Mathematical Modeling of a Thermovoltaic Cell

Principal Investigator: Ralph E. White
Student: Makoto Kawanami

May 1, 1991 – April 30, 1992

Texas A&M University
College Station, Texas 77843-3122

Grant Number NAG 9-514, Basic

FINAL REPORT

Submitted to:
E.C. Darcy
NASA Johnson Space Center
Mail Code: EP5
Houston, TX 77058

and

NASA Scientific & Technical Information Facility
P.O. Box 8757
Baltimore/Washington International Airport
Maryland 21240

May 19, 1992
ABSTRACT

A new type of battery named "Vaporvolt" cell is in the early stage of its development. A mathematical model of a CuO/Cu "Vaporvolt" cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the "Vaporvolt" cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu "Vaporvolt" cell.

* Product name of Energy Innovations, Inc.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>MODEL DEVELOPMENT</td>
<td>4</td>
</tr>
<tr>
<td>Electrochemical Reactions at Electrodes</td>
<td>4</td>
</tr>
<tr>
<td>Assumptions</td>
<td>5</td>
</tr>
<tr>
<td>Governing Equations</td>
<td>6</td>
</tr>
<tr>
<td>Cell Voltage</td>
<td>11</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>16</td>
</tr>
<tr>
<td>The Effects of the Separator Thickness</td>
<td>16</td>
</tr>
<tr>
<td>The Effects of Current Density</td>
<td>17</td>
</tr>
<tr>
<td>Sensitivity Analysis</td>
<td>17</td>
</tr>
<tr>
<td>Optimization</td>
<td>29</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>32</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>33</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>35</td>
</tr>
</tbody>
</table>
APPENDIX .. 37

Computer Program Data File 37

Computer Main Program File 39

VITA .. 54
LIST OF TABLES

Table I.	Base case parameter values for the CuO/Cu “Vaporvolt” cell simulation.	15
Table II.	Comparison of the performances of the “Vaporvolt” cells with different separator thicknesses.	16
Table III.	The result of the optimization.	29
Table IV.	Comparison of the “Vaporvolt” cell performances with lithium batteries.	30
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic of a “Vaporvolt” cell.</td>
</tr>
<tr>
<td>2</td>
<td>Cell voltage vs. capacity delivered.</td>
</tr>
<tr>
<td>3</td>
<td>The effects of current density on capacity of “Vaporvolt” cells.</td>
</tr>
<tr>
<td>4</td>
<td>The effects of current density on energy density of “Vaporvolt” cells.</td>
</tr>
<tr>
<td>5</td>
<td>The effects of current density on power density of “Vaporvolt” cells.</td>
</tr>
<tr>
<td>6</td>
<td>Sensitivity of the model predictions to the changes in the current density.</td>
</tr>
<tr>
<td>7</td>
<td>Sensitivity of the model predictions to the changes in the concentration of KOH.</td>
</tr>
<tr>
<td>8</td>
<td>Sensitivity of the model predictions to the changes in the thickness of the separator.</td>
</tr>
<tr>
<td>9</td>
<td>Sensitivity of the model predictions to the changes in the thickness of the positive electrode.</td>
</tr>
<tr>
<td>10</td>
<td>Sensitivity of the model predictions to the changes in the thickness of the negative electrode.</td>
</tr>
</tbody>
</table>
Figure 11. The effects of current density on power density of the cell when thicknesses of the electrodes and separator are optimized.
INTRODUCTION

Development of batteries with higher energy and power densities has been desired for many years. The traditional approach has been to employ more energetic reactions, which results in higher unit cell voltage, to achieve higher power and energy densities (1–13). Although stored energy and power densities have both increased by this approach (14), the specific stored energy and power densities are still relatively low. This is because of the additional weight required to contain these highly reactive materials and to maintain the mechanical strength of the battery. In addition, the energy densities of secondary batteries are much lower than that of primary batteries (15). Furthermore, there is a safety concern associated with using highly reactive chemicals such as lithium and thionyl chloride (16–18). Another approach to achieve higher specific energy and power densities is to minimize unnecessary weight and volume in existing systems.

"Vaporvolt" cells, which are currently being evaluated by Energy Innovations, Inc. for NASA as possible replacements for high power density primary lithium batteries, use this approach. Weight and volume are minimized by using thin laminations of metals and their oxides as the active materials of a battery (19). Reaction rates at the electrode surfaces of these batteries are low, resulting in minimal stress on the

This document follows the style of the Journal of the Electrochemical Society.
electrodes. High currents are obtained by using the high area per volume characteristic of thin laminations. Desired voltage can be obtained by bipolar construction. Electrochemical conversion is accomplished by displacing oxygen from one metal to the other. There are no side reactions that complicate the process and make unwanted by-products; and, in most cases, the energy conversion process is highly reversible.

In designing high performance “Vaporvolt” cells, there are various attributes that can significantly influence the system. Such attributes might be the thicknesses of the electrodes and the separator, KOH concentration, and the current density. A sensitivity analysis is performed on various parameters to determine which parameters are most influential in increasing or decreasing the energy and power densities. This information can indicate the direction one should take in order to design better “Vaporvolt” cells. The results of the sensitivity analysis can also suggest which parameters should be obtained with more accuracy through further modeling studies or experimentation.

To achieve high performance in the “Vaporvolt” cell, various design parameters can be optimized so that the cell will deliver the maximum attainable power density. The important parameters in the “Vaporvolt” cell are the thicknesses of the positive electrode (L_{pos}), negative electrode (L_{neg}) and separator (L_z), the concentration of KOH (c_{KOH}), and current density (i). The CuO/Cu system was selected in this investigation because the CuO/Cu “Vaporvolt” cells are the only successfully manufactured batteries at this time. By using a mathematical model of the CuO/Cu “Vaporvolt” cell, these parameters are investigated in order to determine if an optimal value exists for each
parameter. The sensitivity of the model predictions to various parameters will then be examined followed by the determination of the optimal design parameters to maximize the power density of the "Vaporvolt" cell.
MODEL DEVELOPMENT

Electrochemical Reactions at Electrodes

The reactions occurring in the CuO/Cu "Vaporvolt" cell during discharge are the reduction of CuO at the cathode (positive electrode)

Positive Electrode : \[\text{CuO} + \frac{1}{2} \text{H}_2\text{O} + e^- \rightarrow \frac{1}{2} \text{Cu}_2\text{O} + \text{OH}^- \] [1]

\[U_{pos} = 0.669 - 0.0591 \text{pH} \text{ V vs. NHE} \] [2]

and the oxidation of copper at the anode (negative electrode)

Negative Electrode : \[\text{Cu} + \text{OH}^- \rightarrow \frac{1}{2} \text{Cu}_2\text{O} + \frac{1}{2} \text{H}_2\text{O} + e^- \] [3]

\[U_{neg} = 0.471 - 0.0591 \text{pH} \text{ V vs. NHE} \] [4]

where \(U_{pos} \) and \(U_{neg} \) are the open circuit potentials of the positive and negative electrodes, respectively. The electrochemical data in equations [2] and [4] are taken from reference (20), at 25 °C.

The overall reaction is the production of \(\text{Cu}_2\text{O} \) from CuO and Cu.

\[\text{Total : CuO} + \text{Cu} \rightarrow \text{Cu}_2\text{O} \] [5]
Since the solubility of Cu$_2$O in basic solution is very low, solid Cu$_2$O is formed during discharge. The open circuit voltage of a CuO/Cu “Vaporvolt” cell, U_{cell} is obtained by subtracting equation [4] from equation [2].

$$U_{cell} = 0.198 \text{ V vs. NHE}$$

This open circuit voltage of CuO/Cu couple is not so high. It is easily predicted that if we employ a system with higher open circuit voltage, we can obtain higher energy and power density. However, CuO/Cu couple is the only successfully manufactured “Vaporvolt” cells at this time.

The objective of the present investigation is to develop a mathematical model that could be used to estimate the optimum values of transport and electrokinetic parameters, and to predict the maximum attainable energy and power densities of a CuO/Cu “Vaporvolt” cell.

Assumptions

The assumptions are as follows.

1. One dimensional model can describe the behavior of the cell.
2. Dilute solution theory (21), applies. Negligible interactions between the solutes are assumed.
3. The Nernst-Einstein equation, $D_i = u_i R T$, which is implicit in the dilute solution theory, applies.

4. The current density takes the form of the Butler-Volmer equation, which expresses the exponential dependence of the current on the overpotential.

5. The physical, transport, and electrokinetic parameters are constant throughout the solution.

6. The cell is isothermal.

7. No homogeneous chemical reactions occur in the electrolyte.

8. No electrolyte movement.

9. The electrochemical reactions occur at the surface of the electrodes.

Governing Equations

A schematic of a CuO/Cu "Vaporvolt" cell is shown in Fig. 1. During discharge of a CuO/Cu "Vaporvolt" cell, hydroxide ions are released from the positive electrode (see equation [1]), and consumed at the negative electrode (see equation [3]). Therefore, hydroxide ions must be transported in the electrolyte in the separator from the positive electrode to the negative electrode. Mass transport in this system is due to migration in an electric field and diffusion in a concentration gradient. Therefore, the flux expression for each species i can be written as

$$N_i = -z_i u_i F c_i \nabla \Phi - D_i \nabla c_i$$

[7]
Figure 1. Schematic of a "Vaporvolt" cell.
where the ionic mobility, u_i, is assumed to be related to the diffusion coefficient D_i by the Nernst-Einstein equation

$$u_i = \frac{D_i}{RT} \quad [8]$$

The first and the second terms of right side of equation [7] represent the mass transport in solution due to migration in an electric field and diffusion in a concentration gradient, respectively. The differential material balance equation for each species without homogeneous chemical reaction in the electrolyte is as follows

$$\frac{\partial c_i}{\partial t} = -\nabla \cdot N_i \quad [9]$$

By combining equations [7] and [9], we can obtain following equation

$$\frac{\partial c_i}{\partial t} = z_i u_i F(c_i \nabla^2 \Phi + \nabla c_i \nabla \Phi) + D_i \nabla^2 c_i \quad [10]$$

Since the net charge in the bulk electrolyte is zero, the equation of electroneutrality

$$\sum_i z_i c_i = 0 \quad [11]$$
must hold in the electrolyte.

The flow of charge is related to the current density \(i \) in the solution:

\[
i = F \sum_i z_i N_i
\]

Equations [7] and [12] can be combined and rearranged to get

\[
\nabla \Phi = -\frac{i}{\kappa} - \frac{F}{\kappa} \left(\sum_i z_i D_i \nabla c_i \right)
\]

where

\[
\kappa = \frac{F^2}{RT} \sum_i z_i^2 D_i c_i
\]

Equations [10] and [13] for one spatial coordinate reduces to equations [15] and [16], respectively

\[
\frac{\partial c_i}{\partial t} = z_i u_i F \left(c_i \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial c_i}{\partial x} \frac{\partial \Phi}{\partial x} \right) + D_i \frac{\partial^2 c_i}{\partial x^2}
\]

\[
\frac{\partial \Phi}{\partial x} = -\frac{i}{\kappa} - \frac{F}{\kappa} \left(\sum_i z_i D_i \frac{\partial c_i}{\partial x} \right)
\]

There are three unknowns \(c_{K^+}, c_{OH^-} \) and \(\Phi \), so we need three governing equations.
Equation [11] is used for c_{K^+}, equation [15] is used for c_{OH^-}, and equation [16] is used for Φ.

The initial and the boundary conditions for these dependent variables are as follows.

At $t=0$, the concentration of the species are their initial values

\[For\ all\ x\ at\ t = 0 \quad c_i(t = 0, x) = c_i^0 \] \hspace{1cm} [17]

since c_i^0 must obey $\sum_i z_i c_i^0 = 0$.

At $x=0$ (positive electrode surface), the change in the concentration of OH$^-$ is related to the current density since the number of OH$^-$ ions released at the positive electrode surface is proportional to the number of the electrons received at the electrode, that is, current density (see equation [1]).

\[\frac{\partial c_{OH^-}}{\partial x} \bigg|_{x=0} = \frac{i}{n_1 F D_{OH^-}} \] \hspace{1cm} [18]

where n_1 is the number of the electrons transferred in equation [1].

At $x=L_x$ (negative electrode surface), the change in the concentration of OH$^-$ is also related to the current density (see equation [3]).

\[\frac{\partial c_{OH^-}}{\partial x} \bigg|_{x=L_x} = \frac{i}{n_3 F D_{OH^-}} \] \hspace{1cm} [19]
where n_3 is the number of the electrons transferred in equation [3].

Since we cannot measure the absolute potential, we need to fix a potential at $x = 0$:

$$\text{For all } t \text{ at } x = 0 \quad \Phi(t, x = 0) = 0 \quad [20]$$

Cell Voltage

The relation between the current density, i, and the overpotential, η, is expressed by the Butler-Volmer electrochemical rate expression

$$i = i^o \frac{A^*}{A} \left[\prod_i \left(\frac{c_i}{c_i^0} \right)^{\beta_i} \exp \left(\frac{\alpha_a F \eta}{RT} \right) - \prod_i \left(\frac{c_i}{c_i^0} \right)^{\beta_i} \exp \left(-\frac{\alpha_c F \eta}{RT} \right) \right] \quad [21]$$

where A^* and A are the active surface area of the electrode and the geometric surface area of the electrode, respectively. Active surface area of the electrodes decreases with the discharge of the cell since Cu_2O, that has very low electric conductivity, is formed on the electrodes during discharge. The active surface area of each electrode is assumed to change according to the following equation

$$A^* = A \frac{m}{m^0} \quad [22]$$

where m is the amount of active material (CuO for positive electrode, Cu for negative
electrode) in an electrode at time t, and m^o is the initial amount of active material in the electrode. The initial amount of active material, m^o, is simply expressed by the following equation

$$m^o = L_j d_j \quad [23]$$

where L_j is the thickness of the electrode and d_j is the density of the electrode.

For a constant current density discharge, the amount of active material, m, changes with time according to following equation

$$m = m^o - \frac{M_j i t}{n_j F} \quad [24]$$

where M_j is a molecular weight of an electrode j.

By combining equations [21] through [24], we can obtain following relation between the current density i and the overpotential η

$$i = i^o \left(1 - \frac{M_j i t}{L_j d_j n_j F}\right) \left[\prod_i \left(\frac{c_i}{c_i^o}\right)^{p_i} \exp\left(\frac{\alpha a F}{RT} \eta\right) - \prod_i \left(\frac{c_i}{c_i^o}\right)^{q_i} \exp\left(-\frac{\alpha c F}{RT} \eta\right)\right] \quad [25]$$

Note that CuO, Cu$_2$O and Cu exist as solids because of their low solubility in a basic solution, so the values of $\left(\frac{c_i}{c_i^o}\right)^{p_i}$ and $\left(\frac{c_i}{c_i^o}\right)^{q_i}$ for CuO, Cu$_2$O and Cu in equation
remain constant.

In addition, the anodic and cathodic transfer coefficients are assumed to sum to the number of electrons transferred (i.e., $\alpha_a + \alpha_c = n_j$), and the reaction order coefficients are assumed to be simply related to s_i

$$
p_i = s_i \quad q_i = 0 \quad \text{if } s_i > 0 \\
p_i = 0 \quad q_i = -s_i \quad \text{if } s_i < 0
$$

[26]

And the electrode potentials, E_{pos} and E_{neg}, are expressed by

$$
E_{pos} = U_{pos} + \Phi(t, x = 0) + \eta_{pos} \quad [27]
$$

$$
E_{neg} = U_{neg} + \Phi(t, x = L_s) + \eta_{neg} \quad [28]
$$

The potential of a “Vaporvolt” cell, E_{cell}, is the difference between the potentials of the positive electrode and the negative electrode. By subtracting equation [28] from equation [27],

$$
E_{cell} = E_{pos} - E_{neg} \quad [29]
$$

$$
= U_{cell} - \Phi(t, x = L_s) + \eta_{pos} - \eta_{neg}
$$

$$
U_{cell} = U_{pos} - U_{neg} \quad [30]
$$
where U_{cell} is the open circuit potential of the "Vaporvolt" cell.

Note that an overpotential takes a negative value at the positive electrode, and takes a positive value at the negative electrode, and $\Phi(t, x = L_s)$ is always positive during discharge because negatively charged particle (OH⁻) must transport from the positive electrode ($x = 0$) to the negative electrode ($x = L_s$). Therefore, the potential of a "Vaporvolt" cell, E_{cell}, is always smaller than the open circuit potential of the "Vaporvolt" cell, U_{cell}.

Equations [7] – [16] represent the basic governing equations necessary to describe the behavior in the electrolyte of a "Vaporvolt" cell. It should be noted that these equations are solved numerically by setting the cell current density, i, and calculating the potential of the "Vaporvolt" cell, E_{cell}, or the power density, $P (= iE_{cell})$. BAND(J), a finite difference numerical technique developed by Newman (21), was used to solve the equations. The computer program used for this investigation is listed in Appendix. The model parameters associated with these equations are shown in Table I.
Table I. Base case parameter values for the CuO/Cu "Vaporvolt" cell simulation.

<table>
<thead>
<tr>
<th>Structural parameters:</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of positive electrode (CuO) (L_{pos})</td>
<td>0.00254 cm</td>
</tr>
<tr>
<td>Thickness of negative electrode (Cu) (L_{neg})</td>
<td>0.00254 cm</td>
</tr>
<tr>
<td>Separator thickness (L_s)</td>
<td>0.00254 cm</td>
</tr>
<tr>
<td>Open circuit potential (U_{cell})</td>
<td>198 mV</td>
</tr>
<tr>
<td>Current density (i)</td>
<td>0.001 A/cm²</td>
</tr>
<tr>
<td>Anodic and cathodic exchange current densities (i^o)</td>
<td>0.001 A/cm²</td>
</tr>
<tr>
<td>Anodic transfer coefficient for Cu oxidation ($\alpha_{a\text{-}Cu}$)</td>
<td>0.5</td>
</tr>
<tr>
<td>Cathodic transfer coefficient for CuO reduction ($\alpha_{c\text{-}CuO}$)</td>
<td>0.5</td>
</tr>
<tr>
<td>Electrolyte concentration (c_{KOH})</td>
<td>8.3878 M</td>
</tr>
<tr>
<td>Initial K⁺ concentration (c_{K^+})</td>
<td>8.3878 M</td>
</tr>
<tr>
<td>Initial OH⁻ concentration (c_{OH^-})</td>
<td>8.3878 M</td>
</tr>
<tr>
<td>Reference K⁺ concentration ($c_{K^+}^r$)</td>
<td>1.0000 M</td>
</tr>
<tr>
<td>Reference OH⁻ concentration ($c_{OH^-}^r$)</td>
<td>1.0000 M</td>
</tr>
<tr>
<td>Temperature (T)</td>
<td>298 K</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

The Effects of the Separator Thickness

It is assumed that the electrochemical reaction occurs only at the surface of the active material, however; actual reaction layer moves into the inside of the active material as the cell discharges. Therefore, the thickness of the mass transport region of the cell increases as the cell discharges. To check the validity of this assumption, the cell performances with different separator thicknesses are predicted and compared. First, the cell performance is predicted with the parameter values listed in Table I, and then, the thickness of the separator is doubled, and the cell performance is predicted again. The result is shown in Table II. The predicted performances of “Vaporvolt” cells with different separator thicknesses are almost the same. This result indicates that the movement of the reaction layer in the cell has little effect on the performance of the cell. Therefore, the assumption that the electrochemical reaction occurs only at the surface of the active material is valid in this model.

Table II. Comparison of the performances of the “Vaporvolt” cells with different separator thicknesses.

<table>
<thead>
<tr>
<th>Separator thickness</th>
<th>0.00254 cm</th>
<th>0.00508 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell capacity</td>
<td>17.82711 C/cm²</td>
<td>17.82711 C/cm²</td>
</tr>
<tr>
<td>Energy density</td>
<td>1.88573 Ws/cm²</td>
<td>1.88569 Ws/cm²</td>
</tr>
<tr>
<td>Power density</td>
<td>0.10637 mW/cm²</td>
<td>0.10636 mW/cm²</td>
</tr>
</tbody>
</table>
The Effects of Current Density

Fig. 2 shows the cell voltage change during the discharge with the parameter values listed in Table I, at various current densities. The cell voltage drop due to the increases in the overpotentials at the positive and the negative electrodes as we increase the current density during discharge. Therefore, the capacity and the energy density of the cell decrease with increasing current density of the cell during discharge, as shown in Figs. 3 and 4. However, the power density of the "Vaporvolt" cell is not a monotonic function of the current density. As shown in Fig. 5, the power density of the cell first increases and then decreases as the current density increases. So there exists a maximum power density value at a current density.

Sensitivity Analysis

In order to determine the relative importance of the design feature of the cell (thickness of the electrode, e.g.) and the transport and kinetic parameters on the "Vaporvolt" cell's performance, a sensitivity analysis was done. The sensitivity analysis can indicate which parameters have the largest influence on the predicted performance of the "Vaporvolt" cell. If a small perturbation in a parameter does not significantly change the predicted capacity, energy density or the power density of the "Vaporvolt" cell, then that parameter could assume a large range of values, all of which will give the same performance. The sensitivity coefficient can be defined as the dimensionless change in the predicted capacity, energy density, and the power density...
Figure 2. Cell voltage vs. capacity delivered.

Discharge of CuO/Cu cells
Figure 3. The effects of current density on capacity of "Vaporvolt" cells.
Figure 4. The effects of current density on energy density of "Vaporvolt" cells.
Figure 5. The effects of current density on power density of "Vaporvolt" cells.
of the cell for a small dimensionless perturbation in a parameter j, while holding all other parameters constant (22):

$$\text{Sensitivity} = \frac{\partial G/G}{\partial \theta_j/\theta_j}$$

[31]

where θ_j is the parameter and G is the capacity, the energy density, or the power density of the cell.

Hence, large sensitivity coefficients mean that the parameter of interest significantly influences the cell performances. If the sensitivity coefficients for a parameter is large, the parameters should be obtained with more accuracy through further modeling or experimental studies. That is, if the value for a parameter is not accurately known and the parameter has a large sensitivity coefficient, then that parameter value should be ascertained more accurately to gain confidence in the model predictions.

All sensitivity coefficients calculated for this work were accomplished by increasing the parameter of interest by 5% over the base case value (shown in Table I) and calculating the resulting change in the capacity, energy density, and power density of the cell from the base case values. The sensitivity coefficients for various parameters are shown in Figs. 6 through 10. As shown in Fig. 6, the model predictions are most sensitive to the current density.

The model predictions show little sensitivity to small perturbations in the KOH concentration as shown in Fig. 7. This is because the IR drop due to the resistance
Figure 6. Sensitivity of the model predictions to the changes in the current density.
Figure 7. Sensitivity of the model predictions to the changes in the concentration of KOH.
Figure 8. Sensitivity of the model predictions to the changes in the thickness of the separator.
Figure 9. Sensitivity of the model predictions to the changes in the thickness of the positive electrode.
Figure 10. Sensitivity of the model predictions to the changes in the thickness of the negative electrode.
of the electrolyte is negligible since the thickness of the separator is very small. The concentration of KOH in this region has very small effect on the capacity, the energy density, and the power density of the cell.

The effects of the “Vaporvolt” cell separator thickness on the predicted performance are shown in Fig. 8. The sensitivity coefficients for the capacity, the energy density, and the power density of the cell decrease similarly and monotonically with the increase of the separator thickness. Therefore, the thickness of the separator should be as thin as possible, however; to avoid shortening of the cell, the thickness of the separator should be about 0.001 cm.

Figs. 9 and 10 show the effects of “Vaporvolt” cell positive and negative electrodes thickness on the predicted performances. The capacity and the energy density of the “Vaporvolt” cell increase as we increase the electrode thicknesses up to 0.002 cm since the sensitivity coefficients for the capacity and the energy density are positive in this region, but the capacity and the energy density decrease as we increase the electrode thicknesses when the thicknesses are above 0.002 cm. Therefore, the capacity and energy density become their maximum when the electrode thicknesses are about 0.002 cm. The sensitivity coefficient for the power density of the cell is always negative, as shown in Figs. 9 and 10, so a small electrode thickness is favorable to get a larger power density. However; employing electrodes that are less than 0.001 cm could results in shortening of the cell. A thickness of 0.001 cm is favorable for the positive and negative electrodes of a “Vaporvolt” cell to obtain maximum power density.
Optimization

The maximum power density can be obtained when we employ 0.001 cm as the thicknesses of the separator, the positive electrode, and the negative electrode, and current density 2.5 mA/cm2. As shown in Table III, the maximum power density obtained is 45.1 W/l, and the capacity is 1768 kC/l and the energy density is 26.5 Wh/l at these parameter values. These values are lower than that of the high energy density primary cells, such as Li/SOCl$_2$ cells, which highest power density is approximately 80 W/l and its energy density is about 150 Wh/l when the highest power density is obtained (14), however; the maximum attainable power density of a CuO/Cu “Vaporvolt” cell is much higher than that of Li/CF$_x$ or Li/MnO$_2$ cells, which highest power density is approximately 15 W/l and the energy density is about 50 Wh/l when the highest power density is obtained (14). This is summarized in Table IV. If stable electrodes with thickness less than 0.001 cm could be developed in the future, much larger power density could be obtained. For example, if we could make

Table III. The result of the optimization.

<table>
<thead>
<tr>
<th>Starting Values</th>
<th>Optimized Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current density = 0.001 A/cm2</td>
<td>Current density = 0.0025 A/cm2</td>
</tr>
<tr>
<td>Cell capacity = 2336 kC/l</td>
<td>Cell capacity = 1768 kC/l</td>
</tr>
<tr>
<td>Energy density = 69.1 Wh/l</td>
<td>Energy density = 26.5 Wh/l</td>
</tr>
<tr>
<td>Power density = 14.0 W/l</td>
<td>Power density = 45.1 W/l</td>
</tr>
</tbody>
</table>
electrodes and separators with thicknesses of 0.0005 cm, the maximum power density is 90.3 W/l, as shown in Fig. 11; and the capacity and the energy density will be 1768 kC/l and 26.5 Wh/l, respectively.

Table IV. Comparison of the “Vaporvolt” cell performances with lithium batteries.

<table>
<thead>
<tr>
<th></th>
<th>CuO/Cu</th>
<th>Li/SOCl₂</th>
<th>Li/MnO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Vaporvolt"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power density, W/l</td>
<td>45.1</td>
<td>80*</td>
<td>15*</td>
</tr>
<tr>
<td>Energy density, Wh/l</td>
<td>26.5</td>
<td>150*</td>
<td>50*</td>
</tr>
<tr>
<td>Unit cell open circuit voltage, V</td>
<td>0.198</td>
<td>3.67*</td>
<td>3.5*</td>
</tr>
</tbody>
</table>

* These values are taken from ref. [14].
Figure 11. The effects of current density on power density of the cell when thicknesses of the electrodes and separator are optimized.
SUMMARY

A mathematical model of a CuO/Cu "Vaporvolt" cell is presented to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of a CuO/Cu "Vaporvolt" cell model indicates that several parameters can significantly influence the performance of the system. In particular, current density has been found to influence significantly the performance. The effect of various design parameters have been investigated to determine if optimal values exist for the parameters. The model has shown that the thicknesses of the electrodes and separator, and current density can be optimized to give the maximum attainable power density. The model has also shown that the power density can be significantly improved if we could make thinner electrodes and separators could be made.
NOMENCLATURE

Roman Symbols

A^* Active surface area of the electrode, cm2
A Surface area of the electrode, cm2
c_i Concentration of species i, mol/cm3
c_i^0 Initial concentration of species i, mol/cm3
c_i' Reference concentration of species i, mol/cm3
D_i Diffusion coefficient for species i, cm2/s
d_j Density of electrode j, g/cm3
E Electrode potential, V
F Faraday's constant, 96487 C/mol
G Capacity, Energy density, or Power density
i Current density vector, A/cm2
i Current density, A/cm2
i^0 Exchange current density, A/cm2
L Thickness, cm
M_j Molecular weight of electrode j, g/mole
m Amount of active material at time t, g/cm2
m^0 Initial amount of active material, g/cm2
n_j Number of electrons transferred in reaction j
N_i Flux vector of species i, mol/(cm2-s)
P Power density, W/l
p_i Anodic reaction order for species i
q_i Cathodic reaction order for species i
R Gas constant, 8.3143 J/(mol-K) or 82.057 cm3atm/(mol-K)
R_i Production rate of species i, mol/(cm3-s)
s_i Stoichiometric coefficient of species i
T Temperature, K
\[U \] Open circuit potential, V

\[u_i \] Mobility of species \(i \), mol-cm\(^2\)/(J-s)

\[v \] Electrolyte velocity vector, cm/s

\[z_i \] Charge number of species \(i \)

Greek Symbols

\(\alpha_a \) Anodic transfer coefficient

\(\alpha_c \) Cathodic transfer coefficient

\(\kappa \) Conductivity of a solution, S/cm

\(\eta \) Overpotential, V

\(\Phi \) Solution phase potential, V

\(\theta_j \) Parameter \(j \)

Superscripts and Subscripts

\(a \) Anode

\(c \) Cathode

\(i \) Species \(i \)

\(j \) Reaction \(j \) or electrode \(j \)

\(\text{neg} \) Negative electrode

\(\text{pos} \) Positive electrode

\(r \) Reference condition

\(s \) Separator layer
REFERENCES

APPENDIX

Computer Program Data File

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ishow</td>
<td>0</td>
<td>ishow=1 for monitor output of iterations</td>
</tr>
<tr>
<td>jmax</td>
<td>100</td>
<td>Max program iterations</td>
</tr>
<tr>
<td>nj</td>
<td>101</td>
<td>Number of meshpoints</td>
</tr>
<tr>
<td>nt</td>
<td>400</td>
<td>Number of timesteps</td>
</tr>
<tr>
<td>ntp</td>
<td>40</td>
<td>Print every ntp timestep</td>
</tr>
<tr>
<td>nc</td>
<td>6</td>
<td>Number of current steps</td>
</tr>
<tr>
<td>area</td>
<td>4.00000000d+00</td>
<td>Area of the separator, sq.cm</td>
</tr>
<tr>
<td>cio</td>
<td>8.38780000d-03</td>
<td>Initial KOH concentration, mol/cc</td>
</tr>
<tr>
<td>ecur(1)</td>
<td>1.00000000d-03</td>
<td>Exchange current density (positive electrode), A/cm²</td>
</tr>
<tr>
<td>ecur(2)</td>
<td>1.00000000d-03</td>
<td>Exchange current density (negative electrode), A/cm²</td>
</tr>
<tr>
<td>aa(1)</td>
<td>0.50000000d+00</td>
<td>Anodic transfer coefficient (pos)</td>
</tr>
<tr>
<td>ac(1)</td>
<td>0.50000000d+00</td>
<td>Cathodic transfer coefficient (pos)</td>
</tr>
<tr>
<td>aa(2)</td>
<td>0.50000000d+00</td>
<td>Anodic transfer coefficient (neg)</td>
</tr>
<tr>
<td>ac(2)</td>
<td>0.50000000d+00</td>
<td>Cathodic transfer coefficient (neg)</td>
</tr>
<tr>
<td>ocv</td>
<td>198.00000000d-03</td>
<td>Open circuit voltage, V</td>
</tr>
<tr>
<td>delta</td>
<td>2.54000000d-03</td>
<td>Separator thickness, cm</td>
</tr>
<tr>
<td>dpos</td>
<td>2.54000000d-03</td>
<td>Positive electrode thickness, cm</td>
</tr>
<tr>
<td>dneg</td>
<td>2.54000000d-03</td>
<td>Negative electrode thickness, cm</td>
</tr>
<tr>
<td>dep</td>
<td>6.40000000d+00</td>
<td>Positive electrode density, g/cm³</td>
</tr>
<tr>
<td>denn</td>
<td>8.92000000d+00</td>
<td>Negative electrode density, g/cm³</td>
</tr>
<tr>
<td>denp</td>
<td>6.00000000d+00</td>
<td>Positive electrode density after discharge, g/cm³</td>
</tr>
<tr>
<td>dennd</td>
<td>6.00000000d+00</td>
<td>Negative electrode density after discharge, g/cm³</td>
</tr>
<tr>
<td>atomp</td>
<td>79.54540000d+00</td>
<td>Atomic weight of positive active material, g/mole</td>
</tr>
<tr>
<td>atomn</td>
<td>63.54600000d+00</td>
<td>Atomic weight of negative active material, g/mole</td>
</tr>
<tr>
<td>atompd</td>
<td>71.54300000d+00</td>
<td>Atomic weight of p.a.m. after discharge, g/mole</td>
</tr>
<tr>
<td>atomnd</td>
<td>71.54300000d+00</td>
<td>Atomic weight of n.a.m. after discharge, g/mole</td>
</tr>
<tr>
<td>epos</td>
<td>1.00000000d+00</td>
<td>Number of electron transfer</td>
</tr>
<tr>
<td>eneg</td>
<td>1.000000000d+00</td>
<td>(positive electrode)</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>diff(1)</td>
<td>2.190000000d-05</td>
<td>Number of electron transfer</td>
</tr>
<tr>
<td>diff(2)</td>
<td>2.190000000d-05</td>
<td>(negative electrode)</td>
</tr>
<tr>
<td>temp</td>
<td>298.0000000d+00</td>
<td>Anion diff. coeff., sq.cm/sec</td>
</tr>
<tr>
<td>toler</td>
<td>1.000000000d-05</td>
<td>Cation diff. coeff., sq.cm/sec</td>
</tr>
<tr>
<td>zi(1)</td>
<td>-1.000000000d+00</td>
<td>Temperature, K</td>
</tr>
<tr>
<td>zi(2)</td>
<td>1.000000000d+00</td>
<td>Relative error tolerance</td>
</tr>
<tr>
<td>cur(1)</td>
<td>1.000000000d-03</td>
<td>Anion (OH⁻) charge number</td>
</tr>
<tr>
<td>cur(2)</td>
<td>2.000000000d-03</td>
<td>Cation (K⁺) charge number</td>
</tr>
<tr>
<td>cur(3)</td>
<td>3.000000000d-03</td>
<td>Current density(1), A/cm²</td>
</tr>
<tr>
<td>cur(4)</td>
<td>4.000000000d-03</td>
<td>Current density(2), A/cm²</td>
</tr>
<tr>
<td>cur(5)</td>
<td>5.000000000d-03</td>
<td>Current density(3), A/cm²</td>
</tr>
<tr>
<td>cur(6)</td>
<td>6.000000000d-03</td>
<td>Current density(4), A/cm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current density(5), A/cm²</td>
</tr>
</tbody>
</table>
Computer Main Program File

c model2.f

c last edition May. 10, 1992

implicit real*8 (a-h,o-z)
dimensions z(7,500), a(7,7), b(7,7), c(7,500), d(7,15),
@ g(7), x(7,7), y(7,7), zk(500), zi(7), eta(2,500),
& pot(500), volt(500), actp(500), actn(500), ecur(2),
& aa(2), ac(2), aarea(2), diff(7), cur(7)
common A, B, C, D, G, X, Y, N, NJ
OPEN(1,FILE='model2.dat', STATUS='old')
OPEN(2,FILE='model2.out', STATUS='unknown')
OPEN(3,FILE='model2.outt', STATUS='unknown')

c Model inputs.
read(1,9911) ishow, jmax, nj, nt, ntpr, nc
9911 format(10x, i15)
read(1,9912) area, cio, ecur(1), ecur(2),
& aa(1), ac(1), aa(2), ac(2), ocv, delta,
& dpos, dneg,
& denp, denn, denpd, dennd, atomp, atomn, atompd,
& atomnd, epos, eneg, diff(1), diff(2)
read(1,9912) temp, toler, zi(1), zi(2)
read(1,9912) (cur(jc), jc=1, nc)
9912 format(10x, d15.7)
dposd=dpos*denp*atomp/atompd/denpd
dnegd=dneg*denp*atomn/atomnd/dennd
c Start current loop
do 501 jc=1, nc
write (6,721) jc, nc
721 format (//,10X,'Current loop jc=',i3,'
nc=',i3,/')
do 720 i=2,3
write(i,9913) ishow, jmax, nj, nt, ntpr
write(i,9914) cur(jc), area, cio, ecur(1), ecur(2),
& aa(1), ac(1), aa(2), ac(2), ocv, delta,
& dpos, dneg, dposd, dnegd
720 write(i,9915) denp, denn, denpd, dennd, atomp, atomn, atompd,
& atomnd, epos, eneg, diff(1), diff(2),
& temp, toler, zi(1), zi(2)
9913 format(1x,'MODEL INPUTS:'/)
9914 format(1x,'cur ','f15.7/
9915 format(1x,'denp ','f15.7/

&
c(1,j) is the OH- concentration in mol/cm3.
c(2,j) is the K+ concentration in mol/cm3.
c(nspl,j) is the electric potential.

ns=2
nspl=ns+1
n=3
del=delta/real(nj-1)
two=2.d0
twodel=del*two
far=96487.d0
frt=96487.d0/(8.314d0*temp)

C

INITIAL CONDITIONS:
DO 1 J=1,NJ
 c(1, j)=cio
 c(2, j)=cio
 c(nspl, j)=0.d0
continue

jcount=0
jtd=0
jtp=nt
fmax=0.d0
time=0.d0
flux=0.d0
fluxnj=0.d0

C Calculate the initial amount of active material
 actp0=dpos*area*denp/atomp*epos*far
 actn0=dneg*area*denn/atomn*eneg*far
 actp(0)=actp0
 actn(0)=actn0
 tdel=dmin1(dpos*0.999d0*denp/atomp*epos,dneg*0.999d0*
 &denn/atomn*eneg)*far/cur(jc)/real(nt)*(1.d0-1.d-6)
 aarea(1)=1.d0
 aarea(2)=1.d0

C Print out initial conditions:
 write(2,293) jcount, ocv, eta(1,0), eta(2,0),
 & aarea(1), aarea(2), cur(jc), time, actp0, actn0,
 & actp(0)/actp0, actn(0)/actn0
 write(2,2941) (real(j-1)/real(nj-1), c(1, j), c(2, j),
 & j=1,nj)
 2941 format (3(1x,e11.5))

C Start time loop:
do 204 jt=1,nt
write (6,722) jt,nt
write(6,722) format (10X,'Time step jt='',i3,' nt=',i3)
c zk(jk) is used to time step the acid concentration.
do 231 jk=1,nj
231 zk(jk)=c(1,jk)
 time=real(jt)*tdel

C Calculate the amount of active material at t>0
 actp(jt)=actp(jt-1)-cur(jc)*area*tdel
 actn(jt)=actn(jt-1)-cur(jc)*area*tdel
 aarea(1)=1.0-time*cur(jc)/dposd/denpd*atompd/eapos/far
 aarea(2)=1.0-time*cur(jc)/dnegd/dennd*atomnd/eneg/far
 if (aarea(1).le.0) go to 500
 if (aarea(2).le.0) go to 500

c Find overpotential eta
 do 892 j=1,2
 eta0=-2.d1
 etal=2.d1
 891 eta(j,jt)=(eta0+etal)/two
 tcur=ecur(j)*aarea(j)*dexp(eta(j,jt)*fret*aa(j))-
 & dexp(-eta(j,jt)*fret*ac(j))
 if (abs(tcur-cur(jc))/cur(jc).le.toler) go to 892
 if (tcur.ge.cur(jc)) then
 etal=eta(j,jt)
goto 891
 endif
 if (tcur.le.cur(jc)) then
 eta0=eta(j,jt)
goto 891
 endif
 892 continue

c Start boundary value problem:
24 JCOUNT=JCOUNT+1
 flmax=0.d0
 f2max=0.d0
 f3max=0.d0

c Check number of program iterations:
 if (jcount .gt. jmax) then
 jtp=jt-1
 write (2,723) jt,nt
 write (3,723) jt,nt
 write (6,723) jt,nt
c Print to monitor current variable values:
if(ishow.eq.1) then
write(*,724) jcount, time, cur(jc)
724 format(1x,'jcount=',i15,' time=',e15.7,
 & ' cur=',e15.7/
 & 'zeta, cl, c2, c3',)
write(*,725) (real(js-1)/real(nj-1),c(1,js),c(2,js),
 & c(3,js),js=1,nj)
725 format(4(1x,e10.4))
write(3,7241) jcount, time, cur(jc)
7241 format(1x,'jcount=',i15,' time=',e15.7,
 & ' cur=',e15.7/
 & 'zeta, cl, c2, c3',)
write(3,7251) (real(js-1)/real(nj-1),c(1,js),c(2,js),
 & c(3,js),js=1,nj)
7251 format(4(1x,e10.4))
endif

do 2 j=1,nj
do 2 k=1,n
if(jcount.eq.1) z(k, j)=c(k, j)
z(k, j)=(1.d0-dp)*c(k, j)+dp*z(k, j)
2 continue

C SET UP COEFFICIENT MATRIX

J=0
DO 31 I=1,N
DO 31 K=1,N
X(I,K)=0.0d0
31 Y(I,K)=0.0d0
16 J=J+1
DO 32 I=1,N
DO 32 K=1,N
G(I)=0.0d0
\begin{verbatim}
A(I,K)=0.0d0
B(I,K)=0.0d0
D(I,K)=0.0d0
IF (J .NE. 1) GO TO 18

C FIRST MESH POINT
C Material-balance equation:
 f1=(-z(I,3)+4.d0*z(I,2)-3.d0*z(I,1))/twodel+
 & cur(jc)/zi(1)/far/diff(1)
 b(1,1)=-3.d0/twodel
 d(1,1)= 4.d0/twodel
 x(1,1)=-1.d0/twodel
 g(1)=-f1+b(1,1)*z(1,j)+d(1,1)*z(1,j+1)+
 & x(1,1)*z(1,j+2)

C Electroneutrality equation:
 f2=0.d0
 do 50 i=1,ns
 f2=f2+zi(i)*z(i,j)
 50 b(2,i)=zi(i)
 g(2)=-f2
 do 51 k=1,ns
 51 g(2)=g(2)+b(2,k)*z(k,j)

C Potential equation:
 fnspl=z(nspl,j)
 b(nspl,nspl)=1.d0
 CALL BAND(J)
GO TO 16
18 IF (J .EQ. NJ) GO TO 20

C INNER MESH POINTS
 ck =zk(j)
 c1 =z(1,j)
 dc1 =(z(1,j+1)-z(1,j-1))/twodel
 d2c1 =(z(1,j+1)+z(1,j-1)-two*z(1,j))/del**2
 c2 =z(2,j)
 dc2 =(z(2,j+1)-z(2,j-1))/twodel
 c3 =z(3,j)
 dc3 =(z(3,j+1)-z(3,j-1))/twodel
 d2c3 =(z(3,j+1)+z(3,j-1)-two*z(3,j))/del**2
\end{verbatim}
Material-balance equation:
\[
fl = -(cl - ck)/tdel + zi(1)*f_{rt}*diff(1)*
\&
(1*d2c3 + dcl*dc3) + diff(1)*d2c1
flcl = -1.d0/tdel + zi(1)*f_{rt}*diff(1)*d2c3
flclp = zi(1)*f_{rt}*diff(1)*dc3
flclpp = diff(1)
flc3p = zi(1)*f_{rt}*diff(1)*dcl
flc3pp = zi(1)*f_{rt}*diff(1)*cl
\]

Band coefficients:
\[
a(1,1) = flclp*(-1.d0/twodel) + flclpp*(1.d0/del**2)
b(1,1) = flcl + flclpp*(-two/del**2)
d(1,1) = flclp*(1.d0/twodel) + flclpp*(1.d0/del**2)
a(1,3) = flc3p*(-1.d0/twodel) + flc3pp*(1.d0/del**2)
b(1,3) = flc3p*(-two/del**2)
d(1,3) = flc3p*(1.d0/twodel) + flc3pp*(1.d0/del**2)
g(1) = -f1 + a(1,1)*z(1,j-1) + b(1,1)*z(1,j) + d(1,1)*z(1,j+1)
&
a(1,3) = f{3}p*(-1.d0/twodel) + f{3}pp*(-two/del**2)
d(1,3) = f{3}p*(1.d0/twodel) + f{3}pp*(1.d0/del**2)
g(1) = -f2 + a(1,1)*z(3,j-1) + b(1,3)*z(3,j) + d(1,3)*z(3,j+1)
\]

Electroneutrality equation:
\[
f2 = 0.d0
f2 = f2 + zi(i)*z(i,j)
52 b(2,i) = zi(i)
g(2) = -f2
f2 = b(2,k)*z(k,j)
53 g(2) = g(2) + b(2,k)*z(k,j)
\]

Potential equation:
\[
f3 = dc3 + (cur(jc) + fa*_z(1)*(zi(2)*diff(2)*dc2 +
&
zi(1)*diff(1)*dc1)) /
&
(f_{rt}*z(2)**2*diff(2)*c2 +
&
zi(1)**2*diff(1)*cl))
\]
\[
f3c1 = -(cur(jc) + fa*_z(1)*(zi(2)*diff(2)*dc2 +
&
zi(1)*diff(1)*dc1)) /
&
(f_{rt}*z(2)**2*diff(2)*c2 +
&
zi(1)**2*diff(1)*cl))
\]
\[
f3cl = zi(1)*diff(1)/
&
(f_{rt}*(zi(1)**2*diff(2)*c2 + zi(1)**2*diff(1)*c1))
\]
\[
f3c2 = -(cur(jc) + fa*_z(1)*(zi(2)*diff(2)*dc2 +
&
zi(1)*diff(1)*dc1)) /
& (far * frt * (zi(2) ** 2 * diff(2) * c2 +
& zi(1) ** 2 * diff(1) * c1 ** 2) *
& zi(2) ** 2 * diff(2))
& f3c2p = zi(2) * diff(2) /
& (frt * (zi(2) ** 2 * diff(2) * c2 + zi(1) ** 2 * diff(1) * c1))
& f3c3p = 1. d0
a(3, 1) = f3c1p * (-1. d0 / twodel)
b(3, 1) = f3c1
d(3, 1) = f3c1p * (1. d0 / twodel)
a(3, 2) = f3c2p * (-1. d0 / twodel)
b(3, 2) = f3c2
d(3, 2) = f3c2p * (1. d0 / twodel)
a(3, 3) = f3c3p * (-1. d0 / twodel)
d(3, 3) = f3c3p * (1. d0 / twodel)
g(3) = -f3a(3, 1) * z(1, j-1) + b(3, 1) * z(1, j) + d(3, 1) * z(1, j+1) +
& a(3, 2) * z(2, j-1) + b(3, 2) * z(2, j) + d(3, 2) * z(2, j+1) +
& a(3, 3) * z(3, j-1) + d(3, 3) * z(3, j+1)

Check on max f1, f2, f3, f4, f5:
flmax = dmaxl (abs (flmax), abs (fl))
f2max = dmaxl (abs (f2max), abs (f2))
f3max = dmaxl (abs (f3max), abs (f3))

CALL BAND(J)
GO TO 16

C LAST MESH POINT

20 c1 = z(1, j)
dc1 = (z(1, j-2) - 4. d0 * z(1, j-1) + 3. d0 * z(1, j)) / twodel
c2 = z(2, j)
dc2 = (z(2, j-2) - 4. d0 * z(2, j-1) + 3. d0 * z(2, j)) / twodel
c3 = z(3, j)
dc3 = (z(3, j-2) - 4. d0 * z(3, j-1) + 3. d0 * z(3, j)) / twodel

Material-balance equation:
fl = dc1 + cur(jc) / zi(1) / far / diff(1)
y(1, 1) = 1. d0 / twodel
a(1, 1) = -4. d0 / twodel
b(1, 1) = 3. d0 / twodel
g(1) = -f1 + y(1, 1) * z(1, j-2) + a(1, 1) * z(1, j-1) + b(1, 1) * z(1, j)

Electroneutrality equation:
Potential equation:
\[
f_3 = \text{dc3} + \left(\text{cur}(jc) + \text{far} \times (\text{zi}(2) \times \text{diff}(2) \times \text{dc2} + \text{zi}(1) \times \text{diff}(1) \times \text{dc1}) \right) / (\text{far} \times \text{frt} \times (\text{zi}(2) \times \text{diff}(2) \times \text{c2} + \text{zi}(1) \times \text{diff}(1) \times \text{c1}))
\]

\[
f_{3\text{c1}} = -\left(\text{cur}(jc) + \text{far} \times (\text{zi}(2) \times \text{diff}(2) \times \text{dc2} + \text{zi}(1) \times \text{diff}(1) \times \text{dc1}) \right) / (\text{far} \times \text{frt} \times (\text{zi}(2) \times \text{diff}(2) \times \text{c2} + \text{zi}(1) \times \text{diff}(1) \times \text{c1}))
\]

\[
f_{3\text{c2}} = -\left(\text{cur}(jc) + \text{far} \times (\text{zi}(2) \times \text{diff}(2) \times \text{dc2} + \text{zi}(1) \times \text{diff}(1) \times \text{dc1}) \right) / (\text{far} \times \text{frt} \times (\text{zi}(2) \times \text{diff}(2) \times \text{c2} + \text{zi}(1) \times \text{diff}(1) \times \text{c1}))
\]

\[
f_{3\text{c3}} = 1.0
\]

\[
y(3,1) = f_{3\text{c1p}} \times (1.0 / \text{twodel})
\]

\[
a(3,1) = f_{3\text{c1p}} \times (-\text{two} / \text{del})
\]

\[
b(3,1) = f_{3\text{c1}} + f_{3\text{c1p}} \times (3.0 / \text{twodel})
\]

\[
y(3,2) = f_{3\text{c2p}} \times (1.0 / \text{twodel})
\]

\[
a(3,2) = f_{3\text{c2p}} \times (-\text{two} / \text{del})
\]

\[
b(3,2) = f_{3\text{c2}} + f_{3\text{c2p}} \times (3.0 / \text{twodel})
\]

\[
y(3,3) = f_{3\text{c3p}} \times (1.0 / \text{twodel})
\]

\[
a(3,3) = f_{3\text{c3p}} \times (-\text{two} / \text{del})
\]

\[
b(3,3) = f_{3\text{c3p}} \times (3.0 / \text{twodel})
\]

\[
g(3) = -f_3 + y(3,1) \times z(1,j-2) + a(3,1) \times z(1,j-1) + b(3,1) \times z(1,j) +
\]

\[
y(3,2) \times z(2,j-2) + a(3,2) \times z(2,j-1) + b(3,2) \times z(2,j) +
\]
\[y(3,3)z(3, j-2) + a(3,3)z(3, j-1) + b(3,3)z(3, j) \]

C Check on max \(f_1, f_2, f_3 \):

\[
\begin{align*}
 f_{1\text{max}} &= \text{dmaxl} (\text{abs}(f_{1\text{max}}), \text{abs}(f_1)) \\
 f_{2\text{max}} &= \text{dmaxl} (\text{abs}(f_{2\text{max}}), \text{abs}(f_2)) \\
 f_{3\text{max}} &= \text{dmaxl} (\text{abs}(f_{3\text{max}}), \text{abs}(f_3))
\end{align*}
\]

CALL BAND(J)

C TEST FOR CONVERGENCE

do 30 i=1,1
 do 30 j=1,nj
 if (z(i,j).ne.0.d0) change = dabs ((c(i,j)-z(i,j))/z(i,j))
 if (c(i,j).ne.0.d0) change = dabs ((c(i,j)-z(i,j))/c(i,j))
 if (c(i,j).eq.z(i,j)) change = 0.d0
 if (change.ge.toler) go to 24
 30 continue

C List transient quantities:

C Flux at j=1:
C (The minimum of the cation or counterion flux determines
C the acid or salt flux.)
 dcl = (-3.d0*c(1,1)+4.d0*c(1,2)-c(1,3))/twodel
 dc2 = (-3.d0*c(2,1)+4.d0*c(2,2)-c(2,3))/twodel
 dc3 = (-3.d0*c(3,1)+4.d0*c(3,2)-c(3,3))/twodel
 flux1 = -zi(1)*frt*diff(1)*c(1,1)*dc3-diff(1)*dcl
 flux2 = -zi(2)*frt*diff(2)*c(2,1)*dc3-diff(2)*dc2
 flux = dmin1(flux1, flux2)
 if (flux1+flux2.1e.0) flux = dmax1(flux1, flux2)

C Flux at j=nj:
 dcl = (-3.d0*c(1,nj)+4.d0*c(1,nj-1)-c(1,nj-2))/twodel
 dc2 = (-3.d0*c(2,nj)+4.d0*c(2,nj-1)-c(2,nj-2))/twodel
 dc3 = (-3.d0*c(3,nj)+4.d0*c(3,nj-1)-c(3,nj-2))/twodel
 fluxnj1 = -zi(1)*frt*diff(1)*c(1,nj)*dc3-diff(1)*dcl
 fluxnj2 = -zi(2)*frt*diff(2)*c(2,nj)*dc3-diff(2)*dc2
 fluxnj = dmin1(fluxnj1, fluxnj2)
if (fluxnj1 + fluxnj2 <= 0.0) fluxnj = dmax1(fluxnj1, fluxnj2)

fmax = dmax1(abs(f1max), abs(f2max), abs(f3max), abs(f4max),
& abs(f5max))

Potential at nj is the potential drop through membrane:
pot(jt) = c(3, nj)
volt(jt) = ocv-eta(1, jt) - eta(2, jt) + pot(jt)
if (volt(jt) >= 0.0) then
 if (actp(jt) >= 0.0) then
 if (actn(jt) >= 0.0) jtd = jt
 endif
endif
endif

Write results:
if (amod(real(jt), real(ntpr)) < 1.0e-9) then
 write (2, 286) dcl, dc2, dc3, flux, fluxnj, pot(jt)
 format(1x, ' ',
& 1x, 'dcl:', e12.5, ' dc2:', e12.5,
& 1x, 'flux:', e12.5,
& 1x, 'IR DROP:', e12.5)
 write (2, 293) jcount, volt(jt),
& eta(1, jt), eta(2, jt), aarea(1), aarea(2),
& cur(jc), time, actp(jt),
& actn(jt), actp(jt)/actp0, actn(jt)/actn0
 format(1x, 'jcount ', i15/
& 1x, 'volt ', f15.5/
& 1x, 'eta(pos) ', f15.5/
& 1x, 'eta(neg) ', f15.5/
& 1x, 'aarea(pos) ', f15.5/
& 1x, 'aarea(neg) ', f15.5/
& 1x, 'cur (jc) ', f15.5/
& 1x, 'time ', f15.5/
& 1x, 'actp(jt) ', f15.5/
& 1x, 'actn(jt) ', f15.5/
& 1x, 'actp/actp0 ', f15.5/
& 1x, 'actn/actn0 ', f15.5/
& 1x, ' ', /
& 1x, 'j/nj, c1, c2, c3')
 write (2, 294) (real(j-l)/real(nj-l), c(1, j), c(2, j),
& c(3, j), j=1, nj)
 format(4(1x, e11.5))
Write results of transient quantities:

```fortran
power=volt(0)/two
do 522 j=1, jtd
power=power+volt(j)
power=power*cur(jc)/real(jtd)/(delta+dpos+dneg)*1.0d3
energy=power*tdel*real(jtd)/3.6d3
   cap =cur(jc)*tdel*(real(jtd)+0.5d0)/(delta+dpos+dneg)
   power1=power1*(delta+dpos+dneg)
   energy1=power1*tdel*real(jtd)/1000.0d0
   capl =cur(jc)*tdel*(real(jtd)+0.5d0)
   format(2(ix, el0.4))
   write(j,2041),cur(jc)*1.0d3,cap,energy,power,
   & capl,energy1,power1
   write(3,2041),cur(jc)*1.0d3,cap,energy,power,
   & capl,energy1,power1
   write(6,2041),cur(jc)*1.0d3,cap,energy,power,
   & capl,energy1,power1
2041 format(/lx,'Results of transient quantities:'/)
   @ 1x,'current density :','f15.5,' mA/cm2'/
   @ 1x,'capacity :','f15.5,' kC/l'/
   @ 1x,'energy density :','f15.5,' Wh/l'/
   @ 1x,'power density :','f15.5,' W /l'/
   @ 1x,'capacity :','f15.5,' C/cm2'/
   @ 1x,'energy density :','f15.5,' Ws/cm2'/
   @ 1x,'power density :','f15.5,' mW/cm2'/
   @ lx,'capacity, potential'

do 527 j=2,3
   write(j,2042) 0.d0,ocv
   write(j,2042) (cap*real(jt)/real(jtd),
   & volt(jt),jt=ntpr,jtp,ntpr)
527 write(j,2043)
   write(6,2042) 0.d0,ocv
   write(6,2042) (cap*real(jt)/real(jtd),
   & volt(jt),jt=ntpr,jtp,ntpr)
2042 format(2(lx,e10.4))
2043 format(///)
501 CONTINUE
502 CONTINUE
503 CONTINUE
504 CONTINUE
505 CONTINUE
```
SUBROUTINE MATINV(N,M,DETERM)
implicit double precision (a-h,o-z)
COMMON A(7,7),B(7,7),C(7,500),D(7,15)
DIMENSION ID(7)
DETERM=1.0
DO 1 I=1,N
 1 ID(I)=0
DO 18 NN=1,N
 BMAX=1.1
 DO 6 I=1,N
 IF(ID(I).NE.0) GOTO 6
 BNEXT=0.0
 BTRY=0.0
 DO 5 J=1,N
 IF(ID(J).NE.0) GOTO 5
 IF(dabs(B(I,J)).LE.BNEXT) GOTO 5
 BNEXT=dabs(B(I,J))
 IF(BNEXT.LE.BTRY) GOTO 5
 BNEXT=BTRY
 BTRY=dabs(B(I,J))
 5 JC=J
 CONTINUE
 IF(BNEXT.GE.BMAX*BTRY) GOTO 6
 BMAX=BNEXT/BTRY
 IROW=I
 JCOL=JC
 CONTINUE
 IF(ID(JC).EQ.0) GOTO 8
 DETERM=0.0
 RETURN
 8 ID(JCOL)=1
 IF(JCOL.EQ.IROW) GOTO 12
 DO 10 J=1,N
 SAVE=B(IROW,J)
 B(IROW,J)=B(JCOL,J)
 10 B(JCOL,J)=SAVE
 DO 11 K=1,M
 SAVE=D(IROW,K)
 D(IROW,K)=D(JCOL,K)
SUBROUTINE BAND(J)

 implicit double precision (a-h,o-z)
 DIMENSION E(7,8,500)
 COMMON A(7,7),B(7,7),C(7,500),D(7,15),
 & G(7),X(7,7),Y(7,7),N,NJ

 FORMAT (15H DETERM=0 AT J=,I4)

1 IF (J-2) 1,6,8

2 D(I,2*N+1) = G(I)
 DO 2 L=1,N
 LPN = L + N
 D(I,LPN) = X(I,L)
 CALL MATINV(N,2*N+1,DETERM)
 IF (DETERM) 4,3,4

3 write (3,101) J

4 DO 5 K=1,N
 E(K,NP1,1) = D(K,2*N+1)
 DO 5 L=1,N
 E(K,L,1) = - D(K,L)
 LPN = L + N
 5 X(K,L) = - D(K,LPN)
 RETURN

6 DO 7 I=1,N
 DO 7 K=1,N

11 D(JCOL,K)=SAVE
12 F=1.0D0/B(JCOL,JCOL)
 DO 13 J=1,N
13 B(JCOL,J)=B(JCOL,J)*F
 DO 14 K=1,M
14 D(JCOL,K)=D(JCOL,K)*F
 DO 18 I=1,N
 IF(I.EQ.JCOL) GO TO 18
 F=B(I,JCOL)
 DO 16 J=1,N
16 B(I,J)=B(I,J)-F*B(JCOL,J)
 DO 17 K=1,M
17 D(I,K)=D(I,K)-F*D(JCOL,K)
 18 CONTINUE

RETURN
END
DO 7 L=1,N
7 D(I,K) = D(I,K) + A(I,L)*X(L,K)
8 IF (J-NJ) 11,9,9
9 DO 10 I=1,N
 DO 10 L=1,N
 G(I) = G(I) - Y(I,L)*E(L,NP1,J-2)
 DO 10 M=1,N
10 A(I,L) = A(I,L) + Y(I,M)*E(M,L,J-2)
11 DO 12 I=1,N
 D(I,NP1) = - G(I)
 DO 12 L=1,N
 D(I,NP1) = D(I,NP1) + A(I,L)*E(L,NP1,J-1)
 DO 12 K=1,N
12 B(I,K) = B(I,K) + A(I,L)*E(L,K,J-1)
 CALL MATINV(N,NP1,DETERM)
 IF (DETERM) 14,13,14
13 write (3,101) J
14 DO 15 K=1,N
 DO 15 M=1,NP1
15 E(K,M,J) = - D(K,M)
 IF (J-NJ) 20,16,16
16 DO 17 K=1,N
17 C(K,J) = E(K,NP1,J)
 DO 18 JJ=2,NJ
 M = NJ - JJ + 1
 DO 18 K=1,N
 C(K,M) = E(K,NP1,M)
 DO 18 L=1,N
18 C(K,M) = C(K,M) + E(K,L,M)*C(L,M+1)
 DO 19 L=1,N
 DO 19 K=1,N
19 C(K,1) = C(K,1) + X(K,L)*C(L,3)
20 RETURN
END
VITA

MAKOTO KAWANAMI

Permanent address: 1–2–7–204 Shinkanaoka, Sakai, Osaka 591, Japan

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>November, 1963</td>
<td>Born in Osaka, Japan</td>
</tr>
<tr>
<td>March, 1982</td>
<td>Graduate from Meisei Senior High School</td>
</tr>
<tr>
<td>March, 1986</td>
<td>Bachelor of Engineering in Industrial Chemistry from Kyoto University</td>
</tr>
<tr>
<td>March, 1988</td>
<td>Master of Engineering in Industrial Chemistry from Kyoto University</td>
</tr>
<tr>
<td>April, 1988 through August, 1990</td>
<td>Working experience as a researcher at Catalyst Research Center, Nippon Shokubai Co. Ltd.</td>
</tr>
</tbody>
</table>