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Summary

This paper presents a deterministic procedure for tailoring the continuum stiffness and

strength of uniform space-filling truss structures through the appropriate selection of truss

geometry and member sizes (i.e., flexural and axial stiffnesses and length). Tile trusses considered

herein are generated by uniform replication of a characteristic truss cell. Tile repeating cells are

categorized by one of a set of possible geometric symmetry groups derived using crystallographic

techniques. The elastic symmetry associated with each geometric symmetry group is identified

to help select an appropriate truss geometry for a given application. Stiffness and strength

tailoring of a given truss geometry is enabled through explicit expressions relating the continuum

stiffnesses and faihlre stresses of tile truss to the stiffnesses and failure loads of its members.

These expressions are derived using an existing equivalent continuum analysis technique and a

newly developed analytical failure theory for trusses. Several examples are presented to illustrate

the application of these techniques and to demonstrate the usefulness of the inforination gained

from this analysis.

Introduction

In the future, the primary structures of many large orbiting spacecraft will be lightweight

trusses. Although numerous studies have been performed to determine the feasibility and

structural characteristics of these trusses (e.g., refs. 1 through 3), little work has been done to

establish deterministic procedures for their design. The selection of appropriate truss designs is

influenced by both structural optimization and spacecraft operational considerat.ions. Currently,

structural optimization of these trusses is a predominantly heuristic process involving trial and

error procedures. This paper presents a deterministic procedure for truss geometry selection

and member design based on tailoring the continuum stiffness and strength characteristics of

the truss. Analysis of tile truss stiffness and strength characteristics is performed using an

equivalent continuum analogy (ref. 4). This approach is preferred because it offers better insight

into structural behavior than the conventional numerical analysis techniques offer.

The trusses considered herein are generated by uniform rotational and/or translational

replication of a characteristic cell, as shown in figure 1, and they are thus called uniform space-

filling trusses. In most cases, the repeating truss cell anti the resulting truss structure inherently

possess some geometric symmetry. The presence of geometric symmetry implies elastic syinmetry

that reduces the number of independent equivalent elastic constants characterizing the truss. In

this study, the crystallographic techniques are used to define tile possible geometric symmetry

groups associated with repeating cells that generate uniform trusses. In addition, the number

of independent elastic constants associated with each geometric symmetry group is identified to

help select an appropriate truss geometry for a given application.

The independent elastic constants characterizing a truss can be tailored to specific values

by selecting appropriate member stiffnesses. In the present study, this stiffness tailoring is

accomplished using explicit relationships between the equivalent continuum stiffnesses of a truss

and the axial stiffnesses of its members. Also, the continuum strength characteristics of a truss

are tailored using a strength tensor that is written explicitly in terms of the local elastic buckling

loads of the truss members. To illustrate the application of these techniques, a commonly used

truss geometry is analyzed to determine nmmber sizes that produce optimum isotropie and

orthotropic (i.e., one direction of high stiffness and strength) designs.

All derivations presented have been performed symbolically using a computerize d mathemat-

ics routine (ref. 5), and results have been converted into a numerical form when necessary. The

advantage in using symbolic algebra is that explicit relationships can be determined between the

design parameters and the continuum elastic behavior of the truss. These explicit relationships

significantly enhance the utility of the stiffness and strength tailoring procedures presented.



Symbols

A

Ac

An

Ao

Cijkl

C_jkl

(C_lll)n

Cmn

E

Eeq

(Eeq)iso

(Eeq)z

Geq

L

l_

r_t

Sijkl

Stun

Vn

X_ y_ Z

X I

5_

5n

cij

(ecrit)n

/]eq

P

Peq

_ij

_ult

cross-sectional area of members in regular octahedral truss

cross-sectional area of members in cubic lattice of Warren truss

cross-sectional area of members in nth group

cross-sectional area of members in octahedral lattice of Warren truss

continuum elastic stiffnesses (tensor form)

transformed continuum elastic stiffnesses

continuum unidirectional stiffness for nth group of parallel members

continuum elastic stiffnesses (matrix form)

Young's modulus of truss material

equivalent continuum Young's modulus

equivalent Young's modulus of isotropic Warren truss

equivalent z-direction Young's modulus

equivalent continuum shear modulus

characteristic dimension of truss repeating cell

length of members in nth group

radius of gyration of members in nth group

continuum elastic compliances (tensor form)

continuum elastic compliances (matrix form)

coordinate transformation tensor

volume fraction of nth group of parallel members

Cartesian coordinates

member longitudinal direction

length ratio of repeating truss cell in z direction

ratio of cross-sectional areas of members in Warren truss

ratio of cross-sectional areas of members in nth group to that of first

group

strain tensor

transformed strain tensor

critical axial strain for nth group of members

equivalent continuum Poisson's ratio

density of truss material

equivalent continuum density

stress tensor

continuum compression strength
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(Oult)z

(O'ult)iso

0,_

z-direction compression strength

compression strength of isotropic Warren truss

direction cosine with the ith coordinate axis

spherical coordinates

strength tensor

Truss Geometry Selection

The design of a truss is often governed by considerations other than the structural perfor-

mance (e.g., as shown in ref. 6). For example, operational concerns such as the arrangement and

integration of spacecraft subsystems onto a truss might dictate a particular geometry for tile

truss repeating cell. For applications in which operational concerns do not dominate, selecting a

truss geometry by matching its inherent elastic behavior with the structural requirements of the

spacecraft is prudent. Even in situations in which operational concerns prevail, enough latitude

probably exists in the selection of a truss geometry so that structural considerations can be

incorporated. This section categorizes the elastic characteristics of most uniform space-filling

truss structures by examining their geometric symmetry.

The uniform truss structures considered herein are similar to crystalline lattices because

they both can be generated by replicating a characteristic repeating cell that typically possesses

geometric symmetry. Of interest are symmetry with respect to specific rotations about one or

more axes and symmetry with respect to reflection about one or more planes. Symmetry in the

truss geometry (i.e., lattice arrangement and member designs) implies symmetry in the elastic

characteristics of the truss. This implied elastic symmetry reduces the number of independent

equivalent elastic constants characterizing the continuum behavior of the truss, and it thus

simplifies the task of stiffness and strength tailoring.

Rotational Symmetry Groups

Crystallographic studies (refs. 7 and 8) have shown that the rotational and reflectional

symmetries in reticulated, or discrete, structures are limited to a set of 32 possible combinations

that are commonly called crystallographic symmetry groups. Love (ref. 9) determined that the

elastic behavior of most crystallographic symmetry groups can be derived by considering only

rotational symmetry. For brevity, the few cases in which reflectional symmetry is important are

not considered herein. By neglecting reflectional symmetry, the 32 crystallographic symmetry

groups reduce to the 10 rotational symmetry groups shown in figure 2.

Each symmetry group in figure 2 is identified by a specific combination of axes about which

rotational symmetry exists. The orientations of these axes are shown relative to a Cartesian

coordinate system, and the order of rotational symmetry is given by one of four graphical

symbols: a cusped oval, a triangle, a square, or a hexagon. These symmetry symbols are related

to the order of symmetry in the key. This order of symmetry is defined as n-gonal where the

rotation angle is 27r/n and n is either 2, 3, 4, or 6. Notice that in symmetry groups i and j,

the trigonal symmetry axes lie along lines connecting the center of a cube with its corners, thus

structures of these symmetry groups are often referred to as cubic structures.

Symmetry groups that possess more than one axis of rotational symmetry are called

multiaxial. The three rotational symmetry axes presented for each of the multiaxial groups

are not the only symmetry axes for those groups. A complete set can be generated by applying

the symmetry operation of each axis to the others. For example, in symmetry group d, applying

trigonal symmetry about the z-axis identifies four additional digonal symmetry axes separated

by 60 ° in the x-y plane.
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Any trussstructurethat possessesaxesof rotationalsymmetrycanbecategorizedbyoneof
tile 10rotationalsymmetrygroupsin figure2. Thisclassificationisaccomplishedby identifying
all rotationalsymmetryaxeswithin the structureandthenby selectinga Cartesiancoordinate
systemrelativeto theseaxeswhich matchesoneof the givensymmetrygroups. Oncethe
symmetrygroupof the trussis identified,its inherentelasticbehavioris determinedusingtile
methodsthat follow.

Elastic Characteristics of Rotational Symmetry Groups

A uniform truss structure can be represented by an equivalent homogeneous anisotropic

continuum characterized by 21 empirical elastic constants. These elastic constants appear as

stiffnesses cm_ or Cijkl in the constitutive equations given in equation (la) in matrix form and

equation (lb) in tensor form:

O-ll

0-22

o-33

0-23

o-13

• o-12

ell c12

c12 c22

c13 c23

c14 c24

c15 c25

c16 c26

c13 Ct4 c15 c16

c23 c24 c25 c26

c33 c34 c35 c36

c34 c44 c45 c46

c35 c45 c55 c56

c36 c46 c56 c66

Cll

Z22

_33

2_23

2_13

2c12

(la)

oij = Cijkl ekl (lb)

When the truss possesses geometric symlnetry, elastic symmetry is implied, which reduces the
number of independent continuum elastic constants.

A continuum that possesses geometric symmetry with respect to a rotational or a reflective

transformation (characterized by Tij) also possesses symmetry in its elastic constants (see, for
example, ref. 10). Therefore, the transformed stiffness tensor C _ijkl must be identical to the
original tensor Cijkl. Hence,

c' jkt = , = Cjkl (2)

The mmlber of independent elastic constants associated with each symmetry group, presented

in figure 2, is determined using equation (2). A transformation tensor Tij is determined for

the specified rotation about each symmetry axis and substituted into equation (2) to give 21

conditions on the stiffnesses Cijkl. Some of these conditions are identically satisfied, whereas
others can be satisfied only by the elimination or restriction of certain elastic constants. This

process is repeated for all rotational symmetry axes in the given symmetry group, and the

resulting reduced set of elastic constants defines the continuum elastic characteristics of any
truss structure that is a member of that symmetry group.

For example, the independent elastic constants characterizing trusses of symmetry group a

are determined by enforcing elastic symmetry with respect to a rotation of 180 ° about the z-axis.
The transformation matrix for this rotation is

i710Tij = -1 (3)

0
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Substitutingequation(3) intoequation(2) givesthefollowingresult:

cijk = Gjk (4a)

if an even number (or none) of the indices is 3 and

Cijkl = --Cijkl (4b)

if all odd number of the indices is 3. Satisfying equation (4b) requires the following to be true

(note that, because of symmetry in Cijkl , many possible permutations of the subscripts have

been omitted):

Cl123 = Cl113 = (72223 = C2113 = C3323 -- C3313 = C2312 = C1312 -- 0 (5)

Employing the usual conversion from tensor to matrix form (ref. 10), the following equivalent

conditions exist for the components of the stiffness matrix:

c14 = c15 ----C24 = c25 = c34 ----c35 = e46 = e56 = 0

Similar calculations can be made for the remaining symmetry groups in figure 2. Without

presenting the details, the conditions on continuum stiffnesses as well as the number of

independent elastic constants for each symmetry group are presented in table I. A similar

derivation shows that the conditions presented in table I must also be obeyed by the components

of the continuum compliance tensor.

An obvious conclusion from table I is that the presence of any symmetry in a truss lattice

significantly reduces the number of independent elastic constants characterizing its continuum

behavior. This result greatly simplifies the task of tailoring the stiffness and strength of most

trusses. Remember that the conditions oil the elastic constants presented in table I are valid

only for the coordinate axes presented in figure 2. For example, symmetry groups b, f, g, h, i,

and j are indicated to have zero shear coupling stiffnesses (e.g., c14 , c15 , and c16 ) in the given

coordinate system, but they might have nonzero coupling stiffnesses in an alternate coordinate

system. As explained by Rosen and Shu (ref. 11), and seen in table I, none of the permissible

geometric symmetry groups possesses sufficient symmetry to ensure isotropic elastic behavior.

However, this research shows that isotropy can be obtained by tailoring the relative stiffnesses

of different truss members.

The information in table I should help select appropriate truss geometries for particular

truss applications and determine additional stiffness tailoring requirements for the selected truss

geometry. For example, if the primary loads in a truss are expected to occur in only one

direction, considering geometries that have less symmetry and which can easily be tailored to

have significantly higher stiffnesses and strengths in that direction (i.e., an orthotropic design)

is more efficient. However, for a structure that may have to sustain loads in multiple directions

or one for which the loading conditions are not well-defined, considering truss geometries that

possess more symmetry and which can be tailored to behave isotropically may be best.

Stiffness and Strength Tailoring

Once a truss geometry has been selected, its independent elastic constants are identified using

table I. The values of these constants can be adjusted for a particular application by tailoring

the relative axial stiffnesses of the members comprising the truss. Likewise, changing the relative

elastic buckling loads of different members alters the equivalent continuum strengths of the truss.

Changing only the dimensions and member stiffnesses of a truss which do not violate its geometric



symmetrycausesit to remain in the samerotational symmetrygroup; thus, the conditions
on its continuumstiffnessesgivenin table I remainvalid. Alternatively,changingdimensions
andmemberstiffnessesof a truss whichviolate its geometricsymmetrychangesits rotational
symmetrygroup,thus altering the numberof independentelasticconstantscharacterizingits
behavior.Stiffnessand strengthtailoring will bedemonstratedfor a trussin whichgeometric
symmetryis maintainedandonein whichgeometricsymmetryis altered.

Equivalent Continuum Elastic Constants

Once a candidate truss for stiffness tailoring is selected, its continuum stiffnesses are

calculated in terms of the axial stiffnesses of its members. The approach used in this study

for calculating these stiffnesses was developed by Nayfeh and Hefzy (ref. 12); this approach is

similar to a three-dimensional generalization of classical laminated plate theory (ref. 13) in which

groups of parallel members within the truss are analogous to individual lamina. Because truss

members carry only axial loads, each group of parallel members forms a unidirectional elastic

continuum that has no transverse or shearing stiffnesses. The truss assemblage stiffnesses are

obtained by summing tile stiffnesses of each of the groups of parallel members. This superposition

of stiffnesses implies that the continuum displacement field within a truss is single-valued, which
is consistent with the fact that truss members connected at a common point must have the same

displacement at that point. Note that this is not the case for trusses with cross-laced members

that can slide relative to one another; therefore, such designs should not be analyzed using the

techniques of this study.

Each group of parallel members is characterized by one nonzero equivalent stiffness that is

in the local x _ direction (the member longitudinal direction). This equivalent unidirectional

stiffness is determined in equation (7) for the nth group of members:

(C_lll)n = Evn (7)

where E is the Young's modulus of the truss material in the members and vn is the volume

fraction of the group of members (i.e., the ratio of the total volume of material in the members

to the total volume of the truss).

The continuum stiffnesses for a truss are calculated by transforming the unidirectional

stiffnesses for each of its groups of parallel members into a global coordinate system using

equation (2) and by summing the results, as indicated by

Cijk I = _ (C_lll)n(TliTljTlkTll)n (S)
m

Elements of the first row of the transformation tensor Tli are simply the direction cosines between

the longitudinal axis of the members and the ith coordinate axis. Therefore, equation (8) call

be rewritten as

Cijk l = _ (C_lll)n(OiOjdgkOl) n (9)
rt

where 0i is the ith direction cosine of the members. The continuum stiffnesses defined bv

equation (9) are explicit functions of the member extensional stiffnesses. These functions
enable the desired continuum stiffness characteristics to be translated into member axial stiffness

tailoring rules.

Equation (9) produces additional restrictions on the continuum stiffnesses of uniform trusses

which should be noted. Employing the usual conversion from the matrix form of the elastic
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constantsto the tensorform (ref. 10),thevaluesfor thetransverseandshearstiffnessesc12and
c66 are

C12 Cl122 = Z (C_111 2 2= )n(i)l*2),, (lO)
It

c66 C1212 = Z t 2 2= (Cl111),, (0102) n (11)

Thus,

Similarly,

c12 =-c66 (12)

c13 =c55 c23 =C,H c45 =c36 c25 =c46 el, 1 =c56 (13)

Remember that these identities nmst be valid for any uniform space-filling truss, regardless of

its geometry, and therefore these identities should be added to those already presented in table I

for all symmetry groups. Thus, under these assumptions, a generally anisotropic space-filling

truss structure has only 15 independent elastic constants rather than the 21 that are normal for

a generally anisotropic solid.

Trusses that are tailored to behave as isotropic continua can be characterized by two elastic

constants, an equivalent continuum Young's modulus Eeq and an equivalent continuum Poisson's

ratio Ueq. Writing the stiffnesses in equation (12) in terms of these equivalent constants gives
the following condition:

_'eq Eeq Ee( t

(1 + _eq)(1 - 2_(,q) 2(1 + Ucq)
(14)

Solving equation (14) for Ucq gives the result that Ueq is equal to 1/4. Therefore, any uniform

three-dimensional space-filling truss structure that is globally isotropic must have an equivalent

Poisson's ratio equal to % and, thus, it has only one remaining independent elastic constant,

which is its equivalent Young's modulus. Using a similar procedure, the two-dimensional space-

filling trusses that behave isotropically must have an equivalent Poisson's ratio of _/a.

Equivalent Stiffness-to-Density Ratio

Stiffness-to-density ratios are commonly used as indicators of the efficiency of materials.

Likewise, equivalent stiffness-to-density ratios are useful indicators of the efficiency of uniform

trusses. Most equivalent truss stiffness-to-density ratios are dependent on the design of the truss.

However, an equivalent stiffness-to-density ratio that is only a function of the modulus-to-density
ratio of the parent material will be shown to exist.

In equation (15), a sum of equivalent continuum stiffnesses for a truss is shown to be equal to

the sum of the uniaxial stiffnesses of its individual groups of members. Notice that the direction

cosine terms drop out because the sum of the squares of the three direction cosines for any
member is equal to one.



Cll + c22 + c33 + 2c23 3- 2cl 3 3- 2c12 ----Cl111 + (72222 3- (73333 3- 2C2233 3- 2Cl133 3- 2Cl122

---E t 4 2(_2..2 2 2 2 2(Cllll)n(g)l _+_q_4 _+_¢4 + 2_'3 + 2¢1(_3 3- 2q_l_b2)_
It

E t 2 2 2= (Cl111)n((Pl 3- ¢22 3- ¢3)n
n

E != (Cllll)n (15)

The equivalent density of a space-filling truss

the parent material p by the sum of the volume

Considering equation (7), this relationship can be

is determined by multiplying the density of

fractions of all groups of parallel members.
written as

P
= = (Cllll)n (16)

7t n

Dividing equation (15) by equation (16) gives the following equivalent stiffness-to-density ratio:

Cll + c22 3- c33 + 2c23 3- 2c13 + 2c12 E
= - (lr)

Peq P

Equation (17) is a unique relationship because it provides a direct correlation between an

equivalent continuum stiffness-to-density ratio of the truss and the modulus-to-density ratio

of the parent material in the truss members. Once the parent material is defined for a truss,

equation (17) provides a direct relationship between the equivalent anisotropic stiffness of a truss

and its equivalent density. This relationship can be used in a number of ways. For example,

changes in the continuum stiffnesses because of stiffness tailoring of the truss members can be

directly translated into a proportional change in the equivalent density of the truss. Similarly,

requiring the sum of the continuum stiffnesses in the numerator of equation (17) to be constant

(luring stiffness tailoring results in the equivalent density remaining constant. This requirement

allows the effects of material redistribution within a truss lattice to be conveniently studied.

Equation (17) can be simplified for trusses that are tailored to be globally isotropic. Without

presenting details, equation (17) reduces to the following equation by writing the equivalent

continuum stiffnesses in terms of an equivalent Young's modulus and Poisson's ratio (equal to

1/4) :

Eeq I E
- (is)

Peq 6 p

The significance of equation (18) is that all uniform space-filling trusses that are globally isotropic

must have the same equivalent modulus-to-density ratio regardless of their geometries or member

sizes. Furthermore, this modulus-to-density ratio must be exactly 1/6 of the modulus-to-density

ratio of the parent material.

Equivalent Continuum Strength Tensor

The continuum strength of a truss structure is defined herein as the maximum continuum

stress that the truss can sustain before any of its members buckle elastically. This failure mode,

which is a local phenomenon within the truss lattice, will have one of two effects on the continuum

behavior of the truss. If redundant members exist and load is redistributed, local buckling will

cause a change in the continuum stiffnesses of the truss. However, if no load redistribution takes



place,localbucklingwill precipitatea catastrophicfailureof the trusslattice. Thesecominmun
effectsareanalogous,respectively,to yieldingandultimatefailure in a material.

Becausethe localfailuremodein trussescanbedeternfinedanalytically,a purelyanalytical
failuretheoryfor trussescanbeconstructed.In this section,atensorthat describesthestrength
of a trusswill beconstructed,and faihlreanalysisusingthis strengthtensorwill bediscussed.
Havingatensorthat representsthestrengthof atrussisadvantageousbecauseit allowsstrength
to bereadilydeterminedin alternatereferenceframesor undernmltiaxialstressstates.Material
strengthisnota tensorquantity,and,thus,analysisoffailurein materialsundernmltiaxialstress
canbeaccomplishedonly with approximate,semiempiricaltheoriessuchas that proposedby
vonMises(e.g.,asexplainedin ref. 14).

A strengthtensor'is constructedfor trussesby convertingthe appliedstressesinto strains
using the complianceequationsgiven ill equations(19) and by analyzingthesestrains to
determineif the axial compressionstrain in any truss meInberhasexceededits critical elastic
bucklinglimit:

_11

_22

_33

2c23

2c13

• 2c12

Sll s12 s13 Sl.l s15 s16

•s12 s22 s23 s24 s25 s26

813 s23 s33 s31 a35 s36

,Sl,1 ,s'24 s3,1 S,l,l s45 s46

s15 825 s35 &15 s55 856

s 16 s26 ,s'36 .5'46 856 866.

C_ll

(r22

0-33

c.23

(713

a12

(19a)

cij = Sijt_.lOkl (19b)

Note that the compliance matrix in equation (19a) is simply the inverse of the stiffness matrix

given in equation (la). Therefore, the equivalent continuum compliances for a truss can be

determined from the equivalent continuum stiffnesses derived previously.

The continuum strains defined in tensor form in equation (19b), can tie transformed into

a new coordinate system described by the linear transformation tensor _.j. Tile resulting

transformed strains c_j are

E ij' = TioTjpgop = TioTjpSop_clC* #l (20)

The axial strain in any member of the truss is determined by defining an alternate coordinate

system with one of its axes aligned along the longitudinal direction of the member and evaluating

the normal strain along that axis. Assuming that the :r-axis of the alternate coordinate system

is aligned this way, the axial strain in the member is given as

I

ell = TliTljSijhlCrkl = ¢i_jSijkl°l,'l (21)

where, as defined before, 0i is the ith direction cosine of the member.

Failure occurs in a member if its axial strain exceeds a critical value determined for elastic

buckling. For the present study, the truss members are assumed to be slender and therefore

to buckle as Euler columns (ref. 15) thus, the critical strain for the nth group of members is
defined as

(Ccrit)n = _Tr 2 rn. (22)
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wherern is the radius of gyration and In is the length of the members in the nth group. The

minus sign in equation (22) indicates that the critical strain is compressive. A fail-safe criterion

can be constructed from equations (21) and (22) by requiring the axial strains in all members

to be less than the critical value. This fail-safe criterion can be written as

(¢iOj)nSijkl
akl = [_tkl]nakl <_ 1 (23)

The bracketed term in equation (23) can either be thought of as a third-order tensor

representing the strength of the truss or as a collection of second-order tensors, each representing

tile strength of a group of parallel members within the truss. The product of this strength tensor

and the second-order applied stress tensor akt is a vector of constants, one for each of the groups

of parallel members. For elastic failure to occur, any one'of these constants must be >1. Thus,

the critical stress at which failure occurs is the minimum stress at which one or more of these

constants is equal to 1.

Equation (23) represents a purely analytical failure theory for space-filling trusses which can

be used with equal ease to analyze strength under multiaxial or uniaxial loading. Similarly,

strength in alternate coordinate systems can be readily handled by simply transforming the

collection of second-order strength tensors _kl in the same way that a stress or strain tensor
would be transformed.

Equation (23) can be used, as described, to determine the strength of a given truss design.

Additionally, this equation is useful for tailoring the strength of a truss design because it is an

explicit relationship between the strength of individual members (i.e., rn/ln) and the continuum

strength of the truss. Strength tailoring is accomplished by varying the strength of individual

members to effect a desired change in the continuum strength of the truss. Note that because the

continuum compliances of the truss appear in equation (23), strength tailoring is not independent

of stiffness tailoring. Consequently, tailoring the continuum stiffnesses of a truss also will change

its continuum strength characteristics.

In the remaining sections of this paper, examples of stiffness and strength tailoring of uniform

trusses are presented. Truss geometries are selected for analytical simplicity, thus allowing

emphasis to be placed on developing an understanding of the analysis techniques.

Examples of Stiffness and Strength Tailoring in Trusses

Equations (9), (17), and (23) provide the basis for analysis of the continuum stiffness, density,

and strength of uniform space-filling truss structures. By providing explicit relationships between

these continuum quantities and truss design parameters, these equations are effective tools that

enable efficient tailoring of the truss stiffness and strength characteristics. In this section, these

equations are applied to the analysis of two commonly used truss geometries and to the tailoring

of designs that have continuum isotropic and orthotropic behaviors.

Regular Octahedral Truss

The octahedral truss (also known as the tetrahedral truss, ref. 2, or the octet truss) is a

common geometry that derives its name from its members that connect to form octahedrons

and tetrahedrons. For the present study, a regular octahedral truss is considered which has all

identical members. A repeating cell from this truss is shown in figure 3. The cell contains a

regular octahedron at its center (fig. 3(a)) and tetrahedrons connected to each of the eight faces

of the octahedron (fig. 3(b)). Space is filled by translational replication of this cell in each of
the three coordinate directions.
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Becauseall membersareidentical,theoctahedraltrusshasdigonalsymmetryaxesalongtile
lines x = y, x = z, and y = z; trigonal symmetry axes along the lines x = y = z, -x = y = z,

x = -y = z, and x = y = -z; and quadragonal symmetry axes along the x-, y-, and z-axes.

This combination of symmetry axes indicates that the regular oetahedral truss is a member of

rotational symmetry group j.

Calculation of continuum stiffness and density. In table I, the behavior of the regular

octahedral truss is characterized by the three independent elastic constants ell, c12, and c66.

Equation (12) further reduces this number to two. However, these constants lack the relationship

c66 = (ell - c12)/2; thus, the regular octahedral truss is not globally isotropic. Values for the
elastic constants can be determined from equations (7) and (9). Six different groups of parallel

members exist in the octahedral truss, and all members are identical and assumed to have a

cross-sectional area of A. With the half-height of the regular octahedron defined to be L, as

shown in figure 3, the length of each of the members is v_L. Then, the equivalent unidirectional

stiffness for each of the six groups of parallel members is

EA

(C_lll)n_ _/_L 2 (24)

Substituting equation (24) into equation (9) along with the appropriate direction cosines for the

different member groups, gives the result presented in equation (25) for the equivalent continuum

stiffness matrix of the octahedral truss:

EA

[Crrm]- 2v_L 2

"2 1 1 0 0 0

1 2 1 0 0 0

1 1 2 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(25)

Notice that the continuum stiffnesses obey the restrictions in table I and equation (12).

Because all members in the regular octahedral truss are identical, the relative magnitudes of

the continuum stiffnesses for the octahedral truss are constrained by the proportions given in

the matrix of equation (25). Therefore, changing the axial stiffness of the truss members can

only uniformly change all continuum stiffnesses.

The equivalent density of the octahedral truss can be calculated by substituting the stiffnesses

from equation (25) into equation (17). Rearranging and simplifying gives

3v/-2pA (26)
Peq -- L2

Calculation of continuum strength. Before applying equation (23) to calculate the

continuum strength of the octahedral truss, the tensor form of the continuum compliances must

be determined from the stiffness matrix given in equation (25). This process is done by inverting

the stiffness matrix to get the compliance matrix and then employing the usual conversion from

matrix form to tensor form on the individual compliances (ref. 10). The only remaining unknown

truss parameter is the radius of gyration of its members.
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Supposethat the strengthof the octahedraltrussundera continuumuniaxialcompression
is required.Assumingthisstressto havemagnitudeaukandto beappliedalonga vectorgiven
by the sphericalcoordinates0 and _ (as shown in fig. 4), the applied continuum stress tensor
can be written as

[akl ] =- --aul t

(sin 2 0 cos 2 _)

(sin 2 0 sin qz cos qD)

(sin 0 cos 0 cos _)

(sin 2 0 sin _ cos _)

(sin 2 0 sin 2 p)

(sin 0 cos 0 sin _)

(sin 0 cos 0 cos _)

(sin 0 cos 0 sin _)

(cos 20)

(27)

The compression strength is determined by substituting equation (27) into equation (23).

After simplification, equation (23) reduces to a set of six scalar equations (n = 1 to 6), one

for each group of parallel members in the truss. Each of these equations can be solved for the

value of aul t which is necessary to cause Euler buckling in the corresponding member. The

minimum value of auk . determined from these six equations is the lowest uniaxial compression

stress at which local buckling occurs within the truss lattice. This value is defined as the uniaxial

compression strength for the given set of 0 and qa.

A three-dimensional plot of tile uniaxial compression strength of the octahedral truss is

presented in figure 4 for a range of 0 and p from 0 ° to 90 °. Because of symmetry, the strength

in all other quadrants is identical. A factor of 2 variation exists in the compression strength of

the lattice, and, not surprisingly, the directions of minimum strength are coincident with the

directions of the members of tile truss. Maximum strength occurs for loading along the three

coordinate axes and along the line x = y = z. Tile value of the minimum strength is

E A Tr2r 2

at, it- 2v_L,l (28)

Because all members are identical, changing the strength of the members would change the

vertical scale of the strength plot given in figure 4, but it would not change its shape. Introducing

member-specific properties will alter the equivalent continuum stiffness and strength; however,

this would destroy the geometric symmetry of the lattice and introduce additional independent

stiffnesses. In the following section, a truss based on the octahedral lattice is designed for

isotropie stiffness and nearly isotropic strength.

Isotropic Warren Truss

The lattice of the regular octahedral truss is modified by adding members that connect all six

vertices of each oetahedron to the geometric center of the octahedron, as shown in figure 5(a).

The resulting arrangement of new members forms a cubic lattice within the octahedral lattice,

with the edges of the cube lying parallel to the three coordinate axes and each cube containing

a regular tetrahedron, as shown in figure 5(b). The members of the cubic lattice are of length L,

whereas the members of the original octahedral lattice are of length x/2L. This truss geometry

is often referred to as the Warren truss because its lattice arrangement is similar to that of a

common two-dimensional truss of the same name. Similar to the regular octahedral truss, the

Warren truss is a member of symmetry group j, and it has two independent elastic constants ell

and c12. However, unlike the octahedral truss, the Warren truss has two different members whose

relative stiffnesses and strengths can be tailored to affect the continuum behavior of the truss

without violating its geometric and elastic symmetry. In this section, it is demonstrated that

the continuum strength and stiffness properties of the lattice can be tailored by redistributing
material within the truss lattice. Tile material is transferred from the octahedral lattice members

12



to thecubiclatticememberssothat tile continuumstiffnessesbecomeisotropic.Also,therelative
strengthsof the membersaretailoredto reducevariationsin continuumcompressionstrength.

Continuum stiffness tailoring. Tile Warren truss is composed of nine different groups of

parallel members. Three groups correspond to the cubic lattice, and six groups correspond to the

octahedral lattice. The continuum stiffnesses for the Warren truss can be determined by adding

the contributions because of the cubic lattice members to the result presented in equation (25)

for the octahedral lattice. The cross-sectional areas of the members in the cubic lattice and

the octahedral lattice are defined to be Ac and Ao, respectively. Thus, the equivalent uniaxial

stiffnesses of the three groups of parallel cubic lattice members are given by

EAc (29)
(C_lll),, -- L 2

Substituting equation (29) into equation (9), along with the appropriate direction cosines,

and adding the result to that presented in equation (25) gives

-2 + 2x/25c 1 1 0 0 0

1 2 + 2V_bc 1 0 0 0

1 1 2+2V_c 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(3O)

where 5c is defined ms Ac/Ao. If 5c is equal to 0, the cross-sectional area of the cubic lattice

members is 0, and equation (30) is identical to equation (25). As before, an equivalent density

carl be calculated using equation (17) and the stiffnesses presented in equation (30). The result

is

(3v'2 + 3_c)pAo (31)
Peq = L2

To study the effects of redistribution of material within the truss, the total amount of material

must remain constant. For convenience, the density of the Warren truss is required to be the

same as that of the regular octahedral truss by setting equation (26) equal to equation (31).

The result is
A

Ao - (32)

where A is the cross-sectional area of the members in the regular octahedral truss that was

analyzed previously. Equation (32) defines the relation between the cross-sectional areas of

the cubic and octahedral lattice members within the Warren truss; this relation must be valid

to keep the equivalent density of the Warren truss equal to that of the regular octahedral

truss. Substituting equation (32) into equation (30) gives explicit equations for the continuum

stiffnesses of the Warren truss in terms of the member area ratio 5c. To better understand the

effects of redistribution of material, the stiffness components in equation (30) are translated into

equivalent Young's modulus, Poisson's ratio, and shear modulus, as follows:

Eeq --- (ell 4- 2c12)(Cll - c12) = 4EA(1 + 2V_$c) (33)
ell + c12 2V/-2L2(3 + 2V_c)

13



c12 _ 1 (34)
Vcq-- Cll +C12 3+2V/-25c

EA

Geq = c66 = 2v/_L2(1 + o/VL)cc"z_' (35)

These stiffness components are plotted in figure 6 as functions of the area ratio 5c. For

_c = 0, no material has been redistributed from the octahedral lattice to the cubic lattice, and

the stiffnesses represent those of the octahedral truss. As 5c is increased, material is moved from

the octahedral lattice to the cubic lattice, and this process is accompanied by an increase in the

equivalent Young's modulus and decreases in the equivalent Poisson's ratio and the equivalent

shear modulus. As seen from equations (34) and (35), when 5c becomes large, both the Poisson's

ratio and the shear modulus approach 0. This effect is consistent with the fact that the cubic

lattice of members is not a kinematically stable truss by itself. Because of this, considering

designs with very large values of 5c is unreasonable.

For the Warren truss to be globally isotropic, the stiffnesses must satisfy the following

condition:

Eeq (36)
Geq - 2(1 + Ueq)

Substituting the expressions from equations (33) to (35) into equation (36) shows that 5c must

be equal to 1/(2v_) for isotropy. Substituting this value of 5c into equation (32) gives a value

of 4A/5 for the cross-scctional area of the members in the octahedral lattice and, consequently,

a value of v/2A/5 for the cross-sectional area of the members in the cubic lattice. Thus, if 1/_5of

the materiM that was originally in the members of the octahedral truss is redistributed into the

meinbers of the cubic lattice, the resulting truss behaves isotropically. The isotropic values for

the equivalent Young's modulus, Poisson's ratio, and shear modulus are

EA 1 v EA
(Eeq)iso- v L2 (Veq)iso _- (Geq)iso- 5L 2 (37)

Notice that the equivalent isotropic Poisson's ratio is 1/4, which is the value that was predicted

earlier for globally isotropic trusses. Also, calculating the ratio of the equivalent isotropic Young's

modulus (eq. (37)) to the equivalent density (eq. (26)) gives the result predicted in equation (18)

for globally isotropic trusses.

Continuum strength tailoring. Applying the same procedure used for the octahedral

truss, the continuum strength of the isotropic Warren truss can be determined and the effects

on continuum strength of varying the strength of the truss members can be evaluated. For

comparison, the same continuum stress tensor given in equation (27) is also applied to the

Warren truss. Two cases are analyzed. In the first case, all members in the truss are assumed to

have the same radius of gyration, and in the second case, all members are assumed to have the

same buckling load. The first case is representative of a truss with thin-walled members of equal

cross-sectional diameter. The second case illustrates the effects of tailoring individual member

buckling strengths on the continuum strength of the truss.

For the first case, the radius of gyration of all members is r, and the lengths of the members

are L for the cubic lattice and v_L for the octahedral lattice. These values, the continuum

compliances determined from equation (30), and the appropriate direction cosines are substituted

into equation (23). The result is a set of nine scalar equations, one for each group of parallel
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membersin thetruss,from whichthe minimumvahleof O'ult is determined for the given set of

8 and _.

A three-dimensional plot of the uniaxial compression strength of the isotropic Warren truss

is presented in figure 7 for the same range of fl and _9 as in figure 4. The shape of the strength

plot is similar to that of the octahedral truss, and, despite the redistribution of material from

the octahedral lattice, the values and the directions of the minimum and maximum strength are

the same as those for the octahedral truss. The directions and maximum strength are coincident

with the directions of the cubic lattice members, and the directions of minimum strength are

coincident with the directions of the octahedral lattice members. Requiring that all members

have the same radius of gyration causes the cubic lattice members to have twice the buckling

load of the octahedral lattice members because of the difference in their lengths. This effect

causes a factor of 2 variation in the continuum strength.

Variation in truss strength might not be a concern for many design applications; however, if it

is desirable to have a truss that behaves isotropically in stiffness, it is probably also desirable for

the truss to behave isotropically in strength. By tailoring the buckling loads of the cubic lattice

members to be the same ms those of the octahedral lattice, the variations in continuum strength

can be significantly reduced. For this case, the radius of gyration of the cubic lattice members is

reduced to r/x�2 so that the buckling loads of all members are the same. A plot of the resulting

continuum compression strength is presented in figure 8. Although some variation still exists in

the continuum strength, the magnitude of the variation has been significantly reduced.

The use of three-dimensional strength plots is particularly helpful for developing strength

tailoring rules because these plots provide visualization of the correlation between member

orientations and continuum strength variations. Without this correlation, developing strength

tailoring rationale for the members would be difficult. The example presented is fairly simple

because of the isotropic stiffness behavior and geometric symmetry of the Warren truss.

Therefore, the correlation between variations in continuum strength and the orientation of

members is fairly obvious. However, for trusses with less geometric symmetry or more complex

applied stress tensors, this correlation might not be apparent without the use of a three-

dimensional strength plot.

Orthotropic Warren Truss

Many applications exist for large truss structures with orthotropic, rather than isotropic,

continuum properties. For orthotropic applications, the requirements on continuum stiffness

and strength are much higher in one direction than in others. For example, many applications

involve beam-like trusses that primarily carry bending and torsional loads. In these cases, the

longitudinal (along the length of the beam) stiffness and strength requirements are much higher

than the transverse stiffness and strength requirements. Therefore, using a truss with orthotropic

continuurn properties is probably more efficient than using one with isotropic properties.

Table I shows that trusses of symmetry groups i and j are not candidates for orthotropic

design because their stiffnesses (and strengths) must be the same in all three coordinate

directions. Trusses of all other symmetry groups are candidates for orthotropic tailoring because

their properties in the z direction can differ from those in either the x or the y direction. The

truss presented in figure 9 is a variation of the Warren truss design that is a member of symmetry

group f and is, thus, a possible candidate for orthotropic design. The lattice arrangement of

this truss is identical to that of the Warren truss except the length of the repeating cell in

the z direction differs from that in either the x or the y directions by the proportion 13. This

section will show the results of applying stiffness and strength tailoring techniques to generate

orthotropic designs that have high stiffnesses and strengths in the z direction but which have

the same equivalent density as that of the isotropic Warren truss.
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Calculation of continuum stiffnesses. The orthotropic Warren truss shown in figure 9 has

four different members. The cross-sectional areas for members of groups 1 and 2 are defined as

51A and 52A, respectively, where 51 and 52 are variable area ratios and A is the cross-sectional

area assumed earlier for the members in the octahedral truss. The equivalent uniaxial stiffnesses

for groups of these members are determined using equation (7), and the results are given in
equations (38) and (39):

(C_lll)l _ 5lEA
L2 (38)

(6_111)2 _- 52EA(1 + fl2)1/2
2ilL2 (39)

For simplicity, members of groups 3 and 4 are assumed to be the same as those in the isotropic

Warren truss. Therefore, the cross-sectional area of members of group 3 is x/_A/5, and the

cross-sectional area of members of group 4 is 4A/5. The equivalent uniaxial stiffnesses are the

same for member groups 1 and 2, and the value of this stiffness is given in equation (40):

(C_111)3 _- (C_111)4 _ v_EA
5ilL2 (40)

Substituting these uniaxial stiffnesses and the appropriate transformation tensors into equa-

tion (9) and simplifying gives the following values for the nonzero continuum stiffnesses:

Cll -- c22 = _L 2 + (1 -I-_2)3/2
(41)

v/2E A

c12 = c66 - 5/3L 2 (42)

EA [ ]c13 ----c23 = c44 ---- c55 -- _L 2 (1 +_-_3/2J (43)

EA [ 2/3452 ]533 = _ 51/3 + (1 _-_3/2J (44)

Note that these stiffnesses obey the conditions presented in table I and equations (12) and (13)

for trusses of symmetry group f. Equations (41) through (44) are explicit functions of the three

remaining design parameters/3, 51, and 52. Therefore, these equations can be used directly to

determine how variations in the design parameters affect the orthotropic characteristics of the
truss.

An equivalent density can be calculated for the orthotropic Warren truss by substituting the

stiffnesses from equations (41) through (44) into equation (17). The result is

Peq : _L 2 -- + 51/3 + 2(1 +/32)1/252 (45)
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Settingequation(45)equalto equation(26)ensuresthat theequivalentdensityoftheorthotropic
Warrentrussis thesameasthat of the regularoctahedraltrussandtheisotropicWarrentruss.
The resultingexpressioncanbe rearrangedto givethefollowingconditionon thearearatio 62:

52 = (3V/2 -- 51)'_ -- 6V/-2/5 (46)
2(1 +/32)1/2

Equation (46) reduces the set of independent design parameters to the repeating cell length ratio

and the cross-sectional area ratio 51.

An equivalent z-direction Young's modulus can be determined for the orthotropic Warren

truss by inverting the s33 component of the compliance matrix as follows:

1
(47)= --

s33

Performing this calculation gives the result

x/2EA [1561/v/2 + 18/33 - 5(51/vZ2 - 6/3/5) 2]

(Eeq)z = L2(15 - 551/v/2 + 12fl_ + 6_ 3)
(48)

To determine the improvement in stiffness in the z direction, the modulus given in equation (48)

is divided by the Young's modulus of the isotropic Warren truss given in equation (37). The

resulting normalized z-direction Young's modulus is

(Eeq)iso

3051/v_ + 36f33 - 10(51/v/2 - 6/3/5) 2

15 - 551/v/2 + 12/3 + 6/3 3
(49)

A three-dimensional plot of the normalized z-direction Young's modulus is presented in

figure 10 for ranges of/3 and 61. The isotropic Warren truss is characterized by 61 = v/2/5

and /3 = 1; this point on the plot corresponds to a normalized z modulus equal to 1. As 61

increases, for a fixed value of/_, the material transfers from members of group 2 to members

of group 1 (see fig. 9). This material transfer causes an increase in the z modulus because the

group 1 members are oriented parallel to the z direction. As _ increases, for a fixed value of 51,

the number of group 3 and group 4 members in a given volume decreases. To maintain constant

density, material is redistributed among group 1 and group 2 members, thus also causing an

increase in the z modulus.

Calculation of continuum z-direction strength. The strength of the orthotropic Warren

truss is calculated for a uniform continuum compression applied in the z direction. This applied

stress tensor is given in equation (50) and is substituted into equation (23):

[i° :][ kl] = o

0 -- (Crult) z

(50)

Because their alignment is parallel to the z direction, members in group 1 buckle at lower

continuum stresses than the remaining members in the truss. (This result was verified through
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additionalanalysisnot presentedherein.)Thus,consideringonly bucklingin group1members,
equation(23)canbe reducedto equation(51),whererl and ll are the radius of gyration and

length of members in group 1:

(ault) z -- 7r2r2
121s33 (51)

Defining the radius of gyration of these members to be r and their length to be /3L (see

fig. 9) and substituting the result from equation (47) gives the following expression for the

z-direction compression strength of the orthotropic Warren truss:

7r2r 2

(crult)z -- /32L 2 (Eeq)z (52)

The z-direction compression strength of the isotropic Warren truss can be determined from

figure 7 (0 = 0°), and this value can be used to normalize equation (52). The result is

(O'uIt) z (Eeq)z

(Crult)iso /32 (Een)iso
(53)

Unlike the z modulus, the factor of ,32 in the denominator of equation (53) causes the

z-direction strength to decrease with increasing/3. However, it is apparent that both modulus

and strength have the same variation with 51. A three-dimensional plot of the normalized

z-direction compression strength is presented in figure 11 for comparison with the modulus plot

in figure 10. Because both modulus and strength increase as 51 increases, selecting the largest

practical value for 51 is best. As an example, if the cross-sectional areas of all members within the

truss are constrained so that they differ by no more than a factor of 5, the maximum allowable

value for 51 would be v_. Assuming this value for 51 gives the following for all the member

cross-sectional areas:

A1 = v/2A A2 = (10/3 - 6)A A3 = v/2A/5 A4 = 4A/5 (54)
5(2 + 2/32)1/2

A plot of the normalized z-direction strength and modulus is presented in figure 12, assuming

51 is equal to v_. As explained, extending the length of the Warren truss cell in the z direction

(increasing/3) increases the stiffness while decreasing the strength of the truss. Therefore, the

optimum length for the truss cell depends on the relative importance of continuum strength and

continuum stiffness in the design.

Concluding Remarks

A deterministic procedure has been presented for tailoring the continuum stiffness and

strength of uniform space-filling truss structures through the appropriate selection of truss

geometry and member sizes (i.e., flexural and axial stiffnesses and length). A key aspect of

this procedure is symbolic manipulation of the equivalent continuum constitutive equations to

produce explicit relationships between truss member sizes and continuum strength and stiffness.

To help select an appropriate truss geometry for a given application, a finite set of possible

geometric symmetry groups which characterize uniform trusses has been presented, and the

implied elastic symmetry associated with each geometric symmetry group has been identified.

Equivalent continuum stiffness has been determined using an existing technique assuming

that the displacement field within a truss is single-valued and the members within a truss

carry only axial load. Based on these assumptions, generally anisotropic trusses are shown
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to be characterizedby 18 independentelasticconstantsrather than 21 as is normal for a
generallyanisotropicsolid.Thisresultguaranteesthat all three-dimensionaltrussesthat behave
isotropically,in a continuumsense,musthaveanequivalentPoisson'sratioof 1/4.Furthermore,a
directrelationshipwasderivedbetweenananisotropicstiffness-to-densityratioofatrussandthe
stiffness-to-densityratio of its parentmaterial. Usingthis relationship,the equivalentYoung's
modulus-to-densityratioof anyisotropicthree-dimensionaltrussisshownto beexactly1/6times
the modulus-to-densityratio of theparentmaterialof thetruss.

A purelyanalyticalfailuretheoryhasbeendevelopedfor trussesby definingfailure msthe
elasticbucklingof anymemberwithin thetrusslattice. This theoryallowstheconstructionof a
strengthtensorthat simplifiesfailureanalysisundermultiaxialstressandalternatecoordinate
systems.

To illustratethe applicationof theseanalysistechniques,trussdesignshavebeendeveloped
whichbehaveisotropicallyand orthotropicallyundercontinuumloading. In theseexamples,
stiffnesstailoring hasbeenaccomplishedthrough redistributionof materialamongthe truss
members,andstrengthtailoringhasbeenaccomplishedbyvaryingtherelativebucklingstrengths
of themembers.Thisdeterministicapproachto theanalysisandtailoringof trussbehaviorcan
significantlyenhancetheunderstandingof relationshipsbetweenthedesignparametersandtile
continuumelasticbehaviorof trusses.Ultimately,this improvedunderstandingshouldenable
the creationof moreefficienttrussdesigns.

NASALangleyResearchCenter
Hampton,VA23665-5225
March6,1992
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Table I. Elastic Characteristics of Rotational Symmetry Groups

Rotational

symmetry
group a

No symmetry

a

b

c

d

F.

f

g

h

i

Conditions on continuum stiffnesses

None

c14 , c15 , c24 , c25 , c3,1, (:.35, (?.46, c56 = 0

Same as group a with c16 , c26 , c36, e45 = 0

c16,c26,c34, c35, c36, c,i5 = 0; ell = c22; c44 = c55 ;

el3 ---- c23 ; c14 = --c24 = c56; c15 = --c25 _-- --c46;

C66 = (ell -- C12)/2

Same as group c with c15, c25, c46 = 0

Same as group a with c36 , c45 = O;

ell = c22 ; c44 = c55; c13 = c23; c16 = --c26

Same as group e with c16 , c26 = 0

Same as group c with ct4, c15, c24, c25, c46, c56 --=0

Same as group g

Same as group b with Oil = C22 = (?.33;

c12 = c13 = c23; c44 = c55 = C66

Same as group i

Independent
elastic

constants

21

13

9

7

6

5

5

3

aSee figure 2.
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Figure 2. Possible rotational symmetry groups.
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(a) Regular octahedron. (b) Complete repeating cell with regular tetrahedron.

Figure 3. Repeating cell for regular octahedral truss.
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Figure 4. Strength of octahedral truss under uniaxial compression.

23



on

, / ......... y,. "Cu ,o,a.2
x % members

z _Tetrahedron

x "4_/ _]---Cubic lattice
members

(a) Members added to octahedral lattice. (b) Resulting cubic lattice.

Figure 5. Repeating cell for Warren truss.
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Figure 6. Stiffness tailoring of Warren truss; 6c = Ac/Ao.
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Figure 7. Uniaxial compression strength of isotropic Warren truss. All members have same radius of gyration.
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Figure 8. Variation in strength diminished by tailoring all members to have same buckling load.
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Figure 9. Repeating cell for orthotropic Warren truss.
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