divided by 4096 (or shift right 12).
4. The offsets are subtracted off after scaling, not before. This affects the way the offsets are calculated.

 Gain and offset values exist for all cells, data values exist only for requested cells, thus providing the tables with two different size multipliers.

Values were collected in Hybrid unload order for maximum unload speed, and thus minimum power consumption. The data is interleaved throughout the 16 channels on the four hybrids, and thus must be retrieved in a different order so as to come out in true time order.

The gain values have been multiplied by 4096 to allow scaling both upward and downward. The multiply should be done in a 32 bit register and then the result divided by 4096 (or shift right 12).

The offsets are subtracted off after scaling, not before. This affects the way the offsets are calculated.
Routine to generate table of gains and offsets. There are three ways to call this routine. The first call (which notices that CalFlag is not set) sets it and initializes the work areas.

While CalFlag is set, this call cannot be repeated. The A/D cycle will not return data when CalFlag is set, only a completion code. This initial call also sets the skip value to zero and Samples to 256 to provide a complete calibration table. (This may not be a good idea, as timing and related temperature variations may make calibration under actual skip and sample conditions more accurate.)

Subsequent calls to calibrate should occur after each A/D cycle. They provide the value (0 to 4095) representing the voltage used in that calibration cycle. These calls cause a summation of data values to occur which will be used later by the curve fitter. The actual values given will determine the scaling of subsequent data. i.e. 0 to 1000 for 0 to 1 v would yield 1 mv per count.

The final call to calibrate is done after all calibrate cycles have been completed, and the summations have been done. The call is done with a data value of 4095 (0FFh) which signals completion of the calibration. A least squares fit is done, fitting the data to the equation y = m * x + b. The values of m and b are used as ADGain and ADOfs respectively. CalFlag is again cleared, allowing normal processing to resume.

Note that this routine destroys ADGain and ADOfs by using the same area of memory as workspace. It should not be aborted without completing.

REGISTER USEAGE BY CALIBRATION ROUTINE

RO through R15 used temporarily
00218 041F0005 Calib: lr R0,CalFlag ;is calibration in process?
0021A 7E9F002D jc NE,CalCont ;yes
0021C 001F0000 mov R0,4096 ;loop counter used in all cases
0021E 080F mov R4,15 ;no, set up to start
0021F 089F0005 str R4,CalFlag
00221 0808 mov R4,0
00222 089F0006 str R4,CalSum
00224 089F0007 str R4,CalCnt
00226 003F2000 mov R1,CalSums
00228 005F3000 mov R2,CalSqr
0022A 007F5000 mov R3,CalVctr
0022C 0881 CalSyr: str R4,R1 ;clear array area
0022D A021 add R1,1
0022E 0882 str R4,R2
0022F A041 add R2,1
00230 0882 str R4,R2 ;squares and vectors are double prec.
00231 A041 add R2,1
00232 0883 str R4,R3
00233 A061 add R3,1
00234 0883 str R4,R3
00235 B001 sub R0,1
00236 FE95 br NE,CalSyr
00237 A061 add R3,1 ;(if br)
00238 043F0003 lr R1,Skip
0023A 083F0008 str R1,CalSyrH
0023C 089F0003 str R4,Skip ;skip nothing
0023E 041F0002 lr R0,Samples
00240 081F0009 str R0,CalSyrH
00242 001F0100 mov R0,256 ;read all
00244 081F0002 str R0,Samples
00246 7F9FFE7 jc x,statout ;Return with completed status
00248 B004 mov R0,Cmpltl ;(if jc)

00249 3CF0FFFD CalCont: cmp R7,OFFFH ;termination code?
0024B 003F2000 mov R1,CalSums ;set up pointers to arrays
0024D 005F3000 mov R2,CalSqr
0024F 7D1F002F jc eq,CalFin ;yes, compute new corrections
00251 007F5000 mov R3,CalVctr ;(either way)
00253 049F0006 lr R4,CalSum ;add current value to sum
00255 2087 add R4,R7
00256 089F0006 str R4,CalSum
00258 049F0007 lr R4,CalCnt ;and increment count
0025A A081 add R4,1
0025B 089F0007 str R4,CalCnt
0025D 009F1000 mov R4,ADBuk
0025F 04A4 CalLp: lr R5,R4 ;get raw value
00260 40BF0FF7 and R5,OFFFH ;strip off garbage
00262 04C1 lr R6,R1 ;add it to sum
00263 20C5 add R6,R5
00264 08C1 str R6,R1
00265 A021 add R1,1 ;ready for next pass
00266 0345 mov XR10,R5 ;square raw value
00267 6F45 muls XR10,R5
00268 0502 lr R8,R2 ;add square to sum of squares
00269 A041 add R2,1 ;(squares is double word)
0026A 0522 lr R9,R2
0026B 231A add XR8,XR10
0026C 0922 str R9,R2
0026D B041 sub R2,1
; CalFin: mov R4, AdGain ; Set up pointers specific to this part
; mov R5, AdOFS
; mov R6, CalCnt
; mov R7, CalVSum

; CFLp: lr R8, R1 ; get sum of data
; add R1, 1 ; ready for next
; mov R11, R8 ; copy it
; mov R10, 0 ; (unsigned to double precision)
; divs XR10, R6 ; divide by number of points.
; mov R9, R11 ; R9 is an important intermediate
; mov R11, R8 ; sum * R9

; 0280 009F2000
; CalFin: mov R4, AdGain

; mov R5, AdOFS
; mov R6, CalCnt
; mov R7, CalVSum

; 0282 00BF3000
; CFLp: lr R8, R1
; add R1, 1
; mov R11, R8
; mov R10, 0

; 0288 0501
; CFLp: lr R8, R1
; add R1, 1
; mov R11, R8
; mov R10, 0

; 028A 0168
; mov R11, R8
; mov R10, 0

; 028B 8140
; divs XR10, R6

; 028D 012B
; mov R9, R11
; mov R11, R8

; 028E 0168
; mov R11, R8

; 028F 8140
; mov R10, 0

; 0290 6F49
; muls XR10, R9

; 0291 0582
; lr R12, R2

; 0292 A041
; add R2, 1

; 0293 05A2
; lr R13, R2

; 0294 A041
; add R2, 1

; 0295 339A
; sub XR12, XR10

; 0296 0543
; lr R10, R3

; 0297 A061
; add R3, 1

; 0298 0563
; lr R11, R3

; 0299 A061
; add R3, 1

; 029A 01E9
; mov R15, R9

; 029B 81C0
; mov R14, 0

; 029C 6FC7
; muls XR14, R7

; 029D 335E
; sub XR10, XR14

; 029E 45A4
; or R10, R10

; 029F FEB8
; br NE, CFSD

; 02A0 0000
; nop

; 02A1 E74B
; sar XR10, L+12

; 02A2 FF82
; br x, CFSC

; 02A3 0000
; nop

; 02A4 E794
; sar XR12, R+12

; 02A5 7B5C
; divs XR10, XR12

; 02A6 0964
; str R11, R4

; 02A7 A081
; add R4, 1

; 02A8 6F46
; muls XR10, R8

; 02A9 E754
; sar XR10, R+12

; 02AA 0387
; mov XR12, R7

; 02AB 339A
; sub XR12, XR10

; 02AC 7B86
; divs XR12, R6

; 02AD 09A5
; str R13, R5

; 02AE B001
; sub R0, 1

; 0028A 009F2000
jc NE.CFLp
add R5,1 ; (if jc)

str R1,Skip ;Restore skip and sample values
str R1,Samples
mov R1,0
str R1,CalFlag ;Clear CalFlag
jc x,statout
mov R0,Cmpltd ; (if jc)

;Routine to calculate checksum of code RAM to determine if it
;has been corrupted.

;This routine should be called, followed by "str XRO,CodeChk"
;when the system is cold started, and after any modification
;to the code RAM (stri to 8000h to FFFFh). The code write
;command does NOT do this automatically. It is necessary to
;do a code execute at address 8011h after code writes.

;Chksum may be called anytime the integrity of the code RAM is
;in question. The value in XRO should agree with the value
;stored in CodeChk. Chksum is automatically called before a warm
;start and if code RAM doesn't check, a cold start is done
;instead.

;Destroys ACC and R2. returns to R16

mov ACC,ImgDst ;where to check
mov XRO,0 ;initial sum
cli R2 ;value at address
add XRO,R2 ;add to sum
inc XR2,ACC ;copy to 16 bit register so compare will work
cmp R3,CRAMe ;done?
br NE,cklp ; no, cont
add ACC,1 ;next place to check
call R16,R16 ;return with results in XRO

;RAM IMAGE DATA TO LOAD AT 8000h in code area

Image:

002CB 0068 chm CodeLow ;CMD = 0 (0xxxh) - set CODE flag & 12 low bits
002CC 006C chm DataLow ;CMD = 1 (1xxxh) - set DATA flag & 12 low bits
002CD 0070 chm SHIHrng ;CMD = 2 (2xxxh) - hi bits, form start adr
002CE 0077 chm SHIHrd ;CMD = 3 (3xxxh) - hi bits, form adr and rd 1
002CF 007E chm SHIHwr ;CMD = 4 (4xxxh) - hi bits, form adr and wr 1
002D0 0085 chm Execute ;CMD = 5 (5xxxh) - hi bits, form adr and ex
002D1 008C chm EndH1rd ;CMD = 6 (6xxxh) - hi bits, form end adr & rd rng
002D2 0092 chm EndH1wr ;CMD = 7 (7xxxh) - hi bits, form end adr & wr rng
002D3 0098 chm IORD ;CMD = 8 (8xxxh) - 12 bit adr and Input word
002D4 009B chm IOWr ;CMD = 9 (9xxxh) - 12 bit adr and Output word
002D5 00A8 chm SetSkp ;CMD = 10 (Axxxh) - 12 bit skip count (mod 16)
002D6 00AE chm ManAcq ;CMD = 11 (Bxxxh) - 12 bit cvnt cnt (mod 16) and arm
002D7 004F chm AutoAcq ;CMD = 12 (Cxxxh) - reserved for auto skip and cnt
002D8 021B chm Calib ;CMD = 13 (Dxxxh) - calibration routine
002D9 004F chm monitor ;CMD = 14 (Exxxh) - reserved
002DA 004F chm monitor ;CMD = 15 (Fxxxh) - reserved

002DB 004F chm monitor ;return address for execute, etc
002DC 0048 chm warmend ;link address for warm start
002DD 00F20C chm call R16,Chksum ;callable routine to update checksum
002DF 081F0000 chm str R0,CodeChk ; resides at 8012h
002E1 083F0001 chm str R1,CodeChk+1
mov ACC,CmdRtn
lri R16
call R16,R16 ;{return to monitor}
- 00000008 ABORTED
 00000070 AD
 00002000 ADGAIN
 00000120 ARMPL
 00000007 CALCANT
 00000005 CALPLAC
 0000025F CALLP
 - 00003000 CALSRIS
 00000006 CALVSUM
 000002A5 CFSC
 000002C3 CKLP
 - 00000002 COLDSTAT
 0000001A CONVBUSY
 0000001E CTS
 - 00000122 ENABLE
 00000033 ENLP
 00000005 ILLDATA
 000002E7 IMGEND
 00000000 INMASK
 000000AE MANACQ
 000000F4 MONITOR
 - 000000C6 MONRDTA
 000000D9 MONWR
 00000053 NEXTWORD
 00000018 NOTARM
 - 0000015 NOTREND3
 00000013 NOTWEND1
 00000010 NOTWEND4
 - 00000062 OILLOW
 00000000 OKSTAT
 00000110 PWRUP
 0000006A RD2DIS
 - 000006D0 RD3EN
 000001A0 RDALL
 00000191 READ
 - 00001A7 RPHI
 00000060 RSTRDIS
 00000050 RSTWREN
 - 00000002 SAMPLES
 00000003 SKIP
 0000005F SLOWREAD
 00000049 STARTCOM
 - 000000F7 STATO1
 000000EF STATOUT
 00000700 STHRING
 - 00000058 TRIGDIS
 00000139 TRIGLP
 000001D6 UNLLP2
 - 00000044 WARM
 00000001 WARMSTAT
 00000055 WPWRUP

- 00000019 ACQBUSY
 00001000 ADBUS
 00003000 ADOFS
 0000041F AUTOACQ
 0000249 CALCONT
 0000218 CALIB
 00000099 CALSAH
 00002000 CALSUM
 0000022C CALZAE
 00002A4 CFSD
 000001F CMD
 00000152 COLLECT
 000001C5 CONVEND
 0000066 CDF
 0000008C ENDHIRD
 0000085 EXECUTE
 000002CB IMAGE
 000001D INEMPTY
 0000098 IORD
 00000B6 MANIM
 00000C7 MNXXTR
 00000CE8 MNSND
 000000E5 MONTX
 0000006A MODATA
 0000017 NOTREND1
 0000014 NOTREND4
 0000012 NOTWEND2
 000001C1 MXTHYB
 00000065 O2YHI
 0000001C OUTFULL
 0000068 RD1DIS
 000006B RD2EN
 000006E RD4DIS
 0000056 RDPRWDN
 0000060 RESRDS
 00001AD RPH2
 0000061 RSTREN
 0000053 RSTWRDIS
 000006A SETSKP
 0000187 SKIPAGN
 0000005D SNDERR
 000005B STARTDIS
 000005C STATOFF
 0000050 STATUS
 000007E STHIWR
 0000059 TRIGEN
 0000202 UNLLER
 000015E UNLOAD
 000004B WARMEND
 0000007 WRINT

- 000000B ACQCAL
 000001B ADBUSY
 00000FE ARM
 0000205 CALO
 0000280 CALFIN
 000020E CALLOOP
 0000008 CALKSH
 0000500 CALVTR
 0000288 CFLP
 000002C CHKSUM
 0000000 CMD JMP
 0000000 CODECHK
 0000000 DNA
 0000092 ENDHIRD
 000000E FASTREAD
 0000000 INIT
 000009B IONR
 00000E7 MANOK
 00000BC MONRD
 00000E9 MONRDTA
 000016D NEWHYB
 0000000 NOLOAD
 0000016 NOTREND2
 0000009 NOTRIC
 0000011 NOTWEND3
 0000063 O1YHI
 0000064 O2YLOW
 0000012 POSTCHK
 0000069 RD1EN
 000006C RD3DIS
 0000057 RDPRWDN
 000001A2 RHRO
 000001B0 RPH3
 00000051 RSTWDIS
 00000052 RSTWREN
 0000141 SHUTDN
 0000018D SKILP
 0000004 SOFTRIG
 0000005A STARTEN
 0000005D STATOW
 0000007 STIHID
 00000070 SWINT
 00000137 TRIGGER
 000001D5 UNLLP
 000001EB UNLSND
 00000811 WARMLINK
 00000054 WPWRWDN
PCB = 0.015" THICKNESS
90° CONE = INSIDE EDGE VISIBLE
90° DIAM = SHELL EDGE VISIBLE
ALL SIGNAL LINES ARE 90° DIAM
EXCEPT AS SPECIFIED

NOTE: Decouple each IC
with a 0.01uf capacitor.

Total Power Consumption
= 1.1 Watts @ -12Vdc Power Supply.

F₀ = 250MHz to 1GHz
U₁ = SP882291/DG
U₂ = MC10E131FN
U₄ = MC7905ECT
U₅ = MC1458U
Q₁ = 2N6191 or 2N3906 (PNP)

= 400ps delay (2.775°)
= 200ps delay (0.387°)

〇 = PHASE Tracker (SEMIFLEX 30136-01)
(98ps ± 16ps)
〇 = 50 OHM SMA CABLE
(Sealectro50-631-0000-31)

Sierra Monolithics
OUTPUT WAVEFORMS with $F_o = 250\,\text{MHz}$.

- $F_o/2$ (+CLIO) ADC #1
- $F_o/2$ (-CLIO) ADC #2
- $F_o/4$ (+TRIO) ADC #1
- $F_o/4$ (-TRIO) ADC #2

OUTPUT WAVEFORMS with $F_o = 1\,\text{GHz}$.

- $F_o/2$ (+CLIO) ADC #1
- $F_o/2$ (-CLIO) ADC #2
- $F_o/4$ (+TRIO) ADC #1
- $F_o/4$ (-TRIO) ADC #2

NOTES:
- The Waveforms drawn for $F_o/2$ & $F_o/2$- are the Outputs from the PHASE TRIMMERS.
- **SET-UP TIME:** $A \geq 725\,\text{ps}$
- **HOLD-TIME:** $B \geq 1.275\,\text{ns}$
- **PULSE-WIDTH:** $C = 1\,\text{ns PW}$ @ $1\,\text{GHz}$
SIERRA MONOLITHIC'S EXPECTED FUNCTIONAL & PERFORMANCE OPERATION FOR THE MODULE A CLOCK GENERATOR.

Module A will take an unbalanced ECL Input signal (F₀) ranging in frequency from 250Mhz to 1Ghz, then produce as outputs, FOUR balanced ECL compatible signals, namely Fo/2, Fo/2-, Fo/4 (I), & Fo/4 (Q).

Fo/4 (I) shall be in phase with the POSITIVE edge of Fo/2, & Fo/4 (Q) shall be in phase with the NEGATIVE edge of Fo/2. Hence, Fo/4 (Q) is always 90 degrees out of phase with respect to Fo/4 (I).

Over the Fo INPUT frequency range, Fo/4(I) output changes logic states at least 725ps before and at least 725ps after the negative clock edge of Fo/2. Likewise, it is true for Fo/4(Q) relative to the negative clock edge of Fo/2-.

ELECTRICAL CHARACTERISTICS:

POWER CONSUMPTION:
2.1 Watts (approx).

INPUT SIGNAL PORT (Fo):
Input Sensitivity:
100mV (min) Single-Ended.
Input Impedance:
50 ohms at 1GHz - with matching.
20 - j50 at 1GHz - w/o matching.
100 - j175 at 250MHz - w/o matching.

OUTPUT SIGNAL LEVELS: (Fo/2, Fo/2-, Fo/4(I), Fo/4(Q)

<table>
<thead>
<tr>
<th></th>
<th>0C</th>
<th>25C</th>
<th>75C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output HIGH Volt</td>
<td>-1.02 -0.84</td>
<td>-0.98 -0.81</td>
<td>-0.92 -0.735</td>
</tr>
<tr>
<td>Output LOW Volt</td>
<td>-1.95 -1.63</td>
<td>-1.95 -1.63</td>
<td>-1.95 -1.595</td>
</tr>
<tr>
<td>Input HIGH Volt</td>
<td>-1.17 -0.84</td>
<td>-1.13 -0.81</td>
<td>-1.07 -0.735</td>
</tr>
<tr>
<td>Input LOW Volt</td>
<td>-1.95 -1.48</td>
<td>-1.95 -1.48</td>
<td>-1.95 -1.450</td>
</tr>
<tr>
<td>Output Rise/Fall time (20-80%)</td>
<td>300ps 800ps</td>
<td>300ps 800ps</td>
<td>300ps 800ps</td>
</tr>
<tr>
<td>SKEW (U3 outputs)</td>
<td>100ps</td>
<td>100ps</td>
<td>100ps</td>
</tr>
</tbody>
</table>

NOTE: Motorola states that 10E Series type IC's do not have a problem driving 100E or 100K chips.
PARTS LIST - AMERASIA: CLOCK GENERATOR - MODULE A.

<table>
<thead>
<tr>
<th>REF</th>
<th>PART NO.</th>
<th>DISTRIBUTOR</th>
<th>SHIP (WEEKS)</th>
<th>QTY</th>
<th>PRICE (EACH)</th>
<th>PRICE (TOTAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>SP8822B1/DG (Plessey)</td>
<td>Select Electronics (Arlene: 714 739-8891) Sample requested (11/8/89)</td>
<td>14</td>
<td>1</td>
<td>$49.76</td>
<td>$49.76</td>
</tr>
<tr>
<td>U2</td>
<td>MC10E111FN (Motorolla)</td>
<td>WYLE</td>
<td>12</td>
<td>1</td>
<td>$17.31</td>
<td>$17.31</td>
</tr>
<tr>
<td>U3</td>
<td>MC10E111FN (Motorolla)</td>
<td>HAMILTON AVNET (213)217-6830</td>
<td>STOCK</td>
<td>1</td>
<td>$28.23</td>
<td>$28.23</td>
</tr>
<tr>
<td>U4</td>
<td>MC7905.2CT (Motorolla)</td>
<td>Hamilton Avnet (213)217-6830 call local distr...</td>
<td>12</td>
<td>1</td>
<td>$.54</td>
<td>$.54</td>
</tr>
<tr>
<td>U5</td>
<td>MC1458U (Motorolla)</td>
<td>Hamilton Avnet (213)217-6830</td>
<td>STOCK</td>
<td>1</td>
<td>$.96</td>
<td>$.96</td>
</tr>
<tr>
<td>Q1</td>
<td>2N619L (PNP)</td>
<td>Local Distributor</td>
<td>STOCK</td>
<td>1</td>
<td>$ 1.00</td>
<td>$ 1.00</td>
</tr>
<tr>
<td>D1</td>
<td>1N914</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30136-01 (Semflex)</td>
<td>Cain Technology (213)326-5236 (plus $200 setup charge?)</td>
<td>?</td>
<td>4</td>
<td>$101.00</td>
<td>$404.00</td>
</tr>
<tr>
<td></td>
<td>SMA 50-651-0000-31</td>
<td>Selectro Corp (914)698-5600 Selectro West (213)990-8131</td>
<td>?</td>
<td>9</td>
<td>$10.00</td>
<td>$90.00</td>
</tr>
</tbody>
</table>

TOTAL ESTIMATED COST: $542.04
AMERASIA: CLOCK GENERATOR - MODULE B. PRELIMINARY DESIGN.

PCB = G10 15mil Thickness
- 50 OHMS = 5mil LINE WIDTH
- 100 OHMS = 5mil LINE WIDTH
- ALL SIGNAL LINES ARE 50 OHMS EXCEPT AS SPECIFIED.

NOTE: Decouple each IC with a 0.01µF capacitor.

Total Power Consumption:
- 2.1 Watts for the -12VDC Power Supply,
- plus an additional 2 Watts for OSC (-15VDC)

Fo = 1030 MHz (+10dBm)

OSC = 5.0-1030-400-LG CAN-ANDERSON LAND

PS1 & PS2 = TRANSMISSION LINE POWER SPLITTERS.
- U1 = SP88228L/DG
- U2 = MC10E121FN
- U4 = MC7905.2CT
- U3 = MC1458U
- Q1 = 2N6191 or 2N3906 (PNP)

\[\begin{align*}
\square & = 400\text{ps delay (2.775°)} \\
\bigcirc & = 200\text{ps delay (1.387°)} \\
\bigcirc & = \text{PHASE TRIMMER (SEMFLX 30136-01)} \\
 (1.980\text{ps ± 150ps}) \\
\bigcirc & = 50\text{ OHM SMA CNX (Cealectro50-551-0000-31)}
\end{align*} \]
Carrier Frequency (fo) 1030 MHz
Frequency Deviation .04 (T-Tref)^2 ppm max., Tref = 25°C nominal
Output Power +10dBm ± 2dBm (10Vpk) into 50Ω
Operating Temperature Range -45°C to +85°C
Tuning Range (Δf) 400 KHz minimum
Tuning Voltage (Δv) 0 - 12 V
Spurious - Harmonic 30dBc
- Non-harmonic -60dBc
Phase Noise -65dBc/Hz @ 100 Hz
-85dBc/Hz @ 1 KHz
-105dBc/Hz @ 10 KHz
Power Supply +15 V DC ± 5%, 125 mA

Note(s): 1) Tuning range supplied is sufficient to maintain the specified carrier frequency over the effects of temperature and load pulling.

Outline:
APPENDIX #3
FIGURE A3-1, Input Signal
FIGURE A3-2, Output Signal (Readback)

Trigger mode: Edge
On Positive Edge of Charn
Trigger Level
Charn = 2.0000 V (noise reject OFF)
Holdoff = 40.000 ns

Main
Timebase 1.00 ms/div Delay/Pos -100.000 us Reference Left Mode Realtime (NORMAL)
Sensitivity Offset Probe Coupling
Channel 1 2.00 V/div 0.00000 V 10.00 : 1 dc (1M ohm)
Channel 2 1.00 V/div 3.00000 V 10.00 : 1 dc (1M ohm)
FIGURE A3-3, Output Signal Observed with Faster Timebase
FIGURE A3-4, Output Signal Observed with Faster Timebase
<table>
<thead>
<tr>
<th></th>
<th>Timebase</th>
<th>Delay/Pos</th>
<th>Reference</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>500 ns/div</td>
<td>-100.000 ns</td>
<td>Left</td>
<td>Realtime (NORMAL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>Sensitivity</th>
<th>Offset</th>
<th>Probe</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>2.00 V/div</td>
<td>0.00000 V</td>
<td>10.00 : 1</td>
<td>dc (1M ohm)</td>
</tr>
<tr>
<td>Channel 2</td>
<td>1.00 V/div</td>
<td>-1.00000 V</td>
<td>10.00 : 1</td>
<td>dc (1M ohm)</td>
</tr>
</tbody>
</table>

Trigger mode: Edge
On Negative Edge Of Ch1
Trigger Level
Ch1 = 2.00000 V (noise reject OFF)
Holdoff = 40.0000 ns

FIGURE A3-5, 2 MHZ Triangular Input Signal
FIGURE A3-6, Output Signal with Triangular Signal Input
Timebase: 1.00 ms/div
Delay/Pos: -100.000 us
Reference: Left
Mode: Realtime (NORMAL)

Sensitivity:
Offset:
Probe:
Coupling: dc (1M ohm)

Channel 1: 2.00 V/div 0.00000 V 10.00 : 1 dc (1M ohm)
Channel 2: 1.00 V/div 3.00000 V 10.00 : 1 dc (1M ohm)

Trigger mode: Edge
On Positive Edge Of Ch1
Trigger Level
Ch1 = 2.00000 V (noise reject OFF)
Holdoff = 40.000 ns

FIGURE A3-7, 1 MHz Sinewave Input Signal
FIGURE A3-8, Output Signal with Sinewave Input
Timebase: 20.0 us/div
Delay/Pos: -10.0000 us
Reference: Left
Mode: Realtime (NORMAL)

Channel 1
- Sensitivity: 4.00 V/div
- Offset: 0.00000 V
- Probe: 10.00 : 1
coupling: DC (1 M ohm)

Channel 2
- Sensitivity: 2.00 V/div
- Offset: 3.00000 V
- Probe: 10.00 : 1
coupling: DC (1 M ohm)

Trigger mode: Edge
On Positive Edge Of Exti
Trigger Level
Exti = 1.87500 V (noise reject OFF)
Holdoff = 40.000 ns

FIGURE A3-9, Output Signal with 20 MHz Sinewave Input
TRANSFER FUNCTION
Averaged over all channels and cells

TRANSFER FUNCTION
Averaged over all cells, per channel
250.3 MHz RF signal
uncorrected

Channel 1 Channel 2 Channel 3 Channel 4

(Chart showing A/D values)

250.3 MHz RF signal
corrected with \(Y = M \times X + B \) per cell

Channel 1 Channel 2 Channel 3 Channel 4

(Chart showing equivalent input voltage)
250.3 MHz RF

Four channels superimposed to show phase difference

Same graph expanded horizontally

163 166 173 180 cell number
0 3 10 17 Relative cell
0 47 156 265 ps delay
1.0003 GHz RF signal

All four channels superimposed to show phase
150 Khz Sine wave (+/- .3 v pk)
Channel 1 only

150 Khz Sine wave (+/- .3v pk)
All four channels superimposed to show phase
1 MHz RF signal (+/- 0.3v peak)

10 MHz RF signal
50 Mhz RF signal
(aliased)

62.8 Mhz RF signal
(aliased)
125.3 MHz RF signal (aliased)
Figure 5a, Predicted end-to-end delay and insertion loss of microstrip delay line.

EESOF - Touchstone - 05/11/94 - 09:28:45 - DLYL154
Line loaded with 15 each 3.2 pf capacitors in model.

Delay, ns

Loss, dB

Delay, ns

Delay, ns
FIGURE 9

HOLDoff = 40.000 ns
CHAN1 = 2.0000 V (note: reset OFF)
TRIGGER LEVEL
ON NEGATIVE EDGE OF CHAN1
TRIGGER mode : EDGE

Channel 2 2.000 V/Div
Channel 1 2.000 V/Div
Sensitivity

500 ns/Div
Delay/Pos
Timebase

0.000 V
2.00000 V
4.00000 V
-100.000 ns

4.00000 ns
2.00000 ns
0.00000 ns
-100.000 ns
FIGURE 19

Holdoff = 40,000 ns

EXT 1 = 4.8700 V (note: reflect off)

Trigger Level
ON Positive Edge of EXT

Trigger mode: Edge

Channel 2: 5.00 V/div 3.00000 V 0.00000 V 0.00000 V 2.00000 V
Channel 1: 4.00 V/div 0.00000 V 0.00000 V 0.00000 V 4.00000 V

Sensitivity

Probe

Offset

(CM) P

Reference Mode

Delay/Pos

Timebase

10.000000

5.000000

1.0000000

-10.000000

-5.000000

-1.000000

0.000000

1.000000

5.000000

10.000000
APPENDIX #5
APPENDIX 5

HARDWARE INTERFACE

1. 16 bit bi-directional parallel data

2. Four wire handshake
 a. DMAWREQ - negative pulse by host initiates transfer
 b. DMAWACK - 0 after DMAREQ, 1 when accepted by \(\mu \)P.
 c. DMARAV - 0 after \(\mu \)P loads latch, 1 after read by host
 d. DMARREQ - negative pulse by host reads data and clears status

3. Write transaction (Host to \(\mu \)P)
 a. data is latched on trailing (+) edge of DMAWREQ
 b. low level on DMAWREQ sets WR status FF (DMAWACK = 0)
 c. \(\mu \)P read clears WR status FF (DMAWACK = 1)

4. Read transaction (\(\mu \)P to Host)
 a. Generally occurs as a result of request from host
 b. Only exception is error condition status
 c. \(\mu \)P writes data to latch
 d. this sets read status FF (DMARACK = 0)
 e. DMARREQ low places data on Q bus
 f. DMARREQ low level resets read status FF (DMARACK = 1)

5. commands are 16 bit data
 a. 12 lsb is value
 b. 4 msb is command
 0 = code address low - first word of Read, Write or Execute in code memory. (with low 12 bits of address)
 1 = data address low - first word of Read or Write in data memory. (with low 12 bits of address)
 2 = start address high - second word of Read or Write range (upper 8 bits of code address or 4 bits of
code address right justified in lower 12 bits)

3 = start address high - second (final) word to read one
word from memory. Next transaction is a single
read transaction.

4 = start address high - second word to write one word
to memory. Next transaction is a single write
transaction with a 16 bit data word.

5 = execution address high - second (final) word to
start execution at address (upper 8 bits of
address right justified in lower 12 bits)

6 = end address high - fourth (final) word to read an
inclusive range of memory. This is preceded by a
second low address (0 or 1). This is followed by
N + 1 read transactions.

7 = end address high - fourth word to write an inclusive
range of memory. This is preceded by a second low
address (0 or 1). This is followed by N + 1 write
transactions.

8 = I/O read - 12 lower bits are I/O address. Next transaction
is a single read transaction with data word read
(no prefix command needed).

9 = I/O write - 12 lower bits are I/O address. Next
transaction is a single write transaction with
data word to be output (no prefix command needed).

A = skip value - 12 lower bits contain number of cells
to skip at the beginning of an acquire. This
should be a multiple of 16.

B = acquire value - 12 lower bits contain number of
cells to read and convert. This command also does
a software arm. This should be followed by a
hardware arm and trigger. The hardware will
respond with a sync strobe, and the μP will
initiate N read cycles with data.

C = auto acquire (optional) Number of cells to skip and
read determined by the \(\mu P \) by inspecting the data. 12 lower bits are ignored. Otherwise works like command 9.

D = calibrate. First call set mode, remaining calls give value of last acquire. Final call with value of 0FFh calculates coefficients.

E - F reserved
a. These go to jump vectors in code RAM
b. Initially they are programmed as NOP's

6. Timing
a. When host writes data to system, data is latched on trailing edge of strobe. Status is level sensitive, so responds to leading edge. In order to prevent multiple reads by system, pulse width must be less than 500 ns.
b. When host reads data, both data enable and status are level sensitive. The strobe pulse width must be less than 500 ns in order to prevent \(\mu P \) from placing second word on bus before end of pulse.
c. Read data is valid from 30 ns after DMARREQ goes low until a small time after DMARREQ goes high (20 ns typ.)
d. Write data must be valid at least 30 ns before the rising edge of DMAWREQ and remain valid at least 5 ns after the rising edge of DMAWREQ.
e. The Status output bit (Data/Status, 0/1) is valid from the time DMARAV goes low until it goes high again.
f. The Command input bit (Data/Command, 0/1) must be valid from the falling edge of DMAWREQ until the subsequent rising edge of DMAWACK. This is best accomplished by providing an non-Tristate ff whose state is changed just before data is written.
g. The command bit is interrogated during a reset (either power up reset, or external reset). If it is a 1, a cold reset is forced (all variables initialized to default,
calibration values all set to gain = 1 and offset = 0, all
code extensions eliminated and a new code memory checksum
computed. If Command = 0 a warm start is done instead,
provided that the code checksum agrees with the value stored
in the data memory.

7. Error and status codes (Status = 1)

0. OK
1. Warm start (after reset, unsolicited)
2. Cold start (after reset, unsolicited)
3. (reserved)
4. Completed (generally at end of block reads)
5. Illegal data - data written when not expected
6. No data - Command written when more data was expected,
 or during operation.
7. Write interrupt (not used)
8. Aborted - Command received after Acquire command,
 before arm signal received.
9. Not Triggered - A/D acquire cycle did not start,
 probably due to lack of a trigger.
0A. No Acquire - A/D acquire cycle did not complete.
0B. In Calibration - A/D cycle completed. No data will
 be sent because data is being used for calibration.

NOTE: attempt has been made to keep error codes in
the range of 0 - 0Fh so that they can be loaded
with a single word mov instruction.
This is the final report for the research and development of the 1 GHz Digitizer for Space Based Laser Altimeter. A Feasability model was designed, built, and tested. Only partial testing of essential functions of the Digitizer was completed, due to limited funding available at this time. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of 1 GHz. The average power consumption of the 1 GHz Digitizer is not more than 1.5 Watts. A 1 GHz SAW oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communications with the host computer. The Digitizer is equipped with an on-board microprocessor for this purpose.