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Abstract

A new mcthod is described for asscssing the consistency of
structural modal paramecters identified with the
Eigensystem Realization Algorithm. Identification results
show varying consistency in practice duc to many sources
including high modal density, nonlincarity, and inadequate
excitation. Consistency is considercd to be a reliable
indicator of accuracy. The new mcthod is the culmination
of many yecars of experience in developing a practical
implementation of the Eigensystem Realization
Algorithm. The effectiveness of the method is illustrated
using data from NASA Langley's Controls-Structures-
Interaction Evolutionary Modcl.

Introduction

The dynamic behavior of most acrospace structures is
adcquatcly described using modal paramecters (natural
frequencics, mode shapes, damping factors, and modal
masscs). The objective of structural modal identification is
1o obtain a valid modal represcntation over a specificd
frequency range for all spatial degrees-of-freedom. This
objective is considerably diffcrent than identifying an
input-output map only at particular degrees-of-freedom
where control actuators and scasors are located.! A full
spatial modal represcntation permits scveral tasks to be
performed which cannot be performed using an input-
output map derived for control purposes. These tasks
“include validation of structural modcling proccdures and
assumptions, prediction of systcm dynamics using modal
paramelers of individual components, investigation of
more-effective actuator and sensor locations for control
purposes, and improved characterization of disturbances
occurring at unexpected locations on a spacecraft during
opcration., )

It is rclatively straightforward to cstimate structural modal
paramecters experimentally using a varicty of available
approachcs.2-3 However, it is gencrally much more
difficult 10 establish reliable confidence values for each
result. Confidence criteria based on noise characteristics are
available? but arc of limitcd uscfulness in practical
applications. In modal-survey tests, identification
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difficulties arise primarily from high modal density,
nonlincarity, weakly excited modes, local modes,
nonstationarities, rattling, clc., not from instrumentation
noisc. The simultaneous effects of these conditions are in
general impossible to include explicitly in confidence
calculations.

The Consistent-Mode Indicator (CMI) described in this
paper provides a reliable, relative measure of accuracy for
structural modal parameters identified with the
Eigensystem Realization Algorithm (ERA).5-7 A single
valuc ranging from 0 to 100 percent is obtained for each
identificd mode. Furthermore, the results can be
decomposed into constituent components associated with
each inpul (initial condition) and output (response
mcasurement), or input-output pair. Both temporal and
spatial consistency calculations are included in the
formulation. Modes with CMI values greater than
approximatcly 80 percent are identified with high
confidence. Modes with values ranging from 80 to 1
percent display moderate to large uncertainty. Fictitious
"computational modes" have CMI values of zero,

The first part of this paper contains a brief summary of
ERA followed by a complete description of CMI. The
second part illustrates the concepts using recent laboratory
data from NASA Langley's Controls-Structures-Interaction
(CSI) Evolutionary Model (CEM).8 The CEM is a large
flexible research structure being used to experimentally
asscss the level of confidence with which CSI technolcgy
can be applicd o future spacecraft. '

The Eigensystem Realization Algorithm

A finite-dimensional, linear, time-invariant dynamic
system can be represented by the state-variable equations:

(1) = A_x(t)+ Bu(t)
y(1) = Cx(t)

where x is an n-dimensional state vector, u is a p-
dimensional excitation vector, and y is a q-dimensional
response veclor. A special solution to these equations is
the impulsc response function:



Y(t) = Ce*'B

for t20. The ith column of Y(1) contains the free
response of the system, with x(0) =0, to a unit-impulsc
excitation applied at the ith input location at t = 0.

With sampled data, this solution can be expressed as

Y(k)=CA*B

fork 20. A =e”™ is the state-transition matrix and At
is the data sampling interval.

The problem of system realization is as follows: Given a
sequence of experimentally mcasured matrices Y(k), for
k=0,1,2,..., construct a triplet [A,B,C] such that the
above relationship is satisfied as closcly as possible. Note
that [A,B,C] is not unique since the set

T'AT,T™'B,CT|, for any nonsingular matrix T, also
satisfies the state-variablc cquations.

The ERA solution to the system realization problem uses
singular value decomposition of the gencralized Hankcl
matrix;

H@O0)=UZV"

Matrix H(0) consists of time-shifted Y(k) submatriccs. In
practice, cvery block row and block column of H(0)
normally conlains data shificd in time by onc sample from
data in the previous block row or block column. The only
exceptions are the final block row and column which are
shifted by a larger number of time samples (by default, 10
samples) in order to calculate EMAC, discussed laier in the
paper. Also, in large modal surveys involving hundreds of
response mcasurements, a fraction of the rows of H(0)
below row q (q = no. of measurcments) may generally be
deleted without loss of accuracy duc to the large redundancy
of information.

Retaining the n largest singular values, an nth-order
realization is computed as follows:
A= 20, THOV,E,
B=%,V,"E,
C=E,"U,E,'?
where H(1) is a matrix of the same form as H(0) but

whose data are shifted in time by onc additional sample.
E, and E, are pth-order and qth-order selector matrices.

This realization is transformed to modal coordinates using
the cigenvalues Z and eigenvector matrix W of A:

A’=¥TA¥ =Z (diagonal)
B'=¥'B
C’'=C¥

The modal damping rates o; and damped natural
frequencies w; are the real and imaginary parts of the
cigenvalues after transformation back to the continuous
domain:

$; =0, jw, =In(z;,)/ At

Modal participation factors and mode shapes are the
corresponding rows of B’ and columns of C’ ,
respectively.

In practice, some modal parameters obtained using this
approach are inaccurate due to high modal density,
nonlincarity, etc. CMI is used to assess the relative
accuracy of the various results.

Consistent-Mode Indicator

The Consistent-Mode Indicator, CMI, is computed
for mode i as the product of two other parameters, EMAC
and MPC:

CMI, =EMAC, -MPC; (x 100%)

The Extended Modal Amplitude Coherence,
EMAC, quantifics the temporal consistency of the
identification resuits. The Modal Phase Collinearity,
MPC, quantifics the spatial consistency of the
identification results. Practical experience has shown that
both conditions must be satisfied simultaneously to ensure
accuratc results. These two parameters are described
scparatcly in the following sections.

Extended Modal Amplitude Coherence

The Extended Modal Amplitude Coherence, EMAC, is,
computed using the identified modal parameters. Mode

shape components for data at t =0 are compared with

corrcsponding components for data at a time instant t = Ty

(for outputs) or t =T (for inputs) stored in the final block

row and final block column, respectively, of the ERA

generalized Hankel matrices. An EMAC value is computed

for cach of the p inputs (initial conditions) and q outputs

(response measurements), for every mode.



Let (¢;)0 be the identified mode shape component for
mode i and response measurcment j at t =0 and (¢;)y, be
the corresponding identified component at t=Ty. The
identificd eigenvalue for mode i is s; . Compute a
predicted value of (¢;), as follows:

()1, =(¢)o -ehTo

Temporal consistency is quantificd by comparing
(#3)+, and ( ¢,, )1, - The actual and predicted magnitudes arc
compared using the ratio of the magnitudes:

Ry= I(% o l/‘(;pii o I for |(¢ij Mo | s |(‘$ij g I
= I(&’ij )To Vl(¢ij )1-0 I otherwisc.
The acwal and predicted phasc angles arc also compared.

Letting Py = Arg((qbu)To /(¢.,)| ), —n<P;<m a
weighting factor is determined as fc Tlows

wijzl.()‘“(lpijll(”/4)) for lpiils”/“
=0.0 otherwisc

An Output EMAC for mode iand
mcasurcment j is then computed as:

responsc

EMAC®; =R - W, (x100%)

An Input EMAC for modc i and initial condition k,
EMAC, is similarly computed using the identificd
modal participation factors.

Using these results, an EMAC value is associated with
every j-k'th input-output pair as follows:

EMAC;, = EMAC®;-EMAC'sx (x100%).
Finally, to condense all EMAC results for mode i into a
singlc valuc, a weighted average of the individual results is
computed:

f‘. i EMACijk '|¢ij|2‘ |¢ik|2
EMAC; = &2 -
g. g |¢ijl : |¢ik|2

(ZEMACOU Joof )(EEMAC' Joul)

== J—

%.l ' Z|¢.k|

where ¢, and ¢, are mode shape and modal pamenpaLlon
componcnts, respectively. A weighting factor of |¢|
uscd to achieve an energy-type emphasis.

In the original formulation of ERAJ, a parameter known
as the Modal Amplitude Coherence (y) was introduced.
EMAC is a much-improved version of this formulation.
Undcr cerntain common conditions, ¥ values can be high
(cven 100 percent) for all cigenvalues. This insensitivity is
avoided with EMAC. The term "extended” in the new
namc refers to the extension of the primary data analysis
window for the final block row and column of the
generalized Hankel matrix,. EMAC quantifies the
consistency of the identified modal parameters by
measuring the predictability of the results in this extended
time interval. As discussed in the Introduction, this test is
much more difficult to fulfill than testing only the
predictability of the results in the primary analysis
window, which is what y does. EMAC also involves
many fewer calculations than y. Most importantly,
however, it provides a more-sensitive, more-reliable
approach with proven uscfulness based on many successful
applications.

Modal Phase Collinearity

Modal Phasc Collincarity, MPC, quantifies the spatial
consisicncy of the identification results. For classical
normal modes, all locations on the structure vibrate
exactly in-phasc or out-of-phase with one another; i.e., the
corresponding mode shape is a real or "monophase” vector.

With monophasc behavior, the variance-covariance matrix
of the real and imaginary parts of the mode shape vectors
has only onc nonzero eigenvalue. If the identified mode-
shape phasc angles are uncorrelated, on the other hand, the
two cigenvalues of this matrix will be approximately
equal. MPC quantifies the degrec of monophase behavior
by comparing the relative size of the largest and smallest
cigenvalues of the variance-covariance matrix.

Let @] and @] be the real and imaginary parts,
respectively, of the identified mode shape for mode i.
Calculate the variance and covariance of the real and
imaginary parts:

S, =0 TO;
§,, =0Ty
S,y =®; 707



ing S.-S
,,=_n;.9_

25,

B =p+sgn(S, Wu? +1

t=tan"' B,
the eigenvalues of the variance-covariance matrix are:

S,y (2(u% + Dsin® 1-1)

AI=S“+
2 g inl
12=S”_s,,(2(y +‘:)sm T-1)

MPC for mode i is then defined as follows:

2
MPC; [2(—lr 05)] (x100%)
2

MPC; values range from O for a mode with completely
uncorrelated phase angles to 100 percent for a monophase
result.

The formulation discussed above is based on the original
definition of Modal Phase Collinearity ()3, except
normalized to generate values ranging from 0 to 100
percent. The smallest possible value of p was
inadvertently limited to 25 percent. Also, the following
two practical extensions of the MPC concept are presented
for the first time:

Unweighted MPC

The definition of MPC described above provides a natural
weighting based on the magnitude of the individual mode-
shape components. This is desirable because phase angle
results for small experimentally determined mode shape
components are often inaccurate due to measurement
limitations. However, it is also useful to repeat the
calculations without this natural weighting imposed; i.e.,
by normalizing each mode shape component to unit
magnitude before calculating the variance and covariance
values. For global modes, this so-called unweighted
MPC will be approximately equal to the standard
weighted MPC discussed above. However, for local
modes, the unweighted value will be substantially smaller
than the weighted value. The magnitude of the difference
provides a quick and effective indicator of global versus
local response behavior.

When ERA is applied to (displacement/force or
accelerauon/force) nmpulse response functions me
large imaginary parts and small real pans With free-decay
data corresponding to arbitrary initial conditions, however,
the identified mode shapes have arbitrary mean phase
angle. Before these shapes can be plotted as geometric
deformations or used in certain subsequent calculations
such as the Phase Resonance Criterion?, they must be
rotated to align best with £90°. The necessary rotation
angle a is determined during the MPC calculation:

a=1T+n/2

Application Example

Fig. 1 shows the Controls-Structures-Interaction (CSI)
Evolutionary Model (CEM)8 located at the NASA Langley
Research Center. The structure is part of a testbed used to
develop CSI ground test methods. It has been designed to
possess the dynamic properties of a typical future large
spacecraft. These properties include low frequency
structural modes, modal clusters, local appendage
dynamics, and both high and low levels of damping.

Fig. 1 CSI Evolutionary Model

The CEM consists of a 55 foot long truss with several
appendages which possess varying degrees of flexibility.
The truss is construcied of aluminum tubes assembled into
10 inch cubical bays. The structure is suspended by two
cables attached to the laboratory ceiling through isolation
springs. By using soft springs in series with long
suspension cables, the six "pseudo-rigid body"” modes have
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frequencics below 1 Hz. The first flexible mode occurs at
1.5 Hz with approximatcly 30 modes occurring below 10
Hz. For modal idenuification experiments, the CEM was
instrumented with 195 piczo-film accclcromclers and 18
servo accelerometers. Excitation was supplicd through 16
on-board cold-gas thrustcrs operating in pairs at 8
locations. The thrusters produce up to 2.2 Ibs of force over
a bandwidth of approximatcly 45 Hz.

A modal (cst was performed using all 213 accelerometers
and 8 thruster pairs in a multi-input, multi-output
(MIMO)}) test configuration. Uncorrelated shaped random
noisc signals werc applicd simultancously to all exciters.
A total of 1704 (8 x 213) frequency response functions
(FRFs) with 2048 lines of resolution [rom 0 to 50 Hz
were gencrated. The FRFs were computed using a
commercial MIMO FRF calculation proccdurcm with 100
averages 1o minimize noisc effects. Frequency lines from 0
10 6.25 Hz were extracted and inverse Fourier transformed
10 obtain impulsc responsc functions for the ERA analyses
discussed below.

Before performing the ERA analysis, it is uscful to
calculate the average power spectrum (APS) and mode

indicator function (MIF)” dircctly from the FRF data.
These functions are defined as follows:

S|, of

‘Aps(r) = J..=_1_N__

N ,
}::JHi (r)bni(r)l .
T (0f

MIF(()={1.0 - 000

where Hi’(f) and |Hi(f){ arc the rcal part and magnitude,
respectively, of the ith FRE. N is the total number of
FRFs included in the calculation. Both of these functions
display peaks at cach natural frcquency. Additionally, the
APS shows the relative magnitude of cach modal response.
The MIF provides no information conccrning modal
responsc magnitudes; however, the resolution of individual
modes is much highcer.

The APS and MIF calculated using all 1704 FRFs arc
shown in Fig. 2. It can be stated with cerlainty bascd on
these results that at least 16 modces occur between 0 and
6.25 Hz. However, because of the complexity of the
structurc and indicated by NASTRAN analytical
prcdiclionss, some of the obscrved peaks probably
represcnt morc than onc mode. As an cxample, two
pscudo-rigid body modcs arc known Lo occur between 0.7

and 0.8 Hz although this fact cannot be deduced from either
function. Also notc the wide varialion of modal response
magnitudes indicated by APS peaks ranging from 100 to
Icss than 1. Modes with low response magnitudes such as
thosc ncar 0.2 and 3.4 Hz are much more difficult to
identify accurately than modes with high response
magnitudcs.
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Mode Indicator Function

Previous experience has shown that significant changes
can occur in ERA analyscs as a function of the assumed
number of modes. In particular, optimum accuracy for
diffcrent modes typically occurs at different numbers of
assumed modes. Also, weakly excited modes often require
rclatively high numbers of assumed modes to be properly
identificd. For these rcasons, the assumed number of
modes is incremented over a wide range of values in most
applications. Bascd on the estimated number of modes
from Fig. 2, the assumed number of modes is incremented
for the CEM data analysis from 2 up to 60 (in steps of 2).

The identificd natural frequencies as a function of the
assumed number of modes are plotted in Fig. 3. These
rcsults were generated using all 1704 FRFs
simultancously in an 8 x 213 MIMO analysis. Each row
of rcsults corresponds to a separatc ERA analysis with a
specificd number of assumed modes. Each detected mode is
represeniced by a vertical dash at the associated frequency.
The confidence in cach result is expressed by the length of
the vertical dash which is proportional to CMI. The
highest confidence (CMI = 100%) is altained if the distance
between minor tic marks on the verlical axis is filled.
Eigenvalues with low CMI (less than 5 percent) are
excluded from the figure.



A wide spread of CMI values is indicated by the prescnce
of both solid and dashed or dotted lines. Several modes
with low CMI values occur in the frequency interval from
2.6 10 3.3 Hz. These modes are known to be associated
primarily with the flexible reflector and are known to occur
in ciusters. No thrusters are located directly on the reflector
surface so that these modes cannot in general be excited
individually. The result is a reduction of controllability and
a corresponding decrease in both temporal and spatial
consistency. Although enginecring judgement is required
1o determine the exact cause of low CMI values, low
values reliably indicate those results which should not be
accepted verbatim as accurate modal paramcters. As
- illustrated later in this paper, results for particular modes
can often be improved without performing additional tests
once this initial CMI information is available. Of course,
additional tests can also be performed once certain areas of
difficulty are known.
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Fig. 4 shows an expanded view of the results in a narrow
frequency interval ncar 0.9 Hz. Corrcsponding damping,
" EMAC, and MPC results ar¢ also shown. This example
illustrates a typical degree of accuracy variation which
occurs as a function of the assumed number of modes.
Although damping estimates range from 0.5 to 2.5
percent, the highest confidence is associated with values
between 0.5 and 1.0 percent duc to the corresponding high
EMAC valucs. MPC values for this mode show only
small variations indicating stable mode-shape
identification.
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A more complicated situation is shown in Fig. 5 for the
mode (or modes) near 4.1 Hz. The highest EMAC and
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MPC values occur near 30 assumed modes. At higher
numbers of assumed modes two additional eigenvalues are
identified. These additional results may be weakly excited
and/or weakly observed local modes such as the vibration
of the rubber air-supply hoses for the thrusters. The
important thing to note is that their presence causes
significant perturbations in both EMAC and MPC for
what is believed to be a single structural mode in this
frequency interval. Again, the EMAC and MPC results
(and their product, CMI) reliably indicate those results
with highest confidence based on both temporal and spatial
consistency calculations.

Fig. 6 shows a comparison of measured and rcconstructed
impulse response functions. The ERA analysis uscd the
first 4.5 seconds of measured data. There is only slight
differcnce between the two functions in this interval.
Beyond the 4.5-sec data analysis inlerval, however, the
differcnces between the two functions become considerably
larger. Although it is difficult to known the exact reason
for the discrepancy between measured and reconstructed
responses beyond the data analysis interval, EMAC values
in this situation would dccrecase, highlighting the
inconsistency. EMAC quantifies the temporal consistency
of each mode beyond the primary data analysis interval on
an input-by-input and measurement-by-measurement basis.

IMPULSE RESPONSE

TIME, SEC

(a) Mecasured

IMPULSE RESPONSE

TIME, SEC

(b) Reconstncted

Fig. 6 Comparison of Measured and Reconstructed
Responses

Based on CMI (the product of EMAC and MPC), the best
results for the 4.1 Hz mode (Fig. 5) occurred using 30
assumed modes. The corresponding mode shape is shown
in Fig. 7(a). This result is highly believable based on
the smoothness and uniformity of motion over the large
set of 213 response mcasurements. Furthermore, this
shape and the corresponding frequency are well predicted by
a NASTRAN finite elcment analysis.8 Although CMI for
this mode is high indicating a reliable result based on
consistency calculations, it is also always important to
examine the physical deformation pattern of the mode to
achicve complete confidence.
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Fig. 7 Identified Mode at 4.1 Hz Using
30 Assumed Modes

To illustrate the rationale for using the standard weighted
MP in the CMI calculation rather than the alternative
unweighted MPC described earlier, Figure 7(b) shows
the distribution of magnitude and phase results for this 4.1
Hz mode. The values are arranged in ascending order of
magnitude. Overall, the identified phase angles cluster near
the ideal values of £90° and MPC is accordingly high.



However, a trend of increasing phase angle scatter from
190° at smaller magnitudes is seen. These relatively large
phase angle errors at small magnitudes are attributed to
finite measurcment resolution. The overall mode shape is
clearly accurate, however, including accurate identification
of small magnitudes at appropriate locations (based on
Fig. 7a). If unweighted MPC values are used instead of
weighted valucs in the CMI computation, the CMI value
would be unnecessarily lowered.

It is important to realize that MPC decreases from the ideal
value of 100 percent for many reasons other than low
response magnitude. For example, significant phase-angle
errors can occur for closely spaced modes which are

- inadequately uncoupled by excitation. For structures with

large numbers of closely spaced modes, such as Mini-Mast
which had 108 modes between 14 and 22 Hz due (o the
berding of individual truss members’, it may be
impractical to apply a sufficicnt number of exciters.
Another cause of lower MPC values is the occurrence of
true "complex modes” whose eigenvectors are, in fact,
significantly non-monophase (i.e., complex) due to a
nonproportional damping distribution. Although such
situations can occur in practice, low MPC values in most
applications are more often the result of identification
difficulties, many of which can be eliminated once they are
detected and understood.

Improvement of Resulls

With complex structures such as CEM, many modes
involve significant motion at only a fraction of the total
number of measurement locations. In such circumstances,
identification accuracy can be improved by de-emphasizing
data with low consistency. Both input and output EMAC
values are examined to determine optimum excitation and
measurement locations for particular modes based on the
results of an initial ERA analysis.

In this application, weighted EMAC values (i.e., EMAC
- multiplied by the square of the corresponding mode-shape

coefficient) are used to select optimum excitation and
measurement locations. The analyses use data only for the
selected exciters. All response mcasurements are included
in the analysis, however, so that complete mode shape
information is obtained. Additional emphasis is achieved
for the target mode by rctaining only the selected response
locations in all block rows of the generalized Hankel
matrix below the first q rows, where q is the total number
of response measurements. The theoretical basis for

. permilting the deletion of rows (or columns) of data in the

ERA Hanke! matrices without affecting the rank of the

matrix is well established.5+12 The approach discussed
here is the authors' practical implementation of the theory.

An cxample of the improvement achieved using this
approach is shown in Fig. 8. These results for the 0.9 Hz
mode extend only up to 20 rather than to 60 assumed
modes as before (a higher number of assumed modes was
unnecessary). Comparing Fig. 8 with Fig. 4 over the
range of 2 to 20 assumed modes, significant improvement
is observed. EMAC values are appreciably higher and more
stable. Corresponding frequency and damping results also
show improved stability. Although MPC fluctuates much
less than in Fig. 4, the average value of 95 percent is still
obtained. This lack of improvement of MPC was
unexpected. Normally, such stability is not obtained at
MPC values less than 99 percent. The explanation is
attributed to the use of piezo-film accelerometers in the
cxperiment. These sensors have considerable phase shift at
0.9 Hz which is near the lower limit of their operating
range. Although all 195 piezo-film sensors were of the
same model, appreciable differcnces in phase response
occurred at 0.9 Hz among the individual units. This
anomaly did not occur at higher frequencies.
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Fig. 8 Improved Identification of 0.9 Hz Mode



Conclusions

The concepts discussed in this paper have been developed
over the course of several years in conjunction with many
applications of the Eigensystem Realization Algorithm.
The result of these efforts is a single parameter known as
the Consistent-Mode Indicator which reliably indicates the
relative confidence of each identificd mode on the basis of
both temporal and spatial consistency calculations. In
practice, modes with indicator values greater than
approximately 80 percent can gencrally be accepted
verbatim. Modes with lower values, however, require
additional attention, By examining both the Extended
Modal Amplitude Coherence, which measures temporal
consistency, and the Modal Phase Collinearity, which
measures spatial consistency, an explanation for low
indicator values can often be developed. Once an
explanation is obtained, additional tests and/or data
analyses can be performed to improve these results. One
approach for improving results of selected modes by de-
emphasizing data with low consistency was illustrated.
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