
GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

The Development of a
Program Analysis Environment for Ada

Reverse Engineering Tools For Ada

Task 2, Phase 3 Final Report

Contract Number NASA-NCC8-14

Department of Computer Science and Engineering
Auburn University, AL 36849-5347

Contact: James H. Cross II, Ph.D.

Principal Investigator
(205) 844-4330

September 30, 1991

GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

Reverse Engineering Tools For Ada

Task 2, Phase 3 Final Report
Contract Number NASA-NCC8-14

James H. Cross II, Ph.D.

Principal Investigator

September 30, 1991

Abstract: The GRASP/Ada project (Graphical Representations of Algorithms,

Structures, and Processes for Ada) has successfully created and prototyped a new

algorithmic level graphical representation for Ada software, the Control Structure

Diagram (CSD). The primary impetus for creation of the CSD was to improve the
comprehension efficiency of Ada software and thus improve reliability and reduce

costs. The emphasis has been on the automatic generation of the CSD from Ada
source code to support reverse engineering and maintenance. The CSD has the

potential to replace traditional prettyprinted Ada source code. In Phase 1 of the

GRASP/Ada project, the CSD graphical constructs were created and applied manually
to several small Ada programs. A prototype (Version 1) was designed and

implemented using FLEX and BISON running under VMS on a VAX 11-780. In
Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX.

A user interface was designed and partially implemented using the HP widget toolkit
and X Windows. The prototype was applied successfully to numerous Ada programs

ranging in size from several hundred to several thousand lines of source code. In

Phase 3 of the project, the prototype was prepared for limited distribution
(GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was

extensively reworked using the Athena widget toolkit and X Windows. The current

prototype provides the capability for the user to generate CSD from Ada source code
in a reverse engineering mode with a level of flexibility suitable for practical

application.

ACKNOWLEDGEMENTS

We appreciate the assistance provided by NASA personnel, especially Mr.

Keith Shackelford whose guidance has been of great value. Portions of this report
were contributed by each of the members of the project team. The following is an
alphabetical listing of the project team members.

Faculty Investigator:

Dr. James H. Cross II, Principal Investigator

Graduate Research Assistants:

Richard A. Davis

Charles H. May
Kelly I. Morrison

Timothy A. Plunkett

Narayana S. Rekapalli
Darren Tola

The following trademarks are referenced in the text of this report.

Ada is a trademark of the United States Government, Ada Joint Program Office.

Software through Pictures (StP), Ada Development Environment (ADE), and

IDE are trademarks of Interactive Development Environments.

PostScript is a trademark of Adobe Systems, Inc.

VAX and VMS are trademarks of Digital Equipment Corporation.

VERDIX and VADS are trademarks of Verdix Corporation.

UNIX is a trademark of AT&T.

TABLE OF CONTENTS

1.0

2.0

Introduction and Executive Summary 1
1.1 Phase 1 - The Control Structure Diagram For Ada 2

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface 2
1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram

Prototype ... 4

The System Model ... 6

2.1 GRASP/Ada System Data Flow 6

2.2 GRASP/Ada System Block Diagram 6

3.0 Control Structure Diagram Generator 12

4.0

7.0

3.1 Generating the CSD 12
3.2 Displaying the CSD - Screen and Printer 14

3.3 Displaying the CSD - Future Considerations 15
3.4 Incremental Changes to the CSD 16

3.5 Navigating Through Large CSDs - Alternatives 17
3.6 Internal Representation of the CSD - Alternatives 17
3.7 Additional CSD Constructs - Alternatives 19

User
4.1
4.2

4.3
4.4

Interface .. 20
System Window 21
Source Window 21

Control Structure Diagram Window 24
Help Window .. 28

The GRASP Library 31

Object Diagram Generator 33
6.1

6.2
6.3

6.4
6.5

6.6
6.7

6.8
6.9

6.10

6.11
6.12

6.13

ODgen Symbol Set 33

Symbol Interconnections and Diagram Layout 37
GRASP/Ada ODgen Processing Alternatives 39

Displaying the OD - Screen and Printer 42
Incremental Changes to the OD 45

Internal Representation of the OD - Alternatives 47
Navigation Through Large ODs - Alternatives 48

Exploding/Imploding the OD 50
Generating a Set of ODs 51

Printing An Entire Set of ODs 51

Relating the CSD and OD - Alternatives 51

Index and Table of Contents Relating the CSDs and ODs 52
Design and Implementation of Preliminary ODgen Prototype 53

Future Requirements 65
7.1 Phase 1 - Generators and Editors for Visualizations 65

7.2 Phase 2 - Evaluation and Extension 67

7.3 Phase 3 - Evaluation and Integration with Commercial Systems 68

ii

BIBLIOGRAPHY ... 70

APPENDICES .. 76

A. "Reverse Engineering"

by J. Cross, E. Chikofsky and C. May

B. "Control Structure Diagrams For Ada"

by J. Cross, S. Sheppard and H. Carlisle

C. Extended Examples

D. User Manual (MAN-Page)

ooo

111

LIST OF FIGURES

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

GRASP/Ada Overview 3

GRASP/Ada Context Level Data Flow Diagram 7

GRASP/Ada System Level Data Flow Diagram 8

GRASP/Ada System Block Diagram 7

Control Structure Diagram Constructs 13

GRASP/Ada System Window 22

GRASP/Ada Source Code Window 23

GRASP/Ada CSD Window 25

GRASP/Ada File Selection Window 26

GRASP/Ada Help Window - Rendezvous Construct 29

GRASP/Ada Help Window - Display All Constructs 30

The OOSD Notation Symbol Set 34

Typical ODgen User Interface Window 54

ODgen Source Code with CSD 56

ODgen All Diagram View 57

ODgen Multiple View 58

ODgen Development Approach 59

iv

1.0 Introduction and Executive Summary

Computer professionals have long promoted the idea that graphical representations of

software can be extremely useful as comprehension aids when used to supplement textual

descriptions and specifications of software, especially for large complex systems. The general

goal of this research has been the investigation, formulation and generation of graphical

representations of algorithms, structures, and processes for Ada (GRASP/Ada). This task,

in which we described and categorized various graphical representations that can be extracted

or generated from source code, has focused on reverse engineering.

Reverse engineering normally includes the processing of source code to extract higher

levels of abstraction for both data and processes. The primary motivation for reverse

engineering is increased support for software reusability, verification, and software

maintenance, all of which should be greatly facilitated by automatically generating a set of

"formalized diagrams" to supplement the source code and other forms of existing

documentation. For example, Selby [SEL85] found that code reading was the most cost

effective method of detecting errors during the verification process when compared to

functional testing and structural testing. And Standish [STA85] reported that program

understanding may represent as much as 90% of the cost of maintenance. Hence, improved

comprehension efficiency resulting from the integration of graphical notations and source

code could have a significant impact on the overall cost of software production. The overall

goal of the GRASP/Ada project is to provide the foundation for a CASE (computer-aided

software engineering) environment in which reverse engineering and forward engineering

(development) are tightly coupled. In this environment, the user may specify the software

in a graphically-orientedlanguageand then automaticallygeneratethe correspondingAda

code [ADA83]. Alternatively, the usermay specify the softwarein Ada or Ada/PDL and

then automaticallygeneratethe graphicalrepresentationseither dynamically asthe code is

enteredor asa form of post-processing.

Figure 1providesanoverview to the threephasesof the GRASP/Adaproject. Ada

sourcecode or PDL is depictedas the startingpoint for applicationof the GRASP/Ada

toolset. Eachphaseis briefly describedbelow in theorderthatdiagramsmight begenerated

in a typical reverseengineeringscenario.

1.1 Phase 1 - The Control Structure Diagram For Ada

Phase 1 concentrated on a survey of graphical notations for software and the

development of a new algorithmic or PDL/code level diagram for Ada. Tentative graphical

control constructs for the Control Structure Diagram (CSD) were created and initially

prototyped in a VAX/VMS environment. This included the development of special

diagramming fonts for both the screen and printer and the development of parser and scanner

using UNIX based tools such as LEX and YACC. Appendix B provides a detailed

description of the CSD and the rationale for its development. The final report for Phase 1

[CRO89] contains a complete description of all accomplishments of Phase 1.

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.

The development of a user interface based on the X Window System represented a major part

of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as

potential commercial tools upon which to base the GRASP/Ada prototype. Architectural

2

©

00

\

.,o

©

C}

u

\
n

e_

Figure 1. GRASP/Ada Overview

diagrams for Ada were surveyed and the OOSD notation [WAS89] was identified as having

the best potential for accurately representing many of the varied architectural features of an

Ada software system. Phase 2 also included the preliminary design and a separate

exploratory prototype for an architectural CSD. The best aspects of architectural CSD are

expected to be integrated into the fully operational GRASP/Ada prototype during a future

phase of the project. The final report for Phase 2 [CRO90c] contains a complete description

of the accomplishments of Phase 2.

1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram Prototype

Phase 3 has had two major thrusts: (1) completion and limited release of an

operational GRASP/Ada prototype which generates CSDs and (2) the development of a

preliminary prototype which generates object diagrams directly from Ada source code.

Completion of the GRASP/Ada CSD prototype (CSDgen) included the addition of substantial

functionality, via the User Interface, to make the prototype easier to use. CSDgen was

installed and demonstrated on a Sun workstation at Marshall Space Flight Center, Alabama

in September 1991. It is currently installed and in use in several software engineering

courses at Auburn University. The latter, in particular, is providing information for

evaluation prior to widespread release to teaching and research communities, business, and

industry. To date, over 100 requests for information regarding GRASP/Ada have been

received as a result of publications generated from this research. Responding to these

requests is an important element of the ongoing evaluation and refinement of the GRASP/Ada

reverse engineering system.

The development of a preliminary prototype for generating architectural object

diagrams (ODgen) for Ada source/PDL has been an effort to determine feasibility rather than

4

to deliver an operationalprototype as was the casewith CSD generatorabove. The

preliminaryprototypehas indicatedthat the developmentof the componentsto recoverthe

information to be included in the diagram, although a major effort, is relatively

straightforward. However, the researchhas also indicated that the major obstacle for

automaticobject diagramgenerationis the automaticlayout of the diagramsin a human

readableand/oraestheticallypleasingformat. A userextensiblerule base,which automates

the diagram layout task, is expectedto be formulated during future GRASP research.

InteractiveDevelopmentEnvironment'sSoftwarethroughPictures(IDE/StP),which supports

the OOSDnotationin a forward engineeringsense,hasbeenidentified asa candidatefor a

commercialCASE environmentwith which to integrateGRASP/Adareverseengineering

system.

The following sectionsof thisreportdescribetheoverallGRASP/Adasystemmodel,

the control structurediagramgenerator,the user interface,the library, the object diagram

generator, and future requirements. Appendix A contains paper entitled "Reverse

Engineering"whichhasbeenacceptedfor publicationin Advances in Computing. This paper,

which was written during Phases 2 and 3, provides a taxonomy of reverse engineering and

comprehensive review of the current literature. Appendix B contains a paper entitled

"Control Structure Diagrams for Ada," published in Journal of Pascal, Ada & Modula 2.

This paper, which was written during Phase 1, describes the overall rationale for the

development of the CSD. Appendix C contains a CSD produced from Ada source code

provided by Marshall Space Flight Center. Appendix D contains the MAN-page which

describes each of its the current options.

2.0 The System Model

The general system model for the GRASP/Ada prototype is described in this section.

The overall functionality of the system is briefly described from a data flow perspective and

then each of the GRASP/Ada components is presented in the form of a system block diagram.

2.1 GRASP/Ada System Data Flow

Figures 2 describes the context and overall flow of information to and from the

GRASP/Ada system. The primary input is Ada source code and GRASP commands and the

primary outputs are control structure diagrams, object diagrams and library information. The

Ada source code is assumed to be syntactically correct.

Figure 3 describes the major processes and overall flow of information within the

GRASP/Ada system. Process 1 parses Ada source code and produces a parse tree, comments,

symbolic and unit information. Process 2 produces CSD files as CSDgen action routines are

called during the parse in Process 1. Process 3 produces object diagrams from symbolic and

unit information. Processes 4 and 5 produce screen and printer images of control structure

diagrams and object diagrams from intermediate files via the user interface when appropriate

commands are received.

2.2 GRASP/Ada System Block Diagram

Figure 4 depicts the major system components hierarchically to illustrate the layers

and component interfaces. The user interface (not shown in the system data flow diagram)

was built using the X Window System and provides general control and coordination among

6

t-..

0

Figure 2. GRASP/Ada Context Level Data Flow Diagram

- 7

.m

,,,.,,

-6

o

_z

I::

r..,I

2--

tJ

/

.-z.

7, E_

I 1

F

.5
©

Figure 3. GRASP/Ada System Level Data Flow Diagram

- 8

GRASP/Ada

User Interface (X) l

CSDgen

Parser/Scanner

(BISON/FLEX) GRASPIib
Parser/Scarmer

(BISON/FLEX)

DIANA Interface

(Verdix VADS)

CommercialCASE

(IDE StP)

UNIX File System

source code

1
graphical reps

Figure 4. GRASP/Ada System Block Diagram

- 9

the other components.

The control structure diagram generator, CSDgen, has its own parser/scanner built

using FLEX and BISON, successors of LEX and YACC. It also includes its own printer

utilities. As such, CSDgen is a self-sufficient component which can be used from the user

interface or the command line without the commercial components. When changes are made

to the Ada source code or PDL, currently the user must modify the original source file rather

than the generated CSD file. The entire file must be reparsed to produce an updated CSD.

A CSD editor (CSDedit), which will provide for dynamic incremental modification of the

CSD, is currently in the planning stages.

The object diagram generation component, ODgen, is in the analysis phase and has

been implemented as a separate preliminary prototype. The shading indicates planned

integration. The feasibility of automatic diagram layout remains under investigation. Beyond

automatic diagram layout, several design alternatives have been identified. The major

alternatives include the decision of whether to attempt to integrate GRASP/Ada directly with

commercial components, namely (1) the Verdix Ada development system (VADS) and

DIANA interface for extraction of diagram information and (2) IDE's Software through

Pictures, Ada Development Environment (IDE/StP/ADE) for the display of the object

diagrams. Each of these components are indicated in Figure 4.

The GRASP/Ada library component, GRASPlib, provides for coordination of all

generated items with their associated source code. Its purpose is to facilitate navigation

among the diagrams and the production of sets of diagrams. Both CSDgen and ODgen

produce library entries as Ada source is processed. Currently, these consists of directories

of UNIX files with identifying extensions.

10

In the following sections, the general functional requirements and prototype

implementationaredescribedfor eachof the major GRASP/Adacomponents:the control

structurediagramgenerator,theuserinterface,andtheobject diagramgenerator.

11

3.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this

section. The rationale for the development of the CSD, which has been detailed in previous

reports [CRO89, CRO90c], is summarized in Appendix B. Examples of the CSD are

presented in conjunction with the User Interface in Section 4.0 and in Appendix C, Extended

Examples. The UNIX MAN-page description of the options is contained in Appendix D.

3.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source

file. The graphical constructs produced by CSDgen are summarized in Figure 5. CSDgen

has its own parser/scanner constructed using LEX/YACC based software tools available with

UNIX. Although a complete parse is done during CSD generation, CSDgen assumes the Ada

source code has been previously compiled and thus is syntactically correct. Currently, little

error recovery is attempted when a syntax error is encountered. The diagram is simply

generated down to the point of the error. The current CSDgen prototype builds the diagram

directly during the parse by inserting CSD graphics characters into a file along with text. To

increase efficiency and improve extensibility, future versions of the CSDgen prototype will

use a more abstract intermediate representation.

Since GRASP/Ada is expected to be used to process and analyze large existing Ada

software systems consisting of perhaps hundreds of files, an option to generate all the CSDs

at once is provided. Generating a set of CSDs is facilitated by entering *.a or some other

12

Control

ABORT

Ibe.cir.

BLOCK

-- S;

b_in

i s;

I s:
d;

- BLOCK WITH DECL_ATIONS

-- S;

_be decla:e

glnC : INTEGEr:

_e_nd S;

' S:

i S;

- CASE

S;

case D is
when CI -

Q--_when c2 =)
S;

end case;

S;

• EXCEPTION HANDLER

_ S;

-- S;

-- S;

exception

-_when Err1 -)

erl EII2 _

_[when Err3 °)

[i--s;

Lend;

FOR

I S_

GO TO

---- S;

--, (<L>)

--- S;

--- S;

,_ GOCC L;

Structure Diagram Construct Overview

- GUARDED SELECT

selec[

i _ when C1 ">

-'_ :{[_r-----
accept M do

_ ' Lend;

null;

I or

f_-_accep=s do

end select;

•. IF

_--S;

-_if C then

_-s;

_] else
}-- S;

L
end if;

INFINITE LOOP

S;

S;

S;

d loop;

_-- S;

-- LOOP EXZT

_--s:
-- loop

S;

[._ exit when C;

S;

] _end loop;

b-- S;

PACKAGE

Y i$

[en_ Z retuln Boolean ;

-" pROCEDURE

I procedure X is

begin

S;
_--- S;

S;

L-- S;

Lend x;

RAISE

----- S;

4_--_ raise Err;

E._EZVCU_ (REC£Y-'--- _

e--- .en::

_-- s:

5 E&ECT

se'.ec :

L[Lend;

] c:

' _ accept
I

!L

i Le:se
i _'_

e.-,= select ;

SEQUENCE

-- S;

T_K SP_C:FICATIC.N

I £'_Y;
i

<o;,

T _ I NA ."_ ALTE_NAT : %_

] I O:

II:
, e.-._ select ;

S;

WHILE

iie ._ loop

sl

-- S;

Figure 5. Control Structure Diagram Constructs

13

wildcard with a conventional source file extension, for the file name. A CSD generation

summary window displays the progress of the generation by listing each file as it is being

processed and any resulting error messages. The summary concludes with number of files

processed and the number of errors encountered. The default for each CSD file name is the

source file name with .csd appended. If an error is encountered, an extension of .err is used.

As the CSDs are generated, the GRASP library is updated, which currently consists of

populating a specified directory with file images of the CSDs. Generating a set of CSDs can

be considered a user interface requirement rather than strictly a CSD generator requirement.

3.2 Displaying the CSD - Screen and Printer

Basic display capabilities to the screen and printer were implemented during Phase

2. Screen display is facilitated by sending the CSD file to a CSD window opened under an

X Window manager. Printing is accomplished by converting the CSD file to a PostScript file

and then sending it to a printer. Moving to a more abstract intermediate representation in

future versions will necessitate the development of a new set of display routines which will

be X Window System based. However, these new routines will increase the flexibility and

capability of CSDgen, thus making it more immediately useful to the research community.

CSD Screen Fonts. The default CSD screen font is a bitmap 14 point Courier to

which the CSD graphic characters have been added. The font was defined as a bitmap

distribution font (BDF) then converted to SNF format required by the X Window System.

Four additional screen fonts ranging from 5 to 18 point are user selectable.

CSD Printer Fonts. CSD Printer fonts were initially developed for the HP LaserJet

series. These were then implemented as PostScript type 3 fonts and all subsequent font

14

developmenthasbeendirectedtowardsthePostScriptfont. ThePostScriptfont providesthe

mostflexibility sinceits sizeis userselectablefrom 1 to 300 points.

3.3 Displaying the CSD - Future Considerations

Layout/Spacing. The general layout of the CSD is highly structured by design.

However, the user should have control over such attributes as horizontal and vertical spacing

and the optional use of some diagramming symbols. In the current Version 3 CSDgen

prototype, horizontal and vertical spacing are not user selectable. They are a part of the CSD

file generation and are defaulted to single spacing with 80 characters per line. In order to

change these, e.g., from single to double spacing, the CSD file would have to be regenerated.

In future versions of the prototype, these options will be handled by the new display routines

and, as such, can be modified dynamically without regenerating the CSD file.

Vertical spacing options will include single, double, and triple spacing (default is

single). Margins will be roughly controlled by the character line length selected, either 80

or 132 characters per line (default is 80). Indentation of the CSD constructs has been a

constant three blank characters. Support for variable margins and indentation is being

investigated in conjunction with the new display routines. In addition, several display options

involving CSD graphical constructs are under consideration. For example, the boxes drawn

around procedure and task entry calls may be optionally suppressed to make the diagram

more compact.

Collapsing the CSD. The CSD window should provide the user with the capability

to collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,

procedures, functions, tasks and packages). This capability directly combines the ideas of

chunking with control flow which are major aids to comprehension of software. An

15

architectural CSD (ArchCSD) [DAV90] can be facilitated by collapsing the CSD based on

procedure, function, and task entry calls, and the control constructs that directly affect these

calls. The initial ArchCSD prototype was completely separate from CSDgen and required

complete regeneration of the ArchCSD file for each option. In future versions of the

prototype, the ArchCSD will be generated by the display routines from the single intermediate

representation of the CSD.

Color. Although general color options such as background and foreground may be

selected via the X Windows system, color options within a specific diagram were only briefly

investigated for both the screen and printer. It was decided that these will not be pursued in

the Version 3 prototype.

Printing An Entire Set of CSDs. Printing an entire set of CSDs in an organized and

efficient manner is an important capability when considering the typically large size of Ada

software systems. A book format is under consideration which would include a table of

contents and/or index. In the event GRASP/Ada is integrated with IDE/StP/ADE, the StP

Document Preparation System could possibly be utilized for this function.

3.4 Incremental Changes to the CSD

In the present prototype, there is no capability for editing or incrementally modifying

the CSD. The source code is modified using a text editor and then the CSD is regenerated.

While this has been sufficient for early prototyping, especially for small programs, editing

capabilities are desirable in an operational setting. An editor has been proposed and is briefly

discussed in Section 7.0 Future Requirements.

16

3.5 Navigating Through Large CSDs - Alternatives

Index (or Table of Contents). An index, similar to that presented in the Xman

application provided with the X Window System for viewing manual pages, is used to

navigate among a system of CSDs. The user clicks on the index entry and the corresponding

CSD is displayed. The index entries would be created as CSDs are generated and stored in

the GRASP/Ada library. Entries in the library are to include procedures, functions, tasks,

task entries, and packages. See Section 6 below for details.

Direct Navigation Via CSD. The user is allowed to click on procedure, function, and

task entry calls in the CSD directly and a separate CSD window is opened containing the

selected CSD or fragment thereof. Two potential problems have been identified with this

approach. Using the mouse for selection may conflict with established editing functions

supported by the mouse. In addition, it may be difficult to relate the characters or CSD

graphical construct with subprogram and entry names. The availability of middle mouse

button for this purpose is being investigated.

3.6 Internal Representation of the CSD - Alternatives

Several alternatives are under consideration for the internal representation of the CSD

in the Version 3 prototype. Each has its own merits with respect to processing and storage

efficiency and is briefly described below.

Single ASCII File with CSD Characters and Text Combined. This is the most

direct approach and is currently used in the version 2 prototype. The primary advantage of

this approach is that combining the CSD characters with text in a single file eliminates the

need for elaborate transformation and thus enables the rapid implementation of prototypes as

was the case in the previous phases of this project. The major disadvantages of this approach

17

are that it does not lend itself to incremental changes during editing and the CSD characters

have to be stripped out if the user wants to send the file to a compiler.

Separate ASCH Files for CSD Characters and Text. In this approach, the file

containing the CSD characters along with placement information would be "merged" with the

prettyprinted source file. The primary advantage of the this approach is that the CSD

characters would not have to be stripped out if the user wants to send the file to a compiler.

The major disadvantage of this approach is that coordinating the two files would add

complexity to generation and editing routines with little or no benefit. As a result, this

approach would be more difficult to implement than the single file approach and not provide

the advantages of the next alternative.

Single ASCII File Without Hard-coded CSD Characters. This approach represents

a compromise between the previous two. While it uses a single file, only "begin construct"

and "end construct" codes are actually required for each CSD graphical construct in the CSD

file rather than all CSD graphics characters that compose the diagram. In particular, no

continuation characters would be included in the file. These would be generated by the

screen display and print routines as required. The advantages of this approach would be most

beneficial in an editing mode since the diagram could grow and shrink automatically as

additional text/source code is inserted into the diagram. The extent of required modifications

to text edit windows must be considered with this alternative.

Direct Generation From DIANA Net. If tight coupling and integration with a

commercial Ada development system such as Verdix VADS is desired, then direct generation

of the CSD from the DIANA net produced as a result of compilation could be performed.

This would require a layer of software which traverses the DIANA net and calls the

appropriate CSD primitives as cona'ol nodes are encountered. This approach would

18

apparentlyeliminate the possibility of directly editing the CSD sincethe DIANA interface

doesnot supportmodifying the net,only readingit.

3.7 Additional CSD Constructs - Alternatives

The following CSD constructs are under consideration for future versions of the

prototype.

Generic Task and Package. Dashed task and package symbols should be

used to distinguish between generic and non-generic tasks and between generic and non-

generic packages.

Function Call. A CSD symbol similar to that used for procedure calls should be used

for function calls for consistency.

19

4.0 User Interface

GRASP/Ada user interface was developed using the X Window System, Version 11

Release 4 (XllR4). The X Window System, or simply X, meets the GRASP/Ada user

interface requirements of an industry-standard window based environment which supports

portable graphical user interfaces for application software. Some of the key features which

make X attractive for this application are its availability on a wide variety of platforms,

unique device independent architecture, adaptability to various user interface styles, support

from a consortium of major hardware and software vendors, and low acquisition cost. With

its unique device independent architecture, X allows programs to display windows on any

hardware that supports the X Protocol. X does not define any particular user interface style

or policy, but provides mechanisms to support many various interface styles.

The Version 3 prototype user interface is a significant extension of Version 2. It

allows the user to open one or more source windows to read or edit source code in the usual

way. The user may open one or more CSD windows, indicate corresponding source files and

CSD files, and then generate the CSD from each of the indicated source files. If the CSD

was generated previously, the source file is not required by the CSD window. In either case,

the CSD window allows the user to scroll through the CSD.

The specifications and figures that follow are intended to define the look and feel of

the GRASP/Ada User Interface as well as indicate much of its current and future

functionality. The Ada source code used in the figures was extracted from the

AERO.DAP.PACKAGE provided by NASA to test the CSD generator. Complete CSDs for

20

the files processedareincludedin AppendixC. For a completedescriptionof the options

availablethroughthe userinterface,seethe MAN-pagein AppendixE.

4.1 System Window

The System window, shown in Figure 6, provides the user with the overall

organization and structure of the GRASP/Ada tool. Option buttons include: General, Source

Code, and Control Structure Diagram. These are briefly described below. A future button

is planned for Object Diagram.

General - This option provides access to the environment including loading of fonts

for X and selection of printers.

Source Code - This option allows the user to open one or more windows for viewing

and editing source code.

Control Structure Diagram - This option allows the user to open one or more

windows for viewing CSDs.

Help - This option opens a window containing a summary of the CSD graphical

constructs. The user may scroll the combined display or selectively display individual

constructs.

4.2 Source Window

The Source window, shown in Figure 7, provides the user with the general capabilities

of a text editor. It is included in the GRASP/Ada system for completeness since the system

uses source code as its initial input. The user may elect to use any suitable editor callable

from the X environment. A future version of GRASP/Ada will allow the user to edit the

CSD directly, making a pure text editor redundant.

21

Figure 6. GRASP/Ada System Window

22

li
[!

ti
I
t
!
I

I

i

t
I

I
!
:1

i

Figure 7. GRASP/Ada Source Code Window

23

The source file and its associated directory path are displayed in the top pane of each

window. See the Control Structure Diagram Window below for details on the menu options.

4.3 Control Structure Diagram Window

The Control Structure Diagram window, shown in Figure 8, provides the user with

capabilities for generating and viewing a CSD for an Ada source file. Multiple CSD

windows may be opened to access several CSD files at once. CSD file names and their

associated directory paths are entered and displayed at the top of each window. When the

CSD window is opened initially, the source file with a .csd extension is displayed as the

default. In the current version of GRASP/Ada, generation of the CSD is done on a file-level

basis where each file contains one or more units. When changes are made to the source

code, the entire CSD for the file involved must be regenerated. Future versions of

GRASP/Ada will address incremental regeneration of the CSD in conjunction with editing

capabilities in the CSD window. The CSD window options are described below.

File - This option allows the user to select from numerous options including:

Load - This option loads a CSD file. A window is presented to the user that

allows the user to select a file from current directory (see Figure 9).

Open Source - This is a future option which opens a source window with the

source file that corresponds to the current CSD file. The purpose of this

option is to facilitate editing of the source file in the absence of CSD editing

capabilities in the CSD window.

Generate CSD - This is a future option which will facilitate regenerating the

CSD from an existing CSD.

prior to the parse.

The CSD graphics characters must be filtered

24

o

e

q

4

m

o

-i!

i

*l_w

I_i_,_, I! If _--

.do oo .o

[]

!i ;

i

Figure 8. GRASP/Ada CSD Window

25

ii J_.

:iiI

i!i!__,,i--

" iiii)'i_i
{.-

iliiii __-

i iiiiii) ' ,.,,,
, -.-..,. I#J

i ii.:_I Eii::lii:

i

•

if: __t_.

li;!:!

L!

c

^

_ B

• ,..,.,_I_

- , ,,.., .x._ J ,

i
=I"

_', _ il

I ==,, I _ •

,- Li

H.H.H.H_

7 ,v:

i!i!ii

ii!i!

i_iii

:i:_
;].

iii

J :i:_

_ :;ii!

:i
[

:i

Figure 9. GRASP/Ada File Selection Window

26

Compile - This is a future option to allow an Ada compiler to be called from

the CSD window.

Save - This option saves the CSD file with the same name as was loaded.

Save as ... - This option saves the CSD file with a new name.

Print - A window is presented which allows the user to select various print

options such as point size, page numbers, and header.

Quit - The CSD window is closed.

View - (not implemented) This option will allow the user to select from options

including: Enable Collapse {Disable Collapse}, Suppress CSD {Show CSD}, Open

TOC window, and Open Index window.

Enable Collapse {Disable Collapse} - This option will allow the user to

collapse the CSD based on its control constructs.

Suppress CSD {Show CSD} - This option will allow the user to suppress or

hide the CSD giving the appearance of prettyprinted code.

Open TOC Window - This option will access the GRASP library and

displays a table of contents based on Ada scoping.

Open Index Window - This option will access the GRASP library and display

an index of units in alphabetical order.

Find - (not implemented) This option will allow the user to perform search and

replace operations. Currently, this is a proposed future option which may become an

integral function of the CSD window when editing capabilities are added.

27

4.4 Help Window

TheHelp Windowprovidestheuserwith thecapabilityto displayandprint templates

of the CSD constructs. The usermay selectindividual CSD constructsfrom a menu as

illustratedin Figure 10with theRENDEZVOUSconstruct.Alternatively,theusermayselect

the DISPLAY ALL CSD CONSTRUCTSoption, as shownin Figure 11, and then scroll

throughtheconstructsalphabetically.

28

£

ii!_!i

Figure 10. GRASP/Ada Help Window - Rendezvous Construct

29

/

Figure 11. GRASP/Ada Help Window - Display All Constructs

30

5.0 The GRASP Library

The GRASP library provides the overall organization of the generated diagrams. The

current file organization uses standard UNIX directory conventions as well as default naming

conventions. For example, all Ada source files end in .a or .aria, the corresponding CSD files

end in .a.csd, and the corresponding print files end in .a.csd.ps. In the present prototype,

library complexity has been keep to a minimum by relying on the UNIX directory

organization. In future versions, a GRASP library entry will be generated for each procedure,

function, package, task, task entry, and label. The library entry will contain minimally the

following fields.

identifier - note: unique key should be composed of the identifier + scoping.

scoping/visibility

type (procedure, function, etc.)

parameter list - to aid in overload resolution.

source file (file name, line number) - note: the page number can be computed from

the line number.

CSD file (file name, line number)

OD file (file name)

"Referenced by" list

"References to" list

Alternatives for generation and updating of the library entries include the following.

(1) During CSD generation, the library entry is established and the entry is

updated on subsequent CSD generations.

31

(2) During the processingof DIANA nets.

Alternativesfor implementingthe GRASP library include (1) developing an Ada

packageor equivalentC modulewhich is calledby the CSDgenerationroutinesduring the

parseof the Ada source,(2) using the VADS library systemalong with DIANA, and (3)

usingthe StPTROLL/USE relationaldatabasesystem. Of thesealternatives,the f'u'stone

maybethemostdirectapproachsinceit would betheeasiestto control. The VADS andStP

library approachesmay bemoreuseful with the addition of object diagramgenerationand

also with future integrationof GRASPwith commercialCASE tools.

32

6.0 Object Diagram Generator

The object diagram generator (ODgen), produces object diagrams (ODs) for a

corresponding set of Ada source files. The requirements specifications and current issues and

alternatives are described below. A preliminary prototype has been constructed to determine

several of the feasibility issues. Since the Ada package construct captures the essence of the

"object" in object-oriented design, the current work has focused on the automatic generation

of the package symbol.

6.10Dgen Symbol Set

The OOSD notation [WAS89] has been selected as a basis for the Object Diagram

generator (ODgen). The complete set, which was designed with the intention of using it in

forward engineering, is illustrated in Figure 12. In this section, the feasibility of deriving

each of these symbols during a reverse engineering effort is considered, and the modifications

or supplements needed to render them suitable for the ODgen project are discussed.

Lexical Inclusion of Data Modules. The inclusion of a data module into another

module may be determined from a parse of the Ada source code. If a data module is

considered to be a component which contains no executable statements other than

initializations, then there should be no difficulty in recognizing these modules, and their

inclusion in an OD should cause no problems.

lterative Calls to Library Modules. Again, this information may be extracted from

a parse of the Ada source code. There should be no difficulty in producing an OD

representation for iterative calls to library modules; however, the composition of this situation

33

Module i

Lexzcal

/ Inclusion

Module

f Module i

,._£_/
N heranve

Ca 11

i :.',c_ uie

Ce. ',i

Library I kl,:,d u ie t
Module [t

Output Control Exception
Pa ra met er Pa ra met er

Operation

Names

Exception
Name

Input and Output
Data Parameters

--1
.....,___ Generic

I Generic I Parameter

! Package I

in

Call I Generic I
Task

/ _ _/

Asynchronous

Activation / Guard

-.'_ o.t /

/i ®
_ k

I PackageName

gP=>vai llnstantiation

f --7
Generic

I Packag e I

i Module]

kstbdnt_

Figure 12. The OOSD Notation Symbol Set

(from Introduction to StP OOSD Graphical Editor, IDE, 1989, p. 59)

34

with others, such as conditional module calls, may require further analysis.

Conditional Module Calls. A conditional call of one module from another can be

recognized during parsing, but the generation of an OD representation may prove difficult

should the conditional call be composed with another type of call. For example, a program

loop may conditionally call another module within the loop's body. How should this be

represented in the OD? Certainly the call is a conditional one and may be represented using

the conditional module call construct. However, the module is being called repetitively

within a loop, so it may just as well be represented using the iterative call construct. Another

possibility is to represent the call using a composition of the two representations, indicating

that the module is called both iteratively and conditionally. The problem is that this raises

ambiguity in that the diagram does not indicate whether the call was made conditionally in

the body of a loop, or whether it was made iteratively as the consequence of some condition

being true. This ambiguity must be resolved if the iterative and module call representations

are to be used properly in the OD.

Package Specifications. A package may be recognized from a parse of an Ada

program, and the operations contained within the package may be recognized just as easily.

The direction of the parameters may also be determined syntactically through the presence

of the in, out, and in out parameter designators. However, the distinction of parameters as

either control or data parameters may not be recognized as easily. In fact, it is possible for

parameters to be used as both control and data parameters, so the automated classification of

an operations's parameters as control or data may not be feasible. Finally, the detection of

exceptions may be determined easily through syntactic analysis. Current work has focused

on generation of the Booch version of the Ada package symbol [BOO83].

35

Generic Packages. The specification of a generic package may be recognized easily

from a parse of an Ada program, and the generic parameters which must be specified in an

instantiation of the package, the operations provided by the package, the parameters to the

operations and their direction may also be recognized syntactically. However, the generic

package suffers from the same problem as the package in the area of detection of control and

data parameters. Again, the automated classification of parameters as either control or data

parameters may not be feasible.

Tasks. The declaration of a task may be recognized syntactically in a parse of an Ada

program. Much of the desired information needed in the creation of an OD representation

of a task may also be obtained from syntactic analysis, such as the entries provided by the

task, the parameters and their associated directions for each of the task entries, and any

guards placed on the task entries. However, there are two items in the OOSD depiction of

a task that may not be obtainable in an automated fashion during reverse engineering. The

first of these is the omnipresent problem of distinguishing between control and data

parameters which has already been discussed in previous paragraphs. The second is the

placement of sequencing numbers on the task entries. Only in the most trivial cases may

these numbers be properly derived. In more complex cases, the sequencing numbers would

be meaningless or even misleading, and the OD would probably be better off by omitting

these numbers.

Generic Tasks. The depiction of a generic task in the OD suffers from many of the

same problems as the depiction of a task, and the reader is referred to the previous paragraphs

for a discussion of these problems. Other than that, the detection and representation of a

generic task should provide no further problems.

36

lnstantiation of Generic Packages. The instantiation of a generic package in an Ada

program may easily be determined syntactically. The generation of a proper OOSD symbol

for generic package instantiation will require actual parameters to be matched with formal

parameters. Otherwise, it should pose no difficulty.

Visibility. The depiction of the semantic visibility of a package to a module in an

Ada program may be determined syntactically, but the representation may prove to be

misleading. There are two "varieties" of visibility that must be represented: packages

lexically included in the declarative section of the current compilation unit and packages

included via the with clause, which are separate compilation units. For example, a package

in an Ada program may only be visible to a small section of a module (for example, a block

in a module containing a loop may declare the package in the declaration area and call a

function in the package iteratively during the loop. The package would therefore be visible

throughout the scope of the block, but would not be visible in the statements preceding and

following the block. Therefore, the depiction of the package as being visible to the module

could be misleading to the user unfamiliar with the underlying code. Although generating

the representation is not difficult, the sensibility of utilizing the representation must be

considered. When visibility is determined by the with clause, a separate icon is, of course,

necessary and appropriate.

6.2 Symbol lnterconnections and Diagram Layout

The actual automatic layout of the generated object diagram with respect to symbols

and interconnections is the most formidable problem that must be solved. Whereas the CSD

has a flexible but well-defined physical layout, the OD layout is not well-defined. In fact,

the CASE tools that support the OOSD notation require the users to "manually" arrange the

37

symbols.Determiningthefeasibilityof analgorithmicand/orheuristicsolutionwhich yields

a reasonablycomprehensiblediagram layout is a complex topic which warrants further

investigation.

Themajority of approachesto theautomatedlayout of a directedgraphhavefocused

on minimizing the numberof crossoversamong the flow lines in the graph. Warfield

[WAR77] detailed an algorithm that proposed the reordering of a directed graph into a

number of vertex subsets (called levels) and the minimization of the number of crossovers

between subsequent levels using a special table called a generating matrix. The major

drawback to the approach is that the generating matrix technique is only applicable to cases

in which their are five or less vertices in each level. Warfield realized this, and went on to

propose a number of techniques for graph manipulation that he believed could prove useful

in the development of improved graph layout algorithms.

Sugiyama [SUG81] developed a heuristic algorithm for crossover minimization called

the penalty minimization (PM) method that could be integrated with Warfield's algorithm for

application to graphs with more than five vertices in a level. Since the penalty minimization

method is combinatorial in nature, Sugiyama also developed a heuristic algorithm called the

barycentric (BC) method that would make the PM method practical. In addition to this

improved algorithm for minimizing the number of crossovers between successive levels of

a graph, Sugiyama also developed the priority (PR) layout method for improving the

horizontal positioning of the vertices in a level.

Paulisch [PAU90] noted that two major problems with Sugiyama's work were that the

algorithm did not allow the user to specify preferences and constraints on the diagram layout,

and that the algorithm did not take previous layouts into account when updating a graph and

could produce wildly different layouts from minor perturbations of the graph, leading to graph

38

layout instability. Shetheorizedthatbothproblemscouldbesolvedby incorporatingalayout

constraintmanagerwith Sugiyama'salgorithm anddevelopeda methodfor doing so. Her

approachinvolved addinga constraintmanagerfor eachdimensionof the graph(x, y, and

z) and providing a set of constraintsfor eachdimensionform which the usercould choose

a subsetto be appliedto the graph. The constraintmanagerwould reconcile the various

constraints provided in this manner by the user with the constraints imposed by the

applicationandthe layout algorithmto producea graphlayout.The implementationchosen

by Paulischuseda binary searchamongconstraintsin the reconciliationprocess,a method

that providesa quick responsetime but doesnot necessarilyyield an optimal solution. A

better approachmight lie with the useof geneticalgorithms to "breed" an optimal graph

layout solution. The feasibility of this approach, coupled with the use of the

Warfield/Sugiyama/Paulischalgorithms,is presentlybeing investigatedby membersof the

GRASP/Adaresearchproject.

6.3 GRASP/Ada ODgen Processing Alternatives

In the development of the ODgen design specification, three distinct development

methods were considered. The major difference among these methods is linked to the degree

of involvement of other commercially available tools and the ability of the user to specify

these tools. The first method considered was to create ODgen as a stand-alone system. A

second alternative was to use GRASP/Ada as a driver for a set of subprogram invocations

which would use VADS, ODgen, and StP/ADE in sequence to produce the architectural

diagrams. Finally, the third alternative considered was to use GRASP/Ada as a shell from

which the user could invoke each of the three tools at his convenience. In this section, these

39

threemethodsareexaminedin moredetail, and the advantages and disadvantages associated

with each method are outlined.

ODgen Is Independent of Commercial Tools.

development of a stand-alone architectural diagram generator.

dependent on commercial tools such as VADS and StP/ADE.

This method would involve the

The generator would not be

Instead, the parser/scanner

developed in Phases I and II of the GRASP/Ada research project would be extended to

extract the information needed for the representation of architectural diagrams. A method for

specifying or identifying the complete set of files comprising the Ada system would have to

be developed (this may require some involvement from the user). The major advantage of

this method is that the tool would not be subject to the whims of the manufacturers of

commercial tools (i.e., the tool would not be rendered useless if VADS were to become

unsupported, if the DIANA representation were subjected to large-scale change, if the

StP/ADE file formats and representation methods were to be changed, etc.). On the other

hand, this method would involve substantially longer development time, as a tool for

identifying the dependencies among a set of Ada source files would have to be developed.

In addition, a tool for viewing and printing the architectural diagrams would need to be

developed. Because a substantial amount of effort has already been spent in the development

of the GRASP/Ada X11R4 interface, extending this interface to display the architectural

diagrams could benefit from the groundwork already laid in Phases I and II. The major goals

which would need to be accomplished are the development of XllR4 widgets for the

representation of each of the OOSD symbols, and the development of layout heuristics and

modified layout widgets suitable for displaying the OOSD symbols.

ODgen Invokes VADS and StP/ADE. In this method, the ODgen component of

GRASP/Ada would first invoke VADS to generate a DIANA net for the specified set of Ada

40

sourcefiles. ODgen would then traversethis net to obtain the required information and

generatean internal representationfor the architecturaldiagrams. This information would

thenbeshapedinto a format suitablefor StP/ADEand saved. Finally, StP/ADE would be

invokedto view thearchitecturaldiagram. All of this would betransparentto theuser:after

specifyingtheAda sourcefiles anda numberof ODgenoptions,GRASP/Adawould invoke

the tools in sequenceand bring up StP/ADE as a subprocessdisplaying the generated

diagrams.The majoradvantagein thisapproachis thatit would utilize already-existingtools

to speedthe developmenteffort. Insteadof writing yet anotherAda parser,intermediate

representationgeneratorandOOSDdiagramdisplayer,theresearcheffort couldconcentrate

on thetaskof obtainingarchitecturaldetailsandcomposingmeaningfularchitecturaldiagrams

from them. However,relying oncommercialtoolscouldbe dangerousassubtlechangesin

the formatsof either the VADS representationor the StP/ADErepresentationcould require

major, sweepingchangesin the ODgen system. In addition, the useof commercialtools

could greatly limit the numberof potential usersfor the ODgen system. Insteadof only

needingthe ODgen system,the user would also needthe VADS Ada compiler and the

StP/ADE softwaredevelopmentsystem- two costly components. For many university

researchinstallations,the costsof thesesystemswould be prohibitive and would virtually

eliminate thepotential useof ODgen.

GRASP Runs Independentlyof VADS and StP/ADE. The userinvokesVADS to

createDIANA nets,invokesGRASPto generateCSDsand ODs, and invokesStP/ADEto

view the ODs. In this scenario,theGRASP/Adainterfacewould be partially customizable

by the user. Insteadof relying on a specificAda intermediaterepresentationgeneratorand

OOSD diagram displayer, the user would be able to select from a limited number of

commercialtools. To accomplishthis, a minimal ODgeninterfacefor eachtool would be

41

identified and a suitabledata representationwould be specified. ODgen would then be

designedto transformtheinput Ada sourcedatainto anarchitecturaldiagramrepresentation

in the output format. Then, customizing GRASP/Ada for new intermediate Ada

representationsand OOSD diagram formats would consist of simply writing a f'dter

transforming the data from one representationto another. For example, customizing

GRASP/Adato work with the VADS DIANA representationwould requirea filter to be

written to traversetheDIANA netsandstoretheneededarchitecturalinformation into a file

in ODgen'sinputformat. Similarly,customizingGRASP/Adato work with theStP/ADEtool

would requireafilter to bewritten translatingtheODgenoutputformatinto StP/ADE'sinput

format. This methodwould allow GRASP/Adato be fairly portablewithout dependingon

strictrelianceoncommerciallyavailabletools. On theotherhand,this methodwould require

anextensiveandeasily translatableinterfaceformatto bedevelopedfor bothODgen'sinput

and outputformats. Finally, theamountof effort requiredfor thewriting of filters for new

representationscould bepotentiallyquite large,dependingon theformat andaccessibilityof

the newrepresentations.

6.4 Displaying the OD - Screen and Printer

Generating visual displays of the object diagrams will require display methods to be

generated for the screen and printer. Since the GRASP/Ada interface for Phases I and II was

developed using the X Window System (a portable graphical environment gaining widespread

acceptance) and numerous utilities have been developed in the creation of that interface, the

development of a display mechanism for the object diagrams in X11R4 would be a logical

extension to the previous work. In addition, the PostScript page description language was

used in Phases I and II for the hardcopy output of the CSD diagrams. Because PostScript

42

is a nearly universal output descriptionlanguagefor laser printers, the developmentof

PostScriptutilities for printing GRASP/Adaobjectdiagramswouldensuretheportability of

GRASP/Ada. In this section, some of the issues and considerationsinvolved in the

generationof visualdisplaysfor theobjectdiagramsfor thescreenandprinter arediscussed.

Screen representations. In the XllR4 system,objects on a screen are often

representedusing widgets(a user interfacecomponentembodyinga single concept:e.g.,

buttons,labels,scrollbars,etc.). Thedevelopmentof the interfacefor PhasesI andII of the

GRASP/Adaresearchprojectwas implementedusingtheX11R4 Athenawidgets,a general

purposewidget setshippedwith the X11R4 system. Numerousutilities weredevelopedby

the GRASP/Adaimplementationteam to simplify the use of thesewidgets to providing

facilities for browsing files, generatingalert boxes and dialogues,creating text editor

windows,andspecifyingmenus.Theseutilities would be invaluablein thedevelopmentof

the ODgen interface,but additionalutilities will be needed. In particular, there are no

suitablewidgetsin the Athenasetfor displayingthe variousOOSDsymbols. A reasonable

approachto implementinga displaymechanismfor the ODgendiagramswould involve the

creationof a set of widgets,one for eachof thesymbolsin the OOSD set. Thesewidgets

couldbesubclassedfrom existingwidgetsin theX11R4Athenaset,minimizing the amount

of effort required to create them (althoughthis would causethem to needrevision with

subsequentreleasesof X11). And oncewritten, thesewidgetscould beusedin otherCASE

programswritten for X 11R4. Next,constraintandlayout widgetswouldneedto bedesigned

to facilitate the layout of theseOOSDsymbols. Again, a suitablewidget could be created

by subclassinganappropriateAthenawidget, in this case,probablythe Form widget. Such

a widgetwould be responsiblefor laying out anarchitecturaldiagramandredrawingit after

43

modifications, thus justifying the need for embedded logic to be written for the automatic

layout of the ODgen diagrams.

Printer Representations. In Phases I and II of the GRASP/Ada research project,

three different types of output devices were utilized. The first was the LN03 printer, a printer

manufactured by DEC with the capability of printing sixel graphics. Printing the CSD on the

LN03 printer was accomplished by generating sixel representations for each of the CSD

characters and then printing each CSD character as a small graphic image. The text of the

Ada source program was printed normally using the LN03 resident fonts. This method had

several major disadvantages: it was not portable (sixel graphics are a proprietary format of

DEC), it was slow (printing each CSD character as a graphic bitmap was a time-consuming

process), it was crude (the sixel graphics format did not allow for a high degree of resolution

and the generated CSD characters suffered from jagged outlines), and it wasted file space (the

space required to store the sixel representation of a single CSD character was equivalent to

the space needed to store over 200 text characters). The second output device utilized was

the HP LaserJet II printer, an extremely popular laser printer. Using the LaserJet II enabled

the GRASP/Ada program to utilize a specially prepared CSD font that could be downloaded

to the printer. This method allowed the CSD to enjoy greatly improved resolution over the

LN03 characters, a much smaller file representation (since each CSD character could now be

represented as a single extended ASCII character rather than a large bitmap image), and faster

printing speeds. However, this method was still tied to a single commercial printer, the HP

LaserJet II. The third method allowed the GRASP/Ada program to generate CSDs that could

be printed on a wide variety of printers by generating CSDs using the PostScript page

description language. PostScript representations for each of the CSD characters were

generated using a series of PostScript graphic primitives to describe how to draw each

44

character. Once designed, these characters were merged with a PostScript program that uses

the Adobe Courier font to produce a modified Courier font containing the CSD characters.

The CSD font can be installed on any PostScript printer by downloading this PostScript

program. Thereafter, CSDs can be printed by sending them to the printer and specifying this

specially modified Courier font. The advantages to this method are many: the CSD can be

printed on any printer (laser, inkjet, dot-matrix, etc.) that supports PostScript; the CSD can

be printed at the highest resolution the printer is capable of producing, which generally

produces results of outstanding high quality on most laser printers; and the CSD font can be

scaled to any size, allowing the CSD to be printed at any size the user wishes (unlike the

previous methods, which allowed the user to have only one font size). For Phase III of the

GRASP/Ada research project, a library of PostScript routines for printing each of the OOSD

symbols must be created. The ODgen program can then invoke these routines to create a

sequence of descriptions for printing the OOSD diagram to any PostScript printer. Care must

be exercised in the creation of these routines to ensure that they match the appearance of the

XllR4 widgets also corresponding to these OOSD symbols. Like the modified XllR4

widgets for the OOSD symbols, these PostScript routines should also be portable to any other

CASE tool for the X11R4 system.

6.5 Incremental Changes to the OD

The ultimate goal of the ODgen phase of the GRASP/Ada research project is to allow

the user to reverse engineer a set of Ada source files into an architectural diagram. For a

large system, this may take some time. It would be desirable to have the user do the reverse

engineering once and then have ODgen incrementally change the OD as the user makes

45

changesto the sourcecode. However,this is anextremelycomplex issue,and someof the

problemsinvolved in doing this areaddressedin this section.

The first problem involved in the incrementalupdating of the OD is that if the

DIANA notation is used to obtain the syntacticand semanticinformation from the Ada

sourcefiles for the generationof theOD, thenwe are immediatelystymied. In its current

states,DIANA doesnot supportincrementalupdates.If a portion of a file is changed,then

the entirefile mustbe recompiledto updatethe DIANA net. Thus, any implementationof

ODgen which relies on a DIANA net for its information could not support incremental

diagramupdating. A parserspecificallymodifiedfor incrementalupdatescouldproveuseful

in generatingthediagrams,but suchparsersareextremelycomplexto designand areoften

excruciatinglyslow in practice. Teitelbaumandothers[TEI81] have outlined someof the

problemsinvolvedin incrementalparsingin theirwork onthedevelopmentof syntax-directed

editors.

The secondproblem involved in the incrementalupdating of the OD lies in the

unrestrainedfreedomof editing by theuser. The propergenerationof an OD relieson the

existenceof a relatively completeAda compilation unit, where "relatively complete" is

defined as a main (or "driver ") program along with at least the specificationsof the

packages,tasks,andmodulesuponwhich it depends.Theexistenceof a relativelycomplete

programis not normallya problem in reverseengineering,wherethe userhasa systemand

is just trying to decipherits function and meaning. However, the usercould initiate what,

to him, appearto beveryminor changesthatcould leadto manychangesthroughouttheODs

and CSDs. As an example,imagine that the userrenamesa small package. To him, this

may bea minor modification,but it wouldcreatehavocfor the ODgensystem. The system

would no longerbe relativelycomplete,as it wouldnow containwhatwould appearto bea

46

new andunreferencedpackagealongwith a largenumberof packageinclusionsthatmay no

longerbesatisfied.This andrelatedproblemsmustbeaddressedin anyattemptatproviding

incrementalupdatesto the ODs andCSDs.

6.6 Internal Representation of the OD - Alternatives

Although the DIANA intermediate representation for Ada may be used to gather

information for the creation of the OD, and the StP/ADE format may be used as one possible

output representation for the OD, a more extensive and comprehensive internal representation

tailored for the needs of the OD generator is desired. Several alternatives are presently under

consideration for this internal representation of the OD. These alternatives include (1) storing

the OD as a single ASCII file, (2) storing the OD as a number of files tailored to the internal

data structures utilized by ODgen, and (3) completely bypassing the internal representation

to directly generate the OD from a DIANA net. Each of these approaches has its own merits

with respect to processing and storage efficiency, and these qualities are in this section.

Single ASCII File. The most direct approach is to utilize the StP file format. This

would present the option of viewing the OD via the StP/ADE system. However, although

the StP file format is "open architecture," it is a proprietary format and is, therefore, subject

to change. Because the function of the ODgen system will be dependent to a high degree on

the organization of the data upon which it operates, a stable data format is desired.

Therefore, an original data format might prove to be more useful over time as it would reduce

the problems of compatibility with commercial formats (filters could be written to translate

from the ODgen format to other formats). In addition, commercial formats such as the StP

format might lack provision for all of the information which might be needed for the OD.

This is particularly true for the case in which the user may wish to link CSDs generated using

47

the GRASP/Ada CSD generator to objects in the OD. A comprehensive internal

representation consisting of segments storing information for each of the OOSD symbols may

prove to be necessary to fulfill all of the needs of Phase III of the GRASP/Ada research

project.

Multiple ASCII Files. Because a typical Ada program will involve a number of

source files, an alternative to storing the data relating to a system in a single file is to store

the data in a number of files, each linked to one or a number of source files. Such a system

would decompose the intermediate representation into a number of smaller units. With an

appropriate indexing scheme, this could bring about increased performance in the ODgen

program as the system would not have to peruse unnecessary information to get to the data

it needs. This scheme might also prove helpful in producing incremental changes to the OD.

The major drawbacks to this method are the greatly increased number of files generated and

the overhead involved in the indexing scheme.

Direct Generation From DIANA Net. If tight coupling and integration with a

commercial Ada development system such as Verdix VADS is desired, then direct generation

of the OD from the DIANA net produced as a result of compilation could be performed.

This would require a layer of software which traverses the DIANA net and calls the

appropriate OD primitives as unit nodes are encountered. This approach would apparently

eliminate the possibility of directly editing the OD since the DIANA interface does not

support modifying the net, only reading it.

6.7 Navigation Through Large ODs - Alternatives

Because many Ada software systems are fairly large in size and scope, some facility

for easily navigating the ODs generated for them must be provided. There are three

48

navigationalmethodspresentlybeingconsideredfor usein theODgensystem.Theseinclude

(1) thecreationof a "table of contents"for thesystem,(2) thedirect navigationthroughout

thesystemusinga "point andclick" interfacesimilar to that providedin hypertextor in the

HyperCardapplicationon theApple Macintosh,and(3) a combinationof thesetwo methods.

In this section,thesemethodsaredescribedand the relativeadvantagesand disadvantages

pertainingto eachmethodarepresented.

Index (or Table of Contents). An index, similar to that presentedin the Xman

applicationprovidedwith theX Window System,wouldbeusedto navigateamonga system

of CSDsandODs. After generatingtheCSDsandODs, the userwould bepresentedwith

anorderedlist of thediagrams.To view a diagram,theuserwould click on the indexentry

andthecorrespondingCSDor OD would bedisplayed. The index entrieswould becreated

astherespectivediagramsaregeneratedand storedin the GRASP/Adalibrary (seeSection

6 below). Thegreatestadvantageto this methodis thatthe usermay seetheentire rangeof

diagramsat once- nothing is hidden. However,for a nontrivial systemthis maybe a list of

dauntingproportionsrequiringtheuserto havesomefamiliarity with thesystemto beof any

use. This disadvantagemaybe offsetby layeringtheindex so that only top level diagrams

are presentedat first, eachcontaining links to a sublist of associateddiagrams,etc. In

addition,iconsor informativelabelscouldbeattachedto eachindexentry to providetheuser

with additionalinformationregardingthediagramunderconsideration.

Direct Navigation Via ODs. With this method,after generatingthe CSDsandODs

for an Ada system,the userwould bepresentedwith thetop level diagramfor the system.

The usercouldreachotherdiagramsin the systemby clicking on the OOSDsymbolsin the

top leveldiagram:thiswould bringup theassociatedsubdiagramor CSDon thescreen.The

useris allowedto click on procedure,function, and taskentry calls in the OD directly and

49

a separate OD window is opened containing the selected OD or fragment thereof (there may

be a problem using]implementing this approach since the mouse is also used for editing).

Browsing the OD in this manner would be much like working with hypertext, and would

provide some of the advantages and disadvantages associated with hypertext. For example,

the user may gain an incomplete view of the system by following odd threads throughout it.

The user may also have to sift through a great deal of high level detail to get to low level

components. This might prove frustrating in practice. However, the user would have the

freedom of navigating throughout the system in an logical manner.

Combination of Index and Direct Navigation. The two approaches discussed above

both have their relative merits and problems. A more desirable solution to the navigation of

large ODs possibly lies in the combination of these methods. By providing a linked series

of ODs and CSDs with a comprehensive listing of all diagrams, the user would have

unrestrained freedom in navigating throughout the system. Additional utility could be

provided by allowing the user to "mark" viewed and unviewed diagrams in the index, and by

maintaining a list of recently visited diagrams. However, this approach would be more

difficult to implement and would take careful analysis and design to be effective.

6.8 Exploding/Imploding the OD

The OD window should provide the user with the capability to explode or implode

the OD based on Ada constructs and complete diagram entities (e.g., procedures, functions,

tasks and packages). This capability directly combines the ideas of chunking with the major

threads of control flow which are major aids to comprehension of software. The OD can be

supplemented by architectural CSD (ArchCSD) [DAV90], a diagram produced by collapsing

50

the CSD based on procedure, function, and task entry calls, and the control constructs that

directly affect these calls.

6.9 Generating a Set of ODs

Since GRASP/Ada is to be used to process and analyze large existing Ada software

systems consisting of perhaps hundreds of files, an option to generate all the CSDs at once

is required. Generating a set of ODs should be facilitated by entering a wildcard file name

(e.g., *.a). An OD generation summary window should display the progress of the

generation by listing each file as it is being processed and any resulting error messages. The

summary should conclude with number of files processed and the number of errors

encountered. The default for each OD file name is the source file name with .od appended.

Generating a set of ODs can also be considered a user interface requirement rather than

strictly a OD generator requirement.

6.10 Printing An Entire Set of ODs

Printing an entire set of ODs in an organized and efficient manner is an important

capability when considering the typically large size of Ada software systems. A book format

is under consideration which would include a table of contents and/or index. In the event

GRASP/Ada is integrated with IDE/StP/ADE, the StP Document Preparation System could

possibly be utilized for this function.

6.11 Relating the CSD and OD - Alternatives

For each OD in the system under scrutiny, the user will have the ability to click the

51

mouseon anyOOSD symbolin the diagramand bepresentedwith the underlyingCSD or

a subsequentlevel of OD, if it exists. In addition,a buttonwill beprovided on eachOD or

CSDwindow allowing theuserto stepbackup onelevel in thediagramhierarchyto seethe

"parent"diagram. In this manner,the userwill beableto fully traversethe ODs andCSDs

comprisingthesystemusinga "point andclick" approach. In addition,the usermaychoose

to bypassthe hierarchicaltraversalby simply choosingthe diagramto beviewed from the

index list of diagrams.

EachCSDcorrespondsto anobjectsymbol (e.g.,procedure,function,package,task,

taskentry). Thesemaybenestedandmayeachhaveaninterfaceanda body. Conceptually,

theCSDmay becollapsedto a graphicsymbol. A group or systemof thesesymbolscould

be interconnected(logicalinclusionand/orinvocation)to form anobjectdiagram. Thiscould

be thoughtof as "growing" or synthesizingthe systemdiagram. The userwould be ableto

openanyof thesesymbolsto seethelower level diagramassociatedwith it.

If the StP/ADEsystemis to be usedfor viewing the ODs andCSDs,the ODs could

bevieweddirectly. The CSDcouldbedisplayedasanannotationin StP/ADE. This would

require that the CSD font be downloadedinto the appropriateStP/ADE window for the

diagramto beviewedproperly.

6.12 Index and Table of Contents Relating the CSDs and ODs

An index of all CSDs and ODs should be available via the GRASP library. The index

should be presented in a window to the user, and upon the selection of an index entry, an

appropriate CSD window should be opened. The index will provide an additional means of

navigation among diagrams in an interactive mode, and it will be the basis for printing a

52

completesetof all diagrams.

information.

Seethe sectionbelowentitled,"TheGRASPLibrary" for more

6.13 Design and Implementation of Preliminary ODgen Prototype

The overall organization and composition of the prototype system is discussed first,

with special attention paid to the design of the ODgen widget set. This is followed by a

description of the use of a subset of the proposed GRASP library in the development of the

prototype. Finally, an informal specification of the organization of the X 11R4 user interface

that allows the ODgen prototype to function as a standalone tool is given, along with a

summary of the changes that must be made to integrate the final ODgen system with the

GRASP/Ada system.

Overview. The primary purpose of the ODgen object diagram generator prototype

was to assess the feasibility of recognizing and extracting design information from Ada

source code. Mappings were assigned between the target diagrams, described above, and the

appropriate Ada constructs. An X11R4 widget set, with one widget for each of the proposed

ODgen diagram elements, was designed, and the Package widget was implemented. Next,

a subset of the GRASP library which would enable the storage and manipulation of structural

information was created. Finally, an X11R4 user interface based on the freely available

Athena widget set was developed which would allow ODgen to be used as a standalone tool

that would work independently of the GRASP/Ada system. Figure 13 shows a typical

window presented to the user by the preliminary prototype of ODgen. ODgen uses a simple

X11R4 user interface that provides a menu bar and three paned areas. The menus allow the

user to choose an Ada file, load the file, generate an object diagram, display an object

diagram, save the object diagram, change the size of the font, and exit the program. The first

53

Figure 13. Typical ODgen User Interface Window

54

panedareais usedby ODgento report errorsand to display information pertainingto the

program'sstatus. The secondpanedareais usedto displaythe sourcecodeor CSDfor the

Adaprogramof interest,andthethird panedareais usedto displaythecorrespondingobject

diagram. Eachof thepanedareasmay besizedby the user,sothat anall-sourceview may

beobtainedasin Figure 14. The usermayequallychooseto seeanall-diagramview asin

Figure 15,or a multipleview asin Figure 16.

General DevelopmentApproach. The overall organization of ODgen may be seen

in Figure 17. To initiate the implementation of ODgen, a lexical description of Ada was

obtained and used as an input for the lexical analyzer generator LEX to create a scanner for

Ada systems. The lexical description was enhanced with a number of customized routines

which would enable the filtering of CSD characters as well as assist in the capture of data

relating to the source code (such as line numbers). Next, an Ada grammar was obtained and

instrumented with a number of action routines which would extract structural information

during a parse of Ada source code and preserve this information in memory using a prototype

of the GRASP library. The resulting Ada grammar was too large for the parser generator tool

YACC to handle, so the widely available YACC-workalike BISON (a parser generator

upwardly compatible with YACC that accepts larger grammars) was used to generate an Ada

parser. This parser and the previously generated scanner were tested on a number of

programs provided by NASA and Boeing to ensure that they would indeed parse legitimate

Ada programs. (A special note: due to the syntactic structure of Ada, many Ada grammars

introduce slight modifications to several of the productions in order to simplify the creation

of the parser. The grammar utilized by GRASP is one of these, and therefore ODgen will

parse some syntactic constructs that are not legitimate Ada. These deviations are few,

however, and are not likely to occur in practice. In addition, one of the underlying

55

ii (/)
u '7

,,,o

0 ("r" (/)

"_ o L,.J
,,, I (-:]

i.) r'r" ,(._.)

W fl
o.

W
J

°o Z

Z
d

WIIl_

I,I H

'_ (_.) L.l_l ""LL,I -,=:12

-_ ;>., <..o

L,jI 'o -<: 0

,__. v (/) _ ! H
l:_ © -,+" ; I_

I_1-"
IJI
I _ I d
I I I
I _ I
I_10
I_1_
I_1_

II I_1 I_
Ikl I1_1_

I_IZI_I&
I_I_I_IZ
I I I I
III III
III III

o_

m

_! _, []

III
III
I I
i_1--
I_1_
I_1
I_ll
I_1""
I_1
I_i_
I_l_
I I_
IJl_
I_1_
tZlZ
IZI_
I_1
I_l'"
I_1

I I
I I
I
I (,./')
I IJ_l
I J
I ,.-rh
I
I i_
I rY
I -,,::l[

I
t ,O
I i,--t

I O
i __J
I
I k
I (,..-)
I LI..J
I .._J

c_a

I
I I
| oo
I
I Lt_l
I .-J
I
I Z
I _ E33 i,--,t
i ,:.,'G,
I I I I
I

I ,.-_" pr" .._1
I I, i LL.I -<:1:

I IJ,.J IJ,.J _J)
I I,.-- t,.---
I _;7 Z "°

I 'q
!
I

I ILl I COO') I
I (.,') I () r).,,:_[
i i r'r 12:2 T
I t'_ I I In
I LLJ I (Z),'r'r'._,l

I I
I I I
I I I

Figure 14. ODgen Source Code with CSD

56

Figure 15. ODgen All Diagram View

57

P

_3
I I I ,"-"
! I I

IX I +_r
i _,.+ i v
I I I._

I'- I _- I r.,_

I t'_ I I I I

X I "j" Iv 11"4
LU I I...I I +r I "

I I I +'V+ I +_
1.1.1 I _- I +-_ I
•--J I I-" I I.I. I P_
f._ 11"4 I I I Z
Z I t.J I _ l _'_
¢= I _ I I

I I .,-I I II I *. v
I l._J I +,liT"

I_ I ::)" I I I--
ELi t I _-- I L_
P" I I._ I +'-_ I _I 7

4D I I--4 I'_ I "*. C:E
t... I I.-- I liE:
:p I E I J I "T" i_ I

I J I l.m.l I r'
1.1 C I l.IJ I tY I ...I (:3

'...-I I I:I_ I ::)- I C_: L.IJ
0 P.O I I I

{ t e I I I I I

i O. .._ I I I I I

, +

+'-- i-+i Z_'7"eZ+----" _ _x| _I II(J I I_ I O(.f) Ol.-4OO l..J

<z ,o,H ,--,,m,-.,-, <:: NI,. _ J /

I--- I I H H U H _--I I-- LI,
X I ILl I IJ-JLJW(JU X

I I.U I _."_.--+ n,'_..r,.' n ,+ I
1.1.1 "3- 1 111--I"i lOLlrl hi i _ ¢1 I
J I I rv I hI l I .--I_ _ '

LI_ _

L_

<_

O

I,I
<_

-O
O
-Q

o

1:3

Z
O
I-4

I--4

o
I
I I

,:X

_J

I
I

I <._ *-+ L_ _ t-5 <_
I 7" IT"+-+Z: E
I I-.I Z _-_ U) *--+ 1-+ (2)
I U') H U'I U'I 1.0 EJ_
I I ""

.J (__

I I I I I I C_ -_ U !

', ×,h>-,W-__, _ _ ---
I I.-- p k-- _-- _-- _J <j I i_

L_J
k--

I _ ,._ ---_--, _,-:._ -- . r_, ...I

I h !

I--

N .--

|

v

I I,-- _

I_ '-J
_I hl X

N t_ =| I

Figure 16. ODgen Multiple View

58

ODGEN OVERVIEW

I _ __ ___1

"L
GRASP/ADA

CSD

GENERATOR

(CSDGEN)

GRASIVADA
XllR4

WI DG ET

SET

ODGEN

DRIVER
I'RO(,RA31

STP I

IDE

SOFTWARE
THROU(;It

PICTUI_I,IS

GRASI)/AI)AxIIR4 I

INTEIII..\tII I
UTI L ITI ES

ADA PARSER
I I
_1 _1ADA SCANNER

BISON

ADA

GRAMMAR
ADA

uLEXICAL RULI.I.q

Figure 17. ODgen Development Approach

59

assumptions made at the onset of the GRASP project was that the input programs would be

syntactically correct.)

ODgen Widget Set. The next step in the development of ODgen was the design of

the widget set for the display of the object diagrams. Widgets were designed for each of the

object diagram symbols, including: packages, tasks, generic packages, generic tasks, and

subprograms. The Package widget has been implemented in the prototype. Several practical

concerns severely influenced the design of the widgets. In the following paragraphs, these

concerns are discussed along with their impact on the development of the widget set.

Initially, the ODgen widgets were to be developed as compound widgets similar to

the X11R4 Athena Dialog widget. The X11R4 Athena Form widget would have been used

as a background upon which to place the ODgen symbol labels (represented with the X11R4

Label widget). The objects and modules of the Package widget and the entries of the Task

widget could have been neatly represented using the X11R4 Athena Command widgets, or

derived subclasses. These compound widgets could therefore have been developed fairly

quickly using reliable off-the-shelf components. However, this approach was abandoned for

several reasons. First, this widget set was developed in May of 1991 under X11R4. Release

5 of the X Window System was slated for distribution in the fall of 1991. Between releases

3 and 4 of the X Window System, major changes were made in the implementation of the

Athena widget set, with the developer freely admitting that he had given up on maintaining

compatibility for any widgets subelassed off of the Release 3 widgets. Therefore, the

decision was made to rely as little as possible on the Release 4 widgets in case a similar fate

should await the Release 5 widgets. Second, to present the objects as rounded rectangles, the

widget set would have to make use of the XmuShapeRoundedRectangle shape extension.

Because not all X servers support this extension, its use was prohibited to maximize

60

portability. Third, the AthenaCommandwidget, beinga full widget,carriesa greatdealof

unnecessaryoverheadwhich is unnecessaryandunwantedin this application. As a typical

applicationusingthe Packagewidget would containa greatmany objectsand modules,a

better implementationwould operatesimilarly to the Athena SimpleMenuwidget, using

gadgetsrather thanwidgets to representtheobjectsandmodules.

Thesecondpossibilityconsideredwas to implementthe Odgenwidget setasa series

of simple compositewidgets and to provide gadgetsfor the objects and modulesof the

Packagewidgetandfor theentriesof theTask widget. This approachwould havetheadded

advantageof allowing the programmerto subclassthese gadgetsand therefore easily

customizethe widgetFSappearance.However, this approachwas abandonedfor several

reasons.First, this would haveforced thePackageandTask widgets to be implementedas

a number of widgets (the Packageor Task widget itself and the associatedgadgets),

substantiallyincreasingits complexityandcomprehensibilityto theapplicationsprogrammer.

This approachwasundesirablesincea major goal in the developmentof this widget was its

easeof use. Second,compositewidgetsarewidely regardedas beingdifficult to write as

they mustdealwith geometrymanagementandotherconcerns.In addition,they incur more

overheadthansimplerclassesof widget,andthisoverheadwasregardedasbeingunnecessary

in this instance. Third, becausethe objectsare representedusing roundedrectangles,and

becausegadgetsdrawdirectly into their parentFs window,this approachwould haverequired

a programmingworkaroundbecauseof an extremely subtle problem which will not be

discussedhere. Fourth,Release5 of theX Window Systemis rumoredto havemadeseveral

changesin the way in which gadgetsand objectsare implemented. To prevent substantial

rewriting of this widget in the near future, and for the other reasonscited above, this

approachto the implementationof the ODgenwidget setwasnot taken.

61

The third possibility considered,and the one which was actually used, was the

implementationof the Packageand Task widgets as simple widgets with convenience

functionsfor manipulatingthe objectsandmodulesand entries. This approachhad several

advantages,chiefly thesimplifiedprogrammerinterface.Theapplicationsprogrammerwould

only have to deal with one widget, rather thanwith a compositewidget and a numberof

gadgetsand all of their associatedheaderfiles and resources. A secondadvantageis that

using conveniencefunctions to manipulatethe subcomponentssufficiently abstractsthe

processsuchthatthe widgetscouldbe rewritten in a futurereleaseto supportgadgets,after

the Release5 gadgetmodificationsareknown,without requiring applicationprogramsto be

modified (theconveniencefunctionscouldbemodifiedto createinstancesof thegadgetsand

inserttheminto theappropriatewidget,thereforeachievingbackwardcompatibility). A third

advantageis that implementingtheODgenwidget setasa subclassof only the AthenaCore

widget greatly minimizes the widget overheadwhich would accompanya compoundor

compositewidget.

However, there are severaldisadvantagesto the chosenimplementationapproach.

BecauseeachODgencomponentis representedby only onewidget, associatingtranslations

to actionsoperatingon the subcomponentsbecomesdifficult. To offset this, a routine was

written which -n-fakesu_eventsfor the subcomponents(actually,this routinewas lifted from

the X11R4 AthenaSimpleMenuwidget and modified). A default translation is provided

which works reliably and will probably satisfy most applicationprogrammers,but other

translationsusing the provided actionsare possibleprovided the applicationprogrammer

rememberthat the subcomponentsdo not truly receiveevents.

In summary,the current implementationof the GRASP/Ada Packagewidget is a

product substantiallyinfluencedby thecurrentreleasestatusof the X Window System,the

62

impendingchangesin the next releaseof X, the history of sweepingchangesin the past

releasesof theAthenawidgetset,andtheGRASP/Adagoalsof providing aneasy-to-usetool

that will requirelittle future maintenance.

GRASP Library. The nextstepin thedevelopmentof theODgenprototypewasthe

designof a subsetof theGRASPlibrary. This subsetneededto besuitablycomplexto store

andmanipulatestructuralinformationpertainingto theAdaprogramunderstudy,yet simple

enoughto implementin a variety of ways,enabling the feasibility and performanceof the

library to be evaluated. Action routineswere embeddedin the Ada grammar to extract

informationfor eachpackage,task,complexdatatype,genericunit, taskentry,andprocedure

call. This information was combinedwith other data (sourcefile name,beginning line

number,endingline number,identifier,scope)andstoredin theGRASPlibrary prototypefor

retrieval and use by the ODgen object diagramdisplay mechanism. This prototype is

currently underevaluationto determinewhetherthis approachwill be chosenor abandoned

in favor of oneof thetwo alternatives:theuseof theVADS library systemwith DIANA; or

the useof the StPTROLL/USE relationaldatabasesystem.

ODgen User Interface. The nextpart of the developmentof the ODgenprototype

was the designof a user interfacethat would enableODgen to be used as a standalone

system. The goals of this part of the developmentwere twofold: first, to design a

functionally complete interface that would enable the user to easily use ODgen as a

standalonetool; and second, to design an interface sufficiently compatible with the

GRASP/Ada CSDgen component and user interface such that the two could be easily

merged.

To meet the ftrst goal, the user interface tools created in the development of the

CSDgen component were streamlined and slightly modified to be applicable to both

63

interfaces. The toolswere soundlydesignedand requiredvery little modification for their

usein the ODgenprototype. To meetthe secondgoal,the "look and feel" of the CSDgen

componentwaspreservedin the designof the ODgeninterface,with a few improvements.

The multiplewindowscharacteristicof theCSDgencomponentwerereducedin numberwith

the introductionof panedwindows,thusslashingtheamountof overheadassociatedwith the

implementationof multiplewindows,aswell asmoretightly associatingthe objectdiagrams

with their associatedcode, and increasingthe freedom of the user in determining the

customizationof the variousviews.

The parser,scanner,customizedwidget set,GRASP/Ariainterfaceutilities from the

developmentof CSDgen, and a customized driver program were combined to create the

ODgen executable. This program allows the user to select and load either Ada source files

or CSD files into a window and to generate the corresponding object diagram. The program

is currently under evaluation to determine any future enhancements which may prove useful.

When the evaluation is complete and the standalone program is deemed ready for distribution,

it will be integrated with the CSDgen component to complete the GRASP/Ada system. The

major problem which is foreseen in the integration is the combination of the two sets of

action routines into one, a task which will be greatly simplified due to the GRASP utility

routines common to each.

64

7.0 Future Requirements

The GRASP/Ada project has provided a strong foundation for the automatic generation

of graphical representations from existing Ada software. To move these results in the

direction of visualizations to facilitate the processes of verification and validation Cv' & V),

numerous additional capabilities must be explored and developed. The proposed follow-on

research is described by tasks partitioned into three phases. A small team is expected to work

on each phase for a period of up to one year. Operational prototypes will be demonstrated

at the end of each phase.

7.1 Phase 1 - Generators and Editors for Visualizations

Phase 1 consists of five subtasks. The first is to formulate a set of graphical

representations that directly support V & V of Ada software at the algorithmic,

architectural and system levels of abstraction. This task will include an on-going

investigation of visualizations reported in the literature as currently in use or in the

experimental stages of research and development. In particular, specific applications of

visualizations to support V & V procedures will be investigated and classified. A small, but

representative, Ada program will be utilized to formulate and evaluate a set of graphical

representations, and the feasibility of reverse engineering the diagrams from Ada PDL and

source code will be evaluated. These graphical representations are expected to undergo

continual refinement as the automated tools that support them are developed.

The second subtask of Phase 1 is to design and implement a prototype software

tool to generate visualizations from various levels of Ada PDL to support V & V during

65

detailed design. The previous efforts of the GRASP/Ada project have focused on the

generation of graphical representations from syntactically correct Ada source code. Since

most detailed design is done in an Ada PDL which is less rigorous than Ada, the capability

to generate visualizations directly from PDL is required to facilitate verification during the

detailed design phase of the life cycle. The diagrams generated in Phase 1 are expected to

focus on the algorithmic level of representation.

The third subtask of Phase 1 is to design and implement a prototype software tool

to generate visualizations from software written in C. Since much of NASA's production

software is currently being written in a combination of C and Ada, the capability to generate

visualizations from C source code is required to support visual verification of the integrated

software system. And since C is intrinsically less readable than Ada, maintenance personnel

may greatly benefit from algorithmic-level diagrams generated from C source code.

The fourth subtask of Phase 1 is to design and implement a prototype graphically-

oriented editor which provides capabilities for dynamic reconstruction of the diagrams

generated in the tools described above. This capability will directly support visual

verification at its most primitive and important levels, as PDL or source code is entered or

modified. In this mode, the graphical representation can provide immediate visual feedback

to the user in an incremental fashion as individual structural and control constructs are

completed. The present GRASP/Ada prototype generates the graphical representation only

after a complete compilation unit of source code has been entered correctly.

Finally, the fifth subtask of Phase 1 is to design and implement a user interface

capable of supporting a state-of-art multi-windowing paradigm. The user interface for

the tools developed in this research project will be built using the X Window System. This

should facilitate eventual integration of the tools into any Ada programming support

66

environment(APSE) which runsundera similar window manager. In addition, this multi-

windowing paradigmwill allow thetoolsetto takefull advantageof the currentcapabilities

of powerful workstationhardware.

7.2 Phase 2 - Evaluation and Extension

Phase 2 consists of five subtasks. The first is to continue the tasks defined in Phase

1 with respect to refinement of the V & V process, implementation of the prototype

tools, and intertool communication. The results of the investigation in Phase 1 will be used

to refine the V & V process and the visualizations which support the process. The individual

tools prototyped in Phase 1 will be integrated through a window manager for the X Window

System. The user interface and a persistent storage mechanism such as DIANA will provide

the basis for intertool communication.

The second subtask of Phase 2 is to evaluate the individual tools developed in

Phase 1. Representative sets of programs written in PDL, Ada and C will be utilized to

evaluate the set of graphical representations generated by the prototype. These graphical

representations and the automated tools that support them are expected to undergo continual

refinement during Phase 2.

The third subtask of Phase 2 is to design and implement a prototype software tool

for generating architectural diagrams (ADs) from Ada PDL and a combination of Ada

and C source code, to support the process of V & V. The Phase 1 prototype, which

focused on the generation of an algorithmic notation, will be extended to include architectural

diagrams. This task will include (1) development of procedures for identifying and recording

module interconnections, (2) development of algorithms for architectural diagram layout, and

(3) development of methods for displaying/printing architectural diagrams on hardware

67

availablefor this research. The tool will be usedon representativeAda software. The

generatedsetof graphicalrepresentationswill beevaluatedfor completeness,correctness,and

generalutility asanapproachto reverseengineering.

The fourth subtaskof Phase2 is to investigate the potential for integration of the

toolset with currently available commercial systems. Commercial CASE systems and

APSEs will be surveyed to determine appropriate commercial systems to target for

integration. Many vendors are currently developing "open architecture" systems to facilitate

the integration of third party tools.

The fifth subtask of Phase 2 is to investigate the use of visualization tools to

support software testing, particularly unit level branch coverage analysis. Software

testing is an important and essential component of V & V. Visualization tools are extremely

useful for analyzing and reporting branch coverage. In addition, they may be very useful for

graphically selecting a path for which data items to drive the path should be generated. This

task would be done in conjunction with QUEST/Ada, a related project which has focused on

the theoretical issues of test data generation [BRO90].

7.3 Phase 3 - Evaluation and Integration with Commercial Systems

Phase 3 has three subtasks. The first is to complete the tasks defined in Phases 1

and 2 with respect to refinement, intertool communication, and integration of an

operational prototype. In particular, the user interface will be completed as a basis for

overall integration of the prototype tools.

The second subtask of Phase 3 is to evaluate the toolset developed in Phases 1 and

2. Software systems which are representative of three levels of size and complexity, will be

utilized to evaluate the set of graphical representations generated by the prototype as well as

68

the prototypeitself. Thesesystemswill be written in Ada/PDL,Ada, C, or a combination

of Ada and C. The graphicalrepresentationsgeneratedand the prototypeare expectedto

undergocontinualrefinementasa result of the evaluation.

The third and final subtaskof Phase3 is to integrate with currently available

commercial systems those components of the prototype toolset which show the most

promise for improving V & V. The results of the survey of commercial CASE systems and

APSEs conducted in Phase 2 and the ongoing evaluation of the prototype tools will be used

to determine appropriate commercial systems to target for integration.

69

BIBLIOGRAPHY

ADA83

ADO85

ADO88

AMB89

BEN88

BIG89

BOO83

BOO86

BOO87a

BOO87b

BRO80

BRO90

The Programming Language Ada Reference Manual. ANSI/_IL-STD- 1815A-

1983. (Approved 17 February 1983). In Lecture Notes in Computer Science,

Vol. 155. (G. Goos and J. Hartmanis, eds) Berlin : Springer-Verlag.

Adobe Systems Inc. POSTSCRIPT Language Reference Manual, (3rd Ed.)

Reading, MA: Addison-Wesley, 1985.

Adobe Systems Inc. POSTSCRIPT Language Program Design, Reading, MA:

Addison-Wesley, 1988.

Amber Allen L. et al. "Influence of Visual Technology on the Evolution of

Language Environments," IEEE Computer, Vol. 22, No 10, October 1989, 9-

22.

Bennett, Steven J. and Randall, Peter G. The Laser Jet Handbook: A Complete

Guide to Hewlett-Packard Printers and Compatibles, New York: Brady, 1988.

Biggerstaff, Ted J. "Design Recovery for Maintenance and Reuse," IEEE

Computer, July 1989, 36-49.

Booch, Grady. Software Engineering with Ada. Menlo Park, CA : The

Benjamin/Cummings Publishing Company, Inc., 1983.

Booch, Grady. "Object-Oriented Development," IEEE Transactions on

Software Engineering, Vol. SE-12, No. 2, February 1986, 211-221.

Booch, Grady. Software Engineering with Ada. (Second Edition). Menlo

Park, CA : The Benjamin/Cummings Publishing Company, Inc., 1987.

Booch, Grady. Software Components With Ada : Structures, Tools, and

Subsystems. Menlo Park, CA : The Benjamin/Cummings Publishing

Company, Inc., 1987.

Brosgol, B.M., et al. TCOLada: Revised Report on An Intermediate

Representation for the Preliminary Ada Language. Technical Report CMU-

CS-80-105, Carnegie Mellon University, Computer Science Department,

February 1980.

D. B. Brown, K. H. Chang, W. H. Carlisle, and J. H. Cross, "QUEST -

Testing Tools For Ada," Task 1, Phase 2 Report of "The Development of a

Program Analysis Environment for Ada," G. C. Marshall Space Flight Center,

70

BUH89

CAR91

CHE86

CHI90

CHO90

COH86

CRO88

CRO89

CRO90a

CRO90b

CRO90c

NASA/MSFC, AL 35821 (NASA-NCC8-14), August 1990, 85 pages +

Appendices.

Buhr, R. J. A., Karam, G. M., Hayes, C. J., and Woodside, C. M.

CAD: A Revolutionary Approach," IEEE Transactions on

Engineering, Vol. 15, No. 3, March 1989, 235-249.

"Software

Software

W. H. Carlisle, J. H. Cross and S. R. Allen, "Exchange Functions in Ada,"

Journal of Pascal, Ada and Modula 2, Vol. 10, No. 3, May/Jun. 1991,

accepted for publication.

Cherry, George W. PAMELA Designer's Handbook, Volume 2, Analytical

Sciences Corp., Reading, MA, 1986.

E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery

- A Taxonomy," IEEE Software, Jan. 1990, 13-17.

Choi, Song and Scacchi, Walt. "Extracting and Restructuring the Design of

Large System," IEEE Software, January 1990, 66-71.

Cohen, Norman H. Ada as a second language. New York : McGraw-Hill

Book Company, 1986.

Cross, J. H. and Sheppard, S.V. "The Control Structure Diagram: An

Automated Graphical Representation For Software," Proceedings of the 21st

Hawaii International Conference on Systems Sciences, January 6-8, 1988, 446-
454.

Cross, J. H., Morrison, K. I., May, C. H. and Waddel, K. C. "A Graphically

Oriented Specification Language for Automatic Code Generation (Phase 1)",

Final Report, NASA-NCC8-13, SUB 88-224, September 1989.

J. H. Cross, K. I. Morrison, C. H. May, "Generation of Graphical

Representations From Source Code," Proceedings of the Southeast Regional

ACM Computer Science Conference, April 18-20, 1990, Greenville, South

Carolina, 54-62.

J. H. Cross, "GRASP/Ada Uses Control Structure," IEEE Software, May 1990,

62.

J. H. Cross, et.al., "Reverse Engineering Tools For Ada," Task 2, Phase 2

Report of "The Development of a Program Analysis Environment for Ada,"

G. C. Marshall Space Flight Center, NASA/MSFC, AL 35821

(NASA-NCC8-14), August 1990, 78 pages + Appendices.

71

CRO90d

CRO92

DAU80

DAV90

FOR88

GOO83

GOU85

HAM79

HOL88

HOL89

HPC87

KRA89

LEH89

LYO86

J. H. Cross, S. V. Sheppard and W. H. Carlisle, "Control Structure Diagrams

for Ada," Journal of Pascal, Ada, and Modula 2, Vol. 9, No. 5, Sep./Oct.
1990.

J. H. Cross, E. J. Chikofsky and C. H. May, "Reverse Engineering," Advances

in Computers, Vol. 35, 1992, in process.

Dausmann, M., et al. AIDA Introduction and User Manual. Technical Report

Nr. 38/80, Institut fuer Informatik II, Universitaet Karlsruhe, 1980.

Davis, R. A., "A Reverse Engineering Architectural Level Control Structure

Diagram," M.S. Thesis, Auburn University, December 14, 1990.

Forman, Betty Y. "Designing Software With Pictures," Digital Review, July
11, 1988, 37-42.

Goos, G. et al. DIANA: An Intermediate Language for Ada (Revised Version).

In Lecture Notes in Computer Science, Vol. 161. (G. Goos and J. Hartmanis,

eds.) Berlin : Springer-Verlag, 1983.

Gould, John D. and Lewis,Clayton. "Designing for Usability: Key Principles

and What Designers Think," Communications of the ACM, Vol. 28, No. 3,
March 1985, 300-311.

Hamilton, M. and Zeldin, S. "The Relationship Between Design and

Verification," The Journal of Systems and Software, Elsevier North Holland,

Inc., 1979, 29-56.

Holzgang, David A. Understanding POSTSCRIPT Programming (2nd Ed.)

San Francisco, CA: Sybex, 1988.

Holzgang, David A. POSTSCRIPT Programmer's Reference Guide, Glenview,

IL: Scott, Foresman, 1989.

Laser Jet Series H Printer User's Manual, (2nd Ed.) Boise, ID: Hewlett-

Packard Company, 1987.

Kramer, Jeff, et al. "Graphical Configuration Programming," IEEE Computer,

Vol. 22, No. 10, October 1989, 53-65.

Lehr, Ted, et al. "Visual Performance Debugging," IEEE Computer, Vol. 22,

No. 10, October 1989, 38-51.

Lyons, T.G.L. and Nissen, J.C.D., eds. Selecting an Ada environment. New

York : Cambridge University Press (on behalf of the Commission of the

European Communities), 1986.

72

MAR85

McD84

McK86

MEN89

NES81

NOR86

OBR89

PAU90

PER80

PRE87

ROE90

ROM89

ROS85

Martin, J. and McClure, C. Diagramming Techniques for Analysts and

Programmers. Englewood Cliffs, NJ : Prentice-Hall, 1985.

McDermid, John and Ripken, Knut. Life cycle support in the Ada

environment. New York : Cambridge University Press (on behalf of the

Commission of the European Communities), 1984.

McKinley, Kathryn L. and Schaefer, Carl F. DIANA Reference Manual. Draft

Revision 4 (5 May 1986). Bethesda, MD : Intermetrics, Inc. Prepared for

Naval Research Laboratory, Washington, D.C., 1986.

Mendal, G. et al. The Anna-I User's Guide and Installation Manual. Stanford,

CA : Stanford University (Program Analysis and Verification Group :
Computer Systems Laboratory), September 22, 1989.

Nestor, J.R., et al. IDL - Interface Description Language: Formal Description.

Technical Report CMU-CS-81-139, Carnegie Mellon University, Computer
Science Department, August 1981.

Norman, Kent L., Weldon, Linda J., and Shneiderman, Ben. "Cognitive

layouts of windows and multiple screens for user interfaces," International

Journal of Man-Machine Studies, Vol. 25, 1986, 229-248.

O'Brien, Caine. "Run-Time Reverse Engineering Speeds Software

Troubleshooting," High Performance Systems, November 1989, 41-48.

Paulisch, Frances Newberry, and Tichy, Walter F. "EDGE: An Extendible

Graph Editor," Software Practice and Experience, Vol. 20(S 1), June 1990, pp.
63-88.

Persch, G., et al. AIDA Reference Manual. Technical Report Nr. 39/80,
Institut fuer Informatik II, Universitaet Karlsruhe, November 1980.

Pressman, Roger S. Software Engineering: A Practitioner's Approach,
McGraw-Hill, New York, NY, 1987.

Roetzheim, William H. Structured Design Using HIPO H, Prentice-Hall,

Englewood Cliffs, NJ, 1990.

Roman, Gruia-Catalin, et al. "A Declarative Approach to Visualizing

Concurrent Computations," IEEE Computer, Vol 22, No. 10, October 1989,
25-36.

Rosenblum, David S. "A Methodology for the Design of Ada Transformation

Tools in a DIANA Environment," IEEE Computer, Vol. 2, No. 2, March
1985, 24-33.

73

SCH89

SEL85

SHA89

SHU88

SIE85

SMI88

SNO86

STA85

SUG81

TEI81

TRI89

WAR77

Schwanke,R. W., et al. "Discovering,Visualizing,andControlling Software
Structure,"Proceedings of the Fifth International Workshop on Software

Specification and Design, May 19-20, 1989.

R. Selby, et. al., "A Comparison of Software Verification Techniques," NASA

Software Engineering Laboratory Series (SEL-85-001), Goddard Space Flight
Center, Greenbelt, Maryland, 1985.

Shannon, K. and Snodgrass, R. Interface Description Language • Introduction

and Manual Pages. Chapel Hill, NC • Unipress Software, Inc. (University of
North Carolina), May 1, 1989.

Shu, Nan C. Visual Programming, New York, NY, Van Norstrand Reinhold

Company, Inc., 1988.

Sievert, Gene E. and Mizell, Terrence A. "Specification-Based Software

Engineering with TAGS," IEEE Computer, April 1985, 56-65.

Smith, Thomas, et al. "A Standard Interface to Programming Environment
Information." In [HEI88], 251-262, 1988.

Snodgrass, R. and Shannon, K. Supporting Flexible and Efficient Tool

Integration. SoftLab Document No. 25, Chapel Hill, NC: Department of

Computer Science, University of North Carolina, 1986.

Standish, T., "An Essay on Software Reuse," IEEE Transactions on Software

Engineeering, SE- 10 (9), 494-497, 1985.

Sugiyama, Kozo, Tagawa, Shojiro, and Toda, Mitsuhiko. "Methods for Visual

Understanding of Hierarchical System Structures," IEEE Transactions on

Systems, Man, and Cybernetics, Vol. SMC-11, No. 2, February 1981, pp. 109-
125.

Teitelbaum, T. and REPS T., "The Cornell Program Synthesizer: A Syntax

Directed Programming Environment, Communications of the ACM, 24, 9
(Sep.), 563-573.

Tripp, L. L. 1989. "A Survey of Graphical Notations for Program Design -An

Update," ACM Software Engineering Notes, Vol. 13, No. 4, 1989, 39-44.

Warfield, John N. "Crossing Theory and Hierarchy Mapping," IEEE

Transactions on Systems, Man, and Cybernetics, Vol. SMC-7, No. 7, July
1977, pp. 505-523.

74

WAR85

WAS89

WHI88

YOU89

Warren, W.B., et al. A Tutorial Introduction to Using IDL. SoftLab

Document No. 1, Chapel Hill, NC: Department of Computer Science,

University of North Carolina, 1985.

Wasserman, A. I., Pircher, P. A. and Muller, R.J. "An Object Oriented

Structured Design Method for Code Generation," ACM SIGSOFT Software

Engineering Notes, Vol. 14, No. 1, January 1989, 32-52.

Whiteside, John., Wixon, Dennis, and Jones, Sandy. "User Performance with

Command, Menu, and Iconic Interfaces," in Advances in Human Computer

Interaction, Vol. 2, ed. Hartson, Rex H., and Hix, Deborah, Norwood NY,

Ablex, 1988, 287-315.

Young, Douglas A. Window Systems Programming and Applications with Xt,

Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.

75

APPENDICES

A° "Reverse Engineering"

by J. Cross, E. Chikofsky and C. May

B° "Control Structure Diagrams For Ada"

by J. Cross, S. Sheppard and H. Carlisle

C° Extended Examples

D° User Manual (MAN-Page)

76

Appendix A

"Reverse Engineering"

by

James H. Cross II

Auburn University

Elliot J. Chikofsky

Index Technology Corp.

and

Charles H. May, Jr.

Auburn University

To Be Published in Advances in Computers, Vol. 35, 1992.

Reverse Engineering

JAMES H. CROSS II

Computer Science and Engineering
Auburn University
Auburn, Alabama

ELLIOT J, CHIKOFSKY

Engineering and Information Systems
Northeastern University
Boston, Massachusetts

CHARLES H. MAY, JR.

Computer Science and Engineering
Auburn University
Auburn, Alabama

Based on "Reverse engineering and design recovery: A taxonomy" by E. J. Chikofsky and J. H.
Cross II which appeared in IEEE Software 7(1), 13-17, January, 1990. Copyright IEEE 1990.

REVERSE ENGINEERING

Cross el al.

Page ii

TABLE OF CONTENTS

1. Introduction .. 1

2. The Context of Reverse Engineering 2

. Taxonomy of Terms .. 6
3.1 Forward Engineering .. 7
3.2 Reverse Engineering .. 7
3.3 Restructuring .. 12
3.4 Reengineering .. 14

, Reverse
4.1
4.2
4.3
4.4

Engineering Throughout the Life Cycle: Objectives and Purposes 15
Objectives .. 15
Maintenance ... 17
Reuse ... 19

Software Quality Assurance 20

, Economic and Legal Issues .. 25
5.1 Economic Issues .. 26

5.2 Legal Issues ... 28

. Survey of Current Research .. 29
6.1 Redocumentation ... 30

6.2 Design Recovery .. 40

7. Conclusion .. 50

ACKNOWLEDGEMENTS ... 53

BIBLIOGRAPHY ... 54

REVERSE ENGINEERING

Cross el al.

Page I

1. Introduction

The availability of computer-aided software engineering (CASE) environments has

redefined how many organizations approach software development. To meet their true potential,

CASE environments are being applied to the problems of maintaining and enhancing existing

software systems. The key lies in applying reverse engineering approaches to software systems.

The term reverse engineering has its origin in the analysis of hardware, where the practice

of deciphering designs from finished products is commonplace. In this arena, reverse engineering

is regularly applied to improve one's own products, as well as to analyze a competitor's products

or those of an adversary in a military or national security situation.

In a landmark paper on the topic, Rekoff (1985) defined reverse engineering as "the

process of developing a set of specifications for a complex hardware system by an orderly

examination of specimens of that system." (p. 244) He described such a process as being

conducted by someone other than the developer, "without the benefit of any of the original

drawings for the purpose of making a clone of the original hardware system " (p. 244). In

applying these concepts to software systems, one finds that many of these approaches apply to

gaining a basic understanding of a system and its structure. While the hardware objective

traditionally is to duplicate the system, the software objective is most often to gain a sufficient

design-level understanding to aid maintenance, to strengthen enhancement, or to support

replacement.

This chapter provides an overall context for reverse engineering in terms of the traditional

software life cycle and then defines and relates six terms: forward engineering, reverse

engineering, redocumentation, design recovery, restructuring, and reengineering. The objectives

REVERSE ENGINEERING

Cross et al.

Page 2

of reverse engineering are then considered along with the major purposes which provide technical

justification for performing reverse engineering: maintenance, reuse, and software quality

assurance. This is followed by a discussion of the economic and legal ramifications of reverse

engineering. The heart of the chapter is a survey of recent research in this area.

2. The Context of Reverse Engineering

To describe the notions of software forward and reverse engineering adequately, there first

must be a clarification in several related areas: software engineering terminology, the nature of

life cycle models, the identification of phases within the life cycle, the types of information

produced by each life cycle phase, and the nature of the subject system.

Despite standardization efforts, software engineering literature has been rather loose in

its use of terminology. Terms that have been tossed about for decades sometimes have had their

original meanings muddled. For the purposes of this chapter, this section will attempt to

standardize some basic software engineering terms to provide a more stable foundation on which

to discuss reverse engineering terminology. As an example, the term specification has come to

refer in the software engineering community both primarily as an outlining of requirements

(Pressman, 1987, p. 152) and also more generally as a recorded document of any life cycle

activity, including design, for example (Pressman, 1987, p. 254). For the purposes of this

chapter, specification will refer to the more general latter definition.

In addition to giving clear definition to the products of the life cycle, it is expedient to

define clearly the process by which these products are created. It is assumed that a reasonably

ordered life cycle model exists for the software development process. The model may be

represented as the traditional waterfall, as a spiral, or in some other form that generally can be

REVERSE ENGINEERING

Cross el al.

Page 3

represented as a directed graph. While one can expect there to be iteration within and overlap

between phases of the life cycle, and perhaps even recursion, its general directed graph nature

allows sensible definition of forward (downward) and reverse (upward) activities.

In addition, one can divide the typical life cycle into three fundamental activities. The

first, requirements analysis, is described by Sommerville (1989) as the establishment of services

to be provided by the system and the constraints under which the system must operate. The

second major activity, design, is the creation of a solution plan. This plan details the makeup

of software components and the nature of their interrelationships. Simply put, requirements

analysis establishes what the system should do and under what circumstances it is to be done,

whereas design establishes how it is to be done. The third activity, implementation, includes the

coding of the solution, testing, debugging, and delivery of the operational system. Other

activities typically thought of as part of the life cycle, such as maintenance, are in fact

reiterations of the previous activities (Basili, 1990). Maintenance is discussed in Section 4 as one

of three primary purposes for reverse engineering.

An abstraction is a model that summarizes the detail of the subject it is representing. A

higher-level abstraction thus has less detail than a lower level abstraction. It provides more of

a conceptual framework enabling the broad picture to be seen, but not the detail. The subject

of examination in reverse engineering is primarily the finished implementation of the system.

Therefore, a design specification is an abstraction of the system and a requirements specification

is a higher-level abstraction of the same system.

It is important to distinguish between levels of abstraction, an idea that labels fundamental

phases of development, and degrees of abstraction within a single phase. The three life cycle

activities described above can be considered as corresponding to different levels of abstraction.

The levels differ primarily because the corresponding phases have distinct purposes. Although

again this notion may be considered simplistic by some, it is indeed a conceptual leap to move

from a specification of what the system is to do to a specification of how it is to be done.

REVERSE ENGINEERING

Cro_s et al.

Page 4

Furthermore, another leap is required to move from a design plan to a tangible implementation.

Moreover, to be faithful to the term abstraction, it is true to speak of the specifications from

higher phases as being summations (to some extent) of specifications from lower phases.

It is also possible within a life cycle phase, or abstraction level, to specify the system with

varying degrees of detail. For instance, Sommerville (1989) describes a requirements definition

as a broad, largely textual statement of system services intended to be a basis for common

understanding among all concerned parties. He distinguishes this definition from a more detailed

requirements specification, which more completely and precisely spells out the nature of the

services. In design, there are varying degrees of detail, from comprehensive architectural designs

which specify interfaces and dependencies among major components while revealing little or no

detail within the constituent modules, to procedural designs of the modules themselves which

provide algorithms and detailed data structures. Even implementations can vary in degree of

complexity as they evolve; for instance, modules which have not been fully implemented can be

stubbed, allowing calls to be made to them.

As Sommerville (1989) suggests, the boundaries between levels of abstraction or degrees

within levels can seem subjective and amorphous, especially when the artifacts of the various

levels appear suspiciously similar. For instance, an Ada-like requirements specification, intended

to delineate system functions and how they might appear to the user to work, may look much

like a design specification for the same system, even though the purposes for the two

specifications are entirely different. In fact, Sommerville (1989) further suggests that it is

somewhat likely that low-level requirements specification and high-level design will proceed

simultaneously.

Reverse engineering methods attempt to transform system representations from one form

to another, sometimes moving to less detailed forms. It is prudent, then, to be aware of the types

of representation which can be subjects and targets of reverse engineering. At the design level,

one finds various forms of pseudocode, differing in language base and syntactic formality. In

REVERSE ENGINEERING

Cross el al.

Page 5

addition, a module may go through several iterations of pseudocode as detail is added.

Furthermore, one may find algorithmic graphical representations which illustrate procedural

control flow and control structure. Moving from procedural design, one may discover various

depictions of software architecture such as module calling diagrams, other component dependency

diagrams, and module interconnection languages such as NuMIL (Choi and Scacchi, 1990).

Many of these types of representation can vary in the degree of detail that is actually shown.

At the requirements level, there are various forms of representation that could be

considered. The most popular is the traditional natural language narrative. A natural language

specification can be written in innumerable degrees of complexity and can range from highly

amorphous to highly structured. Sommerville's requirements definition is usually described as

consisting, in part, of a very broad natural language description. Numerous graphical

representations are used in requirements definition and specification. The most widely used is

the data flow diagram (DeMarco, 1979) and its many derivatives, which can be used to depict

a system at several levels and degrees of abstraction. There are special languages which exist

solely as tools for requirements specification, among them the Ada-based Anna (Luckham and

von Henke, 1985). Finally, there are formal specification notations such as VDM (Jones, 1986)

and Z (Abrial, 1980) which are model-based languages that use mathematical entities such as sets

and functions to specify systems.

In reality, there are few representations which can be restricted to only one life cycle

phase. As seen earlier, Ada PDL can be used as both a requirements specification medium and

a design specification medium. A data flow diagram can be used both to depict what a software

system does with data as well as how the processes interact. Apparently, the context in which

a representation medium is used is paramount, rather than the medium itself. Hence, whether

an extracted representation is a requirement representation or a design representation depends

largely on the context in which the representation is used.

REVERSE ENGINEERING

Cross et al.

Page 6

It is also important to note that a particular representation form exu'acted from a subject

system may differ somewhat from a similar representation that was developed in the forward

engineering process. The extracted form will reflect the idiosyncracies of the subject system

representation more so than would the original form, which would be a reflection of the analyst's

or designer's understanding of the problem. The tradeoff is that while some of the original

design information may not be present in the extracted form, the information that is there should

be an accurate reflection of the actual system.

Finally, the subject system to be reverse engineered may be a single program or code

fragment, or it may be a complex set of interacting programs, job control instructions, signal

interfaces, and data files. In all cases, however, it is an actual implementation that is traditionally

considered the input for the reverse engineering process. However, as shall be seen in Section

4, it is conceivable to apply reverse engineering technologies from a point in the life cycle earlier

than implementation. In fact, a tight coupling of forward and reverse engineering activities

throughout the life cycle is a natural progression of modem CASE tool capabilities.

3. Taxonomy of Terms

An impediment to success is the considerable confusion over the terminology used in both

technical and marketplace discussions. It is in the arena of reverse engineering, where the

software maintenance and development communities meet, that various terms for technologies

to analyze and to understand existing software systems have been used frequently in conflicting

ways. In this section, forward engineering, reverse engineering, redocumentation, design

recovery, restructuring, and reengineering are described with respect to the life cycle phases and

activities in which they are involved (Chikofsky and Cross, 1990). Figure 1 is an illustration of

REVERSE ENGINEERING

Cross et al.

Page 7

the relationship between the various processes defined below and the life cycle. The objective

is not to create new terms but to rationalize the terms already in use. The resulting definitions

apply to the underlying engineering processes, regardless of the degree of automation applied.

3.1 Forward Engineering

Forward engineering is the traditional process of moving from high-level representations

and logical, implementation independent designs to the physical implementation of a system.

While it may seem unnecessary, in view of the longstanding use of software engineering

terminology, to introduce a new term, the adjective "forward" has come to be used where it is

necessary to distinguish this process from reverse engineering. Forward engineering follows a

sequence from the analysis of requirements through the design, and finally to an implementation.

These activities have been fully described in Pressman (1987), Sommerville (1989) and many

others.

3.2 Reverse Engineering

Reverse engineering is the process of analyzing a subject system in order to identify the

system's components and their interrelationships and to create representations of the system,

possibly at a higher level of abstraction. Reverse engineering generally involves extracting

design artifacts and building or synthesizing representations that are less implementation

dependent.

While reverse engineering often involves an existing operational system as its subject, this

is not a requirement. One can perform reverse engineering starting from most phases of the life

cycle to create or recreate artifacts of an earlier phase. In spanning the life cycle phases, reverse

engineering covers a broad range starting from the existing implementation, recapturing the

design, and deciphering the requirements actually implemented by the subject system.

REVERSE ENGINEERING

Cross el al.

Page g

Reverse engineering in and of itself does not involve changing the subject system or

creating a new system based on the reverse engineered subject system. It is a process of

examination, not a process of change or replication.

The overall goal of reverse engineering is to facilitate understanding of software systems,

whether tools themselves undertake to understand their subjects or simply provide aids to help

a human user to that end. Harandi and Ning (1990) point out that there are different levels of

understanding software; they present four such levels, or views (also presented earlier by

Kozaczynski and Ning (1989) with slightly different names):

Implementation-level view. This implies an understanding of the fundamental

components, usually control and declarative constructs of a particular system.

Structure-level view. Implied here is an understanding of how the fundamental

components relate to one another in a programming sense (e.g. scoping

relationships, visibility relationships).

Function-level view. This degree of understanding suggests an understanding of

the function of a component or system in isolation, i.e. what the component or

system does. A conceptual leap is required to move from the previous view to

this view.

Domain-level view. To move to this level requires yet another leap in that the

understanding of this level is of the context in which the system is operating,

rather than the operation of the system in isolation. Where the previous level

asks, "What does the system (or component) do?", this level asks "Why?"

Two subareas of reverse engineering that achieve or facilitate understanding to different

levels are redocumentation and design recovery. Figure 2 illustrates the respective spheres of

these two subareas defined by the levels of understanding that they achieve and the extent of

REVERSE ENGINEERING

Cross et al.

Page 9

their resources, either code analysis alone or code analysis combined with knowledge base

technology.

3.2.1 Redocurnentation

Redocumentation is the creation or revision of representations of a subject system which

are intended to reflect certain software related characteristics inherent to the system. The

redocumentation process creates its representations from information gathered from analysis of

the subject system alone, although the presentation of the information may be guided from

outside sources (e.g., diagram layout). The resulting forms of representation are considered

alternate views intended to improve the comprehensibility of the overall system. These alternate

views include data flow, data structure, and control flow diagrams.

Redocumentation is the simplest and oldest form of reverse engineering, and many

consider it to be an unintrusive, weak form of restructuring. The "re-" prefix implies that the

intent is to recover documentation about the subject system that once existed or should/could

have existed. The emphasis here may, in fact, be on additional views, especially graphical, that

were not created during the original forward engineering process due to the labor intensive nature

of creating these views and then maintaining them. It is no coincidence that one of the primary

functions of CASE tools has always been to aid in the creation and maintenance of graphical

representations of the system. However, it is not uncommon over time to find a major gap

between the content of the diagrams drawn by analysts and designers using CASE tools and the

function of the actual source code written to implement the system. A major thrust of reverse

engineering and, in particular redocumentation, is to bridge this gap.

Some common tools used to perform redocumentation are pretty printers, which display

a code listing in an improved form; diagram generators, which create diagrams from code directly

reflecting the control flow, code structure or data structure; and cross-reference listing generators.

A key goal of these tools is to provide easier ways to visualize relationships among program

REVERSE ENGINEERING

Cross el al.

Page I 0

components so that one can recognize and follow paths clearly. Section 6.1 provides a survey

of recent literature describing redocumentation tools.

It is important to note that these tools simply provide aids to the engineer in his or her

quest for understanding. The tools do not attempt to derive any conclusions as to system

function or purpose. It is required that redocumentation tools achieve a certain level of system

understanding to produce the representations that they produce; however, this level of

understanding does not generally transcend the structural-level view ascribe meaning to the

analyzed system. One could characterize redocumentation as the recovery of recorded artifacts

of the earlier development process. In contrast, the more ambitious recovery of the actual

function, purpose, or essence of the system is given the name design recovery.

3.22 Design Recovery

Design recovery is a subset of reverse engineering in which domain knowledge, external

information, and deduction or fuzzy reasoning are added to the observations of the subject system

to identify "meaningful" higher-level abstractions beyond those obtainable directly by examining

the system itself. These abstractions are attempts to impose "meaning" on a segment of the

subject system.

Design recovery tools are distinguished from simple redocumentation tools in that the

tools themselves attempt to "understand" the system rather than simply to provide alternate views

to help users understand the system. This understanding goes beyond implementation- and

structure-level knowledge and attempts to achieve function-level knowledge and even knowledge

of a system's operating environment. However, it should be noted that artifacts such as the

diagrams cited above, which have been classified as products of redocumentation since they can

be generated deterministically, are considered design documents. In this context, redocumentation

and design recovery activities may overlap considerably.

REVERSE ENGINEERING

Cross et al.

Page II

Complete design recovery attempts to reconstruct not only the function of a system, but

also the process by which it was developed. Rugaber et al. (1990) emphasize the importance of

recovering the design decisions made during original development to complete the framework

for maintenance. A design decision is simply a part of the overall software plan. A design

decision is a choice made to implement some function or concept in a particular manner, for

example, the decision to implement a hash table with variable length or fixed length buckets.

Rugaber et al. (1990) point out that in order for maintenance, reverse engineering, and

reuse to be effective, it is necessary to discover not only the design decisions themselves but also

the alternatives to those decisions. It is also necessary to determine the rationale which led to

those decisions in order that the rationale of the decisions may be preserved or altered with the

full knowledge of the maintenance engineer. Furthermore, it is necessary to make clear the

interrelationships between design decisions in order to assess the scope of change repercussions

more accurately. The process by which these decisions are made will more than likely not be

present in the code and must be "inferred" (i.e. guessed).

Design recovery is also characterized by the sources and span of information it should

handle. B iggerstaff (1989) defines design recovery as follows. "Design recovery recreates design

abstractions from a combination of code, existing design documentation (if available), personal

experience, and general knowledge about problem and application domains In short, design

recovery must reproduce all of the information required for a person to fully understand what a

program does, how it does it, why it does it, and so forth. Thus, it deals with a far wider range

of information than found in conventional software engineering representations or code." (p. 36)

In many of the design recovery tools examined in Section 6.2, there exists some form of

knowledge base which binds programming patterns to functional concepts. These functional

concepts are expressed in terms easy to understand by programmers and usually are used to

constitute even more abstract functional ideas.

REVERSE ENGINEERING

Cross et al.

Page 12

Design recovery is the more challenging form of reverse engineering because it attempts

to mimic human reasoning in its goal of understanding. Any assistance which can be offered to

a maintenance engineer in understanding a program will be of great value as he or she prepares

to modify the system. The next two sections discuss topics that are related to reverse engineering

but go beyond examination of a system to refurbishing it.

3.3 Restructuring

Restructuring is the transformation of a software system from one representation form to

another, usually at the same relative abstraction level, while preserving the subject system's

external behavior, i.e. functionality and semantics. Restructuring usually involves some form of

reverse engineering, if only implicitly, from the original representation to some intermediate

form. This intermediate form is then appropriately altered, with the restriction that the

functionality is preserved.

A restructuring transformation is often one of appearance, such as altering code to

improve its structure in the traditional sense of accepted design principles. The term

restructuring came into popular use from the code-to-code transformations that recast a program

from an unstructured, or "spaghetti," form to a structured, or goto-less, form. However, the term

has a broader meaning that recognizes the application of similar transformations and recasting

techniques in reshaping data models, design plans, and requirements structures. Data

normalization, for example, is a data-to-data restructuring transformation to improve a logical

data model in the database design process. Arnold (1989) provides a comprehensive survey of

software restructuring in which reverse engineering is related to restructuring and considered a

natural extension of it. Using Arnold's definition of restructuring, redocumentation as described

above would be a form of restructuring in that it provides an alternate or "restructured" view of

existing information. For example, prettyprinting is the "restructuring" of the format of source

code. However, since even an alternate view of the source code (e.g., an automatically generated

REVERSE ENGINEERING

Cross el al.

Page 13

graphical representation) can provide the programmer or designer with additional insight, Arnold

considers this form of restructuring to be reverse engineering.

Many types of restructuring can be performed with knowledge of structural form but

without an understanding of meaning. For example, one can convert a series of if statements into

a case statement, or vice versa, without knowing the program's purpose or anything about its

problem domain. In this case, the knowledge is of structured programming theory. Choi and

Scacchi (1990) describe a process which tries to determine the inherent, if not explicit, structure

of a system and then to impose a more explicit hierarchical manifestation of this structure.

Minimized coupling and maximized change effect localization are the criteria for the fitness of

the hierarchical structure that is chosen. The basis of the process is the analysis of a system

graph called a resource flow graph in which the vertices are system modules and the edges are

resource exchange. Choi and Scacchi use an algorithm which imposes a subsystem hierarchy

upon the modules by discovering the connector vertices between biconnected components of the

graph, known as articldation points.

While restructuring creates new versions that implement or propose change to the subject

system, it does not normally involve modifications with respect to new functional or otherwise

domain-related requirements. However, it may lead to better observations of the subject system

that suggest changes that would improve aspects of the system. Restructuring is often used as

a form of preventive maintenance to improve the physical state of the subject system with respect

to some preferred standard. It may also involve adjusting the subject system to meet new

environmental constraints that do not involve reassessment at functional requirement levels.

Depending on the criteria that are considered most germane, restructuring tools can, if

nothing else, attempt to bring order out of an apparently chaotic software system. However, they

may not be entirely without drawbacks. Corbi (1989), citing a government study and others,

makes the case that while intra-module restructuring spaghetti-like code would have its benefits

in the increase of order and understandability, the process will usually result in more voluminous

REVERSE ENGINEERING

Crors et al.

Page 14

code leading to higher compile times. In addition, the comments (assuming that there were

comments) could be rendered meaningless. Evaluations are needed for the more macroscopic

restructuring tools.

3.4 Reengineering

Reengineering, also known as redevelopment engineering, renovation and reclamation,

is the examination and alteration of a subject system to reconstitute it in a new form and the

subsequent implementation of the new form. Implied in the term is the possibility of change in

essential requirements, rather than a mere change in form.

Reengineering generally includes some form of reverse engineering, to achieve a more

abstract description, followed by some form of forward engineering or restructuring. This may

include modifications with respect to new requirements not met by the original system. For

example, during the reengineering of information management systems, an organization generally

reassesses how the system implements high-level business rules and makes modifications to

conform to changes in the business for the future.

There is some confusion of terms, particularly between reengineering and restructuring.

The IBM user group Guide (Guide International Corporation, 1989), for example, describes

application reengineering as the process of modifying software internally (e.g., algorithms and

data structures) without changing the systems functionality or capabilities as perceived by the

user). This is similar to the definition of restructuring given earlier. However, two paragraphs

later, the same publication indicates that during application reengineering functionality is usually

added. This supports the more general definition of reengineering stated above, which adds

functionality.

While reengineering involves both forward engineering and reverse engineering, it is not

a supertype of the two. Reengineering uses available forward and reverse engineering

REVERSE ENGINEERING

Cro_s et al.

Page 15

technologies; however, both forward and reverse engineering technologies are evolving rapidly,

independently of their application within reengineering.

4. Reverse Engineering Throughout the Life Cycle: Objectives and Purposes

In the previous sections, the general context of reverse engineering was considered with

respect to the typical life cycle phases of analysis, design, implementation, and maintenance. The

intent was to provide baseline descriptions of the life cycle phases and their respective artifacts

to facilitate the discussion of reverse engineering activities. In this section, the detailed

objectives of reverse engineering are explored. This followed by a discussion of the primary

purposes for which reverse engineering technologies are being developed: maintenance, reuse,

and software quality assurance.

4.1 Objectives

The primary goal of reverse engineering a software system is to increase the overall

comprehensibility of the system to facilitate maintenance as well as other activities such as reuse

and overall quality assurance. There are several key objectives that are encompassed by the goal

of software understanding:

To cope with complexity. Research must develop methods to deal more

effectively with the sheer volume and complexity of systems. A key to

controlling these attributes is automated support. Reverse engineering methods

and tools, combined with CASE environments, will provide a way to extract

REVERSE ENGINEERING

Cross et al.

Page 16

relevant information so decision makers can control the process and the product

in systems evolution. Figure 3 (provided by Robert Arnold) shows a model of the

structure of most tools for reverse engineering, reengineering, and restructuring.

To generate alternate views. Graphical representations have long been accepted

as comprehension aids. However, creating and maintaining them continue to be

a bottleneck. Reverse engineering tools facilitate the generation or regeneration

of graphical representations from other forms. While many designers work from

a single, primary perspective (e.g. data flow diagrams), reverse engineering tools

can generate additional views from other perspectives (e.g. control flow diagrams,

structure charts, and entity-relationship diagrams) to aid the review and

verification process. One can also create alternate forms of nongraphical

representations with reverse engineering tools to form an important part of system

documentation.

To recover lost information. The continuing evolution of large, long-lived systems

leads to lost information about the system design. Modifications are frequently

not reflected in documentation, particularly at a higher level than the code itself.

While it is no substitute for preserving design history in the first place, reverse

engineering, particularly design recovery, is a way to salvage whatever is possible

from the existing systems.

To detect side effects. Both haphazard initial design and successive modifications

can lead to unintended ramifications and side effects that impede a system's

performance in subtle ways. As Figure 4 shows, reverse engineering can provide

observations beyond those that can be obtained with a forward engineering

perspective, and it can help detect anomalies and problems before users report

them as bugs.

REVERSE ENGINEERING

Cro_s et al.

Page 17

To synthesize higher abstractions. Reverse engineering requires methods and

techniques for creating alternate views that transcend to higher abstraction levels.

There is a debate in the software community as to how completely the process can

be automated. Clearly, expert system technology will play a major role in

achieving the full potential of generating high-level abstractions.

The realization of these objectives offers benefits for maintenance, reuse, and overall

software quality assurance. Each of these activities is discussed below from a reverse

engineering perspective.

4.2 Maintenance

Reverse engineering of software is tightly coupled with software maintenance because

maintenance activities have provided the motivation for many of the reverse engineering tools

available today. Corbi (1989) cites several studies which suggest that maintenance activities

consume an overwhelming proportion of time and funds allotted to overall software engineering.

Furthermore, the greater portion of that time spent in maintenance is spent trying to learn the

intricacies of the system undergoing the maintenance.

Indeed, generally a system's maintainers are not its designers; therefore, they must expend

many resources to examine and to learn about the system. Reverse engineering tools can

facilitate this activity. ANSI/IEEE Std 729-1983 (p. 32) defines software maintenance to be

"modification of a software product after delivery to correct faults, to improve performance or

other attributes, or to adapt the product to a changed environment." In this context, reverse

engineering is that part of the maintenance process that aids maintenance engineers in

understanding the system so that they can make appropriate changes.

REVERSE ENGINEERING

Cross et aL

Page 18

Pressman (1987) discusses the four traditional categories of maintenance: corrective,

adaptive, perfective, and preventive. Corrective changes are made in response to the detection

of errors that should have been removed prior to delivery of the system. Reverse engineering

techniques do not detect the errors, nor do they remove or correct the software. Rather, they

assist the programmer indirectly in locating the defective component through improved

comprehension of the software.

Adaptive maintenance activities are concerned with moving the software to a new

environment (e.g., a new operating system or a new hardware platform). Perfective maintenance

involves adding new functionality and, as such, consumes the largest percentage of maintenance

resources over time. Depending on its context and scope, perfective maintenance may be

equivalent to reengineering and/or new development. In the case of both adaptive and perfective

maintenance, reverse engineering tools are used indirectly to locate components where changes

and additions need to be made and to aid in controlling the overall structure of the modified

system.

Finally, preventive maintenance consists of those modifications made in an attempt to

reduce the effort required for future, perhaps anticipated, changes. Here reverse engineering can

provide insight into where and how to make appropriate changes.

Restructuring and reengineering also satisfy the global definition of software maintenance.

Restructuring perhaps best fits the category called preventive maintenance, whereas reengineering

implies extensive modifications in the sense of completely rewriting/reworking the software, and

thus could be categorized as adaptive and/or perfective maintenance. However, each of these

processes also has a place within the contexts of building new systems and evolutionary

development as well as within that of maintenance.

Perhaps the greatest benefits of reverse engineering tools can be realized after the changes

are implemented in any of the categories of maintenance described above. These include the

REVERSE ENGINEERING

Cross el al.

Page 19

automatic regeneration of numerous graphical representations of the software to assist future

maintenance activities.

4.3 Reuse

Brooks (1987) and others contend that the reuse of software components may be one of

the few remaining areas of software engineering that could yield one or more orders of

magnitude in increased productivity. When entire systems are reused, the cost of the software

per customer can be dramatically reduced when spread over many customers. While the actual

development cost is not lowered, the net profit to the developer increases and the actual cost to

each customer may be decreased by several orders of magnitude. Reuse can be considered with

respect to the percentage of reused components in a system as well as the type of components

reused (e.g., source code, design specifications, etc.). A system comprised of 100% reused

components is, in fact, probably a copy of an existing system. However, it is conceivable that

the percentage of reused components in a system could approach 100% when it is composed

predominantly of components from other systems. Reverse engineering tools are used to directly

support reuse when the percentage of reused components is less than 100; otherwise, they are

used to support the maintenance of the one software system from which the copies are made.

A significant issue in the movement toward software reusability is the large body of

existing software assets that were not developed with reuse in mind. Reverse engineering can

help detect candidates for reusable software components in present systems. Biggerstaff (1989)

suggests that design recovery tools should be able to make necessary alterations to code segments

so as to make them even more useful. Such alterations consist of extracting interleaved functions

and generalizing code to make it more universally applicable.

The process of reuse has been described by Boldyreff (1989) as follows: recognition,

decomposition/abstraction, classification (to populate the reuse library), selection/retrieval,

specialization/adaptation, and composition/deployment. These steps can be applied to the reuse

REVERSE ENGINEERING

Cross et al.

Page 20

of code, test specifications and cases, design specifications, requirements specifications, as well

as more general concepts. Reverse engineering tools can play a major support role in each of

these steps; however, the primary focus is on the first three steps. In particular, components

which are candidates for reuse can be most easily recognized by either human or machine if they

have been converted to a "standard" notation or form. For example, if manual identification of

components is necessary, a complete and accurate set of graphical representations will clearly aid

the reviewer. If an expert system-assisted identification is to be attempted, reverse engineering

techniques, especially those in design recovery, can be used to extract patterns of control

constructs, control flow and data flow to provide a basis for machine recognition of algorithms,

major data structures and objects. While reverse engineering technology is not focused on the

actual composition of components from reusable parts, it would be useful in completing the

documentation of the newly composed system. Boldyreff points out that sufficiently advanced

design recovery mechanisms will allow software to be recycled continuously. That is, a new

system composed from some reused parts can itself be converted to reusable parts. The net result

should be an increase in the percentage of reused parts found in new systems, which, in turn,

should lead to an increase in overall reliability.

Although there is much promise for software reuse, the success of its application rests

primarily on reverse engineering technologies which can extract generic software concepts

represented by procedures, functions, tasks, packages, objects, etc. Reverse engineering methods

must provide the foundation for the reuse process.

4.4 Software Quality Assurance

As described above in the case of maintenance and reuse, reverse engineering is primarily

considered a process which begins with the source code of an implemented system and works

backward (upward), creating documents from the information which can be extracted from the

REVERSE ENGINEERING

Cross et al.

Page 21

source code. However, reverse engineering can be considered as a set of complimentary

activities within each phase of the life cycle, and as such can be applied early on in the life cycle

as a basis for improved software quality assurance (SQA). Pressman (1987) identifies formal

technical reviews, collection and analysis of metrics, and testing as key activities for a successful

SQA program. These activities, which span the entire life cycle, can be greatly facilitated by

reverse engineering. Formal technical reviews may occur during each of requirements analysis,

design, implementation, and especially between these phases. These reviews provide a basis for

validating the system with respect to its functional requirements and a basis for verifying that

such a system can actually be built to perform reliably. Metrics, when collected, can become an

integral part of the artifacts under review and provide valuable insight for the decision makers.

Validation criteria and test plans typically are written prior to implementation, while the

execution and analysis of test cases are performed during unit coding and integration. Table I

provides a summary of reverse engineering activities which support SQA. Below, these activities

are discussed within each generic phase of the life cycle in conjunction with the artifacts that are

candidates for reverse engineering. Maintenance is, in fact, simply an iteration of requirements

analysis, design, and implementation.

4.4.1 Requirements Analysis Artifacts

Notations for requirements specification differ as widely with respect to formality as

design notations. There are notations which show some characteristic of the system at large as

well as the procedure of one operation. The notations can be textual, graphical, or mathematical.

Requirements specification analysis can be formal or informal, depending on the scope

and precision of the notation. Since requirements are often specified in natural language, analysis

of such specifications can only be at best informal and imprecise. The formal languages created

specifically for requirements specification are, of course, be more amenable to formal analysis.

REVERSE ENGINEERING

Cro_s et al.

Page 22

Structural analysis of operational specifications would have a better chance of producing a

functional description than would a linguistic analysis of a textual specification.

Formal technical reviews dictate formal, aesthetically pleasing requirements specifications.

Modern CASE tools are gradually providing the required formality in requirements specifications

notations. The data flow diagram is an example of a notation that was widely used initially in

a manual mode. Although cumbersome, its descriptive power for analysis outweighed the

disadvantages of no automated support. Early CASE tools assisted the analyst in capturing data

flow diagrams in a modifiable medium, and then facilitated the eventual integration of them into

specification documents. Subsequent enhancements have provided for consistency checking

between components in diagrams and levels of diagrams. However, after changes arc made to

one diagram, they are not generally propagated throughout the system. Change propagation is

a bidirectional activity of which reverse engineering is a part. Reverse engineering technologies

are progressing to the point where change propagation becomes another form of redocumentation

and perhaps restructuring. These capabilities would alleviate much of the incidental effort

required to modify the requirements specification and would directly support formal technical

reviews. Here, there is considerable overlap with advanced design recovery techniques.

The metrics that can be collected during requirements analysis by reverse engineering

tools include items such as the number of interfaces, files, inputs and outputs of a system used

in the_nction point method (Albrecht and Gaffney, 1983). These metrics become input for cost

estimation, scheduling, and reliability models to assist in decision making.

Validation criteria should be based primarily on the functionality of the new system.

Reverse engineering tools can be used to extract and cross-reference functions and families of

functions which must be validated. Validation criteria can provide a basis for test plan.

REVERSE ENGINEERING

Cross et al.

Page 23

4.4.2 Design Artifacts

Much of what was stated regarding requirements analysis artifacts applies to design

artifacts as well. Design is the process of specifying the form of a software solution to the

problem defined by a requirements document. This design specification can be in any number

of notations, including natural language narratives, a more structured subset of natural language

such as pseudocode or PDL, and graphical notations. These notations can have varying degrees

of precision.

That information which can be extracted from a design notation depends on the precision

and completeness of the design notation. It is unlikely that a strictly architectural design

notation, no matter how precise, would be complete enough to infer the function of the system.

To derive the function of a system requires analysis of the constituent modules of the system,

deriving functions for each, and composing them into a larger system function. Formalization

of procedural design notations is needed to allow for the structural analysis needed to map

procedural structures to functional statements. Of course, as in linguistic code analysis, a more

informal analysis can be performed on design specifications that are represented by less formal

and less complete notations. The results of analysis on design products, like analysis on source

and executable code, should ideally give insights as to the functions of the system.

From the perspective of formal technical reviews, because design specifications are in a

form/notation that is closer to the actual source code that will be eventually produced, more

precise views can be extracted. For example, at the architectural design level, if Ada PDL is

used to describe component interfaces (procedures, functions, tasks, and packages), object

diagrams can be generated quickly to provide reviewers with an accurate alternative view of the

system which depicts dependencies and visibility among the components. Structure charts, which

provide the overall call structure (and, optionally, parameter flow between modules), can be used

to generate an equivalent PDL, or, if the skeletal PDL bodies were developed instead of structure

charts, then the structure charts can be generated directly from the PDL. The object diagrams,

REVERSE ENGINEERING

Cross et al.

Page 24

structure charts and PDL assist reviewers in validating that the system meets its design

specifications and in verifying that a reliable system can actually be built. By combining

forward and reverse engineering technologies, designers can modify any one of these artifacts and

have the changes automatically reflected in the others.

As with requirements artifacts, design artifacts offers an opportunity to collect numerous

metrics; however, they are usually more precise and meaningful during the design phase. For

example, the data for cost models generally becomes more accurate as implementation

approaches. Other design metrics such as McCabe's (McCabe and Butler, 1989), provide a basis

for future integration testing by ensuring that a basis set of paths containing procedure or function

calls have been exercised.

4.4.3 Implementation Artifacts

The most obvious artifact from this phase is the source code itself. To dissect source

code, the tools surveyed in this chapter make use of several compiler-related techniques,

including analysis of code structure and data flow. This analysis produces such structures as

parse trees, symbol tables, and flow graphs. The resultant structures are often matched against

patterns which are, in turn, mapped to alternative representations. These alternative

representations can be of similar complexity such as cross-reference tables or algorithmic

graphical representations. Also, the alternative representations can be of a more abstract nature

such as a functional description of the code fragment, structure charts, data flow diagrams, etc.

A less common and less exact form of code analysis is the study of identifiers and comments to

extract code function from names and prose (Biggerstaff, 1989; Schwanke et al., 1989).

Another artifact from this level is the executable code. A "black-box" (Samuelson, 1990,

p. 91) analysis of executable code involves feeding inputs to the code and noting the outputs.

From this process the analyst derives an understanding of the program's functions.

REVERSE ENGINEERING

Cross et al.

Page 25

Structural analysis of source code can produce understanding of the code in and of itself.

However, if humans do not ascribe meaning to code structures, structural analysis cannot

determine the function of the code, neither in isolation nor within a larger organizational

framework. Linguistic analysis perhaps can shed more light on the actual semantics of the

software, depending of course on the names of the identifiers and the content of comments.

Formal technical reviews of code can benefit, perhaps even more that earlier reviews,

from reverse engineering tools because of the inherent complex nature of source code. The

alternate views, especially graphical abstractions, can provide reviewers with the leverage

required to comprehend the system efficiently. Metrics collected can be as detailed as the

number of conditions or decisions in an algorithm as is the case with McCabe's cyclomatic

complexity metric (McCabe, 1976). In particular, these metrics can be used with appropriate

heuristics to guide the implementation, predict the number of errors, and identify sets of paths

that must be tested to attain a specified level of coverage.

The use of reverse engineering tools during implementation in a forward sense is similar

to its application during maintenance in that the input in both cases is source code. It is a natural

progression that any tools that can be used to aid in the comprehension of software during

maintenance should also be applied to software at the earliest feasible point in the life cycle.

5. Economic and Legal Issues

A discussion of reverse engineering would be incomplete if it focused entirely on

technical issues. As with all new or evolving technologies, there are practical concerns created

by reverse engineering which must be addressed. Most likely the chief concern among software

REVERSE ENGINEERING

CrOss et al.

Page 26

engineering managers is how reverse engineering can positively affect the productivity of their

staffs and, as a result, the economic strength of their organizations. Furthermore, of great interest

to managers is the degree to which the technology--in which heavy investments in money and

prestige are to be made--has universal applicability.

In addition, there are certain legal and ethical questions to resolve when the intent is to

reverse engineer a competitor's products. These issues can have their own economic

ramifications as well, such as court costs, attorneys' fees, fines, damage-control public relations

campaigns, etc. The concerns here involve the ownership of software, intellectual property rights,

and the freedom of information distribution.

This section will only attempt to illuminate the practical issues raised by the introduction

of reverse engineering into the software community. It will be the responsibility of software

engineering managers and the courts to resolve these issues and to define the precise role for

reverse engineering in the software engineering process.

5.1 Economic Issues

The fundamental benefit of reverse engineering technology is the increased understanding

of a subject system afforded to the user of the technology. From this primary benefit will come

other gains throughout the life cycle, primarily productivity gains. As reverse engineering is used

in a variety of software engineering processes, these gains will ultimately translate into

competitive advantages and financial rewards.

5.1.1 Maintenance Issues

This chapter has discussed at length the traditional relationship between reverse

engineering and maintenance and has tried to broaden the scope of reverse engineering to other

areas of the life cycle. This is not, however, to belittle the potential that reverse engineering has

REVERSE ENGINEERING

Cross et al.

Page 27

to abate some of the problems encountered in maintenance. Maintenance has indeed proved to

be a severe bottleneck for software engineering.

Corbi (1989) cites numerous studies which allude to the burden that the maintenance

process has traditionally been. For example, Belady and Lehman suggest that all programs of

non-trivial size would experience some alteration during their active lifetimes. In addition, a

study by Carroll states that eighty percent (80%) of programmer time in industry is spent in some

sort of maintenance work. Furthermore, a study by Parikh referred to an MIT study which

concluded that for every dollar spent on a new development venture nine dollars ($9) is spent

on the subsequent maintenance. From these figures alone, one may conclude that maintenance

heretofore has depleted an exorbitant amount of the time and effort which could have otherwise

been used for original development.

The chief problem of maintenance is that of understanding the system experiencing the

change. Again, Corbi (1989) cites Parikh and Zvegintzov who state that at least half of the

maintenance process is understanding the system itself. It stands to reason that if reverse

engineering tools and techniques can help the maintenance engineer in understanding old,

seemingly cryptic, pieces of software in a more timely and less error-prone fashion, then the

maintenance burden will therefore be somewhat alleviated. This understanding must encompass

not only an understanding of the original system as a static entity but as a dynamic mechanism

in which proposed changes will invariably have consequences.

5.1.2 New Development Issues

While reverse engineering is largely thought of as a facilitator of maintenance, it can

support new development in some important ways such as reuse and software quality assurance

which were described in Section 4. In particular, these allow a reallocation of total software

engineering time and effort away from maintenance. Reverse engineering can expedite new

development by examining how similar systems are constructed. By examining the internals of

REVERSE ENGINEERING

Cro_s et al.

Page 28

another system, development team designers can make more informed design decisions for their

situation, particularly concerning which strategies to adapt from the older system and which to

ignore. This endeavor, however, has certain legal complications, as the next section explains.

5.2 Legal Issues

Samuelson (1990) discusses many of the legal issues in the reverse engineering of the

code of a supplier or competitor. The examples from legal cases which she cites indicated that

the software that was being reverse engineered was in the form of object or executable code

rather than source code. Samuelson makes the point that the questions of legality lie in the more

intrusive white-box form of reverse engineering which attempts to analyze the code of a system.

This is contrasted with the black-box form which attempts to infer function and design from

analysis of output resulting from tests using varied inputs. Generally, there are few who question

the legality of the latter process.

Samuelson illustrates the two opposing arguments concerning the legality of white-box

reverse engineering. The major point of contention on which both arguments rest is the

interpretation of the copyright laws concerning intellectual property. On one hand, the strict-

constructionist group would argue that, according to copyright law under which proprietary

software is usually protected, the sole right of copy or copy entitlement belongs to the owner of

the copyright; copying is allowed only if the purposes involved are in keeping with the fair-use

doctrine. This group argues that to copy another's software for reverse engineering violates that

doctrine. This is because of the ultimate potential loss of revenue to the copyright owner should

a rival product result from the reverse engineering. From their perspective, stringent enforcement

of copyright law offers the best protection for the trade secrets which serve as competitive

ammunition.

On the other hand, the pragmatist group would argue, as does Samuelson, that reverse

engineering of a competitor's software should not be banned. Samuelson bases this argument

REVERSE ENGINEERING

Cross et al.

Page 29

on two principles: (1) the disclosure requirement of copyright law and (2) the separation of the

act of copying from the act of reverse engineering and from the act of using extracted

information. First, this group would argue that to copy software for study is not illegal in that

to obtain a copyright in the first place requires the applicant to reveal the contents of his or her

work. Also, this group would argue that it is not the reverse engineering of the code which

would violate trade-secret regulations, but the use of those discovered secrets for illicit gain.

Samuelson illustrates that, although sometimes contradictory, the weight of United States

case history is in favor of the pragmatist view to allow reverse engineering of a competitor's

product, defining copyright violation only when a resulting rival program is too similar to the

original.

Sibor (1990) disagreed with Samuelson's pragmatist position. In fact, Sibor cited many

of the same cases that Samuelson cited but drew different conclusions (which supports

Samuelson's position that attorneys disagree on these issues). Throughout his discussion, Sibor

seemed to equate reverse engineering with the terms decompilaton and disassembly of code,

which again emphasizes the notion that legal questions are focused primarily on object or

executable code rather than source code.

This is clearly an area where each case decided over the next decade will contribute to

a growing debate. The only certainty is that reverse engineering one's own software is proper

and lawful. The debate centers on propriety when someone else's software is involved, with or

without permission.

6. Survey of Current Research

REVERSE ENGINEERING

Crms et al.

Page 30

This section describes projects that are representative of the current research efforts

underway in the area of reverse engineering. The inclusion of a project should not be considered

an endorsement of its importance, nor should the omission of a project be considered a negative

statement. Although they have been classified as either redocumentation or design recovery

projects, some elements of each project may be fall into both categories of reverse engineering.

6.1 Redocumentation

Many of the research and commercial tools surveyed in this chapter can be classified as

redocumentation tools. The major intent of these tools is not to generate explanations of function

for the software systems that they study, but instead to provide aids for the user in order to

expedite his own understanding of the systems. These aids include code formatting schemes,

graphical representations, and code browsers. All tools acquire an implementation-level and

structure-level understanding of the code; they do not, however, acquire a function-level

understanding. Table II provides a summary of the basic characteristics of the redocumentation

tools presented in this section.

6.1.1 Book-Maker

Oman and Cook (1990) have proposed a new model for code formatting that holds much

promise to code readers. This model, called the book paradigm, is based largely on the use of

special typographical conventions for particular types of code elements and on the integration of

cross-reference information to connect related sections of a program. This scheme of code

formatting is realized in two tools collectively called Book-Maker. Oman and Cook sought to

create a format that would facilitate the examination both of large code structures and of atomic

elements. They wished physically to highlight the code pieces called beacons and chunks so as

to distinguish them all the more. They also desired a format that would not interfere with the

normal course of code maintenance; they desired compatibility with compilers and other code

manipulation tools.

REVERSE ENGINEERING

Cross et al.

Page 31

The purpose of such a tool, as the name suggests, is to present source code information

in a book-like format. A summary of the major modules and submodules of the program will

appear (with page numbers) in a table of contents. The modules themselves will be presented

in full in chapters with sections within the chapters presenting subcomponents of the modules.

An index points out the appearances of the program entities, variables as well as modules, within

the program. Other similarities with books exist. Figure 5 illustrates some of the features of this

form of code formatting.

Oman and Cook conducted two studies comparing the effectiveness of code

comprehension using plainly formatted source code and code formatted according to their

scheme. Both experiments suggested a significant improvement in code understanding with code

with all of the typographical trappings of the book paradigm.

6.1.2 ARCH / MAINTAINER'S ASSISTANT

Schwanke et al. (1989) describe the work on the ARCH project, part of the larger

MAINTAINER'S ASSISTANT project. One of the tools in ARCH is an automatic classification

system which uses identifier names as discriminants. By this method, a tree of related concepts

analogous to the system structure is created.

ARCH uses a statistically-based method for extracting structure from both existing

systems and architecture specifications. The method is based on the analysis of the system

identifiers, particularly their frequency of occurrence and determining where in the code the

identifiers are most prominent.

The name analysis, similar to keyword analysis in document retrieval systems, generates

functional concepts around which the system modules are clustered, resulting in an hierarchical

subsystem tree. The "concepts" are statistical categories defined by the names most prominently

used in the members of each category.

REVERSE ENGINEERING

Cross et al.

Page 32

It may appear that the tool might be engaging in program understanding in its own right.

However, this tool does not attempt to impose a predefined meaning upon the categories that are

defined. Instead, it merely defines the categories based on identifier usage and leaves it to the

analyst to apply meaning to the categories. This assessment is the judgment of Schwanke et al.,

and it could be reasonably argued that this is indeed a design recovery tool and not simply a tool

of redocumentation.

6.1.3 GRASP/Ada

GRASP/Ada (Cross, 1990; Cross et al., 1990) is a reverse engineering toolset under

development at Auburn University and funded, in part, by Marshall Space Flight Center, NASA.

An overview of the three phase project, which is now in Phase 3, is shown in Figure 6. The

principal components of the toolset are a control structure diagram generator, object diagram

generator, and user interface. A primary contribution of the GRASP/Ada project has been the

development of the control structure diagram (CSD) for Ada, which is a notation intended

specifically for the graphical representation of detailed designs as well as actual source code.

The purpose of the CSD is to reduce the time required to comprehend software by clearly

depicting the control constructs and control flow at all relevant levels of abstraction, whether at

the design level or within the source code itself. The CSD is a natural extension to existing

architectural graphical representations such as data flow diagrams, structure charts, and object

diagrams.

A major objective in the philosophy that guided the development of the CSD was that the

graphical constructs supplement the code and/or PDL without disrupting their familiar

appearance. That is, the CSD should appear to be a natural extension to the Ada constructs and,

similarly, the Ada source code should appear to be a natural extension of the diagram. This has

resulted in a concise, compact graphical notation which attempts to combine the best features of

REVERSE ENGINEERING

Cross et al.

Page 33

previous diagrams with those of well-established PDLs. The CSD generator automates the

process of producing the CSD from Ada source code.

Figure 7 contains an Ada task body CONTROLLER adapted from Barnes (1984), which

loops through a priority list attempting to accept selectively a REQUEST with priority P. Upon

acceptance, some action is taken, followed by an exit from the priority list loop to restart the loop

with the first priority. In typical Ada task fashion, the priority list loop is contained in an outer

infinite loop. This short example contains two threads of control: the rendezvous, which enters

and exits at the accept statement, and the thread within the task body. In addition, the priority

list loop contains two exits: the normal exit at the beginning of the loop when the priority list

has been exhausted, and an explicit exit invoked within the select statement. While the

concurrency and multiple exits are useful in modeling the solution, they do increase the effort

required of the reader to comprehend the code.

Figure 8 shows the corresponding CSD generated by the graphical prettyprinter. In this

example, the intuitive graphical constructs of the CSD clearly depict the point of rendezvous, the

two nested loops, the select statement guarding the accepl statement for the task, the

unconditional exit from the inner loop, and the overall control flow of the task. When reading

the code without the diagram, as shown in Figure 7, the control constructs and control paths are

much less visible although the same structural and control information is available. As additional

levels of nesting and increased physical separation of sequential components occur in code, the

visibility of control constructs and control paths becomes increasingly obscure, and the effort

required of the reader dramatically increases in the absence of the CSD. Since the source code

will be read many times by its author(s) during the course of initial development and by many

others during maintenance, it seems intuitive that the reader should benefit from the use of an

appropriate graphical notation. The Cross et al. cited two recent studies that support the theory

that graphical representations may indeed improve the comprehensibility (Scanlan, 1989) and

productivity (Aoyama et al., 1989) of software.

REVERSE ENGINEERING

Cross el al.

Page 34

Currently, the CSD generator of the GRASP/Ada prototype is being extended to include

editing capabilities that will provide for incremental regeneration of the CSD as the Ada/PDL or

source code is modified. The CSD editor will allow the user to collapse the diagram around

control constructs and generate an intermediate level architectural diagram which indicates control

structure among subprograms and tasks. The object diagram generation component, currently in

early prototype, will extract Booch-like diagrams (Booch, 1991) from the Ada/PDL or source

code. The user interface will support navigation among the CSDs and object diagrams to provide

an intuitive multi-level and multi-view set of graphical representations of any software system

written in Ada.

6.1.4 Objective-C Browser

The Objective-C Browser by Stepstone, as presented by Novobilski (1990), is a tool which

allows the user to view Objective-C code from a number of perspectives. Among these views

is the class inheritance hierarchy which allows the user to pose queries concerning method

resolution and method binding. Other views that are presented include usage statistics for entities

defined by the code. The user can also determine the repercussions of change by the use of

generated cross-reference information.

6.15 Vifor

Rajlich (1990) reports on a tool produced by Software Tools and Technologies known as

Vifor. A visualization tool for FORTRAN programs, Vifor pictorially presents FORTRAN

routines, their calling hierarchies, and their references to common data areas. To prevent the user

from being overwhelmed with information, Vifor uses diagram layering and two-column graphs

to ease the burden of reading the diagrams.

REVERSE ENGINEERING

Cross et al.

Page 35

6.1.6 PSL/PSA Reverse Engineering

Chikofsky (1983) describes the pioneering work on the integration of reverse engineering

with CASE repository concepts. Information systems research at the University of Michigan in

the late 1970's led to the development of PSL/PSA, a mainframe system that was the grandfather

of the present generation of CASE tools. In the early 1980's this CASE tool was used as a

maintenance vehicle to record and analyze the software of the tool itself. This self-validation for

maintenance demonstrated the viability of CASE as a natural maintenance environment, utilizing

the same toolsets developed for forward engineering.

The same PSL/PSA environment was used by IBM as a repository for manual analysis

in a reverse engineering project to reclaim lost documentation for a system, as reported by

Johnson (1983). This work demonstrated the concepts that would later be used in applying the

IBM AD/Cycle Repository to the maintenance phase of the life cycle.

6.1.7 Seela

Seela, a reverse engineering tool which uses human intervention to supply concise

functional descriptions to code blocks, is a product of Tuval Software Industries (Harband, 1990).

By using human intervention to supply functional descriptions, an abstraction is made from

implementation language to program design language. The user may manipulate the named

blocks by cutting and pasting, editing, and traversing to other blocks.

6.1.8 BattleMap and ACT

From McCabe & A'ssociates comes BattleMap and ACT (McCabe, 1990). These tools

make use of the metric cyclomatic complexity (McCabe, 1976) to classify code in a graphical

manner. ACT calculates the cyclomatic complexity of each software module and with that

knowledge performs other functions such as the outlining of test paths. BattleMap is essentially

a graphical tool layered above ACT. BattleMap displays a hierarchical diagram where each

REVERSE ENGINEERING

Cross et al.

Page 36

module icon is color-coded by cyclomatic and essential complexity (McCabe and Butler, 1989).

The diagrams can be made to hide certain branches of the system tree.

6.1.9 Expert Dataflow and Static Analysis

Expert Dataflow and Static Analysis, an Ada-based tool (Vanek and Davis, 1990) from

Array Systems Computing, analyzes Ada source code and provides code-viewing and code-

traversing capability. A user may choose to see only a certain perspective of the code such as

calling structure. In addition, he may step through the control flow of the program, skipping

procedure calls if he so desires. He may also refer quickly to the definition of a variable from

a usage point.

6.1.10 Surgeon's Assistant

The Surgeon's Assistant, described by Gallagher (1990) of Loyola College, is an editing

program which uses program slices to restrict the effects of modification of C programs. A slice

is defined by a set of variables and encompasses all code in which only the defining variables

are ever changed. From the tool window interface, a user will slice a program according to some

set of variables and edit that slice while not affecting the complementary part of the program.

Once all changes have been made to all slices, the user will merge the slices into a new program.

The intent of this tool is to be rid of regression testing.

6.1.11 Dependency Analysis Tool Set

The Dependency Analysis Tool Set, described by Wilde (1990) of the University of West

Florida, displays various forms of dependency in C programs. In addition, facilities exist to

create repositories for C programs, to query concerning dependencies, and to share query output

with other analysis tools.

REVERSE ENGINEERING

Cro_s el al.

Page 37

6.1.12 REDO - Esprit Project 2487

The REDO project (Esprit, 1990), which is project number 2487 of the Esprit II program

being conducted by the Commission of the European Communities, is intended to produce tools

to aid in maintenance, reuse, and validation of large software systems. Goals of the project

include the development of an intermediate language which will be an abstraction from source

languages, an environment database, a multiple-process architecture, and a user interface designed

with the needs of the software engineer being paramount.

Two of the components of this proposed toolkit are (1) a restructuring component whose

scope will include data structures, local variables, and control structures, and (2) a

redocumentation component which will reproduce documentation from the source code and the

intermediate language representation (Khabaza, 1989). This documentation will be maintained

in the environment database.

Thus far, the project's reverse engineering focus has led to two separate approaches. The

first has concentrated on an SQL interface to a database containing the information required for

the reverse engineering process, and the second relies on an object-oriented repository with

associated schema descriptions.

6.1.13 MicroScope

MicroScope, reported by Ambras and Day (1988), is a knowledge-based programming

environment which is being developed to analyze and monitor programs written in Common LISP

and Common Objects. Ambras and Day suggest that the technology provided in their prototype

should also be useful to programmers using conventional languages. MicroScope provides

incremental support for the user/programmer with various views at different "magnification"

levels. A graphical representation is provided which allows the user to navigate through the

program. Impact analysis is planned for a future version of MicroScope.

REVERSE ENGINEERING

Cross et al..___

Page 38

Extensive annotation capabilities are provided with specific annotations for source code,

documentation, variable and constant declarations, design specifications, development tasks,

known bugs, monitoring status, profile data, and revision history.

MicroScope provides for dynamic analysis in the spirit of many modem debuggers.

However, it makes good use of graphical displays and program animation. The underlying

knowledge base of MicroScope is designed around the notion of frames and rules, where frames

represent data and rules represent methods for making inferences.

6.1.14 Adagen

Adagen, reported by Rozenblat and Fischer (1989), is a CASE toolset specifically

designed to support the development of large software systems written in Ada. It includes a

reverse engineering component which inputs existing Ada source code and produces a

hierarchical set of Buhr diagrams which shows the overall declaration topology of the system,

as well as procedure, function and task entry calls. The toolset also includes the capability to

generate a complete system dependencies chart which provides the user with an overview of the

system structure to aid in navigation through units. This hierarchical structure view of the system

may suggest restructuring alternatives to the user.

6.1.15 Program Understanding Support Environment - PUNS

Cleveland (1989) of IBM's T. J. Watson Research Center has developed a prototype

program understanding support environment (PUNS) which provides many of the capabilities

required for reverse engineering. PUNS is unique in that it supports maintenance activities by

analyzing and presenting multiple views of large programs written in IBM System/370 assembler

language. PUNS has two principal components: a repository component and a user interface

component. The repository component analyzes the target system and populates an entity-

attribute-relationship database with most of the low-level relationships within the program. The

repository component has three subcomponents: the schema for the repository, routines that load

REVERSE ENGINEERING

Cro_s e! al.

Page 39

the repository, and routines that extract information from the repository based on queries from

the user. The repository component is designed to run on a high-performance host.

The user interface component, which runs on a workstation, provides an object-oriented,

window-based presentation of the multiple views of the subject program. PUNS facilitates

program understanding by providing the maintenance programmer with the capability to navigate

among objects of interest (e.g., modules or variables) based on a multi-dimensional relationships

such as control flow and data flow.

From a reverse engineering perspective, PUNS falls primarily into the category of

redocumentation. In the present prototype, all of the program views presented are based on static

analysis of the assembler source code. The relationships in the schema are predetermined from

experiences of maintenance programmers. At present the information in the repository is not

dynamically modifiable by the user during a viewing session. Although not specifically stated,

apparently when a modification to the assembler source code is determined to be necessary, the

programmer makes the change to the appropriate file using a traditional text editor. After the

code is re-tested, the program is then re-analyzed by the repository component of PUNS.

Cleveland states that dynamic updating of the information in the repository is a desirable future

capability of PUNS, and she suggests that the user should have the capability to enter additional

information that he or she has determined, but which PUNS was unable to extract. However, if

such a capability were to be added, some means of characterizing the credibility of the user-

determined information would also be necessary to assist other users of PUNS in making

decisions regarding the use of the information.

6.1.16 Other Support Environments

The environments discussed in Aoyama et al. (1989) provide some support for automatic

regeneration of graphical representations. These environments are based on algorithmic graphical

representations widely used in Japan. The environments are primarily design language editors

REVERSE ENGINEERING

Cro_s el aI.

Page 40

where the pseudocode is supplemented with graphical notations. From these procedural design

languages, the environments generate source code in a number of languages. Some of the

environments have the capability to generate the algorithmic graphical notations from source code

for the purpose of migrating existing software into the environment for future maintenance.

6.2 Design Recovery

Much of the research presently conducted in reverse engineering is in the area of design

recovery or, as more commonly called in the work surveyed below, program understanding.

Design recovery promises more potential benefits than does redocumentation since it can be

considered the first step in a practical reengineering environment. However, its attempt to

achieve a more complete understanding of software means that the tools resulting from many of

the current research efforts may not be available to practicing software engineers in the near

future.

A common theme throughout the design recovery work is the use of pattern matching.

From Rich's and Wills' clichFs (1990) to Biggerstaff's conceptual abstractions (1989), pattern

matching seems to be the common method of mapping lower-level constructs to higher-level

concepts. Other common themes and differences will be highlighted in the survey below.

Table III provides a summary of the characteristics of each of the design recovery tools surveyed

here.

6.2.1 Desire

The Desire project at MCC (Biggerstaff, 1989) is attempting to automate much of the

human process by using both formal, structural information and informal, associative information.

Biggerstaff explains the process of design recovery from a human standpoint. He begins by

emphasizing the initial search for key code sections in order to establish a beginning hypothesis

of function. Once the initial assumption is made, the code analyst seeks out other programming

formations typical to the hypothesized application area. The discovery of such formations

REVERSE ENGINEERING

Cross et al.

Page 41

confirms the initial hypothesis. Any new information which may be gained as the result, for

example, of anomalies will be incorporated into the analyst's experience for reuse in later

analyses.

The core of the system, where the experience and expectations of the analyst are encoded,

is Desire's domain model. The fundamental unit of the domain model is the conceptual

abstraction, which is simply the combination of formal and informal information known about

a particular application concept. The structural information is found in code and data structure

patterns typical to implementations of that concept.

The informal information contained in a conceptual abstraction is the semantic information

contained in identifiers, comments, etc. This information connects with the informal information

in other related conceptual abstractions to simulate a network of expert knowledge in a particular

programming area. It is this codification and use of this type of information that makes Desire

rare among design recovery tools.

The conceptual abstractions, also called idioms, are in reality active objects written in the

Common LISP Object System. Once chosen from the domain model and activated by the

analyst, an idiom uses its information to seek out patterns of coding which imply an

implementation of the idiom. Once it has bound itself to the code pattern, the idiom begins to

match the substructures and the name scheme of the code to the structural expectations and

associative relationships encoded in the idiom. All binding is subject to the consent of the

analyst.

The information and experience gained by analysis of the subject system will be

incorporated into the domain model not only for more effective analysis but also for reuse in

constructing similar modules.

Biggerstaff reported that the Desire system was in a preliminary implementation phase.

The domain model had yet to be integrated into the total system, and analysis was restricted to

source code. The results of analysis were to be displayed using a hypertext system.

REVERSE ENGINEERING

Cross et al_...._

Page 42

6.2.2 Program Analysis Tool�Software Re-engineering Environment

Another design recovery tool is the Program Analysis Tool (PAT) reported by Harandi

and Ning (1990). This particular tool is part of the Software Re-engineering Environment (SRE)

as reported by Kozaczynski and Ning (1989). The SRE, being developed at Andersen

Consulting, is involved in many other types of program study in addition to design recovery.

PAT enables understanding through the first three levels of understanding coined by

Harandi and Ning and described in Section 3. Kozaczynski and Ning doubt the feasibility of

elevating to the highest level without significant human intervention.

Harandi and Ning then describe the basic operation of PAT. The program under analysis

is parsed and encoded into events by the Program Parser, and then are placed in an Event Base.

An event is a description of a programming notion plus the particulars of its realization, including

its physical location and place in the overall control structure. The notions represented by events

can range in complexity from simple statements to sizable collections of statements which

perform a particular task. The events first created by the Program Parser, as one might expect,

are closely parallel in complexity to the atomic statements of the program. Figure 9 illustrates

the basic format of an event.

The events just created are program facts which are used to fire rules of the knowledge

base. The inference engine which drives this firing is called the Understander, and the rules are

known as plans. The knowledge base itself is called the Plan Base. The plan is essentially a

combination of smaller event patterns, constituting a larger event pattern. The combination of

event patterns in the plan specify the appropriate source and execution ordering of the constituent

event patterns. Figure 10 portrays a typical plan template. The plan is fired only if there is a

match between an event fact and a particular event pattern known as a key event. Once the key

event is matched, the other event patterns of the plan must be matched and the event pattern

orderings satisfied. Only then is the plan fired, meaning that the larger event represented by the

plan is constituted. The Understander will place this new higher-level event in the Event Base

REVERSE ENGINEERING

Cross et al.

Page 43

hopefully to match an even more abstract plan key event. This process of inference and

abstraction continues until no more matches occur.

Close mismatches can count as matches because the plans also contain information about

incorrect implementations of the plans. Text templates within the plans allow a relatively easy-

to-read English explanation to be produced.

PAT is a part of the larger Software Re-engineering Environment which has the following

major components: (1) the System Code Parser, (2) the Global Object Base (GOB), (3) the

System Analysis and Abstraction Unit, and (4) the User Interface. The System Code Parser

produces low-level representations of code and stores these representations in the GOB. The

Program Parser of PAT is presumably at least part of the System Code Parser, and the events are

likely at least some of the low-level representations. The Event Base and Plan Base are likely

part of the GOB. The System Analysis and Abstraction Unit is a coordinated set of analysis

tools which builds on the information contained in the GOB. Control flow analysis, change

analysis, and generation of graphical representations are among the forms of analysis that this

set of tools conducts. PAT itself is a part of this set.

Kozaczynski and Ning discuss at some length the nature of the GOB. To represent the

knowledge contained in the GOB, an object-oriented representation scheme is employed. The

knowledge classes of the GOB include (1) program representation objects; (2) resultant objects

from analysis; (3) run-time analysis artifacts; (4) user-supplied information; (5) plans, rules, etc.

The plans and events of PAT are also typed according to this object-oriented scheme; this fact

restricts the type of unification that the Understander component of PAT can perform.

At the time of their writing, Harandi and Ning had begun to build up the Plan and Event

Bases to increase the applicability of PAT. As for the larger SRE, Kozaczynski and Ning have

reported that a COBOL parser with reading and printing capabilities has been written. Whether

or not this bidirectional parser could be the first step toward an actual reengineering (as defined

in this chapter) capability remains unclear. Other portions of the prototype have included cross-

REVERSE ENGINEERING

Cross et al.

Page 44

reference browsing and dependency browsing. An assembly language analysis tool has been

prototyped as well.

6.2.3 Recognizer�Programmer's Apprentice

The Recognizer, part of the larger Programmer's Apprentice project at MIT, is a program

understanding tool is based on the idea of clichd recognition (Rich and Wills, 1990). The notion

of a clich6 provides a means of capturing and/or implementing a programming concept (Letovsky

and Soloway, 1986). The Recognizer uses a graph parsing scheme for clich6 recognition and

abstraction.

The program under study is first translated into a flow graph-like design representation

called the Plan Calculus (see Figure I I). In addition, the clich6 patterns, called plans, against

which the actual clichfs of the program will be matched are also encoded in the Plan Calculus.

This representation uses boxes for functional units and arcs for flows of control and data. In

addition, preconditions and postconditions on the functional units are incorporated into the plan

representation. One advantage of this representation is that the components of clichfs which

might be scattered in the code itself can be brought together in a unified structure.

To accomplish clich6 recognition, the Plan Calculus program flow graph is translated to

a more generic flow graph. The translation is straightforward except for control flow and

functional preconditions and postconditions, which become "attributes" of the flow graph. The

program flow graph is submitted to a graph parser whose reduction rules, called overlays, are

contained in a clich6 library. The overlays, much like the reduction rules in the more familiar

text grammars, consist of a right-hand graph which reduces into a more abstract left-hand graph.

The graphs of the overlay are the plans which have also been translated from the Plan Calculus.

The ultimate result of the parse is a parse-tree design structure. This design tree can be

used to produce an English synopsis of the program function and also as input to other tools of

the Programmer's Apprentice.

REVERSE ENGINEERING

Cros_ et al.

Page 45

Rich and Wills in their report explain that, through the uniformity of the Plan Calculus,

the variety of the reduction rules in the clich6 library, and the flexibility of the parser, the

Recognizer deals with many problems inherent in program recognition including the non-

contiguity of clichrs, varying implementation and design styles, code which defies classification,

and interleaving of clichrs. For example, the graph parser is able to ignore non-classifiable code

by having more flexible rules of input, ignoring non-classifiable trailing input when a parse is

completed.

Currently, the Recognizer can only analyze small Common LISP programs. The state of

the clich6 library is impressive in that hundreds of plans and reduction rules have been encoded.

Rich and Wills also state the need to move from total dependence on flow and structure

characteristics for pattern recognition to the more informal information found in identifiers and

comments.

6.2.4 Function Abstraction

A design recovery method which uses a slightly different technique for program

understanding, called function abstraction, is reported by Hausler and colleagues (1990). This

technique relies less on pattern matching and more on algebraic manipulation than do many

design recovery tools in the literature. However, this technique had not been prototyped at the

time of their report.

The abstraction algorithm proposed by Hausler and colleagues works on programs that

follow structured programming principles or have been restructured so as to comply with those

principles. In fact, it is the very fact that such programs are structured that makes them amenable

to the algebraic manipulation of the algorithm.

A subject program is decomposed into atomic components called small primes. These

small primes are statement sequences, selections, and iterations; they are the building blocks from

which all structured programs are constructed. The function of each small prime is derived

REVERSE ENGINEERING

Cross et al.

Page 46

largely from functional analysis, and the functions of larger primes are derived from those of

their elemental smaller primes. The ultimate goal, naturally, is for the entire program function

to be discovered.

The function of a statement sequence is derived from the composition (in the sense of

function theory) of the functions of the statements of the sequence. It amounts to a statement

of net effect on the sequence input. The function is derived using trace tables, which step

through each rule of the sequence and incrementally derive the function of change for each

variable in the sequence in terms of the initial variable values. These functions of change are

written as assignment statements to each variable; the total sequence function is written as a

concurrent assignment.

If some sequence rules are previously derived conditional functions, slight alterations must

be made to the function abstraction process. Otherwise, it is conceivable for the number of

possibilities in the final function of the sequence to grow wildly. After the elimination of

impossible conditionals, others in some instances can be further compacted into cohesive, more

expressive formulas. The final sequence function can be expressed in part in terms of these

formulas.

The function of a selection prime is usually little more than a reexpression of the prime

in algebraic language. Sometimes, however, it is possible through pattern matching to transform

the selection prime into a compact formula.

The extraction of the function of an iteration begins with partitioning the data space of

the loop so that the change function of each variable in the loop's scope may be derived in turn.

These loop partitions, or slices, are then matched against loop patterns associated with function

abstractions. The function abstractions of the slices are then composed into a comprehensive

loop function. Figure 12 depicts the form of a loop-slice template.

Hausler and colleagues concur that the final function abstractions tend to be somewhat

cryptic and could stand further analysis to translate them into clearer descriptions.

REVERSE ENGINEERING

Cros_ et al.

Page 47

6.2.5 PROUST

Johnson (1990) describes a technique of program understanding called intention-based

analysis and how that technique is employed in a tool known as PROUST. PROUST is a Pascal

debugging tool geared for inexperienced programmers, providing explanations for program bugs

in terms of the intentions of the programmers and with regard to common mistakes made by

those programmers. PROUST thus serves as an educational tool for beginners.

PROUST views program understanding as the understanding of the intentions of the

programmer. These intentions are coalesced in succinctly stated program goals which are

statements of function for programs and program fragments. Examples of goal statements are

Sentinel-Controlled Input Sequence, Input Validation, and Average. These goals can be realized

by one of a number of plans, or code templates which perform the function stated by the goal.

Each plan can itself contain subgoals which must be attained in order for the plan to be fulfilled.

The process of program understanding and bug discovery is termed goal decomposition,

in which the original goals of the problem statement and subsequent subgoals are matched with

portions of the code via the plans. Several goal decompositions are usually possible. The goal

decomposition process results in a tree of such decompositions. Each node in the tree represents

a state in the interpretation space which reflects, at any given point, what goals have been

(tentatively) realized and which have yet to be so. The best decomposition is chosen based on

the closeness of the matches between the plans and the code and on how well the mismatches

can be reconciled using plan-difference rules.

The plan-difference rules deal with errors in program design and the interleaving of plans

within a particular code segment, which produces a composite goal. When a mismatch is

identified as a bug by a plan-difference rule, a description of the bug is generated and maintained

for later output. These bug descriptions attempt to explain why the bug occurred: i.e. for

example, whether the programmer attempted to implement an inappropriate goal, whether he

REVERSE ENGINEERING

Cross el al.

Page 48

attempted to implement an appropriate goal incorrectly, or whether the programmer has a basic

misunderstanding of some programming construct.

Johnson presents the results of some empirical evaluations of PROUST in its current state

and its ability to find program errors and explain them in terms of the original intention. The

results were quite good with some qualifications. In one test series of implementations for a

problem, PROUST was able to develop complete interpretations for most of the implementations,

find most bugs in those implementations, and explain them accurately. In a test series for

another problem, PROUST was able to develop complete interpretations for only approximately

one-half of the implementations. For the bugs found in those implementations, however, correct

explanations were put forth for the most part.

Johnson states the need for an expansion of PROUST's capabilities. Specifically, he states

the need to expand PROUST's knowledge bases and to incorporate human input with regards to

programming plans and intentions. Finally, he calls for the creation of PROUST versions for

other languages, such as LISP and Ada.

6.2.6 Talus

Ourston (1989) provides an analysis of Tah_s, based on the doctoral dissertation of W.R.

Murray dated 1986. Talus is a program recognition and debugging prototype tool for student

LISP programs. Talus compares the student input program with a "correct" program which

serves as the program specification. The input program is converted to a standard form of LISP

called If-Normal form in order to remove at least some of the implementation variations. This

form amounts to a binary tree representation. The two programs are compared, node by node,

to determine if a sufficiently precise match exists. Using heuristic assessment, Talus attempts

to find the best match possible between the functions of the "correct" program and those of the

input program and does likewise with the formal variables of both. Fault detection is through

symbolic evaluation of the program and through the equivalence evaluation of corresponding

REVERSE ENGINEERING

Cross et al.

Page 49

expressions of the two programs. Among the strong points of Talus, by Ourston's estimation,

are the use of expression equivalence analysis, its top-down nature which allows functions to be

recognized without the need for their subfunctions to be matched precisely, and its assignment

of function to formal variables. Among the faults of Talus are the need to supply a specification

(namely a "correct" program) and the orientation of Talus toward recursive data and control

structures and other LISP constructs.

6.2.7 PROMPTER

Fukunaga (1985) discusses PROMPTER, a design recovery tool which extracts

explanations from assembly language code. The explanations pertain to two levels of knowledge:

knowledge of the internals of the implementation and knowledge of the context in which an

implementation exists and operates. The basis of operation for the tool is the codification of

hardware, programming, and domain-specific knowledge in an object-oriented framework using

an object-oriented derivative of PROLOG. To generate the first-level explanations, PROMPTER

employs an assembly language simulator which infers the first-level explanations, in an expert-

system fashion, from hardware specific and programming related objects and their interactions.

The higher-level explanations are currently encoded using more traditional production rules.

Fukunaga (1985) indicated that the system was in early prototype phase with the collection,

formalization, and codification of the various forms of knowledge proceeding.

6.2.8 Laura

Laura (Seviora, 1987), developed in the early 1980s, is a program analysis debugging tool

for very small FORTRAN programs. Laura compares the input program to a supplied "correct"

program which serves as the program specification. Both are translated into normalized flow

graphs, and it is these graphs that are compared. Any differences discovered are considered to

be program errors. Laura's breadth of understanding is narrow in that it cannot reconcile the use

of an algorithm in the subject program different from the one in the "correct" program.

REVERSE ENGINEERING

Cross et al.

Page 50

6.2.9 PUDSY

PUDSY (Seviora, 1987), a debugging system developed by Lukey, uses a bottom-up

approach to program analysis by breaking up the subject code into chunks which are then

matched against schemata in PUDSY's knowledge base. A matched chunk is then exchanged

for the predicate calculus assertions associated with the matched schema. The assertions of the

lowest-level chunks are used, along with the data flow between them, to produce higher-level and

ultimately program-level assertions. The path by which the final assertion is coalesced is

maintained for the debugging phase to come. The final program assertion is then tested for

equivalence with the supplied program specification. Any non-equivalences are assumed to be

bugs. These bugs are located and solutions are proposed by backtracking through the appropriate

assertion derivation. The "fixed" program is then retested.

7. Conclusion

The overview of reverse engineering and the survey of current literature indicate that

researchers have made a good beginning. Of the two categories of reverse engineering tools

discussed, redocumentation tools are the most mature. These tools are similar in that their output

is produced deterministically from a syntactic and semantic analysis of source code. New

insights may result from these alternative views, although all of the information is contained in

the source code and tr,,;_ could have been extracted by a careful reader. As the name suggests,

the forte of redocumentation tools is the time they may save users by automatically producing

accurate documentation. These tools will continue to evolve and should make their way into

production environments relatively quickly.

REVERSE ENGINEERING

Cross et al.

Page 5 J

Design recovery tools are natural extensions of redocumentation tools and thus usually

have considerable overlap. These design recovery methods and tools share many common

approaches to program understanding, although the nomenclature and the mechanisms might

differ somewhat. For example, all of the tools and methods described above derive design by

using a knowledge base in conjunction with the analysis of the formal, verifiable structural

information found in the source code. This analysis is used to determine control flow, to develop

relative lexical and control sequences, and to reunify discontiguous components of larger

structures. This last goal is quite important to enable effective pattern matching of program

components. Many of the tools' design templates which are matched against by actual program

components will express a programming or application idea as subideas connected by at least

relative lexical and control orderings. Often, the actual program components which implement

a certain idea will be widely dispersed in the code and must be "reunified" in analysis in order

for the design template to be matched and realized.

The structure of the design templates of the tools is basically the same in function,

although not necessarily in form. In Harandi's and Ning's PAT, the plan is the design template

and appears to be a highly parameterized, formal piece of text. The plans are contained in a Plan

Base, which serves as the knowledge base for the tool. In Rich's and Wills' Recognizer, the

design template, as well as the translated implementation, referred to as clichrs, is also a plan.

These plans, however, are composed in a graphical (in the graph-theoretical sense) language

called the Plan Calculus and are part of graph-grammatical reduction rules contained in a clich6

library. Both plans do undergo some encoding before being placed in their respective bases,

however. In the function abstraction method proposed by Hausler and associates, the only design

templates seem to be those that reduce conditionals to formulas and those that produce function

abstractions for loop slices. The design templates of Biggerstaff's Desire, in addition to the

structural information common to the other methods, contain the informal information which

Biggerstaff lauds in the form of regular expression templates to match against identifiers.

REVERSE ENGINEERING

Cross el al.

Page 52

The mechanism of abstraction is the major source of difference among the tools. In

Biggerstaff's Desire, the conceptual abstractions seemingly are activated by the user and then go

out to seek matches in the code on their own. In Harandi's and Ning's PAT, the Understander

combined with a Justification-based Truth Maintenance System are inference engines which drive

the recognition process. In Rich's and Wills' Recognizer, the driver of recognition is a graph

parser whose reduction rules are contained in the cliche library. In Hausler's and colleagues'

method, the mechanism appears to be algebraic manipulation with a smattering of pattern

matching.

The future use of both redocumentation and design recovery tools depends largely on their

integration into current CASE tools. Bachman (1988) suggests reverse engineering may be the

key missing component in modem CASE tools. While CASE tools are steadily making their way

into the mainstream of software engineering, Bachman asserts that since the majority of effort

and dollars still goes into the maintenance of existing systems, a bridge is needed to migrate

these existing systems into modem CASE environments for all future enhancements. Bachman

takes a design recovery view of reverse engineering, and he suggests that expert systems of the

future will enable analysts to extract business rules and other missing requirements and design

documentation from existing artifacts. Since these are not innate to source code, automatic

reverse engineering to this level from source code alone is infeasible. However, it is important

to recognize that reverse engineering involves more than the just the analysis of source or object

code. While the main body of research is concentrating on source code analysis, work is also

proceeding on both the analysis of systems-level and network specification (control definition)

with CASE environments and the analysis of database and data structure specification (data

definition) to rediscover business rules (data-driven operational constraints). Chikofsky (1990)

and (1991) report on these.

REVERSE ENGINEERING

Cross et ai

Page 5 3

ACKNOWLEDGEMENTS

We acknowledge the special contributions of these individuals to the synthesis of the

taxonomy section and the rationalization of conflicting terminology: Walt Scacchi of the

University of Southern California, Norm Schneiderwind of the Naval Post Graduate School, Jim

Fulton of Boeing Computer Services, Bob Arnold of the Software Productivity Consortium,

Shawn Bohner of Contel Technology Center, Philip Hausler and Mark Pleszkoch of IBM and the

University of Maryland at Baltimore County, Diane Mularz of Mitre, Paul Oman of the

University of Idaho, John Munson and Norman Wilde of the University of West Florida, and the

participants in directed discussions at the 1989 Conference on Software Maintenance and the

1988 and 1989 International Workshops on CASE.

This work was supported, in part, by a grant from George C. Marshall Space Flight

Center, NASA/MSFC, AL 35821 (Contract Number NASA-NCC8-14).

We thank Kelly Morrison and Narayana Rekapalli for their work on the figures.

REVERSE ENGINEERING

Cross et al.

Page 54

BIBLIOGRAPHY

Abrial, J.R. (1980). "The specification language Z: basic library." Oxford University

Programming Research Group.

Albrecht, A.J. and Gaffney, J.E. (1983). Software function, lines of code and development

effort prediction: a software science validation. IEEE Trans. Softw. Eng. SE-9(11),

639-648.

Ambras, J. and O'Day, V. (1988). MicroScope: A knowledge-based programming

environment. IEEE Software 5(3), 50-58.

Aoyama, M., Miyamoto, K., Murakami, N., Nagano, H., and Oki, Y. (1989). Design

specifications in Japan: Tree-structured charts. IEEE Software 6(2), 31-37.

Arden, W. and Ho, P. (1989). CASE methods of reuse and reverse engineering of Ada

software. I___n"CASE '89: Proceedings of the Third International Workshop on

Computer-Aided Software Engineering." pp. 338-339. The British Computer Society,

London.

Arnold, Robert S. (1989). Software restructuring. Proc. IEEE 77(4), 607-617.

REVERSE ENGINEERING

Cross el al.

Page 55

Bachman, C. (1988). A CASE for reverse engineering. Datamation 34(13), 49-56.

Barnes, J. G. P. (1984). "Programming in Ada." Second Edition, Addison-Wesley Publishing

Co., Menlo Park, CA.

Basili, V. R. (1990). Viewing maintenance as reuse-oriented software development. IEEE

Software 7(1), 19-25.

Biggerstaff, T.J. (1989). Design recovery for maintenance and reuse. IEEE Computer 22(7),

36-49.

Boldyreff, C. (1989). Reuse, software concepts, descriptive methods and the Practitioner

project. Softw. Eng. Notes 14(2), 25-31.

Booch, G. (1991). "Object Oriented Design." Benjamin-Cummings Publishing Co., Redwood

City, CA.

Brooks, F.P. (1987) No silver bullet: essence and accidents of software engineering. IEEE

Computer 20(4), 10-19.

Chikofsky, E.J. (1983). Application of an information systems analysis and design tool to the

maintenance effort. In "Proceedings of IFIP TC Working Conference On System

Description Methodologies." pp. 503-514. North-Holland, Amsterdam.

REVERSE ENGINEERING

Cross et al.

Page 56

Chikofsky, E.J. (1990). The database as a business road map. Database Programming and

Design, May, 62-67.

Chikofsky, E.J. (1991). Realizing design recovery with CASE environments. Software

Engineering: Tools, Techniques, Practice. November 1991. In press.

Chikofsky, E.J. and Cross, J.H. II. (1990). Reverse engineering and design recovery: A

taxonomy. IEEE Software 7(1), 13-17.

Choi, S.C. and Scacchi, W. (1990). Extracting and restructuring the design of large systems.

IEEE Software 7(1), 66-71.

Cleveland, L. (1989). A program understanding support environment. IBM Syst. J. 28(2),

324-344.

Corbi, T.A. (1989). Program understanding: Challenge for the 1990s. IBM Syst. J. 28(2),

294-306.

Cross, J.H., Sheppard, S.V. and Carlisle, W.H. (1990). Control Structure Diagrams for Ada.

J. Pascal, Ada & Modula-2, 9(5), September/October, 26-33.

Cross, J.H. (1990). Grasp/Ada uses control structure. In (Oman, 1990). IEEE Software 7(3),

62.

REVERSE ENGINEERING

Cross et al.

Page 57

DeMarco, T. (1979). "Structured Analysis and System Specification." Prentice-Hall, Inc.,

Englewood Cliffs, NJ.

Esprit (1990). Synopsis of information processing systems - Esprit II projects and exploratory

actions. Volume 4 of 8, Directorate General XIII - Commission of the European

Communities.

Faghihi, H., Colbrook, A., and Smythe, C. (1989). A CASE tool for the software

reengineering of data structures. In "CASE '89: Proceedings of the Third International

Workshop on Computer-Aided Software Engineering," Supplementary Volume. p. 341.

The British Computer Society, London.

Gallagher, K. (1990). Surgeon's Assistant limits side effects. In (Oman, 1990). IEEE

Software 7(3), 64.

Guide International Corporation. (1989). "Application Reengineering." Guide Publication

GPP-208. Guide International Corporation, Chicago.

Halstead, M.H. (1977). "Elements of Software Science." North Holland, Amsterdam.

Harandi, M.T. and Ning, J.Q. (1990). Knowledge-based program analysis. IEEE Software

7(1), 74-81.

REVERSE ENGINEERING

Cross et al.

Page 58

Harband, J. (1990). Seela aids maintenance with code-block focus. In (Oman, 1990). IEEE

Software 7(3), 61.

Hausler, P.A., Pleszkoch, M.G., Linger, R.C., and Hevner, A.R. (1990). Using function

abstraction to understand program behavior. IEEE Software 7(1), 55-63.

Institute of Electrical and Electronics Engineers. (1983). IEEE standard glossary of software

engineering terminology. ANSI/IEEE Std 729-1983. Approved IEEE Standards Board,

Sept. 23, 1982. Approved American National Standards Institute, Inc. Aug. 9, 1983. In

"Software Engineering Standards." (1987). IEEE Press, New York.

Johnson, W. L. (1990). Understanding and debugging novice programs. Artif. Intell. 42(1),

51-97.

Johnson, M. (1983). Problem statement language / problem statement analyzer (PSL/PSA).

In "Proceedings of Symposium on Application and Assessment of Automated Tools

for Software Development." IEEE Computer Society Press, New York.

Jones, C.B. (1986). "Systematic software development using VDM." Prentice-Hall, London.

Khabaza, I. (1989). Maintenance, validation, and documentation of software systems:

'REDO'--ESPRIT P2487. In "CASE '89: Proceedings of the Third International

REVERSE ENGINEERING

Cross et al.

Page 59

Workshop on Computer-Aided Software Engineering." pp. 221-222. The British

Computer Society, London.

Kozaczynski, W. and Ning, J.Q. (1989). SRE: A knowledge-based environment for large-

scale software re-engineering activities. In "Proceedings of the Eleventh International

Conference on Software Engineering." pp. 113-122. IEEE Computer Society Press,

Washington, DC.

Letovsky, S. and Soloway, E. (1986). Delocalized Plans and Program Comprehension. IEEE

Software 3(3), 41-42.

Luckham, D.C. and yon Henke, F.W. (1985). An overview of Anna, a specification language

for Ada. IEEE Software 2(2), 9-22.

McCabe, T.J. (1976). A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308.

McCabe, T.J. and Butler, C.W. (1989). Design complexity measurement and testing.

Commun. ACM 32(12), 1415-1425.

McCabe, T., Jr. (1990). Battle Map, Act show code structure, complexity. In (Oman, 1990).

IEEE Software 7(3), 62.

Novobilski, A. (1990). Objective-C Browser details class structures. In (Oman, 1990). IEEE

Software 7.(3), 60.

REVERSE ENGINEERING

Cross et al.

Page 60

Oman, P. (1990). Maintenance tools. IEEE Software 7(3), 59-65.

Oman, P.W. and Cook, C.R. (1990). The book paradigm for improved maintenance. IEEE

Software 7(1), 39-45.

Ourston, D. (1989). Program recognition. IEEE Expert 4(4), 36-49.

Pressman, R.S. (1987). "Software Engineering: A Practitioner's Approach." (2nd Ed.).

McGraw-Hill Book Company, New York.

Rajlich, V. (1990). Vifor transforms code skeletons to graphs. In (Oman, 1990). IEEE

Software 7(3), 60.

Rekoff, M.G., Jr. (1985). On reverse engineering. IEEE Trans. Syst. Man Cybern. SMC-

15(2), 244-252.

Rich, C. and Wills, L.M. (1990). Recognizing a program's design: A graph-parsing approach.

IEEE Software 7(1), 82-89.

Rozenblat, G.D. and Fischer, H. (1989). Reverse engineering technologies for Ada. In

"CASE '89: Proceedings of the Third International Workshop on Computer-Aided

Software Engineering." pp. 560-574. The British Computer Society, London.

Rubin, L.F. (1983). Syntax-directed pretty printing--A first step towards a syntax-directed

editor. IEEE Trans. Softw. Eng. SE-9(2), 119-127.

REVERSE ENGINEERING

Cross et al.

Page 61

Rugaber, S., Ornburn, S.B., and LeBlanc, R.J., Jr. (1990). Recognizing design decisions in

programs. IEEE Software 7(1), 46-54.

Samuelson, P. (1990). Reverse-engineering someone else's software: Is it legal? IEEE

Software 7(1), 90-96.

Scanlan, D.A. (1989). Structured flowcharts outperform pseudocode: an experimental

comparison. IEEE Software 6(5), 28-36.

Schwanke, R.W., Altucher, R.Z., and Platoff, M.A. (1989). Discovering, visualizing, and

controlling software structure. In "Proceedings of the Fifth International Workshop on

Software Specification and Design." Softw. Eng. Notes. 14(3), pp. 147-150. IEEE

Computer Society Press, Washington, DC.

Seviora, R. (1987). Knowledge-based program debugging systems. IEEE Software 4(3), 20-

32.

Sibor, V. (1990). Interpreting reverse-engineering law. IEEE Software 7(4), 4-10.

Sommerville, I. (1989). "Software Engineering." (3rd Ed.). Addison-Wesley Publ. Co., Inc.,

Wokingham, England.

REVERSE ENGINEERING

Cross etal__.,z

Page 62

Stender, J. (1989). CASE '89--Position paper on "reverse engineering." In "CASE '89:

Proceedings of the Third International Workshop on Computer-Aided Software

Engineering." pp. 51-52. The British Computer Society, London.

Tsai, J.J.-P. and Ridge, J.C. (1988). Intelligent support for specifications transformation.

IEEE Software 5(6), 28-35.

Vanek, L. and Davis, L. (1990). Expert Dataflow and Static Analysis tool. In (Oman, 1990).

IEEE Software 7(3), 63.

Wilde, N. (1990). Dependency Analysis Tool Set prototype. I._gn(Oman, 1990). IEEE Software

7(3), 65.

Yau, S.S. and Tsai, J.J. (1987). Knowledge representation of software component

interconnection information for large-scale software modifications. IEEE Trans. Softw.

Eng. SE-13(3), 355-361.

Yourdon, E. and Constantine, L.L. (1979). Structured Design: Fundamentals of a Discipline

of Computer Program and Systems Desig.n.. Prentice-Hall, Inc., Englewood Cliffs, NJ.

FIGURECAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure7.

Figure 8.

Figure9.

Figure 10.

Figure 11.

The placeof forward andreverseengineering,restructuring,andreengineering

amongthe phasesof the life cycle.

Fundamentalcharacteristicsof redocumentationanddesignrecovery.

Basic architecture for reverse engineering, restructuring, and reengineering tools

(provided by Robert Arnold).

Different perspectives between forward and reverse engineering.

Demonstration of C code formatted according to the book paradigm (from

Oman, P.W. and Cook, C.R. The book paradigm for improved maintenance.

IEEE Software 7(1), 39-45. Copyright IEEE 1990; used with permission).

GRASP/Ada Overview

Ada source code for task CONTROLLER.

Control structure diagram of Ada source code for task CONTROLLER.

Event representation of the simple-swap concept (from Harandi, M.T. and

Ning, J.Q. Knowledge-based program analysis. IEEE Software 7(I), 74-81.

Copyright IEEE 1990; used with permission).

Excerpts from an accumulator plan (adapted from Harandi, M.T. and Ning, J.Q.

Knowledge-based program analysis. IEEE Software 7(1), 74-81. Copyright

IEEE 1990; used with permission).

Typical Recognizer Plan Calculus and flow graph representations of

programming clich6s. (a) Representation in the Plan Calculus of how

associative retrieval can be implemented using a hash table. (b) Part of the

encoding of the overlay into graph grammar rules (the constraints are not

shown) (from Rich, C. and Wills, L.M. Recognizing a program's design: A

graph-parsing approach. IEEE Software 7(1), 82-89. Copyright IEEE 1990;

used with permission).

Figure 12. A templateusedto extracta functionaldescriptionfrom a loop slice (from

Hausler,P.A., Pleszkoch,M.G., Linger, R.C., and Hevner,A.R. Using function

abstractionto understandprogrambehavior.IEEE Software 7(1), 55-63.

Copyright IEEE 1990; used with permission).

Requirements

(constraints,

objectives,

business rules)

Restructuring

Forward

engineering
v

Reverse

engineering

Design

recovery

Reengineering

(renovation)

Design

Restructuring

Implementation

Forward

engineering

Reverse

engineering

Reengineering

(renovation)

Design

recovery

Redocumentation,

restructuring

"0

e"
0

E
0

t...
r--

C

0.3

0
¢.)

E

0

_q

Design Recovery

I Implementation Structure]

/
<

Function Domain

Level of understanding

C_¢zosv _,t- ¢.. _,

..,,.-

Software

Work

Product

i
I
i

Y
I
J

J I

Parser,

Semantic

analyzer

View

composer(s)

Information

base

\\
New view(s)

of product

* Format

* Graphics

* Documentation

* Metrics

* Logic

* Reports

I: i (:r-.)

Forward

engineering

DesignIssues

Alternatives

rejected

Ramifications
of decisions

Existing
design

Code

Unplanned
ramifications

(sideeffects)

Reverse

engineering

, 2
FI6.

/" CoNent_ R Pohsh Page 2 "/

/i, ,./

/. "/

/* Table of Comenls °/

/* Page # °/

I* "1311epage& Preface I

/" °I

/* "/

P Tableof C¢_ntene.s 2 */

/* "!

/* Chap_'rIlKlobals): */

/* Program _Jobal defini_ons 3 *I

r Program inclusions 3

i'* °/

P Chap_'r 2(main projvam): _/

/* M_in() 4 *I

p */

/* Chap_r 3(slmck u_it) *I

I* S_*ck umt global definihons S */

/* Push() 5 "/
/IO Pop() 5 *

P' C}car0 S "/

[* */

I* MOdule Index 6 "/

/- "/

/* Index R_Potish

/* Module Index

/*

/* AtoE(NOT defined)

/* Referenced. p.4

/* Called by: main

/"

/* Clear(defined p.S)

/* Referemed 4.5

/* Called by: rnmn. I_sh. Pop

/*

/'* Ge1Op. (NOT defined)

i" Referenced p 4

/* Called by:n_in

/*

/** main(defined p 4)

..e* Calls to:AtoF.Clear.OetOp.Pop.pnntf,Push

/*

/*Pop(defined pS)

/* Referenced p.4.S

.1'* Called by:nmin

/* Calls to:Clear,prinlf

/*

/* Posh(defJned p 5)

/* Referencedp.4.5

/* Called by:main

/* Calls lo:Ciear.pnnrf

/*

/
Page 6 "1

/*1

*1

*i

*/

*/

*1

*/

*1

*1

*1

*1

*1

*1

.!

*/

o/

.i

*1

*/

*/

*1

*1

.!

*1

*/

-/

./

/* */

/"Chapt 2 R Pohsh

/* Mam O

/* rtversc Pohsh deskcalculator */

main()

{im Type;

char .T,IMaxOp];

double Op2.AtoP(), PopO.Push(];

while((Type. G_Op(S,MaxOp))!= EOF)

switch(Type) {

case Number: push(AIaF(S)),

case '+': push{ Pop(), Pop()).

ca_ '*': Push (PoP()°Pop()).

case ' " Op2: Pop(),

Push(POPO-Op2);

case'l':

c_'c':

case TooBi_

defaulL

Pase4 °i

o/

break;

bi_ak;

break;

break;

Op2- Pop();

ff(Op2 !- 00) Purl* (Pop()jOp2);

ebe prinlf('zero d,visor popped_'); break;

break;

break;

prin_("%20_ istoo long_'.S); break;

pnn_("unknown command %c_', Type);

break;

} p end switch°/

)/* end while °/

J_ end main °/

pnntfC_l_f_', Pus_ Pop()));

de*_);

o_

©

0

task CONTROLLER is

entry

end;

REQUEST (PRIORITY) (D :DATA) ;

task body CONTROLLER is

begin

loop

for P in PRIORITY

select

loop

accept REQUEST(P) (D:DATA) do

ACTION(D);

end;

exit;

else

null;

end select;

end loop;

end loop;

end CONTROLLER;

,e.:<:>>+.+.++ :._t.
F]" G "7

ask
CONTROLLER is

l entry

end;

REQUEST (PRIORITY) (D :DATA) ;

task body CONTROLLER is

Ibegin

loop

for P in PRIORITY loop

select

accept REQUEST(P)

ACTION(D);

_end;

exit;

else

null;

end select;

end loop;

end loop;

end CONTROLLER;

(D :DATA) do

38

4O

43

44

43

47

120

O00

procedure swap(var X, Y : integer);

var T : integer;

assign X to T;

assign Y to X;

assign T to Y;

end-procedure;
O00

proc-call swap (A, B);
oOO

event-class:

interval:

external-form:

varl:

var2:

temp-var:

SIMPLE-SWAP

([0 (120 43 44 45)] [0 (4 43 44 45)])

((43 44 45) SIMPLE-SWAP A B)

A0

B0

T,

plan (accumulator

:update-var ?var
:init-value ?init

:update-value ?val

:update-cond ?cond

:accumulator-op ?op)

path (c-precede

(assign :var-defined ?var :value-used ?init)

(c-enclose

(enumerator :loop-cond ?cond)

(key

(assign
:vat-defined ?var

:value-used (?op ?vat ?val)

"7--" -r t',J

(a)

hash:

compute-hash

selcet:

selct-term
A

retrieve:

set-retrive

hash-table-as_

key:functiO_input

set-retrive

output:

hash -table -retrieve

1

1
1

If the loop slice matchesthepattern
PERFORMUNTIL X >= EXPR3

X := X + EXPR4

END-PERFORM

then the function abstraction for variable X after N loop iterations is
X := X + EXPR4 * N

where the total number of loop iterations is

((X < EXPR3) -> N := ceiling((EXPR3 - X)/EXPR4) I

(X >= EXPR3) -> N := 0)

,.,r_ 3 ".

LU

<

LU

0
>-

0

o

o

0

0

uJ

o
z

o

C
0

o

-=_ _

0

<

o
E

o

°_

°,_

<
<
O'

"> _

0
0

0

° _,,,I o

B
o

M

<

©

o o _
u "_ _ 0

_ ._ ._ _

o 0

121

° _ __ 121

_ _ o

- = E< o _ 0

o
.,,,w

u. ,,z

C
o

=o
o
o

e-
°,.._

.,,.,

0
L3

°,,,w

E 'a '
0 _,

N _ a

_ 6

,- t._

8 ___._ _

0

0 0 _n

e_ ..o "_D 0

__o¢ .. ._
0 c: ,._

o
°,.,_

L_.:_% ,.-,+,':-J T-._,r : :,; p _ %

°,.._

0

B
°,.q

r-

._ _ _ _

o _ _ = t_

e-,
o

o
k_

o

t-
O

-
. r...i

o _

o

_ .o

°_

i

8
[.-
z

-, 0

_o
o

o

E"

0

4.h
tm

0

0

E 0
0

cO

0

[" Z

0
0

0E _

o

0

N
°.=,q

N _

m _

d

e-

,._ .

0

o

0
0

o

,._ oo

r.,O

E
o

..o

°m)

z G

[--

r._

<

_ 0

°_

°,,._

o

0

<

;_ _ /._,__ /2- /9,

°,--4
..o
0

0
Z

°,,q

0 ""'_
°,--i

• U

r..)
a5

o_,_

5_
0

r-,
o

r_

!.)

o

Q5

0

0

"8

_ 0

Z

0

0 0
0 "--0

[-- =

o

._

0o

o

m.

o

.) -

<

0

d

o _ _

"_ _ 0

0

[_ ,',

G
c_

£.)

£J

O

O

G

8 o
m

°,_ O

jo

(0

o_

6
£.)

o'4

< _ _ E"
8 _ _-_ <..

© < _ oo

°

c_

E

"0

c_

c_

<

o,.._

,--4
,--4

0

c_

0

0

r-

.,4

<

0

e-

0

e.
0

e.
U.I

Z

©

8 °

F-.

ca.,

r.].l

©

f

oo

E _
< 0

0

0

r,
o
E
L-,

Ch,
00

,G

,.--,,

..-.,

Q)

,-,

o0

o

o

_ o

o

Q.)

o

o
o

o_
0

0

<

e"

< _

Z

<

[.-,

o

Z
o

o

I...,

o

o _1

o

#
&

,..a

o

g, e
E 0
0

_0

E

Z

C_

o

£ o o

E
o

0 q

(J

CO

o

o

o
o

o,.._

o_

_, _ z
.= o _ ._

0 >

o

£

o

o

o

L, p..,,

"7= " '_

._ o c_

,_, o

C_

0
°_

° .,.m t_
,.l=:

° _._

,.o

0

X

0

oO

,..l

[--

tJJ

E .o

¢b

¢2

0

Z

E

0

,..1
©

©

E

• e-

0 ox i._
ox oo oo
ox Ox ox

_ o 0

e-,

o _ _ ;""_ o _ "-8

0

0 t) ,._

o E F.f_

o
¢2 _ ¢¢1

•= _ _.
_ 0

d

0

[-,

o

°,9,

©

oo
ox

R "

t=

0
L.

,- _ P,
¢_ o o

0
0

. ,"4

.1

0

e_

oo

L_

g
o
C_

°_

o

>

_iJ 0 _ 0

o o

.o o

; g.

e_

o

d
o

>
o

0

0

0

0 _" _

0 0
0 0 i-, 0

e...
o

N

o

Z

0

0

_f
o

>
o

oo

0

=

o >

o

o

o o

o

o

o

o

°_

0_
o

©

e-,

<

L.

,..1

a;
,..1

Appendix B

"Control Structure Diagrams For Ada"

by

James H. Cross II

Auburn University

Sallie V. Sheppard

Texas A&M University

W. Homer Carlisle

Auburn University

Published in Journal of Pascal, Ada & Modula 2, Vol. 9, No. 5, Sep./Oct. 1990, 26-33.

Control Structure

Diagrams for Ada
James H. Cross II

Sallie V. Sheppard
W. Homer Carlisle

dvances in hardware, particularly high-density bit-
mapped monitors, have led to a renewed interest

in graphical representation of software. Much of the

research activity in the area of software visualization

and computer-aided software engineering (CASE) tools

has focused on architectural-level charts and diagrams.

However, the complex nature of the control constructs

and the subsequent control flow defined by program

design languages (PDLs), which are based on pro-

gramming languages such as Ada, Pascal, and Mod-

ula-2, make detailed design specifications attractive

candidates for graphical representation. And, since the

source code itself will be read many times during the
course of initial development, testing, and maintenance,

it too should benefit from the use of an appropriate

graphical notation.

The control structure diagram (CSD} is a notation

intended specifically for the graphical representation

of detailed designs, as well as actual source code. The

primary purpose of the CSD is to reduce the time re-

quired to comprehend software by clearly depicting
the control constructs and control flow at all relevant

levels of abstraction, whether at the design level or

within the source code itself. The CSD is a natural ex-

tension to existing architectural graphical represen-

tations such as data flow diagrams, structure charts,

and Booch diagrams.

The CSD, initially created for Pascal/PDL I 1 I, has been

extended significantly so that the graphical constructs

of the CSD map directly to the constructs of Ada. The

rich set of control constructs in Ada (e.g., task ren-

dezvous) and the wide acceptance of Ada/PDL by the

software engineering community as a detailed design

language made Ada a natural choice for the basis of a

graphical notation. A major objective in the philosophy

that guided the development of the CSD was that the

graphical constructs supplement the code and PDI.

without disrupting their familiar appearance. That is,

the CSD should appear to hc a natural extension to the

Ada constructs and, similarly, the Ada source code

should appear to be a natural extension of the diagram.

This has resulted in a concise, compact graphical no-

tation that attempts to combine the best features of

previous diagrams with tho_ of well-established PI)l.s

A CSD generator was developed to automate the pro-

cess of producing the CSD from Ada source codt-

PR'ECEDING PAGE BLANK NOT FILMED

Control Structure Diagram for Ada

Background

Graphical representations have long been recognized

as having an important impact in communicating from

the perspective of both the "writer" and the "reader."

For software, this includes communicating require-

ments between users and designers and communicat-

ing design specifications between designers and

implementors. However, there are additional areas

where the potential of graphical notations have not

been fully exploited. These include communicating the

semantics of the actual implementation represented

by the source code to personnel for the purposes of test-

ing and maintenance, each of which are major resource

sinks in the software lifecycle. In particular, Shelby et

al. [2] found that code reading was the most cost-ef-

fective method of detecting errors during the verifica-

The CSD for Ada is supported

by an operational prototype
graphical prettyprinter that
accepts Ada source code as
input and generates the CSD
in a manner similar to text-

based prettyprinters.

tion process when compared to functional and

structural testing. Standish [3l reported that program

understanding may represent as much as 90% of the

cost of maintenance. Hence, improved comprehension

efficiency resulting from the integration of graphical

notations and source code could have a significant im-

pact on the overall cost of software production.

Since the flowchart was introduced in the mid-50s, nu-

merous notations for representing algorithms have been

proposed and utilized. Several authors have published

notable books and papers that address the details of many

of theso 14-61. Tripp 151, for example, describes eighteen

distinct notations that have been introduced since 1977,

and Aoyama et al. 16] describe the popular diagrams used

-in Japan. Ingeneral, these diagrams have been strongly

influenced by structured programming and thus contain

control constructs for sequence, selection, and iteration.

In addition, several contain explicit EXIT structures to

allow single entry/multiple exit control flow through a

block ofcode, as well as PAKM_LEL or concurrency con-

structs. However, none of the diagrams cited explicitly
contains all of the control constructs found in Ada.

28 JOURNAL OF PASCAL, ADA & MODULA.2

Graphical notations for representing software at tb_

algorithmic level have been neglected, for the mo._"

part, by business and indust_" in the United States it,

favor of nongraphical PDLs. A lack of automated sup-

port and the results of several studies conducted in th_

1970s that found no significant difference in _he com-

prehension of algorithms represented by flowchart.¢

and pseudocode {7] have been major factors in this un-
derutilization. However. automation is now availabh.

in the form of numerous CASE tools, and recent em-

pirical studies reported by Aoyama [6l and Scanlan [81

have concluded that graphical notations may indeed

improve the comprehensibility and overall productiv-

ity of software. Scanlan's study involved a well-con-

trolled experiment in which deeply nested if-then-else

constructs, represented in structured flowcharts and

pseudocode, were read by intet_mdiate-level students.

Scores for the flowchart were si_fificantly higher than

those of the PDL. The statistical studies reported by

Aoyama et al. involved several tree-structured dia-

grams (e.g., PAD, YACC II, and SPD} widely used in

Japan that, in combination with their environments,

have led to significant gains in productivity. The re-

suits ofthese recent studies suggest that the use of a

graphical notation with appropriate automated sup-

port for Ada/PDL and Ada should provide significant

increases in productivity over current nongraphical

approaches.

Control Structure Diagram

Figure l(a) contains an Ada task body CONTROLLER

adapted from 19] that loops through a priority list at-

tempting to accept selectively a REQU_ with prior-

ity P. Upon on acceptance, some action is taken,

followed by an exit from the priority list loop to restart

the loop with the first priority. In typical Ada task

fashion, the priority list loop is contained in an outer

infinite loop. This short example contains two threads

ofcontrol: the rendezvous, which enters and exists at

the accept statement, and the thread within the task

body. In addition, the priority list loop contains two

exits: the normal exit at the beginning of the loop when

the priority list has been exhausted, and an explicit
exit invoked within the select statement. While the

concurrency and multiple exits are useful in modeling

the solution, they do increase the effort required of the

reader to comprehend the code.

Figure l(b) shows the corresponding CSD generated

by the graphical prettyprinter. In this example, the in-

tuitive graphical constructs of the CSD clearly depict

the point of rendezvous, the two nested loops, the se-

continued on !:,:ge 32

iect statement guarding the accept statement for the

task, the unconditional exit from the inner loop, and

the overall control flow of the task. When reading the

code without the diagram, as shown in Figure l(a), the

control constructs and control paths are much less vis-

ible although the same structural and control infor-

mation is available. As additional levels of nesting and

increased physical separation of sequential components

occur in code, the visibility of control constructs and

control paths becomes increasingly obscure, and the ef-

fort required of the reader dramatically increases in
the absence of the CSD.

Now that the CSD has been briefly introduced, the

various CSD constructs for Ada are presented in Fig-

ure 2. Since the CSD is designed to supplement the se-

mantics of the underlying Ada, each of the CSD

constructs is self-explanatory and are presented with-

out further description.

Automated Support m The CSD
Graphical Prettyprinter

Automated support is a requirement, at least in the

in professional ranks, for widespread utilization of

any graphical representation. Without automated

support, diagrams are difficult to construct and main-

rain from the standpoint of'living _ formal documen-

tation, although software practitioners may use

several types of diagrams informally during design

task CONTROLLER is

entry REOUEST(PRIORIT¥}

end;

(D:D&TA};

task body CONTROLLER is

begin

loop

for P in PRIORITY loop

select

accept REQUEST(P} |D:DATA) do

ACTION(D);

end;

exit;

else

null:

end select;

end loop;

end loop;

end CONTROLLER;

Figure l(ah Ada source code for task co.x-rm)tJ.El¢

and even implementation. Automated support comes

in many forms, ranging from general-purpose "draw-

ing aids" to automatic generation and maintenance

based on changes to source code. The CSD for Ada is

currently supported by an operational prototype

graphical prettyprinter that accepts Ada source code

as input and generates the CSD in a manner similar

to text-based prettyprinters. The prototype was im-

plemented under DEC's VAX VMS using a scanner/

parser generator and an Ada grammar. The use(" in-

terface was built using DEC's VAX Curses, and to pro-

The potential of the CSD is

best realized during detailed
design, implementation,

verification, and maintenance.

vide the user with interactive viewing of the CSD, a

special version of DEC's EVE editor was generated.

Custom fonts for the CSD graphics.characters were
built for both the VT220 terminal and the HP Laser

Jet printer. Using font-oriented graphics characters

rather than bit-mapped images provided for a high

degree of efficiency in generating the diagrams.

¢oazlittuetl cm tmgc :!2

aSk CONTROLLER is

entry REQUEST (PRIORITY) ID:DATA) ;

end:

body CONTROLLER is

91n

loop

tot P in PRIORITY loop

select

--o

---7/accept REOUEST(P} (D:DATA) do
£

e_nd_ CT/ONtD|:

4 -- e_it;

null:

end select;

end loop;

end loop;

nO CO_TROLLER:

Figure] (bL Control structurc diagram ofAda suurcc a_c _Jr

task('o_H4_l.l.ER

SEPTEMBER�OCTOBER 1990 29

Control Structure Diagram for Ada

-- PROCEDUP_

dure X is

S;
S;
S;

-- PACKAGE

Y is

-- SEQOENCE

S;

S;

S;

-- SELECT ION

C then

5;
S;

end if;

-- C.J_E

e D is
n C1 ->

S;n C2 ->

end Case;

-- FOR

for ,r rsF in R loop

:i
loop;

p-- S;

-- WHILE

S_l_hLle C loop

S;

$;

loop;

_-- 5:

*- INFINITE LOOP
S;

S;

0 loop;

Figure 2. Control structure diagram constructs for Ada

30 JOURNAL OF PASCAL, ADA & MODULA-2

-- LOOP EXIT
5;

5;

I_ exit when C;

S:

-- BLOCK

S:

S;

d;

t---- S;

-- BLOCK WITH DECLA_ATIONS

declare

(I c : mTE_ER;
[begin

S:

S:

d;

-- GO TO

S;

qoto L;

-- RAISE

S:

4_ raise Err;

-- EXCEPTION HANDLER

-- 5.

except i on

w_,lwhei"l Errl ">

i[-'-; S;

-_when Err3 ">
i S:

end:

-- TASK 5PEC[F[CATIOfq

t//_'_ body Y is

e_n qin

5:
S;

d;

-- P.£NDEZVOUS (R£CEIVERI

C do

S

-- TErmINATE ALTE_AT:_

se!e::

accept F _c

d;"

nd select;

-- SELECT

-- S;

i _/.ccepc
4.-

I Or

I

Z do

J do

else

end select;

-- ABORT

t_-_ body P is

_begln

Sa_ _t p.

.end;

Control Structure Diagrams for Ada

The prototype is currently being ported to the Sun-4

workstation under UNIX and X Windows, where en-

hancements will include an option to collapse the diagram

around any control constructs and an option to generate

an intermediate level architectural diagram that indicates

control structure among subprograms and tasks.

Conclusions and Directions

A new graphical tool that maps directly to Ada was for-

mally defined and automated. The CSD offers advantages

over previously available diagrams in that it combines the

best feahJres of PDL and code with simple intuitive graphi-

cal constructs. The potential ofthe CSD can be best

during detailed design, implementation, verification, and
maintenance. The CSD can be used as a natural extension

to popular archlY-level representations such as data

flow diagrams, Booch diagrams, and structure charts.

Our current reverse engineering project, GRASP/Ada

[10], is focused on the generation of multilevel and

multiview graphical representations from Ada source
code. As indicated in GRASP/Ada overview shown in

Figure 3, the C_D represents the code/PDL level dia-

gram generated by the system. Our present efforts
are concentrated on the extraction of architectural-

and system-level diagrams such as structure charts.

Booch diagrams, and data flow diagrams. The reverse

engineering of graphical representations is destined

to become an integral component of CASE tools, which

until recently have focused on forward engineering.

The development of tools that provide for interactive

automatic updating of charts and diagTams will serve

to improve the overall comprehensibility of software

and, as a result, improve reliability and reduce the
cost of software.

The reverse engineering of
graphical representations is
destined to become an

integral component of CASE

tools, which until recently

have focused on forward

engineering.

Figure 3. Over_'iew of the GRASP/Ada reverse en_,nneering project.

32 JOURNAL OF PASCAL. ADA & MODULA.2

PRECEDING PAGE BLANK NO"i FILMED

Acknowledgments

This research was supported, m part, by a grant from

George C. Marshall Space Flight Center, NASA/MSFC.

AL 35821. Richard Davis, Charles F. May, Kelly I. Mor-

rison, Timothy Plunkett, Darren Tola, K.C. Waddel,

and others made valuable contributions to this project.

References

1. J.H. Cross and S.V. Sheppard, The Control Structure Diagram:

An Automated Graphical Representation For Software. Proceed-

ings of the 2 lst Haumii International Conference on Systems Sci-

ences (Kailui-Kona, HA. Jan. 5-8). IEEE Computer Society Press,

Washington, DC, 1988, Vol. 2, pp. 446--454.

2. R. Shelby eta]., A Comparison of Software Verification Tech-

niques, NASA Software Engineering Laboratory Series (SEL-85-

001), Goddard Space Flight Center, Greenbelt, MD, 1985.

3. T. Standish, An Essay On Software Reuse, IEEE Transactions

on Software Engineering, SE-10, (9), 494-497, 1985.

4. J. Mar_ and C. McClure, D_ 9_echniques for Analy_ts

and _ Prentice-HaiL Englewood Cliffs, NJ, 1985.

5. LL. Tdpp, Survey of Graphica| Notations For Program Design

-- An Update, 8oflu_rt Engin_r/ng Notes, 13(4}, 39-44, 1988.

6. M. Aoyama et aL, Design Spedfication in Japan: Tree-Structured

Charts, IEEESoftweme, 31-,37, 1989.

7. B. Shneiderman et al., Experimental Investigations of the Util-

ity of Detailed Flowcharts in Programming, Communications of

the ACM, N_ 20. 373-381. 1977.

8. D.A. Scanlan, Structured Flowcharts Outperform Pseudocode:

An Experimental Comparison, IEEE Software, 28-36, 1989.

9. J.G.P. Barnes, Programming in Ada, Second Edition, Addison-

Wesley Publishing Co., Menlo Park. CA, 1984.

10. J.H. Cross, GRASP/Ado: Graphical Representations of Algorithms.

Structures and _ for Ado, Tec_ Report (NASA-NCC8-

14), Auburn University, December 1989.

James tl. Crozz H is an A_islant Professor of Computer Sci-

ence and Engineering at Auburn University. Auburn. AL. l/is re.

march interests include design methodology, development

enuironmenls, reoer_e engineering and maintenance, uisualization,

and testing. He received a B.S. degree/'ram the University villous-

ton, an M.S. degree fram Sam ttouston Slate University, and a

Ph.D. from Texas A&M University. t

Sallie V. Sheppard L_ the A._ociote Protract for Undergraduate

Studies and Professor of Computer Science at Texas A& M University,

College Station, TX. She received B.A. and M.S. degrees from Texa._

A&M University and a Ph.D. from the University of Pittsburgh. lter

research interests include programming languages and simulation.

W. Homer Carlisle is an Assistant Profes._or of Computer Sci-

ence and Engineering at Auburn University, Auburn, AL. He re.

ceit,ed B.A.M.A.. and Ph.D, degrees from Enter), University.. His

research interests include programming languages and parallel

processing.

pRECEDING PAC%EBLANK NOT FILMED SEPTEMBER�OCTOBER 1990 35

Appendix C

Extended Examples

The examples in this Appendix were extracted from a set of Ada source code f'des

provided by NASA to test the CSD generator. These examples were used in Section 5 to

illustrate the User Interface.

*** GRASP/ADA VI.0 *** File: aerodap.a.csd

with LEVELA_CONSTANTS ;

use LEVEL_A_CONSTANTS;

with DATA_TYPES ;

use DATA TYPES;

with FSW_POOL;

use FSW_POOL;

with IL_POOL;

use IL_POOL;

with S IM_POOL;

use S IM_POOL;

with MATH_PACKAGE;

use MATH_PACKAGE;

with QUATERNION_OPERATIONS;

use QUATERNI ON_OPERATI ONS;

with DOUBLE_PRECISIONMATRIX_OPERATIONS;

use DOUBLE_PRECISION_MATRIX_OPERATIONS ;

with SINGLE_PRECISION_MATRIX_OPERATIONS ;

use SINGLE_PRECISION_MATRIX_OPERATIONS ;

Ipackage body AERO_DAPPACKAGE is

FIRST_PASS : BOOLEAN_32 := TRUE;

-- FIRST PASS FLAG --

TRIM_ERROR_L : SCALAR_SINGLE := 0.0 ;

-- PITCH CHANNEL VARIABLE --

KP_RCS : INTEGER := 0;

-- JET SELECT LOGIC VARIABLES --

Page:

KQ_RCS : INTEGER := 0;

KR_RCS : INTEGER := 0;

ALPHA_DAP : SCALAR_SINGLE := 0.0 ;

-- THIS NEXT SECTION OF VARIABLES HAS BEEN ADDED TO THIS PORTION OF --

-- OF THE PACKAGE IN ORDER TO PROVIDE A DUMP OF THESE VARIABLES, --
-- NOT BECAUSE THEY NEED 'MEMORY' IN THE SENSE THAT THEIR VALUES --

-- MUST BE REMEMBERED FROM INVOCATION TO INVOCATION OF PROCEDURE --

-- AERO_DAP. CONSEQUENTLY, WHEN THE FLIGHT SOFTWARE IS FULLY --
-- CHECKED OUT, THESE DECLARATIONS CAN BE MOVED TO APPEAR AS LOCAL --

-- DECLARATIONS IN PROCEDURE AERO-DAP --
................................

-- PROCEDURE AERODAP LOCAL VARIABLES --

-- ALPHA, BETA, AND PHI --

BETA_DAP : SCALAR_SINGLE == 0.0;

CALPHA = SCALAR_SINGLE := 0.0;

PHI_DAP : SCALAR SINGLE := 0.0;

SALPHA : SCALAR_SINGLE := 0.0;

BETA_FCS : SCALAR_SINGLE := 0.0;

-- BETA FILTER VARIABLES --

P FCS : SCAI2hR SINGLE := 0.0;
..

-- TRANSPORT DELAY COMPENSATION VARIABLES --
..

*** GRASP/ADA Vl.0 *** File: aerodap.a.csd

Q_FCS : SCALAR_SINGLE := 0.0;

R_FCS : SCALAR_SINGLE := 0.0;

PHI_ERROR : SCALAR_SINGLE := 0.0;

-- STABILITY AXES VARIABLES --
.......................

BANK_RATECMD : SCALAR_SINGLE := 0.0;

BETA_RATE_CMD : SCA/dh__SINGLE := 0.0;

DP CMD : SCAIdh__SINGLE := 0.0;

-- BODY AXES VARIABLES --

DQ_CMD : SCILLAR SINGLE := 0.0;

DR_CMD : SCALAR_SINGLE := 0.0;

P_CMD : SCALAR_SINGLE := 0.0;

-- ROLL CHANNEL VARIABLES --
............................

P_ERROR : SCALAR_SINGLE := 0.0;

ALPHA_TRIM_CMD : SCALAR_SINGLE := 0.0;

-- PITCH CHANNEL VARIABLES --

ALPHA_TRIM_RATE : SCALAR_SINGLE := 0.0 ;

ALPHA_TRIM_ERROR : SCALAR_SINGLE := 0.0 ;

ALPHA_TRIM_ERROR_L : SCALAR_SINGLE := 0.0;

Q_CMD : SCALAR_SINGLE := 0.0;

Q_ERROR : SCALAR SINGLE := 0.0;

R_CMD : SCALAR_SINGLE := 0.0;

-- YAW CHANNEL VARIABLES --

R_ERROR : SCALAR_SINGLE := 0.0 ;

DPI : SCALAR_SINGLE := 0.0;

-- JET SELECT LOGIC VARIABLES --

DP2 : SCAI2L__SINGLE := 0.0;

DQI : SCALAR_SINGLE := 0.0;

DQ2 : SCALAR_SINGLE := 0.0;

DQ3 = SCALAR_SINGLE := 0.0;

DQ4 : SCALAR SINGLE := 0.0;

DQ5 : SCALA_ SINGLE := 0.0;

DQ6 : SCALAR SINGLE := 0.0;

DR1 : SCALAR_SINGLE := 0.0;

DR2 : SCALAR_SINGLE := 0.0;

DR3 : SCALAR SINGLE := 0.0;

DR4 : SCALAR_SINGLE := 0.0;

DR5 : SC;tLAR_SINGLE := 0.0;

DR6 : SCALAR_SINGLE := 0.0;
-- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED

-- FOR THIS APPLICATION

use SINGLE_PRECISION_MATRIXOPERATIONS.REAL_MATHLIB;

use DOUBLE PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;
..

-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED --

-- BY procedure AERODAP. THEY ARE POSITIONED EXTERNAL TO --

-- PROCEDURE AERODAP SO THAT THEIR VARIABLES WILL EXIST --
-- BEYOND THE TIME WHEN THE PROCEDURE IS EXECUTING --

..

I[pa=kage BETA_FILTERPACKAGE is

Page:

*** GRASP/ADA Vl.0 ***

package AERO ANGLE_EXTRACT PACKAGE

File: aerodap.a.csd

is

Page :

I procedure AERO_ANGLE EXTRACT;

end AERO_ANGLE EXTRACT_PACKAGE;

Ipackage TRANS_DELAY COMP PACKAGE

I procedure TRANS_DELAY_COMP ;

Lend TRANS_DELAY_COMP_PACKAGE ;

I!package STAB_AX ES_CMD_ PACKAGE

I procedure STAB_AXES_CMD;

end STAB_AXES_CMD_PACKAGE;

Ipackage JET SELECT_IX)GIC_PACKAGE

I procedure JET_SELECTLOGIC;

end JET_SELECT_LOGIC_PACKAGE;

is

is

is

-- BODIES OF PACKAGES SPECIFIED ABOVE --

package body AERO_ANGLE_EXTRACT PACKAGE is

-- LOCAL - POSITIONED HERE FOR DUMP --

UNIT._X_VR : SINGLE_PRECISION_VECTOR3;

UNIT_Y_BODY_IN_INERTIAL : SINGLE_PRECISION_VECTOR3;

UNIT._Y VR : SINGLE PRECISION_VECTOR3;

UNIT_Z DCL : SINGLE_PRECISION_VECTOR3;

UNIT_Z_VR : SINGLE_PRECISION_VECTOR3;

VREL_BODY : SINGLE_PRECISION_VECTOR3;

procedure AERO ANGLE_EXTRACT is

begin
....................................

-- RELATIVE VELOCITY IN BODY AXES --
....................................

-- VREL_BODY := Q_FORM (Q_POSE (Q_B_TO_I) ,DOUBLE TO_S INGLE (V_REL_NAV)) ;
..........................

-- ALPHA, BETA, AND PHI --
..........................

-- ALPHA_DAP := ARCTAN2 (VREL BODY (3), VREL_BODY (I)) * RAD TO_DEG ;

--BETA DAP := SCALAR_SINGLE(ASIN(VREL BODY(2) / V_REL_MAG) "

RAD_TO DEG) ;

-- UNIT Y BODY IN INERTIAL := Q_FORM(Q_B_TO_I,Y_BODY) ;

-- UNIT X VR := DOUBLE TO SINGLE(UNIT(V_REL NAV));

*** GRASP/ADA Vl.0 *** File: aerodap.a.csd Page:

-- UNIT Y VR := DOUBLE TO SINGLE(UNIT(CROSS_PRODUCT(UNIT X VR,UNIT_R)))

t

-- UNIT_Z_VR := UNIT(CROSS_PRODUCT(UNIT__XVR, UNIT_Y_VR)) ;

-- UNIT_Z_DCL := UNIT(CROSS_PRODUCT(UNIT Y BODY IN INERTIAL,UNIT X VR))

-- PHI_DAP := ARCTAN2(DOT_PRODUCT(UNIT Z DCL,UNIT Y VR),DOT PRODUCT(

UNIT_Z_DCL, -UNIT Z VR)) * RAD TO DEG;
................................

cALCiTE ::
-- CALPHA := COS (ALPHA_DAP * DEG TO RAD) ;

-- SALPHA := SIN(ALPHA_DAP * DEG TO RAD);

I end AERO_ANGLE_EXTRACT;
[end AERO_ANGLE_EXTRACT_PACKAGE ;

)ackage body BETA_FILTER_PACKAGE is

BETA_NODE : SCALAR_SINGLE := 0.0;

FIRST_PASS : BOOLEAN_32 := TRUE;

procedure BETA_FILTER is

begin

-- CALCULATE BETA_FCS --

-- if (QBAR_NAV > QBAR_BETA_FILT_ON) then

i_ FIRST._PASS then

BETA_FCS := 0.0;

FIRST_PASS := FALSE;

se

BETA_FCS := BETA_NODE * (K_BETA_FILT(1) * BETA_DAP);

end if;

--BETA_NODE := (K_BETA_FILT(2) * BETA_DAP) * (K_BETA_FILT(3) *

BETA_FCS) ;

else

-- BETA_FCS := BETA_DAP;

end if;

end BETA_FILTER;

end BETA_FILTER_PACKAGE;

package body TRANS_DELAY_COMP_PACKAGE is

..

-- LOCAL TO TRANS_DELAY_COMP - POSITIONED HERE FOR DUMP
..

ROLL_ACCEL :-SCALAR_SINGLE := 0.0;

PITCH_ACCEL : SCALAR_SINGLE := 0.0;

YAW_ACCEL : SCALAR_SINGLE := 0.0;

procedure TRANS_DELAY_COMP is

begin
...

.... TRANSPORT DELAY COMPENSATION TO BODY RATES - NEED TO ADD PRIME CO

--MP ...

--ROLL_ACCEL := ROLL_ACCEL_NOM * SIGNUM(KP_RCS) ;

--PITCH_ACCEL := PITCH_ACCEL_NOM * SIGNUM(KQ RCS);

*** GRASP/ADAVl.0 *** File: aerodap.a.csd

L YAW_ACCEL:= YAW_ACCEL_NOM* SIGNUM(KR_RCS);-- P_FCS:= BODY_RATE(l)* (ROLL_ACCEL* DT_AERODAP);
Q_FCS:= BODY_RATE(2)* (PITCH_ACCEL * DT_AERODAP);

! _ R FCS := BODY_RATE(3) * (YAW_ACCEL * DT_AERODAP);

i Lend TRANS_DELAY_COMP;

Lend TRANSD_Y_COMP_PACKAGE;

Ipackage body STAB_AXES_CMI)_PACKAGE is

Page:

-- LOCAL TO STAB_AXES_CMD - POSITIONED HERE FOR DUMP --

.........................

PHI_DELTA : SCALAR_SINGLE := 0.0;

PHI_SHORTEST : SCALAR_SINGLE := 0.0;

N_I80 : constant SCALAR_SINGLE := 180.0;

N_360 : constant SCALAR_SINGLE := 360.0;

procedure STAB_AXES_CMI) is

begin

-- DETERMINE CORRECT BANK ERROR WITH CORRECT SIGN FOR ROLL --

-- PHI_DELTA := PHI_CMD - PHI_DAP;
if INTEGER'(SIGN(PHI_CMD)) = INTEGER'(SIGN(PHI_DAP)) then

I -- PHI_ERROR := PHI_DELTA;

i
else

i--_if (abs (PHI_DELTA) >= N_IS0) then

PHI_SHORTEST := PHI_DELTA * (SIGN(PHI_DELTA) * N_360');

.._se

PHI_SHORTEST := PHI_DELTA;

end if;

--_ if (abs (PHI_SHORTEST) < DPHI_OVER_UNDER) then

-- PHI_ERROR := PHI_SHORTEST;

else

LIFT_DOWNREVERSAL then
• PHI_ERROR := PHI_DELTA;

else

PHI_ERROR := PHI_DELTA * (SIGN(PHI_DELTA) * N_360);

end if;

end if;

end if;

-- CALCULATE BANK AND SIDESLIP RATE COMMAND --
...

-- BANK_RATE_CMD := MIDVAL(-BANK_RATE_CMD_LIM,(K_PHI * PHI_ERROR),

BANK_RATE_CMD_LIM);

-- BETA_RATE_CMD := K_BETA * BETA_FCS;

end STAB_AXES_CMD;

_end STAB_AXES_CMD_PACKAGE;

!package body JET_SELECT_LOGIC_PACKAGE is

i

=-- LOCAL TO JET_SELECT_LOGIC --

*** GRASP/ADA Vl.0 *** File: aerodap.a.csd

-- POSITIONED HERE FOR DUMP --

DP ABS : SCALAR_SINGLE := 0.0;

DQ_ABS : SCALAR_SINGLE := 0.0;

DR_ABS : SCALAR_SINGLE := 0.0;

DP_SIGN : INTEGER := 0;

DQ_SIGN : INTEGER := 0;

DR_SIGN : INTEGER := 0;

KP_RCS_PAST : INTEGER := 0;

KQ_RCS_PAST : INTEGER := 0;

KR_RCS_PAST : INTEGER := 0;

procedure JET_SELECT_LOGIC is

begin

-- JET LEVEL LOGIC --

-- RCS_ON := (others=>OFF);

-- DP_ABS := abs (DP_CMD);

-- DQ__ABS := abs (DQ_CMD);

-- DR_ABS := abs (DR__CMD);

-- DP_SIGN := SIGN(DP_CMD);

-- DQ_SIGN := SIGN(DQ_CMD);

-- DR_SIGN := SIGN(DR_CMD);

-- KP_RCS_PAST := KP_RCS * DP_SIGN;

-- KQ_RCS_PAST := KQ_RCS * DQ_SIGN;

-- KR_RCS_PAST := KR_RCS * DR_SIGN;

-- DETERMINE JET LEVELS --

Page:

-- HAS 1 LEVEL OF MOMENT FOR ROLL AND 3 LEVELS FOR PITCH AND YAW --

-- ROLL CHANNEL --

i--_if ((DP_ABS >= DP2) or ((DP__ABS >= DPI) and (KP_RCS_PAST >= I)))
then

KP_RCS := DP_SIGN;

U_else

KP_RCS := 0;

end if;

-- PITCH CHANNEL --

if ((DQ_ABS >= DQ2) or else ((DQ_ABS >= DQI) and (KQ_RCS PAST >= I))
) then

-- KQ_RCS := DQ_SIGN;

if ((DQ_ABS >= DQ4) or else ((DQ_ABS >= DQ3) and (KQ RCS_PAST >=
2))) then

-- KQ_RCS := 2 * DQ_SIGN;

elsif ((DQ_ABS >= DQ6) or else ((DQ_ABS >= DQS) and (KQ_RCS_PAST
>= 3))) then

-- KQ_RCS := 3 * DQ_SIGN;

end if;

else

i-- KQ_RCS := 0;

*** GRASP/ADA Vl.0 *** File: aerodap.a.csd Page:

L
end if;

-- YAW CHANNEL --

if ((DR_ABS >= DR2) or else ((DR_ABS >= DR1) and (KR_RCS_PAST >= I})
) then

i -- KR_RCS := DR_SIGN;
i--_if ((DR_ABS >= DR4) or else ((DR_ABS >= DR3) and (KR_RCS_PAST >=

{ i_ 2))) then
KR_RCS := 2 * DR_SIGN;

i_elsif ((DR_ABS >= DR6) or else

>= 3))) then

- KR_RCS := 3 * DR_SIGN;i
end if;

else

_-- KR_RCS := 0;
_ L

end if;

((DR_ABS >= DR5) and (KR_RCS_PAST

-- JET SELECT LOGIC --

-- ROLL CHANNEL --

-0
I
!
I
i
I
i
i
!
I

i

if (KP_RCS /= 0) then

(KP_RCS > 0) then

RCS ON(I) ON;

I __ :=

RCS_ON(2) := ON;

else

-_-- RCS_ON(3) := ON;

i_ RCS_ON(4) := ON;

end if;

end if;

-- PITCH CHANNEL --

! i

il

if (KQ_RCS /= 0) then

if (KQ_RCS > 0) then

i -_if ((KQ_RCS = i) or (KQ_RCS = 3)) then

i i_ RCS_ON(5) := ON;

i end if;

! --_if (KQ_RCS >= 2) then

ii[ReS_ON(9) := ON;
i

end if;

else

if ((KQ_RCS = -I) or (KQ_RCS = -3)) then
RCS_ON(6) := ON;

end if;

-_. if (KQ_RCS <= -2) then

---- RCS_ON(IO) := ON;

end if;

*** GRASP/ADA Vl.0 *** File: aerodap.a.csd

L Lend if;

end if;

-- YAW CHANNEL --

if (KR_RCS /= 0) then
if (KR_RCS > 0) then

-_if ((KR_RCS = i) or (KR_RCS = 3)) then

i RCS_ON(7) := ON;

end if ;

i i--_if (KR_RCS >= 2) then

i_' RCS_ON(II) := ON;

end if;

else

i-_if ((KR_RCS = -i) or (KR_RCS = -3)) then

' i_ RCS_ON(8) := ON;

end if;

(KR_RCS <= -2) thenRCS_ON(12) := ON;

iL

i'

end if;

end if;

end if;

end JET_SELECTLOGIC;

-- DON'T TURN ON_%TO OPPOSING JETS --

Page:

-- NOT CURRENTLY POSSIBLE - CODE LEFT AS REMINDER OF LEVEL B SPEC --

-- IF (RCS_ON$(I:) = ON) and (RCS_ON$(3:) = ON) THEN

-- RCS_ON$(I:),RCS_ON$(3:) = OFF;

-- IF (RCS_ON$(2:) = ON) and (RCS_ON$(4:) = ON) THEN

-- RCS_ON$(2:),RCS_ON$(4:) = OFF;

end JET_SELECT_LOGIC_PACKAGE;
____*******************************____

use BETA_FILTER_PACKAGE;

use AERO_ANGLE_EXTRACT_PACKAGE;

use TRANS_DELAY_COMP_PACKAGE;

use STAB_AXES_CMD_PACKAGE;

use JET_SELECT_LOGIC_PACKAGE;
__*******************************__

procedure AERO_DAP is

-- LOCAL PROCEDURES --
......................

i Procedure AERO_DAP_INIT;

I procedure BODY_AXES_CMD;

*** GRASP/ADA Vl.0 *** File: aerodap.a.csd Page:

procedure BODY_AXES_CMD is

begin

-- DAP ROLL CHANNEL --

-- P_CMD := (BANK_RATE_CMD * CALPHA) * (BETA_RATE_CMD * SALPHA);

-- P_ERROR := P_CMD - P_FCS;

-- DP_CMD := K_P * P_ERROR;

-- DAP PITCH CHANNEL --

-- ALPHA_TRIM_CMD := ALPHA_CMD - TRIM_ERROR_L;

-- ALPHA_TRIM_ERROR := ALPHA_TRIM_CMD - ALPHA_DAP;

-- ALPHA_TRIM_ERROR_L := MIDVAL(-ALPHA_ERROR_LIM, ALPHA_TRIM_ERROR,

ALPHA_ERROR_LIM),;

-- Q_CMD := K_ALPHA * ALPHA_TRIM_ERROR_L;

-- Q_ERROR := Q_CMD - Q_FCS;

--DQ_CMD := K_Q * Q_ERROR;

--TRIM_ERROR_L := TRIM_ERROR_L * (K_ALPHA_TRIM * Q_ERROR * DT_AERODAP)

-- TRIM_ERROR_L := MIDVAL(-TRIM_ERROR_LIM, TRIM_ERROR_L, TRIM_ERROR_LIM)

-- DAP YAW CHANNEL --

-- R_CMD := (BETA_RATE_CMD * CALPHA) *

-- R_ERROR := R_CMD - R_FCS;

-- DR_CMD := K_R * R_ERROR;

end BODY_AXES_CMD;

(BANK_RATE_CMD * SALPHA);

procedure AERO_DAP_INIT is

begin

-- COPY I-LOADS --

-- DPI := DPI_AERO;"

-- DQI := DQI_AERO;

-- DR1 := DRI_AERO;

-- DP2 := DP2 AERO;

-- DQ2 := DQ2_AERO;

-- DR2 := DR2_AERO;

-- DQ3 := DQ3_AERO;

-- DR3 := DR3_AERO;

-- DQ4 := DQ4_AERO;

-- DR4 := DR4_AERO;

-- DQ5 := DQ5_AERO;

-- DR5 := DR5_AERO;

-- DQ6 := DQ6_AERO;

-- DR6 := DR6_AERO;

end AERO DAP_INIT;

begin

-- BODY OF PROCEDURE AERO DAP --
__****************************___

.......................

-- AERO_DAP EXECUTIVE --
........................

FIRST_PASS then
i AERO_DAP_INIT;

*** GRASP/ADAVl.0 ***

_ FIRST_PASS:= FALSE;
end if;

_ AERO_ANGLE_EXTRACT;

BETA_FILTER;

_ TRANS_DELAY_COMP;

_ STAB_AXES_CMD;

_ BODY_AXES_CMD;

_ JET_SELECT_LOGIC;

File: aerodap.a.csd

-- COPYCYCLESFORPLOTTINGIN EDITOR- NOTDAPCODE--

-- GENERALVARIABLES--

ALPHA_EDIT:= ALPHA_DAP;
-- BANK_RATE_CMD_EDIT := BANK_RATE__CMD;

-- BETA_EDIT := BETA_DAP;

-- BETA_FCSEDIT := BETA_FCS;

-- BETA__RATE__CMDEDIT := BETA_RATE_CMD;

-- PHI_EDIT := PHI_DAP;

-- PHIERROR_EDIT := PHI_ERROR;

-- TRANSPORT DELAY COMI_ENSATED BODY RATES --

-- BODY_RATE__FCS_EDIT(1) := P_FCS;

-- BODY_RATE_FCS_EDIT(2) := Q_FCS;

-- BODY_RATE_FCS_EDIT(3) := R__FCS;

-- ROLL AXIS --

-- ATT_ERROR_EDIT(1) := PHI_ERROR;

-- DP_CMD_EDIT := DP_CMD;

-- P_ERROR_EDIT := P_ERROR;

-- PC_EDIT := P_CMD;

-- PITCH AXIS --

-- ALPHA_TRIM_CMD_EDIT := ALPHA_TRIM_CMD;

-- ALPHA_TRIM_ERROR_EDIT := ALPHA_TRIM_ERROR;

-- ALPHA_TRIM_RATE_EDIT := ALPHA_TRIM_RATE;

-- ATT_ERROR_EDIT(2) := ALPHA_TRIM_ERROR_L;

-- DQ_CMD_EDIT := DQ_CMD;

-- Q_ERROR EDIT := Q_ERROR;

-- QC_EDIT := Q_CMD;

-- TRIM_ERROR_L_EDIT := TRIM ERROR L;

-- YAW AXIS --

-- ATT_ERROR_EDIT(3) := -BETA FCS;

-- DR_CMD EDIT := DR_CMD;

Page:

*** GRASP/ADA VI.0 ***

I -- R__ERROR_EDIT := R__ERROR;

-- RC_EDIT := R CMD;

-- JSL VARIABLES --

-- KP__RCS EDIT := KP__RCS;

-- KQ__RCS__EDIT := KQ__RCS ;

-- KR__RCS__EDIT := KR RCS;

end AERO_DAP;

end AERO_DAP_PACKAGE;

File: aerodap.a.csd Page: 11

*** GRASP/ADA Vl.0 *** File: b1553 c.a.csd

with system;

use system;

with component_types;

use component_types;

with logical;

use logical;

with b1553_bc;

use b1553_bc;

with unchecked_conversion;

Ipackage body BI553_COMPONENT_DATA is

data: arr_64;

data_msg: arr_64;

DATA_MSG2: ARR_64;

stat_arr: arrl;

msg_count: integer;

-- A_cmd: UNSIGNED_WORD;

-- A_cmdlbk: UNSIGNED_WORD;

-- A_stat: UNSIGNED_WORD;

msg_arr: arr 59 65;

nmsg: integer;

wdcount: arr_32;

bc_interrupt_status: unsigned_word := 16#75#;

-- package int_io is new INTEGER_IO(INTEGER);

-- use int_io;

procedure BI553_IMU_INTRP

begin

is

-- Message 1 --

-- Set up IMU 40 msec interrupt - Data Ready Signal --

-- bc_interrupt_status := unsigned_word(16#75#) ;

ile (short_and(bc_interrupt_status, 16#74#) /= 16#0000#) loop

data_msg(1) := 16#0001#;

Even and Odd frame data --

data_msg(2) := 16#1000#;

BIT 12 DATA READY SIGNAL - 40 MSEC --

data_msg(3) := 16#0000#;

Data word - RT 2 Subadd 3 --

rcv 3 data words --

e_ndBC_I__... _ERRISPT (bc_int errupt_s tatus) ;
loop;

-- Wait for BC interrupt then --

-- change buffer --

-- put(" bc_interrupt_status = ") ;

-- put (integer (bc_interrupt_status) , 4,16) ;

-- new_line;

end B1553_IMU_INTRP ;

-- end bc_interrupt_status loop --

-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --
_-- End Message 1 --

Page:

*** GRASP/ADA Vl.0 *** File: b1553_c.a.csd Page:

procedure BI553_IMU_INIT is

begin
..

-- Message 2 --

-- Set up IMU Quaternion Initialization --

-- bc_interrupt_status := unsigned_word (16#75#) ;

-- while (short_and(bc_interrupt_status,16#74#) /= 16#0000#) loop

-- data msg(1) := 16#0001#;
-- Even and Odd frame data --

-- data_msg(2) := 16#1002#;
-- BIT 12 DATA READY SIGNAL, BIT I RESET --

-- QUATERNION TO (1,0,,0,0) --

-- data_msg(3) := 16#0000#;

Data word - RT 2 Subadd 3 --

rcv 3 data words --

e_ndBC_INTERRUPT (bc_interrupt_status) ;

loop;

-- Wait for BC interrupt then --

-- change buffer --

-- put (° bc_interrupt_status = "} ;

-- put (integer (bc_interrupt_status) ,4,16) ;
-- new_l ine;

._nd B1553_IMU_INIT;

-- end bc interrupt_status loop --
-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --

-- End Message 2 --

procedure READ_IMU_DATA(IMU_DATA: out ARR_32) is

begin

-- bc_interrupt_status := unsigned_word(16#75#);

-- while (short_and(bc_interrupt_status, 16#74#) /= 16#0000#) loop

-_ l:x=_store.__msg(0,2,2,1,32,data_msg);

-- Data word - Rt 2 Subaddr 2 --

-- xmit 32 data words --

-- EVEN Frame Data - Subaddr 2 --

bc_go;

-_ bc_interrupt(bc_interrupt_status);

end loop;

-- put(" bc_interrupt_status = ");

-- put(integer(bc_interrupt_status),4,16);

-- new_line;

*** GRASP/ADA VI.0 *** File: b1553_c.a.csd Page:

-- end bc_interrupt_status loop --

-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --
..

-- BC_status(A_cmd,A_cmdlbk,A_stat,l);

-- put (" A_cmd = "); put(integer(A_cmd),4,16);

-- put (" A_cmdlbk = "); put(integer(A_cmdlbk),4,16);

-- put (° A_stat = "); put(integer(A_stat),4,16);

-- new_line;

-- BC_get_msg(msg_arr);

-- msg_count := integer(msg_arr(l,l));

-- put (" Message count = ");

-- put(msg_count,4,16);

-- new_line;

-- put (" Message = °);

-- new_line;

fnOdr i in 1..32 loop

imu data(i) := msg_arr(l,i + i);
loop;

end READ_IMU_DATA;

procedure THRUSTER_INIT is

begin

-- Clear thrusters in Message 2 --

-- data_msg2(1) := 16#0000#;
-- data_msg2(2) := 16#0000#;

-- data_msg2(3) := 16#0000#;

-- THRUSTERS INITIALIZED TO ALL OFF CONDITION

-- bc_interrupt status := unsigned_word(16#75#);

while (short an_(bc_interrupt status,16#74#) /= 16#0000#) loop

H bc_store_msg(0,3,2,0,3,data_msg2);

-- Data word - Rt 3 Subaddr 2 --

-- rcv 3 data words --

q bcgo;

_ bc_interrupt(bc interrupt_status);

end loop; -

end THRUSTER_INIT;

-- end bc_interrupt_status loop --

-- Timeout/1553 format error; buffer overflow;--

-- loop test fail; status set --

-- End Message 2 --

_nd BI553_COMPONENT_DATA;
..

..

*** GRASP/ADA Vl.0 *** File: io.a.csd Page: I

Ipackage body INPUT_OUTPUT_PACKAGE is

use SCALAR_SINGLE_IO;

use SCALAR_DOUBLE_IO;

I procedure PUTLINE (X: SINGLE_PRECISION_VECTOR) is

begin

pI in X--FIRST..X'LAST loop

loop;

-- NEW_LINE;

end PUT_LINE;

procedure PUT_LINE (X: DOUBLE_PRECISION_VECTOR) is

begin
-- for I in X'FIRST..X'LAST loop

_ PUT(X(1));

end loop;

-- NEW_LINE;

end PUTLINE;

procedure PUT_LINE (MAT: SINGLE_PRECISION_MATRIX) is

begin

-- ifor I in MAT'FIRST(1)..MAT'LAST(1) loop

_--_for J in MAT'FIRST(2}..MAT'LAST(2} loop

"I I PuT(MAT(I,J));

' _e_d loop;

NEW_LINE;

lend loop;

-- NEW_LINE;

end PUT_LINE;

procedure PUT_LINE (MAT: DOUBLE_PRECISION_MATRIX) is

begin

-- for I in MAT'FIRST(1)..MAT'LAST(1) loop

-- for J in MAT'FIRST(2)..MAT'LAST(2) loop

_ PUT(MAT(I,J));

end loop;

-- NEW_LINE;

end loop;

*** GRASP/ADA Vl.0 ***

-_ NE_ LINE;

1 [end PUT_LINE;

_end INPUT_OUTPUT_PACKAGE;

File: io.a.csd Page:

*** GRASP/ADAVI.0 *** File: predguid.a.csd

with LEVELA CONSTANTS;
use LEVEL_A_CONSTANTS;
with DATA_TYPES;
use DATA_TYPES;
with FSW_POOL;
use FSW_POOL;
wlth IL_POOL;
use IL_POOL;
with TEXT_IO;
use TEXT_IO;
with INPUT_OUTPUT_PACKAGE;
use INPUT_OUTPUT_PACKAGE;
with MATH_PACKAGE;
use MATH_PACKAGE;
with QUATERNION_OPERATIONS;
use QUATERNION_OPERATIONS;
with SINGLE_PRECISION_MATRIX_OPERATIONS;
use SINGLE_PRECISION_MATRIX_OPERATIONS;
with DOUBLE_PRECISION_MATRIX_OPERATIONS;
use DOUBLE_PRECISION_MATRIX_OPERATIONS;

package body PRED_GUID_PACKAGE is

APOGEE_EPSILONI : SCALAR_SINGLE := 25.0;

-- FUNCTION: NUMERIC PREDICTOR/CORRECTOR AEROBRAKING GUIDANCE --

-- ILOADS - MOVE TO ILPOOL IF RETAIN THIS _RITHM? --

APOGEE_EPSILON2 : SC_SINGLE := 1.0;

BANK_MAX : SCALAR_SINGLE := 165.0;

BANK_MIN : SCALAR_SINGLE := 15.0;

CORRIDOR_MIN : constant SCALAR_SINGLE := 0.05;

CORRIDORVMAX : constant SCALAR_SINGLE := 34_000.0;

CORRIDOR_V_MIN : constant SCALAR_SINGLE := 26500.0;

DELTA_PHI_MIN : SCALAR_SINGLE := 1.0;

DELTA_T_PRED : constant SCALAR_SINGLE := 2.0;

G_RUN_GUIDANCE : SCALAR_SINGLE := 0.075;

GUID_PASS LIM : constant INTEGER := I0;

LIFT_INC_CAPTURE : SCALARSINGLE := 0.15;

LIFT_PERCENT_CAPTURE : SCALAR_SINGLE := 0.5;

MAX_NUMBER_RUNS : constant INTEGER := 5;

PHI LIFT_DOWN : constant SCALAR_SINGLE := 45.0;

VI_LIFT_DOWN : constant SCALAR_SINGLE := 27500.0;

VI_MODEL_LIFT_DOWN : constant SCALAR_SINGLE := 27900.0;

COS PHI_MAX : SCALAR_SINGLE := 0.0;

-- LOCAL VARIABLES --

.....................

COS_PHI_MIN : SCALAR_SINGLE := 0.0;

GUID_PASS : INTEGER := 0;

INITIALIZE_GUIDANCE : BOOLEAN_32 := TRUE;

MODEL LIFT_DOWN : BOOLEAN_32 := TRUE;

PHI_CMD_NS : SCALAR_SINGLE := 0.0;

SIGN OF BANK : SCALAR_SINGLE := 0.0;

FIRST_TIME_CALLED : BOOLEAN_32 := TRUE;

EARTH_POLE : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);

EARTH_OMEGA : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);

ZERO : constant SCALAR_SINGLE := 0.0;

i ..

_-- NUMERICAL CONSTANTS USED IN PACKAGE --

-- This is necessary because of the overloading of operator --

Page:

*** GRASP/ADA Vl.0 *** File: predguid.a.csd

-- symbols to allow mixed mode arithmetic between single-

-- precision and double-precision variables.
..............................

ONE_TENTH : constant SCALAR_SINGLE := 0.i;

ONE_HALF : constant SCALAR_SINGLE := 0.5;

ONE: constant SCALAR_SINGLE := 1.0;

TWO : constant SCALAR_SINGLE := 2.0;

THREE : constant SCALAR_SINGLE := 3.0;

FIVE : constant SC__SINGLE := 5.0;

N25_000 :

N26_000 :

N27_000 :

N29_000 :

N30_000 :

N33_850 :

N150_000 :

N400_000 :

constant SCALAR_SINGLE := 25000.0;

constant SCALAR_SINGLE := 26000.0;

constant SCALAR_SINGLE := 27000.0;

constant SCALAR_SINGLE := 29000.0;

constant SCALAR_SINGLE := 30000.0;

constant SCALAR_SINGLE := 33850.0;

constant SCALAR_SINGLE := 150_000.0;

constant SCALAR_SINGLE := 400_000.0;

-- USE OUTPUT ROUTINES FROM INPUT_OUTPUT_PACKAGE --

use INPUT_OUTPUT_PACKAGE.INT_IO;

use INPUT_OUTPUT_PACKAGE.SCALAR_SINGLE_IO;

-- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED --

-- FOR THIS APPLICATION --

Page:

use SINGLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;

use DOUBLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;

LOCAL FUNCTION --

I function ALTI_u'DE (R: DOUBLE_PRECISION_VECTOR3) return SCALAR_DOUBLE ;

-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED BY --

-- procedure PRED_GUID. THEY ARE POSITIONED EXTERNAL TO procedure --

-- PRED_GUID SO THAT THEIR VARIABLES WILL EXIST BEYOND THE TIME --
-- WHEN THE PROCEDURE IS EXECUTING. --

Ipackage PC_SEQUENCER_PACKAGE is

I procedure PC_SEQUENCER;

end PC_SEQUENCER_PACKAGE;

lpackage I._TER.iM.._CONTRO L_ P AC KAG E is

I I procedure LATERAL_CONTROL;

end LATERAL_CONTROL_PACKAGE;

use PC_SEQUENCER_PACKAGE;

use LATERAL_CONTROL_PACKAGE;
......................................

-- BODY OF FUNCTION SPECIFIED ABOVE --
.....................................

i, is

*** GKASP/ADA Vl.0 *** File: predguid.a.csd Page:

RM : SCALAR_DOUBLE;

begin

-- COMPUTES THE ALTITUDE ABOVE FISCHER ELLIPSOID --

-- RM := VECTOR_LENGTH (R) ;

4---- return (RM / EARTH_R - (ONE - EARTH_FLAT) / SQRT(ONE / ((ONE -

EARTH_FLAT)**2 - ONE) / (ONE / (DOT_PRODUCT((R / RM),EARTH POLE!'*2)

)));
end ALTITUDE;

BODIES OF PACKAGES SPECIFIED ABOVE
.................. WWWWW*WW*W****t_*t**tttte**twt***

_package body PC_SEQUENCER_PACKAGE is

-- LOCAL VARIABLES - POSITIONED HERE FOR DUMP --

APOGEE_BRACKET : array(l..2) of SCALAR_SINGLE;

APOGEE_EPSILON : SCALAR_SINGLE;

APOGEE_EXTRAPOLATE : array(l..2) of SC__SINGLE;

APOGEE_PREDICTED : SCALAR_SINGLE;

BRACKETED : BOOLEAN_32;

COS_CAPT : SCALAR_SINGLE;

COS_BRACKET : array(1..2) of SCALAR_SINGLE;

COS_EXTRAPOLATE : array(l..2) of SCALAR_SINGLE;

COS_PHI_TRY : array(l..10) of SCALAR__SINGLE;

DELTA_APOGEE : SCALAR_SINGLE;

DELTA_PHI : SCALAR_SINGLE;

I : INTEGER;

INTEG_LOOP : INTEGER range 1.. 4;

NUMBER CAPT : INTEGER;

NUMBER_GOOD : INTEGER;

NUMBER_HIGH : INTEGER;

NUMBERLOW : INTEGER;

PHITRY : SCALAR_SINGLE;

PHI_TRYLAST : SCALAR_SINGLE;

PRED_CAPTURE : BOOLEAN32;

-- LOCAL PROCEDURES CALLED BY procedure PC_SEQUENCER. --

-- APPEAR HERE IN PACKAGE FORMAT SO THAT VARIABLES WILL BE AVAILABLE --

-- FOR DUMPS AND SO THAT VARIABLE VALUES WILL EXIST BEY_EN INVOCATIO_;S --

-- OF THESE PROCEDURES BY procedure PC_SEQUENCER. --
..

package PREDICTOR_PACKAGE is

I procedure PREDICTOR;

end PREDICTOR_PACKAGE;

Ipackage CORRECTOR_PACKAGE

I I procedure CORRECTOR;

end CORREC----------_RPACKAGE;

use PREDICTOR_PACKAGE;

use CORRECTOR_PACKAGE;

is

*** GRASP/ADAVl.0 *** File: predguid.a.csd Page:

Ipackage body PREDICTOR_PACKAGE is 0

...............................

-- LOCAL TO PREDICTOR - POSITIONED HERE FOR DUMP --
......................

A_PRED : DOUBLE_PRECISION_VECTOR3;

ALT_PRED : SCALAR_DOUBLE;

GAMMA_PRED : SCALAR_SINGLE;

LOD_PRED : SCALAR_SINGLE;

PHI_PRED : SCALAR_SINGLE;

R_PRED : DOUBLE_PRECISION_VECTOR3;

R MAG_PRED : SCALAR_DOUBLE;

RDDOT_PRED : SCALAR_SINGLE;

RDOT_PRED : SCALAR_SINGLE;

T_PRED : SCALAR_DOUBLE;

V_MAG_PRED : SCAI2hR_DOUBLE;

V_PRED : DOUBLE_PRECISION_VECTOR3;
...............................

-- INTEGRATOR PROCEDURE CALLED BY procedure PREDICTOR. --

-- APPEARS HERE AS A PACKAGE SO THAT ITS VARIABLES WILL RETAIN --

-- THEIR VALUES BETWEEN INVOCATIONS OF THE PROCEDURE BY PREDICTOR. --
............................

J[package INTEGRATOR_PACKAGE is

I procedure INTEGRATOR;

end INTEGRATOR_PACKAGE;

)ackage body INTEGRATOR_PACKAGE is

VARIABLES ARE DECLARED AND POSITIONED HERE SO THAT THEIR VALUE

--S -- WILL EXIST FROM INVOCATION TO INVOCATION OF procedure INTEG

--RATOR

ACCUM_ACCEL : DOUBLE_PRECISION_VECTOR3;

ACCUM_VEL : DOUBLE_PRECISION_VECTOR3;

ORIG_POS : DOUBLE_PRECISION_VECTOR3;

ORIG_VEL : DOUBLE_PRECISION_VECTOR3;
____*******************----

procedure INTEGRATOR is

____*******************----

begin

case INTEG_LOOP is

_--- when 1 =>
-- ORIG_POS := R_PRED;

-- ORIG_VEL := V PRED;

-- ACCUM_VEL := V_PRED;

-- ACCUM_ACCEL := A_PRED;

-- R_PRED := ORIG_POS * ONE_HALF * DELTA T PRED " V_PRED;

-- V_PRED := ORIG_VEL * ONE_HALF * DELTA T PRED " A_PRED;

¢_---when 2 =>

i -- ACCUM_VEL := ACCUM_VEL * TWO * V_PRED;

4

*** GRASP/ADA Vl.0 *** File: predguid.a.csd Page:

ACCUM_ACCEL := ACCUM_ACCEL * TWO * A_PRED;

R_PRED := ORIG_POS * ONE HALF * DELTA_T_PRED " V_PRED;

V_PRED := ORIG_VEL * ONE_HALF * DELTA_T_PRED * A_PRED;
i

.i_--_when 3 =>

ACCUM_VEL := ACCUM VEL * TWO * V PRED;
i _-- ACCUM ACCEL := ACCUM_ACCEL * TWO-* A PRED;

i _-- R PRED := ORIG POS * DELTA T PRED * V PRED;
_ _ PRED * A-PRED;

} h V-PRED := ORIG--VEL " DELTAT

_-- when 4 =>

, -- R_PRED := ORIG_POS / (ACCUM_VEL + V_PRED) * DELTA T_PRED
/ 6.0;

i -- V_PRED := ORIG_VEL / (ACCUM_ACCEL + A_PRED) *

i DELTA T PRED / 6.0;
i

_--when others =>
-- INTEG_LOOP can only have values in the range I..4

i -- null;

end case;

end INTEGRATOR;

end INTEGRATOR_PACKAGE;

use INTEGRATOR_PACKAGE;
__******************__

procedure PREDICTOR is

begin

-- INITIALIZE PREDICTOR STATE VECTOR --

-- R_PRED := R_NAV;

-- R_MAG_PRED := VECTOR_LENGTH(R_PRED);

-- ALT_PRED := ALTITUDE(R_PRED);

-- V PRED := V_.NAV;

-- V_MAG_PRED := VECTOR_LENGTH (V_PRED) ;

-- PHI_PRED := PHI_TRY * SIGN_OF_BANK;

-- T_.PRED := T__GMT;
_-- LOD__PRED := CL_NAV / CD__NAV;

-- PRED_CAPTURE := FALSE;

-- PREDICTOR LOOP --

for TIME_INCREMENT in i..750 loop

.............................

-- 4TH ORDER RUNGA_KUTTA INTEGRATION LOOP --

for INDEX in I..4 loop

-- INTEG_LOOP := INDEX;
--declare

AERO_ACCEL : DOUBLE_PRECISION_VECTOR3;

ALTNORM_PRED : SCALAR_SINGLE;

CPHI : SCALAR_SINGLE;

DRAG ACCEL : SCALAR_SINGLE;

GRAV_ACCEL : DOUBLE_PRECISION_VECTOR3;

HS_NORM_PRED : SCALAR_SINGLE;

I_LAT : DOUBLE_PRECISION_VECTOR3;

I_LIFT : DOUBLE PRECISION_VECTOR3;

I_VEL : DOUBLE_PRECISION_VECTOR3;

LIFT_ACCEL : SCALAR SINGLE;

RHO EST : SCALAR_SINGLE;

*** GRASP/ADA VI.0 *** File: predguid.a.csd Page:

RHO_NOM : SCALAR_SINGLE;

SPHI : SCALAR_SINGLE;

U_PRED : DOUBLE_PRECISION_VECTOR3;

V_REL_MAG_PRED : SCALAR_DOUBLE;

V_REL_PRED : DOUBLE_PRECISION_VECTOR3;

Z_PRED : SCALAR_DOUBLE;

begin

-- RELATIVE VELOCITY --

--V_REL_PRED := V_PRED - CROSS_PRODUCT(EARTH_OMEGA, R_PRED)

-- V_REL_MAG_PRED := VECTOR_LENGTH(V_REL_PRED);

-- 1962 STANDARD ATMOSPHERE CURVE FIT --

-- ALT_NORM_PRED := SCALAR_SINGLE(ALT_PRED / H_REF);

-- HS_NORM_PRED := (((C_HS(5) * ALT_NORM_PRED + C_HS(4)) *

ALT_NORM_PRED + C_HS(3)) * ALT_NORM_PRED + C_HS(2)) *

ALT_NORM_PRED + C_HS(1);

-- RHO_NOM := RHO_REF / EXP((ONE - ALT NORM_PRED) /

HS_NORM_PRED);

-- ESTIMATED DENSITY --

--RHO_EST := K_R/40_NAV * RHO_NOM;

-- LIFTDOWNMODEL --

MODEL_LIFT_DOWN = TRUE and V_MAG_PRED < VI_LIFT_DOWN

then

PHI_PRED := PHI_LIFT_DOWN * SIGN_OFBANK;

end if;

-- CPHI := COS(PHI_PRED * DEG_TO_RAD);

--SPHI := SIN(PHI_PRED * DEG_TO_RAD);

-- AERODYNAMIC ACCELERATIONS --

-- DRAG_ACCEL := SCALAR_SINGLE((ONE_HALF * RHO_EST *

V_REL_MAG_PRED**2 * CD_NAV * S_REF) / MASS_NAV);

-- LIFT_ACCEL := LOD_PRED * DRAG_ACCEL;

-- I VEL := V_REL_PRED / V_REL_MAG_PRED;

-- I_LAT := UNIT(CROSS_PRODUCT(I_VEL,RPRED));

-- I_LIFT := UNIT(CROSS_PRODUCT(I_LAT, I_VEL)) * CPHI *

I_LAT * SPHI;

AERO_ACCEL := LIFT_ACCEL * I LIFT * DRAG ACCEL * I_VEL;

-- GRAVITY ACCELERATION WITH J2 TERM --

U_PRED := R PRED / R_MAG PRED;

-- Z PRED := DOT_PRODUCT(U_PRED, EARTH_POLE);

-- U_PRED := U PRED * (THREE * EARTH_J2 / TWO) / (EARTH R /

R_MAG PRED)**2 * ((ONE * FIVE * Z_PRED**2) * U_PRED "

TWO * Z_PRED * EARTH_POLE);

-- GRAV_ACCEL := -(EARTH_MU / R_MAG_PRED**2) * U_PRED;
........................

-- TOTAL ACCELERATION --

........................

-- A_PRED := AERO_ACCEL + GRAV_ACCEL;
.................................

-- CALL RUNGA_KUTTA INTEGRATOR --

*** GRASP/ADA Vl.0 *** File: predguid.a.csd Page:

4-

_ INTEGRATOR;

-- STATE PARAMETERS --

-- R_MAG PRED := VECTOR_LENGTH (R_PRED) ;

-- V_MAG_PRED := VECTOR_LENGTH (V_PRED) ;

-- ALTITUDE CALCULATION --

--ALT_PRED := ALTITUDE(R_PRED);

end;

end loop;
-- declare block

-- INDEX loop; INTEG_LOOP variable holds current value of INDEX

-- STATE PARAMETERS --

-- T_PRED := T_PRED + DELTA_T_PRED;

-- RDOT_PRED := SCALAR_SINGLE(DOT_PRODUCT(V_PRED, R_PRED) /

R_MAG_PRED);
-- GAMMA_PRED := SC__SINGLE(ASIN(RDOT_PRED / V_MAG_PRED));

-- RDDOT_PRED := SCALAR_SINGLE(DOT_PRODUCT(A_PRED, R_PRED) /

R_MAG_PRED / (V_MAG_PRED * COS(GAMMA_PRED))'*2 / R_MAGPRED

);

-- CHECK FOR ATMOSPHERIC EXIT --

._ ALT_PRED > N400_000 and then RDOT_PRED > ZERO then
exit;

I -- exit TIME_INCREMENT loop
end if;

-- CHECK FOR ATMOSPHERIC CAPTURE --

if (RDDOT_PRED < ZERO and RDOT_PRED < ZERO) or ALT_PRED <NI50_000 then

I_-- PRED_CAPTURE := TRUE;
It

end if;

-_ if PKED_CAPTURE = TRUE then
exit

I -- exit TIME_INCREMENT loop

end if;

end loop;

-- TIME_INCREMENT loop

-- COMPUTE PREDICTED APOGEE --

..............................

_if PRED CA_P___E = TRUE then

il_[CAPTURED --

i _ AP_EE-PREDICTED := -SCALAR SINGLE(T INFINITY);

[z. EXIT OCCURRED --

_-Tdeclare

*** GRASP/ADAVl.0 *** File: predguid, a. csd Page :

ECCEN_PRED : SCALARSINGLE;

PARAMETER_PRED : SCALAR_SINGLE;

begin
-- PARAMETER_PRED := SCALAR_SINGLE((R_MAGPRED * V__GPRED *

COS(GAMMA_PRED))**2 / EARTH_MU);

-- ECCENPRED := SCALAR_SINGLE(SQRT(ONE / PARAMETER_PRED (

TWO / R_MAG_PRED / V_MAG_PRED**2 / F3tRTH_MU)));

-- APOGEE_PREDICTED := SCALAR_SINGLE((PARAMETER_PRED - (O1_ -

ECCEN_PRED) - EARTH_R) * FT_TONM);

end;

-- declare block

I end if;
Lend PREDICTOR;

end PREDICTOR PACKAGE;
**

***----

Ipackage body CORRECTOR_PACKAGE is

-- LOCAL TO CORRECTOR - POSITIONED HERE FOR DUMP --

DELT : SCALAR_SINGLE;

RISE : SCALAR_SINGLE;

RUN : SCAI2tR_SINGLE;

SENSITIVITY : SCAI2%R_SINGLE;

TRY_METHOD : INTEGER range 1..6;

procedure CORRECTOR is

begin

-- COMPUTE PREFLIGHT PREDICTED SENSITIVITY --

i--_if V_NAV_MAG > N33_850 then

SENSITIVITY := 24000.0;

_sif V NAV MAG > N30 000 then

SENSiTIViTY := SCALAR SINGLE(SCALAR DOUBLE(6.3926) " V NAV MAG

i l - SCALAR DOUBLE(188_700.0));
u

elsif V_NAV_MAG > N29_000 then

_ -- SENSITIVITY := SCAI2hR_SINGLE(SCALAR DOUBLE(I.49013) *

i V__NAV_MAG - SCAI2%R_DOUBLE (41625.0)) ;

i

elsif V__NAV__MAG > N27_000 then

i __ SENSITIVITY := SCALAR_SINGLE(SCALAR DOUBLE(0.57892) *
i
i L V..NAV_MAG SCALAR_DOUBLE (15200.0)) ;

sif V NAV_MAG > N26 000 then

SENSITIVITY := SCALAR_SINGLE(SCALAR DOUBLE(0.42596) "

V NAV_MAG SCALAR_DOUBLE (ii070.0)) ;

iL

_elsif V NAV MAG > N25_000 then
i _ SENSITIVITY := 5.0;

iL
end if;

......................................

-- DETERMINE WAY TO MAKE NEXT GUESS --
I

......................................

*** GRASP/ADA VI.0 *** File: predguid.a.csd

-- I is declared in PC SEQUENCER_PACKAGE and is set equal

-- to RUN_NUMBER in RUNNUMBER loop

I = 1 then
i TRY_METHOD := I;

I

L else

• -- if BRACKETED = TRUE then

i--_if NUMBER_LOW /= 0 then
TRY_METHOD := 2;

= _ else

._ TRY_METHOD := 3;
" L

i end if;

I else

----_case MIDVAL(0,NI.rI_ERG_OD, 2) is
_--_when i =>

_ TRY_METHOD := 5;

en 2 =>

TRY_METHOD :=6;

en others =>

TRY_METHOD := 4;

end case;

Page:

end if;

end if;

case TRY_METHOD is

_-- when 1 =>

-- RUN LASTGUESS FROM PREVIOUS GUIDANCE CYCLE --

-- COS_PHI_TRY(I) := COS(PHI_CMD * DEG TO RAD);

_-when 2 =>

--- INTERPOLATE A HIGH GUESS AND A LOW GUESS TO TARGET APOGEE

......................

-- RUN := COS BRACKET(2) - COS BRACKET(l);

-- RISE := APOGEE_BRACKET(2) - APOGEE_BRACKET(I);

abs (RISE) < ONE_TENTH then
RISE := ONE_TENTH * SIGN(RISE);

end if;

-- DELT := APOGEE_TARGET - APOGEE_BRACKET(l);

-- COS_PHI_TRY(I) := COS_BRACKET(l) / (DELT " RUN) / RISE;

when 3 =>

.........................

-- INTERPOLATE A HIGH GUESS AND A CAPTURED GUESS --

-- A % FROM HIGH GUESS --
..

-- COS PHI_TRY(I) := COS_BRACKET(l) * (COS CAPT - COS_BRACKET(

I)) * LIFT_PERCENT_CAPTURE;

when 4 =>

.....................................

-- MARCH OUT OF THE CAPTURE REGION --

*** GRASP/ADA VI.0 *** File: predguid.a.csd Page:

 w _en -_> ..
i I-- GUESS USING A STORED SENSITIVITY --EXTRAPOLATE ONE GOOD

i -

_--when 6 =>
...

i

! -- EXTRAPOLATE 7_O HIGH GUESSES OR TWO LOW GUESSES --
i -- TO TARGET APOGEE --

...

-- RUN := COS_EXTRAPOLATE (2) - COS_EXTRAPOLATE (i) ; •

-- RISE := APOGEE_EXTRAPOLATE (2) - APOGEE_EXTRAPOLATE (i) ;

abs (RISE) < ONE_TENTH then
RISE := ONE_TENTH * SIGN(RISE);

J
end if ;

-- DELT := APOGEE_TARGET - APOGEE_EXTRAPOLATE (1) ;

--COS_PHI_TRY(I) := COS_EXTRAPOLATE(l) / (DELT * RUN) / RISE;

_-- when others =>

-- TRY_METHOD can only have values from i..6

-- null;

end case;

-- NEW GUESS FOR PHI_TRY --

-- COS_PHI_TRY(I) := MIDVAL(COS_PHI_MIN, COS_PHI_TRY(I),COS_PHI_MAX);

-- PHI_TRY := ACOS(COS_PHI_TRY(I)) * RAD_TO_DEG;

end CORRECTOR;

end CORRECTOR_PACKAGE;
__*********************__

procedure PC_SEQUENCER is

begin

-- REINITIALIZE ARRAY OF BANK ANGLES TRIED --

...

-- NUMBER_HIGH := 0;

-- NUMBER_LOW := 0;

-- NUMBER_CAPT := 0;

-- NUMBER_GOOD := 0;

-- COS_PHI_TRY := (others=>SCALAR_SINGLE(T_INFINITY));

-- COS_EXTRAPOLATE := (others=>SCALAR_SINGLE(T_INFINITY));

-- COS_BRACKET := (others=>SCALAR_SINGLE(T_INFINITY));

-- APOGEE_EXTRAPOLATE := (others=>SCALAR_SINGLE(T_INFINITY));

-- APOGEE_BRACKET := (others=>SCALAR_SINGLE(T_INFINITY));

-- BRACKETED := FALSE;

-- PREDICTOR/CORRECTOR ITERATION LOOP --
..

-_for RUN_NUMBER in I..MAX_NUMBER_RUNS loop
-- I := RUN_NUMBER;

-tCORRECTOR;

*** GRASP/ADA Vl.0 *** File: predguid.a.csd Page:

--I PREDICTOR;

-- TEMPORARY OUTPUT - NOT FLIGHT CODE --
..

-- NEW_LINE;

_ PUT_LINE (.. -);

-- PUT(° TRY#/PHI/APO = ") ;

6

-- PUT(I) ;

-- PUT(PHI_TRY);

m PUT(APOGEE_PREDICTED);
!

-_ NEW_LINE;

-_ NEW_LINE;

............ •);

-_ if PRED_CAPTURE = TRUE then

-- CAPTURE PREDICTED --

i -- NUMBER_CAPT := NUMBER_CAPT + I;

! -- COS_CAPT := COS_PHI_TRY(I);

else

• ,

-- GOOD PREDICTION - SAVE PREDICTOR SOLUTION --

-- NUMBER_GOOD := NUMBER_GOOD + i;

-- COS_EXTRAPOLATE(2) := COS_EXTRAPOLATE(l);

-- COS_EXTRAPOLATE(l) := COS_PHI_TRY(I);

-- APOGEE_EXTRAPOLATE(2) := APOGEE_EXTRAPOLATE(l);

-- APOGEE_EXTRAPOLATE(I) := APOGEE_PREDICTED;

--_ if APOGEE_PREDICTED >= APOGEE_TARGET then
...........................

-- HIGH PREDICTED APOGEE --

• I

-- NUMBER_HIGH := NUMBER_HIGH + i;

-- COS_BRACKET(l) := COS_PHI_TRY(I);

-- APOGEE_BRACKET(I) := APOGEE_PREDICTED;

......................
I-- LOW PREDICTED APOGEE --
4

i

Ii

*** GRASP/ADA Vl.0 *** File: predguid.a.csd Page:

4-

4--

_ NUMBER_LOW := NUMBER_LOW + I;

COS_BRACKET(2) := COS_PHI_TRY(I);

APOGEE_BRACKET(2) := APOGEE_PREDICTED;

end if;

end if;

il[[q_40 PREDICTIONS BRACKET THE TARGET APOGEE --

..........................
end if;

-- APOGEE MISS --

-- DELTA_APOGEE := APOGEE_PREDICTED - APOGEE_TARGET;
......................

-- DELTA BANK ANGLE --

......................

-- DELTA_PHI := abs (PHI_TRY - PHI_TRY_LAST);

-- PHI_TRY_LAST := PHI_TRY;

-- SELECT APOGEE CORRECT CRITERIA --

then

!_ V_NAV_MAG > N3 0_0 0 0 thenAPOGEE_EPSILON := APOGEE_EPSILONI;

i[
._se

APOGEE_EPSILON := APOGEE_EPSILON2;

end if;

--4_if abs (DELTA_APOGEE) < APOGEE_EPSILON then

LAST TRY WAS ACCEPTABLE --

PHI_CMD_NS := PHI_TRY;

return;

elsif COS_PHI_TRY(I) >= COS_PHI_MAX and DELTA_APOGEE > ZERO then

-- FULL LIFT DOWN REQUIRED --
.............................

-- PHI_CMD_NS := ACOS(COS_PHI_MAX) * RAD TO DEG;

-- return ;

elsif COS_PHI_TRY(I) <= COS_PHI_MIN and DELTA_APOGEE < ZERO then

-- FULL LIFT UP REQUIRED --

PHI_CMD NS := ACOS(COS_PHI_MIN) * RAD TO DEG;

return;

elsif I = MAX_NUMBER_RUNS then
.......................

-- LIMIT PREDICTIONS --
.......................

I := RUN_NUMBER + I;

-- updating of a loop parameter is not allowed.

-- this should accomplish the same purpose as the

-- HAL/S code. I is tested in procedure CORRECTOR
..

12

*** GRASP/ADA VI.0 *** File: predguid.a.csd Page:

i i -- CORRECT ONCE MORE WITHOUT PREDICTION --

i

},-
- TEMPORARY OUTPUT - NOT FLIGHT CODE --

_

--_ NEW_LINE ;

-_ PUT._LINE ();

i *

i --_ PUT(" OUT OF PREDICTIONS - PHI_CMD = ")
i L
i
i

{ PUT (PH I_TRY) ;
i i

J I PUT_LINE (
• N

);

_ NEW_LINE;
PHI_CMD_NS := PHITRY;

4-- return;

elsif I > 1 and DELTA_PHI < DELTA_PHI_MIN and BRACKETED = TRUE
then

!

!,-- DELTA PHI TOO SMALL TO CONTINUE --
_ t

i L--- PHI CMD NS := (PHI TRY + PHI_TRY LAST) / TWO;

4-- i _----return;

end if;

end loop;

._nd PC SEQUENCER;

end PC_SEQUENCER_PACKAGE;

package body LATERAL_CONTROL_PACKAGE is

-- FUNCTION: LATERAL CONTROL LOGIC SUBPROGRAM --

-- CONTROLS OUT OF PLANE VELOCITY ERROR --
..

-- LOCAL VARIABLES POSITIONED HERE FOR DUMPING AND SO THAT --

-- VARIABLES CAN RETAIN VALUES BEq_WEEN INVOCATIONS --
...

FIRST PASS : BOOLEAN_32 := TRUE;

CORRIDOR : SCALAR_SINGLE;

I_¸

*** GRASP/ADA Vl.0 ***

SLOPE : SCALAR_SINGLE;

File: predguid.a.csd

procedure LATERAL_CONTROL is

__************************__

begin

-_ if FIRST PASS = TRUE then
i

-- INITIALIZE LATERAL CORRIDOR --

-- SLOPE := (CORRIDOR_MAX - CORRIDOR_MIN) - (CORRIDOR V MAX -

CORRI DOR_V_MIN) ;

-- FIRST_PASS := FALSE;

end if;
.............................

-- LATERAL CORRIDOR LIMITS --

.............................

Page :

-- CORRIDOR := SCALAR_SINGLE(CORRIDOR_MIN * (V_NAV_MAG - CORRIDOR V MIN

) * SLOPE) ;

-- CORRIDOR := MIDVAL (CORRIDOR_MIN, CORRIDOR, CORRIDOR_MAX) ;

i--_if WEDGE_ANGLE_NAV > CORRIDOR then

-- R AL --SIGN_OF_BANK:= SCALAR__SINGLE(-SIGN(DOT__PRODUCT(V__NAV, IHD)));

iL
end if ;

-- PHI_CMD := PHI_CMD_NS * SIGN_OF_BANK;

-- ROLL SHORTEST DISTANCE --

--LIFT_DOWN_REVERSAL := TRUE;

end LATERAL_CONTROL;

end LATERAL_CONTROL_PACKAGE;
____*********************____

-- PRED GUID EXECUTIVE --

procedure PRED_GUID is

-- LOCAL PROCEDURE --
.....................

procedure INITIAL_GUID is

-- FUNCTION: GUIDANCE INITIALIZATION --

............. _

begin
..........................

-- INITIAL BANK COMMAND --
..........................

-- SIGN OF BANK := SCALAR_SINGLE(SIGN(DOT_PRODUCT(V_NAV, IYD)));

-- PHI_CMD_NS := abs (PHI_EI);

PHI_CMD := SIGN OF BANK * PHI_CMD_NS;
.........................

-- BANK COMMAND LIMITS --
.........................

-- COS_PHI_MIN := COS(BANK_MAX * DEG_TO_RAD);

i _ COS_PHI_MAX := COS(BANK_MIN * DEG TO RAD);

14

*** GRASP/ADAVl.0 *** File: predguid.a.csd

Lend INITIAL_GUID;

begin

_ FIRST._TINE_C_.,LED then

CORRIDOR_MAX := 0.7;

FIRST_TIME_CALLED := FALSE;

end if;

-< if INITIALIZE_GUIDANCE = TRUE then

-- GUIDANCE INITIALIZATION --
.............................

INITIAL_GUID;

-- INITIALIZE_GUIDANCE := FALSE;

end if;

-- EARTH_POLE := (EF_TO_REF_AT_EPOCH(I,3),EF_TO_REF AT EPOCH(2,3),

EF_TO_REF_AT_EPOCH(3,3));

-- EARTH_OMEGA := SCALAR_DOUBLE(EARTH_RATE) * EARTH_POLE;

if G_LOAD > G_RUN_GUIDANCE then

-- RUN_GUIDANCE --

-- if GUID_PASS = 0 then

-- RUN VERTICAL GUIDANCE --

ifii MODEL_LIFT_DOWN := FALSE;

lU
end if;

---t PC_SEQUENCER;

end if ;

-- RUN LATERAL GUIDANCE --

I
--_ LATERAL_CONTROL;

-- COUNT GUIDANCE PASSES --

-- GUID_PASS := GUID_PASS + i;

GUID_PASS >= GUID_PASS_LIM then
GUID_PASS := 0;

i i
end if;

V_NAV_MAG < VI_MODEL_LIFT_DOWN then

TERMINATE LIFTDOWN MODELLING --

end if;

end PRED_GUID;

end PRED_GUID_PACKAGE;

Page:

Appendix D

User Manual (MAN-Page)

graspada (n) MISC. REFERENCE MANUAL PAGES graspada (n)

NAME

graspada - (X Windows version) Graphical Representation of Algorithms, Structures, and Processes

SYNOPSIS

graspada

DESCRIPTION

graspada generates graphical representations for Ada programs. Currently these include Control Struc-

ture Diagrams (CSDs) for highlighting the program control structure. Object diagrams will be included
in future versions. This manual is intended for use in conjuction with the GRASP/Ada tool.

xgrasp is written in C for the X Window System (Version 11, Release 4).

USAGE

When graspada is invoked, the GRASP/Ada System Window is created and the user positions it on
the screev_ The System Window allows the user to open Source Code editors or CSD viewers, generate
CSDs, load the CSD font, browse the HELP system, or choose a printer. The System, Source Code,

and CSD windows are described in greater detail below.

SYSTEM WINDOW

The System Window provides the user with the overall organization and structure of the GRASP/Ada
tool. Option menus include: General, Source Code, Control Structure Diagram, and Help. These are
briefly described below. A future menu is planned for Object Diagrams.

GRASP/Ada main window has four selectable buttons, three of which have associated submenus.

1. General
2. Source Code

3. Control Structure Diagram
4. Help

General:
This category of commands is concerned with environmental matters. This button has a sub-
menu associated with it. Click with the select mouse button on the General button, and the

submenu associated with General will pop up. If any of the following options is to be
selected, drag the arrow with the select mouse button to that option and then release the
moire.

User Manual:

Not yet implemented

Set Printer:

If Set Printer option is selected, a window showing different printers will pop up. You can
choose one of the available printers as a default printer. For example if you want to select
"opal" as the default printer click on opal with select mouse button and click on OK button to
confirm it. If you want to select some other printer other than those available on the printer

menu, click on <Default> with select mouse button. Type the printer name in the correspond-
ing printer name are& For example if you want to select "xyz" as the default printer, type "lpr
-Pxyz" in the printer name area (which is just right to <Default> button). Finally click on OK
to confirm the selection with select mouse button. If you want to cancel the above selected
option click on Cancel with select mouse button.

Set Compiler:
If this option is selected, a dialog window will pop up. You can type the command needed to

Sun Release 4. I Last change: 1

graspada(n) MISC.REFERENCEMANUALPAGES graspada(n)

invoketherequiredAdacompiler.ClickonOK to cerafrm the selection. Otherwise click on
Cancel to cancel the selection.

Load Window Fonts:

Typically this option is unnecessary. The CSD window fonts are loaded into video memory
upon invocation. If, however, during operation you get the message "The CSD font is not
loadea_', you must load it yourself. You can type the path name of the directory containing
the CSD fonts. If CSD fonts are not already loaded, type the directory name which contains
the CSD fonts. Confirm by clicking on OK button. Otherwise click on Cancel button to can-
eel the selection. If CSD fonts are already loaded, it will show a message saying "The CSD
font is already loaded'. Click on OK button to quit the pop up window.

Quit:

You can quit the GRASP/Ada tool by selecting this option. You will see a window displaying
the message "Are you really sure you want to quit?". If you want to quit GRASP/Ada tool
click on OK. Otherwise click on Cancel to cancel quit.

Source Code

This button has a submenu (Open text window, Close all text windows) associated with it.
Click with the select mouse button on Source Code button. Submenu associated with Source

Code will pop up. It has the following options. If any of the following options is to be
selected, drag the select mouse button up to that option and then release the button.

Open text window:

A source code window containing a text editor for entering, loading, or modifying Ada source
code wig pop up. See the description of Source Window below.

Close all text windows:
Closes all the text windows.

Control Structure Diagram
This button has a submenu (Open CSD window, Close all CSD windows, Generate CSD...)
associated with it. Click with the select mouse button on Control Structure Diagram button.
Submenu associated with Control Structure Diagram will pop up. It has the following options.
If any of the following options is to be selected, drag the select mouse button up to that option
and then release the mouse.

Open CSD Window:

A CSD window containing a text editor for loading or modifying CSD file will pop up.
the description of CSD window below.

See

Close all CSD Windows:
Closes all the CSD windows.

Generate CSD...:

CSD Generation Options window will pop up. You can select the Ada source file and CSD
file names by typing their names. You can use GRASP/Ada File Selector also to select the file
names. If you want to select the Ada source file(s) using GRASP/Ada File Selector, click with

the select mouse button on top Select button. GRASP/Ada File Selector window will pop up.
The contents of different directories can be viewed by selecting different directories. If the
contents of the Home directory are to be viewed, then click on Home button. If the contents
of Root directory are to be viewed, then click on Root button. If the contents of the Parent
directory (parent directory of the current directory) are to be viewed, then click on Parent

Sun Release 4.1 Last change: 2

graspada(n) MISC.REFERENCEMANUALPAGES graspada (n)

Help

button. If the contents of any other directory are to be viewed, then select that directory by
clicking on that directory name in directory contents view area. If you are not able to see the
contents of the selected directory, click on scrollbar once. You should be able to view the
contents of that directory (if there are some files or directories in that directory).

Finally, you can select a file for Control Structure Diagram generation by clicking on any file
name in directory contents view area. Click on Select button to select that file name. Other-
wise click on Cancel button to cancel file selection.

You can select number of files using wild card option. Suppose you want to generate the
CSDs for four files, and their file names are Examplel.a, Example2.a, Example3.a, Example4.a,
and if these files are in the directory called grasp, select the directory grasp from directory con-
tents view area. Then directory name will be shown as follows.

ThePathlgrasp
Now type the wild card as follows

The_Path�grasp�*.*
OR

The P athlgrasplExa*, a
OR

The_P athlgrasplExampl e?.a

Then click with the select mouse button on Select button in GRASP/Ada File Selector win-

dow. The GRASP/File selector window will be closed and Source file name(s) and CSD file
name(s) are copied into Ada source file(s) and CSD file name(s) in CSD Generation Options
window. Click with the select mouse button on Generate CSD in CSD Generation Options
window to generate CSDs for all the above selected source file(s). Otherwise click on Cancel

button to cancel the generation of CSDs. If Generate CSD is selected then following message
will be shown in the message area of the Main window if you are generating CSDs using wild
card option.

Source Directory : The._Pathlgrasp
CSD Directory : The_Path/grasp

Source File CSD File Message

Examplel.a Examplel.a.csd
Example2.a Example2.a.csd
Example3.a Example3.a.csd
Example4.a Example4.a.csd

Total number of files are 4.

Click on Help" (in main window) with the select mouse button. The Help window

displays a list of the CSD constructs for Ada and a second window to display the
corresponding CSD construct. Click with the select mouse button on PRINT ALL

DIAGRAMS to print all the CSD constructs to the selected printer. Click on
DISPLAY ALL CSD CONSTRUCTS to see all the constructs in the second window.

These constructs are arranged in alphabelJcal order. Drag scrollbar to view different
constructs. Click on individual construct to view individual conslruct. Finally, click
on Quit with the select mouse button to quit the help window.

Sun Release 4.1 Last change: 3

graspada (n) MISC. REFERENCE MANUAL PAGES graspada (n)

SOURCE WINDOW
This window has three selectable buttons.

File
Click with the select mouse button on File button and the submenu (Load, Generate CSD,

Save, Save as Print, Quit) associated with File will pop up. To select one of the options,

drag the select mouse button up to that option and then release the mouse.

Load:
GRASP/Ada File Selector window showing the name and contents of the current directory

(The directory from which GRASP/Ada is invoked) will pop up. The contents of different
directories can be viewed by selecting different directories. If the contents of the Home direc-

tory are to be viewed, then click on Home button. If the contents of Root directory are to be
viewed, then click on Root button. If the contents of the Parent directory (parent directory of
the current directory) are to be viewed, then click on Parent button. If the contents of any
other directory are to be viewed, then select that directory by clicking on that directory name

in directory contents view area. If you are not able to see the contents of the selected direc-
tory click on scrollbar once. You should be able to view the contents of that directory (if there
are some files or directories in that directory). Like this you can view contents of any direc-
tory. Finally, you can select a file for Control Structure Diagram generation by clicking on
any file name in directory contents view area. Click on Select button to select that file name.
Otherwise click on Cancel button to cancel file selection.

Generate CSD :

After selecting a source file using above mentioned Load option, Conta'ol Structure Diagram

can be generated for that source file by selecting this option. When this option is selected, a
CSD window containing Control Structure Diagram will pop up. See the description of CSD
window.

Sa_e_

The Ada file will be saved with the existing file name. If you want to save it as a different file
name, select Save as... option.

Save a$..._

A dialog window will pop up. You can type the file name as which the existing Ada file has
to be saved and click on OK to confirm the selection. Click on Cancel to cancel the selec-

tion. You can select the file name from GRASP/Ada file selector window also by clicking on
Select button.

Print:

A window showing different options for printing will pop up. The default file name will be
existing file in the Source Window. If you want to print any other Ada file, you can select that
file either by typing the file name in the file name area or you can select the Ada file name
using GRASP/Ada File Selector by clicking with the select mouse button on Select button.

View Not yet implemented.

Find Not yet implemented.

CSD WINDIW

This window has four (File, View, Find, Font) selectable buttons.

Sun Release 4. I Last change: 4

graspada(n) MISC.REFERENCEMANUALPAGES graspada(n)

File

Sun Release 4.1

Click with the select mouse button on File button and the submenu (Load, Open Source, Gen-

erate CSD, Compile, Save, Save as Print Quit) associated with File will pop up. To select
one of the options, drag the select mouse button up to that option and then release the mouse.

Load:

GRASP/Ads File Selector window showing the name and contents of the current directory
(The directory from which GRASP/Ads is invoked) will pop up. The contents of different
directories can be viewed by selecting different directories. If the contents of the Home direc-

tory are to be viewed, then click on Home button. If the contents of Root directory are to be
viewed, then click on Root button. If the contents of the Parent directory (parent directory of

the current directory) are to be viewed, then click on Parent button. If the contents of any
other directory are to be viewed, then select that directory by clicking on that directory name
in directory contents view area. If you are not able to see the contents of the selected direc-
tory click on scrollbar once. You should be able to view the contents of that directory (if there
are some files or directories m that directory). Like this you can view contents of any direc-

tory. Finally, you can select a file for Control Structure Diagram generation by clicking on
any file name in directory contents view area. Click on Select button to select that file name.
Otherwise click on Cancel button to cancel file selection.

Open Source:
Not yet implemented.

Generate CSD:

Not yet implemented.

Compile:
Not yet implemented.

SalJe:

The CSD file will be saved. The default file name will be SourceFileName.csd. If you want
to save it as a different file name, select Save as... option.

Save as...:

A dialog window will pop up. You can type the file name as which the existing CSD file has
to be saved and click on OK to confirm the selection. Click on Cancel to cancel the selec-

tion. Yon can select the file name from GRASP/Ads file selector window also by clicking on
Select button.

Print:

A window showing different options for printing will pop up. The default file name will be
SourceFileName.csd. If you want to print any other CSD file, you can select that file either

by typing the file name in the file name area or you can select the CSD file name using
GRASP/Ads File Selector by clicking with the select mouse button on Select button.

You can select either of the options Yes or NO by clicking with the select mouse button to

print header. The default header is GRASP/Ads v3.0. You can change this default header by
typing the required header in header text area. You can select either of the options Yes or No
by clicking with the select mouse button to print page numbers. The default point size is 10.
The default size can be changed by tying required size in Point size area. Finally click on
Print button with the select mouse button to print the CSD file to a selected printer. If the
printer is not already selected, select the printer name from General submenu. If you want to

Last change: 5

graspada(n) MISC.REFERENCEMANUALPAGES graspada(n)

WIDGETS

_eW

Find

Font

cancel the print job, click with select mouse button on Cancel button.

Quit
Quit the CSD window.

Not yet implemented.

Not yet implemented.

Control Structure Diagram can be viewed in different sizes of fonts. Click with select mouse
button on Font button. It displays different sizes (csd09, csdll, csdl3, csdlS, csdl8) of the
available fonts. CSDs can be viewed in any of the available fonts by selecting that font.

In order to specify resources, it is useful to know the hierarchy of the widgets which compose gras-
pada. In the notation below, indentation indicates hierarchical structure. The widget class name is
given first, followed by the widget instance name.

Xgrasp graspada
Form myform

Label mylabel
MenuButton mymenu

SimpleMenu Generalmenu
SmeBSB User Manual
SmeBSB Environment
SmeBSB Load window fonts

... (one for each menu)

Command mycommand
TransientShell GILA

Form GILA
Form GILA
Form GRA

Command GRA
Command GRA
Command GRA
Command GRA

Label GRA

Viewport GRA
List GRA

ENVIRONMENT
GRASP HOME

Must be set to the root directory of the GRASP/Ada system, graspada uses this environment
variable to locate the CSD fonts and the HELP system files.

MANPATH

If the GRASP/Ada system man page is not installed with the other man pages, this environ-

ment variable must be modified to point to the directory containing it, which is
$GRASPHO_

PATH

Must be set to point to the graspada executable, which is located in SGRASP HOMElbin.

Sun Release 4.1 Last change: 6

graspada(n) MISC. REFERENCE MANUAL PAGES graspada (n)

XENVIRONMENT

Specifies the name of a resource file
GRASP/Ada X Window System interface.

that overrides the global resouI_es used in the

EXAMPLES

FILES

- graspada/bin/graspada

"graspada/lib/Help help files

- graspada/lib/fonts font files

- graspada/man/man_graspada.l (Man page)

SEE ALSO

X(1), bdfrosnf(1), mldontdir(1), xset(1)

AUTHORS

The development of graspada was directed by Dr. James H. Cross II at Auburn University. The pro-

ject was supported, in pan, by a grant from George C. Marshall Space Flight Center, NASA/MSFC.

The Control Structure Diagram was created by Dr. Cross. The parser, scanner, and semantic actions for

creating the CSD for Ada were written by Charles H. May. The PostScript CSD font and X11R4 BDF

CSD fonts were created by Timothy A. PlunkeR. The X Window System interface was written by Kelly

I. Morrison and Darren Tola. The HELP system was written by Narayana S. Rekapalli. Richard Davis,

Kathryn C. Waddel, and others made valuable contributions to this project.

Ada is a trademark of the United States Government, Ada Joint Program Office.

PostScript is a trademark of Adobe Systems, Inc.

DIAGNOSTICS

BUGS

Sun Release 4.1 Last change: 7

