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Abstract: The GRASP/Ada project (Graphical Representations of Algorithms,
Structures, and Processes for Ada) has successfully created and prototyped a new
algorithmic level graphical representation for Ada software, the Control Structure
Diagram (CSD). The primary impetus for creation of the CSD was to improve the
comprehension efficiency of Ada software and thus improve reliability and reduce
costs. The emphasis has been on the automatic generation of the CSD from Ada
source code to support reverse engineering and maintenance. The CSD has the
potential to replace traditional prettyprinted Ada source code. In Phase 1 of the
GRASP/Ada project, the CSD graphical constructs were created and applied manually
to several small Ada programs. A prototype (Version 1) was designed and
implemented using FLEX and BISON running under VMS on a VAX 11-780. In
Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX.
A user interface was designed and partially implemented using the HP widget toolkit
and X Windows. The prototype was applied successfully to numerous Ada programs
ranging in size from several hundred to several thousand lines of source code. In
Phase 3 of the project, the prototype was prepared for limited distribution
(GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was
extensively reworked using the Athena widget toolkit and X Windows. The current
prototype provides the capability for the user to generate CSD from Ada source code
in a reverse engineering mode with a level of flexibility suitable for practical
application.
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1.0 Introduction and Executive Summary

Computer professionals have long promoted the idea that graphical representations of
software can be extremely useful as comprehension aids when used to supplement textual
descriptions and specifications of software, especially for large complex systems. The general
goal of this research has been the investigation, formulation and generation of graphical
representations of algorithms, structures, and processes for Ada (GRASP/Ada). This task,
in which we described and categorized various graphical representations that can be extracted
or generated from source code, has focused on reverse engineering.

Reverse engineering normally includes the processing of source code to extract higher
levels of abstraction for both data and processes. The primary motivation for reverse
engineering is increased support for software reusability, verification, and software
maintenance, all of which should be greatly facilitated by automatically generating a set of
“formalized diagrams" to supplement the source code and other forms of existing
documentation. For example, Selby [SEL85] found that code reading was the most cost
effective method of detecting errors during the verification process when compared to
functional testing and structural testing. And Standish [STAS8S] reported that program
understanding may represent as much as 90% of the cost of maintenance. Hence, improved
comprehension efficiency resulting from the integration of graphical notations and source
code could have a significant impact on the overall cost of software production. The overall
goal of the GRASP/Ada project is to provide the foundation for a CASE (computer-aided
software engineering) environment in which reverse engineering and forward engineering

(development) are tightly coupled. In this environment, the user may specify the software



in a graphically-oriented language and then automatically generate the corresponding Ada
code [ADAR83]. Alternatively, the user may specify the software in Ada or Ada/PDL and
then automatically generate the graphical representations either dynamically as the code is
entered or as a form of post-processing.

Figure 1 provides an overview to the three phases of the GRASP/Ada project. Ada
source code or PDL is depicted as the starting point for application of the GRASP/Ada
toolset. Each phase is briefly described below in the order that diagrams might be generated

in a typical reverse engineering scenario.

1.1  Phase 1 - The Control Structure Diagram For Ada

Phase 1 concentrated on a survey of graphical notations for software and the
development of a new algorithmic or PDL/code level diagram for Ada. Tentative graphical
control constructs for the Control Structure Diagram (CSD) were created and initially
prototyped in a VAX/VMS environment. This included the development of special
diagramming fonts for both the screen and printer and the development of parser and scanner
using UNIX based tools such as LEX and YACC. Appendix B provides a detailed
description of the CSD and the rationale for its development. The final report for Phase 1

[CRO89] contains a complete description of all accomplishments of Phase 1.

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.
The development of a user interface based on the X Window System represented a major part
of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as
potential commercial tools upon which to base the GRASP/Ada prototype.  Architectural

2
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Figure 1. GRASP/Ada Overview



diagrams for Ada were surveyed and the OOSD notation [WAS89] was identified as having
the best potential for accurately representing many of the varied architectural features of an
Ada software system. Phase 2 also included the preliminary design and a separate
exploratory prototype for an architectural CSD. The best aspects of architectural CSD are
expected to be integrated into the fully operational GRASP/Ada prototype during a future
phase of the project. The final report for Phase 2 [CRO90c] contains a complete description

of the accomplishments of Phase 2.

1.3  Phase 3 - CSD Generation Prototype and Preliminary Object Diagram Prototype

Phase 3 has had two major thrusts: (1) completion and limited release of an
operational GRASP/Ada prototype which generates CSDs and (2) the development of a
preliminary prototype which generates object diagrams directly from Ada source code.
Completion of the GRASP/Ada CSD prototype (CSDgen) included the addition of substantial
functionality, via the User Interface, to make the prototype easier to use. CSDgen was
installed and demonstrated on a Sun workstation at Marshall Space Flight Center, Alabama
in September 1991. It is currently installed and in use in several software engineering
courses at Auburn University. The latter, in particular, is providing information for
evaluation prior to widespread release to teaching and research communities, business, and
industry. To date, over 100 requests for information regarding GRASP/Ada have been
received as a result of publications generated from this research. Responding to these
requests is an important element of the ongoing evaluation and refinement of the GRASP/Ada
reverse engineering system.

The development of a preliminary prototype for generating architectural object
diagrams (ODgen) for Ada source/PDL has been an effort to determine feasibility rather than

4



to deliver an operational prototype as was the case with CSD generator above. The
preliminary prototype has indicated that the development of the components to recover the
information to be included in the diagram, although a major effort, is relatively
straightforward. However, the research has also indicated that the major obstacle for
automatic object diagram generation is the automatic layout of the diagrams in a human
readable and/or aesthetically pleasing format. A user extensible rule base, which automates
the diagram layout task, is expected to be formulated during future GRASP research.
Interactive Development Environment’s Software through Pictures (IDE/StP), which supports
the OOSD notation in a forward engineering sense, has been identified as a candidate for a
commercial CASE environment with which to integrate GRASP/Ada reverse engineering
system.

The following sections of this report describe the overall GRASP/Ada system model,
the control structure diagram generator, the user interface, the library, the object diagram
generator, and future requirements. Appendix A contains paper entitled "Reverse
Engineering" which has been accepted for publication in Advances in Computing. This paper,
which was written during Phases 2 and 3, provides a taxonomy of reverse engineering and
comprehensive review of the current literature. Appendix B contains a paper entitled
"Control Structure Diagrams for Ada," published in Journal of Pascal, Ada & Modula 2.
This paper, which was written during Phase 1, describes the overall rationale for the
development of the CSD. Appendix C contains a CSD produced from Ada source code
provided by Marshall Space Flight Center. Appendix D contains the MAN-page which

describes each of its the current options.



2.0 The System Model

The general system model for the GRASP/Ada prototype is described in this section.
The overall functionality of the system is briefly described from a data flow perspective and

then each of the GRASP/Ada components is presented in the form of a system block diagram.

2.1 GRASP/Ada System Data Flow

Figures 2 describes the context and overall flow of information to and from the
GRASP/Ada system. The primary input is Ada source code and GRASP commands and the
primary outputs are control structure diagrams, object diagrams and library information. The
Ada source code is assumed to be syntactically correct.

Figure 3 describes the major processes and overall flow of information within the
GRASP/Ada system. Process 1 parses Ada source code and produces a parse tree, comments,
symbolic and unit information. Process 2 produces CSD files as CSDgen action routines are
called during the parse in Process 1. Process 3 produces object diagrams from symbolic and
unit information. Processes 4 and 5 produce screen and printer images of control structure
diagrams and object diagrams from intermediate files via the user interface when appropriate

commands are received.

2.2  GRASP/Ada System Block Diagram
Figure 4 depicts the major system components hierarchically to illustrate the layers
and component interfaces. The user interface (not shown in the system data flow diagram)

was built using the X Window System and provides general control and coordination among
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Figure 2. GRASP/Ada Context Level Data Flow Diagram
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the other components.

The control structure diagram generator, CSDgen, has its own parser/scanner built
using FLEX and BISON, successors of LEX and YACC. It also includes its own printer
utilities. As such, CSDgen is a self-sufficient component which can be used from the user
interface or the command line without the commercial components. When changes are made
to the Ada source code or PDL, currently the user must modify the original source file rather
than the generated CSD file. The entire file must be reparsed to produce an updated CSD.
A CSD editor (CSDedit), which will provide for dynamic incremental modification of the
CS8D, is currently in the planning stages.

The object diagram generation component, ODgen, is in the analysis phase and has
been implemented as a separate preliminary prototype. The shading indicates planned
integration. The feasibility of automatic diagram layout remains under investi gation. Beyond
automatic diagram layout, several design alternatives have been identified. The major
alternatives include the decision of whether to attempt to integrate GRASP/Ada directly with
commercial components, namely (1) the Verdix Ada development system (VADS) and
DIANA interface for extraction of diagram information and (2) IDE’s Software through
Pictures, Ada Development Environment (IDE/StP/ADE) for the display of the object
diagrams. Each of these components are indicated in Figure 4.

The GRASP/Ada library component, GRASPIib, provides for coordination of all
generated items with their associated source code. Its purpose is to facilitate navigation
among the diagrams and the production of sets of diagrams. Both CSDgen and ODgen
produce library entries as Ada source is processed. Currently, these consists of directories

of UNIX files with identifying extensions.

10



In the following sections, the general functional requirements and prototype
implementation are described for each of the major GRASP/Ada components: the control

structure diagram generator, the user interface, and the object diagram generator.

11



3.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this
section. The rationale for the development of the CSD, which has been detailed in previous
reports [CRO89, CRO90c], is summarized in Appendix B. Examples of the CSD are
presented in conjunction with the User Interface in Section 4.0 and in Appendix C, Extended

Examples. The UNIX MAN-page description of the options is contained in Appendix D.

3.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source
file. The graphical constructs produced by CSDgen are summarized in Figure 5. CSDgen
has its own parser/scanner constructed using LEX/YACC based software tools available with
UNIX. Although a complete parse is done during CSD generation, CSDgen assumes the Ada
source code has been previously compiled and thus is syntactically correct. Currently, little
error recovery is attempted when a syntax error is encountered. The diagram is simply
generated down to the point of the error. The current CSDgen prototype builds the diagram
directly during the parse by inserting CSD graphics characters into a file along with text. To
increase efficiency and improve extensibility, future versions of the CSDgen prototype will
use a more abstract intermediate representation.

Since GRASP/Ada is expected to be used to process and analyze large existing Ada
software systems consisting of perhaps hundreds of files, an option to generate all the CSDs

at once is provided. Generating a set of CSDs is facilitated by entering *.a or some other

12
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wildcard with a conventional source file extension, for the file name. A CSD generation
summary window displays the progress of the generation by listing each file as it is being
processed and any resulting error messages. The summary concludes with number of files
processed and the number of errors encountered. The default for each CSD file name is the
source file name with .csd appended. If an error is encountered, an extension of .err is used.
As the CSDs are generated, the GRASP library is updated, which currently consists of
populating a specified directory with file images of the CSDs. Generating a set of CSDs can

be considered a user interface requirement rather than strictly a CSD generator requirement.

3.2 Displaying the CSD - Screen and Printer

Basic display capabilities to the screen and printer were implemented during Phase
2. Screen display is facilitated by sending the CSD file to a CSD window opened under an
X Window manager. Printing is accomplished by converting the CSD file to a PostScript file
and then sending it to a printer. Moving to a more abstract intermediate representation in
future versions will necessitate the development of a new set of display routines which will
be X Window System based. However, these new routines will increase the flexibility and
capability of CSDgen, thus making it more immediately useful to the research community.

CSD Screen Fonts. The default CSD screen font is a bitmap 14 point Courier to
which the CSD graphic characters have been added. The font was defined as a bitmap
distribution font (BDF) then converted to SNF format required by the X Window System.
Four additional screen fonts ranging from 5 to 18 point are user selectable.

CSD Printer Fonts. CSD Printer fonts were initially developed for the HP LaserJet

series. These were then implemented as PostScript type 3 fonts and all subsequent font

14



development has been directed towards the PostScript font. The PostScript font provides the

most flexibility since its size is user selectable from 1 to 300 points.

3.3 Displaying the CSD - Future Considerations

Layout/Spacing. The general layout of the CSD is highly structured by design.
However, the user should have control over such attributes as horizontal and vertical spacing
and the optional use of some diagramming symbols. In the current Version 3 CSDgen
prototype, horizontal and vertical spacing are not user selectable. They are a part of the CSD
file generation and are defaulted to single spacing with 80 characters per line. In order to
change these, e.g., from single to double spacing, the CSD file would have to be regenerated.
In future versions of the prototype, these options will be handled by the new display routines
and, as such, can be modified dynamically without regenerating the CSD file.

Vertical spacing options will include single, double, and triple spacing (default is
single). Margins will be roughly controlled by the character line length selected, either 80
or 132 characters per line (default is 80). Indentation of the CSD constructs has been a
constant three blank characters. Support for variable margins and indentation is being
investigated in conjunction with the new display routines. In addition, several display options
involving CSD graphical constructs are under consideration. For example, the boxes drawn
around procedure and task entry calls may be optionally suppressed to make the diagram
more compact.

Collapsing the CSD. The CSD window should provide the user with the capability
to collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,
procedures, functions, tasks and packages). This capability directly combines the ideas of
chunking with control flow which are major aids to comprehension of software. An

15



architectural CSD (ArchCSD) [DAV90] can be facilitated by collapsing the CSD based on
procedure, function, and task entry calls, and the control constructs that directly affect these
calls. The initial ArchCSD prototype was completely separate from CSDgen and required
complete regeneration of the ArchCSD file for each option. In future versions of the
prototype, the ArchCSD will be generated by the display routines from the single intermediate
representation of the CSD.

Color. Although general color options such as background and foreground may be
selected via the X Windows system, color options within a specific diagram were only briefly
investigated for both the screen and printer. It was decided that these will not be pursued in
the Version 3 prototype.

Printing An Entire Set of CSDs. Printing an entire set of CSDs in an organized and
efficient manner is an important capability when considering the typically large size of Ada
software systems. A book format is under consideration which would include a table of
contents and/or index. In the event GRASP/Ada is integrated with IDE/StP/ADE, the StP

Document Preparation System could possibly be utilized for this function.

3.4 Incremental Changes to the CSD

In the present prototype, there is no capability for editing or incrementally modifying
the CSD. The source code is modified using a text editor and then the CSD is regenerated.
While this has been sufficient for early prototyping, especially for small programs, editing
capabilities are desirable in an operational setting. An editor has been proposed and is briefly

discussed in Section 7.0 Future Requirements.
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3.5 Navigating Through Large CSDs - Alternatives

Index (or Table of Contents). An index, similar to that presented in the Xman
application provided with the X Window System for viewing manual pages, is used to
navigate among a system of CSDs. The user clicks on the index entry and the corresponding
CSD is displayed. The index entries would be created as CSDs are generated and stored in
the GRASP/Ada library. Entries in the library are to include procedures, functions, tasks,
task entries, and packages. See Section 6 below for details.

Direct Navigation Via CSD. The user is allowed to click on procedure, function, and
task entry calls in the CSD directly and a separate CSD window is opened containing the
selected CSD or fragment thereof. Two potential problems have been identified with this
approach. Using the mouse for selection may conflict with established editing functions
supported by the mouse. In addition, it may be difficult to relate the characters or CSD
graphical construct with subprogram and entry names. The availability of middle mouse

button for this purpose is being investigated.

3.6 Internal Representation of the CSD - Alternatives

Several alternatives are under consideration for the internal representation of the CSD
in the Version 3 prototype. Each has its own merits with respect to processing and storage
efficiency and is briefly described below.

Single ASCII File with CSD Characters and Text Combined. This is the most
direct approach and is currently used in the version 2 prototype. The primary advantage of
this approach is that combining the CSD characters with text in a single file eliminates the
need for elaborate transformation and thus enables the rapid implementation of prototypes as

was the case in the previous phases of this project. The major disadvantages of this approach

17



are that it does not lend itself to incremental changes during editing and the CSD characters
have to be stripped out if the user wants to send the file to a compiler.

Separate ASCII Files for CSD Characters and Text. In this approach, the file
containing the CSD characters along with placement information would be "merged"” with the
prettyprinted source file. The primary advantage of the this approach is that the CSD
characters would not have to be stripped out if the user wants to send the file to a compiler.
The major disadvantage of this approach is that coordinating the two files would add
complexity to generation and editing routines with little or no benefit. As a result, this
approach would be more difficult to implement than the single file approach and not provide
the advantages of the next alternative.

Single ASCII File Without Hard-coded CSD Characters. This approach represents
a compromise between the previous two. While it tises a single file, only "begin construct”
and "end construct” codes are actually required for each CSD graphical construct in the CSD
file rather than all CSD graphics characters that compose the diagram. In particular, no
continuation characters would be included in the file. These would be generated by the
screen display and print routines as required. The advantages of this approach would be most
beneficial in an editing mode since the diagram could grow and shrink automatically as
additional text/source code is inserted into the diagram. The extent of required modifications
to text edit windows must be considered with this alternative.

Direct Generation From DIANA Net. If tight coupling and integration with a
commercial Ada development system such as Verdix VADS is desired, then direct generation
of the CSD from the DIANA net produced as a result of compilation could be performed.
This would require a layer of software which traverses the DIANA net and calls the

appropriate CSD primitives as control nodes are encountered. This approach would

18



apparently eliminate the possibility of directly editing the CSD since the DIANA interface

does not support modifying the net, only reading it.

3.7 Additional CSD Constructs - Alternatives
The following CSD constructs are under consideration for future versions of the
prototype.

Generic Task and Package. Dashed task and package symbols should be
used to distinguish between generic and non-generic tasks and between generic and non-
generic packages.

Function Call. A CSD symbol similar to that used for procedure calls should be used

for function calls for consistency.
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4.0 User Interface

GRASP/Ada user interface was developed using the X Window System, Version 11
Release 4 (X11R4). The X Window System, or simply X, meets the GRASP/Ada user
interface requirements of an industry-standard window based environment which supports
portable graphical user interfaces for application software. Some of the key features which
make X attractive for this application are its availability on a wide variety of platforms,
unique device independent architecture, adaptability to various user interface styles, support
from a consortium of major hardware and software vendors, and low acquisition cost. With
its unique device independent architecture, X allows programs to display windows on any
hardware that supports the X Protocol. X does not define any particular user interface style
or policy, but provides mechanisms to support many various interface styles.

The Version 3 prototype user interface is a significant extension of Version 2. It
allows the user to open one or more source windows to read or edit source code in the usual
way. The user may open one or more CSD windows, indicate corresponding source files and
CSD files, and then generate the CSD from each of the indicated source files. If the CSD
was generated previously, the source file is not required by the CSD window. In either case,
the CSD window allows the user to scroll through the CSD.

The specifications and figures that follow are intended to define the look and feel of
the GRASP/Ada User Interface as well as indicate much of its current and future
functionality. ~The Ada source code used in the figures was extracted from the

AERO.DAP.PACKAGE provided by NASA to test the CSD generator. Complete CSDs for
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the files processed are included in Appendix C. For a complete description of the options

available through the user interface, see the MAN-page in Appendix E.

4.1 System Window
The System window, shown in Figure 6, provides the user with the overall
organization and structure of the GRASP/Ada tool. Option buttons include: General, Source
Code, and Control Structure Diagram. These are briefly described below. A future button
is planned for Object Diagram.
General - This option provides access to the environment including loading of fonts
for X and selection of printers.
Source Code - This option allows the user to open one or more windows for viewing
and editing source code.
Control Structure Diagram - This option allows the user to open one or more
windows for viewing CSDs.
Help - This option opens a window containing a summary of the CSD graphical
constructs. The user may scroll the combined display or selectively display individual

constructs.

4.2  Source Window

The Source window, shown in Figure 7, provides the user with the general capabilities
of a text editor. It is included in the GRASP/Ada system for completeness since the system
uses source code as its initial input. The user may elect to use any suitable editor callable
from the X environment. A future version of GRASP/Ada will allow the user to edit the
CSD directly, making a pure text editor redundant.
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The source file and its associated directory path are displayed in the top pane of each

window. See the Control Structure Diagram Window below for details on the menu options.

4.3  Control Structure Diagram Window
The Control Structure Diagram window, shown in Figure 8, provides the user with
capabilities for generating and viewing a CSD for an Ada source file. Multiple CSD
windows may be opened to access several CSD files at once. CSD file names and their
associated directory paths are entered and displayed at the top of each window. When the
CSD window is opened initially, the source file with a .csd extension is displayed as the
default. In the current version of GRASP/Ada, generation of the CSD is done on a file-level
basis where each file contains one or more units. When changes are made to the source
code, the entire CSD for the file involved must be regenerated. Future versions of
GRASP/Ada will address incremental regeneration of the CSD in conjunction with editing
capabilities in the CSD window. The CSD window options are described below.
File - This option allows the user to select from numerous options including:
Load - This option loads a CSD file. A window is presented to the user that
allows the user to select a file from current directory (see Figure 9).
Open Source - This is a future option which opens a source window with the
source file that corresponds to the current CSD file. The purpose of this
option is to facilitate editing of the source file in the absence of CSD editing
capabilities in the CSD window.
Generate CSD - This is a future option which will facilitate regenerating the
CSD from an existing CSD. The CSD graphics characters must be filtered
prior to the parse.

24



1
SCORETN W (UL THINDIS) = WITMI [HY =! [SILHOME THd
Uty (OBTTN =< (VLTI IHd) saw ) 4T
asio

AT =i B0udd” Ll _

YO CCRMTIHGONILS) (dIVAUNT @ ((AWDTIHINILS) 4IDILNT 9
SQTIRG - QHITIHd ®f ©171307 IKd

-- TI04 04 HOTE 1I3¥M0D HIIM HONYI > 1034800 IHTMNILIT --
uideq

s QWD 8IXUTIULS &unpa00sd

20°09L ! JTINIS W WIS IUEIIWOI I QIETN
10°09% =l INIS W RIS IeITU02 I 09T N
(070 =i FJWNISTWI WIS ! LSILYOHS 1HJ
1070 w1 TWNISTWUWIS 3 Ui IHd

—= dHNQ Y04 F43H QIH0TLISOd ~ GHITSIXUTEYLS 0L “WI01 --

_ . [ov—
ST IMXMETIHITSIXYTIULS Rpoq aldexowd

SIPIAIIGTGHOITAY 130 TSHuL Pue

1SILUOHS ™ IHd '
< (HINITIHSISEY) 3T
esTa
T30 IHd =% WOU3I"THd
= ((OUITIHJIINIIS) AFIILNY JY

= B7TH =% U1VI0TIR

43 ANHE 133440 IMIMYILI0 —

uydeq

SY QHITSIXYTBULS 94npadoud

ONIS™HU WIS WPV T 09g™N
IS0 WIS Werm0ea ¢ 0p1H

3INIS U WIS ¢ LSTLYOHS IHd
=3 IVINISTWWIS ° YLIIQTIHd

= GMITSIUTOYLS 01 W0 —

18114 AWNO-QUIY & 5] PFI°8°dEpOIE R SRU, /04 $0Nb, TU™ 050, 8u0 UM ok}

oy ou quo g puyy]neraferry

ILIANT0UIY 3T @ deposee/wseu/IyI3enb, [§~9s0/eu0y qunduyy
289/ anon/ WaTduy | put g mata [ aTT4 F

SUOT I 0 EA" UPY/ JStUS:

FRAIUJ"OHI™SIXU~BULS Fpoq edexoed

po) saanos [ Tese

Lou

dyeji| ueaBerg ®unOnIY5 ToIW0] | o

Figure 8. GRASP/Ada CSD Window

25



. §1SILHOHS " IHd o1 HOMAI™ [Hd
UK (FIONNTWIAOTTHAD 3 CLSTINOHE IHI) S 5 o1

*° 13965519 haa~t1ma =t wosrs g — |

®°127€G5Tq

*° Turodie
e’ pyndoc.ew

*°>9£5519 - GHITIHd =t BITIITTHY —]
®*3"gGsTq Ag 134907 ITH¥IL - -
*° uyodye videg
qUI"$IX0 fuLs Srweooud

o* ynlosee £ 1006 Weewmd ooty
B w3 yueqswos 1 0BTTH

®° Jdoposee

52° e depaaae

i
i

141 pue

o =1 1838087 I |ﬁ
onia

=1 15I1MOMS THd — |
KYLI307IHd) 33® ) 4%
osle

HITTHAHALS) L ¥IDAUN) 4%

BOHIS My WIS 1 1931 HM0HS T IHd
B 3MHISTNYIIS 1 U130 IHd

 GHI"SIMMTEULE 0L W0 --

m.n.nzu-wu.a-.a; Apoq serove |

ISTIHd)SBY)Y ST

137 pue
1S"IHd
asye
1S"IHd

4515{523 F)

(LR ER (1]

< OMI"IHd = U

W ‘TquGE-!B A0 SHAL pud)

P )

1"IHdINOIS) . UIIINT T

L1307 IHd

| 1334407 3INIHN41L30 --

uyhoq

3V OHDYTSIYTBYLS @mpedosd

WIS weIswod ¢ 9C”N
IS Wemeod oL
WIWIS ¢ 1SILAOHSTTHY
4IIST8YIHIS * HLTI0"IHd

3L [ENTAYIY $) PO’ JEPOER T SOU/ YT IONk /TS TO /MOy /Y~ duy

puoysanl o[ puraneta o174

iDMYTEYLS 0L WI0T —

17209003 13UOUNOT JO UOTIPUIOJUT O 4§

it MM%
ST IS TONI"SIXY™BUYLS Rpoq slexyded

JLIWTOYIY BT v deposawsedeusyisanby [y gD suo quuTduy s

o114

ORI

0°€EA BDPV/dSVID

TROPRI R EIAREE

—nqrwm_ welBeT() 80720075 .—ag\.:ou_aivﬂu. o..‘—‘..som_‘«-h.a.‘.a\u

[puzwncdun Tporg] nava]

il wi

suoTdp 0°CA PPY/JSHYD

Figure 9. GRASP/Ada File Selection Window
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Compile - This is a future option to allow an Ada compiler to be called from
the CSD window.
Save - This option saves the CSD file with the same name as was loaded.
Save as ... - This option saves the CSD file with a new name.
Print - A window is presented which allows the user to select various print
options such as point size, page numbers, and header.
Quit - The CSD window is closed.
View - (not implemented) This option will allow the user to select from options
including: Enable Collapse {Disable Collapse}, Suppress CSD {Show CSD}, Open
TOC window, and Open Index window.
Enable Collapse {Disable Collapse} - This option will allow the user to
collapse the CSD based on its control constructs.
Suppress CSD {Show CSD} - This option will allow the user to suppress or
hide the CSD giving the appearance of prettyprinted code.
Open TOC Window - This option will access the GRASP library and
displays a table of contents based on Ada scoping.
Open Index Window - This option will access the GRASP library and display
an index of units in alphabetical order.
Find - (not implemented) This option will allow the user to perform search and
replace operations. Currently, this is a proposed future option which may become an

integral function of the CSD window when editing capabilities are added.
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44  Help Window

The Help Window provides the user with the capability to display and print templates
of the CSD constructs. The user may select individual CSD constructs from a menu as
illustrated in Figure 10 with the RENDEZVOUS construct. Alternatively, the user may select
the DISPLAY ALL CSD CONSTRUCTS option, as shown in Figure 11, and then scroll

through the constructs alphabetically.
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5.0 The GRASP Library

The GRASP library provides the overall organization of the generated diagrams. The
current file organization uses standard UNIX directory conventions as well as default naming
conventions. For example, all Ada source files end in .a or .ada, the corresponding CSD files
end in .a.csd, and the corresponding print files end in .a.csd.ps. In the present prototype,
library complexity has been keep to a minimum by relying on the UNIX directory
organization. In future versions, a GRASP library entry will be generated for each procedure,
function, package, task, task entry, and label. The library entry will contain minimally the
following fields.

identifier - note: unique key should be composed of the identifier + scoping.

scoping/visibility

type (procedure, function, etc.)

parameter list - to aid in overload resolution.

source file (file name, line number) - note: the page number can be computed from

the line number.

CSD file (file name, line number)

OD file (file name)

"Referenced by" list

"References to" list
Alternatives for generation and updating of the library entries include the following.

(1) During CSD generation, the library entry is established and the entry is

updated on subsequent CSD generations.
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2) During the processing of DIANA nets.

Alternatives for implementing the GRASP library include (1) developing an Ada
package or equivalent C module which is called by the CSD generation routines during the
parse of the Ada source, (2) using the VADS library system along with DIANA, and (3)
using the StP TROLL/USE relational database system. Of these alternatives, the first one
may be the most direct approach since it would be the easiest to control. The VADS and StP
library approaches may be more useful with the addition of object diagram generation and

also with future integration of GRASP with commercial CASE tools.
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6.0 Object Diagram Generator

The object diagram generator (ODgen), produces object diagrams (ODs) for a
corresponding set of Ada source files. The requirements specifications and current issues and
alternatives are described below. A preliminary prototype has been constructed to determine
several of the feasibility issues. Since the Ada package construct captures the essence of the
"object" in object-oriented design, the current work has focused on the automatic generation

of the package symbol.

6.1 ODgen Symbol Set

The OOSD notation [WAS89] has been selected as a basis for the Object Diagram
generator (ODgen). The complete set, which was designed with the intention of using it in
forward engineering, is illustrated in Figure 12. In this section, the feasibility of deriving
each of these symbols during a reverse engineering effort is considered, and the modifications
or supplements needed to render them suitable for the ODgen project are discussed.

Lexical Inclusion of Data Modules. The inclusion of a data module into another
module may be determined from a parse of the Ada source code. If a data module is
considered to be a component which contains no executable statements other than
initializations, then there should be no difficulty in recognizing these modules, and their
inclusion in an OD should cause no problems.

Iterative Calls to Library Modules. Again, this information may be extracted from
a parse of the Ada source code. There should be no difficulty in producing an OD

representation for iterative calls to library modules; however, the composition of this situation

33



Module Module | NModuie

4

Lexical i \\ .

. [teranve | Lonamena,

— Inclusion | -
Call ! Call

Library b
ModuJ'e 1 ‘ Noduie ';
Output Control . Exception Input and Output
Parameter Parameter Data Parameters
oni el Operation ovzi

t
/ Names \ ¢ gp!
a
Genenc
Exception |  Generic | Parameter

Name | Package |

Asynchronous
Activation

NS
/’\* !

Call | Generic
L Esk_ p Sequencing
Package
Name
=>val
sp=>ve d} Visibility

$ [nstantiation

Ceneric
[ Package !

e —

Figure 12. The OOSD Notation Symbol Set
(from Introduction to StP OOSD Graphical Editor, IDE, 1989, p. 59)
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with others, such as conditional module calls, may require further analysis.

Conditional Module Calls. A conditional call of one module from another can be
recognized during parsing, but the generation of an OD representation may prove difficult
should the conditional call be composed with another type of call. For example, a program
loop may conditionally call another module within the loop’s body. How should this be
represented in the OD? Certainly the call is a conditional one and may be represented using
the conditional module call construct. However, the module is being called repetitively
within a loop, so it may just as well be represented using the iterative call construct. Another
possibility is to represent the call using a composition of the two representations, indicating
that the module is called both iteratively and conditionally. The problem is that this raises
ambiguity in that the diagram does not indicate whether the call was made conditionally in
the body of a loop, or whether it was made iteratively as the consequence of some condition
being true. This ambiguity must be resolved if the iterative and module call representations
are to be used properly in the OD.

Package Specifications. A package may be recognized from a parse of an Ada
program, and the operations contained within the package may be recognized just as easily.
The direction of the parameters may also be determined syntactically through the presence
of the in, out, and in out parameter designators. However, the distinction of parameters as
either control or data parameters may not be recognized as easily. In fact, it is possible for
parameters to be used as both control and data parameters, so the automated classification of
an operations’s parameters as control or data may not be feasible. Finally, the detection of
exceptions may be determined easily through syntactic analysis. Current work has focused

on generation of the Booch version of the Ada package symbol [BOOS83].
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Generic Packages. The specification of a generic package may be recognized easily
from a parse of an Ada program, and the generic parameters which must be specified in an
instantiation of the package, the operations provided by the package, the parameters to the
operations and their direction may also be recognized syntactically. However, the generic
package suffers from the same problem as the package in the area of detection of control and
data parameters. Again, the automated classification of parameters as either control or data
parameters may not be feasible.

Tasks. The declaration of a task may be recognized syntactically in a parse of an Ada
program. Much of the desired information needed in the creation of an OD representation
of a task may also be obtained from syntactic analysis, such as the entries provided by the
task, the parameters and their associated directions for each of the task entries, and any
guards placed on the task entries. However, there are two items in the OOSD depiction of
a task that may not be obtainable in an automated fashion during reverse engineering. The
first of these is the omnipresent problem of distinguishing between control and data
parameters which has already been discussed in previous paragraphs. The second is the
placement of sequencing numbers on the task entries. Only in the most trivial cases may
these numbers be properly derived. In more complex cases, the sequencing numbers would
be meaningless or even misleading, and the OD would probably be better off by omitting
these numbers.

Generic Tasks. The depiction of a generic task in the OD suffers from many of the
same problems as the depiction of a task, and the reader is referred to the previous paragraphs
for a discussion of these problems. Other than that, the detection and representation of a

generic task should provide no further problems.
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Instantiation of Generic Packages. The instantiation of a generic package in an Ada
program may easily be determined syntactically. The generation of a proper OOSD symbol
for generic package instantiation will require actual parameters to be matched with formal
parameters. Otherwise, it should pose no difficulty.

Visibility. The depiction of the semantic visibility of a package to a module in an
Ada program may be determined syntactically, but the representation may prove to be
misleading. There are two "varieties” of visibility that must be represented: packages
lexically included in the declarative section of the current compilation unit and packages
included via the with clause, which are separate compilation units. For example, a package
in an Ada program may only be visible to a small section of a module (for example, a block
in a module containing a loop may declare the package in the declaration area and call a
function in the package iteratively during the loop. The package would therefore be visible
throughout the scope of the block, but would not be visible in the statements preceding and
following the block. Therefore, the depiction of the package as being visible to the module
could be misleading to the user unfamiliar with the underlying code. Although generating
the representation is not difficult, the sensibility of utilizing the representation must be
considered. When visibility is determined by the with clause, a separate icon is, of course,

necessary and appropriate.

6.2 Symbol Interconnections and Diagram Layout

The actual automatic layout of the generated object diagram with respect to symbols
and interconnections is the most formidable problem that must be solved. Whereas the CSD
has a flexible but well-defined physical layout, the OD layout is not well-defined. In fact,
the CASE tools that support the OQOSD notation require the users to "manually” arrange the
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symbols. Determining the feasibility of an algorithmic and/or heuristic solution which yields
a reasonably comprehensible diagram layout is a complex topic which warrants further
investigation.

The majority of approaches to the automated layout of a directed graph have focused
on minimizing the number of crossovers among the flow lines in the graph. Warfield
[WART7] detailed an algorithm that proposed the reordering of a directed graph into a
number of vertex subsets (called levels) and the minimization of the number of crossovers
between subsequent levels using a special table called a generating matrix. The major
drawback to the approach is that the generating matrix technique is only applicable to cases
in which their are five or less vertices in each level. Warfield realized this, and went on to
propose a number of techniques for graph manipulation that he believed could prove useful
in the development of improved graph layout algorithms.

Sugiyama [SUGS81] developed a heuristic algorithm for crossover minimization called
the penalty minimization (PM) method that could be integrated with Warfield’s algorithm for
application to graphs with more than five vertices in a level. Since the penalty minimization
method is combinatorial in nature, Sugiyama also developed a heuristic algorithm called the
barycentric (BC) method that would make the PM method practical. In addition to this
improved algorithm for minimizing the number of crossovers between successive levels of
a graph, Sugiyama also developed the priority (PR) layout method for improving the
horizontal positioning of the vertices in a level.

Paulisch [PAU90] noted that two major problems with Sugiyama’s work were that the
algorithm did not allow the user to specify preferences and constraints on the diagram layout,
and that the algorithm did not take previous layouts into account when updating a graph and
could produce wildly different layouts from minor perturbations of the graph, leading to graph
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layout instability. She theorized that both problems could be solved by incorporating a layout
constraint manager with Sugiyama’s algorithm and developed a method for doing so. Her
approach involved adding a constraint manager for each dimension of the graph (x, y, and
z) and providing a set of constraints for each dimension form which the user could choose
a subset to be applied to the graph. The constraint manager would reconcile the various
constraints provided in this manner by the user with the constraints imposed by the
application and the layout algorithm to produce a graph layout. The implementation chosen
by Paulisch used a binary search among constraints in the reconciliation process, a method
that provides a quick response time but does not necessarily yield an optimal solution. A
better approach might lie with the use of genetic algorithms to "breed” an optimal graph
layout solution. The feasibility of this approach, coupled with the use of the
Warfield/Sugiyama/Paulisch algorithms, is presently being investigated by members of the

GRASP/Ada research project.

6.3 GRASP/Ada ODgen Processing Alternatives

In the development of the ODgen design specification, three distinct development
methods were considered. The major difference among these methods is linked to the degree
of involvement of other commercially available tools and the ability of the user to specify
these tools. The first method considered was to create ODgen as a stand-alone system. A
second alternative was to use GRASP/Ada as a driver for a set of subprogram invocations
which would use VADS, ODgen, and StP/ADE in sequence to produce the architectural
diagrams. Finally, the third alternative considered was to use GRASP/Ada as a shell from

which the user could invoke each of the three tools at his convenience. In this section, these
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three methods are examined in more detail, and the advantages and disadvantages associated
with each method are outlined.

ODgen Is Independent of Commercial Tools. This method would involve the
development of a stand-alone architectural diagram generator. The generator would not be
dependent on commercial tools such as VADS and StP/ADE. Instead, the parser/scanner
developed in Phases I and II of the GRASP/Ada research project would be extended to
extract the information needed for the representation of architectural diagrams. A method for
specifying or identifying the complete set of files comprising the Ada system would have to
be developed (this may require some involvement from the user). The major advantage of
this method is that the tool would not be subject to the whims of the manufacturers of
commercial tools (i.e., the tool would not be rendered useless if VADS were to become
unsupported, if the DIANA representation were subjected to large-scale change, if the
StP/ADE file formats and representation methods were to be changed, etc.). On the other
hand, this method would involve substantially longer development time, as a tool for
identifying the dependencies among a set of Ada source files would have to be developed.
In addition, a tool for viewing and printing the architectural diagrams would need to be
developed. Because a substantial amount of effort has already been spent in the development
of the GRASP/Ada X11R4 interface, extending this interface to display the architectural
diagrams could benefit from the groundwork already laid in Phases [ and II. The major goals
which would need to be accomplished are the development of X11R4 widgets for the
representation of each of the OOSD symbols, and the development of layout heuristics and
modified layout widgets suitable for displaying the OOSD symbols.

ODgen Invokes VADS and StP/ADE. In this method, the ODgen component of
GRASP/Ada would first invoke VADS to generate a DIANA net for the specified set of Ada
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source files. ODgen would then traverse this net to obtain the required information and
generate an internal representation for the architectural diagrams. This information would
then be shaped into a format suitable for StP/ADE and saved. Finally, StP/ADE would be
invoked to view the architectural diagram. All of this would be transparent to the user: after
specifying the Ada source files and a number of ODgen options, GRASP/Ada would invoke
the tools in sequence and bring up StP/ADE as a subprocess displaying the generated
diagrams. The major advantage in this approach is that it would utilize already-existing tools
to speed the development effort. Instead of writing yet another Ada parser, intermediate
representation generator and OOSD diagram displayer, the research effort could concentrate
on the task of obtaining architectural details and composing meaningful architectural diagrams
from them. However, relying on commercial tools could be dangerous as subtle changes in
the formats of either the VADS representation or the StP/ADE representation could require
major, sweeping changes in the ODgen system. In addition, the use of commercial tools
could greatly limit the number of potential users for the ODgen system. Instead of only
needing the ODgen system, the user would also need the VADS Ada compiler and the
StP/ADE software development system - two costly components. For many university
research installations, the costs of these systems would be prohibitive and would virtually
eliminate the potential use of ODgen.

GRASP Runs Independently of VADS and StP/ADE. The user invokes VADS to
create DIANA nets, invokes GRASP to generate CSDs and ODs, and invokes StP/ADE to
view the ODs. In this scenario, the GRASP/Ada interface would be partially customizable
by the user. Instead of relying on a specific Ada intermediate representation generator and
OOSD diagram displayer, the user would be able to select from a limited number of
commercial tools. To accomplish this, a minimal ODgen interface for each tool would be
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identified and a suitable data representation would be specified. ODgen would then be
designed to transform the input Ada source data into an architectural diagram representation
in the output format. Then, customizing GRASP/Ada for new intermediate Ada
representations and OOSD diagram formats would consist of simply writing a filter
transforming the data from one representation to another. For example, customizing
GRASP/Ada to work with the VADS DIANA representation would require a filter to be
written to traverse the DIANA nets and store the needed architectural information into a file
in ODgen’s input format. Similarly, customizing GRASP/Ada to work with the StP/ADE tool
would require a filter to be written translating the ODgen output format into StP/ADE’s input
format. This method would allow GRASP/Ada to be fairly portable without depending on
strict reliance on commercially available tools. On the other hand, this method would require
an extensive and easily translatable interface format to be developed for both ODgen’s input
and output formats. Finally, the amount of effort required for the writing of filters for new
representations could be potentially quite large, depending on the format and accessibility of

the new representations.

6.4 Displaying the OD - Screen and Printer

Generating visual displays of the object diagrams will require display methods to be
generated for the screen and printer. Since the GRASP/Ada interface for Phases I and II was
developed using the X Window System (a portable graphical environment gaining widespread
acceptance) and numerous utilities have been developed in the creation of that interface, the
development of a display mechanism for the object diagrams in X11R4 would be a logical
extension to the previous work. In addition, the PostScript page description language was
used in Phases I and II for the hardcopy output of the CSD diagrams. Because PostScript
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is a nearly universal output description language for laser printers, the development of
PostScript utilities for printing GRASP/Ada object diagrams would ensure the portability of
GRASP/Ada. In this section, some of the issues and considerations involved in the
generation of visual displays for the object diagrams for the screen and printer are discussed.

Screen representations. In the X11R4 system, objects on a screen are often
represented using widgets (a user interface component embodying a single concept: e.g.,
buttons, labels, scrollbars, etc.). The development of the interface for Phases I and II of the
GRASP/Ada research project was implemented using the X11R4 Athena widgets, a general
purpose widget set shipped with the X11R4 system. Numerous utilities were developed by
the GRASP/Ada implementation team to simplify the use of these widgets to providing
facilities for browsing files, generating alert boxes and dialogues, creating text editor
windows, and specifying menus. These utilities would be invaluable in the development of
the ODgen interface, but additional utilities will be needed. In particular, there are no
suitable widgets in the Athena set for displaying the various OOSD symbols. A reasonable
approach to implementing a display mechanism for the ODgen diagrams would involve the
creation of a set of widgets, one for each of the symbols in the OOSD set. These widgets
could be subclassed from existing widgets in the X11R4 Athena set, minimizing the amount
of effort required to create them (although this would cause them to need revision with
subsequent releases of X11). And once written, these widgets could be used in other CASE
programs written for X11R4. Next, constraint and layout widgets would need to be designed
to facilitate the layout of these OOSD symbols. Again, a suitable widget could be created
by subclassing an appropriate Athena widget, in this case, probably the Form widget. Such

a widget would be responsible for laying out an architectural diagram and redrawing it after
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modifications, thus justifying the need for embedded logic to be written for the automatic
layout of the ODgen diagrams.

Printer Representations. In Phases I and II of the GRASP/Ada research project,
three different types of output devices were utilized. The first was the LNO3 printer, a printer
manufactured by DEC with the capability of printing sixel graphics. Printing the CSD on the
LNO3 printer was accomplished by generating sixel representations for each of the CSD
characters and then printing each CSD character as a small graphic image. The text of the
Ada source program was printed normally using the LNO3 resident fonts. This method had
several major disadvantages: it was not portable (sixel graphics are a proprietary format of
DEC), it was slow (printing each CSD character as a graphic bitmap was a time-consuming
process), it was crude (the sixel graphics format did not allow for a high degree of resolution
and the generated CSD characters suffered from jagged outlines), and it wasted file space (the
space required to store the sixel representation of a single CSD character was equivalent to
the space needed to store over 200 text characters). The second output device utilized was
the HP LaserJet II printer, an extremely popular laser printer. Using the LaserJet II enabled
the GRASP/Ada program to utilize a specially prepared CSD font that could be downloaded
to the printer. This method allowed the CSD to enjoy greatly improved resolution over the
LNO3 characters, a much smaller file representation (since each CSD character could now be
represented as a single extended ASCII character rather than a large bitmap image), and faster
printing speeds. However, this method was still tied to a single commercial printer, the HP
LaserJet I1. The third method allowed the GRASP/Ada program to generate CSDs that could
be printed on a wide variety of printers by generating CSDs using the PostScript page
description language. PostScript representations for each of the CSD characters were
generated using a series of PostScript graphic primitives to describe how to draw each
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character. Once designed, these characters were merged with a PostScript program that uses
the Adobe Courier font to produce a modified Courier font containing the CSD characters.
The CSD font can be installed on any PostScript printer by downloading this PostScript
program. Thereafter, CSDs can be printed by sending them to the printer and specifying this
specially modified Courier font. The advantages to this method are many: the CSD can be
printed on any printer (laser, inkjet, dot-matrix, etc.) that supports PostScript; the CSD can
be printed at the highest resolution the printer is capable of producing, which generally
produces results of outstanding high quality on most laser printers; and the CSD font can be
scaled to any size, allowing the CSD to be printed at any size the user wishes (unlike the
previous methods, which allowed the user to have only one font size). For Phase III of the
GRASP/Ada research project, a library of PostScript routines for printing each of the OOSD
symbols must be created. The ODgen program can then invoke these routines to create a
sequence of descriptions for printing the OOSD diagram to any PostScript printer. Care must
be exercised in the creation of these routines to ensure that they match the appearance of the
X11R4 widgets also corresponding to these OOSD symbols. Like the modified X11R4
widgets for the OOSD symbols, these PostScript routines should also be portable to any other

CASE tool for the X11R4 system.

6.5 Incremental Changes to the OD

The ultimate goal of the ODgen phase of the GRASP/Ada research project is to allow
the user to reverse engineer a set of Ada source files into an architectural diagram. For a
large system, this may take some time. It would be desirable to have the user do the reverse

engineering once and then have ODgen incrementally change the OD as the user makes
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changes to the source code. However, this is an extremely complex issue, and some of the
problems involved in doing this are addressed in this section.

The first problem involved in the incremental updating of the OD is that if the
DIANA notation is used to obtain the syntactic and semantic information from the Ada
source files for the generation of the OD, then we are immediately stymied. In its current
states, DIANA does not support incremental updates. If a portion of a file is changed, then
the entire file must be recompiled to update the DIANA net. Thus, any implementation of
ODgen which relies on a DIANA net for its information could not support incremental
diagram updating. A parser specifically modified for incremental updates could prove useful
in generating the diagrams, but such parsers are extremely complex to design and are often
excruciatingly slow in practice. Teitelbaum and others [TEI81] have outlined some of the
problems involved in incremental parsing in their work on the development of syntax-directed
editors.

The second problem involved in the incremental updating of the OD lies in the
unrestrained freedom of editing by the user. The proper generation of an OD relies on the
existence of a relatively complete Ada compilation unit, where "relatively complete" is
defined as a main (or "driver ") program along with at least the specifications of the
packages, tasks, and modules upon which it depends. The existence of a relatively complete
program is not normally a problem in reverse engineering, where the user has a system and
is just trying to decipher its function and meaning. However, the user could initiate what,
to him, appear to be very minor changes that could lead to many changes throughout the ODs
and CSDs. As an example, imagine that the user renames a small package. To him, this
may be a minor modification, but it would create havoc for the ODgen system. The system
would no longer be relatively complete, as it would now contain what would appear to be a
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new and unreferenced package along with a large number of package inclusions that may no
longer be satisfied. This and related problems must be addressed in any attempt at providing

incremental updates to the ODs and CSDs.

6.6 Internal Representation of the OD - Alternatives

Although the DIANA intermediate representation for Ada may be used to gather
information for the creation of the OD, and the StP/ADE format may be used as one possible
output representation for the OD, a more extensive and comprehensive internal representation
tailored for the needs of the OD generator is desired. Several alternatives are presently under
consideration for this internal representation of the OD. These alternatives include (1) storing
the OD as a single ASCII file, (2) storing the OD as a number of files tailored to the internal
data structures utilized by ODgen, and (3) completely bypassing the internal representation
to directly generate the OD from a DIANA net. Each of these approaches has its own merits
with respect to processing and storage efficiency, and these qualities are in this section.

Single ASCII File. The most direct approach is to utilize the StP file format. This
would present the option of viewing the OD via the StP/ADE system. However, although
the StP file format is "open architecture," it is a proprietary format and is, therefore, subject
to change. Because the function of the ODgen system will be dependent to a high degree on
the organization of the data upon which it operates, a stable data format is desired.
Therefore, an original data format might prove to be more useful over time as it would reduce
the problems of compatibility with commercial formats (filters could be written to translate
from the ODgen format to other formats). In addition, commercial formats such as the StP
format might lack provision for all of the information which might be needed for the OD.
This is particularly true for the case in which the user may wish to link CSDs generated using
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the GRASP/Ada CSD generator to objects in the OD. A comprehensive internal
representation consisting of segments storing information for each of the OOSD symbols may
prove to be necessary to fulfill all of the needs of Phase III of the GRASP/Ada research
project.

Multiple ASCII Files. Because a typical Ada program will involve a number of
source files, an alternative to storing the data relating to a system in a single file is to store
the data in a number of files, each linked to one or a number of source files. Such a system
would decompose the intermediate representation into a number of smaller units. With an
appropriate indexing scheme, this could bring about increased performance in the ODgen
program as the system would not have to peruse unnecessary information to get to the data
it needs. This scheme might also prove helpful in producing incremental changes to the OD.
The major drawbacks to this method are the greatly increased number of files generated and
the overhead involved in the indexing scheme.

Direct Generation From DIANA Net. If tight coupling and integration with a
commercial Ada development system such as Verdix VADS is desired, then direct generation
of the OD from the DIANA net produced as a result of compilation could be performed.
This would require a layer of software which traverses the DIANA net and calls the
appropriate OD primitives as unit nodes are encountered. This approach would apparently
eliminate the possibility of directly editing the OD since the DIANA interface does not

support modifying the net, only reading it.

6.7 Navigation Through Large ODs - Alternatives
Because many Ada software systems are fairly large in size and scope, some facility
for easily navigating the ODs generated for them must be provided. There are three
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navigational methods presently being considered for use in the ODgen system. These include
(1) the creation of a "table of contents" for the system, (2) the direct navigation throughout
the system using a "point and click” interface similar to that provided in hypertext or in the
HyperCard application on the Apple Macintosh, and (3) a combination of these two methods.
In this section, these methods are described and the relative advantages and disadvantages
pertaining to each method are presented.

Index (or Table of Contents). An index, similar to that presented in the Xman
application provided with the X Window System, would be used to navigate among a system
of CSDs and ODs. After generating the CSDs and ODs, the user would be presented with
an ordered list of the diagrams. To view a diagram, the user would click on the index entry
and the corresponding CSD or OD would be displayed. The index entries would be created
as the respective diagrams are generated and stored in the GRASP/Ada library (see Section
6 below). The greatest advantage to this method is that the user may see the entire range of
diagrams at once - nothing is hidden. However, for a nontrivial system this may be a list of
daunting proportions requiring the user to have some familiarity with the system to be of any
use. This disadvantage may be offset by layering the index so that only top level diagrams
are presented at first, each containing links to a sublist of associated diagrams, etc. In
addition, icons or informative labels could be attached to each index entry to provide the user
with additional information regarding the diagram under consideration.

Direct Navigation Via ODs. With this method, after generating the CSDs and ODs
for an Ada system, the user would be presented with the top level diagram for the system.
The user could reach other diagrams in the system by clicking on the OOSD symbols in the
top level diagram: this would bring up the associated subdiagram or CSD on the screen. The
user is allowed to click on procedure, function, and task entry calls in the OD directly and
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a separate OD window is opened containing the selected OD or fragment thereof (there may
be a problem using/implementing this approach since the mouse is also used for editing).
Browsing the OD in this manner would be much like working with hypertext, and would
provide some of the advantages and disadvantages associated with hypertext. For example,
the user may gain an incomplete view of the system by following odd threads throughout it.
The user may also have to sift through a great deal of high level detail to get to low level
components. This might prove frustrating in practice. However, the user would have the
freedom of navigating throughout the system in an logical manner.

Combination of Index and Direct Navigation. The two approaches discussed above
both have their relative merits and problems. A more desirable solution to the navigation of
large ODs possibly lies in the combination of these methods. By providing a linked series
of ODs and CSDs with a comprehensive listing of all diagrams, the user would have
unrestrained freedom in navigating throughout the system. Additional utility could be
provided by allowing the user to "mark" viewed and unviewed diagrams in the index, and by
maintaining a list of recently visited diagrams. However, this approach would be more

difficult to implement and would take careful analysis and design to be effective.

6.8 Exploding/Imploding the OD

The OD window should provide the user with the capability to explode or implode
the OD based on Ada constructs and complete diagram entities (e.g., procedures, functions,
tasks and packages). This capability directly combines the ideas of chunking with the major
threads of control flow which are major aids to comprehension of software. The OD can be

supplemented by architectural CSD (ArchCSD) [DAV90], a diagram produced by collapsing
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the CSD based on procedure, function, and task entry calls, and the control constructs that

directly affect these calls.

6.9 Generating a Set of ODs

Since GRASP/Ada is to be used to process and analyze large existing Ada software
systems consisting of perhaps hundreds of files, an option to generate all the CSDs at once
is required. Generating a set of ODs should be facilitated by entering a wildcard file name
(e.g., *.a). An OD generation summary window should display the progress of the
generation by listing each file as it is being processed and any resulting error messages. The
summary should conclude with number of files processed and the number of errors
encountered. The default for each OD file name is the source file name with .od appended.
Generating a set of ODs can also be considered a user interface requirement rather than

strictly a OD generator requirement.

6.10 Printing An Entire Set of ODs

Printing an entire set of ODs in an organized and efficient manner is an important
capability when considering the typically large size of Ada software systems. A book format
is under consideration which would include a table of contents and/or index. In the event
GRASP/Ada is integrated with IDE/StP/ADE, the StP Document Preparation System could

possibly be utilized for this function.

6.11 Relating the CSD and OD - Alternatives

For each OD in the system under scrutiny, the user will have the ability to click the
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mouse on any OOSD symbol in the diagram and be presented with the underlying CSD or
a subsequent level of OD, if it exists. In addition, a button will be provided on each OD or
CSD window allowing the user to step back up one level in the diagram hierarchy to see the
"parent” diagram. In this manner, the user will be able to fully traverse the ODs and CSDs
comprising the system using a "point and click" approach. In addition, the user may choose
to bypass the hierarchical traversal by simply choosing the diagram to be viewed from the
index list of diagrams.

Each CSD corresponds to an object symbol (e.g., procedure, function, package, task,
task entry). These may be nested and may each have an interface and a body. Conceptually,
the CSD may be collapsed to a graphic symbol. A group or system of these symbols could
be interconnected (logical inclusion and/or invocation) to form an object diagram. This could
be thought of as "growing” or synthesizing the system diagram. The user would be able to
open any of these symbols to see the lower level diagram associated with it.

If the StP/ADE system is to be used for viewing the ODs and CSDs, the ODs could
be viewed directly. The CSD could be displayed as an annotation in StP/ADE. This would
require that the CSD font be downloaded into the appropriate StP/ADE window for the

diagram to be viewed properly.

6.12 Index and Table of Contents Relating the CSDs and ODs

An index of all CSDs and ODs should be available via the GRASP library. The index
should be presented in a window to the user, and upon the selection of an index entry, an
appropriate CSD window should be opened. The index will provide an additional means of

navigation among diagrams in an interactive mode, and it will be the basis for printing a
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complete set of all diagrams. See the section below entitled, "The GRASP Library" for more

information.

6.13 Design and Implementation of Preliminary ODgen Prototype

The overall organization and composition of the prototype system is discussed first,
with special attention paid to the design of the ODgen widget set. This is followed by a
description of the use of a subset of the proposed GRASP library in the development of the
prototype. Finally, an informal specification of the organization of the X11R4 user interface
that allows the ODgen prototype to function as a standalone tool is given, along with a
summary of the changes that must be made to integrate the final ODgen system with the
GRASP/Ada system.

Overview. The primary purpose of the ODgen object diagram generator prototype
was to assess the feasibility of recognizing and extracting design information from Ada
source code. Mappings were assigned between the target diagrams, described above, and the
appropriate Ada constructs. An X11R4 widget set, with one widget for each of the proposed
ODgen diagram elements, was designed, and the Package widget was implemented. Next,
a subset of the GRASP library which would enable the storage and manipulation of structural
information was created. Finally, an X11R4 user interface based on the freely available
Athena widget set was developed which would allow ODgen to be used as a standalone tool
that would work independently of the GRASP/Ada system. Figure 13 shows a typical
window presented to the user by the preliminary prototype of ODgen. ODgen uses a simple
X11R4 user interface that provides a menu bar and three paned areas. The menus allow the
user to choose an Ada file, load the file, generate an object diagram, display an object
diagram, save the object diagram, change the size of the font, and exit the program. The first
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Figure 13. Typical ODgen User Interface Window
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paned area is used by ODgen to report errors and to display information pertaining to the
program’s status. The second paned area is used to display the source code or CSD for the
Ada program of interest, and the third paned area is used to display the corresponding object
diagram. Each of the paned areas may be sized by the user, so that an all-source view may
be obtained as in Figure 14. The user may equally choose to see an all-diagram view as in
Figure 15, or a multiple view as in Figure 16.

General Development Approach. The overall organization of ODgen may be seen
in Figure 17. To initiate the implementation of ODgen, a lexical description of Ada was
obtained and used as an input for the lexical analyzer generator LEX to create a scanner for
Ada systems. The lexical description was enhanced with a number of customized routines
which would enable the filtering of CSD characters as well as assist in the capture of data
relating to the source code (such as line numbers). Next, an Ada grammar was obtained and
instrumented with a number of action routines which would extract structural information
during a parse of Ada source code and preserve this information in memory using a prototype
of the GRASP library. The resulting Ada grammar was too large for the parser generator tool
YACC to handle, so the widely available YACC-workalike BISON (a parser generator
upwardly compatible with YACC that accepts larger grammars) was used to generate an Ada
parser. This parser and the previously generated scanner were tested on a number of
programs provided by NASA and Boeing to ensure that they would indeed parse legitimate
Ada programs. (A special note: due to the syntactic structure of Ada, many Ada grammars
introduce slight modifications to several of the productions in order to simplify the creation
of the parser. The grammar utilized by GRASP is one of these, and therefore ODgen will
parse some syntactic constructs that are not legitimate Ada. These deviations are few,
however, and are not likely to occur in practice. In addition, one of the underlying
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assumptions made at the onset of the GRASP project was that the input programs would be
syntactically correct.)

ODgen Widget Set. The next step in the development of ODgen was the design of
the widget set for the display of the object diagrams. Widgets were designed for each of the
object diagram symbols, including: packages, tasks, generic packages, generic tasks, and
subprograms. The Package widget has been implemented in the prototype. Several practical
concerns severely influenced the design of the widgets. In the following paragraphs, these
concerns are discussed along with their impact on the development of the widget set.

Initially, the ODgen widgets were to be developed as compound widgets similar to
the X11R4 Athena Dialog widget. The X11R4 Athena Form widget would have been used
as a background upon which to place the ODgen symbol labels (represented with the X11R4
Label widget). The objects and modules of the Package widget and the entries of the Task
widget could have been neatly represented using the X11R4 Athena Command widgets, or
derived subclasses. These compound widgets could therefore have been developed fairly
quickly using reliable off-the-shelf components. However, this approach was abandoned for
several reasons. First, this widget set was developed in May of 1991 under X11R4. Release
5 of the X Window System was slated for distribution in the fall of 1991. Between releases
3 and 4 of the X Window System, major changes were made in the implementation of the
Athena widget set, with the developer freely admitting that he had given up on maintaining
compatibility for any widgets subclassed off of the Release 3 widgets. Therefore, the
decision was made to rely as little as possible on the Release 4 widgets in case a similar fate
should await the Release 5 widgets. Second, to present the objects as rounded rectangles, the
widget set would have to make use of the XmuShapeRoundedRectangle shape extension.
Because not all X servers support this extension, its use was prohibited to maximize
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portability. Third, the Athena Command widget, being a full widget, carries a great deal of
unnecessary overhead which is unnecessary and unwanted in this application. As a typical
application using the Package widget would contain a great many objects and modules, a
better implementation would operate similarly to the Athena SimpleMenu widget, using
gadgets rather than widgets to represent the objects and modules.

The second possibility considered was to implement the Odgen widget set as a series
of simple composite widgets and to provide gadgets for the objects and modules of the
Package widget and for the entries of the Task widget. This approach would have the added
advantage of allowing the programmer to subclass these gadgets and therefore easily
customize the widget s appearance. However, this approach was abandoned for several
reasons. First, this would have forced the Package and Task widgets to be implemented as
a number of widgets (the Package or Task widget itself and the associated gadgets),
substantially increasing its complexity and comprehensibility to the applications programmer.
This approach was undesirable since a major goal in the development of this widget was its
ease of use. Second, composite widgets are widely regarded as being difficult to write as
they must deal with geometry management and other concerns. In addition, they incur more
overhead than simpler classes of widget, and this overhead was regarded as being unnecessary
in this instance. Third, because the objects are represented using rounded rectangles, and
because gadgets draw directly into their parent s window, this approach would have required
a programming workaround because of an extremely subtle problem which will not be
discussed here. Fourth, Release 5 of the X Window System is rumored to have made several
changes in the way in which gadgets and objects are implemented. To prevent substantial
rewriting of this widget in the near future, and for the other reasons cited above, this
approach to the implementation of the ODgen widget set was not taken.

61



The third possibility considered, and the one which was actually used, was the
implementation of the Package and Task widgets as simple widgets with convenience
functions for manipulating the objects and modules and entries. This approach had several
advantages, chiefly the simplified programmer interface. The applications programmer would
only have to deal with one widget, rather than with a composite widget and a number of
gadgets and all of their associated header files and resources. A second advantage is that
using convenience functions to manipulate the subcomponents sufficiently abstracts the
process such that the widgets could be rewritten in a future release to support gadgets, after
the Release 5 gadget modifications are known, without requiring application programs to be
modified (the convenience functions could be modified to create instances of the gadgets and
insert them into the appropriate widget, therefore achieving backward compatibility). A third
advantage is that implementing the ODgen widget set as a subclass of only the Athena Core
widget greatly minimizes the widget overhead which would accompany a compound or
composite widget.

However, there are several disadvantages to the chosen implementation approach.
Because each ODgen component is represented by only one widget, associating translations
to actions operating on the subcomponents becomes difficult. To offset this, a routine was
written which fakes!- events for the subcomponents (actually, this routine was lifted from
the X11R4 Athena SimpleMenu widget and modified). A default translation is provided
which works reliably and will probably satisfy most application programmers, but other
translations using the provided actions are possible provided the application programmer
remember that the subcomponents do not truly receive events.

In summary, the current implementation of the GRASP/Ada Package widget is a
product substantially influenced by the current release status of the X Window System, the
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impending changes in the next release of X, the history of sweeping changes in the past
releases of the Athena widget set, and the GRASP/Ada goals of providing an easy-to-use tool
that will require little future maintenance.

GRASP Library. The next step in the development of the ODgen prototype was the
design of a subset of the GRASP library. This subset needed to be suitably complex to store
and manipulate structural information pertaining to the Ada program under study, yet simple
enough to implement in a variety of ways, enabling the feasibility and performance of the
library to be evaluated. Action routines were embedded in the Ada grammar to extract
information for each package, task, complex data type, generic unit, task entry, and procedure
call. This information was combined with other data (source file name, beginning line
number, ending line number, identifier, scope) and stored in the GRASP library prototype for
retrieval and use by the ODgen object diagram display mechanism. This prototype is
currently under evaluation to determine whether this approach will be chosen or abandoned
in favor of one of the two alternatives: the use of the VADS library system with DIANA; or
the use of the StP TROLL/USE relational database system.

ODgen User Interface. The next part of the development of the ODgen prototype
was the design of a user interface that would enable ODgen to be used as a standalone
system. The goals of this part of the development were twofold: first, to design a
functionally complete interface that would enable the user to easily use ODgen as a
standalone tool; and second, to design an interface sufficiently compatible with the
GRASP/Ada CSDgen component and user interface such that the two could be easily
merged.

To meet the first goal, the user interface tools created in the development of the

CSDgen component were streamlined and slightly modified to be applicable to both
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interfaces. The tools were soundly designed and required very little modification for their
use in the ODgen prototype. To meet the second goal, the "look and feel" of the CSDgen
component was preserved in the design of the ODgen interface, with a few improvements.
The multiple windows characteristic of the CSDgen component were reduced in number with
the introduction of paned windows, thus slashing the amount of overhead associated with the
implementation of multiple windows, as well as more tightly associating the object diagrams
with their associated code, and increasing the freedom of the user in determining the
customization of the various views.

The parser, scanner, customized widget set, GRASP/Ada interface utilities from the
development of CSDgen, and a customized driver program were combined to create the
ODgen executable. This program allows the user to select and load either Ada source files
or CSD files into a window and to generate the corresponding object diagram. The program
is currently under evaluation to determine any future enhancements which may prove useful.
When the evaluation is complete and the standalone program is deemed ready for distribution,
it will be integrated with the CSDgen component to complete the GRASP/Ada system. The
major problem which is foreseen in the integration is the combination of the two sets of
action routines into one, a task which will be greatly simplified due to the GRASP utility

routines common to each.
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7.0 Future Requirements

The GRASP/Ada project has provided a strong foundation for the automatic generation
of graphical representations from existing Ada software. To move these results in the
direction of visualizations to facilitate the processes of verification and validation (V & V),
numerous additional capabilities must be explored and developed. The proposed follow-on
research is described by tasks partitioned into three phases. A small team is expected to work
on each phase for a period of up to one year. Operational prototypes will be demonstrated

at the end of each phase.

7.1 Phase 1 - Generators and Editors for Visualizations

Phase 1 consists of five subtasks. The first is to formulate a set of graphical
representations that directly support V & V of Ada software at the algorithmic,
architectural and system levels of abstraction. This task will include an on-going
investigation of visualizations reported in the literature as currently in use or in the
experimental stages of research and development. In particular, specific applications of
visualizations to support V & V procedures will be investigated and classified. A small, but
representative, Ada program will be utilized to formulate and evaluate a set of graphical
representations, and the feasibility of reverse engineering the diagrams from Ada PDL and
source code will be evaluated. These graphical representations are expected to undergo
continual refinement as the automated tools that support them are developed.

The second subtask of Phase 1 is to design and implement a prototype software

tool to generate visualizations from various levels of Ada PDL to support V & V during
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detailed design. The previous efforts of the GRASP/Ada project have focused on the
generation of graphical representations from syntactically correct Ada source code. Since
most detailed design is done in an Ada PDL which is less rigorous than Ada, the capability
to generate visualizations directly from PDL is required to facilitate verification during the
detailed design phase of the life cycle. The diagrams generated in Phase 1 are expected to
focus on the algorithmic level of representation.

The third subtask of Phase 1 is to design and implement a prototype software tool
to generate visualizations from software written in C. Since much of NASA’s production
software is currently being written in a combination of C and Ada, the capability to generate
visualizations from C source code is required to support visual verification of the integrated
software system. And since C is intrinsically less readable than Ada, maintenance personnel
may greatly benefit from algorithmic-level diagrams generated from C source code.

The fourth subtask of Phase 1 is to design and implement a prototype graphically-
oriented editor which provides capabilities for dynamic reconstruction of the diagrams
generated in the tools described above. This capability will directly support visual
verification at its most primitive and important levels, as PDL or source code is entered or
modified. In this mode, the graphical representation can provide immediate visual feedback
to the user in an incremental fashion as individual structural and control constructs are
completed. The present GRASP/Ada prototype generates the graphical representation only
after a complete compilation unit of source code has been entered correctly.

Finally, the fifth subtask of Phase 1 is to design and implement a user interface
capable of supporting a state-of-art multi-windowing paradigm. The user interface for
the tools developed in this research project will be built using the X Window System. This
should facilitate eventual integration of the tools into any Ada programming support
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environment (APSE) which runs under a similar window manager. In addition, this multi-
windowing paradigm will allow the toolset to take full advantage of the current capabilities

of powerful workstation hardware.

7.2 Phase 2 - Evaluation and Extension

Phase 2 consists of five subtasks. The first is to continue the tasks defined in Phase
1 with respect to refinement of the V & V process, implementation of the prototype
tools, and intertool communication. The results of the investigation in Phase 1 will be used
to refine the V & V process and the visualizations which support the process. The individual
tools prototyped in Phase 1 will be integrated through a window manager for the X Window
System. The user interface and a persistent storage mechanism such as DIANA will provide
the basis for intertool communication.

The second subtask of Phase 2 is to evaluate the individual tools developed in
Phase 1. Representative sets of programs written in PDL, Ada and C will be utilized to
evaluate the set of graphical representations generated by the prototype. These graphical
representations and the automated tools that support them are expected to undergo continual
refinement during Phase 2.

The third subtask of Phase 2 is to design and implement a prototype software tool
for generating architectural diagrams (ADs) from Ada PDL and a combination of Ada
and C source code, to support the process of V & V. The Phase 1 prototype, which
focused on the generation of an algorithmic notation, will be extended to include architectural
diagrams. This task will include (1) development of procedures for identifying and recording
module interconnections, (2) development of algorithms for architectural diagram layout, and
(3) development of methods for displaying/printing architectural diagrams on hardware
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available for this research. The tool will be used on representative Ada software. The
generated set of graphical representations will be evaluated for completeness, correctness, and
general utility as an approach to reverse engineering.

The fourth subtask of Phase 2 is to investigate the potential for integration of the
toolset with currently available commercial systems. Commercial CASE systems and
APSEs will be surveyed to determine appropriate commercial systems to target for
integration. Many vendors are currently developing "open architecture” systems to facilitate
the integration of third party tools.

The fifth subtask of Phase 2 is to investigate the use of visualization tools to
support software testing, particularly unit level branch coverage analysis. Software
testing is an important and essential component of V & V. Visualization tools are extremely
useful for analyzing and reporting branch coverage. In addition, they may be very useful for
graphically selecting a path for which data items to drive the path should be generated. This
task would be done in conjunction with QUEST/Ada, a related project which has focused on

the theoretical issues of test data generation [BRO90].

7.3 Phase 3 - Evaluation and Integration with Commercial Systems

Phase 3 has three subtasks. The first is to complete the tasks defined in Phases 1
and 2 with respect to refinement, intertool communication, and integration of an
operational prototype. In particular, the user interface will be completed as a basis for
overall integration of the prototype tools.

The second subtask of Phase 3 is to evaluate the toolset developed in Phases 1 and
2. Software systems which are representative of three levels of size and complexity, will be
utilized to evaluate the set of graphical representations generated by the prototype as well as
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the prototype itself. These systems will be written in Ada/PDL, Ada, C, or a combination
of Ada and C. The graphical representations generated and the prototype are expected to
undergo continual refinement as a result of the evaluation.

The third and final subtask of Phase 3 is to integrate with currently available
commercial systems those components of the prototype toolset which show the most
promise for improving V & V. The results of the survey of commercial CASE systems and
APSEs conducted in Phase 2 and the ongoing evaluation of the prototype tools will be used

to determine appropriate commercial systems to target for integration.
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1. Introduction

The availability of computer-aided software engineering (CASE) environments has
redefined how many organizations approach software development. To meet their true potential,
CASE environments are being applied to the problems of maintaining and enhancing existing
software systems. The key lies in applying reverse engineering approaches to software systems.

The term reverse engineering has its origin in the analysis of hardware, where the practice
of deciphering designs from finished products is commonplace. In this arena, reverse engineering
is regularly applied to improve one’s own products, as well as to analyze a competitor’s products
or those of an adversary in a military or national security situation.

In a landmark paper on the topic, Rekoff (1985) defined reverse engineering as “"the
process of developing a set of specifications for a complex hardware system by an orderly
examination of specimens of that system." (p. 244) He described such a process as being
conducted by someone other than the developer, "without the benefit of any of the original
drawings....for the purpose of making a clone of the original hardware system...." (p. 244). In
applying these concepts to software systems, one finds that many of these approaches apply to
gaining a basic understanding of a system and its structure. While the hardware objective
traditionally is to duplicate the system, the software objective is most often to gain a sufficient
design-level understanding to aid maintenance, to strengthen enhancement, or to support
replacement.

This chapter provides an overall context for reverse engineering in terms of the traditional
software life cycle and then defines and relates six terms: forward engineering, reverse

engineering, redocumentation, design recovery, restructuring, and reengineering. The objectives
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of reverse engineering are then considered along with the major purposes which provide technical
justification for performing reverse engineering: maintenance, reuse, and software quality

assurance. This is followed by a discussion of the economic and legal ramifications of reverse

engineering. The heart of the chapter is a survey of recent research in this area.

2. The Context of Reverse Engineering

To describe the notions of software forward and reverse engineering adequately, there first
must be a clarification in several related areas: software engineering terminology, the nature of
life cycle models, the identification of phases within the life cycle, the types of information
produced by each life cycle phase, and the nature of the subject system.

Despite standardization efforts, software engineering literature has been rather loose in
its use of terminology. Terms that have been tossed about for decades sometimes have had their
original meanings muddled. For the purposes of this chapter, this section will attempt to
standardize some basic software engineering terms to provide a more stable foundation on which
to discuss reverse engineering terminology. As an example, the term specification has come to
refer in the software engineering community both primarily as an outlining of requirements
(Pressman, 1987, p. 152) and also more generally as a recorded document of any life cycle
activity, including design, for example (Pressman, 1987, p. 254). For the purposes of this
chapter, specification will refer to the more general latter definition.

In addition to giving clear definition to the products of the life cycle, it is expedient to
define clearly the process by which these products are created. It is assumed that a reasonably
ordered life cycle model exists for the software development process. The model may be

represented as the traditional waterfall, as a spiral, or in some other form that generally can be
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represented as a directed graph. While one can expect there to be iteration within and overlap
between phases of the life cycle, and perhaps even recursion, its general directed graph nature
allows sensible definition of forward (downward) and reverse (upward) activities.

In addition, one can divide the typical life cycle into three fundamental activities. The
first, requirements analysis, is described by Sommerville (1989) as the establishment of services
to be provided by the system and the constraints under which the system must operate. The
second major activity, design, is the creation of a solution plan. This plan details the makeup
of software components and the nature of their interrelationships. Simply put, requirements
analysis establishes what the system should do and under what circumstances it is to be done,
whereas design establishes how it is to be done. The third activity, implementation, includes the
coding of the solution, testing, debugging, and delivery of the operational system. Other
activities typically thought of as part of the life cycle, such as maintenance, are in fact
reiterations of the previous activities (Basili, 1990). Maintenance is discussed in Section 4 as one
of three primary purposes for reverse engineering.

An abstraction is a model that summarizes the detail of the subject it is representing. A
higher-level abstraction thus has less detail than a lower level abstraction. It provides more of
a conceptual framework enabling the broad picture to be seen, but not the detail. The subject
of examination in reverse engineering is primarily the finished implementation of the system.
Therefore, a design specification is an abstraction of the system and a requirements specification
is a higher-level abstraction of the same system.

It is important to distinguish between levels of abstraction, an idea that labels fundamental
phases of development, and degrees of abstraction within a single phase. The three life cycle
activities described above can be considered as corresponding to different levels of abstraction.
The levels differ primarily because the corresponding phases have distinct purposes. Although
again this notion may be considered simplistic by some, it is indeed a conceptual leap to move

from a specification of what the system is to do to a specification of how it is to be done.
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Furthermore, another leap is required to move from a design plan to a tangible implementation.
Moreover, to be faithful to the term abstraction, it is true to speak of the specifications from
higher phases as being summations (to some extent) of specifications from lower phases.

It is also possible within a life cycle phase, or abstraction level, to specify the system with
varying degrees of detail. For instance, Sommerville (1989) describes a requirements definition
as a broad, largely textual statement of system services intended to be a basis for common
understanding among all concerned parties. He distinguishes this definition from a more detailed
requirements specification, which more completely and precisely spells out the nature of the
services. In design, there are varying degrees of detail, from comprehensive architectural designs
which specify interfaces and dependencies among major components while revealing little or no
detail within the constituent modules, to procedural designs of the modules themselves which
provide algorithms and detailed data structures. Even implementations can vary in degree of
complexity as they evolve; for instance, modules which have not been fully implemented can be
stubbed, allowing calls to be made to them.

As Sommerville (1989) suggests, the boundaries between levels of abstraction or degrees
within levels can seem subjective and amorphous, especially when the artifacts of the various
levels appear suspiciously similar. For instance, an Ada-like requirements specification, intended
to delineate system functions and how they might appear to the user to work, may look much
like a design specification for the same system, even though the purposes for the two
specifications are entirely different. In fact, Sommerville (1989) further suggests that it is
somewhat likely that low-level requirements specification and high-level design will proceed
simultaneously.

Reverse engineering methods attempt to transform system representations from one form
to another, sometimes moving to less detailed forms. It is prudent, then, to be aware of the types
of representation which can be subjects and targets of reverse engineering. At the design level,

one finds various forms of pseudocode, differing in language base and syntactic formality. In
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addition, a module may go through several iterations of pseudocode as detail is added.
Furthermore, one may find algorithmic graphical representations which illustrate procedural
control flow and control structure. Moving from procedural design, one may discover various
depictions of software architecture such as module calling diagrams, other component dependency
diagrams, and module interconnection languages such as NuMIL (Choi and Scacchi, 1990).
Many of these types of representation can vary in the degree of detail that is actually shown.

At the requirements level, there are various forms of representation that could be
considered. The most popular is the traditional natural language narrative. A natural language
specification can be written in innumerable degrees of complexity and can range from highly
amorphous to highly structured. Sommerville’s requirements definition is usually described as
consisting, in part, of a very broad natural language description. Numerous graphical
representations are used in requirements definition and specification. The most widely used is
the data flow diagram (DeMarco, 1979) and its many derivatives, which can be used to depict
a system at several levels and degrees of abstraction. There are special languages which exist
solely as tools for requirements specification, among them the Ada-based Anna (Luckham and
von Henke, 1985). Finally, there are formal specification notations such as VDM (Jones, 1986)
and Z (Abnal, 1980) which are model-based languages that use mathematical entities such as sets
and functions to specify systems.

In reality, there are few representations which can be restricted to only one life cycle
phase. As seen earlier, Ada PDL can be used as both a requirements specification medium and
a design specification medium. A data flow diagram can be used both to depict what a software
system does with data as well as how the processes interact. Apparently, the context in which
a representation medium is used is paramount, rather than the medium itself. Hence, whether
an extracted representation is a requirement representation or a design representation depends

largely on the context in which the representation is used.
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It is also important to note that a particular representation form extracted from a subject
system may differ somewhat from a similar representation that was developed in the forward
engineering process. The extracted form will reflect the idiosyncracies of the subject system
representation more so than would the original form, which would be a reflection of the analyst’s
or designer’s understanding of the problem. The tradeoff is that while some of the original
design information may not be present in the extracted form, the information that is there should
be an accurate reflection of the actual system.

Finally, the subject system to be reverse engineered may be a single program or code
fragment, or it may be a complex set of interacting programs, job control instructions, signal
interfaces, and data files. In all cases, however, it is an actual implementation that is traditionally
considered the input for the reverse engineering process. However, as shall be seen in Section
4, it is conceivable to apply reverse engineering technologies from a point in the life cycle earlier
than implementation. In fact, a tight coupling of forward and reverse engineering activities

throughout the life cycle is a natural progression of modern CASE tool capabilities.

3. Taxonomy of Terms

An impediment to success is the considerable confusion over the terminology used in both
technical and marketplace discussions. It is in the arena of reverse engineering, where the
software maintenance and development communities meet, that various terms for technologies
to analyze and to understand existing software systems have been used frequently in conflicting
ways. In this section, forward engineering, reverse engineering, redocumentation, design
recovery, restructuring, and reengineering are described with respect to the life cycle phases and

activities in which they are involved (Chikofsky and Cross, 1990). Figure 1 is an illustration of
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the relationship between the various processes defined below and the life cycle. The objective
is not to create new terms but to rationalize the terms already in use. The resulting definitions

apply to the underlying engineering processes, regardless of the degree of automation applied.

3.1 Forward Engineering

Forward engineering is the traditional process of moving from high-level representations
and logical, implementation independent designs to the physical implementation of a system.
While it may seem unnecessary, in view of the longstanding use of software engineering
terminology, to introduce a new term, the adjective "forward" has come to be used where it is
necessary to distinguish this process from reverse engineering. Forward engineering follows a
sequence from the analysis of requirements through the design, and finally to an implementation.
These activities have been fully described in Pressman (1987), Sommerville (1989) and many

others.

3.2 Reverse Engineering

Reverse engineering is the process of analyzing a subject system in order to identify the
system’s components and their interrelationships and to create representations of the system,
possibly at a higher level of abstraction. Reverse engineering generally involves extracting
design artifacts and building or synthesizing representations that are less implementation
dependent.

While reverse engineering often involves an existing operational system as its subject, this
is not a requirement. One can perform reverse engineering starting from most phases of the life
cycle to create or recreate artifacts of an earlier phase. In spanning the life cycle phases, reverse
engineering covers a broad range starting from the existing implementation, recapturing the

design, and deciphering the requirements actually implemented by the subject system.
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Reverse engineering in and of itself does not involve changing the subject system or
creating a new system based on the reverse engineered subject system. It is a process of
examination, not a process of change or replication.

The overall goal of reverse engineering is to facilitate understanding of software systems,
whether tools themselves undertake to understand their subjects or simply provide aids to help
a human user to that end. Harandi and Ning (1990) point out that there are different levels of
understanding software; they present four such levels, or views (also presented earlier by

Kozaczynski and Ning (1989) with slightly different names):

. Implementation-level view. This implies an understanding of the fundamental
components, usually control and declarative constructs of a particular system.

. Structure-level view. Implied here is an understanding of how the fundamental
components relate to one another in a programming sense (€.g. scoping
relationships, visibility relationships).

. Function-level view. This degree of understanding suggests an understanding of
the function of a component or system in isolation, i.e. what the component or
system does. A conceptual leap is required to move from the previous view to
this view.

. Domain-level view. To move to this level requires yet another leap in that the
understanding of this level is of the context in which the system is operating,
rather than the operation of the system in isolation. Where the previous level

asks, "What does the system (or component) do?", this level asks "Why?"

Two subareas of reverse engineering that achieve or facilitate understanding to different
levels are redocumentation and design recovery. Figure 2 illustrates the respective spheres of

these two subareas defined by the levels of understanding that they achieve and the extent of
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their resources, either code analysis alone or code analysis combined with knowledge base

technology.

3.2.1 Redocumentation

Redocumentation is the creation or revision of representations of a subject system which
are intended to reflect certain software related characteristics inherent to the system. The
redocumentation process creates its representations from information gathered from analysis of
the subject system alone, although the presentation of the information may be guided from
outside sources (e.g., diagram layout). The resulting forms of representation are considered
alternate views intended to improve the comprehensibility of the overall system. These alternate
views include data flow, data structure, and control flow diagrams.

Redocumentation is the simplest and oldest form of reverse engineering, and many
consider it to be an unintrusive, weak form of restructuring. The "re-" prefix implies that the
intent is to recover documentation about the subject system that once existed or should/could
have existed. The emphasis here may, in fact, be on additional views, especially graphical, that
were not created during the original forward engineering process due to the labor intensive nature
of creating these views and then maintaining them. It is no coincidence that one of the primary
functions of CASE tools has always been to aid in the creation and maintenance of graphical
representations of the system. However, it is not uncommon over time to find a major gap
between the content of the diagrams drawn by analysts and designers using CASE tools and the
function of the actual source code written to implement the system. A major thrust of reverse
engineering and, in particular redocumentation, is to bridge this gap.

Some common tools used to perform redocumentation are pretty printers, which display
a code listing in an improved form; diagram generators, which create diagrams from code directly
reflecting the control flow, code structure or data structure; and cross-reference listing generators.

A key goal of these tools is to provide easier ways to visualize relationships among program
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components so that one can recognize and follow paths clearly. Section 6.1 provides a survey
of recent literature describing redocumentation tools.

It is important to note that these tools simply provide aids to the engineer in his or her
quest for understanding. The tools do not attempt to derive any conclusions as to system
function or purpose. It is required that redocumentation tools achieve a certain level of system
understanding to produce the representations that they produce; however, this level of
understanding does not generally transcend the structural-level view ascribe meaning to the
analyzed system. One could characterize redocumentation as the recovery of recorded artifacts
of the earlier development process. In contrast, the more ambitious recovery of the actual

function, purpose, or essence of the system is given the name design recovery.

3.22 Design Recovery

Design recovery is a subset of reverse engineering in which domain knowledge, external
information, and deduction or fuzzy reasoning are added to the observations of the subject system
to identify "meaningful” higher-level abstractions beyond those obtainable directly by examining
the system itself. These abstractions are attempts to impose "meaning” on a segment of the
subject system.

Design recovery tools are distinguished from simple redocumentation tools in that the
tools themselves attempt to "understand” the system rather than simply to provide alternate views
to help users understand the system. This understanding goes beyond implementation- and
structure-level knowledge and attempts to achieve function-level knowledge and even knowledge
of a system’s operating environment. However, it should be noted that artifacts such as the
diagrams cited above, which have been classified as products of redocumentation since they can
be generated deterministically, are considered design documents. In this context, redocumentation

and design recovery activities may overlap considerably.
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Complete design recovery attempts to reconstruct not only the function of a system, but
also the process by which it was developed. Rugaber et al. (1990) emphasize the importance of
recovering the design decisions made during original development to complete the framework
for maintenance. A design decision is simply a part of the overall software plan. A design
decision is a choice made to implement some function or concept in a particular manner, for
example, the decision to implement a hash table with variable length or fixed length buckets.

Rugaber et al. (1990) point out that in order for maintenance, reverse engineering, and
reuse to be effective, it is necessary to discover not only the design decisions themselves but also
- the alternatives to those decisions. It is also necessary to determine the rationale which led to
those decisions in order that the rationale of the decisions may be preserved or altered with the
full knowledge of the maintenance engineer. Furthermore, it is necessary to make clear the
interrelationships between design decisions in order to assess the scope of change repercussions
more accurately. The process by which these decisions are made will more than likely not be
- present in the code and must be “inferred” (i.e. guessed).

Design recovery is also characterized by the sources and span of information it should
handle. Biggerstaff (1989) defines design recovery as follows. "Desi gn recovery recreates design
abstractions from a combination of code, existing design documentation (if available), personal
experience, and general knowledge about problem and application domains....In short, design

- recovery must reproduce all of the information required for a person to fully understand what a
program does, how it does it, why it does it, and so forth. Thus, it deals with a far wider range
of information than found in conventional software engineering representations or code." (p. 36)

In many of the design recovery tools examined in Section 6.2, there exists some form of

knowledge base which binds programming patterns to functional concepts. These functional
- concepts are expressed in terms easy to understand by programmers and usually are used to

constitute even more abstract functional ideas.

-
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Design recovery is the more challenging form of reverse engineering because it attempts
to mimic human reasoning in its goal of understanding. Any assistance which can be offered to
a maintenance engineer in understanding a program will be of great value as he or she prepares
to modify the system. The next two sections discuss topics that are related to reverse engineering

but go beyond examination of a system to refurbishing it.

3.3 Restructuring

Restructuring is the transformation of a software system from one representation form to
another, usually at the same relative abstraction level, while preserving the subject system’s
external behavior, i.e. functionality and semantics. Restructuring usually involves some form of
reverse engineering, if only implicitly, from the original representation to some intermediate
form. This intermediate form is then appropriately altered, with the restriction that the
functionality is preserved.

A restructuring transformation is often one of appearance, such as altering code to
improve its structure in the traditional sense of accepted design principles. The term
restructuring came into popular use from the code-to-code transformations that recast a program
from an unstructured, or "spaghetti,” form to a structured, or goto-less, form. However, the term
has a broader meaning that recognizes the application of similar transformations and recasting
techniques in reshaping data models, design plans, and requirements structures. Data
normalization, for example, is a data-to-data restructuring transformation to improve a logical
data model in the database design process. Arnold (1989) provides a comprehensive survey of
software restructuring in which reverse engineering is related to restructuring and considered a
natural extension of it. Using Arnold’s definition of restructuring, redocumentation as described
above would be a form of restructuring in that it provides an alternate or "restructured” view of
existing information. For example, prettyprinting is the "restructuring” of the format of source

code. However, since even an alternate view of the source code (e.g., an automatically generated
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graphical representation) can provide the programmer or designer with additional insight, Amold
considers this form of restructuring to be reverse engineering.

Many types of restructuring can be performed with knowledge of structural form but
without an understanding of meaning. For example, one can convert a series of if statements into
a case statement, or vice versa, without knowing the program’s purpose or anything about its
problem domain. In this case, the knowledge is of structured programming theory. Choi and
Scacchi (1990) describe a process which tries to determine the inherent, if not explicit, structure
of a system and then to impose a more explicit hierarchical manifestation of this structure.
Minimized coupling and maximized change effect localization are the criteria for the fitness of
the hierarchical structure that is chosen. The basis of the process is the analysis of a system
graph called a resource flow graph in which the vertices are system modules and the edges are
resource exchange. Choi and Scacchi use an algorithm which imposes a subsystem hierarchy
upon the modules by discovering the connector vertices between biconnected components of the
graph, known as articulation points.

While restructuring creates new versions that implement or propose change to the subject
system, it does not normally involve modifications with respect to new functional or otherwise
domain-related requirements. However, it may lead to better observations of the subject system
that suggest changes that would improve aspects of the system. Restructuring is often used as
a form of preventive maintenance to improve the physical state of the subject system with respect
to some preferred standard. It may also involve adjusting the subject system to meet new
environmental constraints that do not involve reassessment at functional requirement levels.

Depending on the criteria that are considered most germane, restructuring tools can, if
nothing else, attempt to bring order out of an apparently chaotic software system. However, they
may not be entirely without drawbacks. Corbi (1989), citing a government study and others,
makes the case that while intra-module restructuring spaghetti-like code would have its benefits

in the increase of order and understandability, the process will usually result in more voluminous
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code leading to higher compile times. In addition, the comments (assuming that there were

comments) could be rendered meaningless. Evaluations are needed for the more macroscopic

restructuring tools.

3.4 Reengineering

Reengineering, also known as redevelopment engineering, renovation and reclamation,
is the examination and alteration of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. Implied in the term is the possibility of change in
essential requirements, rather than a mere change in form.

Reengineering generally includes some form of reverse engineering, to achieve a more
abstract description, followed by some form of forward engineering or restructuring. This may
include modifications with respect to new requirements not met by the original system. For
example, during the reengineering of information management systems, an organization generally
reassesses how the system implements high-level business rules and makes modifications to
conform to changes in the business for the future.

There is some confusion of terms, particularly between reengineering and restructuring.
The IBM user group Guide (Guide International Corporation, 1989), for example, describes
application reengineering as the process of modifying software internally (e.g., algonthms and
data structures) without changing the systems functionality or capabilities as perceived by the
user). This is similar to the definition of restructuring given earlier. However, two paragraphs
later, the same publication indicates that during application reengineering functionality is usually
added. This supports the more general definition of reengineering stated above, which adds
functionality.

While reengineering involves both forward engineering and reverse engineering, it is not

a supertype of the two. Reengineering uses available forward and reverse engineering
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technologies; however, both forward and reverse engineering technologies are evolving rapidly,

independently of their application within reengineering.

4. Reverse Engineering Throughout the Life Cycle: Objectives and Purposes

In the previous sections, the general context of reverse engineering was considered with
respect to the typical life cycle phases of analysis, design, implementation, and maintenance. The
intent was to provide baseline descriptions of the life cycle phases and their respective artifacts
to facilitate the discussion of reverse engineering activities. In this section, the detailed
objectives of reverse engineering are explored. This followed by a discussion of the primary
purposes for which reverse engineering technologies are being developed: maintenance, reuse,

and software quality assurance.
4.1 Objectives

The primary goal of reverse engineering a software system is to increase the overall
comprehensibility of the system to facilitate maintenance as well as other activities such as reuse
and overall quality assurance. There are several key objectives that are encompassed by the goal

of software understanding:

. To cope with complexity. Research must develop methods to deal more
effectively with the sheer volume and complexity of systems. A key to
controlling these attributes is automated support. Reverse engineering methods

and tools, combined with CASE environments, will provide a way to extract
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relevant information so decision makers can control the process and the product
in systems evolution. Figure 3 (provided by Robert Arnold) shows a model of the
structure of most tools for reverse engineering, reengineering, and restructuring.
To generate alternate views. Graphical representations have long been accepted
as comprehension aids. However, creating and maintaining them continue to be
a bottleneck. Reverse engineering tools facilitate the generation or regeneration
of graphical representations from other forms. While many designers work from
a single, primary perspective (e.g. data flow diagrams), reverse engineering tools
can generate additional views from other perspectives (e.g. control flow diagrams,
structure charts, and entity-relationship diagrams) to aid the review and
verification process. One can also create alternate forms of nongraphical
representations with reverse engineering tools to form an important part of system
documentation.

To recover lost information. The continuing evolution of large, long-lived systems
leads to lost information about the system design. Modifications are frequently
not reflected in documentation, particularly at a higher level than the code itself.
While it is no substitute for preserving design history in the first place, reverse
engineering, particularly design recovery, is a way to salvage whatever is possible
from the existing systems.

To detect side effects. Both haphazard initial design and successive modifications
can lead to unintended ramifications and side effects that impede a system’s
performance in subtle ways. As Figure 4 shows, reverse engineering can provide
observations beyond those that can be obtained with a forward engineering
perspective, and it can help detect anomalies and problems before users report

them as bugs.
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. To synthesize higher abstractions. Reverse engineering requires methods and
techniques for creating alternate views that transcend to higher abstraction levels.
There is a debate in the software community as to how completely the process can
be automated. Clearly, expert system technology will play a major role in

achieving the full potential of generating high-level abstractions.

The realization of these objectives offers benefits for maintenance, reuse, and overall
software quality assurance. Each of these activities is discussed below from a reverse

engineering perspective.

4.2 Maintenance

Reverse engineering of software is tightly coupled with software maintenance because
maintenance activities have provided the motivation for many of the reverse engineering tools
available today. Corbi (1989) cites several studies which suggest that maintenance activities
consume an overwhelming proportion of time and funds allotted to overall software engineering.
Furthermore, the greater portion of that time spent in maintenance is spent trying to leamn the
intricacies of the system undergoing the maintenance.

Indeed, generally a system’s maintainers are not its designers; therefore, they must expend
many resources to examine and to learn about the system. Reverse engineering tools can
facilitate this activity. ANSI/IEEE Std 729-1983 (p. 32) defines software maintenance to be
"modification of a software product after delivery to correct faults, to improve performance or
other attributes, or to adapt the product to a changed environment.” In this context, reverse
engineering is that part of the maintenance process that aids maintenance engineers in

understanding the system so that they can make appropriate changes.
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Pressman (1987) discusses the four traditional categories of maintenance: corrective,
adaptive, perfective, and preventive. Corrective changes are made in response to the detection
of errors that should have been removed prior to delivery of the system. Reverse engineering
techniques do not detect the errors, nor do they remove or correct the software. Rather, they
assist the programmer indirectly in locating the defective component through improved
comprehension of the software.

Adaptive maintenance activities are concerned with moving the software to a new
environment (e.g., a new operating system or a new hardware platform). Perfective maintenance
involves adding new functionality and, as such, consumes the largest percentage of maintenance
resources over time. Depending on its context and scope, perfective maintenance may be
equivalent to reengineering and/or new development. In the case of both adaptive and perfective
maintenance, reverse engineering tools are used indirectly to locate components where changes
and additions need to be made and to aid in controlling the overall structure of the modified
system.

Finally, preventive maintenance consists of those modifications made in an attempt to
reduce the effort required for future, perhaps anticipated, changes. Here reverse engineering can
provide insight into where and how to make appropriate changes.

Restructuring and reengineering also satisfy the global definition of software maintenance.
Restructuring perhaps best fits the category called preventive maintenance, whereas reengineering
implies extensive modifications in the sense of completely rewriting/reworking the software, and
thus could be categorized as adaptive and/or perfective maintenance. However, each of these
processes also has a place within the contexts of building new systems and evolutionary
development as well as within that of maintenance.

Perhaps the greatest benefits of reverse engineering tools can be realized after the changes

are implemented in any of the categories of maintenance described above. These include the
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automatic regeneration of numerous graphical representations of the software to assist future

maintenance activities.
4.3 Reuse

Brooks (1987) and others contend that the reuse of software components may be one of
the few remaining areas of software engineering that could yield one or more orders of
magnitude in increased productivity. When entire systems are reused, the cost of the software
per customer can be dramatically reduced when spread over many customers. While the actual
development cost is not lowered, the net profit to the developer increases and the actual cost to
each customer may be decreased by several orders of magnitude. Reuse can be considered with
respect to the percentage of reused components in a system as well as the type of components
reused (e.g., source code, design specifications, etc.). A system comprised of 100% reused
components is, in fact, probably a copy of an existing system. However, it is conceivable that
the percentage of reused components in a system could approach 100% when it is composed
predominantly of components from other systems. Reverse engineering tools are used to directly
support reuse when the percentage of reused components is less than 100; otherwise, they are
used to support the maintenance of the one software system from which the copies are made.

A significant issue in the movement toward software reusability is the large body of
existing software assets that were not developed with reuse in mind. Reverse engineering can
help detect candidates for reusable software components in present systems. Biggerstaff (1989)
suggests that design recovery tools should be able to make necessary alterations to code segments
so as to make them even more useful. Such alterations consist of extracting interleaved functions
and generalizing code to make it more universally applicable.

The process of reuse has been described by Boldyreff (1989) as follows: recognition,
decomposition/abstraction, classification (to populate the reuse library), selection/retrieval,

specialization/adaptation, and composition/deployment. These steps can be applied to the reuse
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of code, test specifications and cases, design specifications, requirements specifications, as well
as more general concepts. Reverse engineering tools can play a major support role in each of
these steps; however, the primary focus is on the first three steps. In particular, components
which are candidates for reuse can be most easily recognized by either human or machine if they
have been converted to a "standard” notation or form. For example, if manual identification of
components is necessary, a complete and accurate set of graphical representations will clearly aid
the reviewer. If an expert system-assisted identification is to be attempted, reverse engineering
techniques, especially those in design recovery, can be used to extract patterns of control
constructs, control flow and data flow to provide a basis for machine recognition of algorithms,
major data structures and objects. While reverse engineering technology is not focused on the
actual composition of components from reusable parts, it would be useful in completing the
documentation of the newly composed system. Boldyreff points out that sufficiently advanced
design recovery mechanisms will allow software to be recycled continuously. That is, a new
system composed from some reused parts can itself be converted to reusable parts. The net result
should be an increase in the percentage of reused parts found in new systems, which, in turn,
should lead to an increase in overall reliability.

Although there is much promise for software reuse, the success of its application rests
primarily on reverse engineering technologies which can extract generic software concepts
represented by procedures, functions, tasks, packages, objects, etc. Reverse engineering methods

must provide the foundation for the reuse process.

4.4 Software Quality Assurance

As described above in the case of maintenance and reuse, reverse engineering is primarily
considered a process which begins with the source code of an implemented system and works

backward (upward), creating documents from the information which can be extracted from the
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source code. However, reverse engineering can be considered as a set of complimentary
activities within each phase of the life cycle, and as such can be applied early on in the life cycle
as a basis for improved software quality assurance (SQA). Pressman (1987) identifies formal
technical reviews, collection and analysis of metrics, and testing as key activities for a successful
SQA program. These activities, which span the entire life cycle, can be greatly facilitated by
reverse engineering. Formal technical reviews may occur during each of requirements analysis,
design, implementation, and especially between these phases. These reviews provide a basis for
validating the system with respect to its functional requirements and a basis for verifying that
such a system can actually be built to perform reliably. Metrics, when collected, can become an
integral part of the artifacts under review and provide valuable insight for the decision makers.
Validation criteria and test plans typically are written prior to implementation, while the
execution and analysis of test cases are performed during unit coding and integration. Table I
provides a summary of reverse engineering activities which support SQA. Below, these activities
are discussed within each generic phase of the life cycle in conjunction with the artifacts that are
candidates for reverse engineering. Maintenance is, in fact, simply an iteration of requirements

analysis, design, and implementation.

4.4.1 Requirements Analysis Artifacts
Notations for requirements specification differ as widely with respect to formality as
design notations. There are notations which show some characteristic of the system at large as
well as the procedure of one operation. The notations can be textual, graphical, or mathematical.
Requirements specification analysis can be formal or informal, depending on the scope
and precision of the notation. Since requirements are often specified in natural language, analysis
of such specifications can only be at best informal and imprecise. The formal languages created

specifically for requirements specification are, of course, be more amenable to formal analysis.
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Structural analysis of operational specifications would have a better chance of producing a
functional description than would a linguistic analysis of a textual specification.

Formal technical reviews dictate formal, aesthetically pleasing requirements specifications.
Modern CASE tools are gradually providing the required formality in requirements specifications
notations. The data flow diagram is an example of a notation that was widely used initially in
a manual mode. Although cumbersome, its descriptive power for analysis outweighed the
disadvantages of no automated support. Early CASE tools assisted the analyst in capturing data
flow diagrams in a modifiable medium, and then facilitated the eventual integration of them into
specification documents. Subsequent enhancements have provided for consistency checking
between components in diagrams and levels of diagrams. However, after changes are made to
one diagram, they are not generally propagated throughout the system. Change propagation is
a bidirectional activity of which reverse engineering is a part. Reverse engineering technologies
are progressing to the point where change propagation becomes another form of redocumentation
and perhaps restructuring. These capabilities would alleviate much of the incidental effort
required to modify the requirements specification and would directly support formal technical
reviews. Here, there is considerable overlap with advanced design recovery techniques.

The metrics that can be collected during requirements analysis by reverse engineering
tools include items such as the number of interfaces, files, inputs and outputs of a system used
in the function point method (Albrecht and Gaffney, 1983). These metrics become input for cost
estimation, scheduling, and reliability models to assist in decision making.

Validation criteria should be based primarily on the functionality of the new system.
Reverse engineering tools can be used to extract and cross-reference functions and families of

functions which must be validated. Validation criteria can provide a basis for test plan.
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442 Design Artifacts

Much of what was stated regarding requirements analysis artifacts applies to design
artifacts as well. Design is the process of specifying the form of a software solution to the
problem defined by a requirements document. This design specification can be in any number
of notations, including natural language narratives, a more structured subset of natural language
such as pseudocode or PDL, and graphical notations. These notations can have varying degrees
of precision.

That information which can be extracted from a design notation depends on the precision
and completeness of the design notation. It is unlikely that a strictly architectural design
notation, no matter how precise, would be complete enough to infer the function of the system.
To derive the function of a system requires analysis of the constituent modules of the system,
deriving functions for each, and composing them into a larger system function. Formalization
of procedural design notations is needed to allow for the structural analysis needed to map
procedural structures to functional statements. Of course, as in linguistic code analysis, a more
informal analysis can be performed on design specifications that are represented by less formal
and less complete notations. The results of analysis on design products, like analysis on source
and executable code, should ideally give insights as to the functions of the system.

From the perspective of formal technical reviews, because design specifications are in a
form/notation that is closer to the actual source code that will be eventually produced, more
precise views can be extracted. For example, at the architectural design level, if Ada PDL is
used to describe componént interfaces (procedures, functions, tasks, and packages), object
diagrams can be generated quickly to provide reviewers with an accurate alternative view of the
system which depicts dependencies and visibility among the components. Structure charts, which
provide the overall call structure (and, optionally, parameter flow between modules), can be used
to generate an equivalent PDL, or, if the skeletal PDL bodies were developed instead of structure

charts, then the structure charts can be generated directly from the PDL. The object diagrams.
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structure charts and PDL assist reviewers in validating that the system meets its design
specifications and in verifying that a reliable system can actually be built By combining
forward and reverse engineering technologies, designers can modify any one of these artifacts and
have the changes automatically reflected in the others.

As with requirements artifacts, design artifacts offers an opportunity to collect numerous
metrics; however, they are usually more precise and meaningful during the design phase. For
example, the data for cost models generally becomes more accurate as implementation
approaches. Other design metrics such as McCabe’s (McCabe and Butler, 1989), provide a basis
for future integration testing by ensuring that a basis set of paths containing procedure or function

calls have been exercised.

4.4.3 Implementation Artifacts

The most obvious artifact from this phase is the source code itself. To dissect source
code, the tools surveyed in this chapter make use of several compiler-related techniques,
including analysis of code structure and data flow. This analysis produces such structures as
parse trees, symbol tables, and flow graphs. The resultant structures are often matched against
patterns which are, in turn, mapped to alternative representations.  These alternative
representations can be of similar complexity such as cross-reference tables or algorithmic
graphical representations. Also, the alternative representations can be of a more abstract nature
such as a functional description of the code fragment, structure charts, data flow diagrams, etc.
A less common and less exact form of code analysis is the study of identifiers and comments to
extract code function from names and prose (Biggerstaff, 1989; Schwanke et al., 1989).

Another artifact from this level is the executable code. A "black-box" (Samuelson, 1990,
p. 91) analysis of executable code involves feeding inputs to the code and noting the outputs.

From this process the analyst derives an understanding of the program’s functions.
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Structural analysis of source code can produce understanding of the code in and of itself.
However, if humans do not ascribe meaning to code structures, structural analysis cannot
determine the function of the code, neither in isolation nor within a larger organizational
framework. Linguistic analysis perhaps can shed more light on the actual semantics of the
software, depending of course on the names of the identifiers and the content of comments.

Formal technical reviews of code can benefit, perhaps even more that earlier reviews,
from reverse engineering tools because of the inherent complex nature of source code. The
alternate views, especially graphical abstractions, can provide reviewers with the leverage
required to comprehend the system efficiently. Metrics collected can be as detailed as the
number of conditions or decisions in an algorithm as is the case with McCabe’s cyclomatic
complexity metric (McCabe, 1976). In particular, these metrics can be used with appropriate
heuristics to guide the implementation, predict the number of errors, and identify sets of paths
that must be tested to attain a specified level of coverage.

The use of reverse engineering tools during implementation in a forward sense is similar
to its application during maintenance in that the input in both cases is source code. It is a natural
progression that any tools that can be used to aid in the comprehension of software during

maintenance should also be applied to software at the earliest feasible point in the life cycle.

5. Economic and Legal Issues

A discussion of reverse engineering would be incomplete if it focused entirely on
technical issues. As with all new or evolving technologies, there are practical concerns created

by reverse engineering which must be addressed. Most likely the chief concern among software
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engineering managers is how reverse engineering can positively affect the productivity of their
staffs and, as a resuit, the economic strength of their organizations. Furthermore, of great interest
to managers is the degree to which the technology--in which heavy investments in money and
prestige are to be made--has universal applicability.

In addition, there are certain legal and ethical questions to resolve when the intent is to
reverse engineer a competitor’s products. These issues can have their own economic
ramifications as well, such as court costs, attorneys’ fees, fines, damage-control public relations
campaigns, etc. The concerns here involve the ownership of software, intellectual property rights,
and the freedom of information distribution.

This section will only attempt to illuminate the practical issues raised by the introduction
of reverse engineering into the software community. It will be the responsibility of software
engineering managers and the courts to resolve these issues and to define the precise role for

reverse engineering in the software engineering process.
5.1 Economic Issues

The fundamental benefit of reverse engineering technology is the increased understanding
of a subject system afforded to the user of the technology. From this primary benefit will come
other gains throughout the life cycle, primarily productivity gains. As reverse engineering is used
in a vanety of software engineering processes, these gains will ultimately translate into

competitive advantages and financial rewards.

5.1.1 Maintenance Issues
This chapter has discussed at length the traditional relationship between reverse
engineering and maintenance and has tried to broaden the scope of reverse engineering to other

areas of the life cycle. This is not, however, to belittle the potential that reverse engineering has



REVERSE ENGINEERING
Cross et al.
Page 27

to abate some of the problems encountered in maintenance. Maintenance has indeed proved to
be a severe bottleneck for software engineering.

Corbi (1989) cites numerous studies which allude to the burden that the maintenance
process has traditionally been. For example, Belady and Lehman suggest that all programs of
non-trivial size would experience some alteration during their active lifetimes. In addition, a
study by Carroll states that eighty percent (80%) of programmer time in industry is spent in some
sort of maintenance work. Furthermore, a study by Parikh referred to an MIT study which
concluded that for every dollar spent on a new development venture nine dollars ($9) is spent
on the subsequent maintenance. From these figures alone, one may conclude that maintenance
heretofore has depleted an exorbitant amount of the time and effort which could have otherwise
been used for original development.

The chief problem of maintenance is that of understanding the system experiencing the
change. Again, Corbi (1989) cites Parikh and Zvegintzov who state that at least half of the
maintenance process is understanding the system itself. It stands to reason that if reverse
engineering tools and techniques can help the maintenance engineer in understanding old,
seemingly cryptic, pieces of software in a more timely and less error-prone fashion, then the
maintenance burden will therefore be somewhat alleviated. This understanding must encompass
not only an understanding of the original system as a static entity but as a dynamic mechanism

in which proposed changes will invariably have consequences.

5.1.2 New Development l.gszles

While reverse engineering is largely thought of as a facilitator of maintenance, it can
support new development in some important ways such as reuse and software quality assurance
which were described in Section 4. In particular, these allow a reallocation of total software
engineering time and effort away from maintenance. Reverse engineering can expedite new

development by examining how similar systems are constructed. By examining the internals of
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another system, development team designers can make more informed design decisions for their
situation, particularly concerning which strategies to adapt from the older system and which to

ignore. This endeavor, however, has certain legal complications, as the next section explains.
5.2 Legal Issues

Samuelson (1990) discusses many of the legal issues in the reverse engineering of the
code of a supplier or competitor. The examples from legal cases which she cites indicated that
the software that was being reverse engineered was in the form of object or executable code
rather than source code. Samuelson makes the point that the questions of legality lie in the more
intrusive white-box form of reverse engineering which attempts to analyze the code of a system.
This is contrasted with the black-box form which attempts to infer function and design from
analysis of output resulting from tests using varied inputs. Generally, there are few who question
the legality of the latter process.

Samuelson illustrates the two opposing arguments concerning the legality of white-box
reverse engineering. The major point of contention on which both arguments rest is the
interpretation of the copyright laws concerning intellectual property. On one hand, the strict-
constructionist group would argue that, according to copyright law under which proprietary
software is usually protected, the sole right of copy or copy entitlement belongs to the owner of
the copyright; copying is allowed only if the purposes involved are in keeping with the fair-use
doctrine. This group argues that to copy another’s software for reverse engineering violates that
doctrine. This is because of the ultimate potential loss of revenue to the copyright owner should
a rival product result from the reverse engineering. From their perspective, stringent enforcement
of copyright law offers the best protection for the trade secrets which serve as competitive
ammunition.

On the other hand, the pragmatist group would argue, as does Samuelson, that reverse

engineering of a competitor’s software should not be banned. Samuelson bases this argument
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on two principles: (1) the disclosure requirement of copyright law and (2) the separation of the
act of copying from the act of reverse engineering and from the act of using extracted
information. First, this group would argue that to copy software for study is not illegal in that
to obtain a copyright in the first place requires the applicant to reveal the contents of his or her
work. Also, this group would argue that it is not the reverse engineering of the code which
would violate trade-secret regulations, but the use of those discovered secrets for illicit gain.

Samuelson illustrates that, although sometimes contradictory, the weight of United States
case history is in favor of the pragmatist view to allow reverse engineering of a competitor’s
product, defining copyright violation only when a resulting rival program is too similar to the
original.

Sibor (1990) disagreed with Samuelson’s pragmatist position. In fact, Sibor cited many
of the same cases that Samuelson cited but drew different conclusions (which supports
Samuelson’s position that attorneys disagree on these issues). Throughout his discussion, Sibor
seemed to equate reverse engineering with the terms decompilaton and disassembly of code,
which again emphasizes the notion that legal questions are focused primarily on object or
executable code rather than source code.

This is clearly an area where each case decided over the next decade will contribute to
a growing debate. The only certainty is that reverse engineering one’s own software is proper
and lawful. The debate centers on propriety when someone else’s software is involved, with or

without permission.

6. Survey of Current Research
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This section describes projects that are representative of the current research efforts
underway in the area of reverse engineering. The inclusion of a project should not be considered
an endorsement of its importance, nor should the omission of a project be considered a negative
statement. Although they have been classified as either redocumentation or design recovery

projects, some elements of each project may be fall into both categories of reverse engineering.

6.1 Redocumentation

Many of the research and commercial tools surveyed in this chapter can be classified as
redocumentation tools. The major intent of these tools is not to generate explanations of function
for the software systems that they study, but instead to provide aids for the user in order to
expedite his own understanding of the systems. These aids include code formatting schemes,
graphical representations, and code browsers. All tools acquire an implementation-level and
structure-level understanding of the code; they do not, however, acquire a function-level
understanding. Table II provides a summary of the basic characteristics of the redocumentation

tools presented in this section.

6.1.1 Book-Maker

Oman and Cook (1990) have proposed a new model for code formatting that holds much
promise to code readers. This model, called the book paradigm, is based largely on the use of
special typographical conventions for particular types of code elements and on the integration of
cross-reference information to connect related sections of a program. This scheme of code
formatting is realized in two tools collectively called Book-Maker. Oman and Cook sought to
create a format that would facilitate the examination both of large code structures and of atomic
elements. They wished physically to highlight the code pieces called beacons and chunks so as
to distinguish them all the more. They also desired a format that would not interfere with the
normal course of code maintenance; they desired compatibility with compilers and other code

manipulation tools.
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The purpose of such a tool, as the name suggests, is to present source code information
in a book-like format. A summary of the major modules and submodules of the program will
appear (with page numbers) in a table of contents. The modules themselves will be presented
in full in chapters with sections within the chapters presenting subcomponents of the modules.
An index points out the appearances of the program entities, variables as well as modules, within
the program. Other similarities with books exist. Figure 5 illustrates some of the features of this
form of code formatting.

Oman and Cook conducted two studies comparing the effectiveness of code
comprehension using plainly formatted source code and code formatted according to their
scheme. Both experiments suggested a significant improvement in code understanding with code

with all of the typographical trappings of the book paradigm.

6.1.2 ARCH / MAINTAINER’S ASSISTANT

Schwanke et _al. (1989) describe the work on the ARCH project, part of the larger
MAINTAINER’S ASSISTANT project. One of the tools in ARCH is an autornatic classification
system which uses identifier names as discriminants. By this method, a tree of related concepts
analogous to the system structure is created.

ARCH uses a statistically-based method for extracting structure from both existing
systems and architecture specifications. The method is based on the analysis of the system
identifiers, particularly their frequency of occurrence and determining where in the code the
identifiers are most prominent.

The name analysis, similar to keyword analysis in document retrieval systems, generates
functional concepts around which the system modules are clustered, resulting in an hierarchical
subsystem tree. The "concepts"” are statistical categories defined by the names most prominently

used in the members of each category.
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It may appear that the tool might be engaging in program understanding in its own right.
However, this tool does not attempt to impose a predefined meaning upon the categories that are
defined. Instead, it merely defines the categories based on identifier usage and leaves it to the
analyst to apply meaning to the categories. This assessment is the judgment of Schwanke et al.,
and it could be reasonably argued that this is indeed a design recovery tool and not simply a tool

of redocumentation.

6.1.3 GRASP/Ada

GRASP/Ada (Cross, 1990; Cross et _al., 1990) is a reverse engineering toolset under
development at Auburn University and funded, in part, by Marshall Space Flight Center, NASA.
An overview of the three phase project, which is now in Phase 3, is shown in Figure 6. The
principal components of the toolset are a control structure diagram generator, object diagrgm
generator, and user interface. A primary contribution of the GRASP/Ada project has been the
development of the control structure diagram (CSD) for Ada, which is a notation intended
specifically for the graphical representation of detailed designs as well as actual source code.
The purpose of the CSD is to reduce the time required to comprehend software by clearly
depicting the control constructs and control flow at all relevant levels of abstraction, whether at
the design level or within the source code itself. The CSD is a natural extension to existing
architectural graphical representations such as data flow diagrams, structure charts, and object
diagrams.

A major objective in the philosophy that guided the development of the CSD was that the
graphical constructs supplement the code and/or PDL without disrupting their familiar
appearance. That is, the CSD should appear to be a natural extension to the Ada constructs and,
similarly, the Ada source code should appear to be a natural extension of the diagram. This has

resulted in a concise, compact graphical notation which attempts to combine the best features of
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previous diagrams with those of well-established PDLs. The CSD generator automates the
process of producing the CSD from Ada source code.

Figure 7 contains an Ada task body CONTROLLER adapted from Barnes (1984), which
loops through a priority list attempting to accept selectively a REQUEST with priority P. Upon
acceptance, some action is taken, followed by an exit from the priority list loop to restart the loop
with the first priority. In typical Ada task fashion, the priority list loop is contained in an outer
infinite loop. This short example contains two threads of control: the rendezvous, which enters
and exits at the accept statement, and the thread within the task body. In addition, the priority
list loop contains two exits: the normal exit at the beginning of the loop when the priority list
has been exhausted, and an explicit exit invoked within the select statement. While the
concurrency and multiple exits are useful in modeling the solution, they do increase the effort
required of the reader to comprehend the code.

Figure 8 shows the corresponding CSD generated by the graphical prettyprinter. In this
example, the intuitive graphical constructs of the CSD clearly depict the point of rendezvous, the
two nested loops, the select statement guarding the accept statement for the task, the
unconditional exit from the inner loop, and the overall control flow of the task. When reading
the code without the diagram, as shown in Figure 7, the control constructs and control paths are
much less visible although the same structural and control information is available. As additional
levels of nesting and increased physical separation of sequential components occur in code, the
visibility of control constructs and control paths becomes increasingly obscure, and the effort
required of the reader dramatically increases in the absence of the CSD. Since the source code
will be read many times by its author(s) during the course of initial development and by many
others during maintenance, it seems intuitive that the reader should benefit from the use of an
appropriate graphical notation. The Cross et al. cited two recent studies that support the theory
that graphical representations may indeed improve the comprehensibility (Scanlan, 1989) and

productivity (Aoyama et al., 1989) of software.
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Currently, the CSD generator of the GRASP/Ada prototype is being extended to include
editing capabilities that will provide for incremental regeneration of the CSD as the Ada/PDL or
source code is modified. The CSD editor will allow the user to collapse the diagram around
control constructs and generate an intermediate level architectural diagram which indicates control
structure among subprograms and tasks. The object diagram generation component, currently in
early prototype, will extract Booch-like diagrams (Booch, 1991) from the Ada/PDL or source
code. The user interface will support navigation among the CSDs and object diagrams to provide
an intuitive multi-level and multi-view set of graphical representations of any software system

written in Ada.

6.14 Objective-C Browser

The Objective-C Browser by Stepstone, as presented by Novobilski (1990), is a tool which
allows the user to view Objective-C code from a number of perspectives. Among these views
is the class inheritance hierarchy which allows the user to pose queries concerning method
resolution and method binding. Other views that are presented include usage statistics for entities
defined by the code. The user can also determine the repercussions of change by the use of

generated cross-reference information.

6.1.5 Vifor

Rajlich (1990) reports on a tool produced by Software Tools and Technologies known as
Vifor. A visualization tool for FORTRAN programs, Vifor pictorially presents FORTRAN
routines, their calling hierarchies, and their references to common data areas. To prevent the user
from being overwhelmed with information, Vifor uses diagram layering and two-column graphs

to ease the burden of reading the diagrams.
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6.1.6 PSLIPSA Reverse Engineering

Chikofsky (1983) describes the pioneering work on the integration of reverse engineering
with CASE repository concepts. Information systems research at the University of Michigan in
the late 1970’s led to the development of PSL/PSA, a mainframe system that was the grandfather
of the present generation of CASE tools. In the early 1980’s this CASE tool was used as a
maintenance vehicle to record and analyze the software of the tool itself. This self-validation for
maintenance demonstrated the viability of CASE as a natural maintenance environment, utilizing
the same toolsets developed for forward engineering.

The same PSL/PSA environment was used by IBM as a repository for manual analysis
in a reverse engineering project to reclaim lost documentation for a system, as reported by
Johnson (1983). This work demonstrated the concepts that would later be used in applying the

IBM AD/Cycle Repository to the maintenance phase of the life cycle.

6.1.7 Seela

Seela, a reverse engineering tool which uses human intervention to supply concise
functional descriptions to code blocks, is a product of Tuval Software Industries (Harband, 1990).
By using human intervention to supply functional descriptions, an abstraction is made from
implementation language to program design language. The user may manipulate the named

blocks by cutting and pasting, editing, and traversing to other blocks.

6.1.8 BattleMap and ACT

From McCabe & Associates comes BattleMap and ACT (McCabe, 1990). These tools
make use of the metric cyclomatic complexity (McCabe, 1976) to classify code in a graphical
manner. ACT calculates the cyclomatic complexity of each software module and with that
knowledge performs other functions such as the outlining of test paths. BattleMap is essentially

a graphical tool layered above ACT. BattleMap displays a hierarchical diagram where each
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module icon is color-coded by cyclomatic and essential complexity (McCabe and Butler, 1989).

The diagrams can be made to hide certain branches of the system tree.

6.1.9 Expert Dataflow and Static Analysis

Expert Dataflow and Static Analysis, an Ada-based tool (Vanek and Davis, 1990) from
Array Systems Computing, analyzes Ada source code and provides code-viewing and code-
traversing capability. A user may choose to see only a certain perspective of the code such as
calling structure. In addition, he may step through the control flow of the program, skipping
procedure calls if he so desires. He may also refer quickly to the definition of a variable from

a usage point.

6.1.10 Surgeon’s Assistant

The Surgeon’s Assistant, described by Gallagher (1990) of Loyola College, is an editing
program which uses program slices to restrict the effects of modification of C programs. A slice
is defined by a set of variables and encompasses all code in which only the defining variables
are ever changed. From the tool window interface, a user will slice a program according to some
set of variables and edit that slice while not affecting the complementary part of the program.
Once all changes have been made to all slices, the user will merge the slices into a new program.

The intent of this tool is to be rid of regression testing.

6.1.11 Dependency Analysis Tool Set

The Dependency Analysis Tool Set, described by Wilde (1990) of the University of West
Florida, displays various forms of dependency in C programs. In addition, facilities exist to
create repositories for C programs, to query concerning dependencies, and to share query output

with other analysis tools.
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6.1.12 REDO - Esprit Project 2487

The REDO project (Esprit, 1990), which is project number 2487 of the Esprit II program
being conducted by the Commission of the European Communities, is intended to produce tools
to aid in maintenance, reuse, and validation of large software systems. Goals of the project
include the development of an intermediate language which will be an abstraction from source
languages, an environment database, a multiple-process architecture, and a user interface desi gned
with the needs of the software engineer being paramount.

Two of the components of this proposed toolkit are (1) a restructuring component whose
scope will include data structures, local variables, and control structures, and 2) a
redocumentation component which will reproduce documentation from the source code and the
intermediate language representation (Khabaza, 1989). This documentation will be maintained
in the environment database.

Thus far, the project’s reverse engineering focus has led to two separate approaches. The
first has concentrated on an SQL interface to a database containing the information required for
the reverse engineering process, and the second relies on an object-oriented repository with

associated schema descriptions.

6.1.13 MicroScope

MicroScope, reported by Ambras and Day (1988), is a knowledge-based programming
environment which is being developed to analyze and monitor programs written in Common LISP
and Common Objects. Ambras and Day suggest. that the technology provided in their prototype
should also be useful to programmers using conventional languages. MicroScope provides
incremental support for the user/programmer with various views at different "magnification”
levels. A graphical representation is provided which allows the user to navigate through the

program. Impact analysis is planned for a future version of MicroScope.
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Extensive annotation capabilities are provided with specific annotations for source code,
documentation, variable and constant declarations, design specifications, development tasks,
known bugs, monitoring status, profile data, and revision history.

MicroScope provides for dynamic analysis in the spirit of many modern debuggers.
However, it makes good use of graphical displays and program animation. The underlying
knowledge base of MicroScope is designed around the notion of frames and rules, where frames

represent data and rules represent methods for making inferences.

6.1.14 Adagen

Adagen, reported by Rozenblat and Fischer (1989), is a CASE toolset specifically
designed to support the development of large software systems written in Ada. It includes a
reverse engineering component which inputs existing Ada source code and produces a
hierarchical set of Buhr diagrams which shows the overall declaration topology of the system,
as well as procedure, function and task entry calls. The toolset also includes the capability to
generate a complete system dependencies chart which provides the user with an overview of the
system structure to aid in navigation through units. This hierarchical structure view of the system

may suggest restructuring alternatives to the user.

6.1.15 Program Understanding Support Environment - PUNS

Cleveland (1989) of IBM’s T. J. Watson Research Center has developed a prototype
program understanding support environment (PUNS) which provides many of the capabilities
required for reverse engineering. PUNS is unique in that it supports maintenance activities by
analyzing and presenting multiple views of large programs written in IBM System/370 assembler
language. PUNS has two principal components: a repository component and a user interface
component. The repository component analyzes the target system and populates an entity-
attribute-relationship database with most of the low-level relationships within the program. The

repository component has three subcomponents: the schema for the repository, routines that load
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the repository, and routines that extract information from the repository based on queries from
the user. The repository component is designed to run on a high-performance host.

The user interface component, which runs on a workstation, provides an object-oriented,
window-based presentation of the multiple views of the subject program. PUNS facilitates
program understanding by providing the maintenance programmer with the capability to navigate
among objects of interest (e.g., modules or variables) based on a multi-dimensional relationships
such as control flow and data flow.

From a reverse engineering perspective, PUNS falls primarily into the category of
redocumentation. In the present prototype, all of the program views presented are based on static
analysis of the assembler source code. The relationships in the schema are predetermined from
experiences of maintenance programmers. At present the information in the repository is not
dynamically modifiable by the user during a viewing session. Although not specifically stated,
apparently when a modification to the assembler source code is determined to be necessary, the
programmer makes the change to the appropriate file using a traditional text editor. After the
code is re-tested, the program is then re-analyzed by the repository component of PUNS.
Cleveland states that dynamic updating of the information in the repository is a desirable future
capability of PUNS, and she suggests that the user should have the capability to enter additional
information that he or she has determined, but which PUNS was unable to extract. However, if
such a capability were to be added, some means of characterizing the credibility of the user-
determined information would also be necessary to assist other users of PUNS in making

decisions regarding the use of the information.

6.1.16 Other Support Environments
The environments discussed in Aoyama et al. (1989) provide some support for automatic
regeneration of graphical representations. These environments are based on algorithmic graphical

representations widely used in Japan. The environments are primarily design language editors
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where the pseudocode is supplemented with graphical notations. From these procedural design
languages, the environments generate source code in a number of languages. Some of the
environments have the capability to generate the algorithmic graphical notations from source code

for the purpose of migrating existing software into the environment for future maintenance.

6.2 Design Recovery

Much of the research presently conducted in reverse engineering is in the area of design
recovery or, as more commonly called in the work surveyed below, program understanding.
Design recovery promises more potential benefits than does redocumentation since it can be
considered the first step in a practical reengineering environment. However, its attempt to
achieve a more complete understanding of software means that the tools resulting from many of
the current research efforts may not be available to practicing software engineers in the near
future.

A common theme throughout the design recovery work is the use of pattern matching.
From Rich’s and Wills’ clichés (1990) to Biggerstaff’s conceptual abstractions (1989), pattern
matching seems to be the common method of mapping lower-level constructs to higher-level
concepts. Other common themes and differences will be highlighted in the survey below.
Table III provides a summary of the characteristics of each of the design recovery tools surveyed

here.

6.2.1 Desire

The Desire project at MCC (Biggerstaff, 1989) is attempting to automate much of the
human process by using both formal, structural information and informal, associative information.
Biggerstaff explains the process of design recovery from a human standpoint. He begins by
emphasizing the initial search for key code sections in order to establish a beginning hypothesis
of function. Once the initial assumption is made, the code analyst seeks out other programming

formations typical to the hypothesized application area. The discovery of such formations
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confirms the initial hypothesis. Any new information which may be gained as the result, for
example, of anomalies will be incorporated into the analyst’s experience for reuse in later
analyses.

The core of the system, where the experience and expectations of the analyst are encoded,
is Desire’s domain model. The fundamental unit of the domain model is the conceptual
abstraction, which is simply the combination of formal and informal information known about
a particular application concept. The structural information is found in code and data structure
patterns typical to implementations of that concept.

The informal information contained in a conceptual abstraction is the semantic information
contained in identifiers, comments, etc. This information connects with the informal information
in other related conceptual abstractions to simulate a network of expert knowledge in a particular
programming area. It is this codification and use of this type of information that makes Desire
rare among design recovery tools.

The conceptual abstractions, also called idioms, are in reality active objects written in the
Common LISP Object System. Once chosen from the domain model and activated by the
analyst, an idiom uses its information to seek out patterns of coding which imply an
implementation of the idiom. Once it has bound itself to the code pattern, the idiom begins to
match the substructures and the name scheme of the code to the structural expectations and
associative relationships encoded in the idiom. All binding is subject to the consent of the
analyst.

The information and experience gained by analysis of the subject system will be
incorporated into the domain model not only for more effective analysis but also for reuse in
constructing similar modules.

Biggerstaff reported that the Desire system was in a preliminary implementation phase.
The domain model had vet to be integrated into the total system, and analysis was restricted to

source code. The results of analysis were to be displayed using a hypertext system.
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6.2.2 Program Analysis Tool/Software Re-engineering Environment

Another design recovery tool is the Program Analysis Tool (PAT) reported by Harandi
and Ning (1990). This particular tool is part of the Software Re-engineering Environment (SRE)
as reported by Kozaczynski and Ning (1989). The SRE, being developed at Andersen
Consulting, is involved in many other types of program study in addition to design recovery.

PAT enables understanding through the first three levels of understanding coined by
Harandi and Ning and described in Section 3. Kozaczynski and Ning doubt the feasibility of
elevating to the highest level without significant human intervention.

Harandi and Ning then describe the basic operation of PAT. The program under analysis
is parsed and encoded into events by the Program Parser, and then are placed in an Event Base.
An event is a description of a programming notion plus the particulars of its realization, including
its physical location and place in the overall control structure. The notions represented by events
can range in complexity from simple statements to sizable collections of statements which
perform a particular task. The events first created by the Program Parser, as one might expect,
are closely parallel in complexity to the atomic statements of the program. Figure 9 illustrates
the basic format of an event.

The events just created are program facts which are used to fire rules of the knowledge
base. The inference engine which drives this firing is called the Understander, and the rules are
known as plans. The knowledge base itself is called the Plan Base. The plan is essentially a
combination of smaller event patterns, constituting a larger event pattern. The combination of
event patterns in the plan specify the appropriate source and execution ordering of the constituent
event patterns. Figure 10 portrays a typical plan template. The plan is fired only if there is a
match between an event fact and a particular event pattern known as a key event. Once the key
event is matched, the other event patterns of the plan must be matched and the event pattern
orderings satisfied. Only then is the plan fired, meaning that the larger event represented by the

plan is constituted. The Understander will place this new higher-level event in the Event Base
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hopefully to match an even more abstract plan key event. This process of inference and
abstraction continues until no more matches occur.

Close mismatches can count as matches because the plans also contain information about
incorrect implementations of the plans. Text templates within the plans allow a relatively easy-
to-read English explanation to be produced.

PAT is a part of the larger Software Re-engineering Environment which has the following
major components: (1) the System Code Parser, (2) the Global Object Base (GOB), (3) the
System Analysis and Abstraction Unit, and (4) the User Interface. The System Code Parser
produces low-level representations of code and stores these representations in the GOB. The
Program Parser of PAT is presumably at least part of the System Code Parser, and the events are
likely at least some of the low-level representations. The Event Base and Plan Base are likely
part of the GOB. The System Analysis and Abstraction Unit is a coordinated set of analysis
tools which builds on the information contained in the GOB. Control flow analysis, change
analysis, and generation of graphical representations are among the forms of analysis that this
set of tools conducts. PAT itself is a part of this set.

Kozaczynski and Ning discuss at some length the nature of the GOB. To represent the
knowledge contained in the GOB, an object-oriented representation scheme is employed. The
knowledge classes of the GOB include (1) program representation objects; (2) resultant objects
from analysis; (3) run-time analysis artifacts; (4) user-supplied information; (5) plans, rules, etc.
The plans and events of PAT are also typed according to this object-oriented scheme; this fact
restricts the type of unification that the Understander component of PAT can perform.

At the time of their writing, Harandi and Ning had begun to build up the Plan and Event
Bases to increase the applicability of PAT. As for the larger SRE, Kozaczynski and Ning have
reported that a COBOL parser with reading and printing capabilities has been written. Whether
or not this bidirectional parser could be the first step toward an actual reengineering (as defined

in this chapter) capability remains unclear. Other portions of the prototype have included cross-
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reference browsing and dependency browsing. An assembly language analysis tool has been

prototyped as well.

6.2.3 Recognizer/Programmer’s Apprentice

The Recognizer, part of the larger Programmer’s Apprentice project at MIT, is a program
understanding tool is based on the idea of cliché recognition (Rich and Wills, 1990). The notion
of a cliché provides a means of capturing and/or implementing a programming concept (Letovsky
and Soloway, 1986). The Recognizer uses a graph parsing scheme for cliché recognition and
abstraction.

The program under study is first translated into a flow graph-like design representation
called the Plan Calculus (see Figure 11). In addition, the cliché patterns, called plans, against
which the actual clichés of the program will be matched are also encoded in the Plan Calculus.
This representation uses boxes for functional units and arcs for flows of control and data. In
addition, preconditions and postconditions on the functional units are incorporated into the plan
representation. One advantage of this representation is that the components of clichés which
might be scattered in the code itself can be brought together in a unified structure.

To accomplish cliché recognition, the Plan Calculus program flow graph is translated to
a more generic flow graph. The translation is straightforward except for control flow and
functional preconditions and postconditions, which become "attributes” of the flow graph. The
program flow graph is submitted to a graph parser whose reduction rules, called overlays, are
contained in a cliché library. The overlays, much like the reduction rules in the more familiar
text grammars, consist of a right-hand graph which reduces into a more abstract left-hand graph.
The graphs of the overlay are the plans which have also been translated from the Plan Calculus.

The ultimate result of the parse is a parse-tree design structure. This design tree can be
used to produce an English synopsis of the program function and also as input to other tools of

the Programmer’s Apprentice.



REVERSE ENGINEERING
Cross et al.
Page 45

Rich and Wills in their report explain that, through the uniformity of the Plan Calculus,
the variety of the reduction rules in the cliché library, and the flexibility of the parser, the
Recognizer deals with many problems inherent in program recognition including the non-
contiguity of clichés, varying implementation and design styles, code which defies classification,
and interleaving of clichés. For example, the graph parser is able to ignore non-classifiable code
by having more flexible rules of input, ignoring non-classifiable trailing input when a parse is
completed.

Currently, the Recognizer can only analyze small Common LISP programs. The state of
the cliché library is impressive in that hundreds of plans and reduction rules have been encoded.
Rich and Wills also state the need to move from total dependence on flow and structure
characteristics for pattern recognition to the more informal information found in identifiers and

comments.

6.24 Function Abstraction

A design recovery method which uses a slightiy different technique for program
understanding, called function abstraction, is reported by Hausler and colleagues (1990). This
technique relies less on pattern matching and more on algebraic manipulation than do many
design recovery tools in the literature. However, this technique had not been prototyped at the
time of their report.

The abstraction algorithm proposed by Hausler and colleagues works on programs that
follow structured programming principles or have been restructured so as to comply with those
principles. In fact, it is the very fact that such programs are structured that makes them amenable
to the algebraic manipulation of the algorithm.

A subject program is decomposed into atomic components called small primes. These
small primes are statement sequences, selections, and iterations; they are the building blocks from

which all structured programs are constructed. The function of each small prime is derived
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largely from functional analysis, and the functions of larger primes are derived from those of
their elemental smaller primes. The ultimate goal, naturally, is for the entire program function
to be discovered.

The function of a statement sequence is derived from the composition (in the sense of
function theory) of the functions of the statements of the sequence. It amounts to a statement
of net effect on the sequence input. The function is derived using trace tables, which step
through each rule of the sequence and incrementally derive the function of change for each
variable in the sequence in terms of the initial variable values. These functions of change are
written as assignment statements to each variable; the total sequence function is written as a
concurrent assignment.

If some sequence rules are previously derived conditional functions, slight alterations must
be made to the function abstraction process. Otherwise, it is conceivable for the number of
possibilities in the final function of the sequence to grow wildly. After the elimination of
impossible conditionals, others in some instances can be further compacted into cohesive, more
expressive formulas. The final sequence function can be expressed in part in terms of these
formulas.

The function of a selection prime is usually little more than a reexpression of the prime
in algebraic language. Sometimes, however, it is possible through pattern matching to transform
the selection prime into a compact formula.

The extraction of the function of an iteration begins with partitioning the data space of
the loop so that the change function of each variable in the loop’s scope may be derived in turn.
These loop partitions, or slices, are then matched against loop patterns associated with function
abstractions. The function abstractions of the slices are then composed into a comprehensive
loop function. Figure 12 depicts the form of a loop-slice template.

Hausler and colleagues concur that the final function abstractions tend to be somewhat

cryptic and could stand further analysis to translate them into clearer descriptions.



REVERSE ENGINEERING
Cross et al.
Page 47

6.25 PROUST

Johnson (1990) describes a technique of program understanding called intention-based
analysis and how that technique is employed in a tool known as PROUST. PROUST is a Pascal
debugging tool geared for inexperienced programmers, providing explanations for program bugs
in terms of the intentions of the programmers and with regard to common mistakes made by
those programmers. PROUST thus serves as an educational tool for beginners.

PROUST views program understanding as the understanding of the intentions of the
programmer. These intentions are coalesced in succinctly stated program goals which are
statements of function for programs and program fragments. Examples of goal statements are
Sentinel-Controlled Input Sequence, Input Validation, and Average. These goals can be realized
by one of a number of plans, or code templates which perform the function stated by the goal.
Each plan can itself contain subgoals which must be attained in order for the plan to be fulfilled.

The process of program understanding and bug discovery is termed goal decomposition,
in which the original goals of the problem statement and subsequent subgoals are matched with
portions of the code via the plans. Several goal decompositions are usually possible. The goal
decomposition process results in a tree of such decompositions. Each node in the tree represents
a state in the interpretation space which reflects, at any given point, what goals have been
(tentatively) realized and which have yet to be so. The best decomposition is chosen based on
the closeness of the matches between the plans and the code and on how well the mismatches
can be reconciled using plan-difference rules.

The plan-difference rules deal with errors in program design and the interleaving of plans
within a particular code segment, which produces a composite goal. When a mismatch is
identified as a bug by a plan-difference rule, a description of the bug is generated and maintained
for later output. These bug descriptions attempt to explain why the bug occurred: i.e. for

example, whether the programmer attempted to implement an inappropriate goal, whether he
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attempted to implement an appropriate goal incorrectly, or whether the programmer has a basic
misunderstanding of some programming construct.

Johnson presents the results of some empirical evaluations of PROUST in its current state
and its ability to find program errors and explain them in terms of the original intention. The
results were quite good with some qualifications. In one test series of implementations for a
problem, PROUST was able to develop complete interpretations for most of the implementations,
find most bugs in those implementations, and explain them accurately. In a test series for
another problem, PROUST was able to develop complete interpretations for only approximately
one-half of the implementations. For the bugs found in those implementations, however, correct
explanations were put forth for the most part.

Johnson states the need for an expansion of PROUST s capabilities. Specifically, he states
the need to expand PROUST’s knowledge bases and to incorporate human input with regards to
programming plans and intentions. Finally, he calls for the creation of PROUST versions for

other languages, such as LISP and Ada.

6.2.6 Talus

Ourston (1989) provides an analysis of Talus, based on the doctoral dissertation of W.R.
Murray dated 1986. Talus is a program recognition and debugging prototype tool for student
LISP programs. Talus compares the student input program with a "correct” program which
serves as the program specification. The input program is converted to a standard form of LISP
called If-Normal form in order to remove at least some of the implementation variations. This
form amounts to a binary tree representation. The two programs are compared, node by node,
to determine if a sufficiently precise match exists. Using heuristic assessment, Talus attempts
to find the best match possible between the functions of the "correct” program and those of the
input program and does likewise with the formal variables of both. Fault detection is through

symbolic evaluation of the program and through the equivalence evaluation of corresponding
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expressions of the two programs. Among the strong points of Talus, by Ourston’s estimation,
are the use of expression equivalence analysis, its top-down nature which allows functions to be
recognized without the need for their subfunctions to be matched precisely, and its assignment
of function to formal variables. Among the faults of Talus are the need to supply a specification
(namely a "correct” program) and the orientation of Talus toward recursive data and control

structures and other LISP constructs.

6.2.7 PROMPTER

Fukunaga (1985) discusses PROMPTER, a design recovery tool which extracts
explanations from assembly language code. The explanations pertain to two levels of knowledge:
knowledge of the internals of the implementation and knowledge of the context in which an
implementation exists and operates. The basis of operation for the tool is the codification of
hardware, programming, and domain-specific knowledge in an object-oriented framework using
an object-oriented derivative of PROLOG. To generate the first-level explanations, PROMPTER
employs an assembly language simulator which infers the first-level explanations, in an expert-
system fashion, from hardware specific and programming related objects and their interactions.
The higher-level explanations are currently encoded using more traditional production rules.
Fukunaga (1985) indicated that the system was in early prototype phase with the collection,

formalization, and codification of the various forms of knowledge proceeding.

6.2.8 Laura

Laura (Seviora, 1987), developed in the early 1980s, is a program analysis debugging tool
for very small FORTRAN programs. Laura compares the input program to a supplied “correct”
program which serves as the program specification. Both are translated into normalized flow
eraphs, and it is these graphs that are compared. Any differences discovered are considered to
be program errors. Laura’s breadth of understanding is narrow in that it cannot reconcile the use

of an algorithm in the subject program different from the one in the "correct” program.
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6.2.9 PUDSY

PUDSY (Seviora, 1987), a debugging system developed by Lukey, uses a bottom-up
approach to program analysis by breaking up the subject code into chunks which are then
matched against schemata in PUDSY’s knowledge base. A matched chunk is then exchanged
for the predicate calculus assertions associated with the matched schema. The assertions of the
lowest-level chunks are used, along with the data flow between them, to produce higher-level and
ultimately program-level assertions. The path by which the final assertion is coalesced is
maintained for the debugging phase to come. The final program assertion is then tested for
equivalence with the supplied program specification. Any non-equivalences are assumed to be
bugs. These bugs are located and solutions are proposed by backtracking through the appropriate

assertion derivation. The "fixed" program is then retested.

7. Conclusion

The overview of reverse engineering and the survey of current literature indicate that
researchers have made a good beginning. Of the two categories of reverse engineering tools
discussed, redocumentation tools are the most mature. These tools are similar in that their output
is produced deterministically from a syntactic and semantic analysis of source code. New
insights may result from these alternative views, although all of the information is contained in
the source code and thns could have been extracted by a careful reader. As the name suggests,
the forte of redocumentation tools is the time they may save users by automatically producing
accurate documentation. These tools will continue to evolve and should make their way into

production environments relatively quickly.



REVERSE ENGINEERING
Cross et al.
Page 51

Design recovery tools are natural extensions of redocumentation tools and thus usually
have considerable overlap. These design recovery methods and tools share many common
approaches to program understanding, although the nomenclature and the mechanisms might
differ somewhat. For example, all of the tools and methods described above derive design by
using a knowledge base in conjunction with the analysis of the formal, verifiable structural
information found in the source code. This analysis is used to determine control flow, to develop
relative lexical and control sequences, and to reunify discontiguous components of larger
structures. This last goal is quite important to enable effective pattern matching of program
components. Many of the tools’ design templates which are matched against by actual program
components will express a programming or application idea as subideas connected by at least
relative lexical and control orderings. Often, the actual program components which implement
a certain idea will be widely dispersed in the code and must be "reunified” in analysis in order
for the design template to be matched and realized.

The structure of the design templates of the tools is basically the same in function,
although not necessarily in form. In Harandi’s and Ning’s PAT, the plan is the design template
and appears to be a highly parameterized, formal piece of text. The plans are contained in a Plan
Base, which serves as the knowledge base for the tool. In Rich’s and Wills” Recognizer, the
design template, as well as the translated implementation, referred to as clichés, is also a plan.
These plans, however, are composed in a graphical (in the graph-theoretical sense) language
called the Plan Calculus and are part of graph-grammatical reduction rules contained in a cliché
library. Both plans do undergo some encoding before being placed in their respective bases,
however. In the function abstraction method proposed by Hausler and associates, the only design
templates seem to be those that reduce conditionals to formulas and those that produce function
abstractions for loop slices. The design templates of Biggerstaff’s Desire, in addition to the
structural information common to the other methods, contain the informal information which

Biggerstaff lauds in the form of regular expression templates to match against identifiers.
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The mechanism of abstraction is the major source of difference among the tools. In
Biggerstaff’s Desire, the conceptual abstractions seemingly are activated by the user and then go
out to seek matches in the code on their own. In Harandi’s and Ning’s PAT, the Understander
combined with a Justification-based Truth Maintenance System are inference engines which drive
the recognition process. In Rich’s and Wills’ Recognizer, the driver of recognition is a graph
parser whose reduction rules are contained in the cliché library. In Hausler’s and colleagues’
method, the mechanism appears to be algebraic manipulation with a smattering of pattern
matching.

The future use of both redocumentation and design recovery tools depends largely on their
integration into current CASE tools. Bachman (1988) suggests reverse engineering may be the
key missing component in modern CASE tools. While CASE tools are steadily making their way
into the mainstream of software engineering, Bachman asserts that since the majority of effort
and dollars still goes into the maintenance of existing systems, a bridge is needed to migrate
these existing systems into modern CASE environments for all future enhancements. Bachman
takes a design recovery view of reverse engineering, and he suggests that expert systems of the
future will enable analysts to extract business rules and other missing requirements and design
documentation from existing artifacts. Since these are not innate to source code, automatic
reverse engineering to this level from source code alone is infeasible. However, it is important
to recognize that reverse engineering involves more than the just the analysis of source or object
code. While the main body of research is concentrating on source code analysis, work is also
proceeding on both the analysis of systems-level and network specification (control definition)
with CASE environments and the analysis of database and data structure specification (data
definition) to rediscover business rules (data-driven operational constraints). Chikofsky (1990)

and (1991) report on these.
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(provided by Robert Arnold).

Different perspectives between forward and reverse engineering.

Demonstration of C code formatted according to the book paradigm (from
Oman, P.W. and Cook, C.R. The book paradigm for improved maintenance.
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GRASP/Ada Overview

Ada source code for task CONTROLLER.

Control structure diagram of Ada source code for task CONTROLLER.
Event representation of the simple-swap concept (from Harandi, M.T. and

Ning, J.Q. Knowledge-based program analysis. IEEE Software 7(1), 74-81.

Copyright IEEE 1990; used with permission).
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Knowledge-based program analysis. IEEE Software 7(1), 74-81. Copyright

IEEE 1990; used with permission).

Typical Recognizer Plan Calculus and flow graph representations of
programming clichés. (a) Representation in the Plan Calculus of how
associative retrieval can be implemented using a hash table. (b) Part of the
encoding of the overlay into graph grammar rules (the constraints are not
shown) (from Rich, C. and Wills, L. M. Recognizing a program’s design: A
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Figure 12. A template used to extract a functional description from a loop slice (from
Hausler, P.A., Pleszkoch, M.G., Linger, R.C., and Hevner, A.R. Using function

abstraction to understand program behavior. IEEE Software 7(1), 55-63.

Copyright IEEE 1990; used with permission).
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/* Module Index 6 *f —
re */
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Iad Module Index -*f
r *’
/* AtoE(NOT defined) *
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/* Called by: main */
r” */
/* Clear(defined p.5) */
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~ */
1* GetOp. (NOT defined) *
/* Referencedp 4 */
/* Called by:main */
I */
/* main(defined p 4) */
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Iad */
/* Pop (defined p.5) *
/* Referenced p4.5 */
/* Called by:main *
/*  Calls 1o:Clear printf */
Tl */
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/* reverse Polish desk calculator */
main()
{int Type.
char S{MaxOp].
double Op2.AtoF\). Pop(),Pusk().
while ((Type= GetOp(S MaxOp)) ! = EOF)
switch{Type) {
case Number. Push( AtoF(S)). break.,
case '+ Push( Pop()* Pop() ). break;
case " Push { Pop{)* Pop(} ). break;
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break;
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+ask CONTROLLER 1s

entry REQUEST (PRIORITY) (D:DATA) ;

end;

task body CONTROLLER 1is

begin
loop
for P in PRIORITY loop

select
accept REQUEST(P) (D:DATA) do

ACTION(D) ;

end:;
exit;

else
null;

end select;
end loop:’
end loop;
end CONTROLLER?;

¢t ROy, blf ;\I.
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task CONTROLLER is

entry REQUEST (PRIORITY) (D:DATA) ;

end;

/task body CONTROLLER is

begin
1 loop
" for P in PRIORITY loop

—zglselect

__T accept REQUEST (P) (D:DATA) do

ACTION (D) ;

4 Lend;
<4 B exit;
L

i else
. —— null;

end select;
end loop;
| end loop;
lend CONTROLLER?

t
LROYSy 200
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event-class:
interval:

38
40
43

43
47

120

external-form:

varl:
var2:
temp-var:

procedure swap(var X, Y : integer);
var T : integer;

assign X to T,

assign Y to X;

assign Tto Y;

end-procedure,

proc-call swap (A, B);

[ 2 24

SIMPLE-SWAP

([0 (120 43 44 45)] [0 (4 43 44 45)))
((43 44 45) SIMPLE-SWAP A B)

A,

B,

T,

CRISH
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plan (accumulator
:update-var ?var
:init-value %init
:update-value ?val
:update-cond ?cond
:accumulator-op ?op)
path (c-precede
(assign :var-defined ?var :value-used ?init)

(c-enclose
(enumerator :loop-cond ?cond)
(key
(assign
:var-defined ?var
:value-used (?op ?var ?val)
)
)
)

CROSS et 5!
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(a)

hash-table-as set

hash:

compute-hash

key:function

universe:set input

set-retrive

selcet:

selct-term

/

|

output:

retrieve:

set-retrive

T F

CP’

hash-table-retrieve

2 hase-
— table- - Eorr;]pute- set-
retrieve as retrieve 4
3
3
1 1
4
> table-

retrieve
retrieve

1
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If the loop slice matches the pattern
PERFORM UNTIL X >= EXPR3
X := X + EXPR4
END-PERFORM
then the function abstraction for variable X after N loop iterations is
X :=X + EXPR4 * N
where the total number of loop iterations is
(X < EXPR3) -> N := ceiling((EXPR3 - X)/EXPR4) |
(X >= EXPR3) -> N :=0)
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Control Structure
Diagrams for Ada

James H. Cross II
Sallie V. Sheppard
W. Homer Carlisle

dvances in hardware, particularly high-density bit-
mapped monitors, have led to a renewed interest
in graphical representation of software. Much of the
research activity in the area of software visualization
and computer-aided software engineering (CASE) tools
has focused on architectural-level charts and diagrams.

However, the complex nature of the control constructs
and the subsequent control flow defined by program
design languages (PDLs), which are based on pro-
gramming languages such as Ada, Pascal, and Mod-
ula-2, make detailed design specifications attractive
candidates for graphical representation. And, since the
source code itself will be read many times during the
course of initial development, testing, and maintenance,
it too should benefit from the use of an appropriate
graphical notation.

The control structure diagram (CSD) is a notation
intended specifically for the graphical representation
of detailed designs, as well as actual source code. The
primary purpose of the CSD is to reduce the time re-
quired to comprehend software by clearly depicting
the control constructs and control flow at all relevant
levels of abstraction, whether at the design level or

within the source code itself. The CSD is a natural cx-
tension to existing architectural graphical represen-
tations such as data flow diagrams, structure charts,
and Booch diagrams.

The CSD, initially created for Pascal/PDL{1], has been
extended significantly so that the graphical constructs
of the CSD map directly to the constructs of Ada. The
rich set of control constructs in Ada (e.g., task ren-
dezvous) and the wide acceptance of Ada/PDL by the
software engincering community as a detailed design
language made Ada a natural choice for the basis of a
graphical notation. A major objective in the philosophy
that guided the development of the CSD was that the
graphical constructs supplement the code and PDL
without disrupting their familiar appearance. That is,
the CSD should appear to be a natural extension to the
Ada constructs and, similarly, the Ada source code
should appear to be a natural extension of the diagram.
This has resulted in a concise, compact graphical no-
tation that attempts to combine the best features of
previous diagrams with those of well-establishec PDLs.
A CSD generator was developed to automate the pro-
cess of producing the CSD from Ada source code

PRECEDING PAGE BLANK NOT FILMED



Control Structure Diagram for Ada

Background

Graphical representations have long been recognized
as having an important impact in communicating from
the perspective of both the “writer” and the “reader.”
For software, this includes communicating require-
ments between users and designers and communicat-
ing design specifications between designers and
implementors. However, there are additional areas
where the potential of graphical notations have not
been fully exploited. These include communicating the
semantics of the actual implementation represented
by the source code to personnel for the purposes of test-
ing and maintenance, each of which are major resource
sinks in the software lifecycle. In particular, Shelby et
al. (2] found that code reading was the most cost-ef-
fective method of detecting errors during the verifica-

The CSD for Ada is supported
by an operational prototype
graphical prettyprinter that
accepts Ada source code as
input and generates the CSD
in a manner similar to text-
based prettyprinters.

tion process when compared to functional and
structural testing. Standish [3] reported that program
understanding may represent as much as 90% of the
cost of maintenance. Hence, improved comprehension
efficiency resulting from the integration of graphical
notations and source code could have a significant im-
pact on the overall cost of software production.

Since the flowchart was introduced in the mid-50s, nu-
merous notations for representing algorithms have been
proposed and utilized. Several authors have published
notable books and papers that address the details of many
of these [4-6]. Tripp 15], for example, describes eighteen
distinct notations that have been introduced since 1977,
and Aoyama et al. (6] describe the popular diagrams used
:in Japan. In‘general, these diagrams have been strongly
influenced by structured programming and thus contain
control constructs for sequence, selection, and iteration.
In addition, several contain explicit EXIT structures to
allow single entry/multiple exit control flow through a
block of code, as well as PARALLEL or concurrency con-
structs. However, none of the diagrams cited explicitly
contains all of the control constructs found in Ada.

28 JOURNAL OF PASCAL. ADA & MODULA2

Graphical notations for representing software at the
algorithmic level have been neglected. for the mos:
part, by business and industry in the United Statesir.
favor of nongraphical PDLs. A lack of automated sup-
port and the results of several studies conducted in the
1970s that found no significant difference in the com-
prehension of algorithms represented by flowcharts
and pseudocode (7] have been major factors in this un-
derutilization. However. automation ts now available
in the form of numerous CASE tools. and recent em-
pirical studies reported by Aoyama {6] and Scanlan [8!
have concluded that graphical notations may indeed
improve the comprehensibility and overall productiv-
ity of software. Scanlan’s study involved a well-con-
trolled experiment in which deeply nested if-then-clse
constructs, represented in structured flowcharts and
pseudocode, were read by intermediate-level students.
Scores for the flowchart were significantly higher than
those of the PDL. The statistical studies reported by
Aoyama et al. involved several tree-structured dia-
grams (e.g., PAD, YACC I, and SPD) widely used in
Japan that, in combination with their environments,
have led to significant gains in productivity. The re-
sults of these recent studies suggest that the usc of a
graphical notation with appropriate automated sup-
port for Ada/PDL and Ada should provide significant
increases in productivity over current nongraphical

approaches.

Control Structure Diagram

Figure 1(a) contains an Ada task body CONTROLLER
adapted from (9] that loops through a priority list at-
tempting to accept selectively a REQUEST with prior-
ity P. Upon on acceptance, some action is taken,
followed by an exit from the priority list loop to restart
the loop with the first priority. In typical Ada task
fashion, the priority list loop is contained in an outer
infinite loop. This short example contains two threads
of control: the rendezvous, which enters and exists at
the accept statement, and the thread within the task
body. In addition, the priority list loop contains two
exits: the normal exit at the beginning of the loop when
the priority list has been exhausted, and an explicit
exit invoked within the select statement. While the
concurrency and multiple exits are useful in modeling
the solution, they do increase the effort required of the
reader to comprehend the code.

Figure 1(b) shows the corresponding CSD generated
by the graphical prettyprinter. In this example, the in-
tuitive graphical constructs of the CSD clearly depict
the point of rendezvous, the two nested loops, the se-

continued on pzge 32



lect statement guarding the accept statement for the
task, the unconditional exit from the inner loop, and
the overall control flow of the task. When reading the
code without the diagram, as shown in Figure 1(a), the
control constructs and control paths are much less vis-
ible although the same structural and control infor-
mation is available. As additional levels of nesting and
increased physical separation of sequential components
occur in code, the visibility of control constructs and
control paths becomes increasingly obscure, and the ef-
fort required of the reader dramatically increases in
the absence of the CSD.

Now that the CSD has been briefly introduced, the
various CSD constructs for Ada are presented in Fig-
ure 2. Since the CSD is designed to supplement the se-
mantics of the underlying Ada, each of the CSD
constructs is self-explanatory and are presented with-
out further description.

Automated Support — The CSD
Graphical Prettyprinter

Automated support is a requirement, at least in the
in professional ranks, for widespread utilization of
any graphical representation. Without automated
support, diagrams are difficult to construct and main-
tain from the standpoint of “living” formal documen-
tation, although software practitioners may use
several types of diagrams informally during design

o

task CONTROLLER is

entry REOUEST(PRIORITY) (D:DATA) ;
end;

task body CONTROLLER is

begin
loop
for P in PRIORITY loop

select

accept REQUEST(P) (D:DATA) do

-

ACTION(D);

end;
exit;

else
null:

end select:.
end loop:
i end loop:
! end CONTROLLER:

1 Figure 1(a). Ada source code for task CONTROLLER

_/—’——‘—_/_—_,.(,_.

and even implementation. Automated support comes
in many forms, ranging from general-purpose “draw-
ing aids” to automatic generation and maintenance
based on changes to source code. The CSD for Ada is
currently supported by an operational prototype
graphical prettyprinter that accepts Ada source code
as input and generates the CSD in a manner similar
to text-based prettyprinters. The prototype was im-
plemented under DEC’s VAX VMS using a scanner/
parser generator and an Ada grammar. The user in-
terface was built using DEC’s vAX Curses, and to pro-

The potential of the CSD is
best realized during detailed
design, implementation,
verification, and maintenance.

vide the user with interactive viewing of the CSD, a
special version of DEC's EVE editor was generated.
Custom fonts for the CSD graphics.characters were
built for both the VT220 terminal and the HP Laser
Jet printer. Using font-oriented graphics characters
rather than bit-mapped images provided for a high

degree of efficiency in generating the diagrams.
continued on page 32

task CONTROLLER is
entry REQUEST (PRIORITY) (D:DATA) ;
end;

task body CONTROLLER is

i

begin
—{} loop
|_rfor P in PRIORITY loop
select
—
accept REQUEST(P) (D:DATA) do
<1
ACTION(D) :
end;
<4 exiv;
else
null;
end select:
Uena loop/
Lend toop:
end CONTROLLER;

task CONTHOLLER i

—_

! Figure 1(b). Control structure diagram of Ada source code for

|

S ——————
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Control Structure Diagram for Ada

-- PROCEDURE

procedure X is

-- PACKAGE

|Eacka§e Y is
lprocedute Z;

function Z return

lend X:

-- SEQUENCE
}— S
— S
— S

— S:

-- SELECTION
— S,
if C then
S;
S;

else
S
S

end if;

}— S

-- CASE
|— S
case D is
when C1 =>
S;

when C2 =>
S;

]
end case;
S:

-- FOR
}— S:

for F in R loop

S:
S;
S
end loop:
S:
-- WHILE
| — S
while C loop
p— S:
L— S;
— S:
end loop:

— S

-- INFINITE LOOP
|— S

loop

— S

— S

L— S

end loop.

b— S:

Figure 2. Control structure diagram construc

Boolean :

ts for Ada.
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-- LOOP EXIT

S:
exit when C;

-- BLOCK WITH DECLARATIONS
— S:
declare

C : INTEGER:
begin

S

S

-- RAISE
— S:
| — S
<«+4— raise Erc;

-- EXCEPTION HANDLER
p-—— S
— S

— S

exception

i

when Errl =>
S

when Err2 =>
S:

when Ercl =>
i S:
)

end;

;;|—¢

- TASK SPECIFICATION

—— RENDEZVOUS {RECEIVERI}

- TERMINATZ ALTERNATIVE

b— S:

selecZl

end select;
S:

-- SELECT
I— Ss.

select

s

+

accept I do

t

o

or

:




Control Structure Diagrams for Ada

The prototype 1S currently being ported to the Sun-4
workstation under UNIX and X Windows, where en-
hancements will include an option to collapse the diagram
around any control constructs and an option to generate
an intermediate level architectural diagram that indicates
control structure among subprograms and tasks.

Conclusions and Directions

A new graphical tool that maps directly to Ada was for-
mally defined and automated. The CSD offers advantages
over previously available diagrams in that it combines the
best features of PDL and code with simple intuitive graphi-
cal constructs. The potential of the CSD can be best realized
during detailed design, implementation, verification, and
maintenance. The CSD can be used as a natural extension
to popular architectural-level representations such as data
flow diagrams, Booch diagrams, and structure charts.

Our current reverse engineering project, GRASP/Ada
(10}, is focused on the generation of multilevel and
multiview graphical representations from Ada source
code. As indicated in GRASP/Ada overview shown in
Figure 3, the CSD represents the code/PDL level dia-
gram generated by the system. Our present efforts
are concentrated on the extraction of architectural-

and system-level diagrams such as structure charts.
Booch diagrams, and data flow diagrams. The reversc
engineering of graphical representations is destined
to become an integral component of CASE wols, which
until recently have focused on forward engineering.
The development of tools that provide for interactive
automatic updating of charts and diagrams will serve
to improve the overall comprehensibility of software
and, as a result, improve reliabilitv and reduce the
cost of software.

The reverse engineering of
graphical representations is
destined to become an
integral component of CASE
tools, which until recently
have focused on forward
engineering.

P

l Phase 2'

hase 1

e

hase 3

P Diagrams

‘l

PDL/
Code
Diagrams
Code ’

packaye cptyx 1S
type xmCYR:
procedute g7 zlorp:

CSD

procedure snedr.
functlon hypurbluc:
era <Cplyx:

paceane pony chiys %

otyR:

i Figure 3. Overview of the GRASP/Ada reverse engl neering project.

-
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Diagrams

Architectural

Structure Charts

]
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Booch Diagrams
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Appendix C

Extended Examples

The examples in this Appendix were extracted from a set of Ada source code files
provided by NASA to test the CSD generator. These examples were used in Section 5 to
illustrate the User Interface.
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with LEVEL_A_CONSTANTS;

use LEVEL_A_CONSTANTS;

with DATA_TYPES;

use DATA_TYPES;

with FSW_POOL;

use FSW_POOL;

with IL_POOL;

use IL_POOL;

with SIM_POOL;

use SIM_POOL;

with MATH_PACKAGE;

use MATH_PACKAGE;

with QUATERNION_OPERATIONS;

use QUATERNION_OPERATIONS;

with DOUBLE_PRECISION_MATRIX_OPERATIONS;
use DOUBLE_PRECISION_MATRIX_OPERATIONS;
with SINGLE_PRECISION_MATRIX_OPERATIONS;
use SINGLE_PRECISION_MATRIX_OPERATIONS;

|package body AERO_DAP_PACKAGE is

FIRST_PASS : BOOLEAN_32 := TRUE;

-- THIS NEXT SECTION OF VARIABLES HAS BEEN ADDED TO THIS PORTION OF --
—_ -- OF THE PACKAGE IN ORDER TO PROVIDE A DUMP OF THESE VARIABLES, --
-- NOT BECAUSE THEY NEED ‘MEMORY’ IN THE SENSE THAT THEIR VALUES --
-— MUST BE REMEMBERED FROM INVOCATION TO INVOCATION OF PROCEDURE --
-- AERO_DAP. CONSEQUENTLY, WHEN THE FLIGHT SOFTWARE IS FULLY --
- -- CHECKED OUT, THESE DECLARATIONS CAN BE MOVED TO APPEAR AS LOCAL --
-- DECLARATIONS IN PROCEDURE AERO-DAP --

@ e e o — ————— e > - —— = =

BETA_DAP : SCALAR_SINGLE :
CALPHA : SCALAR_SINGLE :=
PHI_DAP : SCALAR_SINGLE :
h SALPHA : SCALAR_SINGLE := 0.0;

BETA_FCS : SCALAR_SINGLE := 0
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Q_FCS : SCALAR_SINGLE := 0.0;
R_FCS : SCALAR_SINGLE :- 0.0;
. PHI_ERROR : SCALAR_SINGLE := 0.0;
-~ STABILITY AXES VARIABLES --
BANK_RATE_CMD : SCALAR_SINGLE := 0.0;
BETA_RATE_CMD : SCALAR_SINGLE := 0.0;
DP_CMD : SCALAR_SINGLE :- 0.0;
== BODY AXES VARIABLES --
DQ_CMD : SCALAR_SINGLE :-= 0.0;
DR_CMD : SCALAR_SINGLE :- 0.0;
_ P_CMD : SCALAR_SINGLE := 0.0;
-~ ROLL CHANNEL VARIABLES --
—_ F_ERROR : SCALAR_SINGLE i= 0.0;
ALPHA_TRIM_CMD : SCALAR_SINGLE := 0.0;
-~ PITCH CHANNEL VARIABLES --
h ALPHA_TRIM_RATE : SCALAR_SINGLE := 0.0;
ALPHA_TRIM_ERROR : SCALAR_SINGLE := 0.0;
ALPHA_TRIM_ERROR_I, : SCALAR_SINGLE := 0.0;
- Q_ CMD : SCALAR_SINGLE :c 0.0;
Q_ERROR : SCALAR_SINGLE = 0.0;
R CMD : SCALAR_SINGLE := 0.0;
— -~ YAW CHANNEL VARIABLES --
R_ERROR : SCALAR_SINGLE := 0.0;
DP1 : SCALAR_SINGLE :- 0.0;
== JET SELECT LOGIC VARIABLES --
DP2 : SCALAR_SINGLE :-= 0.0;
~ DO1 : SCALAR_SINGLE ;- 0.0;
DQ2 : SCALAR_SINGLE .- 0.0;
DQ3 : SCALAR_SINGLE :- 0.0;
DQ4 : ScALAR_sINGLE .- 0.0;
-~ DOS : SCALAR_SINGLE :- 0.0;
DQ6 : SCALAR_SINGLE := 0.0;
DR1 : SCALAR_SINGLE := 0.0;
DR2 : SCALAR_SINGLE ;- 0.0;
- DR3 : SCALAR_SINGLE .- 0.0;
DR4 : SCALAR_SINGLE .- 0.0;
DRS : SCALAR_SINGLE :- 0.0;
DR6 : SCALAR_SINGLE := 0.0;
- -~ USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED
== FOR THIS APPLICATION
use SINGLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB;
use DOUBLE_PRECISION_MATRIX_OPERATIONS.REAL_MATH_LIB:
-~ THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED --
~~ BY procedure AERO_pap. THEY ARE POSITIONED EXTERNAL TO --
-~ PROCEDURE AERO_DAP So THAT THEIR VARIABLES WILL EXIST --
- -= BEYOND THE TIME WHEN THE PROCEDURE IS EXECUTING --

B “package BETA_FILTER_PACKAGE is

Page:

[\
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procedure BETA_FILTER;

Lend BETA_FILTER_PACKAGE;

lpackage AERO_ANGLE_EXTRACT_PACKAGE is

e

procedure AERO_ANGLE_EXTRACT;

Lend AERO_ANGLE_EXTRACT_PACKAGE;

lpackage TRANS_DELAY_COMP_PACKAGE is

procedure TRANS_DELAY_COMP; .

Lend TRANS_DELAY_COMP_PACKAGE;

lpackage STAB_AXES_CMD_PACKAGE is

procedure STAB_AXES_CMD;

lend STAB_AXES_CMD_PACKAGE;

[package JET_SELECT_LOGIC_PACKAGE is

procedure JET_SELECT_LOGIC;

Lend JET_SELECT_LOGIC_PACKAGE;

UNIT_X_VR : SINGLE_PRECISION_VECTOR3;
UNIT_Y_BODY_IN_ INERTIAL : SINGLE_PRECISION_VECTOR3;
UNIT_Y_VR : SINGLE_PRECISION_VECTOR3;

UNIT_Z_DCL : SINGLE_PRECISION_VECTOR3;

UNIT_Z_VR : SINGLE_PRECISION_VECTOR3;

VREL_BODY : SINGLE_PRECISION_VECTOR3;

procedure AERO_ANGLE_EXTRACT is

+ — ALPHA_DAP := ARCTANZ(VREL_BODY(3),VREL_BODY(l)) * RAD_TO_DEG;

BETA_DAP := SCALAR_SINGLE(ASIN(VREL_BODY(2) / V_REL_MAG) *
RAD_TO_DEG) ;

| UNIT_Y_BODY_IN_INERTIAL := Q_FORM(Q_B_TO_I,Y_BODY);

— UNIT_X_VR := DOUBLE_TO_SINGLE(UNIT(V_REL_NAV));

|
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DOUBLE_TO_SINGLE (UNIT(CROSS_PRODUCT (UNIT_X_VR,UNIT_R))}

— UNIT_Y_VR

— UNIT_Z_VR UNIT(CROSS_PRODUCT (UNIT_X_VR,UNIT_Y_VR));
L — UNIT_Z_DCL := UNIT(CROSS_PRODUCT(UNIT_Y_BODY_IN_INERTIAL,UNIT_X_VR))

|~ PHI_DAP := ARCTANZ2 (DOT_PRODUCT (UNIT_Z_DCL,UNIT_Y_VR), DOT_PRODUCT(
UNIT_Z_DCL, -UNIT_Z_VR)) * RAD_TO_DEG;

- CALPHA := COS(ALPHA_DAP * DEG_TO_RAD) ;
I SALPHA := SIN(ALPHA_DAP * DEG_TO_RAD);
Lend AERO_ANGLE_EXTRACT;

Ltend AERO_ANGLE_EXTRACT_PACKAGE;

lpackage body BETA_FILTER_PACKAGE is .

BETA_NODE : SCALAR_SINGLE := 0.0;
FIRST_PASS : BOOLEAN_32 := TRUE;

procedure BETA_FILTER is

—(, if (QOBAR_NAV > QBAR_BETA_FILT ON) then
if FIRST_PASS then

BETA_FCS := 0.0;

FIRST_PASS := FALSE;

else
%}—— BETA_FCS := BETA_NODE * (K_BETA_FILT(1) * BETA_DAP);

end if;
- BETA_NODE := (K_BETA_FILT(2) * BETA_DAP) * (K_BETA_FILT(3) *
BETA_FCS) ;
ﬁ-else
- }— BETA_FCS := BETA_DAP;
_end if;

lend BETA_FILTER;

lend BETA_FILTER_PACKAGE;

lpackage body TRANS_DELAY_COMP_PACKAGE is

ROLL_ACCEL :-SCALAR_SINGLE := 0.0
PITCH_ACCEL : SCALAR_SINGLE
YAW_ACCEL : SCALAR_SINGLE

"
(=N
[ =)

procedure TRANS_DELAY_COMP is

+— ROLL_ACCEL := ROLL_ACCEL_NOM * SIGNUM(KP_RCS) ;
—— PITCH_ACCEL := PITCH_ACCEL_NOM * SIGNUM(KQ_RCS};
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YAW_ACCEL := YAW_ACCEL_NOM * SIGNUM(KR_RCS);

end TRANS_DELAY_COMP;
lend TRANS_DELAY_COMP_PACKAGE;

package body STAB_AXES_CMD_PACKAGE is

PHI_DELTA : SCALAR_SINGLE := 0.0;

PHI_SHORTEST : SCALAR_SINGLE := 0.0;

N_180 : constant SCALAR SINGLE := 180.0;

N_360 : constant SCALAR_SINGLE := 360.0; .

procedure STAB_AXES_CMD is

P_FCS := BODY_RATE(1) * (ROLL_ACCEL * DT_AERODAP) ;
Q_FCS := BODY_RATE(2) * (PITCH_ACCEL * DT_AERODAP) ;
R_FCS := BODY_RATE(3) * (YAW_ACCEL * DT_AERODAP) ;

Page:

PHI_DELTA := PHI_CMD - PHI_DAP;

; I — PHI_ERROR := PHI_DELTA;

it

Lelse

if ( abs (PHI_DELTA) >= N_180) then
§~—— PHI_SHORTEST := PHI_DELTA * (SIGN(PHI_DELTA)
L

Lelse

. |—— PHI_SHORTEST := PHI_DELTA;

. ‘end if;

-—40~if ( abs (PHI_SHORTEST) < DPHI_OVER_UNDER) then
. | PHI_ERROR := PHI_SHORTEST;

- L{else

if LIFT_DOWN_REVERSAL then
PHI_ERROR := PHI_DELTA;

Lelse
fk—— PHI_ERROR := PHI_DELTA * (SIGN(PHI_DELTA)

end if;

end if;

| BANK_RATE_CMD := MIDVAL( -BANK_RATE_CMD_LIM, (K_PHI
BANK_RATE_CMD_LIM) ;

— BETA_RATE_CMD := K_BETA * BETA_FCS;

! lend STAB_AXES_CMD;

.end STAB_AXES_CMD_PACKAGE;

ipackage body JET_SELECT_LOGIC_PACKAGE is

'-- LOCAL TO JET_SELECT_LOGIC --

—{}if INTEGER' (SIGN(PHI_CMD)) = INTEGER'(SIGN(PHI_DAP)) then

* N_3609;

* N_360);

* PHI_ERROR),
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-- POSITIONED HERE FOR DUMP --
DP_ABS : SCALAR_SINGLE := 0
DQ_ABS : SCALAR_SINGLE := 0.
DR_ABS : SCALAR_SINGLE := 0
DP_SIGN : INTEGER := 0;
DQ_SIGN : INTEGER := 0;
DR_SIGN : INTEGER := 0;
KP_RCS_PAST : INTEGER
KQ_RCS_PAST : INTEGER
KR_RCS_PAST : INTEGER

0
0
0

.~ s owe

procedure JET_SELECT LOGIC is

— RCS_ON := (others=>0OFF);
— DP_ABS := abs (DP_CMD);
— DQ_ABS := abs (DQ_CMD);
DR_ABS := abs (DR_CMD):;
DP_SIGN := SIGN(DP_CMD) ;

DQ SIGN := SIGN(DQ_CMD);

= SIGN(DR_CMD) ;

KP_RCS_PAST := KP_RCS * DP_SIGN;
KQ_RCS_PAST := KQ_RCS * DQ_SIGN;
KR_RCS_PAST := KR_RCS * DR_SIGN;

— DR_SIGN :

if ((DP_ABS >= DP2) or ((DP_ABS >= DPl) and (KP_RCS_PAST >= 1)))
| then
E KP_RCS := DP_SIGN;
H
H

Lelse
f}—— KP_RCS := 0;

—(On1f ((DQ_ABS >= DQ2) or else ((DQ_ABS >= DQ1) and (KQ_RCS_PAST >= 1))

)} then

—— KQ_RCS = DQ_SIGN;

—-1if ((DQ_ABS >= DQ4) or else ((DQ_ABS >= DQ3) and (KQ_RCS_PAST >=
2))) then

H— KQ_RCS := 2 * DQ_SIGN;

elsif ((DQ_ABS >= DQ6) or else ((DQ_ABS >= DQS) and (KO_RCS_PAST
>= 3))) then
| KQ_RCS := 3 * DQ_SIGN;

h

‘end if;

—else
KQ_RCS := 0;
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) then
I— KR_RCS := DR_SIGN;

2))) then
+—— KR_RCS := 2 * DR_SIGN;

>= 3))) then
—— KR_RCS := 3 * DR_SIGN;

L

_end if;
-:else
-— KR_RCS := 0;

—(if (KP_RCS /= 0) then

—(Oif (KP_RCS > 0) then
(|- rcsZoN(1) := oN;
L~—— RCS_ON(2) := ON;

else
- }— RCS_ON(3) := ON;
- +— RCS_ON(4) := ON;
-end if;
bend if;

—(Oyif (KQ_RCS /= 0) then

—(nif (KQ_RCS > 0) then

if ((KQ_RCS = 1) or (KQ_RCS =
RCS_ON(5) := ON;

end if;
if (KQ_RCS >= 2) then

RCS_ON(9) := ON;
end if;
~:else
if ((KQ_RCS = -1) or (KQ_RCS
RCS_ON(6) = ON;
end if;
if (KQ_RCS <= -2) then

[__ RCS_ON(10) := ON;

end if;

File: aerodap.a.csd

Page:

—O if ((DR_ABS >= DR2) or else ((DR_ABS >= DR1) and (KR_RCS_PAST >= 1))

—{}if ((DR_ABS >= DR4) or else ((DR_ABS >= DR3) and (KR_RCS_PAST >=

>:elsif (({DR_ABS >= DR6) or else ((DR_ABS >= DR5) and (KR_RCS_PAST

3)) then

-3)) then
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L

end if;

if (KR_RCS /=
RIFS
if ((KR_RCS =
RCS_ON(7)

end if;

if (KR_RCS >=
: RCS_ON(11)
|

end if;

S else

end if;

- if (KR_RCS <=
-] | — RCs_oN(12)
dR

end if;

end if;

‘end if;
lend JET_SELECT_LOGIC;

-- IF (RCS_ONS$(1:)

-~ IF (RCS_ON$(2:) =

use
use

BETA_FILTER_PACKAGE;

: if ((KR_RCS =
| {f— RCS_ON(8) :
o

File:

0) then

> 0) then

1) or (KR_RCS =
:= ON;

2) then
:= ON;

-1) or (KR_RCS

= ON;

-2) then
:= ON;

= OFF;

OFF;

AERO_ANGLE_EXTRACT_PACKAGE;
TRANS_DELAY_COMP_PACKAGE;
STAB_AXES_CMD_PACKAGE;
JET_SELECT_LOGIC_PACKAGE;

use
use
use

pase 22 AR R LSRR RSl RRE SR N & JEPN

procedure AERO_DAP is

procedure AERO_DAP_INIT;

procedure BODY_AXES_CMD;

—

aerodap

.a.csd

Page:

3)) then

-3)) then

= ON) and (RCS_ONS$(3:)
-- RCS_ONS$(1:),RCS_ONS$(3:)
ON) and (RCS_ONS$(4:)
-~ RCS_ONS$(2:),RCS_ON$(4:) =
lend JET_SELECT_LOGIC_PACKAGE;

e A2 AL AR AR RS S RS R RS R Rl RS B SN

ON) THEN

ON) THEN
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[procedure BODY_AXES_CMD is

— P_CMD := (BANK_RATE_CMD * CALPHA) * (BETA_RATE_CMD * SALPHA);
— P_ERROR := P_CMD - P_FCS;
—— DP_CMD := K_P * P_ERROR;

— ALPHA_TRIM CMD := ALPHA_CMD - TRIM_ERROR_L;

—— ALPHA_TRIM_ERROR := ALPHA_TRIM_CMD - ALPHA_DAP;

— ALPHA_TRIM_ERROR_L := MIDVAL( -ALPHA_ERROR_LIM, ALPEA_TRIM_ERROR,
ALPHA_ERROR_LIM).;

——— Q_CMD := K_ALPHA * ALPHA_TRIM_ERROR_L;

—— Q_ERROR := Q_CMD - Q_FCS;

—— DQ_CMD := K_Q * Q_ERROR;

— TRIM_ERROR_L * (K_ALPHA_TRIM * Q_ERROR * DT_AERODAP)

TRIM_ERROR_L

TRIM_ERROR_L := MIDVAL( -TRIM_ERROR_LIM, TRIM_ERROR_L, TRIM_ERROR_LIM)

— R_CMD := (BETA_RATE_CMD * CALPHA) * (BANK_RATE_CMD * SALPHA);
—— R_ERROR := R_CMD - R_FCS;

—— DR_CMD := K_R * R_ERROR;

lend BODY_AXES_CMD; )

procedure AERO_DAP_INIT is

— DP1 := DP1_AERO;
—— DQ1 := DQ1_AERO;
— DR1 := DR1_AERO;
— DP2 := DP2_AERO;
—— DQ2 := DQ2_AERO;
—— DR2 := DR2_AERO;
— DQ3 := DQ3_AERO;
— DR3 := DR3_AERO;
—— DQ4 := DQ4_AERO;
— DR4 := DR4_AERO;
— DQS := DQS5_AERO;
+— DRS := DRS_AERO;
— DQ6 := DQ6_AERO;
— DR6 := DR6&6_AERO;
lend AERO_DAP_INIT;

begin
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-- BODY OF PROCEDURE AERO_DAP --
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if FIRST PASS then

AERO_DAP_INIT;

¥?)
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|r— FIRST_PASS := FALSE;
" end if;

— AERO_ANGLE_EXTRACT;
.| BETA_FILTER;

—{ TRANS_DELAY_COMP;
—] STAB_AXES_CMD;

— .

—{ BODY_AXES_CMD;

— JET_SELECT_LOGIC;

| — ALPHA_EDIT := ALPHA_DAP;
BANK_RATE_CMD_EDIT := BANK_RATE CMD;
BETA_EDIT := BETA_DAP; )
BETA_FCS_EDIT := BETA_FCS;
BETA_RATE_CMD_EDIT := BETA_KRATE CMD;
PHI_EDIT := PHI_DAP;

PHI_ERROR_EDIT := PHI_ERROR;

. BODY_RATE_FCS_EDIT(1) := P_FCS;
| BODY_RATE_FCS_EDIT(2) := Q FCS;
. BODY_RATE_FCS_EDIT(3) := R_FCS;

— ATT_ERROR_EDIT(1l) := PHI_ERROR:;
——— DP_CMD_EDIT := DP_CMD;

— P_ERROR_EDIT := P_ERROR;

— PC_EDIT := P_CMD;

— ALPHA_TRIM_CMP_EDIT := ALPHA_TRIM_CMD;

| ALPHA_TRIM_ERROR_EDIT := ALPHA_TRIM_ERROR;
| ALPHA_TRIM_RATE_EDIT := ALPHA_TRIM_RATE;

I — ATT_ERROR_EDIT(2) := ALPHA_TRIM_ERROR_L;
— DQ_CMD_EDIT := DQ_CMD;

— Q_ERROR_EDIT := Q_ERROR;

QC_EDIT := Q_CMD;
TRIM_ERROR_L_EDIT := TRIM_ERROR_L;

| — ATT_ERROR_EDIT(3) := -BETA_FCS;
| — DR_CMD_EDIT := DR_CMD;
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R_ERROR_EDIT := R_ERROR;
RC_EDIT := R_CMD;

I KP_RCS_EDIT := KP_RCS;
I KQ_RCS_EDIT := KQ _RCS;
+—— KR_RCS_EDIT := KR_RCS;
tend AERO_DAP;

Ltend AERO_DAP_PACKAGE;

File: aerodap.a.csd

Page:

11
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with system;

use system;

with component_types;

use component_types;

with logical;

use logical;

with bl5S3_bc;

use bl553_bc;

with unchecked_conversion;

package body B1553_COMPONENT_DATA is

data: arr_64;
data_msg: arr_64;
DATA_MSG2: ARR_64;
. stat_arr: arrl;
msg_count: integer;

-- A_cmd: UNSIGNED_WORD;
-- A_cmdlbk: UNSIGNED_WORD;
-- A_stat: UNSIGNED_WORD;

msg_arr: arr_59_65;

nmsg: integer;

wdcount: arr_32;

bc_interrupt_status: unsigned_word := 16#75#%;
-- package int_io is new INTEGER_IO{INTEGER) ;
-- use int_io;

-- Message 1 --

-- Set up IMU 40 msec interrupt - Data Ready Signal --

— bc_interrupt_status := unsigned_word(16#75#);

—{iwhile (short_and(bc_interrupt_status, 16#74#) /= 16#0000#) loop
— data_msg(1l) := 16#0001#;

-~ Even and 0dd frame data --

—— data_msg(2) := 16#1000#;

-- BIT 12 DATA READY SIGNAL - 40 MSEC -~--

- data_msg(3) := 16#0000#;

— bc_store_msg(0,2,3,0,3,data_msg);

-- Data word - RT 2 Subadd 3 --
-- rcv 3 data words -—

—
BC_GO;

—{ BC_INTERRUPT(bc_interrupt_status);

lend loop;

-- Wait for BC interrupt then --

-- change buffer --

- put (" bc_interrupt_status = ");

-- put (integer(bc_interrupt_status),4,16);
-- new_line;

lend B1553_IMU_INTRP;

-- end bc_interrupt_status loop --

-- Timeout /1553 format error; buffer overflow;--
'-- loop test fail; status set --

-- End Message 1 --
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-- Message 2 --

-- Set up IMU Quaternion Initialization --

| bec_interrupt_status := unsigned_word(16#75%);

__fwhile (short_and(bc_interrupt_status,16#74#) /= 16#0000#) loop
— data_msg(l) := 16#0001%;

-- Even and 0dd frame data --

L data_msg(2) := 16#1002%;

-- BIT 12 DATA READY SIGNAL, BIT 1 RESET --

- QUATERNION TO (1,0,,0,0) -—

- data_msg(3) := 16#0000#;

1 bc_store_msg(0,2,3,0,3,data_msg);

-- Data word - RT 2 Subadd 3 --
-- rcv 3 data words --

—{ BC_GO;

—{ BC_INTERRUPT(bc_interrupt_status);

Jend loop;

-- Wait for BC interrupt then --

-- change buffer --

- put (* bc_interrupt_status = °*);

-- put (integer (bc_interrupt_status),4,16);
-- new_line;

lend B1553_IMU_INIT;

-- end bc_interrupt_status loop --

-- Timeout/1553 format error; buffer overflow;--
-~ loop test fail; status set --

-- End Message 2 --

procedure READ_IMU_DATA(IMU_DATA: out ARR_32) is

begin
- — bc_interrupt_status := unsigned_word(16#75%);
—fiwhile (short_and(bc_interrupt_status,16#74#) /= 16#0000#%) loop

— bc_store_msg(0,2,2,1,32,data_msg);

-- Data word » Rt 2 Subaddr 2 --
-- xmit 32 data words --
-- EVEN Frame Data - Subaddr 2 --

——J bc_go;

—{ bc_interrupt (bc_interrupt_status);

| end loop;

-- put {* bc_interrupt_status = *);

-- put (integer (bc_interrupt_status),4,16);
-- new_line;

o
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-- end bc_interrupt_status loop --
-- Timeout/1553 format error; buffer overflow; --
-- loop test fail; status set --

-- BC_status(A_cmd, A_cmdlbk,A_stat,1l);

-~ put (* Aemd = *); put (integer (A_cmd), 4, 16) ;
-- put (* A_cmdlbk = *); put (integer (A_cmdlbk), 4, 16);
-- put (" A_stat = "); put (integer(A_stat), 4, 16);

| -- new_line;

—— BC_get_msg(msg_arr);

- msg_count := integer(msg_arr(1,1));
- put (*® Message count = *);
-- put (msg_count, 4, 16);
. -— new_line;
-— put (®* Message = ");
~- new_line;

for i in 1..32 loop
imu_data(i) := msg_arr(l,i + 1);
end loop;

lend READ_IMU_DATA;

procedure THRUSTER_INIT is

begin

-- Clear thrusters in Message 2 --
— data_msg2(1) := 16#0000#;

— data_msg2(2) := 16#0000#;

— data_msg2(3) := 16#0000#;

-~ THRUSTERS INITIALIZED TO ALL OFF CONDITION ---e-wc——---
—— bc_interrupt_status := unsigned_word(16#75%) ;
-——rwhile (short_and{bc_interrupt_status,16#74#) /= 16#0000#) loop

— bc_store_msg(0,3,2,0,3,data_msg2);

-- Data word - Rt 3 Subaddr 2 --
-- rcv 3 data words --

— bc_go;

— bc_interrupt(bc_interrupt_status);

Jend loop; -

Lend THRUSTER_INIT;

-~ end bc_interrupt_status loop --

-- Timeout/1553 format error; buffer overflow; --
-- loop test fail; status set --

-- End Message 2 --

Lend 81553_COMPONENT_DATA;
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[package body INPUT_OUTPUT_PACKAGE is

use SCALAR_SINGLE_IO;
use SCALAR_DOUBLE_IO;

procedure PUT_LINE (X: SINGLE_PRECISION_VECTOR) is

begin
| Ffor I in X‘FIRST..X'LAST loop

PUT(X(I));

end loop:

. |— NEW_LINE;

lend PUT_LINE;

procedure PUT_LINE (X: DOUBLE_PRECISION_VECTOR) is

begin
-—ﬂ“for I in X‘FIRST..X'LAST loop

PUT(X(I)):

end loop:;

—J NEW_LINE;

Lend PUT _LINE;

procedure PUT_LINE {MAT: SINGLE_PRECISION_MATRIX) is

begin
—ﬁ‘for I in MAT’FIRST(I)..MAT'LAST(I) loop
—j’for J in MAT'FIRST(2)..MAT'LAST(Z) loop

PUT(MAT(I.J));

end loop:;

— NEW_LINE;

| end loop;

— NEW_LINE;

Lend PUT_LINE;

procedure PUT_LINE (MAT: DOUBLE_PRECISION_MATRIX) is

begin
-—T"for I in MAT'FIRST(l)..MAT'LAST(I) loop
——ﬂ"for J in MAT'FIRST(2)..MAT'LAST(2) loop

PUT(MAT(I,J)):

end loop;

+—{ NEW_LINE;

Lend loop; C) 3
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NEW_LINE;

end PUT_LINE;
end INPUT_OUTPUT_PACKAGE;
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with LEVEL_A_CONSTANTS;

use LEVEL_A_CONSTANTS;

with DATA_TYPES;

use DATA_TYPES;

with FSW_POOL;

use FSW_POOL;

with IL_POOL;

use IL_POOL;

with TEXT_IO;

use TEXT_I0O;

with INPUT _OUTPUT_PACKAGE;

use INPUT_OUTPUT_PACKAGE;

with MATH_PACKAGE;

use MATH_PACKAGE;

with QUATERNION_OPERATIONS;

use QUATERNION_OPERATIONS;

with SINGLE_PRECISION_MATRIX_ OPERATIONS;
use SINGLE_PRECISION_MATRIX_OPERATIONS;
with DOUBLE_PRECISION_MATRIX_OPERATIONS;
use DOUBLE_PRECISION_MATRIX_OPERATIONS;

Ipackage body PRED_GUID_PACKAGE is

APOGEE_EPSILON1 : SCALAR_SINGLE := 25.0;

APOGEE_EPSILON2 : SCALAR_SINGLE := 1.0;

BANK_MAX : SCALAR_SINGLE := 165.0;

BANK_MIN : SCALAR_SINGLE := 15.0;

CORRIDOR_MIN : constant SCALAR SINGLE := 0.05;
CORRIDOR_V_MAX : constant SCALAR_SINGLE := 34_000.0;
CORRIDOR_V_MIN : constant SCALAR_SINGLE := 26500.0;
DELTA_PHI_MIN : SCALAR_SINGLE := 1.0;

DELTA_T_PRED : constant SCALAR SINGLE := 2.0;
G_RUN_GUIDANCE : SCALAR_SINGLE := 0.075;
GUID_PASS_LIM : constant INTEGER := 10;
LIFT_INC_CAPTURE : SCALAR_SINGLE := 0.15;
LIFT_PERCENT_CAPTURE : SCALAR_ SINGLE := 0.5;
MAX_NUMBER_RUNS : constant INTEGER := §5;
PHI_LIFT_DOWN : constant SCALAR_SINGLE := 45.0;
VI_LIFT_DOWN : constant SCALAR_SINGLE := 27500.0;
VI_MODEL_LIFT_DOWN : constant SCALAR_SINGLE := 27900.0;
COS_PHI_MAX : SCALAR_SINGLE := 0.0;

COS_PHI_MIN : SCALAR_SINGLE := 0.0;
GUID_PASS : INTEGER := 0;
INITIALIZE_GUIDANCE : BOOLEAN_32 := TRUE;

MODEL_LIFT_DOWN : BOOLEAN_32 := TRUE;

PHI_CMD_NS : SCALAR_SINGLE := 0.0;

SIGN_OF_BANK : SCALAR_SINGLE := 0.0;

FIRST_TIME_CALLED : BOOLEAN_32 := TRUE;

EARTH_POLE : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);
EARTH_OMEGA : DOUBLE_PRECISION_VECTOR3 := (others=>0.0);

ZERO : constant SCALAR_SINGLE := 0.0;

-- NUMERICAL CONSTANTS USED IN PACKAGE --
-- This is necessary because of the overloading of operator --
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-- symbols to allow mixed mode arithmetic between single- --
-- precision and double-precision variables. --
ONE_TENTH : constant SCALAR_SINGLE :
ONE_HALF : constant SCALAR_SINGLE := 0.5;
ONE: constant SCALAR_SINGLE := 1.0;
TWO : constant SCALAR_SINGLE := 2.
THREE : constant SCALAR_SINGLE :=
FIVE : constant SCALAR_SINGLE := 5.0;

wo~

N25_000 : constant SCALAR_SINGLE := 25000.0;
N26_000 : constant SCALAR_SINGLE := 26000.0;
N27_000 : constant SCALAR_SINGLE := 27000.0;
N29_000 : constant SCALAR_SINGLE := 29000.0;
N30_000 : constant SCALAR_SINGLE := 30000.0;
N33_850 constant SCALAR_SINGLE := 33850.0;
N150_ 000 : constant SCALAR_SINGLE := 150_000.0;
N400_000 : constant SCALAR_SINGLE := 400_000.0;

use INPUT_OUTPUT_PACKAGE.INT_IO;
use INPUT_OUTPUT_PACKAGE.SCALAR_SINGLE_IO;

-- USE A MATH PACKAGE TAILORED TO PROVIDE THE PRECISION WE NEED --
-- FOR THIS APPLICATION --

use SINGLE_PRECISION_MATRIX OPERATIONS.REAL_MATH_LIB;
use DOUBLE_PRECISION_MATRIX OPERATIONS.REAL_MATH_LIB;

-- THE FOLLOWING PACKAGES CONTAIN PROCEDURES THAT ARE CALLED BY -
-- procedure PRED_GUID. THEY ARE POSITIONED EXTERNAL TO procedure --
-- PRED_GUID SO THAT THEIR VARIABLES WILL EXIST BEYOND THE TIME --
~~ WHEN THE PROCEDURE IS EXECUTING. --

Ipackage PC_SEQUENCER_PACKAGE is

procedure PC_SEQUENCER;

lend PC_SEQUENCER_PACKAGE;

lpackage LATERAL_CONTROL_PACKAGE is

procedure LATERAL_CONTROL;

Lend LATERAL_CONTROL_PACKAGE;
use PC_SEQUENCER_PACKAGE;
use LATERAL_CONTROL_PACKAGE;

P A A X2 A2 EEE RS R AR AR SRRl R R RS RR Rl lRlRRRRRltRlR Rl RRERRRRE RS S E N SN

function ALTITUDE (R: DOUBLE_PRECISION_VECTOR3) return SCALAR_DOUBLE is
e
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__**t****ttt**t*****t*'tt***********************it**it*itt*’*ttit***t__

RM : SCALAR_DOUBLE;

—- RM := VECTOR_LENGTH (R} ;

41— return (RM / EARTH R - (ONE - EARTH_FLAT) / SQRT(ONE / ((ONE -
EARTH_FLAT)**2 - ONE) / (ONE / (DOT_PRODUCT( (R / RM) ,EARTH_POLE) **2)
)));

lend ALTITUDE;
---------------------------------------- BODIES OF PACKAGES SPECIFIED AROVE
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__************'******************************************i'*'t***iitt**"'***
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package body PC_SEQUENCER_PACKAGE is

APOGEE_BRACKET : array(l..2) of SCALAR_SINGLE;
APOGEE_EPSILON : SCALAR_SINGLE;
APOGEE_EXTRAPOLATE : array(l..2) of SCALAR_SINGLE;
APOGEE_PREDICTED : SCALAR_SINGLE:

BRACKETED : BOOLEAN_32;

COS_CAPT : SCALAR_SINGLE;

COS_BRACKET : array(l..2) of SCALAR_SINGLE;
COS_EXTRAPOLATE : array(l..2) of SCALAR_SINGLE;
COS_PHI_TRY : array(l..10) of SCALAR_SINGLE;
DELTA_APOGEE : SCALAR_SINGLE;

DELTA_PHI : SCALAR_SINGLE;

I : INTEGER;

INTEG_LOOP : INTEGER range 1..4;
NUMBER_CAPT : INTEGER;
NUMBER_GOOD : INTEGER;
NUMBER_HIGH : INTEGER;

NUMBER_LOW : INTEGER;

PHI_TRY : SCALAR_SINGLE;

PHI_TRY_LAST : SCALAR_SINGLE;

PRED_CAPTURE : BOOLEAN_ 32;
-- LOCAL PROCEDURES CALLED BY procedure PC_SEQUENCER. -~
-~ APPEAR HERE IN PACKAGE FORMAT SO THAT VARIABLES WILL BE AVAILABLE -~
~-- FOR DUMPS AND SO THAT VARIABLE VALUES WILL EXIST BETWEEN INVOCATIONS --
-- OF THESE PROCEDURES BY procedure PC_SEQUENCER. -~

|package PREDICTOR_PACKAGE is

procedure PREDICTOR:

tend PREDICTOR_PACKAGE;

package CORRECTOR_PACKAGE is

.

procedure CORRECTOR;

lend CORRECTOR_PACKAGE;
use PREDICTOR_PACKAGE;
use CORRECTOR_PACKAGE;
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[package body PREDICTOR_PACKAGE is .

A_PRED : DOUBLE_PRECISION_VECTOR3;
ALT PRED : SCALAR_DOUBLE;

Page:

LOD_PRED :
PHI_PRED :

GAMMA_PRED :
SCALAR_SINGLE;
SCALAR_SINGLE;
R_PRED : DOUBLE_PRECISION_VECTOR3;

SCALAR_SINGLE;

R_MAG_PRED SCALAR_DOUBLE;
RDDOT_PRED SCALAR_SINGLE;
RDOT_PRED : SCALAR_SINGLE;

T_PRED : SCALAR_DOUBLE;
V_MAG_PRED : SCALAR_DOUBLE;
V_PRED : DOUBLE_PRECISION_VECTOR3;

|§ackage INTEGRATOR_PACKAGE is

procedure INTEGRATOR;

end INTEGRATOR_PACKAGE;

Ipackage body INTEGRATOR_PACKAGE is

ACCUM_ACCEL : DOUBLE_PRECISION_VECTOR3;
ACCUM_VEL : DOUBLE_PRECISION_VECTOR3;
ORIG_POS : DOUBLE_PRECISION_VECTOR3;
ORIG_VEL : DOUBLE_PRECISION_VECTOR3;
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procedure INTEGRATOR is

__*t**t’****t*k**t***t__

begin
case INTEG_LOOP is
—_2}—1when 1 =>
ORIG_POS := R_PRED;
ORIG_VEL := V_PRED;

ACCUM_VEL := V_PRED;
ACCUM_ACCEL := A_PRED;
R_PRED :

RRRRR

—- INTEGRATOR PROCEDURE CALLED BY procedure PREDICTOR. --
-- APPEARS HERE AS A PACKAGE SO THAT ITS VARIABLES WILL RETAIN --
-- THEIR VALUES BETWEEN INVOCATIONS OF THE PROCEDURE BY PREDICTOR. --

__*"****i***ii‘**t***i*fi*****i****t*t*tt**t*******tt*tﬁi*tftt***tt****t
__it*t*t*'ﬁ***'*******i*t**t******'t'**tt*t****i__

———- VARIABLES ARE DECLARED AND POSITIONED HERE SO THAT THEIR VALUE
--S -- WILL EXIST FROM INVOCATION TO INVOCATION OF procedure INTEG
“—RATOR —= —==-========m—mmmmmm—mm—m = m oo m———--—ooooo-o--oo-

ORIG_POS * ONE_HALF * DELTA_T_PRED * V_PRED;
V_PRED := ORIG_VEL * ONE_HALF * DELTA_T_PRED * A_PRED;

when 2 =>
: ACCUM_VEL := ACCUM_VEL * TWO * V_PRED;
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ACCUM_ACCEL := ACCUM_ACCEL * TWO * A_PRED:
R_PRED := ORIG_POS * ONE_HALF * DELTA_T_PRED * V_PRED;
V_PRED := ORIG_VEL * ONE_HALF * DELTA_T_PRED * A_PRED;

ACCUM_VEL := ACCUM_VEL * TWO * V_PRED;
—- ACCUM_ACCEL := ACCUM_ACCEL * TWO * A_PRED;

— R_PRED := ORIG_POS * DELTA_T_PRED * V_PRED:
— V_PRED := ORIG_VEL * DELTA_T_PRED * A_PRED:;
(}—:Qhen 4 =>
— R_PRED := ORIG_POS / (ACCUM_VEL + V_PRED) * DELTA_T_PRED
/ 6.0;

—— V_PRED := ORIG_VEL / (ACCUM_ACCEL + A_PRED) *
DELTA_T_PRED / 6.0;

}——:Qhen others =>
-- INTEG_LOOP can only have values in the range 1..4
— null;

end case;

tend INTEGRATOR;

Llend INTEGRATOR_PACKAGE;
use INTEGRATOR_PACKAGE;
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procedure PREDICTOR is

s AAA AR 22 E R 2 X Z 2R XY X NN

R_PRED := R_NAV;
R_MAG_PRED := VECTOR_LENGTH(R_PRED) ;
ALT_PRED := ALTITUDE (R_PRED);
V_PRED := V_NAV;
2 := VECTOR_LENGTH (V_PRED) ;
PHI_PRED := PHI_TRY * SIGN_OF_BANK;
T_PRED := T _GMT;
LOD_PRED := CL_NAV / CD_NAV;
PRED_CAPTURE := FALSE;

LTTTTTTT
i
;

—— INTEG_LOOP := INDEX;

declare
AERO_ACCEL : DOUBLE_PRECISION_VECTOR3;
ALT NORM_PRED : SCALAR_SINGLE;
CPHI : SCALAR_SINGLE;
DRAG_ACCEL : SCALAR_SINGLE;
GRAV_ACCEL : DOUBLE_PRECISION_VECTORS3;
HS_NORM_PRED : SCALAR_SINGLE;:
I_LAT : DOUBLE_PRECISION_VECTOR3;
I_LIFT - DOUBLE_PRECISION_VECTOR3 ;
I_VEL : DOUBLE_PRECISION_VECTOR3;
LIFT_ACCEL : SCALAR_SINGLE;
RHO_EST : SCALAR_SINGLE;

[RA]
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RHO_NOM : SCALAR SINGLE;
SPHI : SCALAR_SINGLE;
U_PRED : DOUBLE_PRECISION_VECTORS3;
V_REL_MAG_PRED : SCALAR_DOUBLE;
V_REL_PRED : DOUBLE_PRECISION_VECTOR3;
Z_PRED : SCALAR_DOUBLE;

begin

—— V_REL_PRED := V_PRED - CROSS_PRODUCT (EARTH_OMEGA, R_PRED)

— V_REL_MAG_PRED := VECTOR_LENGTH (V_REL_PRED) ;

— ALT_NORM_PRED := SCALAR_SINGLE(ALT_PRED / H_REF);

—— HS_NORM_PRED := (((C_HS(5) * ALT_NORM_PRED + C_HS(4))
ALT_NORM_PRED + C_HS(3)) * ALT_NORM_PRED + C_HS(2)) *
ALT_NORM_PRED + C_HS(1);

— RHO_NOM := RHO_REF / EXP((ONE - ALT_NORM_PRED) /
HS_NORM_PRED) ;

if MODEL_LIFT DOWN = TRUE and V_MAG_PRED < VI_LIFT_DOWN
then
PHI_PRED := PHI_LIFT_DOWN * SIGN_OF_BANK;

end if;
—— CPHI := COS(PHI_PRED * DEG_TO_RAD) ;
—— SPHI := SIN(PHI_PRED * DEG_TO_RAD) ;

—— DRAG_ACCEL := SCALAR_SINGLE( (ONE_HALF * RHO_EST *
V_REL_MAG_PRED**2 * CD_NAV * S_REF) / MASS_NAV) ;

— LIFT_ACCEL := LOD_PRED * DRAG_ACCEL;

— I_VEL := V_REL_PRED / V_REL_MAG_PRED;

— I_LAT := UNIT(CROSS_PRODUCT(I_VEL,R_PRED));

— I_LIFT := UNIT(CROSS_PRODUCT(I_LAT,I_VEL)) * CPHI *
I_LAT * SPHI;

— AERO_ACCEL := LIFT_ACCEL * I_LIFT * DRAG_ACCEL * I_VEL;

—— U_PRED := R_PRED / R_MAG_PRED;
— Z_PRED := DOT_PRODUCT (U_PRED, EARTH_POLE) ;
— U_PRED := U_PRED * (THREE * EARTH_J2 / TWO) / (EARTH_R /

R_MAG_PRED)**2 * ((ONE * FIVE * Z2_PRED**2) * U_PRED *
TWO * Z_PRED * EARTH_POLE) ;
— GRAV_ACCEL := - (EARTH_MU / R_MAG_PRED**2) * U_PRED;
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— R_MAG_PRED := VECTOR_LENGTH (R_PRED) ;
— V_MAG_PRED := VECTOR_LENGTH (V_PRED) ;

— ALT_PRED := ALTITUDE(R_PRED) ;
Lend;
Jend loop;
-- declare block
-- INDEX loop; INTEG_LOOP variable holds current value of INDEY

—— T_PRED := T_PRED + DELTA_T_PRED;

—— RDOT_PRED := SCALAR_SINGLE(DOTLPRODUCT(V_PRED,R_PRED) /
R_MAG_PRED) ;

—— GAMMA_PRED := SCALAR_SINGLE(ASIN(RDOT_PRED / V_MAG_PRED) ) ;

— RDDOT_PRED := SCALAR_SINGLE(DOT_PRODUCT(A_PRED,R_PRED) /
R_MAG_PRED / (V_MAG_PRED * COS (GAMMA_PRED) ) **2 / R_MAG_PRED

’

—Aotif ALT_PRED > N400_000 and then RDOT_PRED > ZERO then
exit;

‘ -- exit TIME_INCREMENT loop
end if;

if (RDDOT_PRED < ZERO and RDOT_PRED < ZERO) or ALT_PRED <
N150_000 then
PRED_CAPTURE := TRUE;

end if;
if PRED_CAPTURE = TRUE then
<+ exit;

-- exit TIME_INCREMENT loop
end if;

Uend loop;

-~ TIME_INCREMENT loop

- —declare
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begin

__ APOGEE_P

Lend;

L
-- declare blo
end if;
|end PREDICTOR;
lend PREDICTOR_PACKAG

__*i*fi****t**i*i*tt*tt

__itt****ti*t*******t**

-_****ti*i**tt&t'*t*

if V_NAV_MAG >
SENSITIVITY

SENSITIVITY

SENSITIVITY

(qelsif V_NAV_MAG
SENSITIVITY :

V_NAV_MAG
{relsif V_NAV_MAG

V._NAV_MAG

elsif V_NAV_MAG
SENSITIVITY :
V_NAV_MAG

elsif V_NAV_MAG
SENSITIVITY :
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ECCEN_PRED : SCALAR_SINGLE;
PARAMETER_PRED : SCALAR_SINGLE;

___ PARAMETER_PRED := SCALAR_SINGLE((R_MAG_PRED * V_MAG_PRED *
COS(GAMMA_PRED))**Z / EARTH_MU) ;
| ECCEN_PRED := SCALAR_SINGLE(SQRT(ONE / PARAMETER_PRED . (

R_MAG_PRED / V_MAG_PRED**2 / EARTH_MU)}));

REDICTED := SCALAR_SINGLE((PARAMETER_PRED - (O -

ECCEN_PRED) - EARTH_R) * FT_TO_NM) ;

ck

E;

**********ttt**t***i*****ﬁ*t****tt**ttttti*t*tttt**

**t******t************__

“package body CORRECTOR_PACKAGE is

DELT : SCALAR_SINGLE;

RISE : SCALAR_SINGLE;

RUN : SCALAR_SINGLE;

SENSITIVITY : SCALAR_SINGLE;
TRY_METHOD : INTEGER range 1..6;

*_ -

procedure CORRECTOR is

__tt*i******tt***i***__

-— COMPUTE PREFLIGHT PREDICTED SENSITIVITY --

N33_850 then
:= 24000.0;

elsif V_NAV_MAG > N30_000 then

i= SCALAR_SINGLE(SCALAR_DOUBLE(6.3926) * V_NAY_MAG

- SCALAR_DOUBLE(lSS_?O0.0)):

N29_000 then
SCALAR_SINGLE(SCALAR_DOUBLE(1.49013) *
SCALAR_DOUBLE(41625.0));

R

N27_000 then
SCALAR_SINGLE(SCALAR_DOUBLE(O.57892) *
SCALAR_DOUBLE(15200.0));

-
kY

v

N26_000 then
SCALAR_SINGLE(SCALAR_DOUBLE(0.42596) *
SCALAR_DOUBLE(11070.0));

[ 2

N25_000 then
5.0;

v
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-- I is declared in PC_SEQUENCER_PACKAGE and is set equal
-- to RUN_NUMBER in RUN_NUMBER loop
if I = 1 then

TRY_METHOD := 1;

Helse

. L{}if BRACKETED = TRUE then

. if NUMBER_LOW /= 0 then
TRY_METHOD := 2;

iwelse
fk—— TRY_METHOD := 3;

end if;

else

case MIDVAL(O,NUMBER_GOOD,Z) is
when 1 =>

TRY_METHOD := 5;

> when 2 =>
i TRY_METHOD :=6;
i
i

when others =>
| TRY_METHOD := 4;
|

end case;

end if;

‘end if;
case TRY_METHOD is
W—When 1 =>

—— RUN := COS_BRACKET (2) - COS_BRACKET(1) ;
— RISE := APOGEE_BRACKET(2) - APOGEE_BRACKET (1) ;

if abs (RISE) < ONE_TENTH then
i RISE := ONE_TENTH * SIGN(RISE) ;
i

end if;
— DELT := APOGEE_TARGET - APOGEE_BRACKET(1) ;
—— COS_PHI_TRY({I) := COS_BRACKET(1) / (DELT - RUN) / RISE;

COS_PHI_TRY(I) := COS_BRACKET(1) * (Cos_capt - COS_BRACKET (
1)) = LIFT_PERCENT_CAPTURE;

-- MARCH OUT OF THE CAPTURE REGION --




*** GRASP/ADA V1.

O

0 *** File: predguid.a.csd Page:

—— COS_PHI_TRY(I) := COS_CAPT - LIFT_INC_CAPTURE;
>—_when 5 =>
_EXTRAPOLATE ONE GOOD GUESS USING A STORED SENSITIVITY --
| COS_PHI_TRY(I) := COS_PHI_TRY(I - 1) / DELTA_APOGEE /
SENSITIVITY;
}——:ﬁhen 6 =>

-- EXTRAPOLATE TWO HIGH GUESSES OR TWO LOW GUESSES --

-- TO TARGET APOGEE --

:= COS_EXTRAPOLATE(2) - COS_EXTRAPOLATE(1l};

RISE := APOGEE_EXTRAPOLATE(2) - APOGEE_EXTRAPOLATE(1l);
abs (RISE) < ONE_TENTH then

RISE := ONE_TENTH * SIGN(RISE);

end if;
+—— DELT := APOGEE_TARGET - APOGEE_EXTRAPOLATE(1);
- COS_PHI_TRY(I) := COS_EXTRAPOLATE(1l) / (DELT * RUN) / RISE;

_when others =>
-- TRY_METHOD can only have values from 1..6
—— null;

I

end case;

L COS_PHI_TRY(I) := MIDVAL(COS_PHI_MIN,COS_PHI_TRY(I),COS_PHI_MAX);
— PHI_TRY := ACOS(COS_PHI_TRY(I)) * RAD_TO_DEG;

lend CORRECTOR;

lend CORRECTOR_PACKAGE;

e S XX 2 X2 R 2222 R A RAE & N

procedure PC_SEQUENCER is

e 2 2 2R 2 2R R R AR R A RS S & B SN

— NUMBER_HIGH := 0;
— NUMBER_LOW := 0
— NUMBER_CAPT
— NUMBER_GOOD
— COS_PHI_TRY
— COS_EXTRAPOLATE := (others=>SCALAR_SINGLE(T_INFINITY));
— COS_BRACKET := (others=>SCALAR_SINGLE(T_INFINITY)) ;

—— APOGEE_EXTRAPOLATE := (others=>SCALAR_SINGLE(T_INFINITY));
+—— APOGEE_BRACKET := (others=>SCALAR_SINGLE(T_INFINITY));

—— BRACKETED := FALSE;

others=>SCALAR_SINGLE(T_INFINITY)) ;

for RUN_NUMBER in 1..MAX_NUMBER_RUNS loop
:= RUN_NUMBER;

CORRECTOR;
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— PREDICTOR;

L1 PUT(* TRY#/PHI/APO = ");
— PUT(I);

—{ PUT(PHI_TRY);

{ PUT(APOGEE_PREDICTED) ;

—] NEW_LINE;

(O if PRED_CAPTURE = TRUE then

i |— NUMBER_CAPT := NUMBER_CAPT + 1;
| COS_CAPT := COS_PHI_TRY(I);

- — NUMBER_GOOD := NUMBER_GOOD + 1;

- |— COS_EXTRAPOLATE(2) := COS_EXTRAPOLATE(1);

- f—— COS_EXTRAPOLATE(1l) := COS_PHI_TRY(I):;

- |— APOGEE_EXTRAPOLATE(2) := APOGEE_EXTRAPOLATE(1);
- +— APOGEE_EXTRAPOLATE (1) := APOGEE_PREDICTED;
-+ if APOGEE_PREDICTED >= APOGEE_TARGET then

—— NUMBER_HIGH := NUMBER_HIGH + 1;
— COS_BRACKET(1) := COS_PHI_TRY(I);
—— APOGEE_BRACKET (1) := APOGEE_PREDICTED;

[
o
—
v
1]
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NUMBER_LOW := NUMBER_LOW + 1;
COS_BRACKET (2) := COS_PHI_TRY(I);
APOGEE_BRACKET(2) := APOGEE_PREDICTED;

end if;

“end if;

—(n if NUMBER_HIGH > 0 and (NUMBER_LOW > 0 or NUMBER_CAPT > 0) then

| . DELTA_APOGEE := APOGEE_PREDICTED - APOGEE_TARGET;

L DELTA_PHI := abs (PHI_TRY - PHI_TRY_LAST);
+—— PHI_TRY_LAST := PHI_TRY;

[ O,if V_NAV_MAG > N30_000 then
| |— APOGEE_EPSILON := APOGEE_EPSILON1;
L

}lse
. }— APOGEE_EPSILON := APOGEE_EPSILONZ2;

_end if;
—{}if abs (DELTA_APOGEE) < APOGEE_EPSILON then

— PHI_CMD_NS := PHI_TRY;
<+t I return;

<>--elsif COS_PHI_TRY(I) >= COS_PHI_MAX and DELTA_APOGEE > ZERO then

— PHI_CMD_NS := ACOS(COS_PHI_MAX) * RAD_TO_DEG;
4 — return;

>:elsif COS_PHI_TRY(I) <= COS_PHI_MIN and DELTA_APOGEE < ZERO then

— PHI_EZMD_NS := ACOS(COS_PHI_MIN) * RAD_TO_DEG;
44— l— return;

“elsif I = MAX_NUMBER_RUNS then

—— I := RUN_NUMBER + 1;

-- updating of a loop parameter is not allowed.
-- this should accomplish the same purpose as the
-- HAL/S code. I is tested in procedure CORRECTOR
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-— CORRECT ONCE MORE WITHOUT PREDICTION ~-

CORRECTOR;

TEMPORARY OUTPUT - NOT FLIGHT CODE --

PUT_LINE(
PUT(* oUT oF PREDICTIONS - PHI_CMD = ");
PUT(PHI_TRY) ;

PHI_CMD_NS := PHI_TRY;
return;

elsif 1 5 1 and DELTA_PHI < DELTA_PHI_MIN and BRACKETED = TRUE
then .

end if;
end loop;
end PC_SEQUENCER;
Lend PC_SEQUENCER_PACKAGE;

__i*t*****t*t***i*t*t*t*************t*************t**t**i*tt*t*t'k*tt't*ttt'**

' -- LOCAL VARIABLES POSITIONED HERE FOR DUMPING AND SO THAT --
;-— VARIABLES CAN RETAIN VALUES BETWEEN INVOCATIONS --
FIRST_PASS . BOOLEAN_32 :-= TRUE;
CORRIDOR : SCALAR_SINGLE;
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SLOPE : SCALAR_SINGLE;

PR R ESEE RS EE SRR RR RS R R JUNN

procedure LATERAL_CONTROL 1is

e R 2L 2SR A RS AR R R R R R RS SR N SN

begin
—H if FIRST_PASS = TRUE then

—— SLOPE := (CORRIDOR_MAX - CORRIDOR_MIN) -
CORRIDOR_V_MIN) ;
—— FIRST_PASS := FALSE;

} * SLOPE);

if WEDGE_ANGLE_NAV > CORRIDOR then

end if;
—— PHI_CMD := PHI_CMD_NS * SIGN_OF_BANK;

— LIFT_DOWN_REVERSAL := TRUE;
lend LATERAL_CONTROL;
{end LATERAL_CONTROL_PACKAGE;

s A2 SRS 22222 SR SRR S X NN

-- PRED GUID EXECUTIVE --

s A AR A R LA RS AR R RS S N & NG

procedure PRED_GUID is

—— PHI_CMD_NS := abs (PHI_EI};
+—— PHI_CMD := SIGN_OF_BANK * PHI_CMD_NS;

—— COS_PHI_MIN := COS(BANK_MAX * DEG_TO_RAD);
—— COS_PHI_MAX := COS(BANK_MIN * DEG_TO_RAD) ;

Page:

(CORRIDOR_V_MAX -

—— CORRIDOR := SCALAR_SINGLE (CORRIDOR_MIN * (V_NAV_MAG - CORRIDOR_V_MIN

—— CORRIDOR := MIDVAL{CORRIDOR_MIN, CORRIDOR, CORRIDOR_MAX) ;

SIGN_OF_BANK := SCALAR_SINGLE( -SIGN(DOT_PRODUCT(V_NAV,IHD)));

SIGN_OF_BANK := SCALAR_SINGLE (SIGN(DOT_PRODUCT(V_NAV, IYD)));

14
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lend INITIAL_GUID;
begin
(O if FIRST_TIME_CALLED then
I CORRIDOR_MAX := 0.7;
+ FIRST_TIME_CALLED := FALSE;

‘end if;
(- if INITIALIZE GUIDANCE = TRUE then

— INITIAL_GUID;

- INITIALIZE_GUIDANCE := FALSE;

end if;

~—— EARTH_POLE := (EF_TO_REF_AT_EPOCH(I,B),EF_TO_REF_AT_EPOCH(Z,B),
EF_TO_REF_AT_EPOCH(3,3));

L EARTH_OMEGA := SCALAR_DOUBLE(EARTH_RATE) * EARTH_POLE;

—(yif G_LOAD > G_RUN_GUIDANCE then

if V_NAV_MAG < VI_MODEL_LIFT_DOWN then

———————— - — — ——————— - ——— -

-- TERMINATE LIFTDOWN MODELLING --

end if;

— PC_SEQUENCER;

—— GUID_PASS := GUID_PASS + 1;
if GUID_PASS >= GUID_PASS_LIM then
GUID_PASS := 0;

end if;

4 end if;
lend PRED_GUID;
Lend PRED_GUID_PACKAGE;

e
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NAME

graspada - (X Windows version) Graphical Representation of Algorithms, Structures, and Processes
SYNOPSIS

graspada
DESCRIPTION

graspada generates graphical representations for Ada programs. Currently these include Control Struc-
ture Diagrams (CSDs) for highlighting the program control structure. Object diagrams will be included
in future versions. This manual is intended for use in conjuction with the GRASP/Ada tool.

xgrasp is written in C for the X Window System (Version 11, Release 4).

USAGE

When graspada is invoked, the GRASP/Ada System Window is created and the user positions it on
the screen. The System Window allows the user to open Source Code editors or CSD viewers, generate
CSDs, load the CSD font, browse the HELP system, or choose a printer. The System, Source Code,
and CSD windows are described in greater detail below.

SYSTEM WINDOW
The System Window provides the user with the overall organization and structure of the GRASP/Ada
tool. Option menus include: General, Source Code, Control Structure Diagram, and Help. These are
briefly described below. A future menu is planned for Object Diagrams.

GRASP/Ada main window has four selectable buttons, three of which have associated submenus.

1. General

2. Source Code

3. Control Structure Diagram
4. Help

General:

Sun Release 4.1

This category of commands is concerned with environmental matters. This button has a sub-
menu associated with it. Click with the select mouse button on the General button, and the
submenu associated with General will pop up. If any of the following options is to be
selected, drag the arrow with the select mouse button to that option and then release the
mouse.

User Manual:
Not yet implemented

Set Printer:

If Set Printer option is selected, a window showing different printers will pop up. You can
choose one of the available printers as a default printer. For example if you want to select
“opal" as the default printer click on opal with select mouse button and click on OK button to
confirm it. If you want to select some other printer other than those available on the printer
menu, click on <Default> with select mouse button, Type the printer name in the correspond-
ing printer name area. For example if you want to select "xyz" as the default printer, type "Ipr
-Pxyz" in the printer name area (which is just right to <Default> button). Finally click on OK
to confirm the selection with select mouse button. If you want to cancel the above selected
option click on Cancel with select mouse button.

Set Compiler:
If this option is selected, a dialog window will pop up. You can type the command needed to

Last change: 1
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invoke the required Ada compiler. Click on OK to confirm the selection. Otherwise click on
Cancel to cancel the selection.

Load Window Fonts:

Typically this option is unnecessary. The CSD window fonts are loaded into video memory
upon invocation. If, however, during operation you get the message "The CSD font is not
loaded", you must load it yourself. You can type the path name of the directory containing
the CSD fonts. If CSD fonts are not already loaded, type the directory name which contains
the CSD fonts. Confirm by clicking on OK button. Otherwise click on Cancel button to can-
cel the selection. If CSD fonts are already loaded, it will show a message saying "The CSD
font is already loaded'. Click on OK button to quit the pop up window.

Quit:

You can quit the GRASP/Ada tool by selecting this option. You will see a window displaying
the message "Are you really sure you want to quit?". If you want to quit GRASP/Ada tool
click on OK. Otherwise click on Cancel to cancel quit.

Source Code

This button has a submenu (Open text window, Close all text windows) associated with it.
Click with the select mouse button on Source Code button. Submenu associated with Source
Code will pop up. It has the following options. If any of the following options is to be
selected, drag the select mouse button up to that option and then release the button.

Open text window:
A source code window containing a text editor for entering, loading, or modifying Ada source
code will pop up. See the description of Source Window below.

Close all text windows:
Closes all the text windows.

Control Structure Diagram

Sun Release 4.1

This button has a submenu (Open CSD window, Close all CSD windows, Generate CSD...)
associated with it. Click with the select mouse button on Control Structure Diagram button.
Submenu associated with Control Structure Diagram will pop up. It has the following options.
If any of the following options is to be selected, drag the select mouse button up to that option
and then release the mouse.

Open CSD Window:

A CSD window containing a text editor for loading or modifying CSD file will pop up. See
the description of CSD window below.

Close all CSD Windows:
Closes all the CSD windows.

Generate CSD....

CSD Generation Options window will pop up. You can select the Ada source file and CSD
file names by typing their names. You can use GRASP/Ada File Selector also to select the file
names. If you want to select the Ada source file(s) using GRASP/Ada File Selector, click with
the select mouse button on top Select button. GRASP/Ada File Selector window will pop up.
The contents of different directories can be viewed by selecting different directories. If the
contents of the Home directory are to be viewed, then click on Home button. If the contents
of Root directory are to be viewed, then click on Root button. If the contents of the Parent
directory (parent directory of the current directory) are to be viewed, then click on Parent
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button. If the contents of any other directory are to be viewed, then select that directory by
clicking on that directory name in directory contents view area. If you are not able to see the
contents of the selected directory, click on scrollbar once. You should be able to view the
contents of that directory (if there are some files or directories in that directory).

Finally, you can select a file for Control Structure Diagram generation by clicking on any file
name in directory contents view area. Click on Select button to select that file name. Other-
wise click on Cancel button to cancel file selection.

You can select number of files using wild card option. Suppose you want to generate the
CSDs for four files, and their file names are Examplel.a, Example2.a, Example3.a, Example4.a,
and if these files are in the directory called grasp, select the directory grasp from directory con-
tents view area. Then directory name will be shown as follows.

The_Pathfgrasp
Now type the wild card as follows
The_Path/grasp/* *
OR
The_Pathfgrasp/Exa*.a
OR
The_Path/grasp/Example?.a

Then click with the select mouse button on Select button in GRASP/Ada File Selector win-
dow. The GRASP/File selector window will be closed and Source file name(s) and CSD file
name(s) are copied into Ada source file(s) and CSD file name(s) in CSD Generation Options
window. Click with the select mouse button on Generate CSD in CSD Generation Options
window to generate CSDs for all the above selected source file(s). Otherwise click on Cancel
button to cancel the generation of CSDs. If Generate CSD is selected then following message
will be shown in the message area of the Main window if you are generating CSDs using wild
card option.

Source Directory : The_Path/grasp
CSD Directory : The_Path/grasp

Source File CSD File Message

Examplel.a Examplel.a.csd
Example2.a Example2.a.csd
Example3.a Example3.a.csd
Example4.a Exampled.a.csd

Total number of files are 4.

Click on Help  (in main window) with the select mouse button. The Help window
displays a list of the CSD constructs for Ada and a second window to display the
corresponding CSD construct. Click with the select mouse button on PRINT ALL
DIAGRAMS to print all the CSD constructs to the selected printer. Click on
DISPLAY ALL CSD CONSTRUCTS 1o see all the constructs in the second window.
These constructs are arranged in alphabetical order. Drag scrollbar to view different
constructs. Click on individual construct to view individual construct. Finally, click
on Quit with the select mouse button to quit the help window.

Last change: 3
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SOURCE WINDOW
This window has three selectable buttons.

File

View
Find

CSD WINDIW

Click with the select mouse button on File button and the submenu (Load, Generate CSD,
Save, Save as..., Print, Quit) associated with File will pop up. To select one of the options,
drag the select mouse button up to that option and then release the mouse.

Load.:

GRASP/Ada File Selector window showing the name and contents of the current directory
(The directory from which GRASP/Ada is invoked) will pop up. The contents of different
directories can be viewed by selecting different directories. If the contents of the Home direc-
tory are to be viewed, then click on Home button. If the contents of Root directory are to be
viewed, then click on Root button. If the contents of the Parent directory (parent directory of
the current directory) are to be viewed, then click on Parent button. If the contents of any
other directory are to be viewed, then select that directory by clicking on that directory name
in directory contents view area. If you are not able to see the contents of the selected direc-
tory click on scrollbar once. You should be able to view the contents of that directory (if there
are some files or directories in that directory). Like this you can view contents of any direc-
tory. Finally, you can select a file for Control Structure Diagram generation by clicking on
any file name in directory contents view area. Click on Select button to select that file name.
Otherwise click on Cancel button to cancel file selection.

Generate CSD:

After selecting a source file using above mentioned Load option, Control Structure Diagram
can be generated for that source file by selecting this option. When this option is selected, a
CSD window containing Control Structure Diagram will pop up. See the description of CSD
window.

Save:
The Ada file will be saved with the existing file name. If you want to save it as a different file
name, select Save as... option.

Save as....

A dialog window will pop up. You can type the file name as which the existing Ada file has
to be saved and click on OK to confirm the selection. Click on Cancel to cancel the selec-
tion. You can select the file name from GRASP/Ada file selector window also by clicking on
Select button.

Print.

A window showing different options for printing will pop up. The default file name will be
existing file in the Source Window. If you want to print any other Ada file, you can select that
file either by typing the file name in the file name area or you can select the Ada file name
using GRASP/Ada File Selector by clicking with the select mouse button on Select button.

Not yet implemented.

Not yet implemented.

This window has four (File, View, Find, Font) selectable buttons.

Sun Release 4.1
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Click with the select mouse button on File button and the submenu (Load, Open Source, Gen-
erate CSD, Compile, Save, Save as..., Print..., Quit) associated with File will pop up. To select
one of the options, drag the select mouse button up to that option and then release the mouse.

Load.

GRASP/Ada File Selector window showing the name and contents of the current directory
(The directory from which GRASP/Ada is invoked) will pop up. The contents of different
directories can be viewed by selecting different directories. If the contents of the Home direc-
tory are to be viewed, then click on Home button. If the contents of Root directory are to be
viewed, then click on Root button. If the contents of the Parent directory (parent directory of
the current directory) are to be viewed, then click on Parent button. If the contents of any
other directory are to be viewed, then select that directory by clicking on that directory name
in directory contents view area. If you are not able to see the contents of the selected direc-
tory click on scrollbar once. You should be able to view the contents of that directory (if there
are some files or directories in that directory). Like this you can view contents of any direc-
tory. Finally, you can select a file for Control Structure Diagram generation by clicking on
any file name in directory contents view area. Click on Select button to select that file name.
Otherwise click on Cancel button to cancel file selection.

Open Source:
Not yet implemented.

Generate CSD:
Not yet implemented.

Compile:
Not yet implemented.

Save:
The CSD file will be saved. The default file name will be SourceFileName.csd. If you want
to save it as a different file name, select Save as... option.

Save as....

A dialog window will pop up. You can type the file name as which the existing CSD file has
to be saved and click on OK to confirm the selection. Click on Cancel to cancel the selec-
tion. You can select the file name from GRASP/Ada file selector window also by clicking on
Select button.

Print.

A window showing different options for printing will pop up. The default file name will be
SourceFileName.csd. If you want to print any other CSD file, you can select that file either
by typing the file name in the file name area or you can select the CSD file name using
GRASP/Ada File Selector by clicking with the select mouse button on Select button.

You can select either of the options Yes or NO by clicking with the select mouse button to
print header. The default header is GRASP/Ada v3.0. You can change this default header by
typing the required header in header text area. You can select either of the options Yes or No
by clicking with the select mouse button to print page numbers. The default point size is 10.
The default size can be changed by tying required size in Point size area. Finally click on
Print button with the select mouse button to print the CSD file to a selected printer. If the
printer is not already selected, select the printer name from General submenu. If you want to
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cancel the print job, click with select mouse button on Cancel button.

Quit.
Quit the CSD window.

View Not yet implemented.
Find Not yet implemented.

Font Control Structure Diagram can be viewed in different sizes of fonts. Click with select mouse
button on Font button. It displays different sizes (csd09, csd11, csd13, csdl15, csd18) of the
available fonts. CSDs can be viewed in any of the available fonts by selecting that font.

WIDGETS .
In order to specify resources, it is useful to know the hierarchy of the widgets which compose gras-
pada. In the notation below, indentation indicates hierarchical structure. The widget class name is
given first, followed by the widget instance name.

Xgrasp graspada
Form myform
Label mylabel
MenuButton mymenu
SimpleMenu Generalmenu
SmeBSB User Manual
SmeBSB Environment
SmeBSB Load window fonts
... (one for each menu)
Command mycommand
TransientShell GRA

Form GRA

Form GRA

Form GRA
Command GRA
Command GRA
Command GRA
Command GRA

Label GRA

Viewport GRA
List GRA

ENVIRONMENT
GRASP_ HOME -

Must be set to the root directory of the GRASP/Ada system. graspada uses this environment
variable to locate the CSD fonts and the HELP system files.

MANPATH

If the GRASP/Ada system man page is not installed with the other man pages, this environ-
ment variable must be modified to point to the directory containing it, which is
$GRASP_HOME/man.

PATH
Must be set to point to the graspada executable, which is located in $GRASP_HOME/bin.
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XENVIRONMENT
Specifies the name of a resource file that overrides the global resources used in the
GRASP/Ada X Window System interface.

EXAMPLES
FILES
- graspada/bin/graspada
~ graspada/lib/Help help files

~ graspada/lib/fonts font files
- graspada/man/mann/graspada.l (Man page)

SEE ALSO
X(1), bdftosnf(1), mkfontdir(1), xset(1)

AUTHORS
The development of graspada was directed by Dr. James H. Cross II at Aubumn University. The pro-
ject was supported, in part, by a grant from George C. Marshall Space Flight Center, NASA/MSFC.

The Control Structure Diagram was created by Dr. Cross. The parser, scanner, and semantic actions for
creating the CSD for Ada were written by Charles H. May. The PostScript CSD font and X1 1R4 BDF
CSD fonts were created by Timothy A. Plunkett. The X Window System interface was written by Kelly
1. Morrison and Darren Tola. The HELP system was written by Narayana S. Rekapalli. Richard Davis,
Kathryn C. Waddel, and others made valuable contributions to this project.

Ada is a trademark of the United States Government, Ada Joint Program Office.
PostScript is a trademark of Adobe Systems, Inc.

DIAGNOSTICS
BUGS
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