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Summary

An investigation has been conducted to determine
the longitudinal and lateral-directional aerodynamic
characteristics of a generic wing-cone configuration
at supersonic speeds. The tests were made in the
Langley Unitary Plan Wind Tunnel at Mach numbers
from 2.50 to 4.50. Nominal test Reynolds number
based on body length was 6 x 108, with selected
runs made at 3 and 12 x 106 Angle of attack was
varied from —4° to 28°, and angle of sideslip was
varied from —8° to 8" Several configurations were
studied to determine the effects of variations in wing
longitudinal position, wing incidence, vertical-tail
configuration, canard shape, and nose bluntness.

Typical effects of Reynolds number and Mach
number on the longitudinal characteristics were ob-
served The incremental effects of the configuration
variables were generally unaffected by Mach number
Forward wing shift was found to have a favorable ef-
fect on the lift and drag-due-to-lift characteristics.
Wing incidence yielded nearly constant shifts in nor-
mal force, lift, and pitch at low angles of attack The
wing-mounted twin vertical tails increased the stabil-
ity level, the normal-force-curve slope, and the lift-
curve slope

The directional-stability characteristics of the
large and small centerline-mounted vertical-tail
configurations were significantly degraded with in-
creasing angle of attack and Mach number The
wing-mounted vertical tails provided near-neutral
directional stability across the test angle-of-attack
range  Generally, all configurations were later-
ally stable for positive angles of attack Lateral-
directional asymmetries occurred at zero sideslip for
angles of attack above 20" for the centerline vertical-
tail configurations

Introduction

The wing-cone configuration has been idexrtified
as a potential transatmospheric vehicle candidate.
One advantageous feature of the wing-cone configu-
ration is that the inlets can be distributed around the
body circumference to maximize inlet capture area.
In addition, the conical forebody provides an initial
precompression surface for the inlet flow field The
circular body cross section also provides both struc-
tural and fuel-volume efficiency Finally, the geomet-
ric simplicity of the wing-cone configuration makes it
readily amenable to analysis with a broad range of
computational aerodynamic prediction methods

The objective of the present research effort was to
define the aerodynamic characteristics of a generic
wing-cone configuration in the Mach 2.50 to 4.50

speed range. Several configuration variables were
studied to provide trade information on wing lon-
gitudinal position, wing incidence, vertical-tail con-
figuration, canard shape, and nose bluntness effects
A preliminary assessment of the test results has been
reported in reference 1 Subsonic tests of the config-
uration have been reported in references 2--5.

The wing-cone model was tested in the NASA
Langley Unitary Plan Wind Tunnel (UPWT) at
Mach numbers from 2:50 to 4.50 for Reynolds num-
bers from 3 to 12 x 108 based on body length The
angle of attack was varied from —4° to 28" and an-
gle of sideslip was varied from -8"to 8" for selected
angles of attack

Symbols

The aerodynamic coefficients are referred to the
body-axis system unless otherwise noted Lift and
drag are referred to the stability-axis system The
data were reduced about a moment reference center
located at 62 percent of the fuselage length. (See
fig. 1(a).)

b wingspan, 10.80in
C mean aerodynamic chord, 14.40in
Cy axial-force coefficient, Aﬁ%ﬂ%
Cac chamber axial-force coefficient,
Chamber axial force
qS
Cp drag coefficient, qu;;&
Cpe chamber drag coefficient,
Chamber drs,
qS
Cpyo drag coefficient at zero lift
C rolling-moment coefficient,
Rolling moment
gSbh
Cs stability axis rolling-moment coeffi-

P , Rolling moment
cient —ngm———
lateral-stability derivative,
(Cg_g - (Clpg
- 3

stability axis lateral-stability
(.Cl,s)ﬂ=3 - (Cl,s)ﬂ=0
3

derivative,

Cr lift coefficient, el

Cm pitching-moment coefficient,
Pitching moment
“f!gga——'

Cn yawing-moment coefficient,

Yawing momient
qSh



Cn,s

b,

stability axis yawing-moment
coefficient, M%bm_megt

directional-stability derivative,
(Cn)ﬂzg, - (Cn)ﬂzo
3

stability axis directional-stability
(Cn,s ‘)B=3 (Cn,s )ﬁZO
3

derivative,

normal-force coefficient, Nor%'sforce

side-force coefficient, &%@@

side-force derivative,
(Cy )5=3 (Cy ),3=0
3

fuselage station

body length, 36.00 in

lift-drag ratio

free-stream Mach number
free-stream dynamic pressure, psi
Reynolds number, per ft

wing reference area, 116.64 in?
variable

longitudinal location of center of
pressure referenced to body length

angle of attack, deg
angle of sideslip, deg
wing incidence, deg

Configuration nomenclature:

B

C1
c2
N3
N4
N5
V1

V2

V3
W1

body

delta canard
trapezoidal canard
blunt nose

nose used with canards
sharp nose

large centerline-mounted vertical
tail

small centerline-mounted vertical
tail

wing-mounted vertical tails

wing in baseline (mid) position at
zero incidence

WI1A wing in aft position at zero
incidence

WI1F wing m forward position at zero
incidence

Wil wing in baseline (mid) position at

nonzero incidence

Model Description

A sketch of the wing-cone model along with the
various additional components is shown in figure 1
The baseline wing-cone model consists of a 5" half-
angle cone forebody, cylindrical midbody, and a 9°
truncated cone afterbody. Typically, an engine pack-
age would be located at the midbody, however, the
engine package was deleted from the present model
to simplify the experiment and analysis. The fuse-
lage is fitted with a delta wing (aspect ratio 1.0)
with a 4-percent-thick diamond airfoil section The
wing could be located at three longitudinal positions
and five incidence angles. The model components in-
cluded interchangeable nose geometries that varied in
bluntness, two canards that differed in planform, and
three vertical-tail configurations The three vertical-
tail configurations were large and small centerline-
mounted and split wing-mounted arrangements The
sharp nose (designated N5) was used for the majority
of the tests. The canard nose (N4) was intended to
have the same geometry as N5 Geometric charac-
teristics of the model components are summarized in
table |

A sketch showing the possible wing positions is
presented in figure 1(f) The model was designed
to allow the wing to be positioned at five incidence
angles (-5°, -2.5°, 0", 2.5°, and 5") and three longi-
tudinal positions while maintaining a smooth wing-
body juncture Wing incidence and position were
studied to assess induced lift and wing-body inter-
ference effects Also, wing incidence could be used
to allow the forebody, which serves as an external
surface for an inlet, to remain at a reduced angle of
attack relative to free stream to minimize forebody
cross flow into the inlet A photograph of the baseline
wing-cone model with the large centerline vertical tail
is shown in figure 2

Test Conditions

The tests were made in the NASA Langley
UPWT The UPWT is a variable pressure and tem-
perature wind tunnel with a Mach number range
from 1.5to 46. The UPWT has two test sec-
tions, test section 1has a Mach number range from
15to 2.9 and test section 2 has a Mach number



range from 2.3 to 46 A complete description of the
UPWT is contained in reference 6. Test section 2
was used for the present tests, which were made at
Mach 2.50, 3.00, 3.50, 4.00, and 450 The nomi-
nal test Reynolds number was 2 x 108 per foot, how-
ever, selected tests were made at Reynolds numbers
of 1x 10% and 4 x 105 per foot. A detailed outline
of the wind-tunnel test parameters is contained in
table II

Angle of attack was varied from -4" to 28° at
sideslip angles of 0" and 3" The angle of sideslip
was varied from -8° to 8° at selected angles of
attack Although typical transatmospheric vehicles
would likely operate at angles of attack less than
10°, tests were made at the higher anglesto evaluate
potential off-design abort or reentry conditions A
boundary-layer transition strip consisting of No. 35
grit was located 1 2 in. aft of the fuselage nose apex
and 0.4 in aft streamwise of the wing, canard, and
vertical-tail leading edges. The grit size and location
were selected according to the methods discussed in
references 7 -9

The aerodynamic forces and moments were mea-
sured by means of a six-componentstrain-gauge bal-
ance contained within the model and attached to a
support sting that, in turn, was connected to the per-
manent model-positioning system in the wind tun-
nel. The absolute balance accuracy was 0.5 percent
of the full-scale capacity of each of the six balance
components The resultant coefficient accuracies for
the various test conditions are contained in table III
The model angles of attack were corrected for tunnel
flow misalignment and for sting and balance deflec-
tion caused by aerodynamic loading on the model
Balance chamber pressures were measured by means
of sting-mounted tubes routed from inside the cham-
ber to pressure transducers located outside the wind
tunnel. These pressures were measured throughout
the test and were used to correct the force data to
a condition of free-stream static pressure acting over
the base area of the model The data were reduced
about a moment reference center located at 62 per-
cent of the model length.

Presentation of Results

The aerodynamic coefficient data are tabulated in
the appendix The data are plotted in figures 3to 30
The data plot scales were sized to best illustrate the
most important trends in the data In certain in-
stances (such as drag coefficient at large values of lift
coefficient) the data points are off scale and hence
are not plotted, however, these data points are in-
cluded in the appendix Unless otherwise indicated,

the results presented i the following figures are for
a Reynolds number of 2 x 106 per foot.
Figure
Effect of Reynolds number on longitudinal
aerodynamic characteristics, BN5 3

Effect of Reynolds number on longitudinal
aerodynamic characteristics; W1BN5;

M =250 4
Effect of Reynolds number on longitudinal
aerodynamic characteristics; W1BN5V1 5
Effect of Mach number on longitudinal
aerodynamic characteristics, BN5 6
Effect of Mach number on longitudinal
aerodynamic characteristics, W1BNbH 7
Effect of Mach number on longitudinal
aerodynamic characteristics, W1BN5V1 8
Effect of Mach number on longitudinal
aerodynamic characteristics, W1BN4C1 9
Effect of vertical tail on longitudinal
aerodynamic characteristics, W1BN5 10

Effect of canard on longitudinal aerodynamic
characteristics; W1BN5 for canard off,

W1BN4 for canard on 11
Effect of wing position on longitudinal
aerodynamic characteristics; W1BN5 12
Effect of wing incidence on longitudinal
aerodynamic characteristics; W1IBNb 13
Effect of nose bluntness on longitudinal
aerodynamic characteristics 14
Effect of angle of attack on lateral-directional
aerodynamic characteristics; BN5 15
Effect of angle of attack on lateral-directional
aerodynamic characteristics; W1BN5 16
Effect of angle of attack on lateral-directional
aerodynamic characteristics; W1BN5V1 17
Effect of angle of attack on lateral-directional
aerodynamic characteristics; W1BN5V2 18
Effect of angle of attack on lateral-directional
aerodynamic characteristics; W1IBN5V3 19
Effect of angle of attack on lateral-directional
aerodynamic characteristics; W1BN4C 1 20
Effect of angle of attack on lateral-directional
aerodynamic characteristics; W1BN4C2 21
Effect of Mach number on lateral-directional
stability derivatives; BN5 22
Effect of Mach number on lateral-directional
stability derivatives; W1BN5 23
Effect of Mach number on lateral-directional
stability derivatives; W1BN5V1 24



Effect of Mach number on lateral-directional

stability derivatives; W1BN4C1 25
Effect of vertical tail on lateral-directional
stability derivatives; W1BN5 26

Effect of canard on lateral-directional
stability derivatives; W1BN5 for canard off;

W1BN4 for canard on 27
Effect of wing position on lateral-directional
stability derivatives; W1BN5 28
Effect of wing incidence on lateral-directional
stability derivatives; W1IBN5 29
Effect of vertical tail on lateral-directional
asymmetric effects at 3 =0°, W1BN5 30

Summary of Results

Because of the large amount of experimental data
obtained in the study, this paper will highlight only
the most significant results The longitudinal aerody-
namic characteristics will be discussed first, followed
by the lateral-directional characteristics. The base-
line configuration used in the data comparisons is
the wing-body configuration, with the wing located
in the midposition at zero incidence (W1BN5)

Longitudinal Aerodynamic Characteristics

The effect of Reynolds number is shown in
figures 3--5 for the body-alone (BN5), wing-body
(W1BN5), and large centerline vertical-tail
(W1BN5V1) configurations at Mach 2.50 and 4.50.
Only the axial-force coefficient (C'4 ), drag coefficient
(C'p), and lift-drag ratio (L/D) exhibit any notice-
able effect The expected decrease in C'y (and Cp)
with increasing Reynolds number occurs for low an-
gles of attack (a< 2°); this trend generally does not
hold for the higher angle-of-attack conditions.

Shown in figures 6-9 is the effect of Mach num-
ber on the body-alone (BN5), wing-body (W1BNb5),
large centerline vertical tail (W1BN5V1), and delta
canard (W1BN4C1) configurations The following
general trends were observed for increasing Mach
number stability level decreased, normal-force-curve
and lift-curve slope decreased, zero-lift drag and axial
force decreased, drag due to lift increased, and max-
imum lift-drag ratio increased. In the present study,
drag due to lift is defined asCp - Cp, The axial-
force curves merged for angles of attack between 16"
and 20°, at higher angles of attack, the axial force
increased with increasing Mach number

The effect of vertical-tail configuration is shown
in figure 10. As expected, the axial force and drag
increased and lift-drag ratio decreased because of
the centerline-mounted vertical tails (V1 and V2)

4

The wing-mounted vertical tails (\V3) had the largest
increments of axial force and zero-lift drag. However,
the wing-mounted vertical tails also increased the
stability level, the normal-force-curve slope, and the
lift-curve slope. These results may be attributed to
the vertical tails on the lower surface of the wing
lower surface acting as a type of "flow fence" to
capture the flow, and causing higher local pressures
aft of the moment reference center In addition, the
wing-mounted vertical tails had the lowest drag due
to lift, which resulted in slightly higher values of lift-
drag ratio for lift coefficients above about 0.3.

The effect of the delta (C1) and trapezoidal (C2)
canard configurationsis shown in figure 11 The typ-
ical effects due to canard addition occur stability
level decreased, normal force and lift-curve slope in-
creased, axial force and zero-lift drag increased, and
drag due to lift decreased. The baseline wing-body
configuration has the highest maximum lift-drag ra-
tio. Both canard configurationshave greater lift-drag
ratio at the higher lift coefficients (Cz > 0 15-0.25)
because of their lower drag due to lift than the base-
line configuration

The effect of wing longitudinal position is shown
in figure 12 In addition to the expected destabilizing
effect of forward wing shift, several additional effects
occurred: normal force and lift-curveslope increased,
axial force increased, drag due to lift decreased, and
maximum lift-drag ratio increased These additional
effects may be attributed to changes in wing-on-body
and body-on-wing interference effects. For example,
forward wing movement places more of the wing in
the forebody compression flow field and less of the
wing in the afterbody expansion flow field

Wing incidence effects are shown in figure 13.
Positive wing incidence yields a near-constant neg-
ative pitch-curve shift and a near-constant positive
normal-force-curve and lift-curve shift for angles of
attack less than about 8" Above this angle of attack,
these incremental shifts generally increase Large
increments in axial force occur as angle of attack in-
creases Generally, the zero incidence (baseline wing-
body) configuration has the largest maximum lift-
drag ratio For lift coefficients greater than 0.35, the
drag increases as the wing incidence varies from posi-
tive to negative; this effect is more apparent as Mach
number increases.

Varying the nose geometry from sharp (N5) to
blunt (N3) was found to have minimal effect, ex-
cept for the axial-force data at low angles of attack
(a<2°) for Mach 4.00 and 4.50 (fig. 14) This ef-
fect may be due to skin friction reduction caused by
laminar flow downstream of the transition grit on



the blunt nose; this hypothesis is based on the favor-
able effect of bluntness on transition Reynolds num-
ber (ref 10) and the marginal effectiveness of the
transition grit at Mach numbers above 4.00 (ref 8)
Also shown in figure 14 are the data for the body
alone and the wing-body The results show that the
addition of the wing to the body at Mach 2.50 yields
about a threefold increase in normal force or lift at
low angles of attack (a < 8°), at Mach 4.50 a twofold
increase in normal force or lift occurs. This Mach
number effect on the normal-force or lift increase due
to wing addition can be attributed to two factors
Relative to the body-alone lift (which is nearly in-
dependent of Mach number at low angles of attack)
both the isolated wing lift and the favorable (i.e., lift-
producing) wing-body interference effects decrease
significantly as Mach number increases (ref 11)

Lateral-Directional Aerodynamic
Characteristics

The lateral-directional aerodynamic coefficients
are plotted in figures 15-21 as a function of angle
of sideslip 5 for several angles of attack These
figures show the ranges of a and # for which the
lateral-directional characteristics are linear and well
behaved Generally, all the configurations exhibit
nearly linear lateral-directional behavior as a func-
tion of 8 for a < 10" The small nonlinearities that
do occur are smooth and continuous. The body
alone (fig 15), the baseline wing-body (fig. 16),
and the wing-mounted vertical-tail (fig 19) config-
urations exhibit moderate nonlinearities at a = 20"
for Mach numbers less than 3.50. The large and
small centerline vertical-tail configurations (figs. 17
and 18, respectively) have highly nonlinear behav-
ior at a =20°, the magnitude of these nonlinearities
decreases as Mach number increases, such that at
M = 4.50 the nonlinearities are small The canard
configurations (figs, 20 and 21) exhibit nearly linear
lateral-directional characteristics at a = 20" for all
test Mach numbers.

The lateral-directional stability derivatives, which
were derived from angle-of-attack sweeps at 4 =0"
and 3°, are shown in figures 22-29. The previous
discussion (figs. 15-21) shows that for certain con-
figurations (particularly the centerline vertical-tail
configurations) at high angles of attack (a=20°),
lateral-directional nonlinearities may exist. Gener-
ally, for g8 < 3" these nonlinearities are small, but
comparison of the lateral-directional stability deriva-
tives at high angles of attack (a>10°) must be done
cautiously

Mach number effects on the lateral-directional
stability derivatives are shown in figures 22--25. Gen-

erally, the effects of Mach number are small for
a < 16° except for the large centerline vertical-tad
configuration (fig 24) For this configuration at
a < 16°, the magnitudes of the lateral-directional
stability derivatives decrease as Mach number in-
creases. At higher angles of attack, the results are
likely affected by the previously discussed lateral-
directional nonlinearities.

Lateral-directional stability charactenstics are
presented in figure 26 for the wing-body configura-
tion and the three vertical-tail configurations As
expected, the wing-body with no vertical tails is di-
rectionally unstable across the Mach number and
angle-of-attack range. The directional stability pro-
vided by the large and small centerline vertical tails
decreases as angle of attack increases. Also, as Mach
number increases, the angle of attack at which the
centerline vertical-tail configurations become neu-
trally stable decreases. At M =4.50, only the large
centerline vertical-tail configurationwas stable at low
angles of attack (up to a =10°) The wing-mounted
vertical tails provided a near-neutral stable configu-
ration across the angle-of-attack and Mach number
range. A larger set of wing-mounted vertical tails
could provide adequate directional stability charac-
teristics that are insensitive to angle of attack At
positive angles of attack, all configurations are lat-
erally stable The large and small centerline vertical
tails produce the largest restoring rolling moments
for a < 16°, hence, they have greater lateral stabil-
ity relative to the wing-body with no vertical tails
As the centerline verticals become shielded at high
angles of attack, their effectiveness is reduced. The
wing-mounted vertical configuration has the same
lateral stability as the wing-body because of the off-
setting effects of the upper- and lower-surface verti-
cals As Mach number increases, the magnitude of
the lateral-directional stability derivatives decreases,
hence, the incremental differences between the con-
figurations decrease also.

The effect of canards is shown in figure 27 Gen-
erally, no canard effectsoccur fora < 6" However,
the magnitude of the directional stability derivative
decreasesfor a > 12°, the magnitude of the side-force
derivative decreases for a > 8°, and the magnitude of
the lateral-stability derivative increases slightly for
a > 6° because of the canard addition These ca-
nard effects generally decrease in magnitude as Mach
number increases,

Wing position and wing incidence effects on the
lateral-directional stability are shown in figures 28
and 29, respectively Although the effects of wing
position are small, the following trends are noted As
the wing moves forward, the absolute magnitude of

5



the stability derivatives (Cy, and Clﬂ) generally in-

creases slightly, these wing position effects decrease
as Mach number increases. As wing incidence is var-
ied from negative to positive, the following general
trends occur At high angles of attack (a> 12°)
the configuration becomes more directionally unsta-
ble, this effect decreases as Mach number increases
The lateral stability increases; this effect increases as
Mach number increases. Also, the negative wing in-
cidence configurationsare laterally unstable at small
positive angles of attack

Shown in figure 30 are lateral-directional data for
zero angle of sideslip At angles of attack above 20°,
asymmetric loadings occur, particularly for the large
centerline vertical-tail configuration Based on simi-
lar low-speed results (refs.2 and 3), it is believed that
asymmetric vortex shedding is the cause A review
of the complete data set shows that the magnitude
of the asymmetric effect decreases as Mach number
increases; this is probably due to the reduced lee-side
loadings imposed by vacuum pressure limitations As
Mach number increases, the asymmetry onset occurs
at lower angles of attack

Concluding Remarks

An investigation has been conducted to determine
the longitudinal and lateral-directional aerodynamic
characteristics of a generic wing-cone configuration
at supersonic speeds The tests were made in the
Langley Unitary Plan Wind Tunnel at Mach num-
bers from 2.50 to 4.50. Nominal test Reynolds num-
ber was 2 x 108 per foot, with selected runs made
at 1x 10% and 4 x 105 per foot. Angle of attack was
varied from -4° to 28°, and angle of sideslip was var-
ied from -8" to 8" Several configuration variables
were studied to determine the effects of variations in
wing longitudinal position, wing incidence, vertical-
tail configuration, canard shape, and nose bluntness

Typical effects of Reynolds number and Mach
number on the longitudinal characteristics were ob-
served The incremental effects of the configuration
variables were generally unaffected by Mach num-
ber Forward wing shift was found to have a favor-
able effect on the lift and drag-due-to-lift character-
istics. Wing incidence yielded nearly constant shifts
in normal force, lift, and pitch at low angles of at-
tack. The wing-mounted vertical tails increased the
stability level, the normal-force-curve slope, and the
lift-curve slope. Typical canard effects and minimal
nose bluntness effects were observed The baseline
wing-body configuration had the greatest maximum
lift-drag ratio.

Generally, all the configurations exhibited nearly
linear lateral-directional characteristics for angles of
attack at or below 10" Only the large and small
centerline-mounted vertical-tail configurations had
significant nonlinearities at an angle of attack of 20°
The directional-stability characteristics of the large
and small centerline vertical-tail configurations were
significantly degraded with increasing angle of attack
and Mach number The wing-mounted vertical-tail
configurationhad nearly constant levels of directional
stability across the test angle-of-attack range All
configurationswere laterally stable for positive angles
of attack except for the negative wing incidence con-
figurationsat small positive angles of attack Lateral-
directional asymmetries occurred at zero sideslip for
angles of attack above 20" for the centerline vertical-
tail configurations

NASA Langley Research Center
Hampton. VA 23665-5225
March 10, 1992
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Table | Geometric Characteristics of the Model

Wing W1
Theoretical area (reference), in? 116.64
Aspect ratio 100
Span, in. 10.80
Leading-edge sweep, deg 75.96
Trailing-edge sweep, deg 0.00
Mean aerodynamic chord, in 14.40
Airfoil section Diamond
Airfoil thickness-to-chord ratio, percent 4.0

Vertical tail V1, body centerline.
Exposed area, in? 20.92
Span, in 5.846
Leading-edge sweep, deg 70.0
Trailing-edge sweep, deg 38.13
Airfoil section Diamond
Aiirfoil thickness-to-chord ratio (parallel to 9" boattail), percent 4.0

Vertical tail V2, body centerline:
Exposed area, in? 12.91
Span, in 4,435
Leading-edge sweep, deg 70.0
Trailing-edge sweep, deg -195
Airfoil section Diamond
Airfoil thickness-to-chordratio (parallel to 9° boattail), percent 4.0

Vertical tail V3, wing mounted
Upper surface vertical:

Exposed area, in? 6.46
Span, in. 2.320
Leading-edge sweep, deg 70.0
Trailing-edge sweep, deg 55.0
Airfoil section Diamond
Airfoil thickness-to-chord ratio, percent 4.0
Lower surface vertical
Exposed area, in? 5.19
Span, in 1800
Leading-edge sweep, deg 70.0
Trailing-edge sweep, deg 55.0
Airfoil section Diamond

Airfoil thickness-to-chord ratio, percent 4.0



Table | Concluded

Canard C1 (delta)

Exposed area, in? 5.99
Theoretical aspect ratio 1.87
Span, in 450
Leading-edge sweep, deg 65.0
Trailing-edge sweep, deg 0.0
Airfoil section Diamond
Airfoil thickness-to-chord ratio, percent 6.0
Incidence angle, deg 0.0
Canard C2 (trapezoidal)
Exposed area, in? 5.00
Theoretical aspect ratio 5.48
Span, in. 6.05
Leading-edge sweep, deg 16.0
Trailing-edge sweep, deg 0.0
Airfoil section NACA 0006
Incidence angle, deg 0.0
Axisymmetric fuselage B:
Theoretical length, in. 36.00
Forebody cone half-angle, deg 50
Cylinder radius (maximum), in 2.317
Boattail half-angle, deg 9.0
Base (chamber)area, in? 4.352
Moment reference center, in. 22.32
Radius of sharp nose (N5), in 0.002
Radius of canard nose (N4), in 0.010

Radius of blunt nose (N3), in 0.124
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Table II Test Conditions

Mach Stagnation Stagnation Reynolds number,
number pressure, psi temperature, °F per foot

2.50 5.56 125 1x 108

2.50 nn 125 2

2.50 2222 125 4

3.00 14.46 125 2

350 18.77 125 2

4.00 25.68 150 2

4.50 16.20 150 1

4.50 32.40 150 2

4.50 64.80 150 4

The maximum absolute error of the force and moment coefficients obtained from 17
the six-component strain-gauge balance measurements is based on, at worst
case, £0.5 percent of the full-scale balance load capability, however, based
on limited data repeatability checks and the data trends, the incremental
accuracy of the data 1s believed to be much better than that indicated by
these maximum absolute error values

Maximum absolute error for—

M R Cn Cy Cm (o] Cn Cy Cac
2.50 | 1x 10% | 0.0090 | 0.0018 | 0.0021 | 0.00028 | 0.00112 | 0.0060 | 0.0005
250 | 2 0045 ,0009 .0010 00014 00056 | .0030 .0003
2.50 | 4 0023 0005 .0005 00007 00028 0015 0001
3.00 |2 .0052 0010 .0012 00016 00064 .0035 0003
350 | 2 0061 0012 0014 00019 00075 .0041 0004
4.00 | 2 .0068 0014 0016 00021 00084 0045 ,0004
4.50 1 0162 0032 0038 00050 00200 0108 0010
450 | 2 .0081 0016 .0019 00025 00100 0054 0005
450 | 4 0041 0008 .0009 00013 00050 0027 0002




Appendix

Tabulated Data

Table Al defines the symbols corresponding to the column headings of the tabulated force and moment
data and the tabulated lateral-directional stability derivatives Table AIT is an index to the tabulated force
and moment data, which are presented in the microfiche supplement as table AIV Table AIII is an index

to the tabulated lateral-directional stability derivatives, which are presented in the microfiche supplement as
table AV

Table Al Symbols for Tabulated Data

Tabulated data heading Definition
ALPHA o
BETA 8
CA Cy
CAC Cac
CA UNC C'4 (uncorrected)
CD Cp
CDC Cpe
CD UNC Cp (uncorrected)
CL o)
CLB C
CLS Crs
CLBB C,
CLSB (c,ﬁ)s
CLSQ Cf
CM Cm
CN Cn
CNB Cn
CNS Chn,s
CNBB Cng
CNSB (Cng),
CY Cy
CcYBB C'y[j
L/D L/D
MACH M
R/FT R x 1076
RUN Run number
RUNBO (Run number) g—ge
RUNB3 (Run number) g_30
XCP/L zop/L
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Table Al

Index to Tabulated Force and Moment Data

Run [imberf M =
Config ration R x, deg | , deg| 2.50 3.00 3.50 4,00 4.50
W1| N5 1x 108 *v 0 4 61
1 v 3 5 62
1 0 v 6 63
1 5 v 7 64
1 10 v 8 65
1 20 v 9 66
2 v 0 10 27 33 41 49
2 v 3 11 28 34 42 50
2 0 v 15 29 36 44 51
2 5 v 16 30 37 45 52
2 10 v 17 31 38 46 53
2 20 v 18 32 39 47 54
4 v 0 20
4 v 3 21
4 0 v 22
4 5 v 23
4 10 v 24
4 20 v 25
WIBN5V1 | 1x 108 v 0 99
1 v 3 100
1 0 v 101
1 5 v 102
1 10 v 103
1 20 v 104
2 v 0 68 80 86 92 105
2 v 3 69 81 87 93 106
2 0 v 70 82 88 94 107
2 5 v 71 83 89 96 108
2 10 v 72 84 90 97 109
2 20 v 73 85 91 98 110
4 v 0 74 111
4 v 3 75 112
4 0 v 76 113
4 5 v 77 114
4 10 v 78 115
: 4 20 v 79 116
WIBN5V2 | 2 x 108 v | 0| 117 | 123 | 129 136 | 141
2 v 3 118 124 130 137 142
2 0 v 119 125 131 138 143
2 5 v 120 126 133 139 144
2 10 v 121 127 134 140 145
2 20 v 122 128 135 1140 146
*Variable.




Table AII Continued

Run number for M =
Configuration R a, deg|f, deg| 250 | 3.00 | 350 | 4.00 | 4.50
WI1BN5V3 2x 108 | * 0 | 159 | 165 | 171 | 147 | 153
2 v 3 | 160 | 166 | 172 | 148 | 154
2 0 v 161 | 167 | 173 | 149 | 155
2 5 v 162 | 168 | 174 | 150 | 156
2 10 v 163 | 169 | 175 | 151 | 157
, 2 20 v 164 | 170 | 176 | 152 | 158
W1BF4C1 2 x 109 v 0 177 | 183 | 184 | 190 | 191
2 v 3 | 178 185 192
2 0 v 179 186 193
2 5 v 180 187 194
2 10 v 181 188 195
2 20 v 182 189 196
W1BF4C2 2 x 108 v 0 | 197 | 203 | 204 | 210 | 211
2 v 3 | 198 205 212
2 0 v 199 206 213
2 5 v | 200 207 214
2 10 v | 201 208 215
2 20 v | 202 209 216
WI1FBN5, wing forward | 2 x 109 Y 0 217 | 221 | 222 | 226 | 227
2 v 3 | 218 223 228
2 0 v | 219 229
2 5 v | 220 230
W1ABNSp wing aft 2 x 108 v 0 | 231 | 235 | 236 | 240 | 241
2 v 3 | 232 237 242
2 0 v | 233 238 243
2 5 v | 234 239 244
W1IBNS5, §, =5" 2 x 108 v 0 | 245 | 253 | 255 | 263 | 264
2 v 3 | 246 256 265
2 0 v | 247 257 266
d 2 5 v | 248 258 267
W1IBNS5, 6, = -5 2 x 108 v 0 | 249 | 254 | 259 | 262 | 268
2 v -3 | 250 260 269
2 0 v | 251 257
s 2 -5 v 252 261 270
WI1IBNS, §; =25 2 x 108 v 0 | 271 | 279 | 282 | 289 | 290
l 2 v 3 272 281 291
2 0 v | 273 283 292
W1IBNS, §; = —2.5" 2 x 108 v 0 | 275 | 278 | 285 | 288 | 294
J 2 v -3 | 276 286 295
2 -5 v | 277 287 296

*Variable.
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Table AIT Concluded

Run number for M =

Configuration R o, deqg |3, deg| 2.9 3.00 3.50 4.00 4.50

W1BN3 2 x 106 * 0 297 301 302 306 307

2 v 3 298 3B 308

2 0 v 29 34 309

L 2 5 v 300 € 05) 310

BN5 1 x 108 v 0 31 31

2 % 0 312 319 31 328 332

2 v 3 313 320 322 329 333

2 0 v 314 323 334

2 5 v 315 324 335

2 10 v 316 327 336

2 20 v 317 326 337

| 4 v 0 318 338
*Variable.




Table ATIT Index to Tabulated Lateral-Directional Stability Derivatives

Run number '=0°/3=3")for M =
Configuration R 2.50 3.00 3.50 4.00 4.50

W1BN5 1 x 106 4/5 61/62
W1BN5 2 10/11 27/28 33/34 41/42 49/50
W1BN5 4 20/21

WI1BN5V1 1 99/100
WIBN5V1 2 68/69 80/81 86/87 092/93 | 105/106
WI1BN5V1 4 74175 111/112
WIBN5V2 2 117/118 | 1231124 | 1291130 | 136/137 | 141/142
WI1BN5V3 2 159/160 | 1651166 | 171/172 | 1471148 | 153/154
WI1BN5C1 2 1771178 1841185 191/192
WI1BN5C2 2 1971198 2041205 2111212
W1FBN5 2 217/218 2221223 227/228
W1ABN5 2 2311232 2361237 2411242
WI1IBNS5, 6; =5° 2 2451246 255/256 2641265
WI1IBNS, §; = 5" 2 2491250 2591260 2681269
WI1IBNS, §; =2.5° 2 2711272 281/282 2901291
WI1IBNS, 6; = —2.5° | 2 2751276 285/286 2941295
WI1BN3 2 297/298 3021303 3071308
BN5 2 312/313 | 3191320 | 321/322 | 3281329 | 332/333
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Figure 1 Geometric description of wind-tunnel model. All dimensions are given in inches
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Figure 3. Effect of Reynolds number on longitudinal aerodynamic characteristics; BN5.
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Figure 20 Effect of angle of attack on lateral-directional aerodynamic characteristics; W1BN4C1
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Figure 21 Effect of angle of attack on lateral-directional aerodynamic characteristics; W1BN4C2.

015
.010

.005

005
H 010

.015



o, deg

o a0

<& 10

A 20

I
n
H

£

{—ig
— 44 {t - N I S R
[ o
- {1+ 4 EES
r ; " i .
+ ; ; ; .
i F
! { +
I I
NN r EEam Cry CEEFETT ga
;

..

s SR 015

PR 010

T ) : HEEH LS 005

10

15

10

(b) M = 3.50

Figure 21 Continued

10

- +
: mapEn
NASN : g
= :
=St T S ; T -
= T t T
kAN A AN r] o)
, n T + 0 C
- 1 S nwn A ! t
- I N WL u ! ]
u 7 . T
i I I O RS
H : , LA 005
: T T SRR R T
; L
] ] T
: P
I 1 I
i ABEN 1) MEEN RSN F NN 15 T i
1 L i 1 - Tt [ »'
samm: -t EasREgEREvAR: TR T e e -.010
s, T i n : : HHH
o - i -
2> W N ! ]
+ i ‘ T }
b t : j
i g A T
T T 015
L2 [ byl | o]
T : Im) 3
; T Py : t +
W ENENGE RGNS R L L I i O ]
| PN TR T ;
T R
| il
; S5
. i F 1 I M
iR He e HHHH P ; HH HEHH ]
ST f T
-+
o9 :
: :
:
—+ ] 1]
! ; T T y S URNE SRR 7]

149



.04

03
o, deg
o 0
02 o 5
> 10
B A 20
01
Cn Eaiss
0
.01
.02
.03
015
010
Eaes 005
o i .
10 TR -.005
- 1 ‘&
.05 et -,010
0 ..015
cy S
.05 ' : i
10
15
10 -8 -6 -4 -2 0 2 4 6 8 10
B
(c) M =4.50.

Figure 21 Concluded

150



010
005
CnB 0
L1 III-*------ = = ggé
-.005 i
|
-.010
002 .
0 ] n_ EF EF u et o] ::a ﬁ [
CIB |
-.002 B
M
004 O 250 o
O 3.00
O 350
0 : /A 4.00
N 4.50
-.005 O - ! =t
S=3N ]
CYB -.010 S NEmi=—eee==:aiee
: i:‘-:ﬁ; =: T"
-.015 H N |
-.020 L ) e
-8 -4 0 4 8 12 16 20 24 28 32
oL

Figure 22 Effect of Mach number on lateral-directional stability derivatives; BN5
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