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The RICIS Concept

The University oTHouston-Clear Lake estabIlshed the Research Institute for

Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center {JSC) and local industry to actively support research

in the computing and information sclences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly de[me and manage an Integrated

program of research In advanced data processing technology needed forJSC's

main missions, including administrative, engineering and science responsi-

billtles. JSC agreed and entered into a continuing cooperative agreement

wlth UHCL beglnning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two insUtuUons to
conduct the research.

The UHCL/RICIS mission Is to conduct, coordinate, and disseminate research

and professional level education in computing and Information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCLand its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission Is being

Implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

Uon, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also coUaborates wlth industry in a companion pro_. This program

Is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICiS re_h an-I educatlon programs, while other research

organizations are involv_ _a the "gateway" concept.

A major role of RICiS then Is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

Lion sciences. RICIS, worktngjoinfly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

rdeal and admlnistraUve support to coordinate the research and integrates

technical results into the goals of UHCL, NASA/JSC and industry.
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This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Christopher P. Menzel and Dr. Richard J.

Mayer of Texas A&M University. Dr. Peter C. Bishop served as RICIS research
coordinator.

Funding was provided by the Air Force Armstrong Laboratory, Logistics

Research Division, Wright-Patterson Air Force Base via the Information Systems

Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA

Johnson Space Center and the University of Houston-Clear Lake. The NASA technical

monitor for this research activity was Robert T. Savely of the Information Technology

Division, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or
implied, of RICIS, NASA or the United States Government.
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Preface

This paper describes the research accomplished at the Knowledge Based

Systems Laboratory of the Department of Industrial Engineering at Texas

A&M University. Funding for the lab's research in Integrated Information

System Development Methods and Tools has been provided by the Air Force

Human Resources Laboratory, AFHRL/LRL, Wright-Patterson Air Force

Base, Ohio 45433, under the technical direction of USAF Captain Michael

K. Painter, under subcontract through the NASA RICIS Program at the

University of Houston. The authors and the design team wish to acknowl-

edge the technical insights and ideas provided by Captain Painter in the

performance of this research as well as his assistance in the preparation of

this report.
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Summary

A method can be thought of as a distillation of good practice for a particu-

lar system development situation. Formalization of a successful engineering,

management, production, or support technique into a method is done in

hopes of raising the performance of the novice practitioner to a level com-

parible with that of an expert through the appropriate use of the method.

Individual methods are normally accompanied by a special purpose graphi-

cal language that serves to provide focus mad display emphasis for the major

concepts that need discovery, consensus, or decision relative to a specific sys-

tem development life cycle activity. Experience has proven that the personal

and organizational preferences for particular methods are likely to make it

necessary to isolate the information gathered and displayed by one method in

such a way that it can be used in other stages of the life cycle or be displayed

in alternative forms.

This paper outlines the theoretical foundations necessary to construct a

Neutral Information Representation Scheme (NIRS) which will allow for au-

tomated data transfer and translation between model languages, procedural

programming languages, database languages, transaction and process lan-

guages, and knowledge representation and reasoning control languages for

information system specification.
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Introduction

This document presents the theoretical foundations for information repre-

sentation languages of both graphical and textual varieties. It is intended

to serve as a framework for providing rigorous syntax and semantics of ex-

isting and proposed information analysis, design, and engineering methods.

The purpose of such a framework is to provide information representation

language designers with the _idance necessary to _0W for automated inter-

model data transfer and translationl Thus, this document should be viewed

as the structure for an information model data exchange specification. Fi-

nally this theory is motivated_g3_l{e-ne_d:for' a general the0ry of information

representation. Thus, this theory serves as the first step towards achievement

of a Neutral Information Representation Scheme (NIRS) for an Integrated

Development Support Environment (IDSE) that can serve as the platform for

a seamless Computer Aided Softward Engineering (CASE) environment. Sec-

tion 1 of this document describes the motivations and considerations behind

the proposed theory. Section 2 introduces a restricted first-order language

syntax that is proposed as the bounding syntactic structure for informa-

tion modeling languages. Section 3 provides a model theoretic semantics for

those languages, and Section 4 a corresponding logic. Section 5 describes the

application of these concepts to constraint languages.

1 Motivation

The Air Force Integrated Information Systems Evolution Environment

(IISEE) project represents a comprehensive research effort to develop tech-

nologies critical to effectively manage, control, and exploit information as

a resource. _ The resulting developments will provide integration support

methodologies, frameworks, and experimental tools to support integrated

information management systems development and evolution.

One of the key premises on which this program is based is the recogni-

tion of the need for a suite of information modeling methods to service the

large number of tasks and user/developer roles in an evolutionary integrated

information system development process. Each method in this suite is de-
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signed to serve a particular class of human users performing specific tasks or

decision processes. The individual methods normally are accompanied by a

special purpose graphical language that serves to provide focus and display

emphasis for the major concepts that need discovery, consensus, or decision

relative to that task. The problem with this approach is that these syntactic

features restrict the information that can be stated in the language.

The seamless CASE concept is focused on development of the technologi-

ca] components and management methods for seamless software engineering

environments. The term "seamless" is meant to convey the integrated nature

of the methods arid tools provided to the software implementer. The plural-

ization of the term "environments" is meant to convey the fact that different

seamless case environments will be defined for different software types.

This particular document is the result of research which began as an ef-

fort to define a constraint specification language for a particular information

modeling method known as IDEF1.1 An overview of the method and its for-

malization are found in Appendices A and B. As the effort progressed, it was

recognized that the emerging language structures were similar to those being

investigated for the conceptual schema representation language for the IDSE

seamless CASE environment and for the Neutral Information Representation

Scheme to be used to provide the basis for an evolving system description

capable of supporting automated knowledge based model translation. The

theory presented in this report has been used as the formal foundation for a

family of languages that will serve the above described purposes. This family

of Information System constraint languages (ISyCL) is described in [1].

/

L

v

T

w

2 First-order Languages

The basis of our account will be the notion of a first-order language. First-

order languages are flexible, expressively quite rich, and extremely well un-

derstood. They are used extensively in mathematics, linguistics, philosophy,

1See, e.g., [2] and [3]. _IDEF" was originally an acronym for "ICAM Dctlnition Lan-
guage," but the suite of IDEF methods has since evolved independently of its ICAM

origins. Hence, like "NCR" (formerly an acronym for "National Cash Register"), 'IDEF"
is now simply a name like "George," and an acronym no longer.

6



I

I

and computer science whenever clarity of expression is especially important.

Many familiar mathematical theories such as the theory of sets, boolean alge,

bra, topology, etc., can be degantly expressed in first-order terms. More re-

cently first-order languages have found their way into the domain of artificial

intelligence, where first-order languages find straightforward representation

in familiar AI programming languages like LISP and PROLOG. Indeed, first-

order mathematical logic is the formal foundation of PROLOG-an acronym

for PROgramming in LOGic. z )

Generally speaking, a first-order language £ is a formal language. That

is, it is a formal structure consisting of a fixed set of basic symbols, often

called the vocabulary of £, and a precise set of syntactic rules, its grammar,

for building up the proper sentences, or formulas, of the language that are

capable of bearing information.

2.1 Vocabulary

The basic vocabulary of a first-order language consists of several kinds of

symbols:

• Constants

• Variables

• Function symbols

• Predicates

• Logical symbols.

Constants are symbols that correspond to names in ordinary language.

For many purposes, it is useful to use abbreviations of names straight out of

ordinary language for constants, e.g., j for John, wp for Wright-Patterson, v

for Venus, o for Ohio, etc. When we are describing languages in general and

have no specific application in mind, we will simply use the letters a, b, c, and

d, perhaps with subscripts; we will assume that we will add no more than

2s¢¢, e.g., [4].
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finitely many subscripted constants to our language. 3 Constants are usu-

ally lower case letters, with or without subscripts, but this is not necessary.

Indeed, it is often useful to use upper case.

We will often want to say things about an "arbitrary" constant as a way

of talking about all constants, much as one might talk about an arbitrary

triangle ABC in geometry as a way of proving something about all triangles

in general. For this purpose it will not do to talk specifically about a given

constant, a say, since we want what we say to apply to a/l constants generally.

This requires that, when we are talking about our language, we use special

metavariables whose roles are to serve as placeholders for arbitrary constants

of our language, much as "ABC" above serves as a placeholder for arbitrary

triangles. Thus, metavariables are not themselves part of our first-order

language £, but rather part of the extended English we are using to talk

about the constants that are in the language. We will use the lower case

sans serif characters a, b, c for this purpose.

Next are the variables, whose purpose will be darified in detail below.

The lower case letters z, V, and z, possibly with subscripts, will play this

role, and we will suppose there to be an unlimited store of them. We will

use the characters x, y and z as metavariables over the store of variables in

our language.

Third, we have function symbols. These symbols correspond most closely

in natural language to expressions of the form "The X of," where X is a

common noun phrase like "color," "yearly salary," "mother," etc., or expres-

sions of the form "The Y-est X in," where Y is an adjective like "smart" or

"mean," and X once again by a common noun phrase. Common noun phrases

typically express general properties. For any common noun phrase CNP, the

result of replacing X with CNP in either of the above forms (together with

an adjective for Y in the second form) intuitively names a function f that,

when applied to a given object a, yields the appropriate instance f(a) of the

property expressed by the CNP for that object. Thus, where X is "color,"

the resulting function in the first form yields the color of the object to which

it is applied; where it is "yearly salary," the resulting function yields an ap-

8The restriction to a finite number of constants here is not at all essential, but constraint

languages in general will use only finitely many; the same holds for predicates and function
names below.
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propriate dollar amount. Similarly, "The smartest woman in" expresses a

function that takes places--e.g., cities, universities, etc.--and yields for each

such place the smartest woman therein.

For the most part we will confine our attention to "one-place" functions

such as those above that take a single object to another object. But as we

will see there are occasions when we will want to represent functions of more

than one argument as well. Examples of expressions that stand for two-place

functions are "The only child of... and ..." and "The sum of... and .... "

Intuitively, the former expresses a partial function 4 from couples with a single

child to that child, and the latter simply expresses the addition function,

which takes two given numbers to a further number, viz., their sum.

As with constants, in practice it is often convenient to abbreviate relevant

ordinary language functional expressions in defining the function symbols of

a formal language. Again, we will use the letters f, g, and h, possibly with

subscripts, for our basic function symbols, and corresponding sans serif char-

acters as metavariables. Function symbols designed to stand for functions

of more than one argument will be indicated with an appropriate numerical

superscript. As above, we will suppose there are only finitely many of these

symbols in our language.

We also introduce the symbol e, and stipulate that where g stands for

any n-place function symbol in our language, and f stands for any one-place

function symbol, then f • g is an n-place function symbol as well. This

corresponds in ordinary language to the fact that we can nest functional

expressions, e.g., "The salary of the father of the smartest woman in largest

university in ..., or "The successor of the sum of ... and .... "
-- 7

The fourth group of symbols in our language consists of r_-place predi-

cates, n > 1. One-place predicates correspond roughly to verb phrases llke

"is a computer scientist," "has insomnia,," "is an employee," and so forth,

all of which express properties. Two-place predicates correspond roughly to

transitive verbs like "loves," "is an element of," "is less than," "begat," and

41.e., a function that _might not be defined on every element of its domain. E.g., the

square root function is only a partial function on the natural numbers, since it is not
defined on those numbers which are not squares of other numbers. The function in the

text here is partial because its intuitive domain is the set of pairs of humans, and not

every such pair has a single child.
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"lives with," which express two-place relations between things. There are

also three-place relations, such as those expressed by "gives" and "between,"

and with a little work we could come up with relations of more than three

places, but in practice we shall have little cause to go much beyond this.

We will use upper case roman letters such as P, Q, and R for predicates,

and again corresponding sans serif characters as metavariables over pred-

icates. Occasionally predicates will appear with numerical superscripts to

indicate the number of places of the relation they represent, artd if necessary

with subscripts to distinguish those with the same superscripts. It is often

useful to abbreviate relevant natural language expressions. Most languages

contain a distinguished predicate for the two-place relation "is identicaJ to."

We will use the symbol _ for this purpose.

To drive home the difference at this point between predicates and func-

tion symbols, note that a function symbol combines with names to yield yet

another name-like (i.e., referring) expression: e.g., to draw on ordinary lan-

guage, the function symbol "the husband of" combines with the name "Di"

to yield the new referring expression (or definite description, as such are of_

ten called) "the husband of Di." On the other hand, a (one-place) predicate

combines with a name to form a sentence, something that can be true or

false, not a name-like expression. Thus, the predicate expression "is happy"

combines with the name "Di" toyield the sentence "Di is happy." The same

is easily seen to hold for n-place predicates generally.

The last group of symbols consists of the basic logical symbols: --, A, V,

D, =, the existential quantifer 3, and the universal quantifier V, about which

we shall have more to say shortly. We will also need parentheses and perhaps

other grouping indicators to prevent ambiguity.

2.2 Grammar

Now that we have our basic symbols, we need to know how to combine them

into grammatical units, or well-formed formulas, the formal correlates of sen-

tences. These will be the expressions that can encode the sort of information

we will want to express in our theory (and more). This is done recursively

10



as follows, s

First, we want to group all name-like objects into a single category known

as terms. This group will of course include the constants, and for reasons

below, it will include the variables as well. But recall the discussion of

function symbols above. There we saw that an expression like "The yearly

salary of" seems to name a function on objects. But the values of functions

are objects as well. Thus, when we attach a name, "Fred," say, to the

functional expression above, the result "The yearly salary of Fred" is a

sort of name for Fred"s yearly salary. Thus, we count the result of attaching

a functional symbol to an appropriate number of constants and/or variables

as a term as well; and such terms can also be among the terms that a function

symbol attaches to. Thus, more exactly, letting h,t2,.., stand for arbitrary

terms and f stand for an arbitrary function symbol, if tl,... ,t,, are terms

and f is an n-place function symbol, then f(tl,... ,t,_)is a term as well.

Terms formed out of certain familiar two-place function symbols, exam-

ples of whichwill be introduced below, are more commonly written in _n-

fix notation, rather than the prefix notation just defined, with the function

symbol flanked by the two terms, rather than preceding them. Thus, for

a two-place function symbol f and terms t,t', the term f(t,t') can also be

written as fit'. So, for example, +(2, 3) can be written as 2 + 3.

Next we define the basic formulas of our language. Just as verb phrases

and transitive verbs in ordinary language combine with names to form sen-

tences, so in our formal language predicates combine with terms to form

formulas. Specifically, if I0 is any n-place predicate, and h,... ,t,_ are any

n terms, then Pt_...t_ is a formula, and_-n particular an atomic formula.

To illustrate this, if H abbreviates the verb phrase "is happy," and a the

name "Annie," then the formula Ha expresses the proposition that Annie

is happy. Again, if L abbreviates the verb "loves," b the name "Bob," c

the name "Charlie," and f the expression "the fiance of," then the formula

Lbf(c) expresses the proposition that Bob loves Charlie's fiance.

Often when one is using more elaborate predicates drawn from natural

SThat is, the definition is given in such a way that complex cases of the class being

defined are defined in terms of simpler cases of the same class. Recursive definitions thus

often look circular, but they are not, as they always begin with well-grounded initial cases

not defined in terms of other members of the class being defined.
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language, e.g., if we had used LOVES instead of L in the previous example, it

is more readable to use parentheses around the terms in atomic formulas that

use the predicate and separate them by commas, e.g., LOVES(b, ve) instead

of LOVESbx. Thus, more generally, any atomic formula Ptl ..._ can be

written also as P(tl,... ,t,,). Furthermore, atomic formulas involving some

familiar two-place predicates like _, and a few others that will be introduced

below, are more often written using infix rather than prefix notation. For

example, we usually express that a is identical to b by writing a _ b rather

than _ ab. Thus, we stipulate that formulas of the form Ptt' can also be

written as tPt'.

Now we begin introducing the logical symbols that allow us to build up

more complex formulas. Intuitively, the symbol -_ expresses negation; i.e.,

it stands for the phrase "it is not the case that." Since we can negate any

declarative sentence by attaching this phrase to the front of it, we have the

corresponding rule in our formal grammar that if _ is any formula, then so is

-_0. The symbols A, V, D, and = stand roughly for "and," "or," "if...then,"

and "if and only if," which are also (among other things) operators that form

new sentences out of old in the obvious ways. Unlike negation, though, each

takes two sentences and forms a new sentence from them. Thus, we have

the corresponding rule that if _ and _ are any two formulas of our language,

then so are (_o A _), (_0 V _k), (_o D _k), and (_o = ¢).

Finally, we turn to the quantifiers 3 and V. Recall that we introduced

variables without explanation above. Intuitively, 3 and V stand for "some"

and "every," respectively; the job of the variables is to" enable them to play

this role in our formal language. Consider the difference between "Annie is

happy," "Some individual is happy," and "Every individual is happy." In

the first case, a specific individual is picked out by the name "Annie" and

the property of being happy is predicated of her. In the second, all that is

stated is that some unspecified individual or other has this property. And in

the third, it is stated that every indivklual, whether specifiable or not, has

this property. This lack of specificity in the latter two cases can be made

explicit by rephrasing them like this: for some (resp., every) individual z,

z is happy. Since the rule for building atomic formulas counted variables

among the terms, we have the means for representing these paraphrases. Let

H abbreviate "is happy" once again; then we can represent the paraphrases

12



as 3zHz and VxHz respectively.

Accordingly, we add the final rule to our grammar: if _o is any formula of

our language and x is any variable, then Ex_o and Vx_, are formulas as well.

In such a case we say that the variable z is bound by the quantifier 3 (resp.,

V), and we say that the formula _o is the scope of the quantifer 3 in _0, and

it is the scope of the quantifier V in V×_0.

8 First-order Semantics

3.1 Structures and Interpretations

We have motivated the construction of our grammar by referring to the

intended meanings of the logical symbols and:by letting our constants and

variables abbreviate meaningful expressions out of ordinary language. But

from a purely formal point of view, all we have in a language is uninterpreted

syntax; we have not described in-any formal way how to assign meaning to

the elements of a first-order language. We will do so now.

A structure for a first-order ianguage _ consists simply of two elements."

a set D called the domain of {he structure, and a function _" known as

an interpretation function for £. Intuitively, D is the set of things one is

describing with the resources of £, e.g., the natural numbers, major league

baseball teams, the people and objects that make up an air force base, or the

records inside a database. The purpose of .7" is to fix the meanings of the

basic elements of £ in terms of objects in or constructed from D.
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3.1.1 Interpretations of Constants and Function Symbols

The interpretation function works fi-ke thisl First we deal with terms. We

begin by noting that variables will not receive an !nterpretation, since their

meanings can vary (they are variables after all) within a structure. They will

be treated with their own special semantic apparatus below. Constants on

theotherhan'fl, being the formal analogues of names with fixed meanings, are

assigned members of D once and for all as their interpretation; in symbols,

for all constants _ of £, Y-(s) • _P.
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To deal with terms formed from function symbols, we need first to in-

terpret the function symbols themselves. To begin with, each basic function

symbol a is assigned a function ._'(a) from 79 into 79. As indicated above,

the functions expressed in ordinary language are often partial; that is, they

are often not defined everywhere. For example, the function expressed by

"The salary of" is not defined when applied to a conveyer belt or a garden

vegetable. This suggests that we ought to let the functions from 79 into 79

that interpret our function symbols be partial. This leads to certain inel-

egancies in our formal apparatus, however, so we opt instead to include a

distinguished object _1_in our domain 79 whose sole purpose is to be the

value of functions applied to objects on which they are intuitively undefined.

Thus, if we have a function symbol f abbreviating "The salary of," and if our

domain 79 contains both persons and conveyer belts, then the interpretation

of f will be the function that takes each person to his or her salary in dollars,

and every other kind of object to our distinguished object/. Formally, then,

for all basic n-place function symbols a of £, .TL-(a) E {4' I q' : 7Y_ -----' 79};

that is, the interpretation of a basic n-place function symbol a of £ is going

to be an dement of the set of all n-place functions from the set of n-tuples

of the domain 79 into 7).

Now we need to address the nonbasic function symbols, i.e., those of the

form a •/9 which correspond to nested functional expressions in ordinary

language like "The salary of the father of." Intuitively, we want .7"(a • fl) to

be the composition of .Tr(/_) with $-(a), i.e., _(a) o $'(/3), where in general

(q, o $)(x) = q'($(x))S--in terms of our example, the composition of the

function expressed by "The salary of" with the function expressed by "the

father of." Notice that by our trick with _1_, the composition of any two

functions will always be total.

3.1.2 Interpretations of Predicates

Finally, for any one-place predicate P, we let .7"(P) be a subset of 79--

intuitively, the set of things that have the property expressed by P. And

for any n-place predicate R, n > 1, we let ._"(R) be a set of n-tuples of de-

SNote that o is a metalinguistic symbol of our extended English that expresses the

meaning of our object language symbol e, viz., the composition function.

_E

w_
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ments of D--intuitively, the set of n-tuples of objects in D that stand in the

relation expressed by R. Thus, for example, if we want L to abbreviate the

verb "loves," then if our domain D consists of the population of Texas, then

Y(L) will be the set of all pairs (a, b) such that a loves b. Formally, then, for

all n-place predicates P, ._'(P) C_ D'_J

If one wishes to include the identity predicate m in one's language, and

have it carry its intended meaning, then on e n_ds an_ additional, more spe-

dfic semantical rule designed to cio this. Identity, of course, is a relation that

holds between any object and itself, but not between itself and any other

object. This additional semantical constraint is easy to express formally:

if our language £ contains _, then the interpretation Of _ is the set of all

pairs (o, o) such that o is an element of the domain D, i.e., more formally,

= {(o,o) Io c v}.

3.2 Truth

3.2.1 Variable Assignments

Given a structure M : /D,Y) for £_ (cf. the definition at the beginning of

Section 3.1) we can define what it is for a formula of £ to be true in M.

As usual, this is done recursively. First we need to introduce the notion of

an assignment a for the variables, which is a sort of addendum to our inter-

pretation function: it assigns members of the domain to variables. Relative

to an assignment function a, we can define the interpretation of a complex

term f(h,... ,t,,), for any function symbol f and any terms h,... ,t,,. An

interpretation function _ alone does not su_ce for this since complex func-

tional terms might contain variables, e.g., the term f(z), which are ignored

by interpretation functions. But if we supplement _ with an assigment c_

for the variables, then we have something for the function ._'(f) to work on.

Specifically, the interpretation of the term f(x)under a, 2",,(f(x)), is just

the function ._'(f) applied to a(z), the value assigned to z by a.

---7_ere-bi" = D._d--D-_;i-=----D _ X 9; i.e., D' is just 9 itself, 9_is the set of all pairs

of members (i.e., the Cartesian product 9 x D) of D, _Y_the set of all triples of members

of D, and in general D" is the set of all _tuples of members of D.
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In general, then, let .$'o be the result of adding zt to f.s Then the interpre-

tation ._',,(f(tl,... ,t,_) of a complex term f(h,... ,t,,) under a is simply the

result of applying the function 2"=(f) (which is just Y-(f), since f is a function

symbol) to the objects _',,(tl),... ,._"_.(t,_), i.e., .7"_.(f)(_,(t_),... ,_,_(t,,)).

3.2.2 Truth Under an Assignment

Atomic Formulas Our goal in this section is to define the notion of a

formula being true in a structure M. To do so, we will first define a closely

related notion, viz., that of truth under art assignment ct. For convenience,

we will sometimes speak of a formula being "true,, in M" instead of being

"true in M under a." We start by defining this notion for atomic formulas.

So let _ be an atomic formula Ptl ... t,,. Then _0 is true,, in M just in case

/_',,(t,),...,Y-,,(t,_)) ¢ Y'_(P). Intuitively, then, where n = 1, Pt is true_ in

M just in case the object in D that t denotes is in the set of things that have

the property expressed by P. And for n > 1, Pt_... t_ is true= just in case

the n-tuple of objects (o_,... ,o,,) denoted by tl,... ,t,_ respectively is in the

set of n-tuples whose members stand in the relation expressed by P, i.e., just

in case those objects stand in that relation.

Let us actually construct a small language £* and build a small structure

M* to illustrate these ideas. Suppose we have four names a, b, c, d, a

single function symbol h (intuitively, to abbreviate "the husband of"), a one-

place predicate H (intuitively, to abbreviate "is happy"), and a three-place

predicate T (intuitively, to abbreviate "is talking to ... about"). Let us also

include the distinguished predicate _, though we will make no real use of it

until later. We will use z, y, and z for our variables.

For our structure M*, we will take our domain _ to be a set of three

individuals, {Beth, Charlie, Di}, and our interpretation function _ will be

defined as follows. For our constants, 9(a) = _(b) = Beth, _(c) = Charlie,

and _(d) = Di. (Beth thus has two names in our language; this is to illustrate

a point to be made several sections hence.) For our function symbol h,

we let 9(h)(Beth) = _(h)(Charlie) = 3_ (so that _(h)is "undefined" on

Beth and Charlie), and _(h)(Di) = Charlie. For our predicates H and T,

Sl.e., if _ is a constant, function symbol, or predicate, _'_(_) = _(_), and if _ is a

variable, then Y'o (_) = a(_).
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we let _(H) = {Beth, Di} (so, intuitively, Beth and Di are happy), and

_(T) = {(Beth, Di, Charliel,/Charlie , Charlie, Di)} (so, intuitively, Beth

is talking to _ about Chariie, and Cliarlie is taiking to himself about Di).

Following the rule for _, we let _(_) = {(Beth, Beth}, (Charlie, Charlie), (Di,

Di) }. Finally, for our assignment function/3, let us let fl(z) = B(V) = Charlie,

and 3(z)= Di.

Let us now check that Hd and Tbdh(z) are true in M* under/3. In the first

case, by the above, Hd is true_ in M* just in case _7_(d) E _(H), i.e., just

in case Di is an dement of the set {Beth, Di}, which she is. So Hd is true a in

M*. Similarly, Tbdh(z)is true_ in M* just in case (_a(b),_(d),(_(h(z))) E

Ca(T), i.e., just in case (_(b),¢(d),G(h)(_(z))) E _(T), i.e., just in case

(Beth, Di, {7(h)(Di) E {(Beth, Di, Charlie), (Charlie, Charlie, Di)} i.e., just

in case (Beth, Di, Charlie) E {(Beth, Di, Chariie), (Charlie, Charlie, Di)}.

Since this obviously holds, the formula Tbdh(z) is true a in M*.

A formula is false`, in a structure M, of course, just in case it is not true,,

in M. It is easy to verify that, for example, Hh(b), H_:, and Tdbc are all

false_ in M* under/3.

Conjunctions,_ Negations, etc. Now for the more complex cases. Sup-

pose first that _ is a formula Of the form-,¢' Then W is true`, in a structure

M just in Case=_//_iS_not true,_in=M. In so defining truth=for_negated formulas

we ensure that the symbol --, means what we have intended. Things are much

the same for the_0ther Symbols. Thusl Suppose _ is_a formuia of the form

¢ A 0. Then _ is true`, in M just in: case:both ¢ and 0 are. if _p is a formula

of the form ¢ V 8, then _ is true,, in M just in case either ¢ or O is. If _ is a

formula of the form _b D 8, then ¢ is true= in M just in case either ¢ is false

in M or 6 is true,, in M. And if _ is a formula of the form ¢ = 8, then _ is

true`, in M just: {n case ¢ and O have the same truth _iue in M.

TKe_reader'_shouid _est his Or her comprehension o_hes_e roles "by verifying _

that -Hh(b) and (Tbdh(z) A Tccy) D Hd are both true in M* under 3.

Quantified Formulas Last, we turn to quantified formulas. When we in-

troduced the quantifiers above, we noted that "Some individual is happy,"

i.e., 3zHz, can be paraphrased as "for some value of the variable 'z,' the

expression 'z is happy' is true." This is essentially what our formal seman-

17

t

I

ii
ID

B

J

l

m

m

I

m

z

q_

m

m

m

!

m

m

m

m

!

-m

W

w

m

wl



,ssmr

J

v

v

_sss-

r .

tics for existentially quantified formulas will come to. To anticipate things a

bit, 3xHz will be true in a structure M under c,, roughly, just in case the

unquantified formula Hx is true in M under some (in general, new) assign-

ment a' such that a'(x) is in the interpretation of H. It is easy to verify that

this formula is true in our little structure M* under fl, when we look at a

new assignment function/3' that assigns either Beth or Di to the variable z.

Thus, 3xHz should come out true in M* under/3.

But we have to be a little more careful, because some formulas--Tcxz, for

example--contain more than one unquantified variable. Thus, when we are

evaluating a quantification of such a formula--3zTczz, say--we have to be

sure that the new assignment function a' does not change the value of any of

the unquantified variables--in this case, the variable x. Otherwise we could

change the sense of the unquantified formula in mid-evaluation. Under the

assignment function/3 above, 3zTczz intuitively says that Charlie is talking

to himself about someone (recall that/3(x) = Charlie), and this should turn

out to be true_ in M* since Charlie is talking to himself about Di, i.e.,

(Charlie, Charlie, Di) e Ca(T). But suppose all we require is that there be

some new assignment function _' such that /3'(z) is Di. Then it could turn

out also that 3'(_) is Beth. But then the formula Tcxz would not be true

in M* under/3, since Charlie is not talking to Beth about Di, i.e., (Charlie,

Beth, Di) ¢ Ca(T), and hence we would not be able to count 3zTc.zz as true

in M* under/3 after all as we should like.

All that is needed is a simple and obvious restriction: when evaluating

the formula 3zTcxz, the new assignment function that we use to evaluate

Tcocz must not be allowed to differ from/3 on any variable except z (and even

then it needn't differ from /3; in which case it /s/3). More generally, we put

the matter like this: if _o is an existentially quantified formula 3x¢, then _0

is true in a structure M under a just in case there is an assignment function

a' just like a except perhaps in what it assigns to x such that the formula ¢

is true in M under a'. If _0 is a universally quantified formula V×¢, then _o

is true in M under a just in case for every assignment function a' just like

a except perhaps in what it assigns to × the formula ¢ is true in M under

a'. That is, in essence, _o is true in M just in case ¢ is true in M no matter

what value in the domain we assign to x (while keeping all other variable

assignments fixed).

18
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The reader can once again test his or her comprehension by showing in

detail that 3zTzbh(z) is false in M* under/_ and that Vz(Hz V Tbdz) is true

in M* under/_.

3.2.3 Truth

Now, finally, we can define a formula to be _tte in a structure M simpliciler

just in case it is true,, in M for all assignments a, and false in M just in

case it is false,, in M for all a. Note, on this definition, that for most any

interpretation, there will be formulas that are neither true nor false in the

interpretation. Our example 3zTbzz above, for instance, is neither true nor

false in M*, since there are assignments _ on which it comes out true=--all

those on which c_(x) = Di--and assignments a on which it comes out false=-

all those on which ct(z) # Di. Such formulas will always have free variables,

since it is the semantic indeterminacy of such variables that is responsible

for this fact. However, note that some formulas with free variables will be

true or false in some models, though these will typically be logical truths

(or falsehoods) like Hz A --,Hz, i.e., formulas which are not capable of true

(resp., false) interpretation.

4 Logic

4.1 Propositional Logic

Now that we have the notion of a first-order language and its semantics, we

want to capture the meanings of the logical constants --,, A, V, D, =, V,

and 3 as explicated in the semantics. We will do this in the usual way by

developing a rigorous and precise logic. A logic, in the sense relevant here,

is a systematic characterization of correct principles of reasoning with re-

spect to a given duster of concepts. The concepts here are those expressed

by the logical constants above, corresponding roughly, once again, to the

ordinary language concepts of negation (not, or it is not the case that), con-

junction (and), disjunction (or), material implication (if ... then), material

equivalence (if and only if), existential quantification (some), and universal

quantification (every, or a/l). The form such a system takes usually consists
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of two components: azioms and rules of inference. We start with the axioms

for the propositional connectives.

4.1.1 Axioms for Propositional Connectives

The axioms for the propositional connectives -,, A, V, D, and = constitute

the basis of propositional logic and can be thought of as characterizing their

meanings. There are many equivalent axiomatizations for propositional logic,

but the following, which makes use of the notion of an axiom schema, is one

of the easiest. An axiom schema is not itself an axiom, but rather a sort of

template, a general form any instance of which is an axiom. Axiom schemas

are thus not themselves actually part of the language. Thus, where _, _b,

and 0 are any formulas, any instance of any of the following schemas is an
axiom:

A3 v 3

In English, A1 says essentially that if a sentence _ is true, then for any

other sentence _b, if _b is true then _, is still true. A2 says that if a sentence _p

implies that if _b is true then so is 0, then if _ implies _b, then it also implies

0. Finally, A3 says essentially that if a sentence _ implies another sentence

_b, then if ,,b is also implied by the negation of _, then _b is true no matter

what (since tither _ or its negation is true no matter what). These axioms

seem trivial. However, like the dementary truths of arithmetic or geometry

that are second nature to us now, they must be explicitly stated as a basis

for deriving other, less obvious truths; they cannot be conjured out of thin
air.

Notice that axiom schemas only use the two connectives --, and D. Even

though we have been using the other propositional connectives all along,

of_cially we will consider these to be our two "primitive" connectives; the

others can be defined in terms of them as follows (where the symbol =4,

means "is defined as"):

2O
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Def 1: (_o V _) =4, (-_o D _)

Def 2: (_o A ,_) =_/ -_(-_o V-_)

Def3: (_o-_) =d/ (_o D_)A(_ D_o)

The reader can again test comprehension by showing that, no matter what

truth values are assigned to _, ¢, and 0, the two sides of each definition

will always have the same truth values when evaluated in accord with the

semantical rules given above for the connectives in Section 3.2.2.

4.1.2 Rules of Inference: Modus Ponens

A logic is not much good without rules of inference, which are rules that

allow us to move from statements that we know or assume to be true at the

outset (e.g., our axioms), to new statements that follow logically from them

(called theorems). Without them, all we could do is write down axioms; there

would be no way to infer new truths from those already given. There is only

one rule of inference in propositional logic:

Modus Ponens (MP): If the formulas _ and _ _ _ follow from the axioms

of propositional logic, then we may infer that _ does as well. 9

As a simple example using our language £:*, consider the following proof

of Hd 2 Hal, i.e., the statement If Di is happy, then Di is happy. Note that,

trivial as it is, Hd D Hd is not an instance of an axiom schema, and hence

if it is to be a theorem of our system, it must be derivable from the axioms

using our rule of inference MP. This is in fact the case. As an instance of

kl, we have

Hd D ((Hd D Hd) D Hd).
As an instance of A2 we have

(Hd D ((Hd D Hd) D Hd)) D ((Hd D (Hd D Hd)) D (Hd D Hd)).

_Given this, the notion of theoremhood can be defined precisely as follows. A f_rmula

is a theorem of propositional logic if and only if there is a sequence _1,. --, _n such that

_, is _ and each _, is either _m axiom or follows f_om previous lines by MP, that is, there

are previous formulas _,_k, 3, k < i, such that _ is _j D _,. We can also define the

notion of a formula _b following from a set of formulas F in the same way except by adding

in addition that _b, in the above definition could also be a member of r.
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By MP, it follows from these two statements that

(Hd D (Hd _ Hd)) _ (Hd _ Hd).

But

(Hd Ha))

is an instance of A1 again, hence by MP once more we can infer Hd D Hd

from the latter two statements.

There axe many equivalent systems of propositional logic that axe more

streamlined and computationally more efficient than the basic system here;

but this is the foundation on which they are all built and illustrates well

enough how the process of deduction works.

4.2 Predicate Logic

4.2.1 Axioms for the Quantifiers '

When we add axioms for the quantifiers to propositional logic, we have full

predicate logic, also known as first-order logic and quantification theory. The

quantifiers are interdefinable, so we only need to take one of them as prim-

itive. The axioms for predicate logic are usually stated in terms of the uni-

versal quantifier V, so we will take that as our primitive, and shall define 3

as follows:

That this definition is correct is dear on a moment's reflection. So, for

example, there exists an z such that _: is happy, i.e., someone is happy, just

in case it is not that case that for all z, z is not happy, i.e., just in case not

everyone is unhappy.

We can now state three new quantificational axiom schemas. For any

formula _o and term t, we let _[ stand for the result of substituting all

unbound occurrences of x in _0 with t. Then any instance of the following is

821 a,X30 m:

A4 Vxgo D _o_, so long as t does not contain, and is not itself, a variable that

becomes bound in _o_.
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A5 ,¢,) D

A6 _o D Vx_o, where x does not occur unbound in _o.

The intuitive idea behind these axioms is straightforward. A4 simply says

that if something is true of everything in general, it is true in particular of

anything we can name. Thus, for example, Vx(NUM(z) D 3y(y = z + 1)) D

(NUM(24) D 3Y(y = 24+ 1)); i.e., if for every number there is a number one

greater than it, then in particular there is a number one greater than 24.

Reverting to our language £* and its structure M*, we have as an instance

of this axiom schema

Vx(H= V _yTzxy) D (Hc V 3yTccy).

The antecedent here (i.e., the formula to the left of the D), Vz(HxV3yTxzy),

is in fact true in M*, i.e., in M*, everyone is either happy or talking to

themselves about someone in M*. Thus, if we were to count this as a further

"special" axiom--i.e., a nonlogical piece of information that characterizes the

situation in the specific structure we are investigating and which might well

not hold in other structures--we would be able to prove (by Modus Ponens)

that (Hc v 3yTccy), i.e., that Charlie is either happy or talking to himself

about someone.

The second schema A5 captures another aspect of the meaning of "every."

Consider a simple example: if every individual is such that if it is red then

it has a color, then if in fact every individual is red, then every individual

has a color. This is just an unsymbolized instance of A5, and illustrates its

validity.

And finally, A6 simply says that a quantifier does not affect the truth of

a formula _ if the quantifier does not bind a variable that does not occur in

or--what amounts to the same thing--occurs in _ but is bound by another

quantifier. So, for example, if it is true that Beth is happy, Hb, then it is

also true for every value of z that Beth is happy, VzHb. Similarly, if Charlie

is talking to someone about Di, 3zTczd, then it is also true that for every

value of x, Charhe is talking to someone about Di, Vz3zTczd.

23



g

i

4.2.2 Rules of Inference: Generalization

The move to predicate logic with its quantified formulas necessitates a further

rule of inference, one designed to capture how we reason with universal quan-

tification. As usual, the idea is best illustrated by an example. Suppose you

wanted to prove something about all prime numbers, for example, that for

every prime there is a greater prime. You might begin by saying something

like "Let p be an arbitrary prime number." You might even pick a specific

prime, for example, 17. Then, by appealing to none of the specific properties

of your chosen prime that distinguish it from other primes, e.g., that it is less

than 100, or Plato's favorite number, etc., you proceed to prove in the usual

way that there is another prime greater than p. You then conclude that the

same is true for every prime. What permits you to do this is precisely the

fact that you did not appeal to any properties of p that do not hold for all

primes; it was, in a precise sense, arbitrary.

This sort of example illustrates the inference rule known as Generaliza-

tion. Informally, if you can prove that something is true of a particular

individual o without appealing to anything that could not be proved of ev-

erything rise in the domain, then that same thing is true of everything. The

way we capture this idea of not appealing to anything that could not be

proved of everything else is by restricting generalization to formulas whose

proofs contain no formulas that say anything about the object being gener'

alized upon. Thus, we can say that if ¢,_' follows from r and the axioms of

predicate logic, and t does not occur (free) in F, then Vz¢, follows from F

and the axiomsof predicate logic_ If, then ' t refers to the object ol then the

absence ofi f_om the formulas in F indicates that they say nothing about o.

In fact, we can actually use a simpler but equivalent inference rule that only

generalizes on variables:

Gen If _o follows from the axioms of predicate logic, then _/x_ does as well.

We noted above that special, or nonlogical, axioms are designed only to

hold within a given structure one has singled out, e.g., astruc_ure that models

a certain manufacturing or engineering system one might be investigating.

A special axiomthus captures the "logic" things _t-hin a restricted sphere.

Genuine logical axioms, however, should be exceptionless; a logical axiom
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formulated within a given language £ should be true in all structures of £.

When this property holds of all the axioms of a logical system, the system is

said to be sound. Soundness is an essential property of any logical system,

since it is precisely the job of its logical axioms to capture features that hold

in any of its structures. Any axiom that was not true in every structure could

therefore not rightfully be considered a logical axiom, and would have to be

rejected. It is straightforward (and a good exercise) to show that, for a given

language £, arty instance of any of the above axiom schemas, and anything

provable from them, in fact has this property. 1°

The converse of soundness, that any formula true in every structure fol-

lows from the axioms, is known as completeness, and is much harder to

prove. While its absence from a formal system is perhaps not as disastrous

as the absence of soundness, completeness is nonetheless a very important

and desirable property for a formal system to have, since it shows that the

semantics and the logic of the system match up precisely. It is provable that

both propositional and predicate logic axe complete.

4.3 Identity

4.3.1 Identity and Expressive Power

A very important concept within most any type of formal system is that

of identity, which we will express in our languages by means of the 2-place
predicate _.xl Identity adds a great deal of flexibility and expressive power to
a language. Identity is particularly useful in languages "that contain function
symbols, for with identity one can explicitly identify a named object as the
value of a certain function. For example, in our language £*, we can express
that Charlie is Di's husband, c _ h(d).

Second, identity can be used to express the definite article "the." When

we ascribe a property to something only identified as "the _"--that the
person Charlie is talking to himself about is happy, say--we are implying

1°The proof proceeds by ordinary mathematical induction on the number of quantifiers

and connectives a formula contains.

n We use _ as our identity predicate within languages; this is to be distinguished from

the concept of identity as it appears in our rnetalingulstic talk abo_t languages and their

structures, which we have been expressing with the more familiar =.

25

t===



Im

J

three things: (i) that there is something that fits the description _--that

there /s someone Charfie is talking to himself about--(ii) that nothing else

fits it--that Charlie is not talking to himself about anyone else--and (iii)

that that thing has the property in question--that the object of Charlie's

attention is happy. 12 All three of these components are easily expressed in

one formula with the help of the identity predicate. Thus, our example here is

expressed in our language £* as follows: 3z(Tccz A--,3y(Tccy A z # y)A Hz).

The force of the "anyone else" in (ii) above here is captured by the negated

identity predicate here in the formula: anyone other than, i.e., not identical

to, the person in question.

Finally, similar techniques can be employed to express numerical notions

without appealing explicitly to numbers. For example, one can express that

at least two philosophers are wealthy as 3x3y(PzAPyAz _ y). Note that the

third conjunct here is necessary, since the bare statement 3z3y(PzAPy) does

not imply there are two wealthy philosophers--both z and y could be assigned

the same unique wealthy philosopher as their values (convince yourself of

this by referring back to the section on the semantics of 3). In a similar

fashion, one can express that there are exactly two wealthy philosophers:

3zSy(Pz A Py A z _ y AVz(Pz _ (z _ z v z _ y)), i.e., in English, there are

at least two wealthy philosophers z and y, and any wealthy philosopher is

identical with either z or y. Finally, one can also say that there are at most

two wealthy philosophers: VzVyVz((PzAPyAPz) _ (z _ yVz _ zVy _ z)).

Check to see that this statement will be true ff there are fewer than three

philosophers, and false otherwise. These forms are easily generalizable for

any finite number.

4.3.2 Axioms for Identity

Most systems of predicate logic include the notion of identity among the

logical constants of the system. Given one standard (though debatable) con-

ception of logic as the study of the most general principles of reasoning, this

seems quite appropriate, since identity is a notion that seems applicable to

most any domain about which one might reason. Irrespective of the issue

t_This is the essence of Bertrand Russell's theory of descriptions, _st developed in his

famous paper '_)n Denoting," Mind 14 (1905).
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of whether identity is a logical notion, it is certainly a notion one might of-

ten want to use within a formal system that has been tailored for a certain

purpose, and in particular, it is essential to our constraint languages. How-

ever, the only way to ensure that the identity predicate carries its intended

meaning within a given system is to build that meaning into the system by

means of appropriate axioms. The usual axioms for identity are, as above,

presented in the form of schemas, and are also straightforward:

A7 t _ t, for any term t

A8 x _ t _ (_ _ _,_), so long as t does not contain, and is not itself, a

variable that becomes bound in _.

A7 captures the point made above, that identity holds between any object

and itself. A8 is nearly as intuitive. The idea is simply that if something is

true of a given object, then it does not matter how the object is referred to;

it is still true of it. 13 If, for example, Mark Twain wrote Huckleberry Finn,

then it follows that Samuel Clemens did as well, since they are the same

person. That is, more formally, by A8 it is an axiom that

m _ s _ (WROTE(re, h) _ WROTE(s,h).

If again we add m _ s as a special axiom, or derive it from other in-

formation we possess, we can then prove by MP that WROTE(re, h) D

WROTE(s,h). If we then have in addition the further information that

WROTE(m, h), we can prove by MP once again that WROTE(s, h).

As a second example, let us revert to our language £:* once again, in

t3There are well known exceptions to this. For example, suppose Shorty is five feet tall,

and that his real name is "Eddie." So Shorty _ Eddie. Nonetheless, from the fact that

Shorty is so-called because of his size, it does not follow that Eddie is so-called because
of his rise. Other famous contexts where this principle seems to break down are those

involving psychological attitudes like belief. For example, even though I believe that 9 is

prime, I may not, due to my rusty calculus, believe that .f: z_dz is prime, despite the fact

that f: z2d.z _ 9. In the semantics and logic we are constructing it is assumed that we
shall not be needing to formalize expressions like 'Cisso-called because of" and Ubelieves"--

though it should be noted that the apparatus we have developed here is eminently capable

of being extended to handle such expressions.
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which we included the identitypredicate. In that language, we have both

a _ c _ (Ha _ Hc)

and

a _ b D (Ha _ Hb)

as instances of A6. In M*, a _ c is false, since _(a) = Beth, and _(c) =

Charlie. Thus, a _ c would not be considered among any special axioms we

might have to characterize M*. Hence, as we should hope, we would not be

able to infer Ha _ Hc, which is also false in M*. However, a _ b is true in

M* (recall that we assigned both a and b to Beth as their interpretation),

and hence could be a special axiom for the situation characterized by our

structure. By MP we could then infer from the second of the two instances

above that Ha _ Hb, and from Ha (which might be a further special axiom

perhaps) that Hb.

As one would hope, our logic remains sound and complete when we add

the axioms for identity.

5 Constraint Languages

Now that we have a well-developed logical foundation, we will begin to add

the particular elements that constitute a constraint language. In actuality,

there will be infinitely many possible constraint languages, since each set

of predicates specifies a different language. However, all of them will have

certain elements in common, and it is these common elements we want to

begin laying out now.

First, every constraint language will be a first-order language as described

above. Second, we will assume that a constraint language will contain the

basic resources of arithmetic--a distinguished predicate NUM, the numerals,

the usual function symbols +,., and exp, and enough axiomatic power to

prove basic arithmetical facts. The intended semantics for any constraint

language will thus always contain the natural numbers, with these syntactic

items receiving the obvious interpretations. Third, every constraint language

will contain a certain amount of set theory. Throughout this discussion

we have been employing set theory in a rough and ready fashion in our
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description of the model theory for first-order languages. In a constraint

language, we will want to be able to do this in a principled way.

The full theory of sets that one might find in a text book is very pow-

erful and very complex. However, the structures for which we are designing

our constraint languages are all relatively simple; indeed, they are all finite,

though we shall not need to assume this. Furthermore, we will not need

much more than the simplest set theoretic operations and constructions to

express what we want to express. Hence, all we need is enough set theory to

meet these limited needs. We will provide this, along with some motivation

and explication of the relevant concepts, in the next section.

5.1 Basic Set Theory

5.1.1 Membership

A set, intuitively, is just a collection of things which themselves may or may

not be sets. Usually we pick out a set with the help of some predicate, e.g.,

the set of all prime numbers, or American citizens, or track and field events in

the 1988 Olympics. But this is just for our benefit; any collection of things,

even if they cannot be picked out by a common property, indeed even if they

cannot be picked out by us in any way at all (as is the case, e.g., with most

infinite collections of natural numbers), still form a set. We will see shortly

that we have to be a little more careful than this about the sets we claim to

exist; but this at least gets our intuitions going about what sorts of things

sets are.

The most basic relation a thing can bear to a set is that it can be a

member, or element, of the set. Thus, the number 17 is a member of the set

of all primes; George Bush is a member of the set of American citizens; and

the now unofficial race in which Ben Johnson beat Carl Lewis is a member of

the set of track and field events that took place in the 1988 Olympics. This

special relation is nearly always represented by the symbol C, and as with

all the two place set-theoretic relations we will introduce, we wiU use infix

rather than prefix notation. Thus, we will write a E b rather than Eab.

Logically, sets are just individuals like any others, and so we will use

constants to stand for them. And since not everything is a set, we will

r-
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introduce a special predicate SET to abbreviate "is a set." Since it will

often be convenient to say something general only about sets, we will set

aside the letters r, s, and t (again, perhaps with subscripts and primes) to

serve as special set variables that take only sets as values (and as before

corresponding sans serif characters to serve as metavariables). This way, we

will be able to say things about all and only sets without having to use the

predicate "SET" explicitly. For example, suppose we want to say that the

object a is a member of some set. Without these special set variables we

would have to express this as 3x(SET(z) A a E z). With them, however,

we can simply write this as 3s(a E s). Similarly, if we want to express that

every set is a member of some other set, without the set variables we have to

write Vx(SET(z) D _(SET(y) Az 6 y)), whereas with them we can simply

write Vr3s(r E s). In general, and more abstractly, -if s is any set variable

that does not occur in a formula _, then Vx(SET(x) D _p) is equivalent to

Vs_sx and 9x(SET(x) A _) is equivalent to 3S_sx (where, once gain, _ is the

result of replacing every unbound occurrence of x in _ with an occurrence of

s).

It frequently happens that we want to say something _ about some or

all the members of a given set s. In our current grammar, this would be

expressed as 3z(z 6 s A _o) or Va_(z E s D _p) respectively. For convenience

we allow that these forms can be abbreviated as (3a: 6 s)_ and (Vz 6 s)

respectively.

5.1.2 Basic Set Theoretic Axioms

Russell's Paradox Sets combine and interact in many interesting ways,

but for deep and historically significant reasons, not every way in which

one might think. For this reason we need to set down dear principles that

tell us precisely when such combinations and interactions can occur, and

furthermore exactly what sets exist within a given domain. That is, we need

some set theoretic axioms.

In case the reader is not convinced of this need, consider the follow-

ing famous paradoxl known as Russell's paradoz, after the famous philoso-

pher/logician Bertrand RusseU who discovered it. As noted above, we often

pick out sets in ordinary contexts by means of some predicate or (more gen-
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erMly) description that holds of all and only the members of the set. Thus,

for example, one might want to consider the set of all Texans over thirty-

five who drink beer by means of the description "Texan over thirty-five who

drinks beer," or more formally, the description TEXAN(z) A age_of(x) >

35 A DRINKS_BEER(z). Let us use the notation {_ [ TEXAN(z) A

age_o]'(z) > 35 A DRINKS BEER(t)} to name this set, and in general the

notation {x I _} to name the set of things that satisfy the description _.

Now, intuitively, one would think that any such description _ with a single

unbound variable picks out a corresponding set comprising the things that fit

the description. For after all, a set is just a collection of things; so in particu-

lar the collection satisfying a certain description is a set. Russell found that,

intuitions to the contrary, this is not always so. Consider the description "set

that does not have itself as a member," i.e., s ¢ s. (Remember that s is a set

variable.) Intuitively, there are all sorts of sets that satisfy this description:

the set of horses is not a horse and hence is not a member of itself, the set

of solar planets is not a planet, and so on. By the intuitive principle above,

there is a set of all sets that satisfies this description, i.e., there is the set

r = {s I s _ s}. But now ask yourself: is r a member of itself or not? If it

is, then since r is the set of all sets that are not members of themselves, it

follows that it is not a member of itself after all. If on the other hand it is

not a member of itself, then it satisfies the condition for membership in r,

i.e., it actually /s a member of itself. Either way we contradict ourselves. So

there cannot be such a set as r after all, despite what our intuitions tell us.

The Axioms The lesson here is that not just any collection of things we

is a set. Hence the need for axioms that do not get us into the same sort

of trouble. For our purposes, we need surprisingly few: four axioms and one

axiom schema. The first axiom, extensionality, tells us when two apparent

sets are in fact identical, viz., when they have exactly the same members:

sTI vrw(v ( e r = • s) r

i.e., for all sets r and s, if for any object _, z is a member of r if and only if

it is a member of s, then r and s are the same set.

The second axiom, pairing, is that any two objects (within a given do-
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main) form a set:

ST2 v, vy3 ( 

where "{x, y}" is a name for the set that contains exactly the objects denoted

by z and y. (By extensionality= there can be only One such set.) Thus, to

make this proper, we need to add to our vocabulary the left and right braces

{,}, and to our grammar the rule that if h,... ,t,, are any terms, then the

expression {tl,... ,t,,} is a term as well. TM

The next axiom declares that the union of any set r exists, i.e., the set

whoseeiements are exactly the members of the members of_r:

ST3 Vr3sVy(y E s = 3t(t E r A y C t)),

in English, for any set r there exists a set s such that for any object y, y is

a member of s if and only if there is a set t such that t is a member of r and

the object y is a member of t. For a given set r, we will let U r stand for the

union of r. (U is thus a distinguished two-place function symbol, denoting

the (partial) function that takes any set to its union.) We will usually write

r u s for U{r,
When one set a is a subset of another b (i.e., when all the members of a

are members of b) we express this with a distinguished predicate C_ as a C_ b.

The fourth axiom says that the set of all subsets of any given set exists:

ST4 YrSsVx(x E s = z C_r),

that is, for any set r there is a set s such that for any object z, z is a member

of s just in case zis asubset oft. Ifa C_ band a _ b, we say that ais a

proper subset of b, and we express this as a C b. For any given set a, the

set of all its subsets is called the power set of a. The (partial) function that

takes each set to its power set will be denoted by the distinguished function

symbol pow, and thus the power set of a will be denoted by pow(a).

14Strictly speaking, we can think of ourselves as adding infinitely many new function
symbols fl,.f2,.., to our language, where each f,, is an n-place function symbol, each of

which can by convention be rewritten using the brace notation. The rewritten form of

each f,, is thus evident by the fact that there are n terms between the braces, e.g., {a, b, c}
is the rewritten form of fsabc.

32

J

u

ilt

i

m

J

N

g

W

!
D

!
m

I
J

w
B
m

I

g

i !

!
NiP

! !

i ;



r

Finally we come to our one set theoretic axiom schema, so-called because

it actually stands for infinitely many axioms of the same general form, one for

each formula of our language. It is called the axiom schema of separation, or

subsets. The idea is quite simple: given a certain set a and some description

_, in our language, we can separate out the set of all the members of a that

satisfy the description. Formally, for any formula _,,

STS_ '¢r3s'Cz E r(z E s -- _(z)),

where _(z) is the result of replacing any unbound variable in _ with z. is

Russell's Paradox Revisited Given the separation axiom schema we axe

able to reintroduce in a restricted form the notation for sets used in the

brief discussion of Russell's paradox above. The paradox arises when one

assumes one can generate sets arbitrarily with any given formula. Separation

allows one to use arbitrary formulas only to form sets from the members

of previously 9iven sets, and this eliminates the problem; in this light, in

Russell's argument, for any given set a already proved to exist, one is allowed

to assume only the existence of the set {s I s E a A s _ s}, and this causes

no problems at all. Thus, we can safely add the following grammatical rule:

is if _ is any formula, t any term, and x any variable, then {x ] x E t A _} is

a termas well. Similar to what we allowed with certain types of quantified

formulas, such terms can also be written as {× E t ] _}.

lSAssuming of course z does not become bound in the process; if it does, we can always

replace it in the above schema with a new variable not occurring in _.

1SOt more cautiously, it appears that we can do so safely for all we can tell. Due to

G/kiel's famous second incompleteness theo1"em, there is no way to prove that there ate

not other hitherto undiscovered paradoxes hrking in the theory of sets; that is, we cannot

prove its consistency (at least, not without begging the question by proving it in a theory

that is at least as dubious). The great success of the theory over the past eighty-five years,

however, and the absence of any new paradoxes despite extensive use and scrutiny of the

theory, has given logicians great confidence that it is in fact consistent, even if we shall
never know this with utter certainty.

.... _ . _: _ ._... _ :--=
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5.1.3 Finitude and the Set of Natural Numbers

As noted, we are assuming the existence of the natural numbers. It will prove

very useful then to assume in addition that they jointly form a set; this is

not provable from the above axioms. The easiest way to do this is just to

add an axiom that declares this explicitly:

NN SsW:(x • s =_ NUM(z)),

i.e., there exists a set s such that for arty object _:, z is an element of s if and

only if x is a natural number. By the axiom of extensionality, there can be

only one such set. We will call it A/'.

We are now able to define another useful notion. As noted, the structures

we will examine will be finite. Nonetheless, it will still be important to be

able to say explicitly that they are finite, and hence we need to be able to

express the concept of finitude. We can do this with the help of the set A/'.

Specifically,

Def 5: FINITE(s) =4t 3n • A/(s --_ {m • A/" t rn < n}),

where t ,-_ r means intuitively that t and r are the same size, i.e., that there

is a one-to-one correspondence between them. (This latter notion can also be

defined straightforwardly with the set theoretic apparatus at our disposal.)

Thus, a set is finite just in case it is the same size as the set that contains

all and only the natural numbers less than a given natural number n. The

number n is said to be the cardinaIity of the set.

5.1.4 D|fference, Intersection, and the Empty Set :

Many interesting and important facts about sets are derivable from the above

axioms' W e will state two. The t_rsf]s................_at the existence: _: Of the _rence

a- b of two sets a and b, i.e., the set of dements of a that are not in b. (- is

thus a new t_o-piace functions symbOL) It is easy to prove that a- b exists:

by union, a t_J b exists, and by separation, there is an s that contains just

those dements of a 12 b that are both in a and not in b.

The next thing we will prove is the existence intersection of any two sets,

where the intersection of sets a and b is just the set of all objects that a and
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b both have as members. We will refer to this set as a N b, making use of the

distinguished two-place function symbol N. The proof that an b exists is also

easy: by union, U{a, b) exists; by separation, we then pull out the set of all

z C U{a,b) such that both z C a and z E b. In general, we can show that

the intersection of any number of sets exists in essentially the same way.

Notice that often there might be no elements common to two sets. None-

theless, their intersection is a perfectly good set: the empty set. We can

prove the existence of the empty set a bit more formally like this. We know

there are sets, since first-order logic guarantees the existence of at least one

object a, and by pairing it follows that the singleton set {a} exists. By the

schema of separation, letting _o be the formula z _ a: (i.e., --,(z _ z)), there

is a set s that contains all the members _: of {a} such that z _ _r, i.e., all the

members of {a} that are not identical to themselves. But of course there are

no members of {a} that fit that description. So s is a set with no members,

i.e., the empty set. Following the usual practice, we will use the constant 13

to refer to this set. Two sets r and s are said to be disjoint if they have no

members in common, i.e., if r U s = 13. A set s of sets is said to be pairwise

disjoint if any two members of s are disjoint.

5.1.5 Functions and Ordered n-tuples

This set theoretic apparatus enables us to provide an elegant account of

certain other important notions. First, an extremely versatile and useful

notion is that of an ordered pair. An ordered pair is similar to a set of two

elements, except that unlike a set, which is an unordered collection, there

is a first member and a second member. Thus, where (a,b) stands for the

ordered pair whose first dement is a and whose second dement is b, what is

important about ordered pairs is that they satisfy the following principle:

OP VzVyVzV'w((z,V) _ (z,w) ::3(_r _ z A V _ w)).

That is, ordered pairs are identical only if their first elements are identical

and their second elements are identical, i.e., 0nly if, like any set, they have

the same dements, and, unlike sets--which have further structure beyond

their elements, those elements occur in the same order. The way we write

down names for the members of an ordered pair, unlike sets, is therefore
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significant, since the first name we write down signifies the first element of

the pair, and the second name the second dement. For example, whereas

{a,b} _ {b,a}, we have in the case of ordered pairs that (a,b) ¢ (b,a).

As it happens, we need not introduce ordered pairs as a new sort of object,

since with a little set theory it is easy to define them as sets of a certain sort.

There are many ways to do this, but given that we will have numbers in the

semantics for all constraint languages, for our purposes the easiest way to pull

this off is simply by "marking" the intended first element of an ordered pair

with the number one, and the second with the number two. More precisely,

we define the ordered pair <a,b) just to be the set {{a,1},{b, 2}}. It is easy

to check that ordered pairs so defined satisfy the above principle. More

generally, we can define the notion of an ordered n-tuple in the same way:

the n-tuple (al,... ,a,_) is defined to be the set {{a,,1},... ,{a,,,n}}.

Given the notion of an ordered n-tuple, we can give a more precise account

of the notion of a function. A one-place function f from one set r to another

s is just a mapping that takes each element a of r (or some subset of r, if

]" is partial) to an element b = f(a:) of s. Thus, we can simply think of

such a function as a set of ordered pairs (a, b) where b is the element that

a is mapped to by the function f. More generally, an n-place function is a

set of ordered n + 1-tuples (al,... ,a,_,a,,+l) where a,,+l is the object that

al,...,a, are mapped to by the function. Functions thus turn out simply to

a type of set. The set of all one-place functions from one set r to another s

will be denoted by "s.

5.1.6 The Intended Semantics: The Cumulative Hierarchy of Sets

The above gives a good idea of how sets combine and interact, and what sets

we can suppose there to be, but it does not provide much of an idea of the in-

tended semantics for set theory and hence for constraint languages generally.

The intended picture of the structure of sets _thin a given domain is known

as the iterative, or cumulative, conception of set. On this conception, sets are

hierarchical; they come in levels. The lowerst level L0 consists of our initial

set of urelemenis, i.e., things that are not themselves sets: numbers, people,

machines, buildings, strings, database records, countries, etc. The next level

L1- c0nsists of aii_poss_le subsets of L0 t0getherwiih the urelements, i.e.,

36

lip

m

w

i

I
I

u

!
J

I
!
i

D

R
tl

m

II
III

!
g

!
!

W

m
II

"!
B

m

!
gt

|
J0

II

1!_



_=.

L1 = pow(L0)UL0. The next level L_ consists of all possible subsets of L1

together with all the elements L1. In general, L_,+I = pow(L,,)uL,_. Each

level is cumulative, i.e., it pulis up the dements of the previous level to join

all the sets that could be formed out of those dements. And so it contin-

ues through the sequence of natural numbers. The intended semantics for a

given constraint language, sets and all, is just the union of all these levels,

i.e., Ui_cLi. 1T

5.2 Constraints Revisited

With the above apparatus in place, we can return to the notion of a constraint

and offer an account that is a little more precise. It is our contention that

any current information modeling language, and most any language fikely to

appear on the scene, can be translated into a subset of our language. There is

nothing particularly controversial about this claim, given the logical strength

of the language we have introduced. The only way to strengthen it in any

significant way would be to move to a full higher-order language and logic; but

few if any concepts that need to be expressed in the domain of information

modeling, database modeling, and the llke need anything approaching the

power of higher-order logic. Thus, our full-strength first-order language cure

logic cure set theory should be all we need to express anything that can be

expressed in any extant or likely modeling language.

The theory here is also expressive enough to define the intended se-

mantic structures that interpret these modeling languages, and expressive

enough to define the model theoretic connections--i.e., the interpretations

functions and variable assignments--between the languages and those struc-

tures. Thus, we will be able to define the notion of truth for formulas--or

functionally similar syntactic expressions; let us call them assertions---of the

language, and hence we will be able to characterize when a given semantic

structure is a realization (in the sense of Section 3.2) of a given set of formu-

las or, more generally, assertions. We sketch an example of this in the next

section. _

X_Though this is not anything we can say in the formal constraint language itself, since

we can only use it to talk about things within its semantic domain--failure to realize this

ever-present semantic limitation is in fact what lies behind Russell's paradox.
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Using these facts, we can flesh out the notion of a constraint more pre-

cisely. Let us call a set of formulas or assertions in a given modeling language

a diagram. As noted in the introduction, a modeling language might be put

to two very different uses: a descriptive, or de facto, use, and a prescriptive,

or de jure, use. Suppose a modeling language ML is being used with respect

to a given system S, and the modeler develops a specific diagram D. If ML

is being used descriptively, then the system S as it is should be capable of

being understood as a realization of D. That is, if the diagram D is a correct

description of S, it should be possible to consider S abstractly (at the time in

question) as a particular instance of an intended semantic structure for ML

that makes all the assertions in D true.

On the other hand, if ML is being used prescriptively, then it will not

necessarily be possible to consider S as it is=to be a realization of D. This

will typically be the case for the prescriptive use of ML, since the function

of a diagram in such uses is to improve or alter the existing structure of the

system in question. The system will fail to realize the diagram. In such a

case, the=assertions of D must then be considered not as descriptions of S, but
as constraints on S; they are assertions that must be satisfied by any state of S

that is to be deemed acceptable. The diagram, that is to Say, is prescriptive

rather than descriptive. The realizations of D within the intended model

theory Of ML can thus be thought of as abstract characterizations of the

_ceptabl_states of S, the sortsof states that S is permitted_ robe in.

In both cases, then, de facto and de jure, D has realizations (so long as it

is not contradictory). Only in the former case is it assumed that the current

state of the system under scrutiny can itself be considered a realization of D.

In the latter, D will in general only have abstract (i.e., set theoretic) realiza,

tions which represent the a__cePtable-states of the ' system. Given this, then,

a constraint can be defined simply to be=an assertion within a prescriptive

diagram.

5.3 Information Structures: An intuitive Account

Now that we have all this apparatus at our disposal, it should be put to good

use. We will demonstrate the power of the apparatus as well as some of the
ideas and claims mentioned above by using a constraint language to define a
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general type of set theoretic structure suggested by the information modeling

technique IDEF1. (An overview of IDEF1 is found in Appendix A.) These

structures are similar to the entity-relationship-attribute structures defined

by Chen in his seminal 1976 paper [5], though we make explicit the element of

intensionality in such structures (see below). Despite their relative simplicity,

we have found these structures to be very powerful and flexible mathematical

tools for characterizing many different types of information-bearing systems.

Consequently, for purposes here we will call them information structures. In

this section we will develop an informal picture of these structures using our

apparatus. A more formal treatment is found in Appendix B.

An information structure consists of four different types of objects: en-

tity classes, attribute value classes, attributes, and links. Entity classes, at-

tributes, and links are thought of as intensional entities, in the sense that,

unlike sets, they can have different members, or better, instances, across

time. Intuitively, the instances of entity classes at any given time are best

thought of as featureless "pegs" on which we hang dusters of information.

A good model for an instance of an entity class might be an internal pointer

within a computer's memory (the featureless entity itself) that points to a

collection of records ott disk (the dusters of information) associated with,

say, a given employee in a company. Since we may keep several different

dusters of information on a single real-world individual--for instance, the

records on that individual in the role of an employee, and the records on

that same individual in the role of a secretary--we think of all the entity

dasses as disjoint.

Attributes are (intensional) functions from entity dass instances to at-

tribute values. Intuitively, an attribute--SALARY_OF, for example--takes

an instance e of an entity dass--the class of employees, say--to the value

of that attribute applied to e, viz., in this case the salary of the individual

represented by e.

In the definition of an information structure one associates with each

entity classes a set (possibly empty) of attributes designated to be the ones

owned by that entity class. For example, the deparment entity dass might

own the attribute DEPT_NUM_OF, the employee entity class the attributes

EMPLOYEE_NUM_OF and WORKS_IN, and the secretaries entity dass

might own the attribute TYPING_SPEED_OF.

39



V

Links axe functions from entity class instances to entity class instances.

That is, a link associates each instance of a given entity class with an in-

stance of another (possibly the same) entity class. Thus, for example, the

link WORKS_IN maps each instance e of the employees entity class to the

department instance that e works for. Links come in three flavors: one-to-

one, strong many-to-one, and weak many-to-one. To illustrate these, suppose

that E and E' are entity classes in an information structure, and that l is a

link from E to E'. Then / is one-to-one if no two distinct instances of E can

possibly be mapped by I to the same instance of E'. 1 is strong many-to-one

if it is not one-to-one and, necessarily, every element of E' has at least one

instance of E mapped to it by /. And I is weak many-to-one if it is of nei-

ther of the above two kinds. Note that if I is neither one-to-one nor strong

many-to-one, then every instance of E' always has zero or more dements of

E mapped to it by I. -....

Since links are functions, they can 0hen-be composed to forge new links

between entity classes. Suppose we have a one-to-one link WORKS:-

FOR between the secretary entity class and the employee entity class to

indicate the link between (the cluster of information we keep on) secretaries

and (the duster of information we keep on) the employees they work for.

Then by composing this link with the link WORKS_IN, we have a new link

WORKS_IN. WORKS FOR from secretary to department, viz., the link

that maps thein-formation about a given Secretary to the department his or

her boss works for. ..........

Since attributes are also functions, we can compose them with links to

generate new attributes. For example, if we compose the link WORKS_IN

with the attribute DEP-T_NUM OF that is owned by the entity class de-

partment, we have a new attribute DEPT N[TM OF • WORKS IN that

maps each employee to the department number of the department he or she

works for. The new attribute DEPT_N[TM_OF. WORKS_IN now associ-

ated with employee is said to be an inherited attribute in employee, and

we say thatempl_ oyee inherits the owned attribute DEPT_NUM OF from

the entity class department down the link WORKS IN. Finally, we say that

the inherited attribute DEPT_NUM_OF • WORKS_IN is derived from the

attribute DEPT_N[rM_OF.

Certain collections of the attributes both owned and inherited associ-
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ated with a given entity class are always able to distinguish every member

of the dass from every other. A collection of attributes that does so in every

possible instantiation of the dass and which does not contain any unneces-

sary attributes for that purpose is called a key class. Suppose employees in

different departments can have the same employee number, but employees

in the same department cannot. Then the das s consisting of the attributes

DEPT NUM OF • WORKS IN and EMPLOYEENUM OF constitute a

key class for the employee entity class. If we were to add SALARY_OF

to this class, it would still perform the same individuating function, but it

would not be a key class, since the added attribute is unnecessary to this

function.

Since the information we keep about objects, represented in their at-

tribute values, is usually the only way to distinguish them, every entity class

must have at least one associated key class. In addition, the following condi-

tions are required: (i) if I links the entity dasses E and E', then E inherits

from E' all the attributes in some key class of E' down l; and (ii) if I is a one-

to-one link from E to E', then the inherited attributes of E that are derived

from the attributes of E' that E inherits from E' down l themselves form a

key class of E. The idea behind (i) is this: suppose that entity class E is

linked to E', and that instance e is mapped to instance e' by this link. Then

all the information associated with d becomes thereby associated with e in

virtue of the link between them. The idea behind (ii) is that, if in addition

the link is one-to-one, so that no other instance of E besides e is linked to

e', then the information in any key class of E' that distinguishes d from all

other possible instances of E' also must distinguish e from all other possible
instances of E.

It will be useful to the reader at this point to see how these informal ideas

are explicated formally in the formal framework in the appendix.

¥

w

6 Summary

The theory we have developed in this paper has several purposes. First, it

provides a language for model specification. That is, the theory can be used

to provide rigorous definitions of the syntax of a modeling methodology--so
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that it is wholly clear exactly what constructs axe permissible in the method-

ology and what axe not--and a precise account of its semantics--so that mod-

elers have a clear vision of the sorts of structures they are to be identifying

mad modeling with the methodology in question.

Second, the theory provides a broad and expressively powerful language

that can be used to supplement any given methodology by enabling it to

describe and express constraintsotherwise inexpresssiblein the methodology

proper. We saw examples of thisabove. This function of the theory can also

be usefulin the design or modification phase of a given methodology, in that

itcan point out dearly the logicalform of the sortsof information that one

wishes to capture within the methodology.

Finally,the theory ispowerful enough to capture the information content

ofany model within any existingmethodology_iDEFil _J_FI-X, ENALIM, Is

ER, 19 etc.--and also,we believe,any likelymodel as well. It thus servesas

a foundation for the construction of a Neutral Information Representation

Scheme which has the capabilityof capturing information from a model de-

veloped using one type of methodology and transferringit--as faithfullyas

possible--to a model constructed from another type of methodology. We

axe to the polnt where we can begin thinking directlyabout the sortsof al-

gorithms and heuristicsthat willbe needed to carry out such a task. The

framework here provides the necessary medium.
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lS l.e., Enhanced Natural Language Information Modeling Method.

1°I.e., Entity-Relationship modeling method.
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A An Overview of IDEF1

Before attempting any of the other chapters in this report the Integrated

Computed Aided Manufacturing (ICAM)DEFinition (IDEF) language, IDEF1

must be understood. IDEF1 has a simple and clean syntax which can be un-

derstood quickly. On the other hand, there is an art to modeling in any

methodology. IDEFI's design makes it imperative that the modeler under-

stand proper modeling discipline.

As in each of the following chapters, this chapter will begin with a dis-

cussion of IDEFI's history and purpose and then move onto its syntax and

semantics. Those familiar with the methodologies may not need to read the

syntax and semantics sections, but keep in mind that many methodologies

have several dialects. In order to understand the metamodels, it is important

that the reader understand which dialect is being modeled. In general, the

original definitions of methodologies are strictly adhered to.

L_

m

I

A.1 History and Purpose

The family of IDEF methodologies is meant to provide'methods and lan-

guages for discovery, representation, and consensus development of the views

of an enterprise necessary to allow for planning and design of integrated infor-

mation systems. That is, the IDEF methodologies were specifically developed

for supporting the domain experts and systems analysts in gathering infor-

mation about the existing environment and achieving consensus within the

environment relative to those descriptions. IDEF0 was developed to model

the decisions, actions, and activities within a domain and the relationships

among those activities. IDEF1 provides the methods for discovery and rep-

resentation of the logical structUre and relations between basic information

groups actually managed by an organization. IDEF2 provides a method for

development of quantitative simulation models that allow the study of time

varying bchavior of a sySic_ ° t_-t_sst-ochastic in naturc, iDEF3 supports

the direct capture of domain experts descriptions of process flow and object-

state transitions. IDEF5 is under development to support the capture and

representation of domain knowledge, concepts, and terminology (sometimes

referred to as domain ontoiogies). IDEF1X was the first IDEF methodology
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to focus on support of system design activities. IDEF1X data incorporates

criteria for efficient conceptual schema design. IDEF4 was developed later

to support the design of object-oriented systems, particularly systems en-

compassing the use of object oriented databases. As a family, the IDEF

methodologies provide the modeler with the ability to concentrate on views

of an enterprise without using a sledge hammer methodology meant to model

all views.

IDEF1 models the information managed within a system, though closely

related to IDEF1X it is pot a subset of IDEF1X. !DEF1 and IDEF1X are

similar, but by providing a methodology for data modeling and consequently

conceptual schema database design, the developers of IDEF1X added con-

structs which cloud the distinction between data which is kept about objects
=

and the objects themselves. This was necessary since a conceptual schema

by definition is a type of data dictionary (albeit a complex on-line dictio-

nary used to provide both access and control to distributed electronic het-

erogeneous databases). Thus, a conceptual schema designer must develop a

structure that can both contain the data objects andthe information about

those data object (such as their physical system location). IDEF1 however,

was designed to be both more general and less committed to any particu-

lar implementation concept. In a properly developed IDEF1 model there

should never be any misconceptions, only the information kept within an

organization about objects (physical, abstract or data) is being modeled.

IDEF1 entities need not correspond directly to any particular object in

the real world, the IDEF1 model represents the modeler's analysis results.

The analysis method results in a reconstruction of the underlying structure

and grouping of the information actually managed. In the real world these

logical groups of attributes may be distributed over many data artifacts.

Also, since data can be kept by the organization about any object, (physical,

abstract or data) this flexibility is necessary when attempting to establish

information requirements. However, it is not constraining enough when doing

database design (hence the need for IDEF1X, IDEF4, Entity Relationship

(ER) and other design methods.

As with any-of the IDEF methodologies, IDEF1 has primarily been used

by defense contractors under contract to the Air Force. Hughes has a propri-

etary version of IDEF1 called ELKA (Entity Link Key Attribute). IDEFI's
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connectionwith defenseprojects is good in that a strong underlying analysis

method has been developed for the application of IDEF1 modeling. With the

emergence of the recognition of the need for a system development frame-

work of methods and the availability of low-cost integrated tools for IDEF1

application, we can expect to see IDEF1 gain more widespread usage.

- J

7

A.2 Syntax and Informal Semantics

A.2.1 Basic Syntax

The lexicon of the IDEF1 language syntax consists of just four basic symbols

(see Figure ??):

• Labeled boxes denoting entity classes,

• Labeled lines with five different types of diamond shaped terminators

denoting relation classes,

• Labels inside the boxes denoting attribute classes,

• Parenthesized (or underlined) sets of labels denoting key classes.

A.2.2 Entity Class, Attribute Class, and Key.Class

The concept of an entity class is meant to capture the notion of a basic

information structure the extension of which at any point in time is a set of

informational items called entities. A basic concept behind the notion of an

entity is that:

• they axe persistent (i.e. the organization expends the resources (time,

money, equipment or facilities) to observe, encode, record, organize and

store thc existencc of individual entitics),

• they can be individuated (i.e. they can be identified uniquely from

other entities).

=
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XX'XXXX
%

Symbol denoting

an entity class

\
Entity ClassLabel

<

<

/\

Attribute class label

Symbols denoting
attribute classes

YYYY

ZZZ_,Z -

(wwww, YY'_
(zzzz)

XXXXXX

} Symbols denoting
key classes

Figure 1: IDEF1 Graphical Lexicon
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(SSN)
Salary
Sex

EMPLOYEE [ 42

<EMP#, 725>
<SSN, 361-34-984

45k>

[EMPLOYEE"]
! !

=--

Figure 2: Card file interpretation of an IDEF1 entity class.

The IDEF1 language does not provide a means of representing the indi-

vidual entities only groups of entities which share exactly the same types of

attributes. These groups from an IDEF1 view are called classes. A useful

memory aid for this notion is to think of the entity class as a layout for a

card file (See Figure ??). An entity class has a name and a unique iden-

tification number associated with it, along with a glossary entry and a list

of synonyms. An entity class is represented by a rectangular box with the

label of the entity class located in the lower left corner of the entity class

surrounded by a smaller rectangle and with the entity class number located

in the lower right corner of the larger box.

An entity class is actually defined by the set of attribute classes that

define the characteristics of all the possible entities in all of its extensions.

It is important to note that the set of attributes is more important that the
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EMP# SSN

ADDRESS

/

fEMP_) I

(SSN)
Salary
Address

EMPL ] 42

Figure 3: Bucket analogy

notion conveyed by the label on the entity class name! In other words, one

can think of the entity class as simply a labeled bucket with no meaning

beyond that of thec_ollection of attribute classes it contains (see Figure 77).

In fact, it is considered good practice to use an entity class label that does

not name a physical or data object in the domain since that could confuse an

uninformed reader. The labels of the attribute classes that define an entity

class aresirnplylisted in the entity class box below the key class designators

and above tTheentity cl_s label. . .

The occurrence0f the same attribute class in multiple entity class defini-

tions defines a relationship between those entity classes. In order to establish

the existence dependency between such entity classes, one entity class must
be determined to be the owner of the shared attribute class. Every attribute

class that ends up being a part of an IDEF1 model has exactly one owner
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Docsn'! b_Iong ,_|_STUDENT#,

345>

hca: boc_u_' it _ <OPR. 4.0>

I<s_DENr_ t

[ <GPR, 1.$> _ [

i <STUDENT#. 234>

• <GPR, 3.9>

I s_D:_r I
I I

h_

w

I (S|D)

GPR

ASSOC

(SID)
GPR

STUDENT

] [ (sin)

=

Figure 4: Example of the No-Null rule.

entity class. When deciding on the addition of an attribute class to an entity

class, two rules must be followed. The first is referred to as the No-Null Rule.

This rule states that no member of an entity class can take a null value for

its attribute that corresponds to the added attribute class (Figure ??).

The second rule, the No-Repeat rule, states that no member of an entity

class can take more than one value at a time for its attribute that corresponds

to the added attribute class (Figure ??).

Each entity class has associated with it at least one key class. A key

class is just a special subset of the attribute classes which define the entity

class. What makes such key class subsets special is that it can be determined

that for any instance, the values of the attributes of that instance (which

correspond to the attribute classes in a key class), collectively, will uniquely

identify that instance of the entity class from all other instances. In an IDEF1

49



E

I

J

II

<EMP#, 725>
<EMPN, John Doe>
<SIBLING

[EMPLOYEE
! !

Which one goes here?

Little Joe Doe
Susie Doe

mini

g

mg

g

m

l)

E/s_-NAME

SIBLLNG

I _,_Lo_ 1

EMP-NAME

_o_ 11

Figure 5: Exampie of the No-Repeat rule.
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diagram, the key class subsets are located in the upper left corner of the entity

class for which the key class is being defined. Key classes are not named or

labeled, a key class is denoted by enclosing the subset of attribute classes

that make up the key class in parentheses or by underlining the subset. In

the metamodels of this report we will always use the parenthesis convention.

It should be noted that entity classes are allowed to have multiple key classes.

The multiple key classes would reflect multiple ways of identifying an entity

class instance. For example, in a model of a typical business environment,

an instance of an EMPL entity class might have multiple key classes. The

first would consist of the employee's name in combination with an employee

number. The second key class may consist only of the employee's Social

Security Number. In both cases, an EMPL entity class instance could be

uniquely identified by either key class (see insert for example).

A.2.3 Link (or Relation) Classes

A link is a binary relationship that exists between two entities established

by the sharing of a common attribute(s) which must assume the exact same

value in each of the two entities involved in the link. I_u IDEF1 the gen-

eralization of all such links involving instances of the same two classes of

entities and the same shared class(es) of attribute(s) is called a link type, or

(more traditionally) link class. A link class establishes a binary relationship

between two entity classes that share a common attribute class. A link class

is represented by a line running between the boxes of the two entity classes.

A label, representing the name of the link class, is displayed over the line

representing the link. Because of the attribute class ownership property, a

link indicates a dependence of one entity class on the other entity class. The

dependent entity class is considered to be existent dependent since a mem-

ber of that entity class cannot exist unless the corresponding member of the

independent entity class already exists. In general IDEF1 uses links to rep-

resent common types of organizational constraints (sometimes referred to as

business rules) on the information that is managed. It should be noted that

not all of the business rules can be represented with the standard IDEF1 lan-

guage constructs. In another report we describe a constraint language called

the Information Systems Constraint Language (ISyCL). ISyCL (pronounced
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Figure 6: One-to-zero-or-one Link Class.

icicle) is used to augment the standard IDEF1 language as needed in this

report to capture some of the more complex rules of indi_-idual methods.

A link Class also has a cardlnaiity associated with it, specifying the mum-

her of members of each entity class that can be involved in a relationship

with a single member of the other entity class. Figure ?.9 shows the syntac-

tic representation of a one-to-zero-or-one (or, thought" of functionally in the

other direction, one-to-one) relationship.

A link with this =cardinality represents the fact that one member of the in-

dependent entity class can be associated with zero or one members of the

dependent entity class. However, each member of the dependent entity class

is associated with one and only one member of the independent entity class.

Figure ?.9 shows the syntactic representation of a weak one-to-many (or

functionally, weak" many-to-one) relationship,

In this situation, an independent entity class member can be associated with

zero, one, or many dependent entity class members. Again, each member of

the dependent entlty class is associated with one and only one member of

the independent entity class.

Figure ?? shows the syntactic representation of a strong-one-to-many
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Independent entity class
in this relation

// /
Dependent entity class
in this relation

Figure 7: Weak one-to-many Link Class.

= -,=

(functionally, strong many-to-one) relationship.

Here, the independent entity class member must be associated with at least

one instance of the dependent entity class member. Again, each member of

the dependent entity class is associated with one and only one member of

the independent entity class.

Notice that IDEF1 does not allow a many-to-many relationship or a zero-

or-one-to-zero-or-one relationship in what is considered a final model. These

relationships make the dependency situation ambiguous. The resolution of

such uncertain situations (which often arise in the early phases of the cor-

responding analysis) often results in the analyst determination that the sus-

pected relationship is unsupported by the analysis data. Alternatively the

analyst may discover additional entity class(es) on which both of the entity

classes involved in "many-to-many" relationship are independent (an exam-

ple of this is shown in Figure ??).

Note also that, when specifying a one-to-many link class (either weak or

strong), there is no way of constraining that link to a specific upper bound

(for example, a one to five relationship). Such details are left to ISyCL if

considered absolutely necessary.
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Independent entity class
in this relation

Dependent entity class
in this relation

Figure 8: Strong one-to-many Link Class.

A.2.4 Inheritance

Previously we noted that the sharing of attribute Classes between two entity

classes was the basis for declaring the existence of a link class between those

entity classes. However, link classes are generally suspected (or proposed)

by the analyst prior to the discovery of exactly which attribute classes are

shared. IDEF1 also place s certain restrictions on which attribute classes

may be (and must be) shared in order for a valid link class to be defined.

When a link class is definedbetweentwo entity classes, certain information is

shared between those entity classes. The attribute classes that make up the

key classes of the independent entity class must become attribute classes for

the dependent entity class. It is possible for the inherited attribute classes

to become part of the key class of the dependent entity class. In fact, the

attributes must become part of the key class when a link class has a onc-to-

zero-or-one link cardinality. In the case of a strong-one-to-many relationship

the attributes that are shared cannot make up a key that would be a subset

of the l_ey of the independent entity class from which they came.
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Figure 9: Resolution of a many-to-many relation.
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A A FormalAccount of Information Structures19

In this appendix we will make use of our formal apparatus a little more

rigorously to give a general definition of an information structure. A note

before we continue. Once the notion of a formal language is defined, it is

often easier to mingle plain English with the constraint language for easier

readability. The only important point is that anything said in this more

informal fashion can be stated if need be in a purely formal way. We shall

follow this practice here.

In addition to the usual number theoretic and set theoretic apparatus, the

elements of our constraint language for the purpose of giving a general deft-

nit]on of information structures will contain a raft 0fnew constants, function

symbols, and predicates. These are highlighted below in boldface or italic.

Also, since the distinction between object language and metalanguage should

be well understoodby now, we will revert to the use of the more standard

identity predicate = in the object language here.

A.1 Intensional Information Structures,

An intensional information structure (IIS) Z is a seven-tuple (E, BL, OA, V,

CL, IA, F), where

• E is a finite set of objects known as entity classes,

• BL = U{BL--', BL', BL °} is the union of three pairwise disjoint finite

sets of objects known as basic link classes or basic link types,

* OA is a finite set of objects known as owned attributes,

• V is a set of sets known as attribute value classes.

• CL is a finite set of objects known as composite link classes (types), to

be described below,

• IA is a finite set of objects known as inherited attributes, and

igThis work was partially supported by a grant from Tandem Computer Corporation.
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• F = {back, front, owner, target, kc} is a set of functions described

below.

Intuitively, entity classes are the basic intensional types whose instances can

appear in concrete realizations, or instantiations, of an IIS. Basic link types

are functions in intension that map the entities of one type E_called the

back of the link type---to the entities of another (possibly the same) type

E'--called the front of the link type. And owned attributes are functions

in intension that map the entities of a given type E_called the owner of

the attribute---to a given attribute value class V--called the target of the

attribute. An attribute value class is thus to be thought of as the range of

possible values for a particular owned attribute. Modeling these intuitive

connections is the job of the first four functions in F. Specifically,

• back :BL ----. E;

• front : BL _ E;

• owner : OA _ E;

• target : OA _ V;

That is, the function back maps a basic link type l E BL to an entity

class e E E, i.e., e = back(l). Similarly for the other functions. To enable

us to use more traditional functional terminology, we define the functions

domain = back O owner and codomain = front U target.

It is easiest to model the intuitive nature of composite links--the mem-

bers of CL--as finite sequences (i.e., n-tuples) of basic links. Call any such

sequence s = (l_,...,l,_) happy just in case for all i < n (i > 0), back(l_) =

front(li+l). 2° Then CL meets the condition

2°The idea is that a happy sequence represents a chain of connected link types such

that the back of each link type (save the one beginning the chain) is the front of the

preceding one in the chain. Now in fact, the actual definition here represents this idea

backwards: the intuitive beginning of such a connected chain is actually as defined the last

member in the formal representation (11,..., l,_}. However, this definition mirrors directly

the corresponding IDEF1 syntax for such chains, and hence in the long run makes for a

simpler semantics.
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CI: CL _C {s [ s is a happy sequence of basic link types }.

Given this, the functions back and front can be extended such that,

Def 6: For composite links L = (ll,.-.,In),

• back(L)= ba k(t );

• front(L)=d /ront(tl).

The definitions of domain and codomain can then be broadened to include

these newly defined extensions in the obvious way as well.

Henceforth, let L = BL LI CL. The composite nature of composite link

types can behighiighted by defining an operator @ on L such that,

Def 7: For basic links l, l', and composite links L, L',

• l@l' =al (l, l'), if (l, I') E CL; otherwise l@l' is undefined;

• l@L =aj (l) .--. L, if (1) ,--, L E CL; otherwise I@L is undefined; 21

• L@l =d/L _. (1), if L ,-, (l i E CL; otherwise L@l i_ undefined;

• L@L' =d/L _, L', if L _ L' E CL; otherwise L@L' is undefined.

Informally, then, XQY signifies the composition of the link type X with the

link type Y. _ ....

Intuitively, an inherited attribute is the composition of a link type with

an owned attribute. Thus, modeling composition in terms of sequences as

we are, we specify that the set IA of inherited attributes meet the condition

C2: IA C_ {X [ for some a E OA either for some l E BL, X = (a,l), or for

some L G CL, X = (a} ,-- L}.

That is, a member of IA must be either, in tile simplest case, a pair consisting

of an owned attribute (i.e., a member_of-OA) and a basic link type (i.e., a

21Where s --- s' is concatenation, i.e., the result of tacking the sequence s _ onto the end

of the sequence s.
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member of BL), or else the result of tacking an owned attribute onto the

beginning of a composite link type.

We then extend the definition of _ such that,

Def8: ForaEOA, IEBL, LECL,

• a@l =a! (a, I), if (a, I) E IA, and undefined otherwise;

• a@L =e¢ (a) .-. L, if (a) .-- L E IA, and undefined otherwise.

Given this, we have

Def 9: For any inherited attribute A = aQL,

• owned-attr(A) =d! a,

• link(A) =# L.

We can then extend the definition of the function owner to a function g-

owner (for "generalized owner") on the set of all attributes A = OA U IA

such that,

DeflO: For a E OA, g-owner(a)=dS owner(a); for A E IA, g-owner(A)=dS

back(link(A)).

That is, the g-owner of a given owned or inherited attribute, viewed as a

function, is its domain.

The last element kc of F, is a function from entity classes e to sets of

subsets of A-intuitively, the key classes of e-that meets the following condi-

tions:

C3: For all E E E, kc(E) # 0,

that is, the set of key classes for any given entity class must be nonempty,

i.e., every entity class must have at least one key class.

C4: For all E E E, and for all K, K' E kc(E), K _. K'. 22

22C, recall, signifies the proper subset relation. Note that this condition rules out the

possibility of an empty key class, since the empty set is a subset of every set, including
itself.
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C5: For all E E E, and for all A E Ukc(E), g-owner(A) = E,

that is, the attributes in every key class of a given entity class E must be

owned by E, i.e., have E as their domain.

Now we define the important notion of a walk and related concepts. These

will be used most directly to define information structures.

Def 11: Let E = (E_,...,E,,) be a sequence of entity classes, let A =

(ll,...,l,_-1) be a sequence of basic link types, and let W = (E,A/. Then

• W is a walk (from E1 to En) iff for all i < n, back(li) = E_ and

front(li) = El+l, or back(li) = Ei+l and front(li) = Ei.

• If W is a walk, then P is increasing iff for all i < n, if back(li) = El,

then li E BL-, and if back(li) = Ei+I, then li E BL'.

• W is cyclic iff E1 = E,_.

• Z is connected iff for all distinct E, E' E E, there is a walk from E to

E':

A walk, that is, intuitively, is a sequence of entity clas_es such that each

(save the last) :El 'is connected to its successor Ei+l by a link type li, either

in one direction or the other. An increasing walk is one such that, when you

traverse the link types in a walk from E1 to E,, there can be no decrease in

card_na[[tyas you move from the extension of one entity class (see paragraph

on information structure realizations below) to that of the next. The final

two n0tions:are_seif-explanatorY..... I_ "

Givent_s apparatus, we can state the last Conditions on Z:

C6: Z is connected.

C7: Z contains no increasing cyclic walks.

C8: For all/ e BL, there is some g E kc(front(l)) such that for all A E

K, A@l e iA; _3 if l happens to be 1-1, i.e., if I E BL", then in addition

{A@l I A e I(}E kc(g-owner(m@l)).

_zII:ei:]nformaliy, if E is linked[oK' via l, then all the attributes A in some key class of

Ei are inlaer_ied into E, i.e.,A_l e iA=so that g-owner(A@l):_ K and:g:owner(A) = E'.
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C8 captures the conditions on key classes noted in the final paragraph of the

previous section.

A.2 Information Structures and their Realizations

A complete realization of an IIS Z is a 4-tuple (Z, W, D, ezt), where W is a

set of indices (intuitively, the set of all possible realizations of Z), D is a set

of objects (intuitively, the set of all possible instances of all the entity classes

in E) and ezt is a function that, for each index w E W, maps elements of

E U OA U BF into objects of the appropriate sort as follows:

C9: For each E E E, ezt(w,E) C_ D.

C10: For allE, E' E E, andforallw E W, ifE _ E', then ezt(w,E) M

ezt(w, E') = O.

Cll: For each A E OA, ex.t(w,A) E (f [ f : ext(w, owner(A))

target(A)}.

C12: For each I E BL,

• if/E BL'-', then ezt(w,L)E {f If: ezt(w, back(l)) '-'-.--* ezt(w,front(1))}.

• if/E BL', then ezt(w,L) E {f[f: ezt(w, back(l)) _ ezt(w,front(1)))3 4

• if/E BL°, then ezt(w,L) E {f[f: ezt(w, back(1))_ ezt(w,front(1))}.

Though in any given realization the extension of a member of BL" might

also be onto, that of a member of BL ° might also be one-to-one, and that

of a member of BE ° might be either one-to-one or onto, it should not be

possible that this could be the case without exception, i.e., in all possible

realizations. Thus, as further conditions on an IIS realization we have:

C13: For all 1 E BL,

24Where f is onto just in case every element of its range has something mapped to

it from its domain. The addition function on the natural numbers, for example, is onto

(every number is the sum of two numbers-itself and 0 for instance), while the square

function is not (not every number is the square of some number).
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• If I 6 BL" there is a w 6 W such that ezt(w, l) is not onto;

• If 1 E BL ° there is a w E W such that ezt(w, l) is not one-to-one;

• if I E BL ° there is a w E W such that ezt(w, l) is not one-to-one and

a w' E W such that ezt(w, l) is not onto.

Note that these conditions cannot be enforced in a database, since, e.g., there

is no way to tell whether a one-to-one link which has always been onto will

cease being so with the next entry. For instance, by coincidence, it might

have always been the case that every employee in a company has one child.

Then the extension of the link type from employee_children to employee

has always been one-to-one, despite that fact that this could change as soon

as any employee has a second child (supposing this is not prohibited by

company policy). The constraints above are thus to be thought of as design

constraints rather than descriptive constraints, and are important in the

construction phase of an information model or database.

For any L = (11,..., 1,) E CL, ezt(w, L) is the composition of the exten-

sions of the link types li at w, i.e., ezt(w,L) = ezt(w,l 0 o ... o ezt(w,l,,).

Similarly, where A is an inherited attribute a@L, ezt(w,A) = ezt(w,o-

att(A)) o ezt(w, link(A)).

As noted above,:the role of a key class K within an entity Class E is to

ensure that in eve%y possible realization of an::_IS, the instances of E can be

distinguished solely in terms of the values ofth e (extensions of the) attributes
in K in that realization. This is expressed formally by means of the following

constraint:

C14: For all E E E, for all I( E kc(E), for all w E W, and for all x, y E

ezt(w,E), if ezt(w,A)(z) = ezt(w,A)(v) for all A E If, then z = y.

As also noted, key classes must be "minimal" in the sense no proper subset

of a given key class may also meet C14; this is expressed as follows:

C15: For all E E E, for all K E kc(E), it is not the case that there is

an S C K s_cla-_at for all w E W and for all x, y E ezt(w, E), if for all

A e S, ezt(w,A)(x)= ezt(w,A)(y), then z = y.
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Like the conditions on basic links across possible realizations above, and for

the same sorts of reasons, C15 also cannot be enforced on a database.
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