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Section 1

LOX Posts



INJECTORS (LOX POST)
1. Purpose

The function of an injector, which 1is located in the forward end of the
combustion chamber is similar to that of carburetor in an internal combustion
engine. The 1injector dintroduces and meters the propellant flow to the
combustion chamber after atomization and mixing. Design of injectors require
a thorough understanding of chemical and physical process encountered in the
combustion chamber. The injector design has a major impact on both engine
performance and combustion stability.

2. Injector Patterns

A variety of 1injector patterns have been designed to satisfy the needs of
various propellant combinations. Some of the injector concepts that have been
used 1in practice include 1) impinging (Fig. 1), 2) uniform ccaxtal (Fig. 2&
Fi1g. 3), 3) spray bar coaxial (Fig. 4), 4) coaxial with swirl (Fig. 5), and 5)
micro orifice showerhead (F1g. 1). A comparison of injector pattern is shown
in Table 1. For ltquid oxygen hydrogen engines, coaxial injection elements
have proven to provide favorable combustion performance and stability. The
current SSME configuration utilizes uniform coaxtal pattern 1in both the

preburners and injectors.

3. Coaxial Element Description

A qualitative description of the coaxial element design is shown in Fig. s.
The coaxial elements are particularly adapted to mixing of gaseous propellants
such as hydrogen, with liquid propellants such as oxygen. (Coaxial elements
consist of tubes or drilled posts that provide the flow area for one
propellant, and the concentric annull that provide the flow area for the
second propellant. Proper propellant atomization and mixing which is central
to combustion efficiency 1s promoted by momentum exchange due to high
differential velocities between the fuel and oxidizer. Recess cup region
where the Lox post stops short of being flush with the face plate and a thin
Lox post trailing edge have definite positive influences on the combustion
performance of the injector.

FUECEDING PAGE BLANK NOT FILMED
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Fig. 1. Examples of Injector Patterns
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Fig, 3. Million Pound M1 Engine Coaxial Injector Pattern



Spray Bar Injector Pattern

Fig. 4.
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4, Baffle Elements

Baffle elements is one of the common features that appear 1in many rocket
engines manufactured to date (Fig. 7). Even though every measure is generally
taken in the design of 1injection elements for stable operation, dynamic
stabiitty cannot be gquaranteed over a wide range of operating requirements
with a stringent verification requirement. Therefore, combustion baffles and
acoustic absorbers are generally incorporated for added insurance for damping
instability under wide operating conditions. Baffles can be etither separate
plates or injector elements themselves can be éxtended to form baffle barriers.

5. SSME Main Injector Elements

General Oesiqn Oescription: The main injector is configured of 600

injection elements, combustion baffles, a faceplate assembly and a
manifold-body structure (Fig. 8). The 1njection elements are of the
coaxial type with the liquid oxygen injected at low velocity at the center
of the element and the gaseous fuel injected at high velocity through the
surrounding annulus. This high velocity difference enhances propellant
atomization and mixing for maximum performance. The coaxial elements are
spaced uniformly across the face, both radially and circumferentially.
This provides for uniform mass flow and mixture ratio across the chamber,
as well as maximum vapoarization and mixing, provided in this well
characterized main injector assembly.

The baffles are formed by 75 of the injection elements extending 2 inches
below the face (Fig. 9). These baffles prevent combustion instability
modes below a frequency of 4300 Hz. The 75 baffle-forming injection
elements give the same propellant mass flux and mixture ratio as the
remaining 525, but they differ in confiquration. The major difference is
that the baffle elements inject hydrogen gas, whereas the main elements
inject combusted hydrogen-rich gases. This is done because the baffle
elements are convectively cooled where they extend below the injector
face. The cooling is more effectively accomplished with hydrogen than
with the hot-gas.

1374e
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The injector faceplate assembly is transpiration cooled with cold gaseous
hydrogen. It is especially designed to allow freedom of expansion and to
maintain low face temperatures. This enhances 1ife and prevents
distortion of the elements. This 1is achieved with a dual-faceplate
configuration. The primary faceplate separates the cooling hydrogen from
the combustion chamber, and the secondary faceplate separates the cooling
hydrogen from the hot gas (Fig. 10). The faceplates are uniformly
supported by the oxygen posts, which are threaded into both porous faces.
A sliding Joint 1is provided between the faceplate assembly and the
adjacent hot-gas manifold/main combustor interface. Sealing of this
Tocation is effected by two contracting-ring seals, one on each face.

Hydrogen enters the dual-faceplate assembly radially around the full
circumference. It flows inward around the injection elements and divides
into three paths (Fig. 11). Part of the total passes through the porous
primary faceplate. This hydrogen cools the face and then enters the
combustion chamber. Another portion of the total passes forward through
the porous secondary faceplate. This hydrogen cools the face and then
mixes uniformly with the incoming hot-gas from the turbines and aids in
achieving maximum performance. The remaining hydrogen enters the 75
baffle elements through holes in the retainer.

The 1injector body (Fig. 12) forms the two main propellant manifolds, one
for the hot-gas and the other for the liquid oxygen. The hot-gas manifold
exists between the contoured body and the secondary faceplate. The body
is contoured to maintain a uniform velocity of the hydrogen-rich hot-gas
which enters around the injector circumference and flows radially inward.
The injection element posts pass axtally through this hot-gas manifold.
The hot-gas enters each element through 6 slots in the retainer Just
forward of the secondary faceplate.

The liquid oxygen torous manifold covers the forward end of the body and
provides uniform static pressure at all elements. The 11quid oxygen is
transferred from the manifold directly to the center post of the coaxtal
element through orifices (Fig. 10). The oxygen posts inertia are welded
into the body. Flow is controlled at the entrance to each oxygen post by

1374e
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a high-impedance orifice which provides uniform oxygen flow to each
element for maximum performance. Major portion of the pressure drop
occurs in this orifice. The toroidal 1ligquid oxygen manifold also
permitted the installation of the augmented spark igniter at the center of
the injector.

6. Face Cooling

Face cooling 1is a major consideration in the design of a high-performance
long-1ife injector. A low face temperature 1is required to preclude
performance-degrading thermal distortion within the 1injection element and
1ife-degrading thermal strains within the faceplate structure.

To minimize the risk in this critical area, a cooling concept with a broad
technology base 1s used for the main injector design. Transpiration 1nject6r
face-cooling with cold gaseous hydrogen is employed and has been successfully
demonstrated with coaxial 1njectors during several hydrogen-oxygen engine
development proqrams; These include:

Maximum Chamber

Program _ Pressure, PSIA

RL-10 300
J-2 800
M-1 1000
J-25 1300
AEA SEGMENT 2000
(NAS8-20349)

BORD 1 4000
SSME 3000

A  porous material (Rigimesh) which allows for simple and effective
transptiration cooling of the faceplate is used for the main injector. Cold
hydrogen gas was selected as the cooling media because the use of hot-gas
would result in a face temperature greater than 1400F and a radial thermal
expansion of 0.120 inch. The design hydrogen flowrate results in a Jow
injector face temperature of 200F and a radial thermal growth of less than
0.015 inch, thus having a negligible effect on the injection elements.

1374e
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7. Thermal Expansion Provisions

The dual-faceplate structure is attached to the injector body through the
individual oxidizer 1injection posts (Fig. 10). Heat exchange between the
1iquid oxygen posts and the hot-gas within the injector body manifold results
in the thermal expansion of the longer posts in the outer rows being greater
than the shorter posts near the center of the injector. However, the variabie
thermal expansion of the oxidizer posts fis partially compensated by the
greater cooling of the hot-gas sleeves within the outer rows by the cold
hydrogen flowing between the primary and secondary faceplates. The net axial
thermal deflection of the faceplate between the center and outer region of the
injector is therefore small. This small differential axial movement is well
within the expansion capability of the main injector threaded faceplate
structure. Because the baffle elements experience different heating
characteristics than the main elements within the cold cavity, the baffle
elements are threaded into the secondary faceplate only and are free to
contract in an axtal direction at the primary faceplate joint.

The bending flexibility of the 1igquid oxygen posts is sufficient to comply
with the radial thermal expansion and contraction of the injector face. The
shorter stiffer posts are located near the center where the radial movements
are small and the longer flexible posts are located in the outer region of the
injector where the radial movements are a maximum. The maximum radial
deflection at the faceplate outside diameter is -0.014 inch during prechill
and +0.024 inches during mainstage operation.

The relative injector-combustor axial and radial movement at the periphery of
the dual-faceplate 1s accommodated by two contracting-ring seals. The seals
are retained within the groove by a spring-loaded carrier ring which provides
a positive bearing load an the face of the ring seals.

8. Components of Main Injector Post

The major components of the injector element include:

1374
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1) LOX Post
2) Retainer

3) Fuel Sleeve Fig. 13
4) Face Nut
5) Heat Shield Retainer Fig. 14

6) Swage Ring
In addition, Row 13 posts contain:

7) Flow Shields

8) T-B8olt and Nuts Fig. 15§

The main injector Lox post consists of hollow post within a sleeve that is
secured by a retainer and nut between primary and secondary plates of the main
injector.

The upper ends of the post have four helically wound spoilers machined in
their outer perimeter to reduce vibration induced by hot gas flow due Eo
vortex shedding.

The retainer clamps the secondary faceplate to the sleeve and contains six
equally spaced orifices that direct the hot gas into the annulus surrounding
the post.

The sleeve with the post forms the annulus for the hydrogen rich gas between

primary and secondary faceplates.

The face nut secures the primary faceplate to the sleeve and forms the cup in
which the initial contact between 1iquid oxygen and hot gas takes place. The
face nut also presents a convenient way of changing the metering of hot gas
into the combustion chamber if necessary. The assembly of major main injector

elements is schematically 11lustrated in Fig. 16.

A heat shield is placed between the interpropellant plate and hot gas manifold
to protect the 1interpropellant plate from hot gases (Fig. 14). The heat
shield is kept in place by a heat shield retainer and a heat shield swage ring
retainer.

1374e
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Fig. 16. Assembly Schematic of Loxpost Components



The flow shield assembly is used in the Row 13 Lox posts only (Fig. 9 and Fig.
15) to protect the Row 13 posts from direct impinging of hot gases. In
addition, flow shields reinforce the row 13 posts.

9. Comparison of Main Injectors Between Various Rocket Engines

A comparison of geometric dimensions of Lox posts for J2, J2-S, M1, SSME and
RL-10 engines are given 1in Table 2. The variations in number of elements,
post ID/00 diameter ratios, must be observed. The large variation in
combustion chamber pressure (Pc) and variation in Fuel temperatures must be
noted. The comparatively stable Lox temperature around 200°R must also be
observed. The large At observed in SSME is due to the fact SSME uses the
staged combustion process involving hot gases (hydrogen rich steam), whereas
the other engines use cold hydrogen gas as the fuel. The commonality of the
injectors in J2, M1 and SSME (Fig. 16, 17 and 18) having brazed or welded
connection at the top dome and the threaded connection at bottom for the fuel
sleeve must be noted. The presence of helical whirlers in SSME injector in
the outer diameter to act as spoilers (F1g. 13) or in the inside diameter to
give a whirling action to Lox (Fig. 18), must be observed.

10. Main Injector Baffle Elements General Design Description

As described earlier, baffle elements are stability aids used in the main
injector (Fig. 9). The baffle injection element is also coaxial and consists
of ligquid-oxygen core which is surrounded by gaseous hydrogen annulus (Fiq.
19). The propellant flowrate and mixture ratio from baffle element is equal
to that of main injection element; consequently, the overall mass and mixture
ratio balance within the combustion chamber 1is not disturbed by the
incorporation of combustion baffles.

Cooling of combustion baffles within a high chamber pressure environment is a
serious consideration. A cooling concept very similar to main combustor is
used because of similar heat transfer environment at the baffle and in the
upper region of the combustion chamber. Hydrogen cooling with milled channel
walls has demonstrated failure free operation at chamber pressures and at

1374e
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upper combustion environments. The baffle coclant channe) geometry is
optimized to provide uniform low hot gas surface temperature. A baffle length
of 2" {s used to provide dynamic stabi11ty over all operating conditions.

Each main injector baffle element assembly consists of a post, a retainer, a
sleeve, a jacket and a core (Fig. 20). The sleeve, jacket and the core are
brazed together into an integral component.

Similar to the normal main injector element, the post ts hollow, welded to the
injector body and ported to the injector oxidizer manifold through a metering
orifice in the injector body. The upper end of the posts have four helically
wound spoilers machined to the outer diameter to act as spoilers to vortex
shedding resonance phenomena. Uniike the regular 1njector retainer, the
retainer 1in the baffle element has no holes and threads to the posts and
clamps the secondary plate to the sleeve which is threaded to the retainer.

The sleeve is hollow throughout its length and has 16 rows of orifices, which
direct cold hydrogen gas into the annulus formed by post and sleeve. From
this annulus the cold hydrogen gas ts redirected through holes in the sleeve
and into the annulus formed by the jacket and core.

The 1inner wall of the jacket has milled rectangular channels (Fig. 20) to
provide convective cooling of the baffle element exposed to high temperature
in the MCC. The geometry of the baffle tip provides both a smooth external
gas transition and initiates early propellant interaction at the baffle tip.

11. Fatlure History of Main Injector Lox Posts

The SSME's have demonstrated excellent performance for the 15 space flights to
date and have undergone over 1000 successful firings. However, SSME's
experienced main injector failures in early test stand firings. Evolution of
main injector configuration 1s a direct result of Lox post failures.

In early Lox post designs, the material used was 316L cres. These injectors
falled in early engine firings (engine 0002 and 0005) due to cracking in
thread and tip regions (Fig. 21). Fig 22 1indicates the failure occurred in
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high flow regions at the fuel side transfer duct exits. The matn injectors 1in
engines 0002 and 0005 had approximately 780 seconds of equivalent RPL {100%
or rated power level) at the time of failure. Flow shields were added {Fig.
15) to reinforce the flow 13 posts, modify the injector flow distribution and
cool the outer row posts. At approximately 20,000 secs equivalent RPL time,
shielded engine 2004 experienced failure in a row 12 post tip regton. At that
time, existing cres posts were reworked to put a material more suited to high
temperature fatigue environment (Haynes 188 vs. 316L cres) in the thread and
tip regions. Two later engines, 2108 and 0110, both of which had some run
time at the full (109%) power lever (FPL) experienced failures as a result
of cracks in the 1inertia weld region (Fig. 23). These cracks occurred
approximately 2800 secs of equivalent FPL time. To attain the goal of
infinite 1ife, the entire post is now made of Haynes 188 material. The only
fatlure of this configuration has been the cracking of secondary face plate
retainers (Fig. 24) at 4500 secs at FPL (109% RPL). This resulted in .a
design modification to have a stronger retainer with more material and a
radius to reduce the stress in the stress concentration area where the
cracking occurred. This configuration is calculated to have infinite 1ife at
FPL.

The fatlure log of the main 1injector posts to date include two thread
fatlures, two tip failures, two 1inertia weld failures, and two retainer
failures. On another occasion, the Lox post had permanent deformation due to
bending result of high drag loads. Current expert opinion on Lox post
fatlures is due to HCF resulting from unknown random flow induced pressure

loading.
12. Loads on SSME Lox Paost

The outer row 13 (Fig. 25) 1s subjected to the most severe loading
conditions. The following loadings need to be considered in the analysis of
Lox post.
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Steady state loads:

1) thermal loads from high temperature gradient,

2) static drag loads from hydrogen rich steam impinging in the post,
3) direct loads from dfferential pressure across the face plate,

4) differential pressure between I.D. and 0.0. of the Lox post.

Dynamic loads:

1) mechanical vibration of the powerhead,
2) flow-induced vibration,

a) fluid elastic excitation

b) turbulence,

c) vortex shedding.

The contribution of loads to the Lox post analysis best summarized as follows:

LOAD STRENGTH LCF HCF
Thermal X X X
Static Pressures X

Mechanical vibrations X

Flow Induced vibrations X -
External Loads X

Residual Loads - -

Eo T S S

13. Thermal Loads

The Lox post experience severe thermal gradients. These thermal gradients
vary along the post length. The heat transfer through the post, from hot gas
to Lox, 1s affected by six factors: 1) exterior hot-gas temperature, 2)
exterior hot-gas film coefficient, 3) thermal conductivity of the post walls,
4) peripheral parts on the post surface (heat shield retainer, swage ring,
secondary faceplate retainer), 5) interior Lox temperature, and 6) interior
Lox f1lm coefficient.
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Hot-gas temperature is measured at the turbine exit, upstream of the injector
post field. The hot gas is cooled slightly as it travels to the Main
Injector, but it is a good assumption to base the Main Injector hot gas
temperature on the measured value at the turbine exit as 1t is a recorded data
point that closely approximates the actual temperature. The hot-gas
temperature changes sliightly from test to test, with more significant
variations between engines, engine configurations, and power levels. These
variations can be up to hundreds of degrees apart due to all the influencing

factors.

The hot-gas heat transfer coefficient is based on characteristics of cross
flow over tube banks (as encountered in many heat exchanger arrangements),
where results of various investigations have been correlated into a formula.
This correlation is for smooth, regqularly spaced tubes in cross-flow. The
main injector Lox posts are not smooth, the hot-gas flow has a significant
axial component, and although tube spacings are generally regular, they are
not in a uniform pattern. A test program in the year 1982 verified that in
the main body section of the posts, this cross-flow over tube banks
correlation was applicable to the Lox posts in the outer four rows.
Therefore, the hot-gas heat transfer coefficient in ‘the outer rows, where
fajlures have predominantly taken place, can be closely modeled by established
and verified analytical methods.

At the ends of the past (near the interpropellant plate and the secondary
faceplate), the fiIm coefficient is modified following classical trends. This
modification of the “main body" film coefficient then allows the ends of the
post to be analyzed with high confidence.

Thermal conductivity through the post wall is a well-defined phenomenon. The
thermophysical properties of the post have been documented and with the
geometry of the post known, the thermal resistance through the post 1is
established.

Additional parts added onto the post affect the heat transfer into the post.

Added material acts either to increase the path length of heat transfer
through the metal, or as a convection shield to the post, protecting it from
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the impingement of high velocity hot gas. Thus, for an accurate analysis,
thermal loads are derived from detailed local heat transfer modeis. There are
heat transfer models with 1) details near the interpropellant and inertia
weld, 2) models of the retainer threaded connecttion and assembly, 3) models of
Lox post tip zone, and 4) crossection models of swirler areas to study
nonaxisymmetric loading. Temperature loads cause large strain range (1 to
2.5%) on the post resulting in low cycle fatigue considerations.

Uncertainties of thermal load on the Lox post are caused by improper mounting
of heat shield retainer near the Lox dome and the variation in turbine
discharge temperatures. In addition, because of the compiex flow regime, the
velocity and direction of flow if not well defined, results in vartation in
heat transfer coefficients used in the heat transfer analysits.

14. Flow Loads

Due to the importance of flow loads on the main injector, a large amount of
effort has been devoted to understanding the flow in and approaching the main
injector. Determination of flow loads analytically 1in the complicated
geometry of hot gas manifold and main injector consisting of tube bundle is at
best a difficult task. Because of the complexity of loading, the accuracy of
flow loads and their variation is not well understood. Therefore, flow
analysis on the post 1s a combination of analytical computational fluid
dynamic results, cold flow tests, hot fire test measurements, and failure
analysis studies combined with expert opinion polling.

Cold flow tests have been conducted on full scale SSME hardware. The
fluctuating hot fire pressure measurements have been compared with cold flow
tests using appropriate scaling and good agreements have been obtained.

In addition to the flow test, computational fluid dynamics 1is used to
understand and improve flow in the SSME powerhead. The procedure includes the
solution of incompressible Narrier-Stokes equations in a generalized
curvilinear coordinate system. The main injector Lox post core is modelled as
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a volume averaged porous media. A typical computation fluid mesh for main
injector core is shown in Fig. 26. The analyttical flow field descriptions are
shown in Fig. 27 representing a vertical section and in Fig. 28 representing a

horizontal direction.

Flow induced vibration mechanisms consist of a) fluid-elastic coupled
excitation, b) turbulence, and c) vortex shedding. Because of the similarity
of flow conditions around tube bundles in heat exchangers and the flow around
the main injector configurattion, many lessons learned 1in heat exchanger
destgns can be applied to main injector flow. Large amplitude tube vibration
has resulted in rapid deterioration in tubes in heat exchangers when certain
critical velocity is needed. The vibration is sinusoidal occurring at the
natural frequency of the tube.

Turbulence causes narrow band random vibration at about natural frequencies of
the tubes in the fluid. Vibration amplitudes can vary randomly in time and
direction. Turbulence is thought to be the main cause of tube vibratton in
heat exchangers when the possibility of fluid elastic excitation has been
eliminated.

when a fluid flows across a circular cylinder, the wake behind the cylinder
contains vortices. The vortices are shed from cylinder in a regular manner.
The alternating force associated with vortex shedding can cause resonance when
1ts frequency matches the post frequency. In early phases of SSME injector
design, this phenomenon was considered as a potential problem resulting in the
addition of spoilers to the outer diameter of the posts.

Major uncertainty associated with fluid-elastic coupling calculations is the
structural damping assoclated with the posts. Major vartations associated
with drag 1loads 1include turbine discharge temperatures and vartation 1in
vibration and from turbine to turbine.
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15. Mechanical Vibration

Effect of mechanical vibration loads on main injector Lox posts is small
compared to the flow induced dynamic loads. Mechanical base acceleration
environment on the Lox posts are obtained from accelerometer readings on the
engine (Fig. 29).

16. Materials in Lox Post

Evolution of materials used in Lox post design 3is a direct result of lessons
learned from Lox post failures. Initial Lox post made out of 316L cres
material exhibited HCF failures in the threaded region of the tip. A design
change was made in which 316L cres was used in the main body of the Lox post
except at the tip where Haynes 188 was used. The Haynes 188 matertal has
comparatively higher strength at high temperatures. However, the Haynes tip
Lox posts failed in the inertia weld region on subsequent tests. Thus, the
current configuration uses Haynes 188 material for the entire post. There
have been no Lox post faillures with the new configuration using strenghtened
secondary plate retainers. The interpropellant plate to which the Lox post
are inertia welded are made out of Inconel 718L. The relevant material
properties for Haynes 188 are included in Fig. 30 through Fig. 35.

17. Static Analysis Survey

Extensive static analysis database existé for main injector Lox post. The
scope of static analysis include hand analysis, 2-0 axisymmetric analysis, and
3-D analysis. The breadth of analysis vary from standard handboock equations
to linear analysis to material nonlinear analysis to material and geometric
nonlinear analysis. The static analysis include temperature loads, external
loads and flow induced drag loads. Due to the complexity of geometry, of Lox
post assembly, and because of the level of detall of the stress regime that is
necessary for practical 1ife prediction, global model and local fine models
exist. The size of FEM models vary from 500 to 15000 degrees of freedom.
Details of the static finite element models are covered later. The analysis
program that was used for static analysis included APSA (inhouse axisymmetric
and plane stress 2-0 program), ANSYS and Stardyne.
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18. Dynamic Analysis Survey

Extensive dynamic analysis results are avatlable for the main injector Lox
post. The range of dynamic analysis 1include modal analysis, random base
excitation analysis and random flow load analysis. The hand analysis include
sample beam analysis checks for mode shapes and a limited checking for random
vipration analysis from shock and vibration handbooks. The dynamic finite
element analysis include finite element models using beam and shell elements
using Stardyne computer program. The size of the models is about 1000 dynamic
degrees of freedom. The detatls of the finite element model are covered

separately later.

19. Random vibration Loads

Background: Random vibration processes are necessarily treated 1n a
probabilistic manner. A stationary random process 1is described in the
amplitude domain by its probability density function, and in the frequency
domain by the power spectral density (PSD) function. Non-stationary
random processes are difficult to analyze, since the probability density
and spectral content vary with time; however, stationarity is quite often
a reasonable and necessary assumption under steady-state engine operating
conditions. The unavoidable presence of shock transients and periodic
components must be well defined and separately treated in probabilistic

analysis of the entire process.

The amplitude probability density curve gives a description of the
amplitude characteristics of the random process, and can be used to
estimate the probability of occurrence of a given amplitude.

Empirical estimates of the probabiltty density function for finite
observatton times and discrete magnitude intervals are made by digital

analysis of the available data.

The most commom amplitude probability density function found in nature 1is
the Normal, or gaussian. Analysis of the spectral content of the data is
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accomplished by Fast Fourter Transform, followed by multiplication of the
transform conjugate pairs and division by the analysis bandwidth to
produce a PSD result.

Statistical confidence in the PSD analysis 1is a function of the total
number of time records analyzed, and the apalysis bandwidth.
Ensemble-averaging 1increases the statistical confidence 4in the PSD
analysis to a stationary random process, as does an increase in the
analysis bandwidth. Assuming a gaussian process, or one which can be
approximately described by a gaussian probability density function, the
distribution of the measured PSD magnitudes about the true PSD magnitude
is chi-squared with degrees of freedom n, where n 1s determined by the

relationship:
n 2 28T,
where:

B 2 the analysis bandwidth
T = the total analysis time, including all ensembles.

The SSME random vibration load spectra were initially obtatned by using
vibration data from existing J-2 and J-2S engines, the amplitude scaled
using criteria developed by R. E. Barrett at NASA-MSFC. This criteria
assume that the mechanical vibration environment of a rocket engine 1s
primarily generated by combustion processes and is directly proportional
to the thrust and exhaust gas velocity of the engine and inversely
proportional to the weight of the engine. No frequency scaling is
provided by the Barrett criteria. The criteria used were:

Random Vibration Random Vibration X TN vN HR
Spectra NG Spectra R Ta Vp Wy

where:
N = new rocket engine
2 reference rocket engine
= thrust
exhaust velocity

X <« 4 =
]

s weight of the engine
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Experience with the SSME program indicates the Barrett method
overpredicted the SSME vibration environments particulariy 1in the
low-frequency (below 200 Hz) range. This was due primarily to the
conservative enveloping techniques used for the reference engine data. In
addition, other factors that can affect vibration environments such as
flow effects, structural responses and acoustic resonances are not
accounted for in Barrett's method.

Initial SSME testing was accomplished at operational levels below rated
power level, and vibration measurements were made during these tests to
evaluate the predicted random and periodic vibration environments. These
data were then scaled to full engine power level for structural dynamic
analysis and testing of components. The Barrett method was again used for
this scaling.

when the SSME was operated at full power level, it was found that the
scaled data tended to overpredict the vibration environments. Some
environments particularly in the oxidizer turbopumps and oxidizer
propellant feed system displayed higher than predicted amplitudes at full
power level, possibly due to increased flow turbulence. Hence, the SSME
experience has shown that the Barrett method is not entirely satisfactory
for predicting vibration environments. However, in a majority of cases
the method does provide a conservative loads estimate for random and
periodic vibration. The prediction method must be revised to account for
variables such as flow turbulence, mixture ratio effects, structural
resonances, acoustic resonances, and turbomachinery configuration effects.

pefinition of the random vibration environments to be used in structural
analysis is ultimately based on all available measurements of the relevant
responses. An enveloping process is applied to the data to define maximum
expected spectra, and to account for uncertainties in the spectral
distributions. Normally, the enveloping includes data at all engine power
levels, and the resulting dynamic environment specifications are used in
structural analyses at all engine power Jlevels. This conservative
approach can be modified by application of the Barrett criterion
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(described above) to define an environment specification applicable at a
power level less than the maximum, or full power level. This scaling
works well for a given -engine, although there are frequencies,
corresponding to dominant system modes and turbomachinery critical speeds,
which do not scale in this manner.

Vibration zones are estabiished as a means of describing the vibration
environment experienced by components as a function of their spacial
location on the SéHE. These vibration zones are divided into two
categories: source zones and response zones. Source zones are principal
areas of energy generattion, including all turbomachinery and combustion
devices. Nine source zonesAhave been defined for the SSME (Table 3).

Response zones have been defined for locations which contain relatively
passive engine components, such as valves, actuators, and sensors. Many
response zones have been specified for the SSME. Table 3 lists 13 of the
most significant ones.

Evolution of the SSME zonal vibration criterta followed the growth of the
SSME from early design phase through rated-power level (RPL) development
(in1tial hot-fire tests, RPL operation, and flight certification) to
current effort of full-power level (FPL) development. The process of
updating, as new data became available, ensured that the most recent
knowledge of the environment was being used to verify the design--whether

by analysis or by test.

vibration sources resulting from non-nominal engine operation are not
accounted for in the standard vibration zones. [Instead, these sources of
severe vibration are deliberately engineered out of the system and
attentively monitored during engine service. The physical phenomena that
can cause exceedence in vibration levels include:

1. Subsynchronous rotor whirl in turbomachinery

2. Hot-gas flow separation tnstabilities
3. Propellant feedline severe transient vibration
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SOURCE
ZONES CONTENTS

MAIN COMBUSTION CHAMBER (MCC)

MCC THROAT AND INPUT TO ENGINE CONTROLLER
THRUST CHAMBER NOZZILE

OXIDIZER PREBURNER

FUEL PREBURNER

LOW-PRESSURE OXIDIZER TURBOPUMP (LPOTP)
HIGH-PRESSURE OXIDIZER TURBOPUMP (HPOTP)
LOW-PRESSURE FUEL TURBOPUMP (LPFTP)
HIGH-PRESSURE FUEL TURBOPUMP (HPFTP)

— T & M Mm O O @ >

RESPONSE
_ZONES

MAIN FUEL VALVE (MFV) AND ACTUATOR

MAIN OXIDIZER VALVE (MOV) AND ACTUATOR

PNEUMATIC CONTROL ASSEMBLY

CHAMBER COOLANT VALVE (CCV) AND ACTUATOR

FUEL PREBURNER OXIDIZER VALVE (FPQOV) AND ACTUATOR
OXIDIZER PREBURNER OXIDIZER VALVE (0POV) AND ACTUATOR
OXIDIZER AND FUEL BLEED VALVES

VEHICLE ATTACH PANEL

PRESSURE SENSORS

ANTIFLOOD VALVE

CHECK VALVE

NOT USED

POGO ACCUMULATOR AND VALVES

TURBINE TEMPERATURE SENSORS

A < C -4 »n D O VvV O & X - K O

TABLE 3. PRINCIPAL SSME SOURCE AND RESPONSE VIBRATION ZONES
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4, Cavity resonances 1in duct transitions (particularly at the main
oxidizer valve)

5. Vortex shedding excitation of main injector LOX posts

6. Sheet metal component fatigue

Lox Post Random Loads: The mechanical random vibration response of Lox

post 1s calculated from acceleration PSD diagrams Fig. 36 derived from
actual engine firings. The flow induced random vibration response is
calculated from measured pressure PSD diagrams (Fig. 37) from CGIP or CGIC
location (Fig. 38) from hot fire testings. One of the key parameters in
random vibration analysis is the effective damping of the post-shield-
retainer-heat shield assembly. From the measured Lox post strain gage
response and using analytical models (Fig. 39), the effective damping
present 1in row 13 posts have been calculated to be 6.7% (Fig. 40).
Response data on Row 12 Lox posts during engine operation is estimated to
be 3X. Vartations in damping parameter can occur when variations in
pretension of T-bolt assembly occur and due to variations in thread-fit
assembly.

20. Structural Oynamics Data Base

A1l of the above environments, including the vibration zone criteria, are
determined from engine acceleration measurements. Many of these environments
are based on the minimum of 6 tests of 2 engines (12 measurements), while
several are defined by acceleration measurements made on every engine test
conducted. However, most environments are defined by 9 tests of 3 engines
(27 measurements). In all, approximately 200 vibration measurements are
included in the structural dynamics data base.

Data from these measurements are available to define the vibration
environments as a function of the engine misston history profile, as example
of which is shown in Fig. 41. One approach is as follows:

1. The initial startup sequence (0 to 4 seconds) is analyzed by means of

complex trace records and shock spectra analysis to define start
transients.
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2. Each mainstage steady-state operation time is characterized by power
spectral density analyses conducted for each operational power level

(1.e., 65% to 109%).
3. The shutdown transient data are analyzed by means of complex trace
records and shock spectra analysis to define the post mainstage

transient shocks.

Thus data are available to specify the engine operation vibration environments

as a function of the mission duty cycle.

21. Survey of Finite Element Models

Due to the criticality of main injector component, numerous finite element
models and analysis results are available. The variations in models include
different types of flow shields (currently there are three different types
mounted on each engine), numerous models to satisfy a matertial review
condition (material review condition analysis is performed when a manufactured
~component deviates from drawing specification) and models to perform
sensitivity studies when the actual values are known only within certain

bounds.

Static Finite Element Models: Broadly there are two different types of
finite element models are available. They are: ‘

1) Global or overall models,
2) Local models.

Global Models: The objective of the global models is to study the overall
response of the structure, understand the mechanism of load transfer and
to compute gross cross-sectional forces and stresses that exist 1in the

post.

The axisymmetric model shown in Fig. 42 represents the Lox dome and Lox
post forest in an approximate way. A solidity factor is used to model to
discontinuities present in the circumferential direction. This model fis
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used to model the load transfer from face plates to the Lox dome, the
effect of varying thermal expansion of the Lox posts on the dome, and
interaction between Lox post bundle and interpropellant plate.

The global 3-D model shown in Fig. 43 comprises of beams and shells
modelling accurately the varying cross-sections of the Lox post along 1its
length. This model 1is used to do dynamic analysis as well and for
combining the results with static analysis load combinations. It has also
been used to correlate experimentally observed strain gage results.

Local Models: Numerous local models have been constructed to study the
local stress region more accurately including stress concentration
factors. The models were also constructed to support failure analysis.
The axisymmetric model shown in Fig. 44 is used to model more accurately
the inertia weld region area of the Lox post. The model approximately
represents in an axisymmetric way the interpropellant plate junction.

The axisymmetric model shown in Fig. 45 1s used to study the stress field
in the threaded region of Lox pot.

The eighth of a sector model shown in Fig. 46 1s used to nodel the swirler
region accurately to study stress concentrations using a refined

temperature distribution in the area.

while all the above local models described were axisymmetric in nature,
3-0 local solid models are also available. The retatner solid model shown
in Fig. 47 s used to study the stress concentrations between the holes of
the retainer and the effect of smooth radius on the stress concentrations.

The detailed solid model shown in Fig. 48 1s used to study in detail the
effect of 1inclination of interpropellant plate to the Lox post and the

resulting stress concentrations on the toe and the nheel of the connection.

A summary static finite element models that can be used for validation and
verification purposes is shown in Table 3.
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Oynamic Models: There are numerous dynamic models available representing
single Lox post, Lox post and different types of shield assemblies. One
of the commonly used dynamic models is shown in Fig. 43 representing a
pair of Lox posts and shield. This model has been used for modal analysis
and random analysis of flow loads and mechanical vibration. A summary of
dynamic finite element models that can be used for validation and
verification purposes is also shown in Table 3.

22. Geometric variations in Main Injector Loxpost

Geometric uncertainties in main injector Lox post, in addition to the usual
tolerances in dimensions, tnclude weld offset, surface scratches and thread
fit. The effect of these geometric uncertainties have a bearing on fatigue
1ife of main 1injector Lox post. This is due to the fact that at yield
operating mean stress that is present in the Lox post due to high radial
thermal gradient. Any stress raiser has an adverse effect on the life of the
post due to more than allowable alternating stresses.

The geometric weld offset occurs when the posts are inertia welded to the stub
in the interpropellant plate. The notch thus created acts as a stress raisers
(Fig. 49). The geometric uncertainty 1in thread fit occurs due to potential
variation of thermal grad1en£s. The threads are used to adjust the secondary
face plate retainer and are not preloaded during assembly. The vartation in
the tightness of fit results in variations 1in contact, and the number of
threads engaged affect the response of entire post to external loads, and

locally the thermal response.

whenever a critical flaw is discovered in an injector of an existing assembled
engine, then it 1s possible to deactivate the particular post such that fatal
failure of that post can be eliminated. This 1s occomplished by either
pinning or plugging and rodding the post. The three procedures have evolved
during the years to increase the confidence in the structural integrity of the
deactivated Lox post. 1In the first procedure, a gold plated pin is used to
plug the orifice in the interpropellant plate. The orifice dimensions have
tight tolerances from combustion performance point of view.
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To prevent destructive missile generation during operation, due to through
crack developing at 1{nertia welds, the posts are rodded internally using
multiple rods in series and the last rod is welded onto the face plate. The
geometry of multiple rods used are such that they accomodate for the large
thermal expansions and contractions. It must be noted that plugged posts run
much hotter under operating conditions due to the absence of Lox. This
results in plugged posts buckling under large thermal axial Jloads. After
several cycles, plugged Lox post can develop failure at the threads.

23. Preburner Injection Elements

Design Qescription: The major goal in preburner design is to provide
reliable, repeatable power to the turbopump. ODual preburner assemblies
are used on the main engine for hot gas supply to power the turbopumps. A
preburner is mounted above each of the turbines of the turbopump
assemblies (Fig. 50). They operate at a low mixture ratio with gaseous
hydrogen from nozzle coolant circuit and 1iquid oxygen from the preburner
oxidizer pump. Specific operating levels of the preburner are used to
achieve engine system mixture ratios and power level variations. This is
achieved by requlating the oxidizer flow rate with preburner oxidizer
valves, For example, with the opening of preburner oxidizer vaives,
higher preburner mixture ratios and temperatures result, and the engine
power level increases in response to the higher energy available to the
turbines, and a new balance point is reached.

The design features of typical assemblies of fuel and oxidizer preburner are
11lustrated in Fig. 51 through Fig. 54. Basically, the two preburners are the
same concept, but because of Jlower flow rate requirements, the oxidizer
preburner diameter is 7.43* diameter, whereas the fuel preburner diameter tis
10.43%. Some of the sailent geometry features of the two preburners are:

FPB 0P8
Internal Diameter 10.43" 7.43"
Combustor, Length 4.37" 4. 25"
Injector Configuration Concentric Orifice Concentric Orifice
Number of Elements 264 120
Baffle, Length, Inches 2.25" 2.25°
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The preburner injector is a baffled, coaxial-element injector that mixes the
gaseous hydrogen and liguid oxidizer in correct proportions and uniformally
distributes and 1injects the propellants into the combustion chamber (Fig.
55). The coaxial elements are contained by the upper interpropellant plate
and a lower faceplate in a closely spaced pattern of concentric rows. Each
element consists of an orificed center tube (oxidizer post) and an outer fuel
sleeve that has a series of orifices in its periphery. Oxidizer entering the
oxidizer manifold is uniformally distributed within the oxidizer dome fuel
passes radially into the injector fuel cavity formed by the interpropellant
plate and the faceplate. From the fuel manifold, the hydrogen enters the
annulus of the coaxial elements through the fuel sieeve orifices. The high
velocity of the low-density fuel, relative to the dénsity and velocity of the
oxidizer, produces a high rate of atomization and thorough mixing. Coaxial
injection and baffles maintain stable combustion in the preburners. Hydrogen
flows through passages in each baffle for cooiing and i1s discharged radially
into the combustion chamber.

Fuel Preburner

The fuel preburner (FPB) is supported by the hot-gas manifold (HGM), to which
it 1s welded, and 1s close-coupled to the high-pressure fuel turbopump
(HPFTP). The FPB consists of three major parts: 1) augmented spark igniter
(AS1), 2) injector, and 3) combustion chamber.

The augmented spark igniter (ASI) unit 1s a small injector and combustion
chamber with two spark igniters located in the center of the injector. It
initiates ignition of propellants in the preburner. The injector has a single
pair of 1impinging oxidizer orifices and eight hydrogen orifices directed
tangenttially around the oxidizer. The propellants are ignited by dual,
redundant spark igniters.

The FPB combustion chamber is a fuel-cooled, double-walled chamber in which
hot gas (hydrogen-rich steam) is generated to power the HPFTP. The chamber,
constisting of an outer wall and a liner, is welded to the injector/dome and
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HGM. Fuel coolant is provided between the outer wall and liner by hydrogen
from the fuel manifold. The fuel coolant is discharged at the lower end of
the 1iner into the hot gas powering the HPFTP turbine.

Oxidizer Preburner

The oxidizer preburner (0PB) 1s supported by the hot-gas manifold (HGM) to
which 1t 1s welded, and 1s close-coupled to the high-pressure oxidizer
turbopump (HPOTP). The 0P8 consists of three major parts: 1) augmented spark
igniter, 2) injector, and 3) combustion chamber.

The augmented spark igniter (ASI) unit Is small 1injector and combustion
chamber with two spark igniters located in the center of the injectors. It
initiates ignition of propellants in the preburner. The injector has a single
pair of 1impinging oxidizer orifices and eight hydrogen orifices directed
tangentially around the oxidizer. The propellants are ignited by dual,
redundant spark igniters.

The OPB combustion chamber is a fuel-cooled double-walled chamber in which the
hot gas (hydrogen-rich steam) 1is generated to power the HPOTP. The chamber,
consisting of an outer wall and a liner, is welded to the injector/dome and
HGM. Fuel coolant 1s provided between the outer wall and liner by hydrogen
supplied from the fuel manifold. The fuel coolant is discharged at the lower
end of the liner 1into the hot-gas powering the HPOTP turbine. Fuel from the
fuel 1inlet manifold 1s conducted through the preburner body to a turbine
coolant manifold for use in cooling HPOTP turbine components.

Preburner Baffles

The tri-vane NARALOY-A baffles (Fig. 52, Fig. S4) on the preburners are cooled
with hydrogen to minimize weight and produce high durability. The baffles are
2.25 inch long and extend to within 0.5 inch radius of the center ASI tinjector.
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The opening at the center of baffles provides an exit and direct communication
to each compartment of augmented spark igniter hot gas. The baffles are
structurally attached by brazing to post pins which extend through fuel
cavity, each of which occupies an equivalent element location on each element
row. The pins are brazed to the facepiate and interpropellant plate in the
same manner as the elements. Each pin has flow passages (Fig. 52) which
supply fuel to axial coolant passages 1in the baffles. Coolant flow 1is
discharged at the side of the baffles through orifices and is mixed with the
main hot gas stream. The flow from the innermost cocolant passages near the
center of injector is injected into the hot gas stream from ASI. This is done
to provide additional hydrogen to the oxidizer core of ASI.

24. Qperating Environment

The preburner operating environments are quite different from that of main
injector thought similarity in the type of loadings exist. A comparison of
the operating environment's critical parameter values are shown in Table 4.
The much higher operating pressures in the preburners as opposed to main
injectors and much lower hydrogen gas temperature 1is preburners as opposed to
main injectors must be noted. Severe thermal gradient present in the walls of
the main injector is absent in the preburner injectors, as cold hydrogen is
the fuel in the preburner. The oxidizer and fuel flow rates are also much

lower compared to the main injector environment.

25. Geometry

The geometry of the preburner injector elements is different from that main
injector elements in the sense that posts themselves are much smaller and the
assemdbly 1is all brazed devoid of any threaded assemblies (Fig. 55). The
preburner injector elements are much stiffer structurally (mainly due to
smaller size). As a comparison while the fundamental frequency of main
injector Lox post is around 1200 Hz, the fundamental frequency of a similar
preburner injector element is of the order of 4800 Hz to 8000 Hz depending
upon configuration. The stress concentration areas are brazed fillet joint
radius location between elements and interpropellant plate, between element
and face plate and at the base of cantilever Lox post (Fig. 56).
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TABLE 4. COMPARISON OF PREBURNER INJECTOR AND MAIN INJECTOR ENVIRONMENT

Hot Gas Temp (°R)

PC (PsY)

Lox Temp (°R)

Fuel Temp (°R)

Fuel Flow Rate (1bm/s)

Ox. Flow Rate (1bm/s)

Lox Pressure In (Psi) Lox Post

Average fuel Pressure

1374e

109% Power Level

FPB

1671

4925

209

265

90.40

76.35

5098

5457

86

ors

1560

5164

21

265

37.3

27.70

5325

5508

MCcC

1449

2981 -

194

1444

239.56

865.75

on
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26. Loads on the Preburner

The static loads in the preburner include the differential pressure and
thermal gradient across the Lox post wall. The mechanical vibration loads
include random vibration due to combustion noise and sinusoidal vibration at
muitiples of shaft speeds of high pressure turbopumps. Mechanical vibration
is the predominant load source for alternating stresses. This is contrast to
main injector post environment where the flow Jloads are dominant. The
transfer function test accelerometer locations are shown in Fig. 57.

The contribution of the dynamic flow loads result from gaseous hydrogen flow
through fuel sleeves. The ability of flow to excite the Lox post have been
demonstrated using unielement flow test fixtures (Fig. 58). The results
indicate annular flow over cantilever post can be unstable. 0ffset holes
(Fig. 29) as opposed to correctly aligned radial holes decreases the stability
margin due to tangential swirling action. In addition, cutoff transients
create more unstable flow conditions than the main stage flow condition.

27. Fatlure History of Preburner Injector Elements

The failure history of preburner Lox post elements operating on a different
environment than the main injector elements offer an insight into the variety
of conditions that can become critical in a “generic® Lox post. As opposed to
main injector Lox post failure, the failure of preburner injector elements are
not always necessarily fatal to the engine. There are two incidents of fuel
preburner Lox post failure. There have been no failures in oxidizer preburner
injection elements. A fuel preburner injection element fatlure occurred in
engine 0009 after 41 tests with an accumulated time of 11,842 seconds. On
engine 0204, a preburner injection element failure occurred after 20 tests
with an accumulated time of 4,692 seconds (Fig. 60). The hardware damage in
both the failures were similar. The engines had gone through a variety of
power levels before the failure occurred. The fatlure investigation revealed
Lox post cracking identified as the problem (Fig. 61), and the crack is high
cycle fatique initiated. Metallurgical examination of the Lox posts exhibited
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Fig. 59, Offset Holes in Preburner Fuel Sleeves
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cold work at fracture location. The problem was fixed by the inclusion of
three preloaded pin supported located between the Lox post and the fuel sleeve
(Fig. 62).

28. Survey of Preburner Finite Element Models

Single element finite element models of the fuel and oxidizer prelburner
elements exist and due to the simplicity of the models, they are not covered
in the survey the finite element models.

The finite element models include global and local models. In the global
models, an example of the axisymmetric approximate fuel prelburner models 1s
shown in Fig. 63. They are used to calculate the approximate load transfer
bath and stresses between Lox post assembly and the surrounding manifolds.
Many refined local finite element models also exist (Fig. 64) to calculate the
local effects. Because of the nature of the vibration environment in the fuel
preburner, an 180° model containing the Lox post forest, baffle elements, face
plate and the interpropellant (Fig. 65) was also used for static and dynamic
analysis. Table 5 gives an overall view of the breadth of finite element
models available for fuel preburner Lox post assembly.

29. Scoping of Finite Element Analysis

Finite Element Types: From the survey of static and dynamic finite
element analysis done, the finite element 1ibrary should contain for a

complete Lox post analysis:

a) Pipe or beam element.

b) Axisymmetric 2-0 solid quad and triangle.

¢) Shell element (4 noded quad and triangle).

d) Solid element (8 noded solid, tetrahedron and prism).
e) 2-D and 30 gap elements.
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Material Nonlinearity: The material library should include:

a) Temperature dependent properties.
b) Account for material nonlinearity by having provisions for

1) Defining a stress-strain curve point by point
2) bilinear representation.

3) and thermal creep buckling

Geometric Nonlinearity: Geometric nonlinearity enters the Lox post

analysis 1in three ways. The response of Lox post and the effective
damping of Lox post is controlled by the threaded correction to the
secondary face plate retainers. Thus, accurate modelling of the boundary
condition may require the use of gap elements to model the contact
phenomenon and for modelling preloaded T-nuts and balts.

The presence of high axtal loads on the Lox post results 1in the
consideration of the second order geometric stiffness matrix in modal
response analysis of the Lox post. In fact, such analysis has been done
to study the responses of Lox post under axial loads. For certain
configurations, higher order geometric stiffness matrix is a necessity to
calculate approximate buckling loads or exact buckling loads using

incremental analysis.

Scoping of Solution Sstrategies: The solution strategies should include:

a) Linear analysis.

b) Incremental and iterative nonlinear analysis to include material and
geometric nonlinearity using Newton, quasi-Newton or self-adoptive
procedures.

¢) Linear Modal analysis.

d) Linear random analysis using modal superposition and PSD diagrams.

e) Nonlinear transient dynamic analysis using stabile time integration

procedures.
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f) Development of efficient procedures to predict accurately random
response in nonlinear structural analysis domain that can be cost
effective to do in practical sized finite element models.
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Section 2

Turbine Blades
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1. TURBOPUMP SYSTEMS

GENERAL

Turbomachinery is required on pump fed rocket engines as opposed to pressure
fed rocket engines. Pressure fed engines are less complex and less
development effort is required but they require high tank pressures. The
pumpfed systems have the advantages of lower weight, higher payload capability
and has a significant advantage at higher velocities. As an example in space
shuttle transportation system, pressure fed solid boosters are used at lift
off, while pump fed SSME's are required at orbit insertion.

Basic elements of turbomachinery include pump, turbine, bearings, seals,
thrust balance device, casing, and gears or splines. As in an example,
crossectional view of MARK-15F turbopump, used in J-2 engine is shown in Fig.
2.1 where the different components are identified. Depending upon operating
requirements, the key parameters of pump design can vary over a wide range as
shown in Fig. 2.2.

Because of emphasis on high performance and weight requirements rocket engine
turbines run at a very high speed. Advances in bearings and seals have
resulted in direct drive turbo-pump systems with no need for reduction gears.
Liquid rocket engine turbopumps have one of the highest power to weight ratio
in the entire field of turbomachinery and this is illustrated in Fig. 2.3.

Turbines which is the drive mechanism for the turbopumps provide the required
shaft power for the pump. Of the two major types of turbines, impulse and
reaction, reaction turbines have been used extensively in oxidizer and fuel
turbopumps in rocket engines. OQther design options in turbine design include
single vs. multistage, full vs. partial admission and axial vs. radial flow.
Actual turbine installation used in a rocket engine is very dependant on the
engine system used. Schematics of basic turbine drive cycles are shown 1in
Fig. 2.4. Earlier versions of rocket engines have used the gas-generator (GG)
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cycle in which the turbine working flutd is derived by combustion of main
propellents in the GG at a temperature below the turbine temperature limits.
[f the turbine exhaust is after burned by the introduction of additional
oxidizer higher performance can be obtained from the GG cycle. The J2-S
development engine utilized the variation of the GG cycle called the tap off
cycle (Fig. 2.4) in which the turbine working fluid is tapped of near the face
of 1injector at a location where relatively cool gas is available. In the
expander or hot fuel tap off cycle which is used for the RL-10 engine, the
hydrogen that is evaporated and heated in the thrust chamber regenerative
jacket is used to drive the turbines. The turbine exhaust is then fed to the
main combustion chamber for combustion. In the staged combustion cycle, a
preburner generates the turbine working fluid which then discharges into the
main combustion chamber, where the second stage of combustion occurs.
Virtually all the fuel and 10% of the oxtdizer s routed to preburner where it
ts burned at a Jow mixture ratio. The turbine discharge pressure is
established by main combustion chamber pressure and working backwards
considering all the pressure drops. Key elements of the turbine are shown in
Fig. 2.5.

Distinguishing factors of rocket engine turbine include:

a) Comparatively short but severe service life
b) Strict Timitations on size and weight

c) High energy content of fluids

d) High specific work output

e) Rapid start and short run duration

f) Severe thermalshock conditions

g) High stage loading and stress

Turbine warking fluids can be a) Combustion products (LOX/RP1, LOX/LH2,
LOX/CH4) b) Compressible fluids (Ambtent hydrogen or nitrogen) c¢) Mono
propellents (Hydrogen peroxide) and d) for hydraulic turbines 1iquid oxygen,
or liquid fuel.

A comparison of turbine flow rate and horse power for various turbopumps s
shown in Table 2.1,
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2. SSME TURBOMACHINERY OESCRIPTION

SSME requirement of high discharge pressures necessitate high pump rotating
speeds to operate with good efficiencies while keeping the pump weight and
sizes to a minimum. Suction performance requirements, however, 1imit the pump
speed. Thus performance requirements in SSME are achieved through a low
pressure pump and a high pressure pump for each propellant. The low pressure
pumps which operate at low pump speeds consistant with low suction pressures,
boost the propellant pressures such that high pressure props operate at
optimum speeds. The turbomachinery in relation to other engine components are

shown in Fig. 2.6.

Low Pressure Oxidizer Turbopump (LPOTP)

The low pressure oxidizer turbopump is fixed mounted to the vehicle. The Tow
pressure oxidizer turbopump (Fig. 2.7) is a compact and simple machine,
consisting of a four bladed axial inducer driven by small diameter hydraulic
turbine. The key performance parameters of the low pressure oxygen turbopump
is shown in Fig. 2.7.

The pumped fluid and the drive fluid are both liguid oxygen. This results in
operational safety and eliminates the need for a seal package, drain lines and
purges. The oxygen which drives the turbine comes from high pressure
turbopump discharge, and 1s returned to the main flow stream by belng
exhausted into the low pressure pump discharge, which then is routed to the
high pressure oxidizer turbopump inlet.

The pump and the turbine are both contained in a single case aluminum
housing. The inducer is machined of K-Monel and a K-Monel liner 1s used to
protect the aluminum housing from tip cavitation damage. The inducer s
driven by a full admission six stage hydraulic turbine. The turbine flow is
introduced into the distribution manifold, and routed through the passages in
the pump diffuser vanes to the first stage nozzle. After passing through the
turbine, the flow is reunited, via volute collection scroll with the inducer
discharge and returned to high pressure main pump inlet. The turbine rotor
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blades and shafts are machined integrally from K-Monel which was selected for
its superior nonsparking, oxidization resistance, and cavitation damage
resistance characteristics.

The turbine nozzles are retained tn an Inco 718 cylindrical barrel which is
secured to the primary housing. The nozzles are made in three 120-degree
segments of a cylindrical shell and are Joined to form a complete cylinder
over the rotor priaer to installation. The nozzles are aligned and secured by
cylindrical barrel.

The primary housing supports the turbine inlet manifold. The turbine inlet
flow is routed into the constant velocity distribution passage from which it
flows inwards through the eleven diffuser vanes into the turbine manifold.

The rotor s supported by two Tiquid oxygen coaled ball bearings. The turbine
end bearing coolant path is from the last stage of turbine, through the
bearing, hollow rotor, radial holes in the rotor, and to the 1inducer
discharge. Coolant for the inducer end bearing is from the turbine inlet,
through the labyrinth seal, through the bearing and to the inducer discharge.

A redundant element magnetic tape speed inducer is installed on the turbine
end of the turbopump housing.

High Pressure Oxidjzer Turbopump (HPOTP)

The high pressure oxidizer turbopump receives the oxidizers from the low
pressure oxidizer turbopump and boosts the pressure to sufficient level to
supply the oxidizer to the thrust chamber, low pressure oxidizer turbopump
turbine, the heat exchanger and the preburners. The turbopump assembly
consists of three major elements: 1) main pump, 2) preburner pump, and 3)
turbine. Because of the safety hazards inherent in the oxidizer pumping
machinery, safe operation is achieved through careful attention to design
details. It includes the use of oxidization resistant materials, positive
rotor operating clearances, elimination of fretting and positive separation of
oxygen and hydrogen rich gas.
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The HPOTP (Fig. 2.8) has a single inlet with a 50-50 flow split into a double
entry, common outlet impeller. The Tliquid oxygen enters the main pump through
the main pump housing where the flow split is made. [nlet vanes direct the
flow to the inducer/impeller inlet guide vanes, which in turn direct the flow
to the flow to inducer/impeller inlet. There are four inducer blades and four
full and four partial impeller blades on each side of the combined inducer/
impeller. After passing through the impeiler, the flow is redirected into
discharge volute by diffuser vanes. The main impeller/inducer 1is made of
Inconel 718,

Since only 10% of oxidizer flow needs to be delivered at the higher preburner
pressures, a substantial saving in total power requirement and engine pump
weight is achieved through the use of preburner pump stage. The preburner
pump receives only the preburner flow from the main pump discharge via an
engine duct, and boost the pressure to meet the inlet pressure requirements.
The preburner pump has a single entry impeller made of Inconel 718 that
discharges oxidizer through diffuser vanes into discharge volute. The
preburner pump housing is flange mounted to the main housing.

Turbopump shaft bearings are cooled by liquid oxygen fom the preburner pump .
Coolant flow for the pump-end bearings is through the preburner pump impeller
hub Tlabyrinth seal, through the bearings, and to the main pump inducer/
impeller 1inlet. The turbine-end bearings coolant flow is through the
preburner impeller bolt, through the hollow shaft, through the bearings, and
to the main pump inducer/impeller inlet. Pump shaft axial thrust is balanced
in that the double-entry main tnducer/impeller is inherently balanced and the
thrusts of the preburner pump and turbine are equal but opposite. Residual
shaft thrust is controlled by a self-compensating, non-rubbing, balance piston
which utilizes orifices located at the tip and inner diameter of the main
shrouds to control the leakage and, consequently, the pressure acting on the
respective shrouds. Mixing of oxidizer and turbine gas 1is prevented by a
dynamic shaft seal package that is between the main pump and the turbine. The
seal package consists of a labyrinth-type primary oxidizer seal, a purged
controlled-gas intermediate seal, and two controlled-gap turbine hot-gas
seals. Drain cavities with overboard drain lines are located between the
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primary oxidizer seé\ and the intermediate seal, between the intermediate seal
and secondary turbine seal, and between the secondary and primary turbine
seals. To further ensure against the mixing of oxidizer and turbine gas, a
helium purge is applied between the elements of the intermediate seal during

engine operation.

The high pressure oxidizer turbopump turbine, which is a two stage turbine is
powered by hot gas (hydrogen rich steam) generated by the oxidizer preburner.
That gas enters the turbine and flows across shielded support struts, through
the first and second stage nozzles and blades, and is discharged into the hot
gas manifold. The nozzles are made of conventionally cast MAR-M-246 material
and turbine blades are made out of directionally solidified MAR-M-246 (Hf).
The turbine rotors are mated through curvic coupling and are held together
with a circle of bolts. The second stage rotor is integral with the pump
shaft. Turbine blade bypass is minimized by lands in the outer perimeter of
blade shrouds that run against honeycomb seals in the turbine housing. The
HPOTP ts flange attached to the hot-gas manifold and is canted 10 degree angle
out of the engine centerline.

Low Pressure Fuel Turbopump {LPFTP)

The low pressure fuel turbopump is a compact simple machine which operates at
low inlet pressures and boost the pressure to a suffictent level such that
high pressure fuel turbopump (HPFTP) can operate efficiently. Both the pumped
fluid and turbine drive gas are hydrogen resulting in operational safety. The
turbopump assembly (Fig. 2.9) consists of an axial 1inducer driven by a two
stage turbine. The turbine gaseous hydrogen comes from main combustion
chamber coolant pass.

The 1inducer and the shaft are supported by three Tiquid hydrogen cooled ball
bearings. The bearing coolant is the leakage from the inducer discharge
labyrinth seal. The coolant flow through the pump end bearings and turbine
bearing and 1is returned to the pump 1inlet through passages in the shaft,
bearing-bearing spacer and inducer. The inducer and turbine blade are made of
corrosion resistance A-286 steel.
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High Pressure Fuel Turbopump (HPFTP)

The nigh pressure fuel turbopump (Fig. 2.10) receives the flow from the low
pressure fuel turbopump and boosts the pressure to the level required for
preburner supply through the main fuel valve and through thrust chamber
assembly coolant circuit. The turbopump consists of three stage centrifugal
pump driven Dy two stage reaction turbines. The HPFTP develops some 70% of
the total turbomachinery power.

The titanium inlet receives the flow from the low pressure fuel pump discharge
duct and directs it to the inlet of the first stage impeller. Fuel flows in
series through the three impellers from pump inlet to outlet, with flow being
redirected Dbetween impellers by interstage diffusers. The interstage
diffusion 1is efficiently accomplished within the turbopump housing. The flow
from first and second stage impeller is passed through radial vanes, turned
180 degrees, then turned inward and further diffused by tandem set of vanes
for entry into next stage impellers. The flow from third stage impeller is
diffused by a like set of radial vanes, then collected in volute for delivery
to the high pressure fuel system. The impellers are made of titanium alloy,
the diffusers are made of aluminum alloy and the turbine housing is made of
Inconel 718.

Coolant flow across the pump end bearings 1is provided by the first stage
impeller backplate wear-ring flow. The coolant is returned to the inlet of
the first stage impeller. Coolant flow to the turbine end bearing is supplied
from the pump balance piston cavity through the shaft static 1ift-off seal.

Axial rotor thrust is controlled by a balance piston feature (Fig. 2.11). The
balance piston operates between a high pressure orifice and a low pressure
orifice and absorbs the rotor axial forces so that bearings operate at all
times with only preloads. Any unbalanced load which tends to move the rotor
towards the inlet reduces the high pressure orifice area, thus, reducing the
pressure 1in the balance piston cavity between orifices. The higher
differential pressure across the piston restores equilibrium. Similarly, an
unbalanced force towards the turbine increases the high pressure orifice area
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and reduces the low pressure orifice area; the increase in cavity pressure
reduces the balance piston force and restores eguilibrium.

The HPFTP turbine is powered by hot gas generated by the fuel preburner. Hot
gas enters the turbine and flows across the shielded support struts, through
first and second stage nozzles and blades is discharged into hot gas
manifold. The two stage turbine transmits the torque to the pump by a splined
coupling between the second stage wheel and the pump third stage impelier.
Turbine to FPB sealing is accomplished by a bellows that loads a Naflex seal
against the FPB flange and the whole pump is canted out from the engine
centerline at a 10 degree angle.

3. Blade Geometry Description:

The major geometrical features in a turbine blade include (Fig. 2.12):

1) Shroud
2) Airfotl
3) Platform
4) Shank

5) Fixture

6) Oamper Pockets
7) Cooling Passages

A1l the features may or may not be present in a single blade. The airfotl
design deals with the development of blade profile that will develop the
required gas path vector diagram relationships and pass the working fluid mess
flow at design operating conditions (Fig. 2.13). Numerous geometrical design
parameters (Fig. 2.14) are used to evolue design blade profiles. Circular
arcs and straight lines can be used to define the airfoil shape as was the
case with rotors of Mark 3, Mark 4, and Mark 15 turbines. Turbine airfoils
are also designed with tangent parabola curves which introduce more gradual
curvature charge thereby lessening the potential for suction surface
separation. Elliptical leading edges and conic curves were used in SSME and
other subsequent designs.
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Blade Twist

Blading losses resulting from root-to-tip velocity (and flow) variations in
parallel-sided blades with constant entrance and exit angles are minimtzed
when the blading is designed for radial-equilibrium conditions. Parallel-sided
blades normally are developed with state conditions and vector quantities that
exist at the pitch line. In reality the blading experiences velocity changes
that affect the vector diagram at all radii away from the pitch diameter.
Past experience with both supersonic and subsonic turbines indicates that this
variation is not significant in typically short, untwisted blading; no blading
redesigns have been required to correct for effects of blade radial velocities
and static-pressure gradients.

However, all state-of-the-art high performance blades that are langer than one
inch in height are designed to comply with requirements for radial
equilibrium, vitz., the product of blade radius R and the respective tangential

velaocity <, is constant at all radii along the blade length:

1

Rcu] = constant

This condition is based on the assumption that stagnation temperature and
pressure are constant at all radit and that equal quantities of working-fluid
energy are available along the length of the blade to develop a uniform work
output. Flow conditions are in radial equilibrium along the entrance and
discharge of each blade. The free-vortex blade profile that results fis
twisted from root to tip and provides for more turning at the blade root than
at the tip, as illustrated in Fig. 2.15. Note that the pictured blade design
ts tapered; radlal equilibrium can be applied to either tapered or straight
blading.

Blade Shrouding

Experimental data indicates that turbine rotors with shrouds, when compared to
unshrouded blade designs, offer an efficiency advantage. The performance

128



wntdarpinby (etpey Jdoy paubisag sapelg ayl uL Isimy groz 6y

129



advantage is attribuyteg to the reduced dmount of leakage. I[n some turbine
designs, shrouds are used for structural damping purposes. In SSME HPOTP,
shrouds are used to increase the performance as well as for mounting two lands
facing the honeycomb seal.

Blade Platform

The blade platform performs the function similar to the shrouds by minimizing
leakage losses. In addition they are generally fitted with damper pockets
which support precision dampers. Dampers are wused to reduce the blade
stresses due to mechanical vibration. The turbine blades in both the HPOTP
and HPFTP of SSME have platforms.

Blade Shank

The main purpose of the blade shank is to give a smooth transition between the
alrfoil and the fir tree mounting of the blade. The two crossections between
which the shank épans have crossections which have widely varying curvature.
Shanks also serve the dual purpose of supporting blade dampers. Shanks are
not present in blades that are integrally machined or welded to the disk.

Fir Tree

The fir tree mechanical blade attachment to the disk has been used for most of
the production turbines for high thrust engines (Fig. 2.16). The fir tree
geometry varies from configurations with two or three relatively large lobes
to configurations containing a large number of small lobes. The geometry and
tolerances of the fir tree are adjusted to distribute the load between the
lobes. The fir tree manufacturing tolerances are very tight in the order of
0.0005 in the loaded side and -002 in the unloaded side.

Cooling Passages:

For future high performance space vehicles, high temperature turbines offer an
attractive way of increasing engine performance. While cooled turbine blades
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have been used extensively in air breathing engines, they have not been used
up to now in rocket engines. Since there is potential for cooled turbine
blade destgns in future rocket engines, the possible geometrical features of a
cooled rocket engine turbine blade are presented here. The actual cooled
blade geometry is a function of type of cooling used. The vartous cooling
schemes that can be used include, convective cooling, film and transpiration
cooling, 1impingement cooling and convective impingement cooling. Some of
these cooled blade concepts are schematically represented in Fig. 2.17 through
Figure 2.18.

Comparison of Blade Geometry

Turbine blades are designed to meet a specific set of operating requirements
in Yts respective turbine gas path. Thus the turbine blades geometrical
characteristics can vary widely. O0Of the many rocket engines developed to
date, sizing data for a representative rocket turbine appear 1in Table 2.2. Of
significence to note are the variation in pitch diameter, blade height and
width.

4. Loading Environment

The major load types that are present in the turbine blades are

1) Centrifugal loads
2) Gas bending loads
3) Temperature loads

The turbine blades design loads are determined for the maximum required power
conditions as specified in the engtine performance prediction model. The
engine model incorporates the performance characteristics of all rocket engine
components. Thrust chamber, injector, valves, ducts, pumps, turbine, etc. to
predict the operating conditions for each component. The maximum turbine
power conditions represent the highest values of speed, torque, flow, steady
state inlet temperature and pressure drops for the turbine.
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Centrifugal Loads

Rocket engine turbine pumps typically run at high speed to achieve maximum
efficiency. The pitch line velocity can be up to 1700 ft/sec. The blades are
generally tilted such that centrifugal bending stresses compensate for the
power bending. The mission history profile for the speed of a turbopump
follows very closely the power profile of the engine. A typical time history
for HPFTP speed is shown in Figure 2.19. The HPQTP first and second stage
blades have a hollow core to reduce the centrifugal stresses. For blades with
high aspect ratio, the contribution of centrifugal stresses to stress
stiffening can be significant enough to affect the frequencies of the blade.
In general, the operating mean stresses in the turbine blades are mostly
governed by the centrifugal stresses.

Pressure Bending

The turbine aerothermodynamic design is performed using the turbine design gas
path calculation. The gas path model includes representative blade row loss
correlations as well as tip clearance and configuration losses, and other
parasitic losses (Fig. 2.20). The model determines the turbine performance
and geometry for the tnput overall and interstage design conditions to produce
the highest efficiency within the structural and envelope Timits. The design
energy distribution between stages and blade rows and radtally from hub to tip
sets the overall blade row loads. These loads are distributed on the turbine
blade as the pressures, temperatures, and torques on the upstream and
downstream surfaces of the blade. The velocity vector diagrams (Fig. 2.13)
indicate the resultant inlet and outlet velocities and flow angies from which
the overall loading at a specific radius is calculated.

The design of each profile section 1is meant to satisfy the gas path
performance requirements within the structural limits. The profile design is
an 1interactive procedure using a blade profile design computer program to
define a profile with gradual surface curvature to satisfy the design turning,
flow and diffusion requirements. The defined profile suction and pressure
surface distributions of velocity, pressure, and temperature are determined
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using an exact, compressible blade to blade computer calculation. Fig. 2.21
shows a blade model indicating the blade streamline iocations, one example of
which is illustrated in Fig. 2.22. Fig. 2.23 and tig. 2.24 show an example of
the corresponding surface velocity and static pressure distributions. The
detailed loading of the design profile at a streamline radius is shown by the
surface distribution curves. The time history of pressures follow very
closely the powerlevel requirement. A typical mission history profile of
oxidizer preburner and fuel preburner chamber pressures are shown in Fig. 2.25
and Fig. 2.26 which is indicative of turbine inlet pressures.

Temperature Loads

Rocket engine turbine blades see a severe thermal shock as opposed to air

breathing engines due to severe start and cutoff transient. Rapid start of

rocket engines is necessitated by a number of reasons. Some of the reasons

for rapid start and cutoff include:

1) Slow start of soft systems results in the phenomenon called chugging.

2) Due to the high expansion ratio used in SSME (77.5:1) nozzle if the engine
dwells below 92% powerlevel the resulting flow separation in the nozzle

jnduces severe side loads.

3) To avoid the resonance problems associated with turbomachinery, the
engines start and reach operating speeds quickly.

4) It is efficient from payload point of view to reach full powerlevel and
Tiftoff.

5) Rapid cutoff to have control over correct orbital insertion.
6) A normal rapild cutoff also serves the abort sequence.

Operating temperatures of turbine blades 1in rocket engine turbopumps are
primarily a function of hot gas flow and coolant if any His used. The
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temperature gradient through a blade is governed by such factors as biade
geometry location of shrouds, platform, dampers, etc. and the presence of
coating material. A good definition of blade temperatures at start and cutoff
ts difficult primarily due to the complex nature of flow through an
accelerating turbine. Thus, the time-temperature history profile at start
transient, steady state and cutoff is obtained through a combination of
anaiytical and experimental results. [t s necessary to point out that
tnstrumentation of rocket engine turbines is especially a difficult task due
to high pressure lines and the extreme temperatures the lead wires are
required to traverse through the region.

The first step in a blade thermal analysis involves obtaining the free stream
mach numbers as a function of chord length for both suction and pressure sides
of the airfoil. This information is used as input for a boundary layer
analysis program that calculates the convection heat transfer coefficients on
the blade (Fig. 2.27 and 2.28). Since both the flow and boundary 1layer
analyses are steady state, the resulting convection coefficients are scaled
according to flowrate for start and cutoff values.

The temperature of the hot gas must also be determined in order to obtain the
blade temperature profiles. In the design stage, the gas temperatures are
predicted using engine simulation programs at steady state and transient
conditions. The calculated hot gas convection coefficients and temperature
time histories are used as inputs to thermal models to determine blade
temperatures. A number of different models have been constructed to analyze
various parts of the SSME turbine blades. The models generally represent some
relatively small but critical part of a blade. A few models have been made of
the entire blade, but in general, these models are unsatisfactory in the sense
that they do have the necessary detail to accurately define the local
temperature gradients. Coanstructing profiles of the blade temperature
distribution is often best accomplished by combining results of a number of
small detailed models.
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Forcing Functions

The flow in turbomachinery is unsteady by nature because of the relative
motion of adjacent blade rows. In a typical multistage turbomachine
fluctuating velocity and pressure fields are generated by potential flow
interactions between stator and rotor blade rows, vortex shedding from blade
tips, viscous wake formations, rotating stall and cavitation. In addition,
inlet flow distortions resulting in <circumferenitally nonuniform inlet
velocity may lead to large pressure pulsations and highly three dimensional
flow effects which are difficylt to predict. The problem 1is further
complicated by the fact that pump flows are subsonic so that a downstream
blade row induces dynamic loading on an upstream blade row.

Numerous investigators have established analytical approaches to attempt to
calculate these dynamic load effects but all these approaches are limited in
their application. One approach that is used extensively in the industry fis
based on potential flow solution of a two dimensional isolated airfoil or an
axial cascade of zero camber, zero thickness airfoils (flat plates) at zero
mean incidence angle (zero load). Other solutions include camber effects but
again valid tor thin, low cambered axial cascade. There 1is very little
experimental data available for formulating a general empirical approach.
The majority of data available in literature more closely represent the
1imitations 1imposed by analytical procedures rather than for actual
turbomachinery hardware. Almost no data exist for dynamic loads induced by
downstream blade rows. Development 2-D and quast 3-D anmalytical procedure
with experimental correlations that can be used economically in the design
process may be available in the near term. At a more complex level and from
long term objective it 1s necessary to develop 3-D computational fluid
dynamics model for unsteady flow around cascades of blades.

The actual forcing function that 1is used for turbine blade analysis
depends upon the type of analysis. For normal design considerations certain
percentage of steady state pressure 1s used as the alternating pressure. Ffor
damper optimization studies, a sinusoidal forcing function with certain
percentage amplitude of the steady state pressure is used exciting the blades
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various modes. For failure analysis, for experimental correlation and for
evaluating the effectiveness of actual damper, forcing functions obtained
through a combination of experimental measurements and analytical approach is
used. This procedure is 1illustrated below for the high pressure fuel
turbopump first stage blade analysis. The flow elements in the HPOTP consists
of (Fig. 2.29) 13 upstream struts, first stage consisting of 41 nozzles and 63
blades, and the second stage consisting of 39 vanes and 59 blades. A
schematic representation of wake development in flow about cascade blade
section is shown in Fig. 2.30. This velocity description has been measured
for SSME high pressure fuel turbine first stage nozzle and upstream strut
combination. The test was conducted by flowing air through nozzle/strut
combination and measuring the circumferential variation of velocity at a
section downstream of nozzle using boundary layer probe. Fig. 2.31 1s plot of
this velocity variation over a portion of the circumference. Another approach
to assessing the wake velocity is to simulate the blade nozzle geometry on a
rotating water table. This type of test has been conducted for SSME high
pressure fuel turbine first stage nozzle with 1imited success (Fig. 2.32). '

An analytical approach to quantifying the forcing function amplitude 1s to
utilize the wake velocity description. The pressure distribution over the
blade can be calculated from static fluid dynamic theory using these data. An
example of the pressure distribution across the blade at the tip is shown in
Figure 2.33. An interpolating scheme can then be used that smoothly switches
between wake and free stream distribution following a time history trace
similar to velocity trace of Fig. 2.31 where time between each peak in 1/N of
the rotor speed where N is the number of blades. The actual forcing function
used for HPOTP first stage analysis is shown in Fig. 2.34.

5. Turbine Blade Mission History Profile

A typical turbine blade mission history profile consists of both start/stop
transients as well as steady state operation with throttling over a range of
power levels. This can be 1llustrated as shown in Fig. 2.35. Turbine inlet
temperatures closely follow the power level profile except for transients.
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There are specific types of loading associated with the various segments of
the mission history profile.

Fig. 2.36 schematically illustrates blade stress variation through the mission
history profile. The segment Q-1 represents the transient thermal stress
response of the blade surface to the temperature variation as indicated in
Fig. 2.35. Segment 1-2 is the superposition of mechanical stresses dye to
speed and gas forces. If the rate of temperature change is sufficiently high,
the blade surface can yield, as shown tn Fig. 2.36, and result in residual
stresses during main stage operation. Superimposed on Fig. 2.36 are cyclic
dynamic stresses resulting from gas force variations expertenced by the blade.

Turbine blades are generally designed to avoid coincidence of natural
frequencies with harmonic excitation sources in the gas path. These sources
usually are upstream and downstream wakes from nozzles, struts, and gas
generator maldistributions. However, during transient conditions, avoiding
resonant speed is not usually possible. Therefore, superimposed on the
stresses In fig. 2.36 are cyclic dynamic stresses. These stresses can be
quite high, depending on ramp rates and damping, but typically occur for only
a few cycles. This is also the case for other situations such as tip rubbing
during transtent clearance changes.

The steady-state loading consists of centrifugal stresses, gas force static
stresses, steady-state thermal stresses, and dynamic stresses resulting from
gas path wakes. It is presumed that power level excursions of a properly
designed blade will avoid stability problems such as flutter. The actual
state of stress in the blade can be dependent upon the start transient
history. Presuming yielding occurs during the start transient, as inferred
from Fig. 2.36, the situation in Flg. 2.37 can exist, i.e., the maximum stress
Is limited by the yield strength. Therefore, the dynamic stress shakes down
the mean stress. Further, the mean stress can decay with time by a creep
mechanism. The assumption is made that the stresses are not primary (load
dependent) and stress redistribution can take place. The stress versus time
can also be influenced by power level excursions, it.e., operation at a high
power level can reduce the mean stress for subsequent operation at a reduced
power level.
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The last segment of the mission history profile is the cutoff sequence. As
1l1lustrated in Fig. 2.38, the blade is subjected to rapid temperature change
in the cooling direction. Similar to the start transient, the blade passes
through resonance speeds during deceleration, and dynamic stresses are
superimposed on the general stress behavior. Subsequent duty cycles will
follow the behavior described. The first few duty cycles will shake the blade
down in to a stable stress-strain loop.

In summary, the blade is exposed to various types of loading during the
segments of a mission history profile as follows:

Start Transient--(1) Rapid temperature excursions, (2) Transition

through blade resonances - upstream and downstream disturbances, (3)
potential for rubbing, (4) Centrifugal and gas forces, (5) Gas
generator disturbances

Steady State--(1) Centrifugal and gas forces, (2) Steady-state thermal
stresses, (3) Flow disturbances, (4) Power level excursions

Cutoff--(1) Rapid temperature excursion, (2) Transition through blade
resonances, (3) Potenttal for rubbing, (4) Gas generator disturbances

6. Material Aspects

In the advanced 1tquid rocket engines of the like of SSME, demands have been
placed on turbine blades to perform under extreme conditions for long periods
of time with many starts. The currently used turbine blades are subject to
fatigue cracks which 1imit their 1lives. The fatigue problems in turbine
blades may become even more critical with advanced version of SSME and other
11quid rocket engines when they impose even more severe thermal and stress
condtttons. Of the many avenues being investigated to extend the turbine
blade lives, the one avenue that has received much attention is the material
with which turbine blades are made of.

Histortcally, the rocket engine industry has relied for it's turbine blade
materials, on materials developed for aircraft gas turbines. The selection of
MAR-M-246 (HF, DS) was no exception. However, there are significant
differences 1in the requirements placed on turbine blade materials in rocket
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engines, compared to aircraft gas turbines as shown in Table 2.3. It has
become apparent based on SSME experience that the turbine blade materials used
by the aircraft gas turbine industry does not necessarily meet rocket engine

requirements.

Compared to aircraft gas turbines, rocket engines operate at considerably
higher speeds. As a rule, the rocket engines start and reach full power in a
matter of seconds. The rapid start results in severe thermal shock which
might set the stage for high cycle fatigue cracking problems under steady
state conditions. From rocket engines point of view destrable material
properties include high tensile and short term creep strenths, high thermal
strain low cycle fatigue, high mean stress high cycle fatigue strengths and
thermal shock resistance. With regards to environment effects, rocket engine
turbine materials are not exposed to sulfidation, but there is patential for
hydrogen environmental embrittlement (HEE) when components are exposed to the
high pressure hydrogen fuel. The active candidates for oxygen/fuel
combination in advanced engines include oxygen/hydrogen and oxygen/methane.
Thus environmental effects on the turbine blade materials must be considered
before a material selection can be made.

Past experience on turbine blade materials:

Table 2.4 highlights number of materials that have potential for being used in
a high temperature environment. These materials have all been in use in
existing rocket or air breathing engines and have been varying amount of
physical properties data base. Conventionally cast alloys can be treated as
isotropic and D.S. alloys are generally treated as orthotropic material with
Ysotropic properties in the transverse direction.

New matertal consideration in turbine blades:

The fatigue life of the order of about 107 cycles for MAR-M-246 (HF) (DS)
presently used in SSME turbines need to be itmproved to 108 cycles so that
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blade 1ife is not fatigue limited. Recent studies have looked into a number
of alternative materials with the objective of meeting the design 1ife of
reusable rocket engines. The promising material candidates include:

1) Single crystal super alloys.
2) Fiber reinforced super alloy composite.

3) Ceramics

Single Crystal Super Alloys

A significant improvement in certain mechanical properties and environmental
resistance may be achieved by a complete elimination of all grain boundaries
from a turbine blade. Single «crystal turbine blades have demonstrated
improvements 1in creep and stress rupture capability over polycrystaline
directionaly solidified blades. Corrosion resistance is also ‘mproved by
elimination of grain boundaries and their associated chemical inhomogeneity.
Carbides are usually added to conventional high temperature alloys to improve
creep resistance at grain boundaries. It is known that fatigue cracks
initiate at the carbides present in their alloys. With the entire blade made
out of single crystal, carbides can be entirely eliminated.

Absence of carbides permit higher solution treatment temperatures with a high
volume fraction of fine, evenly dispensed gamma prime precipitate, resulting
tn better tensile, creep, fatigue and stress rupture properties. With
improvements 1in industrial process development PWA 1480 and CM SX
materials show promise of being used in the manufacture of rocket engine
turbine blades.

Fiber reinforced super alloy composite:

Recent investigations of fatigue behavior of composite matertals indicate that
when the strength of the fiber is significantly greater than that of matrix,
then both low cycle fatigue and high cycle fatigue are controlled by the
fibers. Combined with the above desirable property the relatively high
thermal conductivity of FRS composite and better strength properties at high
temperatures makes FRS an attractive candidate for turbine blade material for
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future systems. The candidate reinforcing filament that is frequently
mentioned is a strong tungston alloy (W-4RE-0.38HF-0.02C). The candidate
matrix alloys that might be considered include Fecraly, 316L stnl, INC0903,
Waspaloy and Astraloy.

Ceramics:

The appeal of ceramics as turbine blade materials, compared to metals, lies in
three distinguishing features: (1) high-melting or dissociation temperature,
(2) tolerance of aggressive environments, and (3) low density.

The most obvious advantage of ceramics 1is their capability for uncooled
high-temperature operation to temperatures well above the 1limits for
nickel-base alloys. Ceramics such as silicon nitride and silicon carbide are
characterized by low coefficients of thermal expansion and thus, by reduced
thermal stresses. In addition, silicon nitride and silicon carbide are stable
at elevated temperatures and resistant to oxidation. Limited data on silicon
nitride matertals showed that exposure to the combustion products of LOX/H2
and LOX/CH4 rocket engine propellants at 1116 C (2040 F) resulted in little,
if any, effect on mechanical properties.

Finally, the low density of ceramics is another significant asset because Tt
not only provides a direct weight saving, but also conveys the benefit of
reduced centrifugal loads on rotating components. Ceramics also offer the
added advantage that they contain no strategically scarce materials.

The design approach for ceramics differs from that for metals because of their
brittle nature and 1inherent sensitivity to local stress concentrations.
Compared with metals, ceramics are characterized by lower strain tolerance,
reduced fracture toughness, and greater scatter 1in strength. A notable
feature of ceramics 1s the lack of a mechanism for plastic relief of local
stresses.
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[mpact of Material Types on Structural Analysis

D.S. and S.C. Material.

The directionaly solidified blades may have anywhere from 2 to 20 crystals
forming the blade. In the directtonaly solidified polycrystal form, the
direction of the longitudinal axis can not be very closely controlled. Hence
to avoid inordinate amounts of rejection, the crystal orientation axis usually
has a tolerance of O to 10° with the blade stacking axis. In addition
there might be other restrictions on crystal boundaries intersecting leading
or tratling edges. In 0.S. form there are no controls over the secondary axis
orientation. It is wusual to assume for directionaly solidified materials,
they are transversely isotropic, though this is not strictly true. For single
crystal blade matertals, the longitudinal axis as well as the transverse axis
orientations can be controlled within certain range of values. One way to
improve the fatigue 1ife of the blade is to reduce the shear stress in the
slip direction of the siip plane of the crystal. If the material is treated
as transversely 1istropic, five 1independent elastic constants and two
coefficients of thermal expansions are required.

FRS Material

The mechanical properties for the FRS composite is governed by the properties
of the reinfarcing wire and the properties of the matrix.

The influence of constituent material properties can be identified at a
macromechanics level by a three dimensional finite-element model with
orthotropic properties. However, local influences on structural behavior must
be addressed at the micromechanics level to make a reasonable assessment of a
design.These local effects are contributions due to the volume ratio of fiber
to matrix, orientation of fibers, number of plies, type of reinforcement
(fiber, particle, and whisker) and packing with either discrete and/or
continuous filament, and manufacturing method, specifically, on Joints and
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attachments. Thermal strains that occur due to mismatch of coefficient of

thermal

expansion is another important consideration. Micromechanical

considerations include:

1.

Interlaminiar Shear. Primarily an in-plane stress between plies in a
multiply component.

Debonding. 1Incompatibility of displacements between plies, fiber and
matrix, and initial inhomogeneity in matrix.

Stress Concentration. Nonuniform stress distribution at the packing
of fiber due to the difference in material properties of matrix and
its reinforcement.

Fracture. Interface bond irregularity among plies, void in matrix,
loss of continuous support between the fiber and matrix, and imperfect
fiber.

Ceramic Material

Due to the sensitivity of ceramics to local stress riser, much design emphasis

is placed on local thermal gradients and stress concentrations combined with a

probabilistic determination of design strength properties.

The generally accepted basis for statistical analysis of ceramic strength 1is
based on Weibull's weakest 1ink model, which halds that the probability of
survival of a structural element is:

(1)

L
1]
>
o
[}
Q:Q
o
g
3

probability of survival for a given element
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o = applied stress
% = a normalizing factor (the “characteristic strength* of
the material)
m = Weibull modulus

The foregoing equation can be extended to calculate the probability of
survival for a particular structure of known volume or surface as represented
in a finite element analysis. If we assume independence among the various
elements, and that the local elements of the structure have the same size,
stress level, and flaw distribution, then the probability 6f survival of the
total structure becomes the product of the local elements:

n
p = (p_) (2)
Sy 5,
where

ps = probability of survival for the total structure

t
ps = probability of survival for an element "i*"

i

number of elements in the structure

3
]

The strength of a structural material is determined through measurements on
laboratory test specimens. I[f we assume, for example, that the unit elements
of Eq. 1 and 2 are of a size equal to that of a standard laboratory test
specimen, then the number of elements ("n") in a structure becomes:
n = total structure volume
volume of test specimen

This permits us to express the probability of survival in terms that consider
structural size as related to laboratory test data, so that

v m
p. =exp| - 71 (g > _—
St t V990 (3)

where
pSt = probability of survival for the structure
v = volume of test specimens upon which the values of . and m
i are based
Vi = volume of the engine component (e.g., turbine blade)
Analagous equations can be employed for adjustments in Ps to compensate for

surface area effects as well as volume. t
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In the faoregoing equations, the Weibull modulus ("m") desc¢ribes the scatter of
the strength distribution, with a high value indicating a small degree of
scatter. Thus, the Weibull modulus 1is an important parameter that must be
known in company with the values for average strength. Accurate determination
of "m* requires sizable numbers of strength tests. Ffor example, an "m" value
calculated from 30 samples is reliable to only + 20%. Thus, the number of
samples used should be recorded along with the value for "m".

Plasticity

It is known that due to severe thermal shock during start and cutoff
transients, surface yielding of turbine blades occur, resulting in residual
stresses. Thus for an accurate analytical evalution of blade 1life, 1t 1is
necessary to do a material nonlinear analysis. The matertal library should
contain plasticity formulations for general anisotropic bodies.

7. Fatique Fatlure of SSME Turbine Blades

Turbine blades in SSME, the most advanced, large, liquid propellant rocket
engine currently in service, are subjected to fatigue cracking problems that
1imit their life to less than design l1ife. The first and second stage fuel
turbine blades and the first stage oxidizer turbine blades exhibited
cracking. Though the fatigue cracking problem 1is attributed to different
causes in each blade, the primary reason is the severe thermal shock these
blades experience during start and cutoff transiet.

The HPFTP first stage blades must be inspected periodically and are limited to
4,000 secs. of operation at 109% rpl due to shank <cracking. The
characteristics indicate three influences.

1. Corner Stress Riser
2. Surface Carbides
3. Thermal Cycles

The first stage blade high cycle fatigue cracks propagate from cracked
carbides typically located in areas of incipient surface melting at a cast to
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machined surface stress riser. The short term design changes that address the
extension of first stage blade include 1) Recontouring of the shank in the
critical area and 2) insulate the shank with ceramic ccating. Recontouring in

the critical area 1is accomplished (Fig. 2.39) to reduce the stress
concentration factor. By applying a4 coating around the shank (Fig. 2.39), the

inciptent surface melting can be eliminated and thermal gradinets reduced.

The HPFTP second stage blades are limited 1375 secs of operation at 109% rpl
due to shank cracking. They are caused by a combination of high thermal and
mechanical stresses aggravated by geometrical stress concentration. A mixture
of turbine hot gases and hydrogen coolant at a temperature of approximately
1760°R  flows between the blade shanks. Hydrogen at approximately
250°R flows along the down stream end of the shanks. The high-temperature
differential produces high thermal stresses in the shank. The cast surface at
the downstream end of the shank and underside of the platform are machined to
provide the tolerance control desired for the platform seal clearance. A
stress concentration is produced at the line of intersection between the
machined surface and the cast surface at the curveture of the shank. These
conditions are shown in Fig. 2.40. Some of the design changes that are being
considered to extend the 1ife of second stage fuel blade include:

1) Recountour and shotpeen in the critical area.
2) Insulate the downstream end of shank with a ceramic coating.

3) Development of a practical method for selecting blade castings with
supertor fatigue properties.

4) Development of single crystal alloy with improved properties.

5) And a divertor to the second stage aft platform seal to direct the
cold hydrogen from the blade shanks.

Recontouring of critical area reduces the stress concentration factors thereby
increasing the fatigue 1ife. Shotpeening the shank will include a substantial
residual stress which will then reduce the mechanical operating stress. By
applying a thermal insulating coating to the aft end of the blade shank as
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shown in Fig. 2.41 the steep thermal gradient through the trailing edge of
shank can be substantially reduced as shown in Fig. 2.41. Laboratary
examination has established a correlation between blade cracking and
crystallographic orientation of grain at the shank trailing edge. The
MAR-M-246 (Hf) blade material has face centered cubic crystallography

(Fig. 2.42). In all cases examined, the high cycle fatigue crack has occurred
in the crystallographic slip plane. By controlling the grain orientation, the
resolved stresses in the slip plane might be reduced to a valuye that can
Increase the blade life considerably.

The function of the divertor will be to remove the cold hydrogen from the
downstream surface of the shank. This will reduce the temperature
differential with mixed gases that flow between the shanks. The average
temperature in the cavity adjacent to the downstream face of the shank will be
increased from the baseline value of 250°R to approximately 1400°R thereby
substantially reducing the thermal stress.

High pressure oxidizer turbopump first stage turbine blades exhibit transverse
trailing edge shank transition cracks that 1imit their 1ife to 3000 seconds of
f1ight operation. The cracks are due to Stage 1 HCF, crystallographic in
nature initiated at carbides. The primary objective in the design changes is
to reduce the alternating stresses through more effective damping. This 1is
achieved by a two-pilece damper (Fig. 2.43 ). While ane piece acts as a seal
to prevent bypass of hot gas flow between the blade shanks, the second piece
provides the damping function. Current analysis indicates that the two-piece
damper configuration will reduce the alternating stress in the blade
stgnificantly, thereby increasing the blade live.

8. Static Analysis

The scope of static finite element analysis of turbine blades include the
evaluation of blade stresses due to centrifugal load, temperature 7load,
pressure load and due to severe thermal transients. In general stresses due
to centrifugal loading, pressure 1loading, and vibratory stresses are
classified as primary stresses. The secondary stresses are those caused by
discontinuity stresses, thermal stresses and certain types of bending or
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deflection limited stresses. However, with the first reusable rocket engine
11ke that of SSME, the design life is limited by the secondary stresses and
thermal stresses. In general static linear analysis 1is done for each of the
individual loading cases ie. centrifugal load, temperature load and pressure
load. The combined results for the baseline steady state are obtained by
principle of superposition. In general there is insufficient details in large
3-0 models to define the local stress concentration factors. In such cases a
seperate substructure model approach is used to define the local stress
concentration factor.

Due to the severity of thermal transients that exist at rocket engine
turbines, a material nonlinear analysis may be required for accurate 1life
prediction not only in turbine blades but in other turbine components. A
material nonliniear analysis done for the HPFTP nozzle is 1llustrated here for
a typical start and shut down transient, using a 2-0 finite element model
(Fig. 2.44). The thermal transient loading on the nozzle a start and cutoff
are shown in Fig. 2.45 and Fig. 2.46.

These are average temperatures in which the bulk temperature of the nozzle has
been subtracted out and the key turning points in temperatures have been
marked. The temperature contours of the nozzle at key time steps are shown in
Fig. 2.47 and Fig. 2.49. The resulting effective stress-strain history
obtained at a reference point at the nose of the nozzle is shown in Fig. 2.50
with key steps corresponding to load curve marked. The ignition spike causes
the material to go plastic in compression (Segment 1-2). Subsequent
oscillation in temperature in start transient, results in the material going
plastic in the tension region (Segment 5-6).

During subsequent oscillations during time steps 6 through 16, the material
essentially behaves elastically with loading and unloading. During the
reverse thermal shock during shut down transient 16-17, the material goes
further plastic in the tension region. Subsequent oscillations in shutdown
thermal transient results in elastic unloading and loading (17-22). The
nozzle at the end of one duty cycle has residual stresses and strains.
Subsequent start and cutoff transients should shake down the stress-strain
curve into a stable loop.
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Fir Tree Attachment Analysis

Rocket engine turbines have been designed successfully with blades integrally
welded with the disk and welded. However, for most of the high thrust
production engines fir tree attachment has been used. The goal of the fir
tree attachment 1s to distribute the Joad uniformly to the disk. A typical
profile of the fir tree arrangement is shown in Fig. 2.16. Inittal sizing of
the fir tree arrangement is done using strength of materials approach, but the
design is verified wusing extensive finite element analysis. The load
distribution problem is complicated due to tolerance envelope on the fir tree
profiles which can result in all lobes not touching simultaneously and the
number of loading conditions that need to be considered. This can happen
inspite of the tight manufacturing tolerances in the loaded flat of the order
of 0.0005". Thus a detailed sensitivity analysis is done using finite element
techniques. Some of the objectives of the analysis include:

1) Optimum biasing of loaded flat tolerances to assure the desired
ordered sequence to pick up the load.

2) Invest1gat1on' of worst case conditions of tolerances to maintaln
adequate safety.

3) To design optimum loaded flat angle that can result in optimum stress
distribution in blade and disk.

4) To design optimum fir tree tolerances in hoop direction to account for
thermal hoop stresses in disk.

The details of the finite element model 1is relegated to a later chapter. The
finite element analysis analysis requirement include material and geometric
nonlinear analysis under steady state and transient conditions. The material
nonlinear analysis 1s necessitated when only one lobes initiate the contact.
In general single Tlobes, efther the disk or the blade have insufficient
strength to carry the entire load and therefore plastically yields until other
contact points get into the mechanism of load transfer.

187



The actual value of the plastic strain limit used is a function of material,
1ife requirement, and the environment (Hydrogen embrittlement effect). The
geometric noniinear analysis requirement 1is introduced through the use of
interface or gap elements. It is necessary to note the many levels of
sophistication of contact elements which include 1) Small deflection gap/no
gap element with axial stiffness and friction with stick slip option 2) Large
deflection contact element with axial stiffness and friction with coordinate
update and stick/slip option in which gap condition is always checked between
two predefined nodes and 3) Contact surface element which permits large
lateral displacement between surfaces. The transient analysis is necessitated
due to the ramp in rotor speed, pressure bending, and temperature field in
disk and fir tree. It must be noted that the circumferential tolerances in
the fir tree lobes and the unloaded bottom flats are generally based on
different criteria. OQuring the start, while the rim is hot, the center ofthe
disk is cool resulting in compressive stresses in the rim of the disk. This
has the effect of locking or unlocking the blade or both during a transient
time history. This effect has to be considered appropriatley based on design
philosophy. For designs which rely on fir tree damping, locking is
undesirable. Fir tree designs which do not rely on fir tree damping, the
effect of unlocking resulting in fretting and its effect on the resulting
fatigue or the effect of locking and its effect on vonmises stresses at the
critical area of the root must be considered. While many successful designs
have been completed using 2-0 analysis, many approximations inherent in the
2-0 analysis can be eliminated using a 3-D analysis. With a 3-D analysis the
effect of blade bending on fir tree interface forces may be more effectively
studied. The effect of skew of the blade with respect to the disk can be
considered. In addition, the nonuniform distribution of the interface load
along the chord length of the blade may be evaluated. The use of cycle
symmetric option can be effectively used to reduce the size of the problem.

9. Dynamic Analysis

Turbine Blade Vibration Damping

During normal operation, turbine blades are subjected to both steady-state and
alternating stresses. The steady-state stresses are primarily due to
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centrifugal and gas benging forces, while alternating stresses are due to
harmonic variations in the flow stream. Struts, nozzles, and coolant jets are
typical causes of flow stream variations. In the «case of the SSME
high-pressure fuel turbine (HPFT) first-stage blades, forcing functions are
generated by the blades passing 41 upstream nozzles and 13 unequally spaced
structural support vanes which are located upstream of the nozzles.

The attainable service life of a blade is a function of the combination of
alternating and steady-state stress levels. This may be best 1llustrated with
a Goodman diagram, as presented in Fig. 2.51 for MAR-M-246-0S at 1550 F. The
calculated operating mean stress for the SSME HPFTP first-stage blade leading
edge at full power level is noted on the diagram at 30 ksi. As evident, life
(the number of cycles to failure) is very sensitive to the alternating stress
level. The lowest blade frequency is approximately 5000 Hz. Using this as a
counter, only 2000 seconds of turbine operation is necessary to accumulate

107 cycles.

It is clear then, that a reduction 1in thev alternating stress level 1is
desirable to increase operating 1ife, or increase reliability for a given
14fe. There are several methods which can be used to decrease alternating
stress. The forcing function can be attenuated by increasing the axial space
between the rotating blade and the impulse generating member; however, this is
generally not an acceptable solution because of performance reduction or rotor
dynamic side effects. Alternating stresses are also minimized by designing to
avoid coincidence of natural blade frequencies with probable harmonic
excitation forces. This becomes difficult because of the complexity of the
turbine hardware, variable concerning the forcing functions, and the
requirement for a wide operating range.

For the above reasons, and because the inherent damping of turbine blades is
small, effective damping must be added to the blades. A certain amount of
damping may be provided by mounting the blades to the disk by means of a fir
tree arrangement with an appropriately engineered tolerence. The amount of
motion in the fir tree 1is usually small and, therefore, the energy dissipated
is limited. As a result, it has been frequently found necessary to
incorporate a mechanical damper design operating some distance from the
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fulcrum of the blade motion, i.e., at the blade platform or shroud. The
design of such dampers has in the past, been based to a large extent on
empirical data, which generally has been treated as proprietary by turbine
companies. The most common damper concept used consists of a relatively small
piece of metal which under centrifugal load is forced radially out, and 1is
supported equally by the platforms of two adjacent blades where relative
motion occurs between the blades due to vibration, and energy is dissipated at
the damper-to-blade interface. This energy is proportional to the mass of the
damper, the coefficient of friction at the contacting surfaces, the square of
rotational speed, and the relative sliding velocity between the contacting

surfaces.

As the weight of the damper or the rotational speed increases beyond a
critical value, the damper locks up, provides no damping, and acts as an added
mass. This effect establishes mass as a critical parameter, and shows quite
clearly that:

1) There is a distinct optimum damper mass.
2) An extremely heavy damper is worse than no damper at all.

3) If a blade locks up so that one blade is supported at the damper
location by another blade, stresses will be quite large. This is.a condition
that occured on the SSME, where molten plating material (nickel) was trapped
between platforms during an overtemperature start, (Fig. 2.52) forming a solid
path during a subsequent lower temperature test; and in a separate instance,
when two blades were installed such that they were touching at the platforms.
Both instances led to premature cracking of the blades involved.

The second partially controllable parameter is the friction factor at the
damper contacting surfaces. The observation made above relative to optimizing
the mass of the damper 1is also applicable to the friction factor. Thus, a
very high friction factor would tend to have the same effect as excessive
mass, and would lead to blade lockup. Very low friction factors would 1imit
the energy absorbed in damping. In analysis, the selection of friction factor
values 1s important to obtain a realistic simulation of damper effectiveness.
In practice, surface conditions must be controlled to realize optimum benefits

from damping. 191
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The geometry of the damper and locations where the loads are appliied to the
blades also are parameters which have a direct bearing on the effectiveness of
the damping concept. As discussed later, blades can vibrate in any of a
number of modes depending on the frequency of the forcing function. These
must be identified, and the damper must be designed such that the damping load
is applied away from the nodes of the predominant modes, i.e., those which are
potentially most detrimental. This consideration makes it imperative that the
vibration characteristics of the subject blade be known to the damper
designer, either from analysis or preferably confirmed by experimental effort.

Although rotational speed and sliding velocity are important terms in the
damping analysis equation, they are fixed by performance requirements of the
turbine, and by blade frequency and vibration amplitude, respectively.
Therefore, these parameters cannot be adjusted to effect a more efficient
damper.

Usually a parametric study is done by forcing the blade sinusiodally at each
of its natural frequencies and varying the damper weight (friction force)
until the stress in the blade is minimized. As would be expected, each mode
would require a different damper weight for a minimum stress. Therefore the
problem pecomes one of determining which mode is more predominant in the
overall blades response. The damper weight is then chosen to minimize
stresses in the mode which is most 1ikely to respond highly.

SSME HPFTP FIRST STAGE TURBINE BLADE DAMPING ANALYSIS

A substantial effort has been expended by Rocketdyne 1in analyzing the
vibration characteristics of the SSME high-pressure fuel pump first-stage
turbine blade. The analytical work was supported by nonrotating static tests
of individual blades and by whirligig tests of strain gaged blades in a wheel
at full operating speed. The blade vibration modes, frequencies, and the
formulation of finite element models have been defined, and analytical codes
have been developed to predict blade dynamics, including damping effects.

A finite element analytical model of te HPFTP first-stage turbine blade and
wheel has been developed for use in STARDYNE computer code with plate type
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elements. The model has been used extensibly to perform natural frequency and
mode shape computations in addition to detailed linear and nonlinear response
analyses to evaluate the current dampers in support of the SSME program. Of
particular interest is the nonlinear capabilities of the analytical model.
Friction damping was introduced and optimum damper weight was computed faor
several damper configurations. Figure 2.53 shows a typical result of an
analysis where blade alternating stress is plotted as a function of damper
mass. Note the optimum damper mass is at the point of minimum stress. Any
further increase in weight only serves to decrease the effectiveness of the
damper and increase blade stresses. Another typical example of the results of
nonlinear analysis 1is presented in Fig. 2.54 where peak blade stress is
plotted versus rotor speed for various damper configurations.

ANALYSIS TECHNIQUE

One of the analysis technique that is used to determine damper effectiveness
employs the use of a large finite element model of the turbine blade and
wheel. The model was analysed using the STARDYNE computer program. This
program is widely at Rocketdyne with excellent correlation between analysis
and test. Both the blade and wheel and modeled primarily with plate elements
which describe, 1in detail, the stiffness, mass, and geometric properties of
the actual hardware.

The STARDYNE program is used to form the basic stiffness and mass matrices and
extract eilgenvalues from the finite element model. Output from STARDYNE is
then used in a Rocketdyne developed response program called DYNREN. This is a
nonlinear modal analysis program which operates in the time domain. It uses
modal analysis as a transformation to a coordinate system 1in which the
equations of motion are easier to solve, and then transforms back to physical
coordinates to output results. It is not a modal superposition technique when
nonlinearities are encountered, since the vibration modes are coupled. The
technique employed 1s exact within the limits of:

1) The accuracy of the finite element model employed
2) The accuracy of the numerical integration time step specified
J) The number of modes retained in the solution
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1f a sufficiently large number of modes are selected (enough to accurately
describe the motion where nonlinearitles occur), the model is suffictently
fine, and a reasonably fine time step is used for numerical integration,
excellent results have been obtained with this procedure as compared to other

linear and nonlinear computer programs.
The basic equations employed in the problem solution are as follows:
Given a system,
(m] (X} + (c] (x) + ((Ky1 + [K, 1) {(x} = { F}
Using STARDYNE, the eigenvalue problem is solved for,
[(mi( x} + (K31 O x} =0
This gives natural frequencies and mode shapes,
i ], (8]

The modes and frequencies are then input to the DYNREN program. In this
program the physical coordinates {x} are transformed to modal coordinates.

{x} = (¢] {a)

The new equations of motion become,

(@) +t20w (a1 (odulo (81 (K, 10D (a) = (217 (F)

[KZ] can be any linear or nonlinear stiffness matrix.

For the blade-damper problem [KZ] will represent coulomb friction damping,
[K,] = [Fg stan(x}],

where Ff 1s the friction force due to the damper rubbing on the blade, Ff
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is a function primarily of rotor speed, damper mass, geometry, and friction

coefficient.

After rearranging, the final equations become,

(@) +(>2cw< Jla)+ [ 1a)

- (¢] T(F) - (o170F stan (%)1(2](a)
This system of nonlinear differential equations is then solved using a standard
integration routine.

Some Variations in Damping Analysis Technique

Initial efforts in analysis of coupled disk blade problems invoived modeling
only a few blades with detailed blade models and the rest of them with multiple
beam elements (Fig. 2.55). The coupling between the blades were examined by a
response analysis in which only one blade was excited and studying the response
of the others. The results indicated:

1) Wheel modes were highly coupled with blade modes in the same frequency
range.

2) There ts significant coupling between all blades (even 180 degrees
across the wheel) in most modes where wheel blade interaction in strong.

3) The response of the blades modeled with beam elements is so different
from the response of modelledwith plate elements that it was concluded
that all blades must be modeled with plate elements.

Due to the nonlinier characteristics of the friction-dampers the results of
the damper weight optimization study are dependant on the magnitude of the
forcing function. As 1s always the case with unsteady pressure loading of
blade surfaces, the forcing function is not well known. For most turbine
blade analysis work the alternating pressure component is taken to be 10 to
20% of steady state pressure exerted in the blades. However, the frequency
content of the forcing function 1is better understood because the turbine
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geometry is well known. For example HPFTP has 13 and 41 upstream nozles.
Therefore each blade will be pulsed 13 and 41 times during one revolution of
the turbine disk. In addition, since pulses are not sine waves, higher
hamonics can be present. Again the relative magnitude of primary as well as
secondary harmonics 1is not well known. These uncertainties present in the
single blade analysis are compounded tremendously when multiple blade studies
are attempted. Thus there is another school of experts who believe that it is
suffictent to model single blade and perform the analysis with the goal of
discovering general trends. In either case the analysis results should be
carefully studied and compared with extensive experimental testing of the type
used at Rocketdyne (whirlgig).

Key features of a Fintte Element Program for Turbine Blade Analysis

A finite element program specifically tailored for turbine blade analysis must
first have the capability to accurately define the blade geometry and compute
natural frequencies and associated mode shapes. As when strong coupling
between the disk and the blade is suspected, it will be necessary to model the
disk with all the blades attached. A modal coupling approach may be necessary
since typical turbine disks have on the order of 60 blades. The computer
capacity of most large systems would be overwhelmed by such a problem not to
mention the prohibitively high costs of computing eigenvalues for large
structural models. However, if the modal characteristics of a typical single
blade and 1f any rogue blade that may be present were computed and coupled
with the modes of the turbine disk and with the other blades then the complete
system modes could be defined at a relatively low cost. Other technigues such
as substructure analysis or cyclic symmetry may be useful in simplifying the
problem to a manageable size. When using cyclic symmetric options it fis
important to consider the complexity of forcing functicn produced by upstream
and downstream wakes, free stream distributions, and the phasing needed
between the blades.

The response part of the finite element program must be capable of handling
the nonlinear forces produced by friction damping. Many programs that handle
coulomb friction do not address the stick-slip phenomenon. The assumption in
these programs is that the frictton force is in effect only as long as the

200



element is in motion. This }s adequate for low values of friction where the
rubbing surface is slipping during most of the cycle. However, as the damper
weight increases stick-slip action becomes very important. Any new response
program must account for stick-slip by computing the friction force which
occurs when the rubbing surface is not in motion as well as when it is in

motion.

For the analysis of multiple blades on a disk the response program must have
the capability of handling up to 100 phased forcing functions. This is
necessary because of the fact that the turbine wheel is rotating within a
stationary pattern of flow field disturbances. £E£ach blade gets pulsed by a
force that has a time lead or lag from the force that an adjacent blade was
hit by.

10. Experimental Correlation

Temperature Data

Engine firing data and failure history of HPFTP turbine blades have indicated
that SSME HPFTP first stage blades see much higher temperatures than the
nominal design values. Post test inspection of blades have further given an
indication of temperature gradients present in the blade by surface condition
and decoloration. The detection of 1incipient melting conditions through
optical devices show that some blades have seen temperatures greater than
2715°R. The standard flight instrumentation measures temperatures at turbine
exhaust and that too at only two locations. The measurement devices used in
flight (transducers) are too slow to respond to rapid tempefature spikes and
thus, are unsuitable for measurement of rapid thermal transients. In order to
obtain a better understanding of the temperature environment in the turbine,
three turbopumps were extensively 1instrumented with thermocouples and tested
on two engines (Table 2.5). The instrumentation was designed to measure rapid
thermal transients, gas temperatures at turbine outlet as well as at inlet and
at several clock positions. Other objectives of the test 1included
modification to fuel preburner and fuel preburner oxidizer valve start
sequence. An overview of the global locations of the instrumentation is shown
in F1g. 2.56. Fig. 2.57, section CC, shows the locations of sensors at Kaiser
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hat, Fig. 2.58, section BB, shows the locations of sensors at turbine inlet
nozzles, and Fig. 2.59, section AA, shows the lacation of sensors at turbine
exhaust.

A typical start temperature transient for the HPFTP is examined first. The
start temperature transient is plotted to an expanded scale in Fig. 2.60 for
the Ffirst 10 seconds at the Kaiser hat location. The transient s
characterized by two temperature spikes, the first one being termed as the
ignition spike at 0.75 seconds and the second one as the Ffuel oscillation
spike at approximately 1.3 seconds.

The first spike is caused by the lox rich mixture as a result of reduced fuel
flow due to the sudden increase in fuel preburner chamber pressure at
ignition. The second spike 1is due to fuel oscillation which is a cyeclic
phenomenon observed in SSME. The net effect of this phenomenon is the
reduction in fuel flow to the fuel preburner at about 1.3 seconds. As the
engine pressure increases, the oscillation vanishes and the engine reaches the
main stage operation. Fig. 2.61 through Fig. 2.67 illustrate several aspects
of this start transient phenomenon.

There are variations in data between firing to firing, eigine to engine and
from turbopump to turbopump. The inlet temperature can vary between firings
appreciably for the same spatial Tlocation. This is illustrated by comparing
the PID 1319 measurement between 750-171 and 902-279 test measurements (Fig.
2.61 and Fig. 2.62). Both the firings used the same start sequence but the
engines and turbopumps were different. Fig. 2.62 illustrate the variation in
turbine inlet temperatures at transient due to modifications in start
sequence. Turbine blades may experience large cyclic temperatre changes at
start transient and to a lesser extent at mainstage operation. This 1is
i{1lustrated in Fig. 2.63 where T1 through T7 are temperature measurements
at different clock positions (Fig. 2.59). The temperature spikes as measaured
in the turbine exhaust is much less than that observed in turbine inlet. This
3s {1lustrated by comparrison of Fig. 2.63 and Fig. 2.64 which were
measurements from test 750-171. There 1is also a variation in gas temperature
based on clock positions. The regular flight transducers instrumentation
(Fig. 2.65) 1s too slow to follow the start transients and thus shows no
spikes.
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The effects of rapid cutoff transient is illustrated in Fig. 2.66 and Fig.
2.67. For safety reasons at shutdown oxidizer valve is activated Ffirst
resulting In quenching of hot turbine components in cold hydrogen in a time
period of five seconds. The rapid temperature decrease at nozzle and the
turbine exhaust is i1llustrated in Fig. 2.66 and Fig. 2.687.

MODAL TESTING

Holographic modal testing as it applies to turbine blades is done to determine
the natural frequencies and corresponding mode shapes of a blade. This
information is used to assess the Validity of the blade finite element model.
Most testing is done with a single blade specimen brazed to a block. The
blade is painted white for good optical properties and the block is secured to
a small crystal shaker. A1l excitation forces are input at the blade base.

The holographic method employs a low power laser light beam which 1s split
into two beams. The reference beam is directed at a holographic plate and the
other beam is focused on the test specimen undergoing vibration. Reflected
1ight from the vibrating test specimen also falls on the holographic plate.
The reflected 1ight when strikes the holographic plate forms an interference
pattern with the reference beam. The interference pattern is formed because
the reflected 1ight has been doppler shifted by the vibrating test specimen.
The 1interference pattern clearly shows the mode shape of the vibrating blade
(Fig. 2.68). A comparison of analytical results from a finite element model
with that of Helographic testing can be made using Fig. 2.68 and Fig. 2.69.

Whirligig Testing

Rocketdyne's high speed diagnostic laboratory testing facility is used to
determine blade excitation modes and stresses at full operating speeds and to
determine the effectiveness of several damper designs. The tester is named
"whirligtig®, and is shown in Fig. 2.70.

Whirligig testing consists of strain gaging turbine blades and running them in
a turbine disc, exciting the blades to resonance with gas directed through
orifice jets onto the blades, and monitoring the response using strain gages
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attached to selected blades. The strain gage lead wire are routed through a
slip ring to permit high-speed data acquisition. One of the principal
objectives of this type of test rig is for the comparison of the vibration
characteristics of different blade-damper configurations. Another important
objective of the program would be for the verification of analytical models.
[t must be emphasized that this type of testing is a comparative type of test
and the actual strain amplitudes obtained do not simulate actual engine
canditions.

The principle design features of the whirligig test rig are the following:

1) Steady-state rotor operating speeds can be from 25,000 to 38,000 rpm

2) The pulsing gas will be gaseous nitrogen to provide an inert
atmosphere within the test chamber and preclude detonation of hot o1l
with an ambient environment.

3) Minimum duration at full operating speed is at least 10 minutes
4) Wheel rotation is either direction

5) Drive system: electric motor (300 hp) through a gearbox and connecting
quill shaft with an estimated 250 hp available at the quill shaft

6) Bearings: single assembly each end (whell, drive), ball bearings
(Barden), o11-film damped, soft-mounted, variable axial preload

7} Lubrication: Rotor Bearings - DTE 797 or Brayoil No. 1015. Slip Ring
Assembly - Mixture of Freon (F113) and MIL-L-7808 oil, the actual
mixture radio determined based on shaft speed.

The description of a typical test on SSME HPOTP 1s given here to give an idea
of the type of information that can be obtained using these tests. The
whiriigig tester was intended to be operated in a partial vacuum (200 to 600
mm Hg or 3.9 to 11.6 psia) to reduce the windage horsepower. Design maximum
speed for the SSME HPOTP whirligig was 32,000 rpm, which corresponds to a
nominal power requirement of about 110 hp.

Blade exctitation is obtained by passing a flow of GNZ through a discrete

number of jets, then impinging each jet stream on the trailing edge of the
turbine blade. The whirligig was designed for excitation at the trailing edge
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(biade easily excited), but with a mod-option to excite at the leading edge.
Fig. 2.71 shows the gas path vector diagram which was used to design the blade
excitation method. The gas jet strikes the blade normal to the minimum moment

of inertia axis.

The blades are instrumented with foil-type strain gages attached by epoxy and
covered by fiberglass. Soldered connections between the gages and lead wire
are made to withstand the radial loads and windage heating imposed by the high
rotor speeds. The lead wires are routed to a 100-channel rotating slip ring
assembiy in which two channels per gage are normally utilized. Four channels
are allocated for blade thermocouples (for d-c shift compensation), leaving a
total capability of 48 strain gage measurements. Normally more than one
blade/damper configuration is tested at one time, thus the 48 gages are
divided between several (3 to 5) sectors of differing blade/damper
configuration to maximize data/test sampling. The blade forcing frequency 1is
fixed by the rpm times the number of jets.

The strain gage signal from a whirligig test 1is processed by a real time data
analyzer (RTDA). A typical output is displayed in Fig. 2.72. The program
decomposes the signal into its Fourther components and displays both frequency
and amplitude as a function of rotational speed. Fig. 2.72 is a Campbell
diagram for the whirligig environment. The frequencies can be adjusted for
operating temperatures as shown in Fig. 2.73, which is a Campbell dlagram for
the HPOTP first-stage blade under operating conditions.

Such testing methods can be used for the future verification of probablistic

models developed.

11. Geometrical Variations in Turbine Blades

Manufacture of turbine blades are characterized by the strict geometric
tolerances that are enforced. These tolerance limits are imposed by stress
considerations and aerodynamic considerations 1in that order. It is not
unusual for the scrap rates of turbine blades to be very high. variations in
geometric dimensions result in shift of mass center of the blade which in turn
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affect centrifugal stresses. An analysis of geometric variations and their
effect on stresses is illustrated here. The example chosen is the second
stage blades of the high pressure oxidizer turbopump (HPOTP). The analysis
presented is based on strength of materials approach. A similar analysis

could be done using a more rigorous FEM analysis.

The HPOTP turbine blades geometry is defined by an upper platform, airfoil,
lower platform, shank, damper slot, and fir tree. (Fig. 2.12). The blade
also has a hollow core section. The blade contours are usually inspected by
contour tracing machines or more recently by “Defracto® laser finspection
machine. The laser inspection machines which are used exclusively now has the
advantage of storing x and y coordinates automatically in a file that can be
machine processed for blade acceptability. Typically the points are those
that are specified in master dimension chart. An example of contour and laser
output is shown in Fig. 2.74 for four sections. Based on contour measurements
the blades are evaluated for profile area, blade twist and lean and tilt. The
designed lean and tilt are critical dimensions as any variation in the
location of center of mass affect the designed centrifugal stresses. -This
becomes an important criterion as blades are designed such that centrifugal
stress are to counteract power bending stresses. Variations in centrifugal
stresses result in variations in mean and alternating stresses that affect the
fatique life of the blade.

An analysis of the variations in geometry and their effect on equivalent
alternating stress is presented in Fig. 2.75. for a critical point. Similar
study is done for all the critical stress points in the blade. Fig. 2.75
compares the results of the analysis of blades manufactured after a tooling
change and of those blades that have been actually used in engines, to
investigate the range of operating experience. Such geometric tolerance
analysis 1is more critical in blades of small size as compared to bigger
blades. Other critical dimensions that are routinely inspected include root
and valley discrepencies in fir tree, core offset, damper slot depth and upper
and lower platform discrepencies.
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12. Hydraulic Turbine Considerations

Hydraulic turbines have been used in low pressure turbopumps of rocket engines
which typically operate at low speed. The SSME Jow pressure oxidizer
turbopump (LOX) uses a hydraulic turbine. Hydraulic turbines concepts have
also been proposed for low pressure fuel pumps (LH2 or Hudrocarbon). Unlike
in high temperature gas turbines, keeping the number of stages to a minimum is
less of a concern in hydrauiic turbines. The SSME LPOTP has six stages. The
hydrodynamic codes that design the flow passage of hydraulic turbines treat
the flow as incompressible.

While axial flow turbines have been exclusively used 1in high pressure
turbopumps of rocket engines, radial flow hydraulic turbines can be used in
Tow pressure turbopumps. The turbine blade geometrical configuration differ
substantially from axial flow blades as shown in Fig. 2.76. They are more
like a pump impellor blade. The blade can be shrouded or unshrouded, the
later being more common.

The biggest impact in stress analysis of hydraulic turbine blade design is the
density of the working fluid. Significant fluid structure interaction may be
present. In general, the virtual mass of the fluid must be considered in the
dynamic analysis of the blade. This virtual mass can alter the natural
frequencies of the blade by as much as 20%. Because of the presence of fluid
damping, no additional damping provisions are generally provided.

There has been no failures of the SSME LPOTP blades; However, potential for
tratling edge flap phenomenon under resonance has been studied for these
blades.

13. Approximate Analysis Techniques

For 1initial rough sizing, turbine blades have been effectively analysed as
cantilever beams. The section properties of the airfoil section are generally
calculated through computer programs which include areas, centroids, moment of
inertia and section modulus. The approximate stresses using beam analogy can
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be used to calculate centrifugal stresses including dending and, stresses due
to power bending. Simplified imputs usually include defining the profile
point by point or by defining it through geometric entities like straight
lines, arcs, conics, and parabolas. The approximate method 1include
calculation of natural frequencies for cantilever with varying crossections
including centrifugal stiffening effect.

Several 4improvements to component specific approximate analysis of turbine
blades may be possible. The beam analogy can be replaced by a more accurate
shell analysis. The approximate dynamic analysis capability can be improved
to include response analysis far the blade damper confiquration. The recent
improvements in approximate dynamic analysis published in literature include
two parameter lumped mass model for frequency response analysis of multiple
blade systems with blade to blade and blade to disk coupling (Fig. 2.77). The
springs in the model represent the sections between root and platform and
above the platform.

14. Survey of Finite Element Models

A number of finite element models and analysis results are available for high
pressure turbopump blades. Though many other models might have been
constructed to review a MR condition and for sensitivity analysis, they are
not preseated here. The models prsented in this survey can be used to test
specific features for validation and verification of PSAM code. Broadly there
are two different types of finite element models available. They are:

1) Global Models
2) Local Models

The objective of the global models is to study the overall response of the
structure, load path and gross crossectional forces and stresses that exist in
the blade. The model shown in Fig. 2.78 represents the second stage blade of
the HPFTP. The model comprising fully of 1linear cube elements was used to
analyse stresses due to centrifical, pressure, and temperature loadings at
steady state. This model has further been used for material orientation
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ed for Static Analysis

Fig. 2,78 A Global Finite Element Model of HPFTP Second
Stage Blade us



sensitivity studies. The model represented in fig. 2.79 is a plate model of
the same second stage fuel turbine blade that was used for dynamic analysis.
The dynamic included, model analysis and damping analysis. The model shown in
Fig. 2.80 is that of HPOTP first stage blade. It is model composed fully of
solid elements and used for static analysis. The loadings analyzed included
centrifugal, pressure and temperature 1loadings at steady state. The same
first stage HPOTP blade has been modeled using plate elements for dynamic
analysis. The dynamic analysis included model analysis and damping analysis.
The model for the first stage nozzle ofthe HPFTP is illustrated in Fig. 2.82.
This 2-0 model was used to model the response of the nozzle due to start and
cutoff transients. The 2-D model of the HPFTP second stage blade shown in
Fig. 2.83 illustrates the use of approximate global models that can be used
effectively to study the blade response. The thickness of the elements are
modeled appropriately to suit the hardware. Such techniques can be used to
obtain quick approximate answers as accurate 3-0 models of turbine blades can
be quite time consuming.

A number of local models also exist of the turbine blades which are used to
obtain a better definition of stress concentration factors. The model shown
in Fig. 2.84 is a more detailed model of the shank-platform junction of the
second stage HPFTP blade which has expertenced failure at this location. This
model was used to determine stress concentration factors under steady state as
well to study the effect of various fillet radii to reduce the stress
concentration factors. The technigues used was a two stage approach in which
the global model boundary conditions were extracted by interpolation at cut
sections and were imposed in the local model. There was no one to one
correspondence of nodes between models at cut boundary. This technique is
different in some respects to a rigorous substructure analysis. In a rigorous
substructure analysis, exact match of boundary nodes fis required and thus the
two step approach 1is rigorous. But then along with the accuracy comes the
complications of smooth transition between coarse and fine grid in a complex
3-0 model. In the zoom model approach used, the interpolations in the
beundary 1introduces some approximations, but 1if the cut planes are
sufficiently away from the point of interest, the effect of approximation can
be minimal. This model has further been used for material orientation
sensitivity studies.
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Fig, 2.80 A Global Finite Element Model of the HPOTP First
Stage Blade used for Static Analysis



236

Fig. 2,81 A Global Finite Element Model of the HPOTP First

Stage Blade used for Dynamic Analysis
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Fig, 2.84 A Local Finite Element Model of the HPFTP

Second Stage Turbine Blade



The local 2-D model of the fir tree region of the HPFTP first stage blade is
shown in Fig. 2.85. This model was used for sensitivity studies on the
tolerances as well to optimize the firtree profile. Table 2.5 and Table 2.6
lists the finite element models available for high pressure turbopump blades.

15. Scoping of Finite Element Analysis

From the survey of static and dynamic finite element analysis done, the finite
element library should contain for a complete blade analysis:

1) Plate Shell Element

2) 2-D Plane Stress Element
3) 3-0 Solid or Shell Element
4) 2-0 or 3-D Gap Elements

Scoping of Linear and Nonlinear Analysis Requirements

Material Library

a) Include provistons for {sotropic, orthotropic and anisotropic
materials. Angular orientation of the material must be one of the
random variables. For future applications a convenient method of
inputting composite materials and ceramic materials may be necessary.
A material nonlinear analysis treatment is needed when an accurate
analysis of thermo-mechanical stresses is necessary.

b) Temperature dependant material properties.

Geometric Nonlinearity:

Geometric nonlinearity enters the turbine blade analysis in two ways. The
centrifugal stress cause stiffening of the blade altering the natural
frequency. The geometric nonlinearity enters in a detailed analysis of fir
tree interaction with turbine disk.
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Scoping of Solution Strategies

The solution strategies should indicate:

a)

b)

c)

d)

linear analysis.
Efficient eigen value and eigen vector extraction for large systems.

Incrimental and iterative analysis using newton, quasi-newton or self

adaptive procedures.

Turbine blade damping analysis using coulomb damping. Analysis of
single blade damping or coupled blade/blades and disk damping.
Provisions for analysis of damping problem using time integration of
modal generalized displacements and coulomb damping if necessary.
Provisions for inputting large number of phased forcing functions.
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Section 3

Transfer Ducts and Preburner Liners
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HOT GAS MANIFOLD TRANSFER DUCTS
1.  INTRODUCTION

A highly efficient arrangement of the engine major components (preburners,
turbopumps, main injector, thrust chamber, and heat exchanger) is necessary to
achieve the engine system goals of light weight and accessibility. The main
engine hot gas manifold assembly 1s designed to perform two primary
functions: to conduct hot gas flow from the preburners through the turbines
to the main injector and to serve as a structural nucleus for the engine
system.

The engine packaging concept that has been extensively tested and used in the
SSME s shown in Fig. 3.1 and Fig. 3.2. Fig. 3.1 shows the manifold
configuration and Fig. 3.2 indicates how the component integration with the
manifold s achieved. Hot gas from preburners is ducted directly to high
pressure turbines which then discharges the gas to a toroidel manifold. The
high pressure, high flow rate, high temperature hydrogen rich gas then enters
the hot gas transfer ducts, three on the fuel side and two on the oxidizer
side. The gas ts then routed to main 1injector torus manifold where it 1is
radially directed into hot gas cavity of the main injector.

A different engine packaging concept was explored in the XLR129-P-1 reusable
rocket engine which was subjected to very limited testing. Fig. 3.3 shows the
transition case and Fig. 3.4 shows how the components are attached or plugged
into the transition case. Similar to the hot gas manifold of SSME the
transition case also serves as the mounting structure for three major
components, the preburner, oxidizer pump and fuel pump. It contains internal
ducting that routes preburner discharge gases through the fuel and oxidizer
turbines and to the main injector.

Thus a manifold design consists of structurally efficient spheres and
cylinders. Cooled structural shell concepts are invariably used to minimize
the system weight. This is achieved by having a structural liner which ?orms
an anular passage between the liner and the outer casing, through which the
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cold hydrogen flows. Integrity of structural liner 1is very important for
satisfactory engine operation through transients and steadystate. It must be
emphasized that the environment 1s very severe with high flow rate, high
velocity and high temperatures. A leak and adverse differential pressure can
cause the hot gases to be driven into the cooling system. The reltability of
structural liner is increased by having a scrub liner which acts as a barrier
against hot gas 1impinging on the structural liner to minimize the thermal
expansion and the possibility of structural liner buckling. Usually, stagnant
gas 1s present in the gap between the liner elements.

Extensive engine experience has indicated few problems with the outer case
structural shell of the hot gas manifold. However, the inner liners are
subjected to environments and forces that are not well understood and it 1s
considered more appropriate to a treatment based on probabilistic approach.
Thus for the purposes of this contract, the transfer duct component analysis
Is limited to the analysis of structural and scrub liners. Depending upon the
engine packaging concept the transfer ducts could also serve the function of
transporting hot gas from preburner to a transition assembly, (Fig. 3.4). In
this case, the liner environment will be very similar to the preburner liner
environment of SSME. For this reason, this overview covers the transfer duct
as well as preburner liner experience of SSME.

1974e
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2. Geometry Definition

The shape of the transfer tube liners 1s determined by the geometry of the
outer structural shell of the transfer tube. The geometry that has been used
to date include elliptical and circular cross-sections. Ellptical shape has
been proposed on the fuel side transfer duct for the two duct hot gas manifold
(Fig. 3.5). Some of the other concepts that have been explored include
bi-directional volute concept (Fig. 3.6) and elevated turbine discharge (Fig.
3.7). The crossectional shape of the tube is determined by the area needed to
transport the given amount of gas and simultaneously satisfying envelope,
structural strength and flow requirements. At the inlet of the transfer tubes
smooth fairing to the bowl 1iner is accomplished to reduce stress
concentrations as well as to gquide the flow (Fig. 3.8). Frequently these
doubly curved complex shell regions can be stress critical.

The preburner liner in SSME (Fig. 3.9) serves the function of ducting the gas
to the turbine inlet as well as to contain the coolant to cool the structural
wall. A divergent ring liner concept 1s used to have more favorable heat
transfer coefficients in the flame region. The preburner transfer duct
concept explored in XLR-129-P-1 engine (Fig. 3.10) also has a smoothly faired
scrub liner and a structural liner behind it containing coolant to cool the
outer case.

Joint detalls of the liners account for the thermal expansion. When cooled
structural liners are protected by scrub 1liners (Fig. 3.11) the ends of
structural liners can be designed to be welded as the rise in bulk temperature
can be controlled. The uncooled scrub liners can have significant increase in
bulk temperatures and are usually cantilevered allowing for free expansion.
However, engine firing experience has indicated that some motion limiters
(F1g. 3.12) or vibration dampers (Fig. 3.10) are necessary to extend the
fatigue 1ife of liners. 1In new SSME designs integrally machined supports are
used in scrub liners. For manufacturing purposes and thermal growth, the
support design incorporates a nominal gap. The net thermal growth of the
assembly allows for a small interference between scrub liner and structural
1iner. Ouring steadystate operation, the supports expand thermally to contact
the structural liner and provide mechanical support and dampers. If the gap
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length 1s not tightly controlled, such compression only support greatly
increases the complexity of structural analysis, especlally when accurate
vibration response calculations are required.

The finger 1ike support tabs used in preburner liners allow for radial as well
as axial expansion of the liners (Fig. 3.13). There are 24 legs in the fuel
preburner and there are 8 legs in the oxidizer preburner. The iiner material
is coated with zirconium coating 0.013" thick on inner surface at forward
end. The radial expansion of the liner 1is counted upon for the liner to
bottom out on fuel preburner body resulting in metering of the coolant flow in
the cavity, resulting in a favorable thermal gradient.
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3. Material Considerations

The SSME transfer tube liner is made of Incoly 903 material. This material
was chosen because of 1ts superior strength properties at high temperature,
low coefficient of thermal expansion, good low cycle fatigue properties and
its superior performance in hydrogen environment. The preburner liner is made
of Haynes 188 material.

Alternate concepts of liner design include the use of transpiration cooling.
Transpiration cooling can be achieved through the use wire mesh laminate
sheets called Rigimesh. This material has been used in face plate design in
J2S, RL-10 and SSME engines. The use of this material has been considered for
transfer tube or casing liners.

Rigimesh is produced through precision calendering and diffusion bonding of
one or more layers of woven wire mesh 1into strong monolith structure.
Rigimesh sheets are produced to specific permeability by having one or more
layers subjected to multiple sintering and rolling operations. Manufacturing
processes try to achieve uniform directional properties by orienting adjascent
layers 90° apart. Tensile tests are conducted with specimens fabricated
parallel, at 45° and at 90° to the primary weave of the plate. In
general varying material strengths are obtained based on direction, and thus
analysis must treat the material as orthotropic, with directionally dependant
young's moduli.

Heat transfer analysis of Rigimesh include coupled models of solid metal and
fluid interacting with independant thermophysical properties.
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4. Loading Environment

Transfer Tube Liners

Oesign Considerations

The transfer tube ducts were originally designed to withstand the sixty flight
cycles at rated power level. However, during the development program to
upgrade the SSME to 109% power level, fuel side center transfer duct failures
were experienced. From the evaluation of failures, additional transfer duct
design criterta were defined. The current design procedure for transfer tube
1iners 1include steady state analysis due to pressure and temperature,
temperature cycling for multiple starts and cutoffs and, random pressure and
mechanical loading. Adequate factor a safety is maintained for high cycle and
low cycle fatigue, buckling due to thermal, mechanical and, pressure loading.

Static Pressure Loads

An accuyrate determination of the flow field in the hot gas manifold 1s a
difficult task due to intricacy of the flow passages. The flow extits at a
high velocity and the tight turnaround ducts might lead to separation of flow
on the inner wall (Fig. 3.14). The swirling action of the gas at turbine
exits, one sided discharge and compactness of the manifold lead to transverse
pressure differential. Further, flow in all the transfer tubes need not be
equal. Typical mass flow splits are 52% in the transfer duct favored by the
swirl direction and 48% in the other duct for the two duct system, while the
three duct system exhibits mass flow splits of 52,9 and 39%. The maximum
engine scaled mach number observed in two duct configuration is 0.16, while
the three duct HGM exhibited a maximum mach number of .26. Due to the severe
environment in the transfer tubes any extensive measurements of static and
dynamic pressure in the transfer tubes itself is not available from hot fire
engine tests. Thus the pressure loading that is used in analysis 1s a
combination of engine balance, scaled values from extensive airflow tests and
the nearest available instrumentation to the point of interest from hot fire
engine tests.
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One of the primary objectives of the SSME development program is to make
design changes that improve the flow field in the hot gas manifold. In
support of these design changes data from extensive air flow tests,
computational fluid dynamics model results and water flow test data are
available. Some of the results of airflow tests for static pressure for the
two duct hot gas manifold design that has been used in new designs is
presented beiow and in subsequent discussions.

The transfer duct geometry is characterized by a very short length compared to
tts diameter (Figure 3.15). Thus the simulation flow in the transfer duct to
a flow through a long duct can be a gross approximation. The static pressure
flow field in the transfer duct is affected by the geometry of the turnaround
duct and the details of the inlet fairing to the transfer duct. The airflow
model static and total pressure measured at the entrance of transfer duct is
shown in Figure 3.16., where the variation in static pressure in the thirteen
Zones can be observed. The measurements were made using two dimensional
probes. The flow rates used in the model testing i1s more than 100 1pm/sec. of
ambient air, which is equivalent to 60X of the Reynolds number of the hot fire
engine operating of FPL. Previous testing has shown that this simulation to
be an accurate modeling of the hot fire engine.

In a transfer duct Tiner design, scrub liners (Figure 3.11) are not designed

for any pressure differential as sufficient pressure relief passages are.
provided to avoid any pressure differential. On the other hand, the

structural Tliners are designed for pressure differential between coolant

pressure and the gas pressure. Since no measurements of coolant pressures in

the transfer tube liners are available, those values are obtained from engine

balance and transient simulation models. The differential pressures are

evaluated for both steady state and transient. The differential pressure 1is

of the order of 200 psi between the coolant and hot gas.

Temperature Loads

The transfer tube 1liners are subjected to severe heating and cooling
conditions. Hot gas flows to the main injector through the interior of the
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liner while hydrogen coolant flows outside the liner in the anulus between the
structural liner and hot gas manifold structural wall. 1In the new designs the
inner scrub liner has partial circumferential ribs such that there are gas
spaces between inner scrub liner and outer structural portion of the hot gas
manifold liner (Figure 3.12). These gas spaces are connected to the hot gas
environment in the liner center region by four slots equally spaced around the
circumference of the down stream end of the scrub liner. While the scrub
1iner operates at high temperatures with thermal expansion connections at the
end, the structural liner operates at correspondingly low temperatures but
with ends welded.

Thermal loads on the liners are evaluated at start up., at steady state FPL
and then at shut down. To model the above conditions in a heat transfer
analysis, the following fluid conditions are required.

1) Coolant Temperature, pressure and mass flux in the annulus

2) Hot Gas Temperature, pressure and mass flux through the tube

3) Hot Gas Mixture Ratilo

4) Hot Gas Cond1tﬁon (temperature, pressure, mixture ratio and mass
flux) in the Gas Gap Between Structural Liner and Scrub Liner

Conditions 1 and 2 at the transfer duct are directly available from transient
and steady state engine balance models. The hot gas mixture ratio can be
calculated from the variation of flow rates of oxidizer and fuel to the
preburners. These properties are needed to estimate the heat transfer
coefficients on the liner surfaces and across the gaps between the scrub and
structural liner portions.

In general condition in each gas gap, e.g. pressure, mixture ratio are assumed
to be same as that of hot gas through the tube except for gas témperatures.
The conditions 1in the gas gaps 1s based on condition of hot gas flow and on
the physical constraints i‘mposed by the design of gas path between the scrub
and structural liner. For example for the two duct hot gas manifold design
which utilizes four gas gaps and integrally machined portion limiters (fig.
3.15), assumptions are different for the gas gaps. There are four such gas
spaces on the fuel side and two on the oxidizer side. For the most downstream
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gap, since these are slots allowing for flow between this gap and hot gas
flow, it 1s assumed that the gas temperature equal to that of hot gas flow.
However, gas temperatures on other upstream gaps are estimated as the
capacitance weighted average temperature of the material represented by the
nodes around that gap. This 1is done because of the physical restrictions on
the gas flow for the upstream gaps. The gas temperature is most affected by
the temperature of the surrounding liner material. The assumption of
negligable flow in the upstream gas spaces, results in different heat transfer
coefficients in the gaps. Heat transfer in the gaps without the flow is by
free convection, while in the gap with flow forced convection is dominent. To
determine the forced convection heat transfer coefficient, the mass flow flow
through the most downstream gap 1s estimated. At the point of contact of
scrub liner to structural liner at motion limiters, a contact conductance is
assumed which 1s a function of contact pressure, surface finish and hardness
of the material.

The calculated temperatures at various time slices are then used by stress
analysis programs to calculate low cycle fatigue 1life by subjecting the
structural model to thermal cycling.

Instrumented HPFTP turbine discharge measurements have shown that there is
circumferential variation of temperature (Fig. 3.17). Such circumferential
temperature variation must also be present in the transfer tube liners though
the two dimensional axisymmetric analysis does not account for it.

Dynamic Loads
GENERAL

The major dynamic loads on transfer tube liners are the aerodynamic loads and
to less extent mechanical vibration. Similar to many components in the gas
path the 1ife of the liner can be controlled by flow pressure oscillations.
There are no high frequency measurements of pressure fluctuations at the
transfer tube from hot fire engine tests. Hence the analysis is based on
scaled values from air flow tests. Sometimes, the results are correlated to
the hot fire engine measurements at CG1P location which is located in the main
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injector bowl. However, the new HGM designs have provisions for measurement
at transfer tubes and additional hot fire engine data should be available in
Phase II + testing. (Fig. 3.18).

Mechanical Vibration

The mechanical vibration data that are used for transfer tube liner designs
are obtained from SSME dynamic data base. G-1 vibration zone criteria was
used for oxidizer side and R-6 vibration criteria was used on the fuel side.
A typical PSD data for vibration zone G-1 1s shown in Table 3.1. wWhen data at
higher frequencies than available in SSME data base are required, they are
obtained from actual engine test data.

Pressure Oscillation

The pressure oscillation in transfer tube liners 1s closely linked to the hot
gas flow circuit. [Improved flow and pressure distribution through out the
circuit, decreased turbulence, reduced velocity and less system pressure
losses all help in a more favorable environment for transfer tube liners. The
two sources of pressure oscillation on the transfer tube liners that have been
identified are the boundary layer noise and the flow separation effects. It
is known in the current SSME design, these are large regions of separated flow
(Figure 3.19) 1in the center and outboard transfer tubes. 1In a failure
analysts study of center transfer tube scrub 1liner fallures at FPL, the
pressure fluctuations due to separated flow was identified as the source for
Iiner high cycle fatigue failure. It was postulated that the separated bubble
was excited by accoustics emanating from turbine which in turn coincided with
a4 sympathetic vibration mode of the scrub liner. The area of the separated
flow was visualized by water flow tests (Figure 3.20). Tufts, bubble
injection and dyes aid in establishing stream l1ines and separation patterns.

The high frequency pressure measurements are made at the top and bottom of
transfer tube inlet (Figure 3.21). The measurements are done on the oxidizer
and fuel transfer tubes. The air flow test results are scaled to 109% FPL and
a typical set of pressure PSD diagrams on the oxidizer and fuel side transfer
tubes are shown in Figure 3.22 and Figure 3.23. Analysis of data has indicated
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Fig. 3.18 New HGM Design with Additional Ports for Instrumentation



X and Y Axes (Radlal to pump centerline)

Steady-state random vibration amplitudes:

20 Hz to 410 Hz @ 0.033 &*/Hz
420 Hz to 790 Hz @ 0.041 &*/Mz
930 Hz to 1180 Hz @ 0.43  &'/mMz

1450 Hz to 1740 Hz @ 0.051 G’/Hz
1870 Hz to 2000 Hz @ 0.077 G'/Mz

Random Composite Reference Level = 15.46 Grms

Z Axis (Parallel to pump centerline)

Steady-state random vibration ampl4tudes:

20 Hz to 260 Hz @ 0.011  6*/Mz
270 Hz to 600 Hz @ 0.017  &*/Hz
800 Hz to 1070 Hz @ 0.12  6&*/Hz

1180 Hz to 1280 Hz @ 0.29 &°/Hz
1310 Hz to 1380 Hz @ 0.55 G'/Hz
1410 Hz to 2000 Hz @ 0.29  G*/Hz

Random Composite Reference Level . 18.33 srms

Table 3.1 SSME Vibration Zone Criteria Zone G-1
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the top and bottom measurements are uncorrelated. There are no pressure data
available at the transfer duct exit. Due to 1imited measurements, the
correlation distance circumferentially and along the length are unknown for
the pressure fluctuations.

Preburner Liners
Design Considerations

The primary function of the preburner liners is to contain the hydrogen
coolant obtained from preburner liner cavity in order to maintain a cooled
structural wall. Additionally the coolant 1s used to cool the turbine bellows
and the tips of the first stage turbine blades. The static loads to which the
preburner liner 1s des1gned.for are the temperature loads and cycling of them
for muitiple starts and cutoffs, the differential pressure between coolant and
the chamber pressure. The dynamic loads for which the preburner liner is
designed for include mechanical vibration and differential pressure
osciliation.

Temperature Loads

A heat transfer analysis is conducted for the preburner liners at steadystate
temperatures taking into account the following considerations.

Temperature rise of backside coalant flow

Hotside film cooling

Hotside zirconium coating effectiveness

Flame front development

Hot gas flow changes near turbine inlet

Position dependent hot gas and coolant film coefficients
Transient cycling

Metering orifice/Structural wall interface

Hot gas and coolant temperature and flow as a

function of power level and transient conditions.
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The analysis is done using 2-0 axisymmetric finite difference models, with a
complete node compatibility with structural model. A divergent ring design is
used to obtain a better flow and additional mass to distribute the heat away
from localized hotspots. The liner 1s 0.4 inch thick near the face plate and
tapers at a 15° angle until the wall thickness 1is 0.05 4inches near the
downstream end of the baffle. At this point the gradient across the wass is
250°F. The highest thermal gradient of 500°F occurs nearly 4 inches
downstream of the face plate.

Static Pressure Loads

The 1liner is subjected to the differential pressure between coolant and
chamber pressure. In SSME preburner liner designs, the differential pressure
1s a nominal value of about 24 psi. The metering orifices at the downstream
end of the liner is a method of increasing the back pressure to prevent hot
gas being driven into coolant cavity.

Oynamic Loads

The dynamic loads for which the preburner liners are designed for are
mechanical vibration and combustion pressure oscillations. For SSME design,
the effect of mechanical vibration on the preburner liners is small. This is
because of the soft support system that is used for mounting the 14iners.

Potentially a more severe dynamic problem could be the pressure oscillations
associated with combustion 1instabilities. Development of 1liquid rocket
engines in the 1950S and early 1960S were often accomponied by high amplitude
combustion instabilities resulting 1in severe hardware damage. Combustion
instabilities in liquid rocket engines occur as a result of the unsteadiness
in the combustion processes, which influence the conversion of the propellants
in the 1iquid and/or gas phases to the product gas phase. The instabilities
generally fall into two catagories: rough combustion characterized by random
oscillations and organized disturbances at discrete frequencies. In unstable
combustion, the chemical energy release can couple with efither the chamber
accoustic modes or the feed system.
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The combustion instability can be divided into three broad catagories as:

1) Low Frequency (Chug)
2) Intermediate frequency (Buzz)
3) MHigh frequency (Accoustic or Hybrid)

Low frequency instability is primartly caused by the interaction of combustion
dynamics with propellant feed dynamics and generally is in the range of 250hz
or below. Combustion oscillations at intermediate frequencies are caused by a
variety of coupled process and occur at frequencies ranging from hundreds to
approximately 1000. The coupling involves a portion of the feed system with
the compustion response and the chamber wave motion can not be neglected.

High frequency combustion instability is considered to be a forced oscillation
of the combustion chamber gases that are coupled to the resonent properties of
the chamber geometry (accoustic) and to a portion of the feed system (hybrid)
as well. The causes of hybrid instabilities may involve mechanical vibrations
of the structure, eddy patterns from fluid induced flow oscillations or even
flow disturbances caused by temporal variations in heat transfer. The wave
motion 1in accoustic instability occurs at frequencies corresponding to the
accoustial resonant modes of the chamber geometry. High frequency combustion
instability is generally accompanied by high pressure amplitudes, accellerated
heat transfer rates and frequently combustion chamber damage. Accoustic or
high frequency instability has been by far the most challanging to suppress
experimentally and to model analytically.

In the current SSME design, significant pressure oscillation of about 500 psi
peak to peak occur during shutdown (chug) in low frequency range. However,
the significant gap at the top of preburner liner acts as a pressure relief
and the actual differential pressure seen by the liner is much smailer. The
dynamic pressure measurements made at the coolant cavity support the chugging
and pressure relief phenomena at shutdown. High frequency measurements of the
chamber pressure are not available for current SSME design though plans for
such measurements exist for test bed engine. The SSME engine experience
indicates the high frequency pressure oscillation i1s small in the preburner
1iners.
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5. Static Analysis
Transfer Tube Liners

The low cycle fatigue 1ife of transfer tube liners are evaluated to ensure
adequate factor of safety. The analysis 1s done using two dimensional
axisymmetric finite element models subjected to several mission duty cycles.
The finite element models have sufficient details to capture the strain range
at critical areas. Different material properties are assumed for the parent
material, GTAW - as welded location and EB weld locattons. A bilinear stress
strain curve is normally used in the anaiysis. The typical gas temperatures
at start transient, mainstage and shut down are shown in Fig. 3.24 and Fig.
3.25. The acfual temperatures used in the finite element models are
automatically transferred from heat transfer analysis to structural analysis
through the use of common models. A typical duty cycle analysis can include
the following stages:

1) Pressure and room temperature

2) Main stage pressure and temperature

3) Main stage temperature with no pressure
4) Shut down temperature with no pressure
5) Room temperature and no pressure

The cycle 1is repeated until a stable strain range is obtained. Past
experience has indicated that two duty cycles are sufficient to obtain stable
strain range values. Maximum effective strain range is calculated at all
critical locations and factors of safety against low cycle fatigue is
computed. (Fig. 3.26).

A closed form buckling analysis of the liner is made difficult due to 1its
complex geometry of doubly curved shells and the operating stresses are near
yleld stress at many locations. Thus a finite element buckling analysis 1s
performed on finite element model containing transfer tube liners and part of
inlet and outlet toruses. Initially a linear eigen value buckling analysis is
performed to obtain an estimate of buckling pressure and the lowest buckling

mode at operating temperature.
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Ap = 210 PSI

F.5, BUCK = 4,17

T = 642°F, c_ RANGE = 1.064%
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LCF and HCF Analysis of Fuel Transfer Tube Liner

Fig. 3.26



This analysis s followed by an incremental nonlinear analysis considering
material and geometrical nonlinearity to obtain a better estimate of buckling
collapse pressure. In many instances while the pressure is incremented, the
temperatures are maintained at main stage to obtain a conservative design. In
cases where the worst case 1is not obvious due to the interaction of
temperature dependant material properties, temperature deflections and 1ts
effect on buckling load on shell, several 1imit cases are evaluated to bound
to solution.

Preburner Liners

- Static analysis of SSME preburner Tiner consist of temperature cycling and
differential pressure loading between coolant and hot gas. A thermal cyclic
analysis 1s done using 2-0 finite element models. The cycling analysis
include cycling from thermal steady state with pressure to ambient conditions
until the solution is stabilized. Thermal data from heat transfer models with
node to node compatibility 1is directly wused. The maximum differential
pressure on the SSME preburner liners 1is about 24 psi based on engine
balance. The SSME preburner liners experience a maximum thermal gradient of
about 500°F nearly 4* downstream of the faceplate and 1s the life limiting
location at about 140 allowable starts.
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6. Dynamic Analysis

Transfer Tuber Liners

The dynamic analysis of the transfer tube liners are conducted to determine
the high cycle fatigue 11fe of scrub liners. A random mechanical support
vibration analysis and a pressure analysis 1s done for the dynamic loads
already described. The dynamic analysis is done on three dimensional linear
elastic finite element models subjected to stattonary random dynamic loading.
The normal mode method 1is employed. The RMS (Standard deviation) nodal
displacements, velocities, accelerations, element loads and stresses are
computed. Briefly the solution i1s performed in the following phases. First a
model analysis 1s run and the model vectors are saved. Out of this, N modes
are selected for the analysis and a covarance matrix need to be computed.
This symmetric matrix represents model responses to applied PSD forcing
tables, the off dtagonal terms representing the cross mode responses. When
all the modes are considered, the covarance matrix might contain many off
diagonal trivial terms for widely varying modes. On the other hand,
neglecting all the cross coupling terms might give unacceptable inaccuracies.
Their 1imited range of frequencies can be considered in computing cross mode
coupling based on a frequency ratio, normally between 2 to 6. The sigma
convariance matrices are then calculated by numerically intergrating based on
frequency ratio chosen. The RMS modal and element stress responses are then
calculated by modal superposition using sigma matrix and modal vectors. One
of the key assumptions that need to be made in the analysis is the correlation
distance for pressure oscillations. DOue to lack of data certain assumptions
are made 1in the analysis. In general, when detailed separated flow region
data is not available, the shell is divided into four quadrants with the
assumption that the pressure fluctuation in each quadrant is uncorrelated to
other quadrants. The pressures are assumed to be correlated along the length
of the liner for each quadrant. With an eccentric pressure load excitation,
the above procedure gives conservative designs.

Past engine experience has indicated that the 1ife of the scrub liners are
extended by motion limiters. While the gaps are usually engineered for
closing due to thermal expansion at operating temperatures, tight control of
the gap widths may not be possible due to the difficulty of inspection of
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double walled tubes. Thus any dynamic analysis procedure for response
calculation, must ideally capable of accounting for nonlinearity due to gaps.
A typical dynamic analysis 1include four pressure excitations, three base
random and three base sine excitation cases.

Preburner Liners

Dynamic analysis of preburner liners are conducted using 3-0 finite element
models including the support legs, liner and liner extensionn. The dynamic
analysis for base excitation is done using zone E structural loads criteria.
An approximate analysis is done to determine the adequacy of the support legs
based on maximum G loading that the liner experiences. In general, preburner
liners must also be analysed for combustion pressure oscillation. Depending
upon design, the liners might be subjected to large low frequency pressure
oscillation due to chugging if pressure relief passages are not provided. For
a well designed stable combustion system, the high frequency pressure
oscillations must have low amplitude.
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7. Failure History

Transfer Tube Liners

Evidence of the transfer tube thermal protection 1liner unsatisfactory
conditions, resulting from FPL testing operations, were first noted in mid
1980. The fallures were manifested by thermal scrub 1liner cracking in the
central fuel tube in many engines and were attributed to high cycle alternating
stresses. The conditions started on all of the engines after a relatively
short test pertod at full power level (FPL, 109% rated power level). The
initial design was adequate for RPL operations as no transfer duct problems
were experienced at that power level. The cracking occured at the Junction of
the transfer tube to the fuel transfer tube liner inlets. (Fig. 3.27). The
crack failure was attributed to the first bending mode and sheil bending mode
combination and was analytically shown restricted to center fuel transfer
tube. This fatlure mode was eliminated by adding motion 1imiting support
spacers (buttons Fig. 3.28) to the thermal protection liners. These devices
dare welded to the thermal protection Tiner and 1imit relative radial motton
between the thermal protection and structural liners. Failures persisted 1in
some engines with spacer configuration. The failure scenario was developed
from the original condition where the support spacer installation allowed
excessive gap between the support spacer ends and the structural liner. The
gap indented due to support spacer detertoration by impacting of the structural
iner, eventually allowing the thermal protection liner to fail in a similar
manner to the earlier unsupported liner assemblies. Support spacer
Installation criteria was established to preclude service detertoration.

The interm solution of spacer pins is also very susceptable to fallures because
of inadequate weld Joint strength. The pins and liners which are made of
Incoloy 903 serve under high pressure hydrogen environment and require full
penetration welds at liner to pin location. However, radiographic examination
can not verify this condition due to the joint configuration and uncertainties
expressed in radiographic image after a double wall shot. Other configurations
that have been studied include upstream, midspan, and down stream doublers
(Fig. 3.29). However, all new designs incorporate integrally machined supports
on the 1inner liner (Figq. 3.30). The supports serve the function as deflection
Timiters.
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Preburner Liners

Preeburner liner failures were experienced on two engines with burn through of
the structural wall when lox stream on the oxidizer post was diverted.
Failure review concluded that the liner was inadequate to protect the wall
under these conditions. The liner was redesigned to 1include the divergent
ring to provide better flow and additional mass to distribute heat away from
localized hot spots. The metering orifice at the downstream end was added to
prevent back flow of the hot gas into the coolant liner.
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8. Survey of Finite Element Models

Two basic types of finite element models are constructed for transfer tube
1iner analysis. The axtsymmetric two dimensional models are used to do heat
transfer and stress analysis duct to thermal cycling (Fig. 3.31). A common
model is used between heat transfer and stress analysis such that temperature
data ts automatically transferred. The model contains part of the torus 1iner
in the fuel and injector bow!. The model that is shown is for fuel side 1iner
of the two duct hot gas manifold design.

Several three dimensional finite element models also exist that were used for
buckling and dynamic analysis. The models 1incorporate scrub liner.
Structural liner and part of the fuel and injector bowl. The available models
include the center and outboard transfer tubes on fuel side for three duct
manifold and fuel and oxidizer side tubes for the two duct hot gas manifold
design. The fuel side transfer tube structural liner model used for nonlinear
buckling analysis is shown in Fig. 3.32. The dynamic model consisting of
structural and scrub liner of the fuel side transfer tube 1s shown in Fig.
3.33 an oxidizer side model 1s shown in Fig. 3.34. Similar models are also
available for the current production three duct hot gas manifold design.
Table 3.2 shows the relevant parameters of the finite element models for the
transfer tube liners.

Similar to transfer tube liners 2-0 and 3-D models are available for preburner
Tiner. The 2-0 axisymmetric modal of the preburner liner 1s shown in Figq.
3.35. The three dimensional shell model of the preburner 1liner used for
dynamic analysis 1s shown 1in Fig. 3.3s6. Table 3.3 shows the relevant
parameters of the finite element models for the preburner liners.

1874e
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2-D Axisymmetric Model of the Fuel Transfer Tube Liner

Fig. 3.31
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3-D Shell Model of the Fuel Transfer Tube Structural Liner

Fig. 3.32
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Fig. 3.34  3-D Shel} Model of the Oxidizer Transfer Tube Liner Assembly
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9. Scoping of Analysis Requirements

Static Analysis

1)

2)

3)

4).

5)

Oynamic

1874e

1)

2)

3)

4)

5)

Two dimensional and three dimensional material nonlinear analysis.
Geometric nonlinearities for gap element capabiltties.

Linear eigen value buckling analysis.

Large deflection plastic buckling analysis of general doubly curred
shells.

Temperature gradient capabilities along the thickness of shell
element.
Analysis

Modal extraction analysis for shell structures.

Random base excitation analysis

Random pressure analysis

facilities for input for correlation distances of pressures

Factliity to account for nonlinear gap elements
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Section 4

SSME Ducts and High Pressure Oxidizer Duct
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INTROOUCTION

R ———————————

The SSME fluid component system contains many propellant valves and ducts.

The propellant valves are (Figure 4.1):

1)
2)
3)
4)
5)
6)
1)

Main Fuel Valve

Main Oxidizer Valve

0P8 (Oxidizer Preburner) Oxidizer Valve
FPB (Fuel Preburner) Oxidizer Valve
Chamber Coolant Valve

Fuel Bleed Valve

Oxidizer bleed Valve

The major propellant ducts are (Figure 4.2 through 4.10):

1)
2)
3)
4)
5)
6)
7
8)
9)

LPFTP (Low Pressure Fuel Turbopump) Turbine Orive Duct
LPFTP Turbine Discharge Duct

LPFTP Discharge

LPOTP (Low Pressure Oxidizer Turbopump) Turbine Drive Duct
LPOTP Discharge Duct

HPFTP (High Pressure Fuel Turbopump) Discharge Duct

HPOTP (High Pressure Oxidizer Turbopump) Discharge Duct
Preburner Fuel Supply Duct

Preburner Oxidizer Supply Ouct

Figure 4.3 through Figure 4.10 shows the various views of the engine

incrementally in a

(2131e)

counter clockwise manner. They help in understanding the
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geomentry of the ducts in 3-D space. A more complete line diagram for the
f11ght configuration is shown in Figure 4.11. Classification of the ducts can
also be made based on the following (Table 4.1):

a) Articulating Main Ducts

b) Fluid interface lines to the orbiter

c) Component Interconnects

The major difference between articulating ducts, Fluid Interface ducts and
hard 1ines is that the former lines are flexible to angular and translational
deflections. The angular deflections are caused due to gimbaling of the
engine. The deflection capability 1s required by the engine alignment
requirement that the engine thrust vector shall be within 30 minutes of arc to
the engine center 1ine and laterally within 0.6 inch of the gimbal center. In
order to permit conformance with the lateral alignment requirement, an
adjustment capability of * 0..50 inch was designed into the gimbal bearing
thrust chamber interface. The design should also be capable of absorbing
torsional deflections caused by gimbal bearing torsional flexibility and
Hooke's Joint effect.

Articulating metal-bellows flex joints are used in main propellent ducts that
cross the gimbal plane and are capable of accommodating engine gimbaling
motions. These ducts service the vehicle-mounted low pressure turbopumps and
are configured to wrap around the main gimbal bearing thrust axis. This can
be visualized by following a typical duct through Figure 4.3 through Figure
4.10 as one goes around the engine.

The articulating lines used as fluid interface lines are similar to the main
propellant ducts with wrap around configuration, but smaller in diameter. The
term wrap around derives from the line centerline geometry that wraps around
the engine gimbal assembly.

Flexible hoses are used for small diameter vehicle to engine lines such as

hydraulic supply.
(2131e)

318



Figure 4.11 Flight Configuration

Original Mailed to NASA Program Manager
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Hard lines are defined as lines with no flex joints. They are used for
non-gimbaling applications which connect to the fluid interface panel and for
all non-gimbaling engine component interconnections.

Bolted flange joints with static seals are used throughout the engine for
connecting ducts and components. Separable static seal joints are necessary
for servicing and maintenance of the engine. The deflection loaded, pressure
assisted Naflex-type static seal concept is used for static seal joints within
component assemblies and at the interconnection of components.

The high pressure oxidizer duct (HPOD) supplies high pressure oxidizer to the
main combustion chamber injector dome which initiates ignition of the hydrogen
rich gases In the main combustion chamber and also provides oxidizer to
support combustion 1in the main combustion chamber. The duct recelves
pressurized oxidizer from the HPOTP main discharge and routes it through the
main oxidizer valve which regulates the LOX flow into the main combustion
chamber injector dome. Oxidizer is also tapped from th1s duct and delivered
to the preburner boost pump which further boosts the pressure for use in the

two preburners.

GENERAL DESIGN CONSIDERATIONS

A N e e e e e e e e s

The principal design consideration controlling the design configuration of the

ducts are:
1) Accommodation of engine gimbaling deflections
2) Meeting low cycle fatigue criterion as applied to engine
gimbaling cycle
3) Meeting high cycle fatigue criterion as applied to engine
vibration environment
(2137e)
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4) Separation of bellows mechanical and Flow induced excitation
vibration frequencies

5) Accommodation of thermal defiections, misalignments,
installation adjustments and operational deflections

6) Accommodation by bellows of each specific Joint angle
resulting from engine gimbaling deflections

7) Withstanding operational fluid pressures and temperatures
init1ally estimated by engine balance, scaled values from
other engine experience and then subsequently based on
actual engine experience

8) Additional design requirements on bellows for buckling
(squirming) for high pressure lines.

9) Use of flow sleeves or liners on articulating lines to
prevent coupling of natural and flow vibration frequencies

for high pressure oxidizer duct which 1s a hard line design considerations
involving gimbaling and flex joints do not apply.

MATERIAL CONSIDERATIONS

The material selection of the ducting is based on number of factors including
environment, strength, and fatique properties (Table 4.2). High strength
alloys which have favorable weight to strength ratios are invariable used.
The duct environment can include:

(2131e)
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1) Gaseous Hydrogen

2) Liquid Hydrogen

J) Hydrogen Rich Combustion Products
4) Liquid Oxygen

5) Gaseous Oxygen

Since hydrogen embrittlement is a consideration for hydrogen 1ines, Inconel
903 is used extensively in fuel lines. where the temperature 1is cryogenic,
ARMCO 21-6-9 1s also used for fuel Jines. ARMCO 21-6-9 material exhibit
superior strength properties at cryogenic temperature, when compared to 1ts
room temperature properties. In the case of LOX Systems, Titanium is never
used where it can be expected to LOX. Bellows are normally made out of
Inconel 718 or 903 material. The high pressure oxidizer duct s made of INCO

718.

GEOMETRICAL CONSIODERATIONS

B I e e e e e e

The geometrical definition of the diameter of the lines is based engine flow
requirements. However, the actual line routing is controlled by the following

factors:
Flex Lines:
1) Bellows are positioned 90 degree apart lying on
gimbaling axis to reduce angulation at bellows.
2) At least three bellows are needed to accommodate general
gimbaling motion.
(2131e)
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Hard And Flex Lines:

J) Flexibility requirements of the duct might dictate
additional elbows.

4) The 1ine should meet the engine enveloping requirements.

These considerations result in the typical wrap around geometry of the lines
(Figure 4.3 through Figure 4.10).

In general thickness of tube changes spatially due to sfrength and
manufacturing requirements. While individual parts may be heat treated,
assemblies that have flex jJoints are not heat treated. This is because the
assemblies contain different materials and the bearing surfaces on the flex
Joints have dry Tlubrication. The "as welded" condition at welded Joints
dictate the use of larger thicknesses at weld joints. In addition, the elbows
are formed resulting 1in thinner section at the extrados of the elbow.
Sometimes, variable thickness transition pieces are also used to connect elbow
to straight sections.

The 1iquid hydrogen fuel 1ines have insulation since they are sensitive to a
rise in temperature. The insulation covers the entire line including flanges
and bellows. A typical insulation of the duct is shown 1in Figure 4.12 and
4.13. [t comprises of polyeurethane foam enclosed in a nickel plate shell.
The joints are sealed to be leak proof. This is necessary to prevent air from
entering into insulation space. Trapped air will liquefy under cryogenic
temperatures. At engine shutdown, the trapped liquid air will become gas and
exert high pressures on the structural duct due to insufficient escape
passage. Instances of such buckling have occurred in LPFTP discharge duct. A
typical insulation at the flange is shown in Figure 4.14. Double annular
bellows are used for flex fuel lines with a vacuum in between the bellows. A
burst diaphragm is used in the insulated bellows to allow for escape of vapor

(2137e)
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in the event of a vacuum jacket leak. The insulation affects the structuratl
analysis 1n the sense that their weight is considered in the analysis. They
have negligible structural strength contribution to the duct.

The location of the high pressure oxidizer duct relative to the engine is
shown in Figure 4.15. Notable features of the geometry are the several
90° elbows, tap off for the preburner boost pump, ports and stops used for
flow measurment (flow meter), the block for mounting ultrasonic flow
measurement devices (Figure 4.16). Geometry of the HPOD has evolved based on
engine experiences. Early designs of HPOD contained flow meters but the
measurement attempts were unsuccessful. Thus the flow meters were removed but
the ports were left intact for possible future uses. Measurement of LOX flow
using ultrasonic devices mounted on blocks were attempted (Figure 4.16) on
development of engines. The brazed blocks were sources of stress riser
resulting in failure of duct. Thus the current HPOD's do not contain flow
meter ports or blocks. However, future designs might contain Integrally
mechanized blocks (avoiding brazed joints) for ultrasonic measurement.

BELLOWS GEOMETRY

Two types of bellows configurations are used in articulating main propellant’
ducts. They are:

1) The external double shear pin gimbal ring.

2) The internal tripod, ball and socket.

Typical flex bellow applications are 11lustrated in Figure 4.17. A summary of
typtcal SSME Bellows appiication 1is presented in Table 4.3. The external
gimbal ring s used in all high pressure articulating lines under 3.25 inches
1.D.. The larger diameter pump discharge lines use the internal ball and

(2131e)
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socket on a tripod mount, and the fuel bleed line uses a flow through ball and
socket linkage. Exploded views of typical bellows are presented in Figure
4.18 through Figure 4.21.

While a detailed coverage of the design aspects of the bellows is beyond the
scope of this overview, the following considerations are used in arriving at

an acceptable design.

1)

2)

3)

4)

5)

(2131e)

A1l flex Joints used in the wrap around lines have sleeves or
1iners in the internal diameter. The sleeves serve two purposes.
a) reduce pressure loss and b) avoidance of flow induced pressure
vibration. The possibility of high frequency pressure vibration
Is great when relatively stiff, high pressure bellows with high
flow velocities are involved.

Double bellows with vacuum 1n the annular space s wused for
cryogenic temperature fuel lines.

The 1length of bellows and tension restraint 1inkage for each
Joint 1s designed specifically for 1its operational deflection
cycle.

Initially curved bellows go through a change 1n shape of
centerlines as the result of application of internal pressure
resulting in increased bending stress. This effect 1is
significant in 1ines which operate under high pressure.

The designed bellow satisfies the following requirements:

a) Predictable low cycle and high cycle fatigue 1ife.
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Fig. 4.18 LPOTP Discharge Flex Joint (Internal Tripod)
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b) Predictable spring rate

¢) Buckling stabtlity

d) Small pressure drop

e) Predictable response to vibration input.

LOADING ENVIRONMENT

The static loads considered in the duct analysis are:
1) Internal Pressure
2) Misalignment, thermal and gimbal displacement
3) Flow momentum loads
4) Acceleration loads
a) Vehicle Acceleration
b) Gimbal Acceleration
The above loads occur during engine steady state operation but is assumed to
occur during the entire mission history profile at constant magnitudes for
analysis purposes. It should be noted that steady state loads dictate the
design. Transient loads are considered but have lesser impact on the design.
STATIC PRESSURES
The steady state pressures in the ducts are initially obtained from engine
balance and subsequently refined from hot fire engine tests. Table 4.2

11lustrates the typical design pressures for major propellant ducts in SSME.

(2131e)
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During shutdown, the ducts experience a surge in pressure. This effect fis
more pronounced on the oxidizer side of the engine system. The surge
pressures do not impact the high pressure ducts as much as the low pressure
ducts. A typical cutoff transient of the LPOTP shaft speed is 11lustrated in
Figure 4.22, where the power up of the pump at cutoff sequence must be noted.
Corresponding typical pressure transients at cutoff are shown in Figure 4.23
for low pressure oxidizer discharge duct. Normally two pressure surge peaks
are seen after the cutoff command. The first peak (Fig. 4.23) occurs at
approximately cutoff plus 0.3 seconds. The magnitude of this surge 1is
controlled by the system power down. Magnitude of this surge 1is proportional
to cutoff power level. The second peak occurs at approximately cutoff plus
2.0 seconds. This 1s driven by the main oxidizer valve schedule. The
magnitude of this pressure surge is tnversely proportional to the cutoff power
level. The magnitude of the pressure surge, is related to minimum pressure
prior to power up, the lower the dip, the higher the surge. This surge
pressure which 1s a significant percentage of LPOTP discharge duct fis
accounted for 1in the analysis (Table 4.2). The surge phenomenon 1s also
observed in high pressure ducts such as HPOD. However, the surge pressure
occurs at a reduced power level and hence total pressure is less than the
maximum pressures the ducts experience at steady state (Figure 4.24).

THERMAL LOADS

The ducts primarily experience two types of temperature loading 1) Steady
state temperature and 2) engine prechill condition temperature. The steady
state temperatures are listed in Table 4.2 and 1s assumed to be uniform
across the wall thickness. Engine prechill condition occurs when the
prevalves located in the orbiter above the low pressure turbopump are opened
approximately one hour prior to firing. On opening of the prevalves, the
propellants flow through the low pressure turbopumps, and through the high

(2131e)
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pressure turbopumps and then to the main propellant valves. On the liquid
oxygen side, the system also fil1ls the preburner valves. The cryogenic
propellants are held in the ducts for sufficient time to chill the engine and
attain liquid conditions in the respective propellant systems. The chill
process is alded by bleedlines which remove the gas as i1t is formed. It must
be noted that while the ducts experience cryogenic temperatures (37°R for
Hydrogen and 164°R for Oxygen), the pressure experienced by the ducts in
this condition is minimal, and thus these temperatures do not control the
design.

MISALIGNMENT LOADS

The duct misalignment loads are considered in the design of rigid ducts. The
design 1is based on worst case tolerance stackup in the duct assembly. The
sequence of assembly of the ducts 1s tightly controlled through the
specifications. The acceptable tolerances are specified in the form of
interaction curves at flange joints. As examples, the interaction curves for
high pressure oxidizer duct inlet and outlet are shown in Figure 4.25 and
Figure 4.26. In general, only misalignment that fall outside the
specification are recorded for MR action. One exception to the above rule is-°
the ASI (Augmented Spark Igniter) fuel and LOX 1lines where the entire
misalignment data is available. Shop experience indicates that due to the
method for manufacture of 1larger ducts using Jjig fixtures, unacceptable
misalignment (outside the specification) is very rarely encountered. Further,
the misalignments found 1in practice in the large ducts are within the
tolerances of the play in the bolt holes of the flanges and the large rigid
ducts are not generally subjected to any significant preloads during
assembly. The small ASI fuel and LOX lines are formed and any unacceptable
misalignments in the flanges are first corrected by further forming the tube
away from welded areas. However, statistical analysis of misaligned ASI tubes
might give an indication on the nature of distribution of misalignments
subjected to these types of manufacturing methods. Effort has been initiated
to collect this data for all delivered flight engines.
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Firure 4,25 Allowvable riisalizn~ent at HPTD Inlet
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OFFSET (INZHES)
FIGUPZ 6

Fig. 4.26 Allowable Misalignments at HPOD Outlet
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GIMBALING LOADS

A1l lines which are subjected to deflections due to gimbaling have flex
Joints. The angulations at the joints are calculated using space frame
analysis programs treating the ducts as a series of linear beams. The maximum
angle 1s 11° about any of the gimbaling axis. This maximum gimbaling
occurs only in an abort cycle. In addition the joint angulations are also
calculated for maximum torsional twist of 1° about the engine axis. The
rigid ducts like HPOD are not subjected to gimbaling deflections and are not
designed for any gimbaling deflections.

ACCELERATION LOADS

Oucts are designed for acceleration loads due to gimbaling acceleration and
vehicle acceleration. The gimbaling acceleration is bounded by calculating
the maximum g load that it can produce at any point in the duct. This has
been calculated to be 5g and this load is applied over the entire duct. The
vehicle acceleration loads come from SSME load criteria and is calculated to
be 5g. Thus the ducts are designed for a total of 109 acceleration load
subjected to on any axis. The fluid weight in the ducts must be considered in
the analysis.

FLOW MOMENTUM LOADS
The flow momentum loads are calculated using the flow rate of the fluid,
density of the fluid at operating temperature and pressure, flow area and

gravitational constant. The flow loads calculated is applied as an axial load
on the duct beam elements.
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DYNAMIC LOADS

The dynamic loads that are considered in the duct analysis are:
a) Random base vibratton loads
b) Periodic pump generated base excititation loads
¢) Shock transients

d) Random pressure loading or eguivalent sinusoidal pressure loading
at pump wake frequencies.

Initial random base excitation data was predicted by scaled values form J2-5
engine data. Subsequently, the data 1s Dbeing continually revised as more
actual engine measurements become available. The loads are defined based on
vibration zone classification (Figure 4.27). As an example for the case of
HPOD the appropriate zones are A and G respectively (Figure 4.27). Typically
SSME loads criteria defines the spectra up to 2000HZ. However, when the need
arises, the spectra is extended to a higher frequency range using actual
engine measurement data (Figure 4.28). This can happen when the excitation of
local shell modes of the duct are the subject of the study.

SHOCK TRANSTENTS

These loads are predicted from the actual engine firing test data from SSME.
The primary shock transients occur at start and cutoff, and to a lesser
extent, by preburner pops. The primary contributor to the start and cutoff
transients is the nozzle side load caused by flow separation. Ouring engine
start and cutoff, the flow inside the SSME nozzle is constantly changing.
Unsteady flow separation occurs in the nozzle during this time

(213e)
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Figure 4.27 Major Sources of Vibration (Criteria) Zome Locations

Original Mailed to NASA Program Manager
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period. The axtal location of this flow separation move towards the exit of
the nozzle as combustion chamber pressure is increased, and back into the
nozzle as chamber pressure 1s decreased. Side loads are developed in the
nozzle walls because the flow separation patterns are not symmetrical. The
start transient is more severe than the cutoff transient due to comparatively
longer cutoff time sequence as well as due to the higher altitude. The SSME
shock spectra criteria was developed by enveloping sixty starts and sixty
cutoff engine data measured on the ground. A typical shock spectra is shown
in Table 4.4 for Zone A and Zone G that govern the HPOD environment. It must
further be noted that the shock transients are not a strong function of power
level,

OYNAMIC PRESSURE LOADS

Dynamic pressure loads have been used in the analysis when detailed local
shell stresses were the object of study. As an example, the high frequency
pressure measurement made Jjust downstream of HPOTP discharge 1s discussed
here. Power spectral density plots of engine tests at 100% and at 109% are
presented in Figure 4.29 and Figure 4.30 respectively.

Primary characteristics are at rather flat low level power at about 1/3
psiz/HZ from 0 to T10KHZ. Superimposed on this background are two
characteristic signals, speed harmonics and a broad random hump in the 6000 to
9000 HZ range. At 100% power level the random hump and 16/rev harmonic are
distinct, while at 109% they superimpose at 8KHZ. Total power (psiz) at
109% is twice the 100% power level value.

Speed harmonics have narrow power spikes typical of sinusoidal componants.
The fact that the first three or four multiples of 8/rev show an increase with
frequency and then decrease indicate a wave form 11ke positive-negative pulse

with a duration of about 25% of the period between the 8/rev puises. This

(2131e)
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type of excitation tends to propagate as a plane wave down the duct and would
be attenuated by a reflection at the constriction formed by the main oxidizer
valve.

The broad random hump is explained by the attenuated power radiated by lateral
accoustics driven in the constant velocity pump volute by the blade wakes.
The variable diameter volute causes local resonances at different frequencies
with the broad hump being the sum of all componenets. As the power level is
increased, local frequencies will remain the same, although the magnitude
would 1increase. This tendency is seen in Figure 4.29 and Figure 4.30. The
broad hump would tend to decrease with distance. However, data at these
frequency ranges may have to be used when local shell modes are of concern,
near the HPOTP discharge.

LOAD COMBINATIONS

The loads are combined in a conservative manner to calculate life. Currently
a1l maximum expected static loads are combined together to maximize the total
static load. Loads are then used tin fatigue analysis. Assumption 1s made
that the engine operates at FPL for a full 7.5 hours of operation, though the
engine 1is throttled back during Tlaunch. Further, the maximum vehicle
acceleration loads do not occur all the time in all axes, and the maximum
gimbaling acceleration only occurs during an engine abort cycle. Some of the
conservativism 1in the analysis technique may be eliminated using a
probabilistic approach.

STATIC ANALYSIS

A static analysis 1s performed on the ducts for the application of loads
described above, using frame analysis. The analysis is performed for the

(2131e)
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worst case combination. The 1load time history 1is considered such that
transient loads present at start or cutoff are not applied simultaneously with
main stage operating pressures, maximum gimbal accelerations, main stage
vibration and acoustic loads.

A normal static finite element analysis s performed using beam finite
elements. The elbow elements are analyzed using ASME flexibility factors.
The flexibiiity decrease due to 1nternal pressure is also accounted for.
Approximate hand analysis of the ducts includes standard equations for curved
beams for hollow circular cross-sections and considering the ovality effect
and Torus effect. Curved beam effect is caused by the shift of neutral axis
with respect to centroid of the bend. Torus effect 1s caused by the balance
of shell cross-sectional forces to offset the pressure load acting across the
shell surface. Ovality effect is caused by the external moment forcing the
cylindrical section to go oval at the elbow. Two dimensional axisymmetric
models are also constructed for flanges. The local flange models are analyzed
for bolt preload, external load, pressure load, and seal load. The 1local
flange models provide the maximum surface strains for Jlow cycle fatigue
calculation. Flange rotations are checked to ensure the outer edge of the
flange will not contact mating flange face. Local finite element models are
also constructed to determine stress concentrations due to ports and bosses.
Recognizing the approximations in the empirical approach of treating elbow
flexibtility with flexibility factors, 1imited amount of testing has been done
using advanced elbow finite elements for some SSME ducts. These advanced
elements use a combination of fourier and polynomial interpolations, the first
is wused circumferentially and the second is used along the axis of the tube.
An ‘important development in these elements 1s the coupling between straight
pipe runs and pipe bends. If the stiffening effect of the straight runs are
neglected, the strain response of the bends may be overpredicted. The
advantages of these elements are their formulation in the large deflection
domain, and their appearance to the user as stick models though in fact they
model the shell behavior as though the pipe has been modeled using shell
elements. Limited static analysis results show good correlation with results
of shell element models for SSME ducts.
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DYNAMIC ANALYSIS

Dynamic analysis on ducts are performed using classical beam finite elements
and elbow finite elements with ASME flexibility factors with the effect of
internal pressure included. The types of dynamic analysis performed are:

1) Model analysis

2) Random base excitation analysis

3) Pertodic base excitation analysis

4) Pressure excitation analysts due to pump blade wave
frequencies

5) Shock spectra analysis

Random base excitation analysis are done using PSD diagram in the frequency
domain. For analysis purposes, the assumption is made that the vibration
environments at each end of the duct are uncorrelated with respect to one
another. In actuality, some of the vibration environment at both ends of the
duct 1s generated form the same source (1.e. main combustion process). In
add1tion, a portion of the vibration environment at discharge end of the duct
1s generated by mechanical and/or fluid transmission through the duct itself.
Oue to the inability to predict or account for these load correlation factors
properly, the conservative uncorrelated vibration assumption is used.

Steady state response due to sinusoidal excitations are calculated using
normal mode method. The technique is a two step process for each axis of
motion. In the first pass, the maximum stresses and the associated phase
angles are calculated for selected critical elements for all given sinusoidal
frequencies. In the second pass, the frequencies and phase angles are entered
such that responses are calculated in a consistent manner with phasing
information.

(2131e)
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The shock spectra analysis is performed using normal mode method applied to
shock analysis. 1In this method, all phasing relationships among the several
modes are lost and only the maximum absolute values are retained for each
mode. Hence, RSS {the square root of the sum of the squares) method 1is
commonly used to obtain a rational assessment of displacements and internal
Toads.

GEOMETRICAL UNCERTAINTIES

Geometrical uncertainties 1in the duct system can 1include variations 1in
thicknesses, and weld mismatches, and spatial geometry variations. OQne area
that has received much attention is the weld mismatches. Mismatch between
segments of welded ducts can result in substantial local increases in stress.
This increase in stress must be accounted for in fatique analysis. Mismatches
can be present even before the welding has occurred, called *“fitup®
discrepancies or they can be the result of the welding process itself due to
differential shrinkage, or excessive welding. There are numerous factors that
control the final resulting mismatch. In SSME, weld mismatch data can
probably be broadly grouped into the following categories, each having its own
characteristics. They are:

1) Sheet metal welds

2) Thin wall duct welds

3) Rigid parts or thick wailed ducts
4) Parts which have complex geometry

In general, the amount of weld offsets vary with clock positions at a Joint.
Some limited amount of data has been collected and is available to study the
weld offsets in thin walled ducts. Some 1imited amount of data is also
available for parts with complex geometry such as main combustion chamber
inlet neck.

(2131e)
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FAILURE HISTORY

The inservice fallures of ducts include LPFTP discharge duct buckling, failure
of flow guide in HPOD and failure of development HPOD with brazed bosses for
ultrasonic measurement.

The low pressure fuel turbopump discharge duct buckiing was due to leak in

the 1insulation Jacket. The trapped air will 1liquefy under cryogenic
temperatures. At engine shutdown, the trapped air due to insufficient escape
passage can exert pressure resulting in duct shell buckiing. This failure is
not catastrophic to the engine.

The original configuration of the HPOD at discharge incorporated an integral
flow guide to provide a smooth transition of fluid into the main oxidizer
valve. The cantilevered flow guide failed at the base due to resonance
excited due to acoustic cavity behind the guide. The redesign eliminated the
acoustic cavity.

A high pressure oxidizer duct was modified by adding special brazed-on
ultrasonic flowmeter blocks to the extertfor duct wall of the special
development duct (Figure 4.31). This duct failed during engine testing
(Figure 4.32). Failure 1investigation of this spectal HPOD involved model
simulation to determine fatlure inittation, supplementary hot-fire test
simulation, and extensive instrumentation of the HPOOD.

Instrumentation of the duct included locations for tri-axial accelerometers at
both inlet and outlet flanges of the duct and selected locations for strain
gages on the exterior of the duct. Re-analysis of the flowmeter attachments
was updated using measured vibration environments, including dynamic response
of the brazed-on flowmeter blocks due to mechanical vibration and pressure
oscillations. It was determined that the fatlure mechanism resuilted from

(213%e)
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alternating lateral vibrational loads of the block and pressure effects
(Figure 4.33). The peak stress location was at the block-to-duct braze fillet
intersection. High stresses were attributed to the tight fillet radius at
this location. A two-dimensional plane strain analysis of the flowmeter block
to duct shell was performed to determine the fillet radius stress
concentration, which was determined to be 3.5 in the hoop direction. The
current configuration completely eliminated the wultrasonic measurement
bosses. Analysis has shown integrally machined bosses with generous fillet
radius have the desired factor of safety for fatigue life.

SURVEY OF FINITE ELEMENT MODELS

various finite element models exist for the analysis of SSME duct systems.
The survey here 1is 1limited HPOOD and related LOX systems. Due to the
interaction between the various ducts, typical finite element models not only
contain the duct in question but would also include other branching lines and
they would be modeled t111 they connect to a rigid part. As in other
components, global and local models exist. The global models are used to
obtain gross cross-sectional forces. Local models are constructed to
determine stress concentration factors.

The model shown 4in Figure 4.3 was constructed to determine the natural
frequencies, mode shapes, and the response of the SSME high pressure oxidizer
discharge duct and preburner supply duct to the FPL dynamic test environment.
The model also contains a portion of HPOTP where HPOD bolts to pump flange
(Figure 4.35). This was done to simulate flexabilities at flange interface so
that loads at the end of the duct can be obtained more accurately.

The model in figure 4.36 is a hybrid stick-shell model that was constructed to
determine the dynamic loads/stresses in the discharge duct. The area of

interest was the response of ultrasonic flowmeters to the dynamic motion of

(2131e)
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the duct. The model was analyzed for a sinusoidal pressure excitation with a
sinusoidal distribution along the circumference (Figure 4.37) with a frequency
matching the first accoustic mode of the duct. It was concluded that
integrally machined ultrasonic bosses with generous fillet radius would not
present a fatigue problem.

The model shown in Figure 4.38 contains several components forming the LOX
system modeled as pipe or elbow elements. They are:

1)  LPOTP discharge duct

2) LPOTP turbine drive duct

3) Preburner pump supply duct

4) Heat exchanger supply duct with antiflood valve
5) Fuel and Oxidizer preburner LOX supply duct

6) Preburner valves(OPOV and FPOV) with actuators
7)  High pressure oxidizer discharge duct

8) Main oxidizer valve and the actuator

A better visualization of the same model 1is obtained in Figure 4.39. This
figure (Figure 4.39) depicts the model as flat facetted shells for the
purposes of visualization only. This model represents visually the variation
in diameters of the duct systems and the modeled elements (with equivalent
stiffness) for valves etc.

This model was used to study the dynamic response of the system to mechanical
vibration, shock and superimposed sine environments. The flex joints are
modeled as a three element finite element assembly with appropriate properties
to simulate linkage and bellows. Appropriate pin codes are used to model the
1inkage.

The local 2-D model was used to determine the local stresses present in the
HPOD due to the ultrosonic bosses (Figure 4.40).

(2131e)
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A local axisymmetric flange model (Figure 4.41) was used to determine the
local stresses at the flange due to preloads and external loads.

The statistics of the models discussed above are presented in Table 4.5

SCOPING OF ANALYSIS REQUIREMENTS

Static Analysis

1)
2)

3)
4)
5)
6)

Linear beam finite elements with pipe cross-sections

Ovality considerations for elbow with flexibility and internal
pressure factors

Temperature dependent material properties

Provistion for pin codes in modelling linkages

If possible incorporation of more advanced elbow elements
Provision to prescribe load as well as prescribed displacements

Dynamic Analysis

1)

2)
3)
4)

Modal extraction analysis for beam type structures and shell
structures

Multiple base uncorrelated random excitation analysis

Sinusoidal base excitation analysis

Random and sinusoidal pressure analysis

373



d0dH jo0

12pon abueyq (307 b 61y

1

y/411111}

35

A\ nuaN
Ay

l

.

374



1 1] ¢ ] T 1 ) I H 1 ] 1 T T T T
SISATYNY wOliVNINIINGY | 1 [] ] i 1 i ] ] 13 i [} ] 1 ¢ ]
SIS 107 JnosvaLIA | - | - i t | Tt ] “a i st ) [ ] ] vE el cew T 1 T ] [ [ T 1 swm
] ] ] ] ] ] ] ] ] ] ] ] 1 1 ! [}
T 1 1 1 ] ] ‘ T ] T i 1 T T ¥ ]
SisATvary NOL{vELNINOD ] i i . ] i i § ] ] 1 i ] ) ) i i
STINLS IO EY avoVIed ] - L] - [N S B W'} Tt ] |4 [} "ns =t [} v'e I &2 tu | T ] Tt ] | S | t 3 : 3 um
1 ] ] ] i i i ] i ] 1 1 1 ] ] 1
1 T H 4 v T H T T 1 T H T T T T
] 1 ] ] ] R R | ok 1 1 1 ] 1 1 i 1 twutay
SEVO? J1Mviag ] - ] 1] 1 [ 2 ] L°e's L ] ®n i e 1 [ $ [ ] i et e 1 P} ] Py i t [T} [T | w
! i i ! i (] [} [ } ] ] i i ] ] [}
T T 1 1 i 1] ] ] ] [} ] H v ] H 1
§ i ] ] ] ] i ] ] ] ] ] ] i ] ] )]
SEN ROTS JTNOSONLIN S8 | ] 1 ] ] ] ] ] ' i § ] 1 i ] 1 e
NEO4SI ML MmN 0L} - § - 1 [ 28 S [0 I 3} ] oots | et | " P e'ttl et} yYe i - 1 1 Rt t [ B [ t |- =ma
i { i ] ] ) 11 $ ] ] 1 ] ] i ] ]
T T 1 1 1 T i T 1 1 1 i T T T T
i 1 i i i ] ' [} i I ] i ] 1 1 1 s
i i i 1 ] 1 ] 1 i ] ] i i i i L]
i ' i ] i § i 1 ] ] i i ] ] i i Wi
SEVOY JINYRLIS NIVISO i - 1 ’ 1 [ 208 S ] t's°'s 1 [} o | . i ot ] $'2 | et1 ew i 1 i t [ [ I | [ B
i i ] ] ] ] i 1 i ] ] i i i i !
H T T TROTIVISTINT WIT 1Y 10T H T T H 1 T T T H H T
' 1 } T T LY T T ] i ] ] 1 3 i ] 1 ] ]
i ] ] i SIsatvey woonvalLs i [} ] ] i 1 ] i ] [} ]
] 1 ] i SIsSAvey Himowsvn(e) i i ] 1] i ] i 1 i 1 '
i [} § i S1S4TvwY Tvoom(s; T b 1 s (si [ I | (. i ] t -
i bOIMuveae (v 3nweveaq (01 BVINTNON 079 ¢ ive(yi 1 ] 1 avnd (v} i i (ATHR Y330 MV wveisvalyi i mus (v
] 58V 1) (Cistvey “Lu3 (CIITIVIS - WyIniwow ‘039(Li ] ] § avemviwd (€3 Qv (t) ] i YL B0 IIAGUVAS(SE ALIATLISHIS(R: woL3IS (€1
) T ImssInd (25 JemssInd {21214viS - wvIniwwow “iva(l) 1 1 1 weae (2 0t T3AVION SSO4CLI VLD IMINVWENLRE  SASHY(ZInoT11Um0) W(2I TVI0T (24
iS31243 AING} _._-I!- (3w (1) VIS = syl } ] 1 otn1ndlt; 40 _:.2-_!.: veavil) TILaALfL
i i §_Asvils ] Sisavny i MM—M—H _E i _Teow | WY i SISatvwy § i 1

SWILSAS 031VT73Y¥ ONv
1IN0 ¥3ZI1QIX0 3IYNSSIUd HIIH
AJAYNS ST3Q0W EN3IWITI ILINIS <°b 318Vl

7R



Section §

Nozzle Feed Line

376



PSAM PROJECT
NOZZLE FEED LINE

INTRODUCTION
Nozzle feed line is part of the nozzle cooling system, supplying coolant to
the nozzle. Several cooling methods such as radiation, ablation, film

cooling, dump cooling or regeneration cooling can be employed in the nozzle
design. It is also possible that different cooling systems can be employed in
different regions of the same nozzle. When regenerative cooling type is used,
the nozzle structure is usually made out of tube bundles reinforced by an
external outer shell and circumferential hat bands. The coolant which flows
in the tubes is normally the fuel such as hydrogen in SSME. The integrity of
the nozzle feed line is critical, as any failure in the feed line will result
in an excessively LOX-rich mixture causing fires and extensive damage to a
major portion of the engine. In SSME, the nozzle feed line which is made out
of INCONEL 718 material, carry the coolant at approximately 6000 psi and 93°R
at ;teady state.

GEOMETRICAL CONSIDERATIONS

The actual geometrical details of the nozzle feed 1ine depend upon the cooling
concept used in the regeneratively cooled nozzle. It can employ single pass,
pass and half, or double pass methods. In SSME, the concept used is the
single pass method in which the coolant is introduced to the lower inlet
manifold, using three lines with branching ducts which are spaced 120° apart
(Fig. 5.1). The attachment of the nozzle feed line to the nozzle is made at
selected hat bands. The intermediate supports allow the feed 1ine to move
freely along the axial direction, and the end support brackets provide a rigid
condition. The redesigned nozzle feed 1line contains a loop to provide

flexibility in the axial direction to accommodate the thermal contraction.
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LOADING ENVIRONMENT
The nozzle feed line i subjected to the following steady state and transient

Toads.
1. Steady State Loads
Pressure
Temperature
Random vibration

2. Transient
Pressure
Thermal
Side load
20-g inertial
Oscillating pressure shock transient.

The internal pressure furnishes a high mean stress and is one of the primary
loads on the line. The largest thermal gradient usually occurs during
transient (Fig. 5.2) and can be of the order of 200°R. However, it is not
generally a significant load as it occurs during lower transient pressure
values. However, the combination of temperature and pressure at transient
must be considered for HEE (Hydrogen Embrittiement Effect) susceptibility.
The thermal shrinkage is accommodated normally through s1iding joints and
*steam loops" and is normally a secondary load. For nozzles with full flowing
conditions, steady state random vibration loads are Jow. However,
accelerometer measurements at hat baﬁds are available from engine firings
(Fig. 5.3). The vibratory loads in the form of PSD can be used for multibase
vibration analysis of the nozzle feed line. The other primary load that needs
to be considered is the transient aerodynamic load at start and cutoff which
plays a critical role in the nozzle feed line design. Early designs of SSME
nozzle feedline did not consider the shock transient load in the 200 to 400 Hz

regime.
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AERODYNAMIC TRANSIENT LOADS
The primary aerodynamic transient load is due to the unsteady flow separation

effects. The different aspects of the flow separation is conveniently divided
as by sideloads, oscillating shock loads and breathing mode loads. Such a
classification is made as their effects are in different frequency ranges.

SIDE LOADS (JET SEPARATION)
Rocket engines incorporating high nozzle expansion ratios and operating in an

environment wherein significant ambient pressure level exists, encounter a
region of asymmetric flow during their start and cutoff transients as the
nozzle fills or empties. This causes an imbalance of pressure forces in the
nozzle wall and may result in side loads of significant magnitude. The effect
of this side load can be seen by the pendulum mode deformation of the nozzle
in SSME firings at transient. The engine start and cutoff sequences are
planned to minimize the side loads. Dwelling at thrust 1levels where
separation is expected will result in large side loads leading to structural
damage.

Exact theoretical evaluation of the side load, which is due to asymmetry, is
beyond the scope of the current state-of-the-art. Hence, side load data is
measured from many engine tests using load cells at gimbal point or through
strain gaged actuators or stiff arms. It must be noted that the strain gages
measure the equilibrating forces, while the forces themselves are applied
internally to the nozzle as pressure gradient which varies with time. Dynamic
pressure measurements of the nozzle wall pressure from aétual engine firings
are not available. However, nozzle pressure measurements from airflow tests
on subscale models are used with appropriate scaling to obtain approximate
oscillating engine pressure values. The magnitude of the side loads vary
significantly from test to test. This is illustrated by the statistical
summary (Fig. 5.4) of the maximum moment generated from 186 engine tests of
the J-2 engine about the gimbal point. The J-2 engine which was an upper
stage Saturn engine, similar to SSME encountered an overexpanded flow in the
nozzle when fired during sea level. The results indicate a Jarge spread in
the measured magnitude of the side load and any realistic design must consider
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this inherent variation from firing to firing. Side 1load phenomenon is
primarily a low frequency transient (up to 20 Hz) with oscillatory response
due to ringing of the low damped structure. In the SSME engine, extensive
analysis of strain gage measurements has indicated that side loads do not
cause significant loading on the nozzle feed 1ine itself. However, the effect
of sideloads on nozzle and it's attachments must be considered in all over
expanded nozzle design.

OSCILLATORY SHOCK TRANSIENTS
Shock transients which is the result of flow separation phenomenon occurs when

supersonic flow from a nozzle discharge into ambient pressure which is higher
than the nozzle gas pressure at exit plane. The nozzle flow adjusts itself to
the back pressure through oblique shocks near the wall and a normal shock in
the interior flow. For large area expansion nozzles with shallow exit angles
as is the case in SSME bell contour nozzle, this can result in large pressure
fluctuations at the nozzle exit. This happens when separated free shear layer
impinge on the nozzle at a steep angle (Fig. 5.5). Due the steep impingement
angle, more flow returns into the separated zone than that can be aspirated
through mixing with the surrounding flow. Thus the pressure builds up and
enlargement of the separation bubble occurs. As the separated region grows
and reaches nozzle exit, the accumulated gas is discharged to ambient with
the free shear layer detaching from the nozzle. Free jet pumping of the
region between the shear layer and the wall causes subambient pressures in the
region. As a consequence, the shear layer is pushed back on the nozzle wall
and the cycle continues. This explanation of the phenomenon is supported by
air flow tests on scaled models where exit wall pressures as low as one fifth
and as high as twice the ambient pressure has been seen in data (Fig. 5.6).
The frequency range of this transient in SSME is in the 100 to 500 Hz.

BREATHING MODE LOADS:

These loads also due to asymmetric flow separation effects and excites the
nozzle in the low frequency range (<100 Hz). The presence of these loads
can be seen in the motion pictures of engine firings near the exit of the
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nozzle as a flickering white band, referred to as “teepees". The dynamic
nature of these shocks must be emphasized by their circumferential movement
and appearing and disappearing at random intervals of time accompanied by
inflow of ambient air at transient. Motion pictures of SSME firings will show
a relatively large (2 inch) diametrical ovalization of the nozzle aft manifold
due to the breathing mode. For SSME nozzle feedline design, laboratory
experiments have shown relatively low stresses are obtained in the critical
areas of the feedline with 2-inch motion. ODepending upon the feediine design,
this mode has to be considered in the nozzle feed line designs.

Low Cycle Fatique

Life estimates using static and dynamic analysis rely on the experimentally
observed measurements from many engine firings. The presence of high level
transient spikes is supported by strain gage and accelerometer data. The
strain gage response on the nozzle feed line (Fig. 5.7), and the accelerometer
response mounted on the oxidizer preburner (Fig. 5.8) show the max imum
transient loads occur after few seconds of start or cutoff. These shock
transients are seen by major components on a number of Tlocations throughout
the engine as evidenced by the test stand load cell response (Fig. 5.9).

Experimental observations on strain gage readings mounted axially near the
steerhorn tee and manifold show a considerable variation in the maximum strain
gage from test to test (Fig. 5.10). It can be observed that in majority of
tests, a peak to peak strain is at a value that contribute very little to low
cycle fatigue damage. In order to obtain realistic 1ife estimates, strain
ranges that can cause low cycle fatigue damage are analyzed from actual tests
to provide a cumulative damage spectrum. A typical spectrum is shown in Table
5.1, and consists of listing of peak to peak strain levels and the
corresponding number of cycles that were recorded at the indicated strain
level. In this case, out of 41 tests, a total spectrum of 85 strain cycles
above the range of 7000 microinches per inch was obtained.
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An analysis of the observed maximum strain ranges can be used to provide a
framework of oprobabilistically estimating future maximum strain ranges.
Kulomgrov-Smirnov goodness of fit test has indicated that the maximum strain
range distribution do not deviate significantly from the log normal
distribution. Using the distribution information, the design maximum strain
range for evaluating safety factors for 99% best estimate (the level exceeded
once in 100 tests) and the 3o level or 99.87% probability (the IJevel
exceeded once in 750 tests) as an upper limit that the hardware must survive
without failure can be established.

STATIC AND DYNAMIC ANALYSIS
Static analysis include evaluation of stresses due temperature and internal

pressure. However, the major loads in the nozzle feed line are the transient

aerodynamic Joads.

Dynamic analysis consists of random base excitation loading and pressure pulse
Joading. The base excitation loading is analyzed as a multibase excitation,
both for transient and steady state conditions. A sample input accelerometer
time history is shown in Fig. 5.11. The pressure pulse loading is essentially
transient phenomena, the characteristic pulse frequency, amplitude and number
determined from a statistical survey of several test cycles on subscale model
tests. A typical pressure pulse that is used is shown in Fig. 5.12. The
amplitude of the pulse is varied from a maximum at the nozzle exit to zero
approximately 30 inches upstream of the nozzle. For SSME, scaled results
indicate pressure pulses as high as 38 psi at a frequency range of 100 Hz.
The last 30 to 36 inches of the SSME nozzle experience approximately 7 pulses
during start and 3 pulses during cuteff. This corresponds to an outward
oscillating load on the structure of the order of 200,000 1bs. While single
Jine math models have been used to study the response of nozzle feed line in
the post, accurate dynamic response calculation require the use of models that
contain the nozzle, nozzle feed line and other lines that are attached to the
nozzle structure . Accurate determination of the modes of the nozzle
structure is an important aspect of the dynamic analysis. The responses of
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the nozzle feed line can be dominated by the responses of the more massive
nozzle shell modes. For example, the SSME nozzle has about 400 modes in the
frequency range of interest, 0 to 500 Hz, with a high gain shell mode
illustrated in Fig. 5.13. The tubes contribute significantly to bending
stiffness and the jacket contributes significantly to membrane stiffness.

FAILURE HISTORY

The SSME development program experienced two similar-appearing fuel feed line
failures during the shutdown portion of two separate engine tests (Fig.
5.14). An in-depth investigation was carried out which determined the cause
of the failure and established alternative designs. The investigation
included detailed metallurgical examination, structural and aerodynamic
analysis, extensive strain measurements on actual engine tests, redesign and
follow up. The original nozzle feed line design (Fig. 5.15) experienced high
strains at tee's due to aerodynamic oscillating shock transient pressure pulse
already discussed earlier. The metallurgical examinations revealed the feed
line rupture in one incident was the result of fatigue failure due to
accumulated damage after 46 tests. The second failure was due to the
combination of soft weld and high transient strains. In the redesigned nozzle
feed line (Fig. 5.16), the maximum strain at the tee was reduced by 50% by
modification of support restraint system and geometry of the feed line. The
theoretical calculations of reduced strains in the nozzle feed line is
supported by experimental measurements from actual engine tests.

SURVEY OF FINITE ELEMENT MODELS

Several different finite element models have been constructed to analyze the
nozzle feed line. They include old single nozzle feed line design (Fig.
5.17), the three line nozzle feed line model incorporating current nozzle feed
line design (Fig. 5.18), and the combined nozzle feed line and nozzle mode
incorporating new designs (Fig. 5.19 & Fig. 5.20). The single line models
without the nozzle are primarily used to study the response of the nozzle feed

line due to the measured base accelerations input at the hat band support
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Jocations. The finite element models that include the nozzle are used to
study the response of nozzle feed line due to pressure pulse that is applied
on the nozzle wall near the exit. The modeling of <the nozzle requires
orthotropic plate elements with appropriate stiffness to model tube wall,
jacket and braze material. Experience has shown that modeling of hat bands
using shell elements provide improved solutions over models that model hat
bands as beam elements. The details of the two finite element models

jncorporating the current nozzle feed line design are shown in Table 5.2.

SCOPE OF ANALYSIS REQUIREMENTS

Static Analysis
1. Linear beam finite elements with pipe cross sections

2. QOrthotropic plate elements to model nozzle wall

3. Ovality considerations for elbow with flexibility
and internal pressure factors

4. Temperature dependent material properties

5. Provision for selective deletion of restraints
to model sliding joints

6. Inclusion of linear springs at support degrees of freedom
to model support flexibility

Dynamic Analysis
1. Model extraction analysis

2. Multibase correlated and uncorrelated random
excitation analysis
Pressure pulse excitation

4. Transient analysis using normal mode method or
using direct time integration

5. Shock spectra analysis.
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Section 6

Main Combustion Chamber Liner
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INTRODUCTION:

The combustion chamber liner is part of the thrust chamber assembly of a
rocket engine where the essence of rocket propulsion, the acceleration and
ejection of matter imparting propulsive force to the vehicle takes place. The
design goals for a main combustion chamber design are maximum performance,
combustion stability, durability, and minimum size and weight. A typical
cutaway view of the SSME main combustion chamber is shown in Fig. 6.1. The
SSME combustion chamber Yiner can be considered as the fourth candidate
component for probabilistic structural analysis. The combustion 1iner is
subjected to severe thermal cycles and durability calculatfons for the chamber
liner require the simulation of thermal rachet condition called *cyclic
creep®. The methodology should also account for large deformation analysis
where the geometry of the structure needs to be continually updated as the
structural analysis proceeds in the time domain. Some of these features are
not necessarily exercised in the analysis of other components previously
discussed.

Geometrical Design Considerations

The geometrical shape of the top of the combustion chamber design can be
spherical, cylindrical or near spherical design. Lower part of the combustion
chamber is part of the nozzle shape usually a converging-diverging type. The .
flow velocities in convergent nozzle section is relatively low compared to the
divergent nozzle section where very high flow velocities are involved.

Because of high combustion temperature (6000°F) and high heat transfer rates,
thrust chamber cooling is a major design consideration. For example, the heat
flux requirement has markedly increased from Redstone era to the J-2 and then
to an almost 3-fold fncrease in SSME (Fig. 6.2). J-2 and RL-10 engines thrust
chamber construction employed a regenerative cooling scheme using tubular
construction. SSME has a channel wall design (Fig. 6.3) where 1iquid hydrogen
1s used as a coolant, a design concept that is very successful in high heat
flux environments such as in SSME. The design consists of an outer structural
Jacket forming the shape of the combustion liner and carrying internal
pressure and external loads from interfacing components. The liner is

3028e 408



attached only at the ends to the structural jacket. Structurally, the liner
{s required to strain out to contact the structural jacket, to react the
differential pressure load between the coolant and the combustion gases.

Loading Environment
The liner loading is different than most other structures on the engine. It

lays up against a structural jacket that is designed to take the primary loads
on the engine. The liner has to support ftself, act as a thermal barrier,
heat exchanger, and duct hydrogen flow internally. The jacket is structurally
designed to take all the intermal pressure loads even though the liner's
inherent structure supports some of it. The loads that need to be considered
in the structural analysis of MCC liners are the chamber and coolant pressure,
temperatures at the hot gas wall and the jacket, and the imposed end radial
and tangential displacements due the displacements in the structural jacket.
Dynamic loads do not play a significant part in channel wall liner design.

Thermal Loads

Thermal loads play a critical role in the analysis and design of chamber liner
wall. It is subjected to severe thermal cycling. during prechill and cutoff
conditions, the complete liner is approximately at -400°F. DOuring steady
state operation, the temperature profile on the hot gas wall varies along the
length (Fig. 6.4), the maximum temperature (1100°F) occurring at couple of
inches upstream of the thrust section. It is known that due to injector
anomolies, the temperatures can be higher at localized hot spots. The
temperature distribution at a cross-section of the channel wall liner can be
determined using 2-D finite difference models and a typical temperature
distribution is shown in Fig. 6.5. Localized hot spots can be simulated by
modifying the heat transfer film coefficients in a localized zone. Structural
analysis can be performed at these localized hot spots to estimate cycle life
to cracking.

Pressure Loads
The chamber liner is also subjected to differential pressure between the

coolant passages and the main combustion chamber pressure. A typical time
history of the chamber pressure and a typical time history of the coolant
pressure are shown in Fig. 6.6.
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Imposed End Displacements
The effect of other loads on MCC are passed to the liner as radial and axial

deflection of the structural shell at the attached end points. It must be
noted that the liner is not attached all along the MCC, its motion is
restricted by the motion of the external jacket as described below.

The MCC as wanufactured can have a maximum radial gap between the liner outer
diameter and the structural jacket inner diameter of 0.020 inch. During the
start prechill, the cold hydrogen flowing through the liner coolant channels
causes a thermal contraction of the liner which increases the 1iner/jacket
radial gap. Ouring this time, there 1s a negligible cooling effect on the
jacket due to the cold radiation from the liner. Then, upon ignition, the
combustion pressure increases and the weak liner expands radially, 1ike an
inner tube in a tire. At a fairly low pressure it contacts the jacket inner
diameter. Once liner/jacket contact is made, the jacket mean temperature
experiences a fairly rapid drop in temperature to approximately -100°F, while
combustion pressure is increasing to its steady-state value. During this
time, there is a net radial growth of the jacket from the positive radial
displacement of the jacket due to combustion pressure. This displacement is
partially offset by the negative radial motion of the jacket as it drops in
temperature. After steady-state combustion pressure is reached at 4.9
seconds, the jacket continues to get colder over the next 150 seconds,
resulting in a decrease in the jacket radial displacement and axial strain.

At this point, pressure and thermal equilibrium loads in the jacket have been
achieved. During shutdown, combustion pressure is throttled down to 65% of
rated power level, and then the engine is shut down. puring shutdown, the
purge flow of hydrogen through the coolant channels rapidly chills the liner
to -400°F, and the liner separates from the jacket. When combustion pressure
reaches zero, the mean temperature of the jacket has warmed up to
approximately -80°F. The jacket eventually warms back up to room temperature
and returns to essentially a line-to-line contact position with the jacket.

416
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Hot Spot Crackin
It is known that localized hot spots trigger cyclic creep mode of local

channel cracking. Hot fire tests of this class of chambers show that
locally the hot gas wall material at the center of the channel progressively
thins from the inside of the channel and the material moves and thickens the
adjacent material (Fig. 6.7). This phenomena is attributed to a thermal
rachet condition termed ®cyclic creep®. In some cases the center of the
channel thins sufficiently such that the wall fractures with an attendant
coolant loss. Small cracks have occurred mid-land on SSME, but they have
not grown large enough to cause a problem. The cyclic creep mode of local
channel cracking has usually been associated with local hot spots from
injector effects.

Detailed measurement of channel geometries indicate that material volume is
essentially conserved; the thinned section is balanced by the thickened
shape at the channel corner. The cyclic creep phenomena requires a biased
load--structural duty cycle to cause an increase to the average maximum hoop
strain in the mid channel for each duty cycle. The observed thinning and
distortion of the channels show that the mid channel thinning is the result
of local biased negative radial strain and a compatible increase in a local
hoop strain. The reshapirng of the corner is dominantly a large shear strain
that resolves into plus and minus principal strains that thicken the corner
zone. It has been observed that one of the necessary conditions for the
thermal racheting to occur is the presence of localized hot spots.

During the development of SSME, provisions for film cooling of the chamber
liner wall were made with the addition of film coolant holes. This reduced
the overheating experienced in the local circumferential areas of the
combustion chamber. It was also discovered that surface roughening caused
by hot fire operation contributed to escalating hot loads and further
roughening and degradation of the hot gas wall. Polishing of the MCC liner
between tests with fine grit sand paper is used as a method for reducing
deterioration of the hot gas wall. The smoother hot gas wall surface {is
credited with reducing local distress, especially on long duration tests.
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static Analysis
Channel wall combustion chambers are jnitially sized by hand solutions

followed by local detailed finite element analysis of a channel cross
section. The finite element analysis utilizes a duty cycle considering the
prechill, start, mainstage and cutoff conditions for temperature, pressure
and any movement of the support jacket. The conditions that maximize the
strain range are utilized in defining the duty cycle. In order to
adequately analyze this type of structure, the standard structural
considerations of strength, creep and low cycle fatigue must be suppiemented
by a cyclic thermal rachet analysis.

A duty cycle analysis may require tens or hundreds of cycles prior to a
failure condition. In cases where a stabilized condition occurs in one or
two cycles, the analysis can be terminated at this point, and the failure or
cracking condition accurately extrapolated. For the structural response of
the MCC, this is not possible, since the cyclic strain condition does not
stabilize; and the gradual geometric distortions are significant in changing
the rate of strain cycling and maximum strain. It might also be
prohibitively expensive to consider analyzing every ddty cycle. A
compromise s to utilize an approximate methodology that analyzes a series
of duty cycles to determine the conditions consistent within a particular
portion of the distortion sequence, extrapolates the geometry to a geometric
condition further into the deformation pattern, and then analyzes another
series of duty cycles to determine local conditions at this point. It
should be noted that this is a specialized analysis technique, not a general
methodology applicable to a large class of problems. The extrapolation
technique requires that the geometric distortions further into the life
cycle can be linearly approximated from a sequence of previous distortions.
The analysis technique requires a balance of the cost in performing
sufficient duty cycles to determine a local, stabilized condition and the
extent of the extrapolation further into the duty cycle where the rate of
cyclic change is not significantly different. In one study a standardized
approach of developing a 5 duty cycle detailed analysis followed by a 15
duty cycle extrapolation of the geometric shape was utilized. The model was
then rerun based on the distorted geometry for the next sequence of cycles.

419
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This procedure develops the distorted geometry shape for the analysis, but a
major drawback is it does not track the strain history through the total
history. The strain history is tracked only within each of the individual §
duty cycle analyses. However, it is rather a simple task to track the
accumulated thinning of the channel wall.

The 2-D finite element analysis results using the above approximate
procedure can simulate the cyclic creep phenomenon at localized hot spots
(Fig. 6.8). The gradual change in the cross section can be noted as the
cycling progresses.

Figure 6.9 is a typical multiple duty cycle plot of the stress-and-strain
history of the element located mid-channel at the hot wall. The effective
stresses and strains are plotted with their sign obtained from the hoop
stress components. (Note: effective stress and strain are only magnitude
quantities).

The duty cycle increments and hot wall temperatures are noted on the first
cycle to help follow the duty cycle. The point first goes in tension during
the prechill operation, followed by a rapid drop to a high compressive
state, then reduces in stress magnitudes as the material strength decreases
with temperature and from creep/relaxation effects to the maximum
compressive strain (Point 6). The stress decrease from increment 2 to 6 is
mainly due to changes in yield stress with temperature. During the throttle
back to 65% of thrust, the point moves to a tension stress state even though
the total strain is a high compressive plastic strain. As cutoff starts,
the element is driven to a high tension, high positive strain point.
Finally, after the test duty cycle and the part is stabilized at room
temperature, the element is in compression with a large tensile, plastic
strain. Each duty cycle progressively shifts to a more positive strain
position. This is indicative of a thermal rachet or cyclic creep phenomenon
and resultant channel wall thinning.
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The maximum strain capability of the NARloy-Z material in the channel wall
{s approached from the tensile instability failure criterion. The maximum
hoop strain is related to the radial strain and the thinning of the channel
wall. Tensile instability is defined in this case as where the incremental
strain hardening of the deforming metal of the wall is less than the
incremental increase of true stress due to local wall thinning. Once the
instability condition is reached, further increase in load results in rapid
failure of the channel wall. The criterion defines a critical strain limit
for the material. The biaxial stress state critically affects the available
ductility even for ductile materials. The maximum tensile stress in MCC
occurs in 600F to 700F range during the cutoff portion of the duty cycle as
the temperature starts to fall off and there is still pressure in the
channel. If a simplified assumptions of axial strain being zero and the
ratio of hoop to axial strain as 2:1 are made, then a tensile instability
failure can occur at a range of thickness reduction of 5 to 10%.

A review of typical cross sections from hot fired MCC's show that failure
can occur at an estimated 5 to 10% thinning of the channel wall. There is a
wide variation in this thinning for different MCC chambers data base, but a
5 to 8% thinning 1imit is a reasonable criterion for the minimum strain at a
failure for the SSME. The variation in test results may be attributed to
conditions in the heat input at hot spots, flow variation in a specific
combustor and the sensitivity of fnstability analysis to small changes in
material orthotropic properties. The 5 to 8% strain 1imit compared to the
uniaxial strain limit of 50% is consistent with a literature survey study
Rocketdyne has previously made of available biaxial test results vs uniaxial
test results.

while the approximate 2-D analysis indicate the cyclic creep phenomena from
the structural standpoint, a good simulation of heat spot effects require a
3-0 modeling approach. This is because the 2-0 model essentially assumes
the hot spot effect is axisymmetric while in reality hot spots roughly take
the shape of 3:1 to 4:1 ellipse, with long axis along the meridian and the
short axis covering 5 to 10 channel widths (Fig. 6.10). The 3-D effects can
be explained as follows:
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A pictorial view of a developed 1iner with a hot spot near the throat
throughout a duty cycle is shown in Fig. 6.10. The liner has two
axisymmetric surfaces with axial 1and members. This results in an
orthotropic stiffness path that makes a hot spot analysis more difficult.
During the prechill portion of the duty cycle and up to say 600 or 700fF, the
liner wall temperatures and stiffnesses are relatively uniform with little
variation from local injector effects. As the temperature rises, the hot
spot markedly affects the stiffnesses and thermal loads. At steady state,
the hot spot is essentially an elliptical hole to the overall liner, since
1ts stiffness is much less than the surrounding zone of material. A local
hole will result in a distorted shape and load path around this location and
strain concentrations at its edges. Within the hot spot, the hole
distortion is additive to the local hot spot strains. As the engine is
throttled back and goes through the ensuing cutoff conditions, the liner
cools and again becomes essentially a stiff membrane that locks in a portion
of the strain distortions from the hot spot. This hot spot duty cycle has
the potential to both add in large local strains in the axial and hoop
directions over an axisymmetric model analysis, and add a biased strain to
each duty cycle. A detailed 3-D model of a total liner to develop this hot
spot duty cycle strain history is a large study in manhours and computer
dollars.

The primary probabilistic factor in the liner analysis is the randomness and
variability of hot spots. Hot spots are related to injector effects that
are caused by slight manufacturing variations in the injector, contamination
restricting flow in the channel or degradation of the injector with
operation. The variability in material properties that affect most analysis
are the variation in nonlinear material properties, including the cyclic
stress-strain behavior.

Survey of Finite Element Models:
The availability of the finite element models for MCC liner is limited to
2-D models. Many different 2-D finite element models used for various
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design concepts and sensitivity analysis are available (Fig. 6.11). The

typical 2

-D models are small by comparison (175 elements and 218 nodes), but

are subjected to typically many duty cycles. They also model the many
different materials (NARloy-Z, EDcu, EDN{) that make up the liner cross

section.

Scope of Analysis:

1.

3028e

2-) elements to analyze plane strain condition. 3-D

solid elements if 3-0 analysis is deemed necessary to

model localized hot spot condition.

Material 1ibrary should include elastic-plastic analysis
capability with provision for inputting cyclic strain
hardening/softening capability for materials exhibiting

such a behavior. A1l properties are temperature dependent.
Large deformation analysis as the geometry changes of the channel
construction is the key element in simulating the cyclic creep
condition.

Efficient nonlinear solution strategies using incremental

and iterative techniques.
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