Composition Dependence of Superconductivity in $\text{YBa}_2(\text{Cu}_{3-x}\text{Al}_x)\text{O}_y$

Narottam P. Bansal
Lewis Research Center
Cleveland, Ohio

December 1991
COMPOSITION DEPENDENCE OF SUPERCONDUCTIVITY
IN YBa\textsubscript{2}(Cu\textsubscript{3-x}Al\textsubscript{x})O\textsubscript{y}

NAROTTAM P. BANSAL
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Eleven different compositions in the system YBa\textsubscript{2}(Cu\textsubscript{3-x}Al\textsubscript{x})O\textsubscript{y}
(x = 0 to 0.3) have been synthesized and characterized by
electrical resistivity measurements, powder x-ray diffraction,
and scanning electron microscopy. The superconducting transition
temperature T_c(onset) was almost unaffected by the presence of
alumina due to its limited solubility in YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7-x}. However,
$T_c(R = 0)$ gradually decreased and the resistive tails became
longer with increasing Al\textsubscript{2}O\textsubscript{3} concentration. This was probably
due to formation of BaAl\textsubscript{2}O\textsubscript{4} and other impurity phases from
chemical decomposition of the superconducting phase by reaction
with Al\textsubscript{2}O\textsubscript{3}.
INTRODUCTION

Since the discovery of high temperature superconductivity with an onset temperature of \(\sim 93 \) K in the Y-Ba-Cu-O system, a number of reports have appeared studying the effects of substitution by various ions directed at the rare earth\(^1,2\), alkaline earth\(^1,3\), copper\(^1,4\), as well as oxygen\(^5,6\) sites. In our earlier studies\(^7,8\) on YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\) thick films screen printed on alumina substrates, it was found that the superconducting transition temperatures \((T_c) \) of the films corresponding to zero resistance were much lower than that of the bulk HTS. It was suggested that this may be caused by chemical interaction of the film and the alumina substrate at the interface followed by diffusion of alumina into the film during the high temperature sintering step. In order to verify this concept, the present investigation was undertaken where Y-Ba-Cu-O HTS materials doped with gradually increasing concentrations of alumina were prepared and characterized for their superconducting and other properties.

The objective of this study was to carry out a systematic investigation of the effect of the substitution of Al for Cu in YBa\(_2\)Cu\(_3\)O\(_{7-\delta}\) on its superconducting properties. Samples with the nominal composition YBa\(_2\)(Cu\(_{3-x}\)Al\(_x\))O\(_y\), where \(x \) was varied from 0 to 0.3, were synthesized by the solid state reaction method. The resulting materials were examined by electrical resistivity measurements as a function of temperature, x-ray diffraction,
and microscopy.

EXPERIMENTAL METHODS

The starting materials used were Y$_2$O$_3$ (Molycorp 99.99%), BaCO$_3$ (ALFA, technical grade), CuO (ALFA, ACS grade), and Al$_2$O$_3$ (BAIKOWSKI, high purity grade). YBa$_2$Cu$_3$O$_{7-\delta}$ powder was synthesized by the solid state reaction method. Appropriate quantities of the powders were slurry mixed in acetone using a mortar and pestle, oven dried at -110°C for 2 hours, and calcined at -920°C for 16-18 hours in air in an alumina crucible. The mixture was cooled slowly, pulverized, and recalcined for 16-18 hours at 920°C. The cycle of calcining, cooling and grinding was repeated two more times resulting in dark black powder. A master composition containing aluminum, YBa$_2$Cu$_2$Al$_1$O$_7$, was synthesized in a similar manner.

Aluminum-doped powders of eleven different compositions, YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ (x = 0.0, 0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25, and 0.30), were prepared by mixing calculated amounts of YBa$_2$Cu$_3$O$_{7-\delta}$ and YBa$_2$Cu$_2$Al$_1$O$_7$ powders with a mortar and pestle, calcining for 16-18 hours at -920°C in air in alumina crucibles, and then furnace cooling to room temperature. The resulting mixtures were reground to fine powders, uniaxially dry-pressed into -2.5x0.5x0.7 cm3 rectangular bars, and cold isostatically pressed at -60,000 psi. The bars were heated at 5°C/min to 945°C, sintered for 10 h, cooled at -3°C/min to 450°C/min to 450°C.
°C and held for 10 h, and finally furnace cooled to room
temperature. The entire sintering and annealing cycle was
carried out in flowing oxygen.

A part of each sintered bar was ground to powder. Powder
X-ray diffraction (XRD) patterns were recorded in the 2θ range
of 10° to 90° at room temperature using a step-scan procedure
(0.03°/2θ step, count time 0.4 s) on a Philips ADP-3600
automated diffractometer equipped with a crystal monochromator
employing copper Kα radiation.

Electrical resistivity measurements as a function of
temperature were performed in the standard four-probe
configuration. Silver paint was used to attach the leads and the
current density used was ~0.1 A/cm². Fracture and polished
surfaces of the specimens were observed in a JEOL JSM-840A
scanning electron microscope (SEM). X-ray dot mapping of various
elements was carried out using a Kevex Delta class analyzer.

RESULTS AND DISCUSSION

Although resistivity data only around Tc will be reported,
the resistivity of all samples was measured from room
temperature to temperatures below Tc. Temperature dependence of
electrical resistivity normalized to its value at 100K for some
typical compositions is shown in Fig. 1. All the samples
exhibited metallic behavior in the normal state as seen from the
R vs. T curves in Fig. 1. All the compositions were
The values of transition temperature $T_C(\text{onset})$, $T_C(R=0)$, and the transition width (10-90%), ΔT_C, for various compositions are listed in Table I. Variations in T_C and ΔT_C as a function of x are presented in Figures 2 and 3, respectively. The undoped superconductor has a $T_C(\text{onset})$ of 91 K, $T_C(R=0)$ of 89.5 K, and ΔT_C of 1.4 K. The $T_C(\text{onset})$ of the doped samples is $\sim 91 \pm 0.8$ indicating no effect of Al substitution as born out by statistical analysis. However, $T_C(R=0)$ systematically decreases with increase in Al concentration (to 60.9 K for $x = 0.3$). Also, the resistive tails become larger and the transition width gradually broadens with increase in x (Fig. 3). This is probably due to an increase in the fraction of the nonsuperconducting phases. Our $T_C(R=0)$ values for $x = 0.05$ and 0.10 compositions are in good agreement with the results of Siegrist et al. 9

The powder x-ray diffraction spectra of some typical compositions are given in Fig. 4. An analysis of the peak positions and intensities shows that the parent undoped compound has an orthorhombic structure with lattice parameters, $a = 3.827$ Å, $b = 3.885$ Å, and $c = 11.679$ Å, in good agreement with the values given in the literature10. The Al-doped materials preserve the basic orthorhombic structure, though some modifications in the diffraction patterns are observed. Values of lattice parameters calculated on the basis of an orthorhombic unit cell for various compositions are given in Table I.
Diffraction peaks for BaAl$_2$O$_4$ are also present in XRD patterns of samples having ~3% or higher substitution of Al for Cu ($x \geq 0.08$). The following chemical reaction has been proposed11 between YBa$_2$Cu$_3$O$_7$ and Al$_2$O$_3$ in the sintered powder form at an annealing temperature of 945°C in oxygen:

$$4\text{YBa}_2\text{Cu}_3\text{O}_7 + 6\text{Al}_2\text{O}_3 \rightarrow 2\text{Y}_2\text{BaCuO}_5 + 10\text{CuO} + 6\text{BaAl}_2\text{O}_4 + \text{O}_2$$

However, formation of Y$_2$BaCuO$_5$ and CuO phases was not detected by XRD in the present study.

SEM micrographs taken from the polished and fracture surfaces of HTS specimens of different compositions are presented in Fig. 5 and 6, respectively. Pores, a few microns in size, are present indicating the samples are not fully dense.

The SEM images and the X-ray dot maps of various constituent elements taken on the polished surfaces of the HTS samples with $x = 0.1$ and 0.2 are presented in Fig. 7 and 8, respectively. Distribution of Al as well as of all other elements is seen to be uniform throughout the specimen (Fig. 7) with $x = 0.1$. However, in the HTS with higher Al content, $x = 0.2$ (Fig. 8), a large grain rich in Cu but deficient in Ba and Y is present. A few small particles rich in Al or Y are also detected.

Studies of the effects of various substituents on superconductivity of YBa$_2$Cu$_3$O$_7$ have been reported$^{1-6}$. Most of the elements, other than rare earths, which substitute into the
cuprate perovskite lattice reduce the superconducting onset temperature. In the present study the T_C (onset) was almost unaffected by the substitution of Cu by Al. This is in agreement with the findings of Yan et al.1 that the presence of alumina did not have any significant effect on the T_C of YBa$_2$Cu$_3$O$_7$. However, from XRD the heavily doped materials showed1 the presence of appreciable amounts of second phases. The material doped with 23.1 mole % of AlO$_{1.5}$ ($x = 0.273$) was found to contain 4% of BaAl$_2$O$_4$. Grains having high concentrations of Ba and Al were also detected by SEM and EDAX. The amount of BaAl$_2$O$_4$ increased and another impurity phase Y_2BaCuO_5 formed at higher concentrations of AlO$_{1.5}$. These results show that alumina doping does not affect the superconductivity of the YBa$_2$Cu$_3$O$_{7-\delta}$ phase due to its limited solubility in the HTS. However, it does induce decomposition of the superconducting phase by leaching out some components of the HTS. In another study12, substitution of aluminum in YBa$_2$Cu$_3$O$_7$ ceramic samples was found to suppress T_C by ~ 6 K/atom % and to shift the crystal symmetry from orthorhombic to tetragonal. The effects of aluminum doping on properties of single crystals of YBa$_2(Cu_{3-x}Al_x)O_7$ ($x = 0 - 0.22$) compositions have also been studied9. Al substitutes for copper in the Cu-O chains only, whereas the CuO$_2$ planes remain unperturbed. The T_C, determined from dc diamagnetic susceptibility measurements, changed from 92 K for $x = 0.0$ to ~ 80 K for $x = 0.1$, and then dropped sharply for higher x. Single
phase polycrystalline ceramic samples could be prepared9 for only low Al content.

In the case of polycrystalline YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$, it has been shown9,13,14 that Al substitutes at the Cu-O$_1$ chain sites resulting in a slow decrease in T_c. Also the structure changes from orthorhombic to tetragonal for $x > 0.1$. For these materials it is known13,15 that doping at the Cu(2) site by ions such as Zn$^{2+}$, and Ni$^{2+}$ is most effective in reducing the T_c, whereas doping at the Cu(I) sites by ions such as Al$^{3+}$, Ga$^{3+}$, Fe$^{3+}$ and Co$^{3+}$ is most effective in promoting the orthogonal to tetragonal structure transformation. In these chemically complex materials, charge selectivity may control15 the site selectivity.

SUMMARY

Materials of nominal composition YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ ($x = 0$ to 0.3) have been prepared and characterized by electrical resistivity measurements, x-ray diffraction and microscopy. The temperature corresponding to the onset of superconducting transition was unaffected by the presence of alumina due to its limited solubility in the HTS phase. However, the resistive tails became longer and $T_c(R = 0)$ decreased with increase in the dopant concentration probably due to the formation of BaAl$_2$O$_4$ and other impurity phases from chemical reaction between HTS and alumina.
CONCLUSIONS

YBa$_2$Cu$_3$O$_{7-\delta}$ reacts chemically with alumina. Interfacial diffusion barrier coatings need to be developed for successful use of alumina as a substrate material for HTS films in order to circumvent its chemical reaction with the YBa$_2$Cu$_3$O$_{7-\delta}$ superconductor.

ACKNOWLEDGMENTS

Thanks are due to Professor D. E. Farrell, Physics Department, Case Western Reserve University, for the resistivity measurements. Nancy Gilbert, a summer student intern from Illinois Institute of Technology, helped with the sample preparation. Ralph Garlick carried out the X-ray diffraction measurements and John Setlock assisted with the SEM.
REFERENCES

4. G.Xiao, M.Z.Cieplak, A.Gavrin, F.H.Streitz, A.Bakhshai, and C.L.Chien, "Superconductivity and Structure of YBa$_2$(Cu$_{0.9}$Al$_{0.1}$)$_3$O$_7$ (A = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn)", Rev. Solid St. Sc., 1, 323 (1987).

12. J.P. Franck, J. Jung, and M.A.-K. Mohamed, "Superconductivity in the System \((Al_{x}Y_{1-x})Ba_{2}Cu_{3}O_{6.5+\delta} \) \text{", Phys. Rev. B, 36, 2308 (1987).}"

14. R. Suryanarayanan, O. Gorochov, M. Rateau, and H. Pankowska, "Structural, Electrical and Magnetic Properties of Al and In Substituted \(YBa_{2}Cu_{3}O_{y} \)\text{", Physica C, 153-155, 874 (1988).}"

Table I. Lattice Parameters, Transition Temperatures, and Transition Widths of Superconducting \(\text{YBa}_2(\text{Cu}_{3-x}\text{Al}_x)\text{O}_y \) Compounds Doped With Various \(\text{Al}^{3+} \) Concentrations

<table>
<thead>
<tr>
<th>Value of (x)</th>
<th>Lattice Parameters (Å)</th>
<th>Transition Temp. (K)</th>
<th>(\Delta T_C(10-90%))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>0.0</td>
<td>3.827</td>
<td>3.885</td>
<td>11.679</td>
</tr>
<tr>
<td>0.01</td>
<td>3.824</td>
<td>3.887</td>
<td>11.67</td>
</tr>
<tr>
<td>0.02</td>
<td>3.837</td>
<td>3.892</td>
<td>11.68</td>
</tr>
<tr>
<td>0.05</td>
<td>3.828</td>
<td>3.88</td>
<td>11.66</td>
</tr>
<tr>
<td>0.08</td>
<td>3.839</td>
<td>3.88</td>
<td>11.69</td>
</tr>
<tr>
<td>0.10</td>
<td>3.833</td>
<td>3.862</td>
<td>11.66</td>
</tr>
<tr>
<td>0.12</td>
<td>3.837</td>
<td>3.882</td>
<td>11.673</td>
</tr>
<tr>
<td>0.15</td>
<td>3.852</td>
<td>3.869</td>
<td>11.676</td>
</tr>
<tr>
<td>0.20</td>
<td>3.829</td>
<td>3.877</td>
<td>11.67</td>
</tr>
<tr>
<td>0.25</td>
<td>3.86</td>
<td>3.88</td>
<td>11.64</td>
</tr>
<tr>
<td>0.30</td>
<td>3.83</td>
<td>3.90</td>
<td>11.66</td>
</tr>
</tbody>
</table>

Figure 1.—Temperature dependence of normalized resistance of YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ superconductor doped with various Al$^{3+}$ concentrations.

Figure 2.—Variations in transition temperatures, T_c(Onset) and T_c(R = 0), of YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ superconductor as a function of Al$^{3+}$ dopant concentration.

Figure 3.—Influence of Al$^{3+}$ dopant concentration on the transition width of YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ superconductor.
Figure 4.—Typical powder x-ray diffraction spectra of YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ superconducting compounds of three different compositions.

Figure 5.—Scanning electron micrographs taken from the polished surfaces of YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ superconductors having different aluminum contents.

Figure 6.—SEM micrographs of fracture surfaces of YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ compounds of different compositions.
Figure 7.—SEM image and x-ray dot maps of different constituent elements taken from polished surface of the YBa$_2$Cu$_{2.9}$Al$_{0.1}$O$_y$ superconductor.

Figure 8.—SEM image and x-ray dot maps of various elements taken from polished surface of the YBa$_2$Cu$_{2.8}$Al$_{0.2}$O$_y$ superconductor.
Title and Subtitle
Composition Dependence of Superconductivity in YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$

Author(s)
Narottam P. Bansal

Performing Organization Name(s) and Address(es)
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

Performing Organization Report Number
E-6737

Sponsoring/Monitoring Agency Name(s) and Address(es)
National Aeronautics and Space Administration
Washington, D.C. 20546-0001

Sponsoring/Monitoring Agency Report Number
NASA TM-105358

Abstract
Eleven different compositions in the system YBa$_2$(Cu$_{3-x}$Al$_x$)O$_y$ (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder x-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T_c (onset) was almost unaffected by the presence of alumina due to its limited solubility in YBa$_2$Cu$_3$O$_{7-x}$. However, T_c ($R=0$) gradually decreased and the resistive tails became longer with increasing Al$_2$O$_3$ concentration. This was probably due to formation of BaAl$_2$O$_4$ and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al$_2$O$_3$.

Subject Terms
High-Tc superconductors; Superconductivity; Perovskites; Doping