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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS missfon s to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
fndustry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then {s to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sclences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.
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Expert Systems V&V Guidelines Workshop:
Part One: Verification and Validation of Software

By Scott W. French and David O. Hamilton

This section is part of the Expert Systems V&YV Workshop. It summarizes
conventional approaches to verification and validation of software. The material
provided here will explore general approaches in applying verification and validation to
conventional procedural software implemenations. For more specific details on topics
and techniques please refer to the attached references.
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Introduction

Overview

The primary purpose of this
document is to build a foundation for
applying principles of verification and
validation of Expert Systems. To
achieve this end, some background
discussion of verification and validation
(V&V) as applied t0 conventionally
implemented software is required. Part
One will discuss the background of
V&V from the perspective of (1) what is
V&V of software and (2) V&V's role in
developing software. Part One will also
overview some common analysis
techniques that are applied when
performing V&V of software. All of
this material will be presented based on
the assumption that the reader has little
or no background in V&V or in
developing procedural software.

As the discussion of Part One
unfolds, some additional aspects of
software  development will  be
mentioned, but not discussed in any
detail. These aspects will be highlighted
now.

V&V can be characterized as the
application of a collection of techniques
in a manner whose goal is t0 show that a
piece of software has been built
correctly and solves the right problem.
Expanding on the goal of V&V as just
outlined Part One will demonstrate that
based on some insights into how
software is developed, application of
V&V tehcniques is most effective when
applied in a logical sequence of tasks.
Based on this conclusion, therefore, one
can infer that a process can be applied to
software development. This process can
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be referred to as a life cycle. There have
been many life cycle models proposed
and appendix E shows some examples
(these examples were adapted from the
cited references) of just a few. Part One
will not attempt to dictate which of these
models is the best to usec (different
projects may need to use different
models). Rather, Part One will focus on
the specifics of each V&V task.
Application to the life cycle model your
project chooses should be simple based
on this discussion of V&V tasks.

Another aspect related to the
discussion of V&V found in Part One
relates to software design. Part One will
demonstrate that implementing V&V
tehcniques is much simpler when
software has been designed correctly (or
in other words, has been designed with
V&V in mind). Those aspects of
software design that are most impacted
by V&V will be discussed in Part One
However, this will not cover the more
general topic of how to design a
software system. Regardless of this
omission, it should be clear that V&V
and software design are¢ Very similar
activities and that each directly impacts
the other.

Goals

After reading Part One of this
document it should be clear that (1)
V&V should be done, (2) V&V works
best when performed as the system is
developed and (3) the system can be
developed in a way that makes V&V
easier.

First, Part One will show that V&V
should be done. Unfortunately, V&V
often succumbs to the myth of being an
activity that is excess baggage to the



software development process. It is seen
as an activity whose impact on
developing timely, cost-effective
software is too great. In reality, nothing
could be farther from the truth. V&V
will be seen here as an activity that
actually reduces cost and improves
productivity by focusing on finding
errors earlier and satisfying customer
desires. This results in software systems
that are more reliable and user-friendly.

Next, Part One will show that V&V
works best when it is performed as the
system is.built. V&V is NOT the final
step in a software development project,
nor is it the first step or somewhere in
between. Rather, it is a collection of
activities performed throughout the
software development process. Part One
will demonstrate this be relating specific
V&V tasks to specific development
tasks.

Last, Part One will show that the
way a system is developed can make the
job of applying V&V much -easier.
Special emphasis will be given to
selecting and performing those V&V
tasks that can be done carly in the
process where errors are simpler and
cheaper to correct. Given that emphasis,
one will be able to conclude that V&YV,
rather than adversely impacting cost and
productivity during software
development, actually lowers overall
cost and improces overall productivity
during software development.

2/25/92



The Verification Puzzle

What does it mean for software to be
correct? On the surface, this seems like
an easy question to answer. However,
upon further examination of the nature
of software it quickly becomes obvious
that this is not easy to answer. There are
many aspects of software that make
showing correctness difficult.
Customers are often either unable to
adequately explain what functions the
system must perform or unable to decide
what functions are wanted. This leads to
an environment  where software
development is in a constant state of
flux.

Unfortunately, even if this problem
were to be resolved so that exact
specifications were available and these
specifications did not change during
development, complete correctness
would not be possible to demonstrate.
During the early years of software
development, software was
demonstrated to be correct via dynamic
testing (i.e., executing the software on a
computer within its target environment).
At first, this seems reasonable, but it
reality it is not, because this only
demonstrates that errors exist. It does
not give the development  team
confidence that no additional errors (ie.,
those not uncovered by testing) are in
the software. Yet, this confidence was
needed. So to achieve that level of
confidence inordinate amounts of time
were spent at the end of the development

cycle doing testing.

It soon became apparent that this
approach was not sufficient. Software
systems were becoming too large and
complex to wait until the last step of the
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process to Ty and demonstrate
correctness.  Better techniques were
needed to help in finding errors earlier in
the process when they are easier to
correct.

As a result, much has been written
and studied over recent years on better
ways to demonstrate that software is
correct. The ideas of verification and
validation have grown from this work.

Verification and validation is a two
part approach to demonstrating
correctness. The first part focuses on
shwoing that the software is being built
correctly (i.e., verification). The second
part focuses on showing that what is
being built satisfies the customer (i.e.,
validation). The remainder of thise
section will focus on both of these
approaches  and refer to them

collectively as yerification.



Figure 1—Pieces of the
Verification Puzzle

The Verification Puzzle

Resource Functional

Consumption

How should a developer begin in
verifying software? It turns out that the
approach to verifying software is a lot
like a puzzle composed of several pieces
(see 1 on 6). Each of the pieces of the
verification puzzle focus on a different
part of correctness. Showing that a
software system is correct, therefore,
must include approaches that solve each
part of this puzzle. The primary pieces
of the puzzle are:
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* Functional Correctness

* Safety Correctness/7.18
* User-Interface Correctness

*  Resource Consumption
Correctness

* Utility Correctness

Functional Correctness: The first
piece to this puzzle, functional
correctness, is probably the most widely
known and practiced. It also includes
the largest number of techniques.
functional comrectness is concerned with
documenting the expected behavior of a
picce of software (ie., the software
should, given input X, generate output
Y) and then showing that the software's
implementation matches that specified
behavior.

Safety Correctness: The next piece
of the puzze, safety  correctness,
involves showing that there are not
conditions under which the software
reaches an unsafe state of operation
(e.g., a state where danger to man or
machine is imminent). One reason this
piece is so important is the inherent

complexity involved with implementing

the other pieces of verification. When
software complexity grows, it may
actually be easier to show that the
software does not perform any unsafe
operations than it is to show, from a
functional cormectness standpoint, that
the software will always do the right
thing.

User-Interface Correctness: The
next piece, user-interface correctness,
focuses on the human factors involved in
using a piece of software. This aspect of
vericiation (based on our earlier



definitions, this piece falls quite nicely
_into_the validation category) was rarely
considered in the early days of verifying
software. The technology did not exist
to provide sophisticated interfaces.
Software was typically executed in a
batch fashion =with minimal user
interface. However, over recent years,
the advances in- both software and
hardware technology have created an
environment that is rich in software that
stretches the limits of user interface.
These interfaces must be correct and
user-friendly.

Resource Consumption
Correctness: The next piece, resource
consumption Correciness, focuses on
how well the software operates on a
computer within its target environment.
For example, can a real-time software
system meet its scheduling constraints
when it runs on a given Pprocessor.
Other factors such as disk usage,
transmission bandwidths, etc. must also
be considered when performing this type
of correctness testing.

Utility Correctness:  The final
piece, utility correctness, focuses on the
overall software solution. This step is
primarily a validation step. Does the
software provide a solution that truly
satisfies the user's needs? It is not
unreasonable (nor unheard of) that a user
would reject a software system that
matches its specification. This is one
reason why developing software can be
so difficult and frustrating. It should
also be clear that testing for this kind of
correctness is not very scientific and for
that reason is very difficult to do. Itisa
task that depends heavily on personal
skills more than technical skills (e.g.,
how well do the development and
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customer teams work together to define
system requirements).

Aspects

What does a developer look for
when demonstrating that each of these
pieces of verification is satisfied? There

are three primary  aspects tO
demonstrating correctness:
consistency20,  completeness20 and
terminationl9.

Consistency involves many things
both internal and external to the
software. Demonstrating consistency
involves looking at each aspect of the
software's definition with respect to all
other aspects of that definition to
determine if these aspects are consistent.

With respect to the external behavior
of the software, this may involve, for
example, showing that when a certain
kind of input is received (e.g., when an
operating system receives a hardware
interrupt) the system responds in a
consistent fashion (e.g., an interrupt
handler is invoked). Showing external
consistency also involves looking at the
user interface to determine whether its
look and feel is consisten (e.g.,

"consistent use of colors, consistent use

of function keys, etc.).

Demonstrating internal consistency
involves showing that the pieces used to
build the software system (refer to
"Unit/Integration ~ Testing” for a
complete description of these pieces) are
consistent. For example, one might
verify that a variable that is declared to
be integer is never assigned a non-
integer data value. One might also
check that this variable is used in a
consistent manner (e.g., the variable is
supposed to be used to index a specific



array and, therefore, it should only be
used to index that array).

Completeness (sometimes
completeness is referred to as closure) is
more difficult to demonstrate than
consistency.  Consistency works with
parts of the system that have already
been defined. Completeness, however,
seeks to determine if any parts of the
system are missing.  Looking for
missing things is difficult because one is
not always sure what to look for.

Some key criteria for focusing this
search for the complete solution are:

* accepts all required inputs
* generates all required outputs
* performs all required actions
* maintains all required data

Even though demonstration of
completeness is more difficult that
demonstrating consistency, both of these
approaches are undecidable problems
(i.e., no algorithm exists for
demonstrating either concept).
Unfortunately, this means that
developers can not definitively say that
software is complete and consistent.
The best that can be done is to
demonstrate sufficient consistency or
completeness. Fortunately, this is
generally good enough to demonstrate
correctness.

The final aspect of software
correctness is termination. Mills states
that "a program will be correct with
respect to its specification, if and only if,
for every initial value permissable by the
specification, the program will produce a
final value that corresponds to that initial
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value in  the specification."23
Consistency and completeness will show
that generated outputs are correct. Yet,
based on this definition, that is not
enough. The developer must show that
each input will, in fact, generate an
output.  That must mean that the
program, in order to be correct, must
always terminate. One part of
demonstrating that a program terminates
involves looking for all looping control
structures and then showing that those

loops terminate/9:7. Demonstrating
termination may also focus on showing
that  programs never  terminate
abnormally.

In summary, software is shown to be
correct by using (1) consistency and
completeness analysis to demonstrate a
program generates all the right answers
for all inputs and (2) termination
analysis to show that the program
always generates an answer.

Characteristics

The discussion so far has proceeded
based on the assumption that all
software systems are the same. Of
course, this is not true. There is a large

Jdifference in the kinds of software

developed today.  There are large
systems that must address a wide variety
of interfaces (e.g., an operating system)
as opposed to smaller self-contained
systems that address a narrow problem
domain.  Software systems can also
differ in criticality and complexity (i.e.,
bigger does not necessarily mean more
complex). Software systems also differ
in the ways they are represented (e.g.,
declarative versus procedural).

All of these differences indicate that
verification must be approached based



on these differences. For example,
software that is not man-rated (e.g., the
space shuttle flight software) may not
need the same level of verification as,
say, a video game. In addition some of
the pieces of the verification puzzle may
also be eliminated. For example, a batch
payroll system is probably going to have
a minimal (if any) requirement for
demonstrating user-interface correctness.
In other cases, for example,
development of sophisticated data entry
software may focus more on user-
interface correctness than on safety
correctness or functional correctness
(i.e., the user may be willing to live with
less functionality if the user interface is
really good; the reverse is probably not
true).

In conclusion, the characterisitics of
a software system impact how it should
be verified. The trick is to identify the
right tasks and techniques to use so that
the maximum cost-benefit ratio is
achieved.
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Testing Phases

The verification puzzle shown in

figure 1 dramatizes that proving
software correctness involves many
activities. As it turns out, the

verification puzzle provides an abstract
view of what is required to verify
software. The pieces of the verification
puyzzle can be neatly divided into some
smaller puzzles. These puzzles, if you
will, are:

* Dynamic Testing
* Static Testing

Dynamic testing involves executing
software on a computer within its target
environment. As will be discussed later,
dynamic testing can be partitioned into
WO separate testing activities: System
and Unit/lIntegration. System testing is
the final activity applied to software. It
focuses on demonstrating that the system
meets all stated objectives by the
use/customer. Errors found during this
stage of development are more difficult
and expensive to fix than in any other
stage of software development (because
its the last step).

The other part of dynamic testing is
Unitlintegration testing. This approach
to testing involves dynamic execution of
small self-contained pieces of the
software's internal structure in a stand-
alone fashion. Techniques that apply to
this kind of testing are often very time
consuming. However, they are good at
finding errors. This activity, because it
works with the internal structure of the
software, should precede system testing
(which assumes the structure is
complete). For this reason, erros found
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during this activity will be less difficult
and costly to fix than during system test.

The Static Testing puzzle involves
human analysis (e.g., desk checking,
CASE, etc.) of software specifications at
varying  levels of  abstraction.
Techniques that address this puzzle are
time consuming, but are by far the most
cost-effective because they typically
uncover the most errors and they
uncover these errors much earlier in the
software development process.

This section will focus on providing
more detailed descriptions of each
testing phase.  Figure 2 maps each
testing phase in relation to the other
phases based on the cost of fixing errors
found during that phase.



Figure 2—Testing Phases and
Costs
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The emphasis of figure 2 and the
discussion that follows is that finding
errors early in the development process
is the most cost-effective approach to
developing software. With that in mind,
developers should focus on identifying
and using techniques that meet that goal.

The sections that follow will provide
an overview of each testing phase, a
description of a simple example system
and brief illustrations of applying the
testing techniques in each phase to that
example system. This overview will
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focus on  descripbing specific
characteristics of a given testing phase,
what inputs are required to adequately
perform that testing phase and what
implications there are based on both the
input and output from that phase. These
implications will support the notion that
V&V testing phases should be applied in
a logical sequence or order.

System Testing

System testing is a testing phase that
does what its name implies: fest the
system. At this stage of software
development, the system is considered
complete (i.e., no need to worry about
the internal structure of the system).
There are several key characteristics of
software and testing during this stage of
development.

First of all, since the system is
viewed as a single entity it is considered
to be like a black-box?4-25. Viewing a
system like a black-box means that the
user can not see inside the box. Related
to software this means that the tester can
not see the internal structure of the
software.

Demonstrating the system is correct
does not require knowledge of the
internal system structure. The system
tester is taking the view of the customer.
The customer is not concerned with how
the software is constructed, just that the
software generates the correct responses
for given inputs. It is very important
that this black-box view be used at this
level. Too much knowledge about the
internals can lead to some false testing
assumptions?4. In fact, it is probably
wise to use individuals that did not
participate in developing the software
implementation for system testing.



So what, then, does the system
tester do? The system tester seeks to
show that the system exhibits required
behavior. What does it mean for the
system to exhibit required behavior?
Typically this means that the tester
should specify! a complete list of stimuli
and responses (i.e., inputs and outputs)
and then test that the software generates
the correct response for each stimulus.
This is what it means for a system to be
correct.

These descriptions would contain
information that maps to each specific
piece of the verification puzzle. For
example, each documented
stimulus/response pair should provide
some indication of, say, the expected
response time. It would be helpful if
some indications were given regarding
the criticality of the operation (i.e., this
_operation must always work or the
shuttle will launch its payload before the
payload bay doors have been opened).
Descriptions of expected interfaces for
entering the stimulus and displaying the
response should also be specified.

For most systems, documenting each
stimulus/response  in this way is
impossible. The number of pairs is
infinite. This principle is true for almost
all software systems. This principle also
leads to a somewhat disconcerting
conclusion: exhaustive testing is not
possible. Since exhaustive testing is not
possible and we know that showing a
program is correct means we must show
that a correct response is generated for
each stimulus, it is impossible to show
that a program is completely correct.

This leaves the tester with a
dilemma. How do I know when enough
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testing (since I can't do it all) has been
done to show the system is correct?
Fortunately, there is an approach to
doing this. This approach hinges on
recognizing that classes of stimuli26
exist.

A class is a collection of items that

exhibit some common properties.
People take advantage of classes
everyday. For example, human

language uses words to denote classes.
Humans can express the same idea in
many ways using language (e.g., "yes",
"you bet", "sure", etc.). This same
notion applies to program stimuli. The
advantage of recognizing this is that the
tester need only test one item from the
class since all items of the class should
exhibit the same characteristics (i.e.,
responses). This significantly reduces
the number of scenarios to be considered
during system test.

Unfortunately, even the number of
classes can be impractical to thoroughly
test. The next section, "Unit/Integration
Testing”, will examine some ways to
reduces or even eliminate some of this
impracticality.

Implicati

Before proceeding to the discussion
of Unit/Integration Testing, there are
some interesting implications to be
drawn from the system testing phase.
First, classes can be viewed as units.
This is important because it gives the
first hint as to what the internal software
structure might be like (see figure 3).



Figure 3-—Viewing the System
as a Collection of Units
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Each of these units also have
stimulus/response pairs. This means that
each unit can be testing independantly
by applying the same system test
approaches for each unit. This means
that each unit will have classes of
stimulus/response  pairs just like the
system as a whole. These classes can be
viewed as units within units. The fact
that there are units within units
beginning at the outermost view of the
system means that there must be some
refinement taking place. This process of
refinement is often referred to as
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stepwise refinement and should always
be practiced so that the system can be
viewed from differing layers of
abstraction.

Another implication of the system

test approach is that operational
scenarios?324 can be  identified.
Operational ~ scenarios represent 2

collection of stimulus/response pairs that
uniquely identify operations that are the
most likely to occur when the system
becomes operational. Selection of these
scenarios comes directly from the
stimulus/response classes that have been
identified. The purpose for identifying
these is that these kinds of scenarios
provide the basis for predict normal
system performance (e.g., Mean-Time-
To-Failure).

Unit/Integration Testing

Unit/Integration  testing involves
testing the pieces (ie., units) of a
system. For this reason, testing
performed during this phase is often

referred to as white-box or clear-
box24-25 testing.

There are some striking similarities
between system testing and

'unit/integration testing. Unit/integration

testing, like system testing, is

« dynamic (i.e., involves executing
the software on a computer)

. focuses on identifying
stimulus/response classes

. involves integration testing
(testing how well the pieces, or
units, work together)

Despite these similarities, there are
some significant differences between



system and unit/integration testing. One
difference is that integration testing at
the system level only deals with one
level of abstraction, the system level.
Integration testing at the unit level may
address many levels of integration
depending upon the degree of stepwise
refinement applied.

Another difference is that the
developer must be concerned with
showing the unit itself is correct, This
gives an additional activity  beyond
testing a level of integration.

To address both of these differences
the following key inputs are needed:

* the unit

* stimulus/response classes for
each unit

* subsystems (i.e., different levels
of integration) and their required
behavior

Implicati

The inputs and characteristics of this
testing phase point to a very positive
implication for system development.
Software can be designed so that
development, correction and
modification is greatly simplified. How
can this be? By recognizing that the
software must be composed of smaller
parts, the design technique, Modularity,
can be applied.

Modularity has many meanings
depending on who is spoken to. From a
management perspective, modularity can
be considered a unit of work30. From a
programmer’s  perspective modularity
can “refer to a set of one or more
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it can allow the

contiguous program statements having a
name by which other parts of the system
can invoke it and preferably having its
Own set of variable names "26
Regardless of which perspective  is
chosen, modularity has a positive impact
on  performing verification and
validation and should be applied to the
maximum extent possible. To enhance
the understanding of unit/integration
testing, some of these positive aspects of
modularity will be highlighted now.

Modularity and Its Benefits 1223
25,26-29,30

One benefit of modularity is that it
can provide an effective basis for
managing the development of software.
Why?  Because modularity allows a
developer to develop small pieces of the
Systtm in a manner that keeps the
separate from other pieces of the system.
The word separate here implies the
modules are separately compiled and
have their own data space. Therefore,
work  assignments can easily be
distributed among programmers based
on modules. .

Another benefit of modularity is that
systtm to be
incrementally developed. Incremental
development seeks to build larger and
largers sytems by piecing together
smaller systems. In other words,
incrementally developed systems follow
a build as you go approach. The cost
savings associated with this approach
should be clear. If only a small portion
of the system is build and tested then
any problems found therein require only
a small portion of the system to change.
Waiting until the later steps when the
system is more completely defined then



there is much more that may possibly
change when an error is found.

Additional savings are reaped during
verification because, with modularity,
verification can be done at the level of
refinement. For example, if module A
calls modules B, C and D to perform its
function and that function changes only
module A needs to be re-verified. Since,
B, C and D did not change their
verification status remains unchanged.
Applying this principle to the scope of
the system development and it can be
seen that as the system becomes more
and more defined the verification burden
becomes smaller.

Another benefit of modularity that is
related directly to the benefit just
described is that modularity reduces the
amount of re-verification. Since, by
definition, a module isolates portions of
the system so that changes to that
portion do not affect other parts of the
system. This can be done, in part, by
defining a stable interface (ie., a
module's view of another module or as
Parnas states, "... the assumptions those
who write one module may make about
the other modules"30). Changing a
module without changing its interface
means that all other modules that depend
on that module do not need to change
their assumptions about (or calls to) that
module. This significantly reduces the
modules that must change as a result of a
single module changing.

Other Implicati

Some more general implications can
be drawn during this level of testing.
First of all, unit/integration testing
implies that there is a bridge that takes a
much less specific description of the
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problem found in requirements to a very
specific description found in, say, the
target executable language. This bridge
is the design and is necessary to provide
an understanding of how the
requirements, usually stated in English,
were interpreted into the target
executable language.

In fact, since the definition of units
in the design has been drawn directly
from the initial step of generating
stimulus/response  pairs (which are,
themselves, part of the system
requirements), mapping the
requirements via the design to the
implementation becomes a
straightforward task of tracing through
the levels of system refinement.

Unfortunately, system and
unit/integration testing do not provide
the exhaustive testing needed to
demonstrate correctness. The next
section, "Static Testing”, will address

other important testing issues not
covered by either system or
unit/integration testing.

Static Testing

Dynamic testing techniques focus on

‘executing the software on a computer

and then analyzing the results of that
execution. Since exhaustive dynamic
testing is not possible other techniques
must be found to provide additional
assurance that the software is correct.
As it turns out, there are some kinds of
analysis that humans do better than
computers. These kinds of analysis do
well in filling the gaps found in dynamic
testing.

To begin to understand the value of
these techniques let's look at how static
testing differs from dynamic testing.



One difference is that each works from a
different specification. Dynamic testing
works from selection of
stimulus/response pairs from
stimulus/response classes. Static testing
uses a variety of specifications to
determine  correctness  (correctness
means that the implementation correctly
implements the specification). Some
kinds of specifications prescribe specific
properties of the system in a precise
mathematical form (e.g., axioms)/O,
Others use a more informal, English-like
style. Some specifications focus on
prescribing conditions that must be true
before execution of a given control
structure (e.g., if-then-else, while-loop,
etc.) and conditions that must be true
when the control structure completes
execution (pre/post conditions”8:20),

Another difference is that static
testing approaches the sytem from
additional  abstraction  perspectives.
Dynamic testing focuses on differing
sizes of software (i.e., one level of
refinement is bigger, or contains more
units, than the next higher level of
refinement). Static testing includes this
view and the abstraction afforded by th

software's  representation. This
representation may take the form of a
requirements document, design,

implementation, etc..
Abstraction and Refinement

Clearly, then, abstraction is one key
analysis technique that differentiates

static from dynamic testing.
Fortunately, humans are pretty good at
analyzing abstractions (unlike

computers). To better understand why,
lets examine some details regarding

2/25/92

16

abstraction and its  companion,
refinement.
Abstraction is the process of

simplifying a description of something
by suppressing lower level details of the
description. For example, the word
Chair is an abstraction. Using the word
chair in a conversation allows the
speaker to focus on the higher-level
semantics of chairs rather than the
specific details about chairs (four legs,
seat, back, etc.) that everyone knows
about. Using the abstraction is easier
and still conveys the meaning.
Abstraction also allows one to draw
inferences based on the abstraction.
Using the chair as an example again, if
someone were to say that X is a chair
and that Y is a chair, then one can infer
similar meanings for X and Y.

An important corollary to abstraction
is refinement. Refinement is a way to
break apart an abstraction into its details.
The process of applying refinement is
often referred to as stepwise refinement.
The opposite approach (building higher
level descriptions from collections of
lower level details) is called stepwise
abstraction. Stepwise refinement is a
good approach to designing a system

‘because it closely models how a human

analyzes a problem.

What does all this mean for
demonstrating correctness? Look back
at the discussion so far. Initially, one
starts at the system view and attempts to
show that is correct. However, before
doing that one must show that the
internal structure of the software is
correct. This is stepwise refinement.

Now, coupe that fact with the fact
that humans are good at analyzing
abstraction and that humans can view



fmany more representations of the system
than can the computer and there is a
sound reason for applying static testing.
This reasoning also has a financial
aspect as well. Since humans can
analyze software in any form then
analysts can begin analyzing the system
at its earliest point of definition well
before the system is so rigid that it is
difficult to change. These parts of the
development are also the points where
the system is least understood. For this
reason, it is reasonable to expect static
testing to find more errors than another
phase of testing.

¥Why Do Dynamic Testing?

Now, one might ask why dynamic
testing is needed at all. The primary
reason for doing dynamic testing is to
exercise code within its target
environment.
execute the software on a computer,
testing would be relegated to humans
exercising the software in their heads.
This is definitely not sufficient to
demonstrate correctness.

This is true because for various
reasons. Humans can not execute large
sequences of operations very quickly.
Therefore, things such as response time
can be projected, but not accurately
measured. Humans can not handle large
volumes of data (especially when
coupled with trying to run this data
through a sequence of steps). Humans
can not emulate all the complexities of
the target environment where other
processes may affect how well the
software performs. All of these factors
contribute to the need for dynamic
testing.
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Implicati

What does all of this mean? There
must be a balance between static and
dynamic testing based on the following
principles:

« apply static testing during
development as much as possible
as early as possible (this should
help avoid spending inordinate
amounts of time in dynamic
testing)

« use static testing primarily to
prove the system satisfies all
acceptance critieria



The Traffi roller

roblem

Now that each of the testing phases
has been described, it is time to look at
some techniques that can be used during
these phases. To understand these
techniques better, let's examine them
within the context of the following
simple problem.

A simple traffic light controller at a
four way intersection has car arrival
sensors and pedestrian crossing buttons.
In the absence of car arrival and
pedestrian crossing”signals, the traffic
light controller switches the direction of
traffic flow every two minutes. With a
car or pedestrian signal to change the
direction of traffic flow, the reaction
depends on the status of the auto and
pedestrian signals in the direction of
traffic flow; if auto pedestrian sensors
detect no approaching traffic in the
current direction of traffic flow, the
traffic flow will be switched in fifteen
seconds, if such approaching traffic is
detected, the switch in traffic flow will
be delayed fifteeen seconds with each
new detection of continuing traffic up to
a maximum of one minute.

Before discussing specific
application of each test phase to this
problem, begin by examining how
testable this problem description is. Can
this description be tested against to show
that the implementation is correct?

To start answering this question one
can analyze the system in terms of
stimulus/response pairs.  Remember
from earlier discussions that the number
of possible stimulus/response pairs is
infinite (think about this problem and
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prove to yourseif that this is true).
Therefore, stimulus/response classes
must be identified so that a workable
number of scenarios can be addressed.

To help in the discussion of
stimulus/response pairs for the traffic
controller problem sequence expressions
will be used. A sequence expression is
an expression that describes a sequence
of events (reading left to right). Each
event is described as an ordered pair of
stimulus and clock time. For example,
the ordered pair, (app-signal, tg), would

indicate that the approaching traffic was
detected at time, ty. Figure 4 shows

some example scenarios for the traffic
controller problem.



Figure 4—Sample Traffic
Controller Scenarios

+  { (switch-ligh, tg),
(,t] = tg+120 seconds),
(switch-light, tg) }

+ { (switch-light, tg),
(app-signal, ty=tg+1 second),
(, tp = t;+120 seconds)
(switch-light, tg) }

+  { (switch-light, tg)
(app-signal, t;=ty+2 seconds),
(, t = t1+120 seconds),
(switch-light, tg) }

* 8 &

+ {switch-light, tg),
(app-signal, t]=ty+n seconds),
Gty= t1+120 seconds)
(switch-light, tg) }

+  { (switch-light, tg),
(ped-waiting, ty=tg+1 second),
(s t2= t1+15 seconds).
(switch-light, tg) }

»  { (switch-light, tg),
(car-waiting, ty=tg+1 second),
(, tp = t1+15 seconds),
(switch-light, tg) }

The external stimuli found in the
sequence expressions of figure 4 are
defined as follows:
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« app-signal: approaching traffic is
detected

 ped-waiting: a pedestrian is
waiting for the light to change

» car-waiting: acar is waiting for
the light to change

o switch-light. the traffic light
changed direction

Those ordered pairs that specify no
external event represent an internal
stimulus (e.g., a period of time expired).
Now let's examine the scenarios in hopes
of identifying stimulus/response classes.

The first scenario listed in the
figured describes an sequence of events
where no external stimulus occurred
within two minutes, so the light
changed.  The next few scenarios
describe a situation where approaching
traffic is detected followed by a two
minute period where no stimulus is
received. The light then changes. The
last scenarios describe situations where
traffic is waiting and a period of fifteen
seconds expires with no approaching
wraffic being detected. The light then
changes.

Where are the stimulus/response
classes for these pairs? To answer this
question examine the scenarios where
approaching traffic is detected. The
possible number of pairs is infinite (the
interval, [0, 120], though bounded is
infinite). Therefore, all combinations
can not be tested. Yet, in reality, do all
combinations need to be tried to
demonstrate  correctness? No.
Regardless of whether the approaching
traffic is detected one second from the
last light change or 100 seconds is
immaterial. The traffic controller should



exhibit the same behavior for each.
Therefore a more general sequence
expression defining the
stimulus/response class can be written:

{ (switch-light, tg),
(app-signal, t] <tg+120 seconds),
(, tp=t1+120 seconds),
(switch-light, tg) }

Selecting a few cases from this class
is sufficient to test the entire class of
possible stimulus/response pairs. Other
classes are easily evidenced from the
description of figure 4. It is an exercise
for the reader to determine these
additional classes. Use figure 5 as your
guide.
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Figure 5-initial Black-Box
View of the Traffic Controller
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The process followed in identifying
these stimulus/response pairs may have
seemed a little ad-hoc. It would be nice
to use a more systematic approach. One
good  approach  for identifying
stimulus/response pairs to focus on the
existance of state.

State refers to the notion of
persistent data. Or, put another way,
data that persists (has a value) over time.
How does one identify state? A deeper
analysis of the meaning of states
provides some clues.

If state is data that will persist over
time then one should be able to query
the state (e.g., what is the value at time




tp). If state persists over time then there

must be a method for changing or
transitioning from one state to another.
Likewise, there must be some way 1o
create state (assign a value). Therefore,
identifying state can be as simple as
looking for classes of data whether these
three categories of methods apply.

In the traffic controller problem state
is easy to find based on this criteria.
Each stimulus/response pair alludes to a
changing light.  Therefore, the light
must have state since its value is queried
and transitions from one state to another.

Another example of state is the clock
or timer. Each stimulus/response pair
ask how much time has elapsed since the
last change of the traffic light?" This
implies a query on some kind of timer or
clock to access a value. In addition,
each pulse of the clock changes the state

_of the clock. Given these examples of
state, are there others?

Now that examples of state have
been identified one can see how this
helps isolate stimulus/response classes.
For example, classes can be formed
based on how the stimuli affect the state
of the traffic light. Figure 6 shows
partial results for this approach.
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Figure 6-—Isolating Classes
Based on State

o Car arrives from
the west

« No North-South
wraffic for 15
seconds following
last signal change

« Pedestrian arrives
from the west

« No North-South
traffic for 15
seconds following
last signal change

« Switch West-East Light to Green

IThese should typically be specified as a
part of system requirements.




Testing Techpiques

This section will focus on some
common techniques for performing
verification testing during the test phases
described earlier. Each technique will
be discussed in light of the specific
phase where it applies and where it fits
in the verification puzzle (see figure 1
on page Error! Bookmark not
defined.).

General Techniques
B . I | . w

The discussions with respect to
testing have, so far, focused primarily on
development of new  software.
However, statistics have shown that the
development aspect of a software system
-is only a small portion of its life-span.
Typically, as software is used over time
the need for changing the software
increases. New capabilitiles are
requested, errors are found, processes
become obselete. All of these point to
changing the software.

What effect does changing the
software have on testing? One of the
trickiest tasks in testing is to test
software that has changed. In part,
because the unchanged parts of the
software must be shown to still work the
same. Performing this kind of testing is
referred to Regression testing.

For example, assume that the traffic
controller should be changed so that a
pedestrian or car may have to wait up to
one and half minutes for the light to
change. Clearly, this change does not
effect how the traffic controller responds
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when no traffic is waiting for the light to
change. Regression testing, then, would
work to show that this change in the
traffic controller system would not
change its response when no traffic is
waiting for the light to change.

Regression testing works best when
a test management tool is used to assist
in capturing and retrieving test cases
used to evaluate earlier versions of the
software.

Erototvping

Another general technique for testing
software  is called prototyping.
Prototyping is an approach that assists
developers in  gaining  additional
understanding of the problem to be
solved. Prototyping focuses on building
scale models of the real system. These
scale models can then be evaluated by
both the developer and user to test their
understanding of how the system should
work. This kind of approach works best
when applied iteratively. What this
means is that small prototypes are built
early based on limited knowledge of the
domain and then incrementally
expanded as this knowledge increases.

Application of this approach to the
traffic controller problem, for example,
would probably indicate that
immediately switching a red light to
green is not good. The traffic needs
some warning that the light is going to
change so they can slow down. This
observation is not in the original
statement of the problem so based on the
prototype the problem statement should
be enhanced.

Competine Desienslé



Another general technique
capitalizes on the fact that different
developers often have very different
views of the system they are developing.
To take advantage of this, the competing
designs approach encourages different
teams of developers to build their own
views of the system. Once built, these
views are then compared. This
comparison may result in selection of
one team's approach to building the
system or may result in a merger of the
differing system views into one coherent
view. Regardless of the end result, the
selection process should, at a minimum,
force all developers to understand their
different views to make sure the selected
solution provides a complete system
solution.

Independent V&V

Another organizational technique for
doing V&V is called to define an
independent ~ organization  that is
responsible for performing V&YV of the
product. The term independent, as used
here, refers to an organization outside
the development organization.  This
independence removes any bias in
analyzing the product that may be
introduced from actaully helping build
the product. This approach is typically
performed at the requirements and
system test level, but can be applied to
any phase of the product development.

System Testing Techniques
Functional Correctness
Showing  functional correctness

during  system  testing  involves
demonstrating that the system generates
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correct responses for each input. For
example, when the traffic controller does
not detect any approaching or waiting
wraffic for two minutes after the most
recent light change, then the correct
response is for the traffic controller to
change the light.

Unfortunately, as stated earlier,
testing all possible combinations is not
possible. Therefore, some approaches
need to be used to help select from the
sets of possible test cases those cases
that provide the most benefit in
identifying errors in the software. One
of these techniques is called Realistic

testing32.

This technique focuses on selecting
test cases based on their realism. Or, in
other words, based whether the test case
uses a scenario that would realistically
be used during operation of the software.
Additional effort should be expended in
identifying and applying these kinds of
cases because they are similar to how the
software will actually be operationally
used. For example, in the traffic
controller system, one could reasonably
expect that the majority of requests for a
light change will be from cars and not
pedestrians. Therefore, the majority of

‘test cases that involve auto requests for

light changes should be selected.

Another approach to selecting good
test cases is called Cause-Effect
graphing?6.  Cause-effect ~graphing
examines the set of all possible stimuli
and the set of all possible responses and
attempts to identify paths from each of
these stimuli to specific responses. This
results in a Boolean logic network
constructed from basic logic structures
as shown in figure 7. The bottom of the
figure shows a simple graph where the



nodes on the far left are all the stimuli
and the nodes on the far right are all the
responses. Test cases are then selected
based on these paths through the
network.

Figure 7——Basics of Cause-
Effect Graphing
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a pedestrian can request that the light
change. This can be viewed as an
abstraction by using the OR structure as
shown in figure 8 where the abstraction
is the idea of traffic is waiting. As far as
the controller itself is concerned,
whether or not the waiting signal is
received from a pedestrian or a car is
immaterial. All that matters is that some
kind of traffic requested that the light
change. This abstraction then can help
identify some stimulus/response classes
as discussed earlier.

Figure 8-—Cause Effect
Graphing and Abstraction

A cause-effect graph also highlights
levels of refinement and abstraction that
will be useful at the unit/integration
testing stage. This is because the
graphing technique focuses on building
many intermediate nodes when building
paths from stimuli to responses. These
intermediate nodes are the abstractions
used in the system. For example, in the
traffic controller problem either a car or
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Cause-effect graphing is not a
perfect technique, because it provides
little guidance on which paths through




the network might provide the most
interesting results. One technique that
addresses this is Boundary testing?0.
Boundary testing focuses on identifying
test cases that exercise the boundary
values between  stimulus/response
classes. Consider the following
stimulus/response class:

{ (switch-light, ty),
(app-signal, t]<ty+120 seconds),
(, tp=t]+120 seconds),
(switch-light, t0) }.

Boundary testing would focus on
selecting specific test cases where
approaching traffic would be detected at
times right near t and right near to+120

seconds.

Another approach to selecting good
test cases is called Attribute-based Test
Case Selection32. This technique uses
attributes such as size, complexity,
criticality, reliability, etc. to select test
cases. For example, the traffic
controller system could be considered
critical since a failure in the system
might cause an accident (e.g., it makes
the light green in all directions).
Criticality, then, is a more significant
attribute than, say, size.  Therefore,
selection of test cases for the traffic
controller will focus on picking those
test cases that might cause the traffic
controller itself to fail.

Other attributes of the system can be
used to select test cases that may not
directly relate to its functionality. For
example, test cases could be selected
based on some statistics regarding the
intended use of the system or some other
statistical record keeping technique.
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A similar technique to the attribute

selecion method is called Error
guessing?6.  This technique involves
analyzing the system to identify

functions that one might expect to have
errors. This expectation can be based on
many factors, both subjective and
objective. Test cases are generated to
address these expectations.

Sometimes, interesting results can be
achieved by using no particular selection
scheme at all. This approach is called
Random testing3? and does what its
pame implies. Random selection of
cases from the many stimulus/response
pairs and/or classes.

Safety Correctness

Techniques to demonstrate safety
concerns focus on picking cases that
when executed cause the software to
reach an unsafe state. One technique
that works rather well is Stress
Testing!2632.2, Stress testing s
primarily concerned with looking at off-
nominal cases that might cause the
system to reach an unsafe state (e.g., the
traffic light is green in all directions).
For example, what would happen if a
pedestrian repeatedly hits the change
light button? What happens if a power
surge occurs at the same time the user
pushes the button? Does the pedestrian
get fried or does the light become green
in all directions? These are the kinds of
issues involved in stress testing.

User Interface Correctness

From the system testing perspective
testing the user interface is most directly
addressed by a technique called Active



Interface testing32.  This technique
focuses on showing that all interfaces
with external entities work correctly.
For example, in the traffic controller
problem, external entities would include
cars and people. Active interface testing
is concerned , then, with showing that
the interface for both cars and people
work correctly. For example, can the
systemn detect lighter weight cars? Will
the system recognize the change light
request if the button sticks when the
pedestrian  pushes  that  button?
Questions such as these are asked and
resolved as part of Active interface
testing.

Resource Consumption Correctness

Resource consumption correctness is
going to focus on showing that the
system performs within a required level
of efficiency within its operating
environment. The most pertinent
technique for demonstrating this type of
correctness during system testing is
Performance testing?6-32. Performance
testing focuses on choosing test that
push the envelope of the system.
Performance testing is somewhat similar
to stress testing in that the tests selected
should stress the system. However,
performance testing will focus more on
using nominal cases. An example of
performance testing on the traffic
controller system would be selecting a
test case that will determine if delays in
receiving a request to change the
direction of traffic flow will adversely
affect delays in changing the light. For
example, what would happen at time
t+14.9999 seconds when a pedestrian
waiting signal was received at time t?
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Unit/Integration Testing
Techniques

Eunctional Correctness

Demonstrating functional correctness
at the unit/integration testing phase
involves demonswrating that each
internal module or unit executes
correctly. Associated with each of these
modules is a structure or a sequence of
execution steps that must be followed in
order to achieve the desired result.
Therefore, it seems reasonable to project
that using test cases that exercise as
many of these sequences as possible
(ie., coverage) would demonstrate
functional correctness. In fact, research
has shown that coverage techniques are
the best and most comprehensive
technqieus for showing functional
correctness at this level of testing. There
are other good techniques (and these
may be better at finding certain kinds of
errors) but at a minimum, coverage
should be demonstrated during

unit/integration testing®.

There are three primary coverage
techniques. One of these techniques is
Branch Coverage?6. To perform branch
coverage the analyst must build a graph
that shows the flow of data through the
system. Figure 9 shows part of the
graph for the traffic controller problem.



Figure 9-—Branch Coverage
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Branch coverage then examines the
graph drawn to select test cases that
follow all possible branches in the
program (e.g., a branch is an arrow in
figure 9). These cases will cause the
program to execute each logical decision
point (e.g., if-then-else).  Using the
graph of figure 9, two test cases are
selected for covering all branches
(follow the numbers beside the arrows).
Describing what these two cases ar€ is
left as an exercise for the reader.

Another form of coverage is Path
coverage?6.  Path coverage is more
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thorough than branch coverage because
a single path may involve many
combinations of branches or logical
decision points. Path coverage, then ,
centers on showing that all combinations
of branches works correctly. Figure 10
shows the same graph as that shown for
pranch coverage. However, selecting
and executing test cases to perform path
coverage results in three specific cases
rather than two for branch coverage
(once again follow the numbers by the
arrows in the figure). Describing the
specifics of these test cases is left as an
exercise for the reader.



Figure 10—Path Coverage
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The last form of coverage testing is
Condition coverage?S. Condition
coverage expands on path coverage to
show that all combinations of logic or
conditions at each decision point works
correctly. For example, a logic decision
point might be the statement:

If (A or B) then Perform C;

Condition coverage would attempt to
show that C is performed when (1) only
A is true, (2) only B is true and (3) both
A and B are true. Figure 11 shows the
same logic paths for the traffic controller
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problem.  Condition coverage will
generate more test cases than path
coverage in this case because of the
logic decision point where either a car or
pedestrian could request the light to
change (follow the numbers beside the
arrows).  Describing these test cases
will, once again, be left as an exercise
for the reader.

Figure 11—-Condition
Coverage
NortSouth Light s Greea
Vil 14
T = correat time
3
N {3 8 %

P 1T+ D e Svich Light

s {123
.
Pedestrian Wating on Light
Ys {2
Process Sigal
As  always, these coverage
techniques alone do not provide

complete testing. In part, because they
focus primarily on examining the
implementation.  The technique of




Partition analysis’! attempts to merge
analysis. of specifications. with. that of
implementation. This technique focuses
on a kind of path analysis of the
specification to identify partitions of test
cases — based-——on—--identify- - - sub-
specifications. ~ These partitions are
merged “with™ those of “the” coverage
techniques just described to form a more
complete test suite.

The dynamic techniques  just
described are most commonly applied to
individual units. This leaves a gap in
dynamically testing the integration of
these units. One technique that focuses
on this aspect of  dynamic
unit/integration  testing is  called

interprocedural dataflow testing9. This
approach focuses on analyzing the
interconnections between units (e.g.,
parameter lists) and global data. This
analysis results in a definition-uses table
that maps each global data item and unit
parameter to specific statements where
these are defined and used. Once this
table has been defined, test cases are
selected that exercise the statements
listed in the definition-uses table.

For example, consider the routine
shown in figure 12 to compute the
maximum of two integers. This
technique will focus on analyzing the
definition and use patterns of the
variable Max since its value will affect
the caller of IsMax.
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Figure 12-—Routine to
Compute the Maximum of Two
Numbers

1. Procedure IsMax(l, J: In Integer;
Max: Out Integer);

2. fI>]

3. Then Max :=1;

4. Else Max:=];

5. EndIf;

6. End IsMax;

Having examined the routine one can
build what is called a summary graph or
an interprocedural flow graph that
further isolates specific statements
involving the parameter Max. Figure 13
shows how the flow graph might look
for routine IsMax.




Figure 13—InterProcedural
Flow Graph

Figure 14-—Definition/Use
Table for IsMax

By analyzing this flow graph one can
build a definition/use table as shown in
figure 14. Test cases will be selected,
then, to exercise those statements where
a given item in the table is used and
defined.
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Definition/Use Table for IsMax

Vbl Definiton  Use
Mx 3 6
b6

This approach is difficult to apply
for large complex programs without
some automated assistance. This is
primarily due to the fact that parameters
must be traced throughout the scope of
their use. Often times this will include
cases where the variable is referenced by
a different name (e.g., for the call
IsMax(A,B,C) the variable C is the same
as the variable Max inside the routine
[sMax).

Another approach for examining the
integrated units (as opposed to each unit
individually) is  perform flavor
analysis!3. Flavor analysis is concerned
with showing that the developers did not
make any errors of omission. To do
this, each developer must specify
expectations about the software. Two
ways to do this involve using data










comments or operator comments. Data
comments use_ a_combination of both
properties and assertions about the data
to model the actual construction of the
program. When complete, the program
can be compared against this for errors
of omission.  Operator comments
describe a specific legal sequence of
operator execution. These sequences are
then matched against either human
analysis or dynamic execution to
determine if it matches the operator
comments.  Deviations in sequence
highlight anamolies in the software.
Further analysis may determine an actual
€ITOr exists.

The approaches used so far have
primarily focused on identifying good
test cases. Yet, it would be helpful to
know just how good these test cases are.
One technique that helps answer that
question is Muration testing. Mutation
testing is founded on the premise that a
test case that is capable of demonstrating
a program executes correctly ought to
demonstrate that an incorrect program
executes incorrectly.  Therefore, this
technique calls for generation of mutant
programs (i.c., programs seeded with
errors; see figure 15) that can be
executed with the selected test cases.
Those that show correct results for the
mutants are not good test cases because
they are not capable of distinguishing
between a correct and incorrect program.
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Figure 15-——Mutation Testing
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It should.be noted, however, that
mutation testing is a time consuming and
risky task if performed without proper
controls (e.g., configuration
management). It is time consuming
because the software is continually being
seeded with errors and then re-instated
to its original condition. It is risky
because the developer always faces the
risk of incorrectly removing errors from
the program.

Safety Correctness

Reliability testing3226 is a good
technique for demonstrating  safety




correctness.  This technique seeks to
identify structures within the program
that could, should they fail, adversely
affect system reliability. These
structures may not necessarily be error-
prone. Looking at the traffic controller
problem, one might wonder what would
happen if the internal clock failed?
Would the light simply flash red in all
directions or would this failure cause the
lights to be stuck in their current
positions or would the lights become the
same color in all directions? Any of
these MIGHT happen. The key is to
decide ahead of time which is the safe
response and then test for it.

User-Interface Correctness

Testing the wuser interface will
involve breaking the parts of the user
interface into smaller pieces (this
follows directly from our looking inside
the black box view of the system) and
testing those smaller pieces
independantly. This will involve
stubbing out different sections of the
system to give the appearance of a
complete system. Using this approach,
user interface pieces can be simulated
much earlier before the entire interface
is complete. For example, the signal
hardware could be simulated via
software so that the traffic controller
system could be prototyped and
analyzed well before the entire system is
constructed.

Static Testing Technigues
General Techniques
As trivial as this may sound, the

most significant advancement in the
practice of software verification is the
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inspection>26. Inspections introduce an
active verification frame of mind (e.g.,
sitting at a desk for the sole purpose of
analyzing a work product for errors).
Sound psychological evidence suggests
(and, in fact, this has been shown true in
practice) that this significantly reduces
the introduction of errors and increases
the teams confidence in the quality of
the software. With this in mind, let's
examine what inspections are all about.

Inspections fall into two categories:
formal and informal. In either case,
inspections are an approach to showing
correctness by forcing a team of people
involved with a given work product to
inspect each work product for errors
within the framework of some rules.

Kinds of Errors Caught by
Inspection

Participants in an inspection will
analyze a given work product to identify
major errors, minor errors and
suggestions. Both major and minor
errors indicate the work product must be
changed before the inspection is
complete. Major errors address a work
product that does not satisfy its intended
function (or specification). Minor eITorS
typically address non-function errors
such as a violation of some pre-
determined programming standard (e.g.,
variable naming conventions, etc.).
Suggestions do not identify errors at all,
but rather, indicate alternative solutions
to the one being inspected. Often times
suggestions speak to maintenance and
efficiency aspects of the product.

Roles in an Inspection

Each person that participates in an
inspection has a role. Typical roles are



those of moderator, developer and peer.
The moderator is responsible for seeing
that the inspection follows the rules.
The developer is the person responsible
for completion of the work product. A
peer is someone else that has some
involvement in the product (e.g.
requirements Writers, designers, project
leads, etc.).

From the group of peers come two
additional roles: reader and backup.
The reader is responsible for guiding the
inspection team through the work
product during the inspection. The
backup (who is usually also the reader)
is someone who is not primarily
responsible for completion of the work
product, but is expected to have a level
of knowledge about the work product
that is at or just below that of the
developer.

Inspection Rules

Each inspection must be governed by
a set of rules. These rules serve t0 )]
allow measurement of the process (e.g.,
process  error rate), (2) place
accountability for the quality of the
product at the team, not individual, level
(i.e., egoless programming) and (3)
prevent  any issues from being
unresolved prior to completion of the
work product. Some example rules
might be:

« work products  must be
distributed for review four days prior to
inspection (i.e., give inspectors adequate
time to inspect)

. a moderator must cancel the
inspection if adequate prepartion has not
been done by the inspectors
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. the work product can not be
released until its inspection is complete

One problem that always seems 1O
arise when scheduling inspections is the
size of the work product. One approach
to handling the size of a work product to
be inspected is continuous inspections.
Continuous  inspections  focus on
inspecting the work product as it is
incrementally developed. For example,
when a program function is being
stepwise refined, there should be an
inspection at each level of refinement.
This approach obviously means more
inspections, but there is less to review at
each inspection and the later inspections
are more error-free.

Continuous  inspections  involve
primarily a developer and a peer. The
peer is assigned a specific time each for
inspecting the developer's work product.

Informal Inspections

Inspections can also be informal.
Informal inspections (or walkthroughs)
are informal because they use a less rigid
format for inspection. Sometimes this
means modifying some of the rules
regarding inspections (e.g., only small
changes can be reviewed informally) or
possibly inviting fewer people to
participate in the inspection. Usually,
the less rigidity of informal inspections,
means that there is no formal meeting of
the inspection team review the work
product.

Functional Correctness

Static  testing  techniques  that
demonstrate functional correctness fall
into two categories: specification-based
and structure-based.



Specification-based techniques focus
on analyzing the specifications (or
design) of the software to find errors.
One technique that does this is called

Anomaly  analysis322, Anomaly
analysis looks at sequences of events (as
derived from the software's

specification) to find anomalies. For
example, a sequence of events might
involve setting an entity and then using
that entity. A sequence where that entity
1s set and then set again before it is used
is an anomaly. Anomalies do not
necessarily mean errors. They just
indicate areas where there might be
errors since these are not proceeded in
the expected sequence.

A similar approach to anamoly
analysis is Defect Analysis32. This
techniques looks through the software to
make sure that no general kinds of
defects (e.g., divide by zero, index of the
end of an array, etc.) exist.

Stepwise Refinemenr27-28, 23-25 g 5
different kind of specification-based
technique based on inspecting differing
levels of abstraction. In this approach
one checks to make sure that each. level
of refinement correctly and completely
describes the previous level.

Another specification-based
approach  is  prelpost  condition
analysis’20,  This analysis approach

works with stated conditions within the
design. The technique works to make
sure the pre-condition adequately guards
the associated implementation (e.g., if
the implementation divides one variable
by another, then the pre-condition ought
to indicate that the variable acting as the
divisor must not be zero) and that
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execution of the implemenation satisfies
the post-condition.

One approach that assists in
analyzing pre/post conditions is symbolic
execution8-11.  This technique involves
building a statement tree. Then,
beginning with the pre-condition,
mathematical symbols are used to trace
through all possible paths in the
statement tree. Mathematical symbols
are used in place of trying to pass every
possible value through the statement
tree. The results of this trace are then
matched agains the post-condition to
determine whether the execution is
correct.  For example, consider the
simple routine of figure 16.



Figure 16—Routine to
Calculate Absolute Value

Figure 17-—Symbolic
Execution for Routine Absolute

1. ABSOLUTE:
Procedure (X);

N

Assume (true);

w

Declare X,Y: Integer;

fX<0
Then Y :=-X;
Else Y :=X;

o

=

Prove (Y=X'Or Y =-X)) And
(Y >=0 And X =X)

Return (Y);
. End;

\0 90

The pre-condition for routine
Absolute is expressed in the Assume
clause. Specifying the pre-condition as
rue is intended to indicate that any
integer value can be processed. The
post-condition appears as the Prove
clause. Symbolic execution will show
that this clause is satisfied by tracing
mathematical symbols  through the
statement tree of figure 17.
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Another specification-based

technique is Axiomatic analysis7-14.
This technique seeks to match an




implementation against a specified
collection of system properties or
axioms.

Another type of functional
correctness technique is structure-based.
Structure-based techniques examine the
architecture of the software for any
errors...One_structure-based technique is
Object-oriented Analysis36- 22.15.  This
technique works on software that has
been designed based on the object-
oriented approach of building modules
based on the data or state. Each object,
then, can only process certain allowable
or legal values. This serves as the
foundation for analyzing the correctness
of objects by showing that a given
operator for the object can accept only
legal inputs and produce only legal
outputs. This can be as simple as
analyzing one operator to analyzing
many combinations of operators.

Applying Object-oriented design to
the traffic controller problem might lead
to the identification of a timer object.
Associated with that timer object would
be operations to Reset the timer and
Decrement the timer. Given that the
timer will only be used when it has a
value greater than zero (i.e., the timer
has been reset). Once the timer reaches
zero is considered to be expired and is
no longer used. Therefore, a general
principle can be stated that the timer can
only hold non-negative values.

Next, each of the operators, Reset
and Decrement, should be analyzed to
see if this principle is satisfied. Reset is
responsible for setting the timer to a
specific window of time that should
elapse (e.g., 120 seconds). Decrement
will be used to mark the passing of time
(one clock pulse at a time) as long as the
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timer has a value greater than zero.
Therefore, these definitions would
indicate that, indeed, Reser and
Decrement guarantee that timer will
never have an illegal value.

Another structure-based approach for
showing functional correctness applies
when. modular programming languages
are used. This technique, called
Compilation testing32, is used with
languages whose compilers can do
certain checking across modules. For
example, programs written in the
language Ada using its package
constructs can use the Ada compiler as a
checking mechanism to show that the
architecture of the packages is
consistent.

Safety Correctness

Static testing that help demonstrate
safety correctness focus on identifying
potential problems and then analyzing
how the system would respond should
those problems occur. The first
technique,  Hazard  analysisi7-18,
involves identifying undesirable
situations.  For example, the most
undesirable situation in the traffic
controller system would be for all light
to be green in all directions. Once
identified, each hazard is analyzed to
determine how it could happen. Once
this scenario has been defined, the
software is analyzed to determine
whether this undesirable condition could
ever occur. If it could occur, then the
software should be modified to prevent
that from happening (e.g., the software
could perform a quick status check on
switching hardware to make the lights
can really be switched before trying to
switch the light).



A similar technique is called Fault
analysis!7-18. A fault is considered to be
any potential error in the system. This is
a slightly different approach from
Hazard analysis in that one is not
looking at effects, but at possible stimuli
for failures. Once these faults are
identified then the software can be
analyzed to determine what effect each
fault would have. Any faults that would
produce an undesirable effect need to be
addressed in the software.
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The purpose of Part One was to give
insight into the current practice of
verifying and validating software. To
summarize the material presented, key
points made during the overview will be
reviewed along with key principles
regarding the many testing techniques
discussed.

Key Points

Part One presented several key
points that are important when applying
verification and validation approaches to
software.  First, each term refers to
different parts of showing software is
correct. Verification works to show the
software was built correctly. Validation
works to show the right product was
built. Both of these are required to show
the software is correct.

Second, testing software must be
done both dynamically and statically.
Static testing uses the skills of human
analysis to find errors early in the
software development process.
Dynamic testing involves execution of
the software on a computer. It has two
distinct parts: unit/integration and
system. Each of these addresses the
many levels of structure and sub-
structure associated with the software.

Third, verification and validation are
analysis tasks that focus on showing
software is consistent, complete and
terminates.

Fourth, principled use of abstraction
and refinement helps manage the scope
of detail involved with any software
system.  Abstraction allows varying
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levels of detail to be expressed so that
the analyst is not overwhelmed with lots
of detail too soon. It also narrows the
focus of any analysis to two basic levels,
the abstract level and the refined level
(i.e., level, and levely 4 1).

Last, modularity is an essential part
of building systems that are easy to
extend and modify (not to mention
build). Modularity allows developers to
cleanly separate a systems many parts
using a divide and conquer-type
strategy.

Comments on Testing Techniques

Many different techniques for testing
were presented in this document. These
are, by no means, the complete list of
techniques that are available for use
(refer to 34, 2 and 32 for more complete
lists of testing techniques). Hopefully,
the discussion of these techniques has
made it clear that (1) no testing
technique is sufficient by itself to
demonstrate correctness, (2) choosing
which techniques to use is both difficult
and important to do (never leave the how
of testing to chance) and (3) a logical
sequence or order exists for testing and
should be followed (i.e., pick a life cycle
and follow it).

Regardless of the techniques or
testing phases being performed the same
general principles apply:



look for different categories of
errors (e.g. look for the "weak
links" in the system6)

select techniques that help find
errors early (and devote most of
the development effort to
applying those techniques)

"programs should be structured
so logical testing of various
abstractions of the program can
reduce actual testing of the final

program"¢

"specifications must be precise
enough to be testable"
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Appendix B: Techniques Vs. Phases

Techniques Phases
General System  Unit Static

Active Interface Testing v
Anomaly Analysis v
Attribute-Based Test Case e
Selection
Axiomatic Analysis e
Boundary Testing v
Branch Coverage v
Cause-Effect Graphing v
Competing Designs v
Compilation Testing v
Condition Coverage v
Defect Analysis e
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Techniques Phases
General  System Unit Static

Error Guessing v
Fault Analysis v
Flavor Analysis v
Hazard Analysis v
Independent V&V e
Inspections v
Interprocedural Dataflow v
Testing
Mutation Testing v
Object Oriented Analysis v
Partition Testing "4
Path Coverage v
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Techniques Phases
General  System Unit Static

Performance Testing v

Pre/Post Condition Testing v
Prototyping v

Random Testing v

Realistic Testing v

Regression Testing v

Reliability Testing v
Stepwise Refinement v
Stress Testing v

Symbolic Execution v
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Techniques Kinds of Correctness
General Functional Safety Ul RCC Utility

Active Interface Testing - ¥

Anomaly Analysis v

Attribute-Based Test Case v

Selection

Axiomatic Analysis v

Boundary Testing v

Branch Coverage 4

Cause-Effect Graphing v

Competing Designs v

Compilation Testing v

Condition Coverage v

Defect Analysis v

C-1
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Techniques Kinds of Correctness
General Functional Safety Ul RCC Utility

Error Guessing . v

Fault Analysis ¥

Flavor Analysis v

Hazard Analysis v

Independent V&V 4

Inspections v

Interprocedural Dataflow ¥

Testing

Mutation Testing e

Object Oriented Analysis v

Pm"tition Testing s

Path Coverage v
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Appendix C: Techniques Vs. Correctness ...

Techniques Kinds of Correctness
General Functional Safety Ul RCC Utility
Performance Testing V4
Pre/Post Condition Testing v
Prototyping v
Random Testing v
Realistic Testing 4
Regression Testing e
Reliability Testing "4
Stepwise Refinement v
Stress Testing e
Symbolic Execution v

C3
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Appendix D: Techniques Vs. References

References

Techniques
Active Interface Testing 32
'Anomaly Analysis 22
Attribute-Based Test Case Selection 32
Axiomatic Analysis 7,14
Boundary Testing 26
Branch Coverage 26
Cause-Effect Graphing 26
Competing Designs ' 16
Compilation Testing 32
Condition Coverage 26
Defect Analysis 32
Error Guessing 26
Fault Analysis 17,18
Flavor Analysis 13
Hazard Analysis 17,18
Inspections 5,26
InterProcedural Dataflow Testing 9
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Techniques References

Mutation Testing
Object Oriented Analysis 352114
Partition Analysis 30
Path Coverage 25
Performance Testing 31312
Pre/Post Condition Testing 19
Prototyping
Random Testing 31
Realistic Testing 31

'| Regression Testing 31
Reliability»Testing 31
Stepwise Refinement 26-27,22-24
Stress Testing 125
Symbolic Execution 8,11
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- NASA Life-Cycle Model

E-3




02/07/92 09:17 AM

Expert Systems V&V Guidelines Workshop:
Part 2: Expert Systems

By Scott W. French and David O. Hamilton

This section is part of the Expert Systems V&V workshop. It summarizes the
similarities and differences between expert systems and conventional software, how these
similarities and differences impact V&V, and new techniques that address these impacts.
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Introduction

Goals

The primary purpose of this section
is to explain the major technques that
have been developed for V&V of expert
systems (ESs). These special techniques
have been developed because there are
significant differences between ESs and
conventional software (CS); these
differences make it so that existing CS
V&V techniques are not adequate.

At the conclusion of this section, the
student should:

1. understand the key similarities and
kcydiﬁ'u‘enccsbetwechSzdeSs

2. understand how the differences
affect V&V of ESs (i.e., what new
V&V problems or issues are created
by these differences)

3. understand various V&YV techniques
that have been developed to
overcome the problems and issues

Key Terms

There is no well established precise
definition for ES or for Knowledge-
Based Systems (KBS) but we will take
the following definitions:

Expert System: computer programs
that emulate the problem solving

Wy VD INTenTIONBLLY A

techniques of a human expert to
solve complex problems

Knowledge-Based System: computer
programs which use domain or
heuristic knowledge to  solve
complex problems

Knowledge Engineer: a person
involved in the development of an
ES (includes knowledge acquisition
as well as all the traditional activities
of CS)

The key difference in these
definitions is that a KBS may not use the
problem solving techniques of a human
expert. So an ES is a KBS but a KBS is
not necessarily an ES. We will focus on
ES characteristics with the
understanding that some of the
characteristics may not hold for just
KBSs.

Overview

First, we will summarize both the
similarities and the differences between
ESs and CS. The basic similarity
between ESs and CS is that they are both
software. Students may accept this fact
readily but others may strongly disagree,
arguingthatESsaremuchmorethan
just software. To eliminate debate on
this issue, it is suggested that the
instructor say that the V&YV issues we
can address rely on viewing ESs as
software. All other V&V issues relate to
the nature of knowledge itself and lie

PRECEDING PAGE BLANK NOT FILMED
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outside the realm of engineering and in
the realm of philosophy and metaphysics
(ie., epistemology). If this is
insufficient, then the Roger Schank
quote from part 3 (Al entails massive
software engineering”) and simly force
the student to admit that the
development of ESs at least involves a
lot of software. That is, an ES may be
more than software but it is mostly
software.

ESs can differ from CS in two
ways.

1. ESs are often implemented using
non-procedural languages (we will
call this group of differences the
"implementation differences”)

2. ESs problems have different
characteristics (we will call this
group of differences the "problem
differences”)

The first group of differences
primarily affect lower level (white-box)
testing while the second group of
differences primarily affect higher level
(black-box) testing. For this reason, we
can focus on each group of differences
independently.

We will illustrate both groups of
differences using the Traffic Light
Controller (TLC) problem. First, to
illustrate the implementation differences,
we will look at two solutions, one
implemented as CS and another using a
non-procedural language (CLIPS). Then,
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to illustrate the problem differences, we
will introduce a new "enhanced” version
of the TLC problem. This new problem
will have more of the problem
differences of ESs.

Finally, using the TLC problem, we
will look at the major new ES V&V
techniques. We will first look at
techniques that have been developed
specifically to address implementation
differences. We will illustrate the
techniques on the CLIPS solution to the
TLC problem and provide some practice
exercises. Then we will look at
techniques which address problem
differences, illustrate them on the
enhanced TLC problem and provide
some more practice exercises.
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E differen

Expert Systems are Software

First and foremost, ESs are software.
That is, they are computer programs that
are written in some type of
programming language and are executed
in a (digital) computer. It may be
difficult, in general, tO0 determine
whether any given computer program is
(or should be called) an ES. It may have
only some of the characteristics of an ES
or parts of the program may not have
any ES characteristics at all.

For this reason, one should be
carefulwhencallinganythinganBSor
not an ES. It is better to simply think of
aprogramasjustthat,apieoeof
software, but with certain characteristics.
And when a piece of software has some
ES characteristics, its V&V should
account for those characteristics.

One should also be careful when
analyzing a program to be solved with a
computer program. It may be tempting
to decide in the very beginning that the
solution should be an ES. This approach
can lead one into developing a solution
that fits all the characteristics of an ES
(becausethatiswhatwassctouttobe
built) onlytoﬁndoutthatanESisnot
the best solution to the problem. Instead,
one should just develop the best solution
to the problem, noting the characteristics
the solution begins to take and adjusting
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the development and V&V approach
based on the emerging characteristics.

The problems that can be caused by
pre-determining a solution to be an ES
cancasilybeseenbynotingthe
following. One might prototype a "pure”
ES solution to a problem and find that it
is not at all acceptable, say for

ormance reasons. This could
possibly be fixed by re-coding small
pieces of it in a different language. But
if one has a fixed "all or nothing” vision
of an ES solution, they might take much
more drastic actions such as simply
abandoning the problem or changing the
problunsoitisnolongcran"ﬁs

problem”.

Expert System Implementation
Differences
The most recognizable ES

characteristics  are implementation
characteristics such as the language
used.'I‘hishasledmanypeopleinto
usingasocalled"ESshell"ifdwythink
their problem qualifies as an ES.
BecauseonrfocusisonV&Vandnot
ES development, we will not discuss
when an particular ES implementation
approach should be taken but will
instead discuss the V&V implications of
various ES approaches.

Common "Al languages” used
include:
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e forward-chaining rules (also known
as production systems)

* backward-chaining rules (e.g,,
Prolog)

* frame-based languages (e.g., KEE)
« LISP

With the exception of LISP, all the
above languages share a common
feature; they are non-procedural.
Procedural programs are executed in a
predictable fashion; it is straightforward
to determine which statement will
execute next. Each decision statement
(which determines the statement that
willaecutenm)isamonauniqucly
identified set of variables. By checking
the values of those variables at any
moment of execution, one can easily see
.which "direction” the branch will take.

Non-Procedural Languages

In non-procedural languages, it is
not straightforward to determine which
statement will execute next. There are
no explicit decision statements that
determine the next statement. Instead,
there is a set of conditions, or tests, that
are all looked at together to determine
the next statement. Additionally, most
often these tests do no operate on a
unique set of variables. Instead they can
potentially match or unify with a
possiblly large number of different
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variable combinations. However, it is
widely advocated that the developer not
try to determine the sequence of
statements in a non-procedural program;
this is the "wrong” way to think about
such a program. The "right" way to think
is "declaratively".

Thinking about a program
declaratively involves clearly separating
control from data. Control in a non-
procedural program is usually handled
by a runtime "inference engine”. The
inferenceenginelooksatthcdata(or
more accurately, the entire state of the
program) and decides which statement to
execute next. The programmer, ideally,
need only think about the comrectness of
data, leaving control to the inference
engine. That is, the programmer should
not be concerned about the order
statements will be executed. In practice,
programmers do need to be concerned
about the order of execution. For
example, a common error in production
systems is to code a set of rules that
work correctly only when executed in a
particular order which happens to be the |
order they are initially executed. Then,
when a seemingly innocuous change is
madethataffectstheorderingofnﬂc
firings, the program no longer works. In
this example, if both the expected and
actual ordering were explicit, one could
verify that they matched (ie., the
program was correct). As it was, both
the expected and actual ordering was
implict so it was very difficult to tell if
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the program would executed as
expected.

Iterative Development

Another ES implementation
difference is  that ESs are often
developed in a highly iterative fashion.
Almost all software is developed
iteratively (e.g., by the Spiral life-cycle
model) but ES are developed more
iteratively. That is, many more iterations
are typically used in the development of
anESandeachiterationhasonlyasmall
amount of added function.

The amount of iteration is especially
high if the development of an ES heavily
relies on knowledge aquisition. Experts
typicallycannotexpmssalloftheir
expertise at once and this creates the
need for many separate knowledge

_aquisition sessions. In between the
sessions, it is generally good to add the
newly aquired knowledge to the existing
ES (to seec how well the new knowledge
works with the old).

Another reason for a high amount of
itu'ationthat,oftenwithESs,itisnot
clear whether the proposed solution is
going to work well. In these risky
situations, it is best not to go t00 far
before evaluating/testing. This also leads
to many small iterations of development.

The primary affect of a highly
iterative development cycle on V&V is
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an increased amount of regression
testing.

Lack of Explicit Algoritt

CS programs have been described as
"algorithm + data structure”. However,
as we have previously discussed, ES
generally have no explicit algorithm
(ie., no explict control over execution of
statements). Instead, the ES progammer
is encouraged to declaratively define the
solution and leave the algorithm aspects
to the inference engine. As we have
seen, this can be a naive approach.

Experts do have problem solving
approaches which contain procedural
knowledge. The problem solving
method may not be completely
sequential and may be more heuristic
than algorithmic. Whether or not the ES
follows the same program solving
metbodasaapen(mwhichcaseit
would be just 2 KBS), it is important to
make the problem solving method
explicit and verify both that it is correct
and that the ES follows it.

Expert System Problem
Differences

In addition to how an program is
implemented, it can be characterized by
the type of problem it attempts t0 solve;
this is especially true of ESs. ESs tend to
solve problems that are either highly
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complex or have been more easily
solved by man than machine.

Man vs. Machine

Often, ESs are developed to solve
problems that have been routinely solved
by human experts. In these cases, a
solution already exists (in the humans
head) and may need only be translated
into a form that can be executed by a
computer. To a large extent, ES
technology was developed to allow this
to be done. Often this is done by
translating expert heuristics (rules of
thumb) into if-then rules that can be
executed. These types of systems have
come to be called "shallow” or "design
by knowledge aquisition” systems
because such systems are shallow in that
they do not "understand” what they are
doing and are developed directly from
knowledge acquired from an expert.

Correctness of these types of
systems is more like testing a human
expent.

Complex Problems

Often, ESs are built in an attempt t0
solve a problem has been proven very
difficult to solve (with a computer
program). This is because the tools and
languages usually associated with ESs
make it much casier to solve certain
types of problems. V&V of solutions to
these complex problems can be difficult.
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If it is difficult to determine the
correctness of any specific answer (e.g.,
optimal scheduling of many hundreds of
items) then it will be difficult to
determine if the ES solution has come
up with a comect answer. If the
"correctness” of the answer can not be
determined analytically and instead must
be determined by "expert opinion”, it
will be difficult for anyone other than
the expert to determine the correctness
of the ES.

Finally, ESs are often used to assist
or advise an human expent. That is, the
ESdownotmakedecisionsbutonly
suggests decisions to a human expert
who will make the final decision. There
is often a desire to decrease the amount
of V&V of these types of systems
becanse if the ES is wrong then it is felt
that the expert will always carch it
before any harm is done.




Overview

To illustrate both the implementation
and problem differences between ESs
andCS,wewi]llooktheTrafﬁcLight
Controller (TLC) problem. First we will
look at testing black box solutions to the
TLC problem and them we will compare
an ES implementation to 2 conventional
implementation for the the same TLC
problem in order to illustrate the
implmentation differences. Then we will
lookatamom"expcn"typeofTLC
problem in order to illustrate the
problem differences.

Scenario Testing

InPanlofthiscourse,itwas
pointed out that black-box testing of a
system involves identifying scenarios
and the executing those scenarios (with
differing stimulus) and looking to see if
the correct response is received. Often,
much of the work in black-box testing is
identifying and describing all the
scenarios.Agoodwaytoapproachthis
istoﬁrstidentifycertainvisibleevems
that can occur in the system and
describing scenarios in  terms of
combinations of these events.

For example, in the TLC problem,
we can identify the following events.
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1. switch: when the traffic light changes
(e.g., from green to red)

2.approaching. when an approaching
anto (or pedestrian) comes in the
direction of the green light

3.waiting. when an auto (or
pedestrian) is waiting for the light to
change (ie., they have approached

4.(t, e): when a certain time, t, has
elapsedsinceﬂaelastevemandatme
same time, event € OCCurs

Given these events, we can begin to
identify certain scenarios that could be
tested. For example:

1. (2 minutes, switch) (2 minutes,
switch) : this scenario occurs when
there are no approaching or waiting
traffic and the light switches every 2
minutes

2. (t: t < 2 mintues, approaching) v
minutes, switch) : this scenario
occurs when approaching traffic is
detected before the light can change
(i.e., less than 2 minutes since the
lastswitchevent);intlﬁscasethe
light should wait another 2 mintues
before switching

3.(t: t < 2 minutes, waiting) (15
seconds, switch) : this scenario
occurs when a car (or pedestrian) is
waiting for the light to change; in
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this case, the light should switch in
15 seconds if no other event occurs
in that time

These are only some sample
scenarios. We can not list all the
scenarios because there are an infinite
number of scenarios that can be
constructed. There are an infinite
number because there is no limit on the
length of the chain of events in each
scenario. For example, we the light can
change every 2 minutes for ever; this
simple event chain itself is, theoretically,
of infinite length.

Testing State Changes

An altemative way of identifying
tests is based on state changes in the
system. The tests are used to verify that
the system makes the correct state
change in each situation. However,
additional analysis is required in order to
ensure that the states and state changes
will result in correct behavior of the
system. So this is not to be used as a
validation technique but it is a good
verification technique since it can
comprehensively cover the complete
range of possible scenarios.

This type of testing is sometimes
called conformance testing. A state
diagram (or equivalent representation) is
created and analyzed to correctly solve
the problem. Then the solution is shown
to conform precisely to the state diagram
through exhaustive testing.
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Additionally, the state diagram can
be constructed at differing levels of
detail to correspond to varying levels of
testing. For example, at a high level, we
can identify the following states in an
abstract solution to the TLC problem:

>> S1: The system is currently in

the state of "waiting for 2
minutes” before changing the
light. That is, it is continuing to
count off 2 minutes since the last
event before changing the light.

>> 82: The system is currently in

the state of °“waiting for 15
seconds” before changing light
but has not waited 45 seconds
yet. That is, some time in the
past, the system began a 15
second wait, is still waiting for 15
seconds to expire, and may have
restarted this wait a few times but
not for more than 45 seconds.

>>S3:'I'hesystemisintheremainder

of a 1 minute wait. That is, at some
time in the past, the system begain a
15 second wait which it has restarted
so many times (due to approacing
cars or pedestrians) that it has been
greater than 45 seconds since it first
started the 15 second wait. And thus,
the system will need to switch the
light within one minute of starting
the first 15 second wait.
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The system could switch from one
state to another based on the following
possible events.

1.approaching (a car or pedestrian is
detected in the direction of the green

light)

2.waiting (a car or pedestrian is
detected in the direction of the red

light)

3.time expires (the system is in the
state of waiting for a particular
amoumoftime,sayt,andithas
been t seconds since the system
beganwaitingfortsecondS)

4. < 45 seconds in 32 (the system is
in state 82 and has been in 32
for less than 45 seconds)

5.>= 45 seconds in Sz(the system is
in state 82 and has been in 82
for more than 45 seconds)

For each event, we can define a state
transition (a change from one state to
another) that will both ensure correct
operaﬁonofthesystem.'[‘hisisshownin
the follow state diagram.
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We should first analyze this state
diagram and convince ourselves that it
describes a system that correctly solves
the problem. To do this, we need to look
at completeness and consistency.
Completeness includes looking to make
sure that the system has all the right
actions (i.e, a complete set of responses)
and accepts all the right inputs (i.e., has
a complete set of stimulus). Concistency
involves making sure that the system has
the correct response for each stimulus,
without violating any constraints.

The system only has one response
andthatistochmgethelight.'l‘his
response is covered when the system
makes any transition into S1 (ie., a time

expim).'l'hesyswmhasonlytwostimnli,an
approacingorawaiﬁngworped&rian. which
are both covered.

Now lets look at each of the seven state
umsitiomandcheckthattheymcomistem
with the requirements
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1. (approaching and not time expires) If

elapsed then there should be no
response. This is consistent with the
state diagram.

2.(waiting and not time expires) If a
waiting car or pedestrian is detected
before 2 minutes has elapsed then
the system should change the light
afnerlSseconds(assumingnoother
stimulus. This is consistent with the
transitiontosz.

3. (approaching and not time expires
and<453econdsinswesz.)lfwe

are waiting for 15 seconds due to a
waiting car and an approaching car
or pedistrian is detected, then we
should wait for another 15 seconds,
assuming we have been waiting less
than a total of 45 seconds. This is
consistentwithstayinginstatesz.

4. (approaching and not time expires
and>=45seoondsinstate$2)lfwc

are waiting for 15 seconds due to
someone waiting and we detect
someone is approaching but the
waiting person has already been
waiting for 45 seconds or more, then
we basically need to ignore the
approaching signal and change the
light after a total of one minute. This
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is consistent with the transition to
stateS3.

5, 6, 7. (if any timer expires)
Regardless of what event occurs, if
we have determined that it is time to
change the light (i.e., someone has
been waiting long enough) then we
should change the light. This is

Thus far, we have shown that all the
state transitions are consistent with what
is prescribed by the requirements. We
should also review the requirements to
make sure that there are no situations
that are not covered by any of the state
transitions. Unfortunately, there is no
mechanical technique for doing this
(unless the requirements are already
broken into small individual
not). One should Jjust think through the
requirements, looking for things that
have not yet been considered.

Once we convince our state diagram
describes (abstractly) a system that
meetings the requirements, we now need
only check that any proposed solution
correctly matches the state diagram.
Thus, by creating the state diagram, we
have taken one large problem (verifying
a proposed solution to the requirements)
and decomposed it into two smaller
problems (verifying the state diagram
and verifying a proposed solution
against the state diagram). This type of
approach is  sometimes called
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nconformance  testing” becanuse 2
propowdsolnﬁonischeckedtoseethat
it exactly conforms to a more abstract
solution (e.g., a state diagram).

Onedifﬁcultyisthatifwcaregivcn
a proposed solution and we can only
observe the responses that the system
makes (i.e., we can only see whether it
changes the light or pot), then we can
not check that it conforms to the state
diagram. This is because we can not
directlysecd'wintemalstatechmgwof
thcsystem.lfwecannotsecinsidetlw
system (i.c., white box testing), then we
are back to having to infer state changes
from the different stimulus/response
pairs.

Onclastpointisthatitwouldbe
much easier to check that a proposed
solution conforms to the state diagram if
itsdsignissimilartotlwstatediagram.
For example, if there was an internal
variable that could held either the value
1,2,or3dependingonthestatethc

was in (corresponding to the
staminmestatediagram),mmitwould
beveryeasytomatchd:ecurrmtsmeof
ﬂxesystemtothestatediagram.

Handouts and Exercise

There are 3 different handouts, each
describing one proposed solution to the
TLC problem. By dividing the class into
3teams,adxtcamcanfocu80noneof
the different solutions.
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Each team should spend a few
mimutes analyzing the proposed solution
.ven them and compare it to the state
diagram. They should also develop a set
of test cases that will determine if the
proposed solution truly conforms to the

state diagram.
Conventional Implementation

The conventional implementation is
anAdaprogmm.Itisdesignedafterme
statediagraminthattheimanalstateof
the Ada program is easily recognizable
atalltimsbylookingatthevalueofthe
variable "State”. There is a case
statement that simply Jooks at the
cununevananddecidwwhidxstate,if
any, to transition to next. This case
statunemissimplyrcpeamdendlwsly.

Expert System Implementation

There are actually two different ES
implementations. They are called ESs
because they are implemented in the
non-procedural language CLIPS. One

problem). However, since they do
illustrate the issues created by non-
procedural languages, we will call them
ESs for our purpose (and we will refer to
them as either the "ES implementations”
or the "CLIPS versions”.

9
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Later, we will discuss the differences
between these two implementations but
for now, we will compare the both of
them to the Ada solution. We can do this
because both CLIPS versions are similar
in that they are both simply a set of rules
thatdecidewhichstate,ifany,to
transition to next.

Comparison and V&V
Implications

If we <compare the ES
implementations to the conventional
Ada implementation, we can notice a
few features that make the ES solutions
appear to be much easier to V&V.

First,thenﬂ&seachlookvuymuch
like a state transition statement. The
general form of a rule is "if we are in
State 50 and so and the current event is
such and such then we should transition
to state so and so (optionally performing
antheextemalmponseofswitchingthe
light)". Thus, the ES implementations
are relatively easy to compare the the
state diagram.

Second, both CLIPS versions are
much shorter than the Ada version. So
thereismuchlwsESoodetoverify.
This is primarily due to the pattern
matching feature of CLIPS enabling a
single rule to match many different but
similar situations (i.e., each rule can do
more).
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Finally, if one looks closely at how
the Ada version was designed, one can
notice that it resembles a crude inference
engine. The loop around the case
Statement means that the Ada program
will repeatedly look for a certain
condition and do the associated action.
This is very similar to a Pproduction
system which repeatedly looks for the
right rule to fire. In the Ada program,
the inference engine, crude as it is, had
to be coded and V&V'ed along with the
rest of the program. But in the CLIPS
versions, the built-in CLIPS inference
engine was used.

Because of these differences, the ES
approach seems much preferable to the
procedural Ada approach. The ES
approach leads to smaller programs
which should reduce the V&V efforr.
But there are other characteristics of the
ES implementations which should also
be considered.

Although the ES implementations
have less code, each rule can have
compex interactions with other rules. In
the procedural Ada version, it is
realitively straightforward to determine
the order of execution of each Statement
but in the CLIPS versions, it can be
difficult to determine the order of rule
firings. Rulcﬁringorducandependon
a combination of condition logic,
priorities, and other critieria such as the
number of conditions (specificity) on
each rule. There are also other
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implementation concerns for the ES
implementations which are typically not
used in procedural implementations such
as the deletion of no longer needed

i variables (ie., garbage
collection). Thus, the Ada version,
though larger, has more straightforward
logic with less complicated internal
interactions.

Much of the nature of procedural
languages is due to efforts to simplify
the internal interactions of programs in
or to make them simpler and caiser to
understand (and thus to verify). Most of
the structured programming concems are
directly related to issues of verification.
Because most non-procedural languages
are "unstructured”, programs written in
them can be harder to verify.

So it is not the case that ESs are
harder or easier to verify but instead that
they have different V&V issues. That is,
in some ways they are harder but in
some ways they are casier to verify. In
summary, procedural programs have
more decisions and control structures to
test while ESs have more complex
internal interactions such as side-effects,
garbage collection, generality of pattemn
matching, and rule interaction.

The different concemns of ESs mean
that existing V&V technighes, which
were created for procedural progams, are
not as appropriate for ESs. Existing
procedural testing techniques are largely
focused on ensuring that the
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implementation solves all aspects of the
problem; techniques such as path
coverage and requirements tracing are
examples. ES testing also needs to
address the potentially unexpected

ences of the complex internal
interactions; ES V&V will have more of
a focus on this issue than procedural
V&YV has.

Another way to view the differences
between ES and conventional V&V is
from the perspective of Al ES
languages are largely modeled after the
way most psychologists believe humans
think (at a high level, not at a
neurological level) instead of on the
design of a computer (like a procedural
language is). Given this, we can look at
the categories of mental errors humans
make. These categories include things
such as slips/lapses, exceptions to
generalizations, and erroneous beliefs.

Slips/lapses are simple errors such as
making a typographical error. These
types of errors are most often attributed
to interuption in trains of thought. For
example, one may start to type the word
"verification”, think of its relation to
"validation”, and type "velidation”.
'I'hcsctyp&sofmistak&scmbelikened
to rules which are similar enough that
they both fire but they have
incompatible results.

Exceptions to generalizations occur
whenageneralizaﬁonismademdthma
new never-before-seen exception is
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encountered. A similar type of error
occurs when one simply forgets to treat
the situation as a special case. This can
be likened to either a rule that is too
general (i.e., does not account for the
new exception) or a frame system
without a specialization for the
exception. The similar type of human
error (forgetting about special cases) can
be likened to a rule or frame based
system that contains the exception but,
for some reason, does not recognize the
situation as being a special case (a more
concrete example of an production
system analogue is when conflict
resolution does not correctly identify the
most specific rule and incorrectly fires a
more general rule).

Erroneous beliefs are simply things
that are thought to be true but are not.
These can be likened to rules or frame
definitions that are simply not right.

Error categories such as slips/lapses
and generalizations directly relate to the
effects of complex internal interactions
typical of many non-procedural
programs.

Handout and Exercise

Just as in CS programming, there are
good and bad ways to design programs
written in non-procedural ES languages,
good and bad in the sense of being easier
or harder to verify. Before presenting
some ideas related to good and bad ES
designs (and their effect on verification),
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some handouts (#2, 3, 4, 5) are given out
that contain two CLIPS solutions to the
TLC problem and some related
information.

Students should spend a few minutes
studying each proposed solution, trying
to understand how they each work
Students should not try to understand
each implementation in detail but should
instead only try to get a high level
understanding of each. Students should
pay special attention to the interactions
among the rules, trying to understand
how the rules work together to solve the
problem. To assist with this, the
handouts include a rule interaction
diagram that shows which rules are
affected by each rule. Specifically, these
diagrams are a directed graph where the
edges are drawn from one rule, say A, to
another rule, say B iff rule A modifies a
variable in the LHS condition of rule B.

Testing Good and Bad Designs

The first difference to point out in
the two different versions is that one of
them is more modularized. Although this
version has more rules overall, one need
only understand a few rules at a time
(i.e., one can focus on only one module
at a time). Also, this more modular
version can be more easily tested
because each module can be tested
separately. By comparing the two rule
interaction diagrams, one can also see
that the more modular version has less
rule interaction; that is, the modules are
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loosely coupled. Finally, the more
modular version has simpler LHS
conditions. For these reasons, the more
modular version should be easier to
anderstand; the students will be able to
judge this for themselves.

Testing modular well-designed ES
programs is generally easier and simpler
than testing badly designed ones. It is
possible to design ES prgorams so that
they have less complicated internal
interactions; that is, one can design
"structured” ES programs.

The less modular version has a
problem in it. This problem is not easily
observable and most of the time, this
version will work correctly. One rule,
del-old-changes, which is used to delete
old facts that are no longer needed, has a
typo in it. "signal-changes” should have

been "signal-change”. This error can be
" seen by looking at the rule interaction
diagram and noting that
del_old_changes is a affects no other
rules (i.e., it doesn't do anything). This
problem could have easily been found
by using the CLIPS CRSV tool and
deftemplates. The more modular version
uses deftemplates and thus many types
oferrorssuchasqposcmbedetected
automatically.

A common objection raised against
the development of highly modular
programs is that they are less efficient.
That is, they may be easier to understand
but they execute slower. If this objection
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is raised by a student, the instructer can
quickly eliminate it by simply pointing
out that the more modular TLC solution
executes significantly faster than the less
modular one. The reason is that although
the less modular TLC solution requires
fewer rule firings, each rule firing takes
longer because ecach rule is more
complicated (ie., the less modular
CLIPS version requires a lot more
pattern matching). Therefore "simpler is
better, simpler is faster”.
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Controller Problem

For studying the V&V differences
associated with ES problems, the TLC
problem is not sufficient. Instead, we
will use an expanded version of the TLC
problems which is as follows.

At certain times of the day, an
intersection becomes congested, the
electronic traffic light controller
becomes inadequate and a policeman is
used to direct the traffic. The same
policeman has been directing traffic at
this intersection for a number of years
and there are much fewer complaints
from citizens about having to wait at this
intersection (than there were several
years ago). It is now desirable to make
the electronic system "smarter” so it can
handle the same amount of flow as the
policeman and is also as fair as the
policeman (i.c., he doesn't force any one
direction to wait for a long time on the
other direction).

The new system will function as
before when traffic is "light” and will
switch to "smart mode” when the traffic
becomes heavy. In "smart mode”, the
system will look at

* the length of traffic in each direction
(new sensors will be installed to
provide this information)
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* the number of people waiting to turn
left as opposed to going straight
(new sensors will be installed to
indicate how many people are
waiting in the left turn lane)

* the speed of traffic going through the
intersection (new sensors will be
installed to provide this information)

Using this information, the system
will decide when to allow a street (north,
south, cast, west) to either go straight,
turn left, or wait on another street.

Although this statement of the
problem is not sufficiently detailed
enough to develop a solution from, there
is some analysis that can be done. One
can check for inconsistent requirements
and missing information. For example, if
the requirements said that the system
automatically decides when to switch to
smart mode and also said that there was
a switch to manually control the mode,
then these requirements are potentially
inconsistent. And if the requirements
stated that traffic flow is a determining
factor but gave no indication that traffic
flow as an input then this would be
missing information.

From looking at this new problem
description, we can see that it has many
features of an ES problem. It is
automating a job that a human expert is
currently performing. It is much more
complicated than the conventional TLC
problem and it would be difficult to
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design an algorithm to solve the
problem. It also contains Some
subjective requirements such as being
"fair”.

Knowledge Acquisition Results

The statement of the new TLC
problem as it has been given so far does
not have enough information to develop
a solution from directly. As with most
ES problems, the criteria for making the
decisions mandated in the requirements
must be obtained from an expern. For
our purposes, we will assume that the
following is from initial knowledge
acquisition from the policeman.

« the policeman walks a beat a few
blocks from the intersection and
when he hears several hom honks
close together, he goes to the
intersection to help clear the traffic

« if the line is so long in any direction
that he can't see the end of it then he
lets those directions (including
tamning left) go for about three
minutes before changing

« otherwise, if he lets each direction
go for about two minutes, except for
tumning left which he allows for
about one minute

« he lets the longest direction go about
half a minute longer than the other
directions
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« if the line waiting to turn left is small
when compared to the opposing
direction, he will skip them for one
cycle (i.e., let each other direction go
once more)

« if the line waiting to go straight is
small, compared to the perpendicular
direction, let it go for half a minute
less

°ifyoucannoﬁceacarthathasbeen

waiting for three cycles and has not
gonc,lctmatdimctiongohalfa
minute longer (that line is just
moving slow; this  roughly
corresponds to less than 20 cars per
cycle for 3 cycles).

With this new information,
additional analysis can be done. In
addition to looking for conflicting
information, one should look to see if all
decisions mandated by the requirements
can be made from the criteria obtained
during knowledge aquisition; that is "is
the knowledge aquired sufficient to
solve the problem ?" Ideally, one should
aquire operational scenarios, both
nominal and off-nominal (disaster)
scenarios, to aid in defining tests.

Problem Features

At this point, the student can study
the new TLC problem and think about
scenarios as well as inconsistencies and
missing information. A class discussion
of how well this problem fits the notion
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of an ES is also appropriate. Some
questions that would be helpful in
promoting class discussion are:

* Is it a shallow or deep reasoning
solution ?

o Would this be difficult to solve with
conventional software ?

* Does it rely on human judgement ?

» Will it replace or augment a2 human
expert ?
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Expert System Implementation
V&V Techniques
Overview

The purpose of this section is to
summarize several techniques for
verifying programs written in non-
procedural languages. These techniques
address issues associated with how ESs
areimplemaned(andthuswillallbe
verification techniques as opposed to
validation techniques). Although the
student will not be a master of these
techniques at the end of this section,
they will be able to begin applying them.
More importantly, they will be aware of
techniques that do exist and when each
one is applicable. References will be
given that explain each technique in
more detail.

For each technique, we will briefly
describe the technique and then indicate
when the technique is applicable (it may
apply only for rule based systems and/or
may only be able to detect certain types
of errors). Most of these techniques are
difficult to apply without some type of
tool so we will discuss the availability of
supporting tools for each technique.

An important part of the discussion
of each technique will be an example of
how it could be applied to the TLC
problem. These examples serve to better
describe the technique and how it can be
used. The student should be encouraged
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to practice the techmiques by further
applying them to the TLC problem.

Rule Consistency Checking

The most difficult aspect of
verifying rule-based programs is
verifying rule interaction. This is
because of the potentially large amount
of interaction among rules. Most of the
interaction is probable expected but
there may also be some unexpected
interaction. Verification should involve
looking at all interaction to make sure
that it is intended and is correct but,
given the large amount of interaction,
this can be difficult.

Rule consistency checking attempts
to make this easier by identifying certain
types of rule interaction that are usually
unexpected and indicate some type of
error. That is, they identify bad or
anomalous types of rule interactions.
There are several major categories of
these anomalous types that we will
illustrate.

First, it should be noted that these
techniques are applicable only to rule
based systems. They also do not find
errors but only indications of possible
errors (i.e., not all anomalous rule
interactions are wrong). So a human will
need to look at each anomalous rule
interaction to determine if it indicates an
error. Another important note is that it is
very time consuming to identify all
anomalous rule interactions by hand;
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some type of tool should be used.
Unfortunately, there are few tools
available to do this and there are no
known commercial products.

More information on rule
consistency checking can be found in
references [1] and [2].

Rule Consist ! "

There are two types of reachability
anomalies which are dead-end rules and
unreachable rules. Dead-end rules are
rules that do not affect any other rule.
That is, the chain of inferencing reaches
a dead-end at such a rule. An example of
a deadend mile is the mie
"del_old_changes” in the short CLIPS
implementation to the TLC problem.
This rule only affects a fact called
"signal_changes” which is not
referenced by any other rule. So
del _old_changes can not affect any other
rule. This is an error; the fact that should
have been changed by del_old_changes
should have been "singal_change”. It is
worthwhile to point out that this error
was made when the short CLIPS version
was initially created and was actually
found by doing rule consistency
checking (this can be seen in the rule
interaction diagram - handout #4).

Another type of reachability
anomaly is unreachable rules. An
unreachable rule is one that is not
affected by any other rule. That is, the
chain of inferencing can not reach this
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rule. For example, if there was a rule
whose left hand side condition depended
on a fact called "signal changed” then
that rule would be an unreachable rule.
That is because there is no such fact
created by any rule.

A cycle is a group of one or more
rules that (can) repeat. The rule
"update_time" is an example of a rule
that repeats. In this case, the cycle is not
an error; the rule is intended to fire
repeatedly untii a certain time is
reached. But in general, cycles are
potential problem areas because they
could repeat endlessly (i.e., be the rule-
based equivalent of an endless loop).

There are two types of overlapping
rule anomalies. The first type is
redundant rules. These are rules that do
some of the same things. For example,
the following two rules are redundant.

set_long_timer:
if light_changed or
signal.in_direction green
then
set long_timer
retract medium_timer
retract short_timer

retract_medium_timer:
if light_changed

then
retract medium_timer
retract short_timer
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These rules are redundant because
when light_changed is true, they both
attempt to retract the medium (and
short) timer. This could be an error,
depending on how these mles are
implemented. = They  could be
implemented so that when
light_changed, retract_medium_timer
will fire and retract the medium and
short timers, preventing the
set_long_timer rule from firing and
setting the long timer. So if the
long_timer must always be set when
light_changed, the above rules are in
error.

Another type of overlapping rule
anomaly is conflicting rules. Conflicting
rules are almost always in error. For
example, the following two rules are
conflicting.

set_long_timer:
if light_changed or
signal.in_direction green
then
set long_timer
set medium_timer
set short_timer

retract_medium_timer:
if light_changed

then
retract_medium_timer
retract short_timer

These two rmules are conflicting
because when light_changed is true, the
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first rule will set the medium timer while
the second rule will retract it. These two
actions (setting and retracting) are
contradictory.

All of the above errors could be
found by inspecting the rules in question
and seeing that they are wrong. For
example, one could see that, in the
previous  example,  set_long timer
should not also set the short and medium
timers. Doing rule consistency checking
is an aid in finding errors that are missed
by simple inspection.

Finding all instances of rule
anomalies in a large rule-base would
take a long time to do by hand so it
would be adventageous to use an
automated tool. However, if the rule-
base is modularized into small sets of
rules, it is not unreasonable to check for
several types of anomalies by drawing a
rule interaction graph. That is, by
drawing a directed graph, showing
which rules are affected by other rules.
Then, the following types of rule
anomalies can be seen directly in the
rule interaction graph.
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Data Consistency Checking

Data consistency checking involves
comparing the definition of data/facts
very similar to type checking in
conventional languages, such as Ada,
where one must declare a data type and
declare variables of that type before the
variable can be used. This allows one to
find errors involving a misuse of a
variable.

Data consistency checking is often
supported by tools that are provided with
the programming language used. For
example, CRSV, which is provided with
CLIPS, can find many types of data/fact
use errors such as the mispelling of the
"signal_change” fact in the rule
"del_old_changes”. This error could
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have been found if "signal_change" were
declared via a deftemplate.

More information on data
consistency checking can be found in
references [3], [4], and [5].

Sensitivity Analysis

Sensitivity analysis involves
analyzing the sensitivity of one data item
to other data items. Sensitivity analysis
can be used as a debugging technique or
can be used to increase the efficiency of
programs. It can also be used to help
construct test cases. Like other
techniques, sensitivity analysis can be
very tedious and time consuming if done
by hand. Unfortunately, the only known
sensitivity analysis tool is still a research
prototype.

Sensitivity analysis is most
applicable to classification types of
problems instead of problems like the
traffic controller problem. So suppose,
instead of the TLC problem, we had the
problem of classifying the current state
of a soution to the TLC problem. That
is, given the value of all the variables
used in a TLC solution, classify the
current state as being either Sl (only the

long_timer is running), 82 (both the
short and medium timers are running
and the medium timer is not within 15
seconds of expiring), or S3 (both the

short and medium timers are running

.=y
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and the medium timer is within 15
seconds of expiring). If we considered
the sensitivity of each of the three output
states to the input parameters (the

variables of the program being
analyzed), we can see that Slisthe

least sensitive because it depends only
on long timer running. Conversely,
statesszands3 depend on both the

short and medium timers existing as well
as how long the medium timer has been
running.

We could use this information about
the sensitivity of S1 to:

1. debug a problem involving no
output when none of the timers are
running

2. see that it would be more efficient to

check for the program being in state
S1 first (because the fewest

conditions need to be checked)

3 identify a set of tests to cover all
possible ways state Sl can be created
More information on semsitivity

analysis can be found in reference [6]).
Structural Testing

Structural testing involves
identifying a set of test cases that will
"cover” all parts of the program.
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"Covering” a rule means that the test has
caused the rule to fire. "Covering” a
frame means that the test has caused an
instance of the frame to be dynamically
created. "Covering” a frame demon
means that the test has caused that
demon to be invoked. By using these
new definitions of "coverage”, structural
testing can be extended (from the realm
of CS) to non-procedural languages.
That, is by defining coverage for the
type of knowledge base constructs used
in the ES, structural testing can be
adapted for any kind of ES language.

The purpose of structural testing is
not to find errors directly but instead
onlytohclpensurethattwtingisorhas
been done comprehensively. As with
other techniques discussed in this
section, structural testing can be tedious
and time consuming. Tools can only
partially help with this. Tools can be
used to measure test coverage but it is
generally still up to a human tester to
create, execute, and analyzed the results
of test cases.

Structural testing of ESs can be more
difficult than for CS because ESs are
developed in a more iterative way. Each
time the knowledge base is changed, test
coverage must be recalculated (to
measure the coverage of the newly
modified knowledge base) and tests
must be rerun. However, when used as a
part of regression testng, structural
testing (i.e., measuring test coverage)
can help one figure out which tests need
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to be rerun and which may not need to
be to be rerun. This can be done by
recording the coverage of each
previously run test case and comparing
this to the knowledge base
modifications. Each test case that
covered a portion of the knowledge base
that changed should be rerun. This may
or may not be cost effective use of
structural testing. The cost of rerunning
all test cases should be compared to the
cost of recalculating test coverage.

An important point about structural
testing that should be pointed out is that
the analysis involved in identifying test
cases to cover all parts of a knowledge
often does result directly in finding
errors (ie., errors are found before
executing any tests). This is a
serendipitous benefit of structural testing
that should not be overlooked. This
benefit seems to arise because it

' encourages programmers to:

1. look at their programs from a fresh
point of view (that of test coverage)

2. study their programs in more detail

3. think about how their programs will
execute under specific scenarios

More information on structural
testing can be found in reference [7].

Specification-Directed Analysis

Specification-directed analysis, like
structural testing, is an extension of a2 CS
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testing technique. It merely invovies
extending the notion of specification to
one that is compatiable with the
constructs of non-procedural languges.

Recall that a specification is an
assertion about a part of a program and
can be thought of as a specific
requirement that the program is expected
to comply. Another way of thinking
about a specification is that it is a
requirement that the program designer
places on the program. A key difference
between specifications and typical
requirements is that a specication is a
precise and detailed assertion about how
a program is expected to behave and
there is usually a rigorous procedure that
can be used to show that a program
satisfies a specification.

Extending specification-directed
analysis to programs written in non-
procedural languages involves
identifying for each new non-procedural
construct, at least one format for
recording specifications, and at least one
technique for showing that a program
satisfies a specification written in this
format. Because there can be a variety of
specification formats and “proof
techniques”, even for a single type of
non-procedural construct like a forward
chaining rule, specification-directed
analyis is really a family of verification
techniques.

There are no known commercial
tools that support specification-directed
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analysis for any non-procedural
language. But, unlike the other
techniques discussed in this section,
specification-directed analyis can be
done by hand (ie., it is not as
overwhelmingly tedious as the other

techniques).

One example of specifying and
proving an assertion for the TLC
problemcanbeseenbylookingaxthe
longer CLIPS solution to the TLC
problem. In the timer module, there is an
assertion that the timer names are
unique.Alsointtﬁsmodtﬂe,thereisa
rule called "timer_name-conflict” that
can be shown to fire at the end of each
timer cycle to remove duplicately named
timers. So, informally, this demonstrates
that timer names are unique (at least at
the end of each timer cycle).

The above example brings up an
. important point with respect to
specification-directed analysis -
informality vs. formality. Another name
for specification-directed analysis is
"formal methods”. This is because
specification-directed analysis is widely
advocated as a being rigorously done
using formal mathematical methods.
And because many think that rigorous
proofs about specifications using formal
mathematical techniques are very very
expensive to generate, specification-
directed analysis is also often thought to
be very expensive. However, as the
above example illustrates, specification-
directed analysis can be done very
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informally without an rigorous use of
mathematics. So specification-directed
analysis need not be very expensinve or
difficult to apply. In fact, some believe
that this family of techniques will
eventually be used almost exclusively
(ie., will eliminate the need for the other
techniques).

There are some commonly used
types of specifications that can be
adapted for use in non-procedural
programs. One such type of
specification is data value constraints.
This is similar to data consistency
analysis except that in addition to just
defining the type of the variable, a
constraint on its value is also given. The
constraint may be just a simple list of
possible values or a complex condition
that depends on the values of other
variables. We have already seen one
exampleofthistypeofconstraintand
that was the unique name constraint on
timer names in the Timer module of the
longer CLIPS solution to the TLC
problem.

Another type of specification is the
use of preconditions and postconditions.
For a given action, a precondition
specifies a condition that must be true in
order for the action to be performed
while the postcondition specifies the
condition that should be true after the
action is performed. This type of
specification can be adapted for use in
forward chaining rules that perform
some action. The condition part of a




02/07/92 09:17 AM

such a rule already serves the purpose of
the precondition in that the condition
must be true before the rule fires. What
is missing is the postcondition which
states what should be true after the rule
fires. By adding such a postcondition to
rules, one can not only check that
individual rules are correct (by verifying
that the rule firing will result in the
postcondition being true) but can also be
used to check the interaction between
rules. It helps with interaction analysis
because the postcondition of one rule
can be compared to the left hand side
condition of another rule to more clearly
seec if one rule firing will lead to the
firing of another rule.

Preconditions and postconditions can
also be used in verifying the use of
demons and other types of triggered
functions. By associating a precondition
with a demon, one can more easily
compare the assumptions that a demon
makes with the rest of the system. For
example, if we had a frame-based
solution to the TLC problem which had
a demon that suppled the signal data
(ic., when a waiting or approaching
signal was detected), we could define a
precondition of "no signals unprocessed”
and a postcondition of "exactly one
unprocessed signal”. Together, these
would indicate that one signal should be
processed before the next one is read.

Most knowledge bases include some

functions. That is, they are not all just
doing logical inference with an
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occasional external action. For example,
the longer TLC CLIPS solution has a
function to change the light. This
function can be specified with a
precondition and postcondition pair as
follows:

precondition: green-light = NS or EW
postcondition: green-light = NS or
EW
and green-light /= green-light'

Where “green-light™ denotes the
green-light variables value before the
change-light function was invoked.
Together, these indicate that the change-
light switches the light from NS to EW
and from EW to NS. This function could
be more easily specified with an abstract
functional  specification. =~ Abstract
functional specifications are basically
very high level functional programs so
they are generally more natural for
programmers to use. An abstract
functional specification for the change-
signal function is:

direction:= NS if direction=EW
EW if direction=N$S

Two of the case studies (#1 and #2)
are more complete examples of
specification-directed approaches to the
development and verification of ESs.

More information on specification-

directed analysis can be found in
references [8], and [9].
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V&V

Techniques

Overview

In the previous section, we discussed
verification techniques that addressed
implementation issues of ESs. Because
those techniques were implementation
oriented, they were all clear box
techniques. In this section, we will
discuss techniques that address issues
associated with ES types of problems.
Because these techniques are problem
oriented, they will be black box
techniques.

The use of these techniques will not
depend on how the solution is "coded”,
in what language it is implemented, how
it is designed, or with what reasoning
strategies are used. In discussing these
techniques, we will only be concerned
with whether or not the solution
adequately  solves the problem,
satisfying all comectness objectives
(stated in some form of requirements).
We will also be concemed with whether
or not the system is based on a cormrect
set of knowledge. One could argue that
as long as the system adequately solves
the problem, it does not matter whether
or not the system is based on correct
knowledge. For some purposes this may
be true but for most purposes it will be a
dangerous approach. A system based on
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incorrect knowledge could cause
problems in several ways.

1.The system may be a source of
knowledge in the future.

2.In the future, a maintainer may
notice a difference between the
knowledge used in the system
(which is incorrect) and the behavior
of the system (which is correct) and
change the bahavior of the system to
be compatible with the knowledge
(so that it no longer works correctly).

3.Future maintainers will have

difficulty understanding the system;
they may be confused by the
incorrect knowledge.

So we will assume that it is
important whether or not the system is
based on correct knowledge.

Knowledge Acquisition
Correctness Checking

As just mentioned, it is important to
check that the system is based on correct
knowledge. It is also important to check
for correct knowledge as carly as
possible during development. This is
consistent with the goal of finding errors
as early as possible. The earliest point in
which incorrect knowledge can be
identified is when it is being acquired
from an expert.

Knowledge acquistion correctness
checking involves checking consistency
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and completeness of the knowledge
being supplied by an expert. It does not
necessarily involve checking the
accuracy of the expert's knowledge; this
would be difficult for the ES developer
who is often not an expert in the subject
domain or for an expert who is
developing a system based on is own
knowledge. This is similar to
requirements analysis where the goal is
not to judge whether the user really
needs the capabilities stated in the
requirments but instead involves looking
for inconsistencies and incompleteness
which would lead to difficulty in
developing a system that satisfies the
requirements.

Inconsistencies to be looked for
include the following types of problems.

1.Contradictory statements such as
terms being defined multiple times
and in different ways
2.Redundant statements such as terms
being defined multiple times in
similar ways
3. Conflicting goals or assumptions
Types of incompleteness to be
looked for include the following types of
problems.

1. Terms referenced but not defined

2.Goals with no tasks defined for
accomplishing them
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3.Tasks defined which do not attempt
to accomplish any defined goal

4.Situations which may arise but for
which no goal or task is defined

It is important to note that incorrect
knowledge identified during knowledge
acquisition does not mean that the
experts knowledge is wrong and it
would be very prudent for the
knowledge engineer to make this very
clear to the expert. Instead, incorrect
knowledge identified during knowledge
acquisition is most often an indication of
an error of communication, some type of
misunderstanding between the
knowledge engineer and the domain
expert.

More information on knowledge
acquisition comrectness checking can be
found in reference [10].

Incorrect knowledge can be most
easily identified (and prevented) by
representing the knowledge in a form
that is easily understandable to both the
expert and the knowledge engineer.
Although a complete survey of
knowledge representations is beyond the
scope of this course, the following are
some common ones that can be used.

* Decision tables: these are useful for
identifying incompletness among
goals, tasks, and situations. A
decision table may list goals vs. tasks
or situations vs. tasks. For example,

VII-31



02/07/92 09:17 AM

the state diagram for the TLC
problem could be represented as a
decision table by having the columns
in the table being states and the rows
being different situations. The
elements placed in each row/column
position would be the state to be
transitioned into, given the system is
currently in the state represented by
the column and the situation

by the row has occurred.
References [14] and [15] give
additional information on the use of
decision tables.

Concept trees or maps: these are
useful for identifying inconsistencies
in the definition of concept terms.
Terms can be defined in a
classification hierarchy (a tree) or in
a type of Venn diagram where
similar terms are drawn closer
together than dissimilar terms (a
concept map). For example, the
terms associated with signals in the
TLC problem could be represented
in a classification hierarcy as shown
below.
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Reference [12] contains additional
information on concept trees and
maps.

K-Trees: these are useful for
identifying  incompleteness  and
inconsistencies in beuristics
acquired. K-Trees are similar to
decision tables and classification
hierarchies. K-Trees are n-ary trees
where each non-leaf node represents
a condiion and the leaf nodes
represent the consequences (some
final decision). Tracing a path from
the root node to any leaf identifies
all the conditions that must be true in
order for the consequence to be true.
K-Trees are usually better than
simple rules when analyzing
heuristics. For example, conditions
and actions for the TLC problem
could be represented as shown
below.
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Reference [13] contains additional
information on K-Trees.

 Task timelines: These are useful for
analyzing expected sequencing and
timing of tasks to be performed.
These are most often used for
representing high level problem
solving (i.e., the flow of major tasks
involved in the problem solving
approach). For example, the overall
TLC problem solving behavior could
be represented as shown below.
Reference [12] contains additional
information on task timelines and
task analysis.
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Minimum Competency Testing

Many types of human experts are
certified by giving them minimum
competency tests. Examples included
medical doctors, accountants, real estate
brokers, professional engineers, and
Space Shuttle flight controllers. So it is
natural to consider developing similar
types of competency tests for ESs,
especially when an ES is to serve in the
same role as an expert who had to pass a
minimum competency test (e.g.,
requiring an ES for Space Shuttle flight
control pass the same tests that 2 human
flight controller had to pass).

In two ways, minimum competency
testing is similar to statistical testing.
The first way is that most human expert
certification tests do not require perfect
100% accuracy. That is, human experts
can fail to correctly answer some of the
test questions and still pass the test. But
if they answer a certain percentage
correctly, then they are "good enough”;
that is, they are not perfect but they have
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the required minimal level of
competency. The second way that
minimum competency testing is similar
to statistical testing is that minimal
competencytmareoftenrepmntative
of the types of problems that the expert
will encounter "on the job"; that is, they
are typical operational scenarios.

A good exercise for class discussion
at this point is the following. Assume
that the TLC problem is to be solved by
a human traffic controller (a traffic cop).
What are some of the questions that
would be on the traffic controllers
certification exam (i.c., his minimal
competency test) ?

More information on minimum
competency testing can be found in
reference [11].

Disaster Testing

As when validating most systems,
validating ESs often involves spending
more time testing situations that should
pever occur than is spent testing
situations that occur routinely. That is
because comrectness of the system is
sometimes most important when it is
dealing with disaster or potential disaster
situations which should rarely if ever
occur. And because errors, especially
incompleteness errors, are more often
found in parts of the system which deal
with disasters (this seems to be due to
the complexity of disaster situations).
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Disaster information (information
associated with recognizing disasters and
potential disasters, and with preventing
them or recovering from them) is
important for V&V of ESs. In addition
to the importance of testing that ESs
correctly react to diasaster and near
disaster situations, disaster information
is needed to check for completeness of
the system (ie., to make sure all
situations are properly covered). It is
also useful for exploring how well the
system understands what situations it
does and does not know how to handle.
This is because disaster sitations can get
complicated and require much more
knowledge and reasoning than the ES
can provide. Thus, disaster situations are
useful for testing whether the ES can
give up and declare that it can not
(safely) handle a situation.

In addition to using disaster
information for generating test cases, it
can also be carried through the design.
That is, the system can be verified to
comply with disaster requirements
during its development. This is most
conveniently done using specification-
directed analysis because disaster
information is  typically  most
conveniently represented as a constraint
specification.

Human experts are often very good
at quickly recognizing potentially
disastrous situations and preventing
disasters from occurring. Although some
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experts enjoy recounting near diasasters
they have encountered in the past (so
called "war stories”), experts often
sometimes neglect to discuss disaster
situations; sometimes situations that
should never occur are taken as
"common sense”. Because of the
importance of disaster information for
V&V of ESs, the knowledge engineer
should pursue acquiring disaster
information from the expert during
knowledge acquisition.

An obvious example of a disaster
situation for the TLC problem is that the
light should never be green in both
directions. This would allow for traffic
in both directions to collide.

Expert Review

Generally, the best people to check
correctness are the experts themselves.
Because experts already understand the
problem to be solved, the knowledge
needed to solve the problem and may
already know how to solve the problem
manually, the only thing they may be
missing is an understanding of the ES
solution. So the key to expert review is
representing the review material so that
an expert can (easily) understand it.

Usually, the expert can easily
understand test case scenarios and test
results. So they almost always can and
should be checked by the expert. Experts
should also be involved in checking the
correctness of acquired knowledge.
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Some form of the knowledge acquired
from them or another expert should be
given back to them for review. Many of
the knowledge representations such as
concept trees and K-Trees are easily
understandable by an expert once they
are given a little training in the
representation.

And with a little extra work to train
the expert and/or re-represent the
solution in a more natural form (e.g.,
narrative English), the expert can check
the system design. They can check the
overall problem solving approach of the
design (e.g., the major tasks and the
flow between tasks). Sometimes they
can even check the details of the
implementation to ensure that the
acquired knowledge was correctly
interpreted during implementation of the
system.

Reference [12] contains addition
informations on and suggestions for the
use of expert reviews.
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This section has discussed the
differences between ESs and CS,
poindngoutmatthediﬁerenmcanbe
grouped into two categories.

1. Differences due to how ESs are
usually implemented. These
differences are due to the use of non-
procedural languages.

2.Differences due to the types of
problems that ESs are usually built
to solve.

To illustrate the first category of
differences, two approaches to solving
the TLC problem were presented, one
approach was conventional (written in
Ada) and the other approach used a non-
procedural language (CLIPS).

To illustrate the second categoory of
differences, a new “more ES-ish”
version of the TLC problem was
presented and was compared to the more
conventional TLC problem.

Finally, a set of ES V&YV techniques
were summarized. Some of the
techniques addressed  the ES
implementation differences while other
techniques addresssed the ES problem
diffferences.
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Expert Systems V&V Guidelines Workshop
Part 3: Guidelines

By Scott W. French and David O. Hamilton

This section is part of the Expert Systems V&V workshop. It presents a set of
guidelines for V&V of expert systems. These guidelines are based on the materials

presented in Parts 1 and 2 of this workshop.
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Introduction

Goals

The goal of the workshop is to equip
the students with the knowledge
necessary to develop and implement an
overall V&V approach for the ES they
are currently working on or the very
next ES that they develop. That is, the
student should be able to leave this
course and begin to apply all the
material that has been presented. In
order for the students to be able to do
this, they will need to know not only
about ES V&V techniques but also
when to apply the various techniques
and how to combine different techniques
into an overall V&V approach.

The goal of this final section is to
providcasetofguidelin&sonwhenand
how to apply the various techniques. To
be most useful, these guidelines are
formatted into a step-by-step procedure.

Specifically, the goals for the student
are to:

1.understand the guidelines, including
the rationale for the guidelines

2. understand how to combine the ES
V&V guidelines with conventional

software (CS) V&V guidelines (That
is, the student should .be able to

a3 NmENTery o
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develop a combined V&V approach
for systems that include CS as well
as ESs)

3.understand how to tailor the
guildelines for different types of ESs
(That is, the student should be able
to identify specific characteristics of
their particiar ES and tailor the
guidelines to fit these
characteristics.)

Overview

Before beginning the discussion of
guidelines, some general misconceptions
are reviewed. These include
misconceptions about software in
general in addition to expert systems.
The purpose of covering these
misconceptions is to create the proper
mind-set for discussing the guidelines
and begin motivating the students so
they will be more receptive to the

The approach used to presenting the
guidelines is motivational. Building on
the mind-set created by discussing the
misconceptions, a set of conclusions are
made from the material in parts 1 and 2
of this workshop, conclusions on what
can and should be done in the V&V of
ESs. The conclusions of these inferences
lead directly into the general guidelines.

The guidelines are simply listed and
described. Because they have been
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motivated by previous discussion, they
should not need a lot of explanation.

The final discussion of tailoring the
guidelines is, in many ways, the most
important discussion of the workshop. It
is where all the material presented is
brought together into a format that the
students should try to follow when they
reurn to their jobs following this
workshop.

02/07/92
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Common Software
Mi r

Software in General

A naive view of software
development is that once the only end
product is the executable software. But
to understand how to use the software,
some type of user's, reference, and/or
training material must also be supplied.
Also, software rarely remains unchanged
after its first release but instead is
continually updated and revised many
times. In order for maintainers to safely
and effectively change the software,
some type of maintenance information
must be provided. Finally, becavse each
change to the software requires
reverification and revalidation of the
entire system (not just the changes
made), V&V work products such as test
cases must be preserved to for

reverification and revalidation.

It has also been suggstedl that the
documentation be organized so that it
appears that the system was developed in
anidullysystematicway.'lhatis,by
looking at the documentation, it appears
that the system Wwas developed by
perfectly  following 2 particular
development methodology (a "rational
design process”).
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Rapid prototyping is becoming a
frequently used development approach,
especially for expert systems. To take
full advantage of the prototype, people
often simply continue developing the
prototype, adding capabilities and
performing V&V, and make the
prototype into the product/operational
system. However, this approach is
usually a misguided one. Prototypes are
almost always built as quickly and
cheaply as possible, taking shortcuts
whenever possible and using such a ad-
hoc system as the foundation for a long
term operational system can lead to
many problems. Another problem
regarding evolving from a prototype is
more subtle but somewhat more
important. This problem is the
assumption that a prototype of a piece of
the problem will scale up to a solution to
the entire problem23. This is a
particular problem for ESs because onc
can sometimes solve a portion of the
problem very easily using some of the
powerful non-procedural languages but
run into extreme difficulty solving all
aspectsoftheproblem.'lheleapintoa
full development effort based on the
succusofasmallprototypehasbemtlw
cause of more than one ES project
failure.

As discussed in part 2, formal
methods (specification-directed analysis)
are widely considered to be impractical
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for V&YV of most software because they
are too expensive and difficult to apply.
Anthony  Hall®  lists  seven
misconceptions about the use of formal
methods (too expensive, too difficult,
etc.). There is a lot of confusion about
this subject and a lot of controversy.
Without getting sidetracked into the
esoterics of program proving, an
important point to bring up is formality
vs. rigor. One dictionary definition of
formal is "based on conventional forms
and rules” and a definition of rigor is
"strict precision - exactness” (both are
from Webster's New Collegiate
Dictionary). It is possible to construct
rigorous informal arguments about
programs, ones that strive for precision
but are not constructed using the
convention and form of symbolic logic
notation. An example was given in part
2 conceming unique naming of timers.
We were able to precisely show that
timer names must be unique at the end
of each time cycle but we only
constructed an informal natural language
argument. However, it is still helpful to
understand formal arguments so one can
avoid some common logical pitfalls and
generally do a better job of constructing
rigorous arguments.

Another misconception about formal
methods is that they are all about
proving that programs are "correct”.
There are two problems behind this
misconception. One problem is in
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defining correctness; we have to know
what "correctness” for a certain program
means before we can even begin to think
about proving correctness. And as we
have seen in part 1 (pieces of the
verification puzzle), there are many
different forms of correctness and some
of them are quite open ended. So we can
not even begin to think about proving
complete correctness of a program.
Instead we are limited to proving certain
properties about programs (e.g., unique
timer names). Another problem is that
some forms of correctness such as user-
interface comectness do not lend
themselves to rigorous arguments,
formal or informal. But once we know
what we can and can not justify through
the use of formal methods and use
formal methods for what they do best,
they can be very powerful tools.

Expert Systems/Al in Particular

ES technology is often thought of as
being some magical new set of tools for
building intelligent software quickly and
easily. In reality, one spends a lot of
time and effort to construct software that
is quite unintelligent, though highly
useful. Part of the reason for this
misconception is that non-procedural
languages can be used to quickly solve
some difficult looking problems.
Unfortunately, real expert systems must
incorporate a lot of knowledge that is
often difficult to aquire and must be
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developed and tested as any other type
of software. Roger Schank, a well
known Al researcher who has spent a lot
of trying to build real-world intelligent
programs has summarized this concisely
by saying "Al entails massive software
engineering. ... Software engineering is
harder than you think: I can not
emphasize strongly enough how true this

statement is."4.

Another ES misconception is that
they are "all-or-nothing”; something is
either an expert system or not an expert
system. In part 2 of this worshop, we
have discussed some characteristics of
expert systems and pointed out that not
all expert systems have all of the
characteristics. This might lead one into
trying to decide whether or not
something is an ES. As mentioned
carlier in the workshop, it is better to
just look for ES characteristics and not
wonyaboutwhetherornotmeoverall
systemisreallyanESornot.Itis
important to note that one must look for
all characteristics and not just the easily
recognized ones. For example, onc
should not assume a system does not
have any ES characteristics just because
it is wriften in a conventional procedural
programming language. Likewise, one
should not assume that a system has all
the ES characteristics simply because it
was written in a non-procedural ES
language. Finally, it should not be
cxpectedmatallthepansofasystem,
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especially a large embedded system,
consistently share characteristics. Instead
thercmaybepansthathavesomcES
characteristics, other parts that have
other ES characteristics, and some parts
with no ES characteristics at all.

A misconception about ESs that is
important from a V&V point of view is
whether or not they can ever be trusted.
Although it has been suggested that ESs
are inherently unreliable, and even
unpredictable, because they are based on
heuristic information, it is important to
remember that ESs are still computer
programs executing in a deterministic
computer.  Therefore  they  are
predictable; they can be analyzed and
predictions made as to whether they will
operate as desired or not as desired. The
heuristics upon which an ES is based can
also be analyzed and certain properties
about the heuristics can be made and
proven. Most importantly, one can
determine, with a small degree of
uncertainty, whether or not an ES will
be safe to use or not.

An ES is more than just a non-
procedural  program; it has more
characteristics than that. So there is
much more to leaming about ESs than
just learning ES shells (i.e., ES
languages and their development
environments). And to V&V ESs, it is
best to have a good understanding of
ESs. To fully understand ESs, one needs
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to understand many forms of knowledge
representation, many forms of reasoning
strategies, how to acquire knowledge
from an expert, and how to engineer
software. The most appropriate form of
representation and reasoning strategy
should be used for the problem at hand
and using the right form makes analysis
of the system much easier. Also, it is
good to understand and be prepared for
common problems encountered in
knowledge acquisition so that bad,
incomplete, or poorly organized
knowledge is not used as a basis for
Finally, since a large part of building an
ES is basic software engineering, a good
understanding of software engineering is
needed to build and understand ESs.
Because so much knowledge is needed
to build ESs, two types of people are
sometimes involved in the development,
domain engineers and system engineers.
Domain engineers are more familiar
with the subject domain and how to
acquire and represent knowledge.
System engineers are more familiar with
the computer aspects of ESs such as
non-procedural languages and software
engineering.
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Overview

So far, a lot of foundation
information has been  discussed,
including key V&V ideas, conventional
V&V techniques, ES characteristics, ES
V&V issues, ES V&V techniques, and
some common related misconceptions.
Most of the ideas have been illustrated
using a single problem, the Traffic Light
Controller (TLC) problem.

Based on all this information and
ideas, a set of conclusions can reached
about what one should consider when
doing V&V of ESs. And a set of
straightforward  guidelines can be
generated that address the
considerations. We will follow this
approach in this section by first listing
all the key ideas that have been
discussed so far. Under each key idea,
we will list a set of implications that
directly follow from the key idea. These
implications could be about some design
or requicments information needed for
V&V, a development approach that
would simplify V&V, when a certain
technique would or wouldn't apply, or a
general consideration for managing the
V&V process. Most of these
implications may seem somewhat trivial
but they are all very important
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considerations and should not be
forgotten.

Continuing the basic approach, next
a set of guidelines will be listed. These
guidelines based on the implications.
That is, will be suggested approaches to
collecting and using information needed
for V&V, determining the right set of
V&V  techniques to use, and
planning/managing the V&V process.

Finally, a straightforward step-by-
stepapproachtoV&VofESsis
discussed. This high level approach
makes use of all the suggestions (ie.,
guidelines)  previously listed and
includes steps for identifying key ES
characteristics and tailoring the V&V
approach based on the characteristics
identified.

Conventional Validation
Implications

The first key idea is what is meant
by V&V. Validation can be loosely
defined as trying to answer the question
»am I building the right product™. An
obvious implicition of this definition is
that in order to perform validation one
must be able to determine when
something is the right product or not.
That is, one needs to know or at least
haveaverygoodidwofwhatme
user/customer wants. And ideally this
should be stated early in the
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development process. This statement of
what is desired, ie. what the right
product is or is not, is called
requirements. If there is sufficient time
to do so, it would be good to read the
" following poem to the class which will
give emphasis to this very key
consideration.

he Night before Crisi

Twas the night before crisis,
and all through the house,
not a program was working,
not even a browse.

The programmers were wrung out,
too mindless to care,

knowing chances of delivery
hadn't a prayer.

The users were nestled

all snug in their beds,
‘while visions of windows

danced in their heads.

When out in the lobby
there arose such a clatter,
that I sprung out of bed

to see what was the matter.

And what to my wondering
eyes should appear,
but a Super Programmer,

oblivious to fear.

More rapid than eagles,
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his programs they came,
and he whistled and shouted
and called them by name.

On Update ! On Add !

On Inquiry ! On Delete !
On Editor ! On Closing !
On Functions Complete !

His eyes were glazed over,
his fingers were lean,

from weekends and nights
in front of a screen.

A wink of his eye,

and a twist of his head,
soon gave me to know
I had nothing to dread.

He spoke not a word,

but when straight to his work,
tuming desires into code,
then turned with a jerk,

And laying his finger
on the ENTER key,

the system came up,
and worked perfectly.

The updates, updated;

the deletes, they deleted;
the inquires, inquired;

and the closing completed.

He tested each whistle,
he tested each bell,
with nary a re-boot,
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and all had gone well.

The system was finished,
the tests were concluded,
the client's last wishes
were even included !

The user smiled and then gasped
at what he had seen,

"It's just what I asked for,

but it's not what I need.”

- Anonymous

The moral to this story is to try not
base the system on a loose informal
indication of what the user/customer
wants. Sufficient time should be spent
validating requirements to make sure
they are what the customer/user wants
and are not just what was asked for.

Recall that there are many different
pieces to the V&V puzzle. There are
different kinds of correctness that each
need 1o be considered. One must know
what types of correctness are most
important. At a minimum, one must
know whether or not the system will
satisfy the user's needs.

Another pan of the verification
puzzle is completeness and consistency-
Once one understands the problem to be
solved and what the system is expected
to do, they should analyze this
understanding, checking for inconsistent
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statements and signs of missing
information.

An important implication of the
verification puzzle key idea is that once
all the pieces to the puzzie are known,
they must all be fit together. That is,
once one has identified all the
correctness considerations and
developed a complete and consistent
picture of the problem to be solved, he
or she must develop a V&V approach to
address the type of problem and
correctness considerations.

Recall that validation is based on a
black-box view of the system. That is,
the tester does not look inside the system
but only bases success or failure on
observable behavior of the system. This
kcyideaimplimthat,inordato
perform validation, one must know what
is correct behavior. A standard way of
describing expected behavior is via
stimulus/response  pairs. That is, one
needs to know more than what
knowledge to base the system upon; all
the stimuli and associated responses
must also be identified.

Recall that a natural way of
organizing stimulus/response pairs is by
creating operations SCEnarios. Each
scenario is a series of stimulus inputs to
the system along with expected
responses from the system. Thus, if
users can describe how they expect to
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use the system, the knowledge engineer
can extract stimulus/response pairs from
these descriptions which can be used to
create validation tests. One good way of
helping the user generate the scenarios is
via prototyping. A knowledge engineer
can get operational scenarios by
observing users using a prototype as
they would expect to use the operational
system. Prototypes make it easier for
users to visualize how they will use the
eventual system and knowledge
engincers can better understand the
scenarios by observing them than by
hearing them described.

All of the validation implications can
be summarized in one word -
requirements. Requirements should
contain information about all the
relevant forms of correctness and how
the system is intended to be used.
Requirements should be thoroughly
analyzed for consistency and
completeness. Prototyping is a useful
method for early analysis of
requirements.

Conventional Verification
Implications

Recall that comprehensive validation
of any complex system is practically
impossible. However, by dividing the
system into managable pieces and by
looking inside the system (i.e., doing
verification), one check for comectness
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less expensively and more
comprehensively. The obvious
implication of this key idea is that
verification greatly reduces the cost
testing a system. But verification adds
new pieces to the V&V puzzle, namely
when and where to check what types of
correctness.

Verification can loosely be defined
as trying to answer the question "am I
building the system right 7" It directly
follows from this definition that to do
verification, one must understand how
the system is being built and how it
should be built. How the system is being
built can be seen by looking inside the
system at various points during
development. How the system should be
built needs to be documented in some

type of system design.

Recall that a key aid to verification
is modularity. Dividing the system into
small relatively independent pieces
benefits verification in many ways. So it
is obviously advantageous to develop a
very modular system.

Many different verification
techniques exist but none of them are
comprehensive. Each is best at detecting
certain types of errors, can best be
applied at certain points during
development, and requires certain
inputs. This imples that a mixture of
techniques should be used. Furthermore,
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to minimize cost, the techniques should
beappliedinacertainorder(i.e.,at a
certain point in the development
process).

Another key point is that the eariler
an error is found, the more cheaply it
canbefoundandﬁxed.Thisdirectly
implies that verification should be done
as early as possible and that emphasis
should be placed on early detection
techniques.

The static testing class of techniques
can be applied earliest because they do
not rely on executing the software. So
they should be given particular
emphasis. Unfortunately, many of these
techniques are difficult (and somewhat
painful) to apply. This is not so much
because the techniques are complicated
but because they require a certain
amount of discipline on the part of the
programmer. They can also lead to
tedious and time consuming work.

Abstraction, refinement and proper
documentation (as well as modularity)
all make static testing easier. Since a
good design can make static testing,
which is important, much easier, having
awclldesignedsystanshouldbeahigh
priority.

All the verification implications
discussed in this section can be
summaized in one word - design. How
the systernisd:signedhasastrongand
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direct impact on how easily the system
can be verified. It is also part of
development and thus the cheapest place
to find and correct errors.

General Expert System V&V
Implications

The key idea that has the most
implications for ES V&V is that ESs are
software. Being software, the basic
V&V implications discussed in the
previous section all apply to ESs. It also
means that one could start with a
convetional V&V approach and modify
it as necessary for ES characteristics.

The above implication turns out to
be very convenient because as has been
pointed out, ESs may satisfy some, but
not all of the ES implementation and/or
problem characteristics. So if ES V&V
and conventional software V&V were
radically different, one would have to
make the difficult decision of whether
the system should be treated as
conventional of as ES. Instead, since ES
V&V is more of a varant of
conventional V&V, one can use a
conventional V&V approach as a base
and modify it as necessary based on the
ES characteristics (and extent of them).
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Expert System Validation
Implications

Recall that one ES characteristic is
that the system mechanically applies the
experts heuristics ("rules of thumb") to
solve a problem. This occurs when the
solution to the problem already exists in
a expert and this solution need only be
translated into a computer program. An
implication of this characteristic is that
since the ES is a "clone” of the expert, it
should behave closely to the expert. So it
must be validated by comparing it to the
expert. An implication that is important
but so obvious that it might be
overlooked is that an expert must be
readily available for validation. It is
always obvious that experts needs to be
available during knowledge aquisition
but sometimes forgotten that they also
need to be available for validation
activities.

Instead of the ES being a clone of
ane existing expert, it may be a new
solution to a complex problem that has
never been  adequately  solved.
Oftentimes in such cases, it is difficult to
determine if a solution to the problem is
truly correct. For example, in order to
check whether a certain schedule is an
optimal one, all possible schedules may
need to be generated in order to show
that none of the other schedules is better.
If this is impractical, then one may have
to be satisfied with the fact that the
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generated schedule is reasonable and
"looks good" (e.g., it is at least as good
as the schedule generated by any
previous approach).

It may be the case that solutions can
be easily checked for correctness but can
really only be checked by an expert.
This is because correctness my be vagely
defined. It may be possible for a non-
expert to tell whether or not some of the
ES responses are right but hard to
determine the correctness of others. In
these cases, the expert will need to be
available to help in this analyze test case
results.

Expert System Verification
Implications

The format of a software system's
design and code has a large effect on the
verification of that system. Because the
format of ES design and code is very
different from conventional software, it
would seem that there would be some
related verification differences and as we
have seen, there are some differences.
Most of the verification implications for
ESs are due to the use of non-procedural

languages.

As was discussed in part 2, the
internal interactions between parts of an
ES can be complex and difficult to
follow. Examples of rule interaction
were given in the sample solutions to the

)

3

g .
’ ’



TLC problem. Rule, frame, etc.
interaction, especially if it is complex
and not made explicit can make
knowledge bases extremely difficult to
analyze. For example, checking the
correctness of a single rule potentially
requires analyzing possible interaction
(both direct and indirect) with every
other rule in the knowledge base. A
direct implication of this issue is that
inspections, which are an important
verification tool, can be much more
difficult and less effective than with
conventional software.

A problem closely related to the
internal interaction problem is that non-
procedural programs, by their nature, do
not make the problem solving method
explicit. So when a particular problem
solving method needs to be implemented
in an ES, it can be difficult to verify.

Internal interaction and lack of
explicit problem solving methods create
the biggest ES verification problem -
difficulty in manually analyzing
knowledge bases.

Ascparaleismeisimpliedbyme
highly iterative development that is most
often used in developing ESs. Each time
aprogramischanged,itmnstbe
reverified before it is released.
Additionally, if this issue is combined
with the need to catch errors as early as
possible in the development process, it
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can be concluded that a program should
be reverified each time it is changed,
whether the newly changed version is
released or not. So the more iterative the
development  process, the more
reverification is done. So it is apparent
that ESs will involve a lot of
reverification such as regression testing.

Other Implications

Aside from conventional software
and ES characteristics and aside from
software issues at all, there are a few
"common sense” implications that
should be clearly made. These are called
"common sense” implications because
thcydonotrelyuponmyanalysisofthe
characteristics of a system and are ones
that it would be expected that anyone
would immediately recognize.

The first implication is that V&V
should be performed and it should be
performed as a distinct activity. Any
effort to check the comectness of a
systcmisaV&Vactivityandonecan
not know if the system solves any
problem without checking to see it if is
correct. So if correctness is important,
V&V must be done. If correctness is in
no way important, that is if one cither
has no expectations about what the
systemwilldoordo&snotcarewhatme
system does, then it is questionable why
the system is being built at all.

Ed
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Another common sense point is that
V&V will take time and money. A
recent survey of ES projects found that,
on average, about 20% of the total
development cost is spent on V&V. So if
one needs an estimate of the total
development cost, the cost of V&V
should be included in the estimate.
Additionally, many of the V&V
activities really need to be done by the
people developing the system and some
of them will take some extra time (e.g.,
minimum competency testing). Time
should be included in the development
schedule for V&V activities. When they
are not included in the schedule and an
attempt is made to skip V&V or do a
minimal amount of it, especially early in
the development process, there is a great
risk of schedule over-runs later in the
process when errors begin showing up
and are time consuming to correct.

One common sense point mentioned
carlier is that the expert is the best
person to check the correctness of the
system. So, obvously, one should try to
involve the expert in some of the V&V
activities. This may be difficult to do
since often the expert’s time is hard to
get. But it is important to keep in mind
that it is easier to get part of the experts
time if one asks far in advance of the
final validation of the system. It is much
harder to get the expert to drop other
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things at the last minute to help with
validation of the system.

It is part of human nature that after
someone looks at something for a long
time, they begin to see nothing new or
different in it. The also become bored at
looking at it. So if someone misses an
error the first time they analyze a
program, they are less likely to catch it
the second time, even less likely to catch
it the third time, etc. For this reason, and
for many other reasons, the developer of
a progam is usually the least qualified to
evaluate the comrectness of it. Analysis
by another person who was not involved
in development can often find more
errors; this is usually called independent
V&V. So independent V&V (IV&V)
should be done if possible, that is, if one
or more people who were not involved
in the development of the system can be
found to help with V&V.
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Guidelines

Overview

From the implications discussed in
the previous few sections, some
recommendations for V&V of ESs are
readily apparent. After having discussed
all the implications, the
recommendations, or guidelines, can be
listed with little discussion. To make the
guidelines a little easier to use, they are
organized into major categories

What will require a little more
discussion is how to approach the V&V
of a system "from scratch”. That is, it is
often much easier to smudy V&V
techniques and  discuss general
recommendations than it is to develop a
complete V&V plan and approach for a
project that has no current V&V plan or
"explicit approach.

Because the development of a
completely new V&V plan and approach
can be difficult the first time, the
students will be given a longer exercise
to practice this. That way, they will be
much better prepared to apply the
material in this workshop to their real
ES projects.
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Project Management Guidelines
Plapning

Many of the implications were
concerned with various aspects of
preparation and planning for V&V.
Various resources such as time, money,
and personnel need to be allocated for
V&V. It is not so much the case that
V&V adds a lot of cost and time to the
overall development plan but just that
for the plan to be complete and accurate,
V&V should be included.

All resources that may be needed for
V&V should be included in the plan but
one resource that is particularly
i portamistheexpertstime.lthasbem
discussed in several plances how the
cxpencmbeusedtomstwithV&V
but usually the expert’s time is difficuit
to get. Early planning to use the expert
will allow the expert to plan ahead and
reserve time for helping with V&V.

Also, V&V can get forgotten if
explicit plans are made for doing it. This
is because much of the verification work
needs to be done early during
requirements and design time yet
sometimes the need for verification is
not apparent until much later in the
development when, as has been repeated
many times, it is much more expensive
to do.
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There may also be a tendancy to skip
the creation of several things that or
needed for V&V because they are
perceived as not important to the
primary job of generating the system.
For example, many verification
problems can be mitigated by designing
the system in certain ways. So planning
to spend more time designing the
implementation can payoff later in
reduced verification cost.

In figuring out a way to manage
V&V for a project, there is no need to
start from scratch. There do exist life
cycle processes along with associated
descriptions and documentation formats
that cover a lot of the conventional
aspects and thus are a reasonable base to
use for managing ES V&V. Just make
sure that the life cycle includes all three
types of testing. Also make sure that the
lifecycle used as a base is easily
tailored. Most well-documented
processes are primarily for large projects
- so if they are to be used on a small
project, they will need to be
"downsized” to fit the project. The life-
cycle may also need to be tailored to fit
some particular ES characteristics. At a
minimum, the life-cycle should support
an iterative development approach.
Finally, the life-cycle should be able to
include support for checking all types of
correctness and all types of V&V
techniques. For example, the life-cycle
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should be able to accomodate

prototyping.

A guideline that does not directly
come from the implications but does
address several of them indirectly is
configuration management. In order to
check cormrectness for a system, one
needs to understand exactly what is
included in the system. This is especially
important if the system is changing a lot,
as in a highly iterative development
process. Proper configuration
management includes keeping track of
versions of all parts of the system and
keeping track of which part versions
went into a given executable system
release. In addition to reducing the time
spent tracking down problems only to
find that there was a misunderstanding
of what was included in the system,
proper configuration management can
help keep track of which parts have been
V&V'ed and what type of V&V has
been done on them. This is important to
get the full benefit of a modular design.

Problem Analysis Guidelines

The better one understands the
probiem to be solved, the better one can
check that a proposed solution does
indeed solve the problem fully and
completely. So it is a good idea to spend
some time in the beginning of a project
to understand the problem to be solved.
This is especially important with ESs

=
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because of the potential complexity and
vagueness of the problems they address.

It may be necessary to try to reduce
the size and/or simplify an initial
problem description8. Often, the first
description of the problem to be solved
contains extra information that is not
really part of the problem. It may also
mention related problems that are not
intended to be solved. It might include
problems that would be nice to solve if
possible but are not as important as the
main problem to solve. Finally, as was
discussed under ES misconceptions,
there can be some over optimistic

jons about what can be done
with ES technology and this leads to
over overly large and complex problem
descriptions. It is important to identify,
as clearly as possible, the main problem
to be solved and realistic expectations
about what the system is expected to do
to solve or help solve the problem. Once
the main problem is solved or at least
well-understood, it can be enlarged or
enhanced. This approach of first
working on a reduced problem and later
expanding the problem is consistent with
the iterative development and V&V
approach.

When analyzing a problem to be
solved, it is important to not commit to
an implementation approach, especially
not to commit to building an ES or not.
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Silly as it may sound, one guideline
isjusttoexpectthesystemtowoﬂ:
correctly3. This may sound silly because
it should seem obvious that if one builds
a system, one should like for it to work
correctly. However, as has been
discovered in surveying both ES and
conventional software developers, there
is typically a very low expectation about
the likelihood that a system will work
correctly,atleasttheﬁrsttimeitis
executed. Such low expectations should
be avoided because they can lead to a
lack of confidence in early detection
methods (i.e., an attitude of "No matter
what I do, I know it is not going to work
so let me just execute it and find out
what isnt right"). So the low-
expectation becomes a self-fulfilling

prophecy.
Requirements Guidelines

Agoodsetofmquimmemsisme
comerstone of V&V. So either once the
problem is understood or as the problem
is being understood, it is important to
state as precisely as possible what the
system is expected to do. The
description of the requirements may be
formal or informal but it should be
easily undersood by a wide audience of
users and developers. User's need to
understand the requirements so they can
ensure that it describes what they really
want. Developers need to understand the

=
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requirements to ensure that they will be
able to tell if the system is correct (so
developers do not have to constantly ask
"does this look right ?"). Prototyping
parts of the requirments first can help
users and developers come to a common
understanding about  what the
requirements mean. But prototypes are
very difficult to V&V against so in
addition to the observable prototype
behavior, a more precise statement of
requirements is needed.

It is important that the requirements
be as complete as possible. They should
include a complete description of the
behavior expected from the system. As
appropriate, the expected behavior
should be documented in the form of
scenarios describing the expected
operational use of the system. But
unexpected uses and situations should
also be considered (though one can
never know for sure if all situations and
issues are covered by any set of
requirements).

In addition to the behavior of the
system, all other types of comectness
should be considered and addressed in

the requirements.
Design Guidelines

An extremely important point of this
workshop is that the way a system is
developed, especially the way it is

020792

designed can either make verification
much easier or much harder. The
primary way that design can help with
verification is by breaking up the system
into small manageable pieces. The
different pieces, or modules, can then be
verified separately and verification of
many small systems is much easier than
verification of one large system. So
modular designs should be developed.

Modular designs, as discussed
earlier, are more effective for large
systems when they are documented at
differing levels of detail. So abstraction
and refinement should also be used
during design.

There are other ways that system
design can make verification easier. To
assist the verifier in checking the
completeness of design, the design
should be cross referenced back to the
requirements. Checking of consistency
can be made easier by using a common
notation across all modules. It can be
very confusing to compare two modules
for consistency if they are documented
in very different ways. It as important
that each module be documented in a
particular style as it is that the style is
consistent. So, for example, although
precise mathematical notation is, in
general, good for verification, it is not
good if all the other modules are
consistently documented using
structured English.
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General Guidelines

Because Independent V&V can be
effective, it is advantageous to look for a
independent group of people to help in
V&V, say, final validation. Sometimes a
prospective user who has not been
involved in V&V can serve this role. It
is not necessary for a developer to spend
extra time teaching the user about the
system. For if the user can not figure out
the system and validate that it does what
jt should from the available
documentation that demonstrates that the
available documentation is insufficient.

As has been emphasized several
times, one should always try to identify
errors and eliminate them as soon as
possible. Also, one should use a variety
of techniques instead of relying on any
one technique.

V&YV Technique Guidelines

For all modules that lend themselves
1o static testing methods, static testing
should definitely be used. In other
words, static testing should be used
whenever possible and to the greatest
extent possible. The specific static
testing techniques will depend on the
design/implementation langauge. Rule
consistency checking should be done on
rule-based  systems  while data
consistency  checking  should be
performed on frame-based systems. If a
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classification type of ES is being
developed, sensitivity analysis should be
used. In all cases, some type of
consistent design notation should be
used to create specifications for
specification-directed analysis.

One class of errors that is difficult to
detect using static testing techniques is
user-interface testing. These are often
best validated by exercising them. So, in
order to find these types of errors early,
one must find some way to execute user-
interface functions early in the system.
This can be done by creating simply
simulations of lower level routines that
have not yet been finished (called
"stubbing out a module” or
nscaffolding”), say by having them
always return a constant value. This is
sometimes called "scaffolding”. In
general, any function that one does not
feel comfortable with after static
analysis should be integrated into a
scaffolded system and executed. In a
way, this is like combining prototyping
with normal system development.

The above approach can be
combined with iterative development by
first developing those functions that are
thcmostﬁsky."[‘batwaydlcymbe
checked out early. Then other modules
that are more straightforward can be
incrementally added. Each time, the
system should be run through a realistic
set of test cases. Good checking of user-
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interface and utility correctness requires
the system to be used the way it is
expected to be used in actual operations.
It is not good enough to run a few
simple contrived test cases. Once a large
enough portion of the system has been
integrated, stress and performance test
cases should begin to be executed to
check out resouce-consumption
correctness and to check out portions of
the system that are only used in unusual
situations. As the system grows, it is also
good to randomly exercise all portions
of the system, whether they are expected
to be used often or not.

At various  points during
development, one should assess the
amount of testing that various parts of
the system have received. If there are
major parts of the system that have
received little if any testing then the
testing approach (e.g., the test case suite)
should be reassessed and enhanced to
where more parts of the system are
covered. To make test coverage analysis
easier, it should be combined with the
configuration management system SO
that one knows which parts of the
system have been changed since they
were last exercised by a set of test cases.
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R nd ch

The previous set of guidelines are
very straightforward to understand,
given the material that has been covered
in this workshop. What is not as easy is
to see is how to put them all together in
a real-world setting to develop and
implement a V&V approach for an
actual expert system. So in this section,
a recommended set of steps will be
covered that can walk someone through
the process of developing and
implementing a V&V approach.

Before discussing the steps, it is
important to point out ahead of time that
it is not necessary that each step take a
lot of time. Each step involves asking
oneself a lot of questions. It is not
necessary to initiate a study project for
cach question. It may only necessary to
ask oneself the question and spend a
minute thinking about the answer. It is
not always necessary to even arrive at an
answer. An answer of "I just don't
know" may be the right answer. The
important thing is to not neglect to ask
oneself a question ahead of time that
could be answered and which would
change the V&V approach, preventing a
serious problem or issue from arising
later.

Asking and answering even trivial
questions and documenting the answers
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can be of great value on projects
involving several people. The answer
may be obvious to one person but not
obvious to another. Or the answer could
be obvious to two different people but
they each think the answer is different.

Step 1: Analyze the Problem

The first step is to thoroughly
analyze the problem to be solved. For
ES projects, especially those that solve
complex problems, this step may be
quite long and involved. It may involve
an extensive prototyping  activity,
including multiple prototypes, to better
understand risky and/or complex parts of
the problem. And if the total problem to
be solved is very large, analysis of the
parts of the problem may be done while
other parts of the problem, that have
already been analyzed, are being
implemented.

As part of planning for V&V, it is
important to look for critical and non-
critical parts of the system. Hazard and
fault analysis (see part 1) are useful
techniques for identifying critical parts
of the problem. If it is possible to
redefine the problem to reduce critical
parts, that will reduce the V&V needed,
as well as making the eventual system
much safer.

If parts of the problem will require
significant amounts of knowledge to
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solve, identify where that knowledge is
to come from. That is, does it exist in
the head of an expert ? In the form of
written documentation ? Or will it need
to be created ? This characteristic needs
to be identified so it will be known if the
knowledge in the eventual system can
just be analyzed by an expert or, if the
knowledge is created as part of solving
the problem, extensive analysis and
testing of the new knowledge will be
needed.

Without thinking about how to solve
the problem, it is important to begin
thinking about what a solution to the
problem would do and how it would be
used. For example, would the system
solve the problem and take action on its
own ? Or would it make a decision and
simply report the decision back to the
user ? Or would extensive interaction
between a user and the system be
required in order to use the system ?
This type of information can be used to
begin identifying the kinds of
correctness that will be most important.
It also helps to understand the scope of

the problem.

The problem should be compared
against the characteristics of an ES
problem. This is not so that one can
determine whether an ES
implementation technique should be
used. Instead, it is only to determine the
characteristics of the problem to predict
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whether any ES problem V&YV issues
will be encountered. For example, does
it require human/expert judgement to
determine if the problem has been
successfully solved (i.e., will the expert
be needed to look at test case results) ?
Will it be possible to realistically
determine if any solution is correct or
can one only determine reasonableness
of any solution ? Has this problem been
solved before (i.c., can test results of the
eventual system be compared to
solutions generated by other means) ?

Step 2: Do Initial Planni

It is important to emphasize that this
step involves only initial planning.
Because much is often learned in the
process of implementing an ES,
comprehensive up-front planning is
sometimes not a good idea. And, as with
analyzing the problem, it is not the case
that this step is only done once during
the development of the system; it may
be done for each iteration. Or it may be
done continuously, as each new
problem, issue or characteristic is
identified, the plan and approach is
adjusted accordingly.

Probably the most important
consideration of initial planning is to
determine what is to be accomplished
(during the first/next iteration of
development). That is, is the entire
problem to be solved or just a certain



part of it ? Not only does this make it
clear what the developers are supposed
to do but it is also absolutely mandatory
thing for V&V to be performed. Unless
one knows exactly what goal one is
working toward, there is no way to
assess whether the goal has been
achieved.

It is also helpful during this step to
try to understand how critical each goal
is. This is slightly different from
analyzing the criticality of different parts
of the problem. During initial planning,
it is important to understand the
criticality of each goal (for the first/next
jteration) and how critical it is for that
iteration. For example, suppose there is a
goal of implementing a certain feature
that to see what its effect will be on the
rest of the system (i.e., if it will interfere
with other features). This goal is
nongcritical in the sense that whether or
not it works correctly is not as important
as whether it adversly affects other parts
of the system, especially other critical
parts.

Estimating size and cost of software
to be implemented is always difficult. It
may even be much harder for ESs
because of the nature of the problem and
the implementation approach. However,
it is important to make an estimate. Is it
three weeks of labor or three years ?
Also, be very sure to include V&V costs
in this estimate. For some systems, this
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can make a very big difference.
Consider again the goal of making a
change only in order to determine its
effects on the rest of the system. That
change may be trivial to make but
analyzing all its effects on the system
may require extensive V&V.

Initial planning should also involve
trying to identify appropriate milestones
for the first/next increment. For
example, if the expert will be needed
during validation, it could be helpful to
estimate, in advance, when they would
be needed for validation. So one good
milestone might be "System Testing
Begins". Identifying milestones can be
much easier if a standard life-cycle
model is used. However, no one would
suggest identifying a bunch of
milestones that are not meaningful,
whether they follow a standard life-cycle
model or not. Milestones such as "10%
complete” can be of little, if any, value
to anyone.

From the initial costing and sizing,
as well as from the answers to other
planning questions, it will become
apparent that certain things will be
needed at certain times. For example, the
expert might be needed again when
system testing begins; not is it important
to communicate this fact to the expert
but the expert should be kept aware of
stams (i.e., is the "System Testing
Begins” milestone expected to occur on
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time ?7) In general, one should be careful
to follow up on actions identified during
initial planning, especially if they
involve acquiring resources that will be
needed later.

The main input to the initial
planning step is an understanding of the
problem (from step 1). During initial
planning, one should double check this
information. For example, is the
problem still too broad (ie., is initial
planning difficult because the problem is
still not well understood ?) Another
example is, given the estimated cost, is it
worthwhile to try to solve this problem ?
Such questions should be asked during
initial planning instead of at some later
phase of development.

The last but not least consideration
of initial planming is to make sure that
requirements have been created during
problem analysis or else will exist early
in development. Because this workshop
is not advocating a development life-
cycle, it is not said when requirements
should be written but only that they are
written and used in V&V.

Step 3: Perform Specificati
Directed Analysis During Desi

Design for the system should be
created. It is not necessary that the
design be documented separately from
the implementation (in fact, verification
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would be easier if it were not) but only
that the design of the system be
documented. Also, it should be
documented in a form that supports
verification. That is, it should support
static testing, preferably specification-
directed analysis. Any of the
specification forms mentioned in part 2
could be used. At reasonable points
during design (at a minimum, as each
module is completed), the design should
be checked for completeness and
correctness. This verification should be
done by the designer but it should also
be done by others also (to get some
relatively independent views). The
expert can be useful with high level
design reviews but will probably not be
needed for lower level design reviews.

The design should also be mapped
back to some higher level document or
information. Very high level design may
be mapped back to requirements, a
prototype, and information from
problem analysis. As the design gets
closer to the eventual implementation
language (e.g., rules or frames) then a
static testing approach suitable to the
implementation language should be used
(e.g., rule consistency checking).
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Step 4: Check Each Completed
Increment

In addition to doing static testing
during design, dynamic testing should be
done to check certain functions as soon
as a module can be executed, usually at
the end of an iteration of development.
Tests to check the overall "health” of the
system can check how well verification
was done. If verification does not reveal
many errors during design but the first
initial tests reveal many problems, then
that is an indication that verification was
not being done effectively. This may
require either a change to the design
approach (e.g., to simplify it) or to the
verification approach (e.g., using
different techniques or a different type
of specification language). These tests
can be according to realistic operating
scenarios or they can be random. Stress
twtingshouldalsobedonetoched:how
effective verification was with parts of
the system that are used in complicated
off-nominal operating situations.

In addition to checking verification
effectiveness, dynamic testing should be
used at each iteration to check out types
of comrecmess that are difficult to
analyze statically such as user-interface
correctness. Using realistic scenarios,
each display should be brought up and
inputs should be made. It is also good to
check overall system execution, that
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system initialization such as opening
files and system termination such as
closing files are done correctly. That is
because static testing is better for testing
detailed functions than it is for
predicting overall system behavior.

Before testing of the iteration is
complete, try to check coverage of the
testing. If there are no tools used to
measure the coverage of test cases, then
this may have to be estimated. But, at a
minimum, the coverage at the module
level should be determined, ie., was
each module executed at least once by a
test 7 If certain parts of the sytem were
exercised little, if any, then additional
tests should be generated and executed.

Either during or after the exercising
of new features to the system, the enture
system should be exercised to check that
the new features did not interfere with
the functioning of older features. Often
this is done during the initial health
testing of the system. But if analysis of
test coverage reveals that there are major
parts of the system not tested, especially
ifthcyarcinarcasthatarerelatedtothc
newly changed areas, then previous test
cases for those areas (i.e., regression
tests) should be re-executed.

It is good for developers to perform
the initial tests but at some point during
testing, others should be involved,
especially potential users and experts.
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Discussion

There should be no suprises to the
student in the previous section. So rather
than spending too much time discussing
the previous section, it would be best to
cover it relatively quickly and discuss
how it might be applied to the enhanced
TLC problem. This can be used as a
"warm up” exercise for the main
exercise in the next section.

The class exercise basically involves
applying the four steps from the
previous section to the TLC problem.
This should be relatively easy because
much of the work has already been
done; most of the examples used to
illustrate the material are based on the
TLC problem. It is important to point
this out so that the students realize that
they are not expected to generate new
ideas about the TLC problem. Instead
they should be encouraged to bring up
examples previously given and relate
them to the four step approach. For
example:

Step 1 : Problem analysis
* Much of the problem is conventional

and only the "enhanced” TLC
problem has characteristics of an ES.

» The ES parts of the problem are

based on an existing solution in the
form of an expert traffic cop so the
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solution will be designed by
knowledge acquisition.

e Most parts of the problem are not
vague and it appears that testers will
be able to determine, objectively if
the results of test cases are correct -
an exception is judging fairness and
for this it would be good for the
traffic cop to check cases involving
Jjudgement about fairness.

Step2: Initial Planning

» The first iteration should probably
involve implementing the
conventional part of the TLC
problem and a second increment
used for the enhanced features.

¢ Because the first increment is
relatively straightforward, no IV&V
is needed but some IV&V will be
needed for the second increment.
The expert will also be needed for
final valiation to check the results for
fairness.

* It will be good to do some initial
design which will result in
identifying several modules which
can then be sized. For example, the
first increment appears to involve
one simple, two medium, one one
moderately complex module; so we
could guess that it will involve about
4 1/2 days (4 172 = 1*1/2 + 2*]1 +
1*2). Adding about 20% V&V time
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still makes it about a week of labor,
give or take.

Step 3: Design and Specification-
Directed Analysis

o Several examples of specifications
involving the conventional TLC
problem have been given.

« For the enhanced version of the TLC
problem, it still appears that a rule-
based approch makes sense given the
heuristics offered by the expert
traffic cop. These heuristics could be
made more formal in the form of
preconditions and postconditions.

Step 4: Checking of Each Increment

« Coverage of the conventional TLC
problem could be checked by
checking that each state and state
transition in the state-transition
diagram was covered. If this
involves firing each rule at least
once, then this should be adequate.

e There is no real user-interface in
terms of windows or menus. So no
special testing for this is needed.

« The enhanced TLC problem could be
tested statistically. Different arrival
rates of cars and pedistrians can be
generated in each direction, creating
heavy, medium and light conditions
in each direction. Developers can

02/07/92

check that traffic seems to flow well
in all directions but the traffic cop
needs to be brought in to check some
of the test cases for faimess. He
should probably check those
involving combinations of very
heavy traffic in some directions with
medium and/or light traffic in other
directions.

Exercise

After discussing the four step
approach as applied to the TLC problem.
The class should be divided into several
groups. Each group should be given one
of the case study problems. For their
given problem, they should think
through the four step process. It will not
be possible for them to ask all of the
questions such as test coverage but they
should be able to think through the
entire process and see which questions
they are able to answer. Most
importantly they should think about the
implications of the answers to each
question and what things they would
have in their V&V approach th address
the implications.

It will be easy for some students to
spend a great deal of time on this
exercise. It is important to keep each of
the groups moving through the process
and not spending more that 10-15 min.
on any step of the process.
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Although this is a course on V&V,
the students should now be aware of the
imprtance of good design (e.g., whether
it has a modular design). Since it is
expected that the students also be ES
developers (ie., not just V&Vers of
ESs), they should be able to design
solutions to the problems. So this
exercise involves them designing very
high level solutions to their given
problem. They should be encouraged to
think about keeping the designs at a high
level, designing the solution so it will be
casier to V&V, and designing it so that
others can easily understand it. The
reason for this last encouragement will
become apparent to them because they
will be asked to give their design, once it
is fairly complete, to another team who
will then act as an IV&V team to plan
the final validation.

~ Once all the teams have traded
designs and done the IV&YV part of the
exercise, they should discuss their
thoughts on the exercise with the rest of
the class. This can either be done as a
class exercise, by having each group
stand up and discuss their thoughts, or
by going around the room, soliciting
thoughts from each person.

02/07/92
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1. Pamas, D.L.,

Clements, P.C., "A
Rational Design
Process: How and
Why to Fake It", IEEE
Transactions on
Software Engineering,
Feb., 1986

Describes why one
would wish to
document a product as
if it were designed
according to an
idealized development
process/methodology,
even if was developed
in a very ad-hoc
manner. Also includes
suggestions on what
the documentation of a
product should contain.

. Fox, M.S., "Al and

Expert System Myths,
Legends, and Facts”,
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|IEEE Expert, Feb.,
1990

Contains personal
observations by the
author that help expain
some causes of
ineffective Al
applications; many are
dueto a
misunderstanding of Al
technology.

. Guttag, J.V., "Why

Programming is Too
Hard and What to Do
About It", Research
Science: An MIT
Perspective, MIT
Press, 1991

Contains personal
observations by the
author on the
difficulties in software
programs. The author,
a respected professor
and researcher in
software development
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techniques, offers
some very candid
opinions in this paper.

. Schank, R.C.,
"Where's the Al ?", Al
Magazine, Winter 1991

A very readable
description of some
personal observations
by the author on some
difficulties in
developing truly
intelligent systems.
This article is highly

recommended reading.

"KBS V&V - State of
the Practice and
Implications for V&V
Standards”

This paper is included
in the references
section. It summarizes
a survey that was
performed of 60 expert
system projects to
determine what
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as they were 15 years
ago. This book is very
highly recommended
reading.
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Validation for Expert
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Agenda

Day 1 = Part 1: Conventional Software V&V
- Verfication and Validation (V&V)

- Conventional Software (i.e., non
expert system) V&V techniques

 Primarily lecture

Day 2 = Part 2: Expert System V&V

- Differences between expert systems
and conventional software

» Expert system V&V techniques

+ Part lecture, part exercises

Day 3 = Part 3: Guidelines

- Summary of V&V considerations

- Recommended V&YV process
(guidelines)

« Some lecture, mostly exercise

03/11/92 2



Student Materials

1.Copy of all presentation slides
. Part 1 (tab)-
- Part 2 (tab)
« Part 3 (tab)

2.Handouts (tab)
« Initially empty

. Will be handed out periodically
during course

. Contains exercises and some
possible solutions

03/11/92 3



Student Materials ... |

3.Case Studies (tab)

« Two complete solutions to TLC
problem

- Additional case studies to be used
for final class exercise
4.References

« Collection of optional but suggested
reading
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Class Participation

Questions encouraged during lectures

Class discussion questions will be posed
(informal roundtable discussion)

Wwill be divided into teams for some
exercises

. Results discussed informally for all
but final exercise

. Results of final exercise presented
before class

. Exercises are not a test. Ask
questions.

03/11/92 5



What vou should learn

o—= What is V&V and why it is important.

o—= Differences between conventional and
- ES V&V

0—r Cbnventional and ES V&V techniques
" o—= Some key V&YV rules of thumb
o— How to make V&YV easier

o—= A suggested approach to V&V

03/11/92 6
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Overview

Purpose
. Review conventional V&V techniques

. Justify the need for these techniques

. lllustrate techniques on a sample
problem

Self-imposed Constraints

. Discuss techniques independent ofa
specific life-cycle model

. Do not assume a particular
development methodology

. Separate the description of V&V from
the similar description of designing a
software system

02/20/92 I-2
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Overview ...

Notes

» Our focus will be on V&V, not on how
the system is developed.

« We will not assume a background in
V&YV or conventional software
development.

 In Part 1, we will discuss software in

general, not expert systems per se.
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Overview ...

Key Tenants

. A full understanding of the problem
is never initially possible but must be
developed incrementally along with
the system.

. Correctness can never be practically
proved and a system will always have
errors.

. To develop test cases, one needs to
understand the problem being
solved.

. The earlier an error is discovered, the
more cheaply it can be corrected.

02/20/92 14



Goals

To show that V&V should be done

- Verification helps a developer
implement the system quickly and
cheaply.

- Validation ensures the system solves
the customers problem in a reliable,
predictable, and user-friendly
manner.

02/20/92 I-5



Goals ...

To show that V&V works best when
performed as the system is developed

« This will be done as we review the
major V&V tasks.

. For a V&V task, we will look at the
inputs required from a corresponding
development task.

To show that the system can be developed
so as to make V&V easier

. We look to see how V&V might be
done more easily and cheaply by
doing some tasks earlier in the
development process.
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- The Verification Puzzle

o—= There are many pieces to The
Verification Puzzle

« Functional Correctness: A correct
response for every stimulus to the
system, during installation and
checkout as well as operational use

« User-Interface Correctness:
Responses intended for human view
are clear; expected stimulus does not

-put excessive burden on the user

02/20/92 1-7



The Verification Puzzle ...

. —.—_—————— 4 WA

o—= Pieces to The Verification Puzzle ...

« Safety Correctness: Will never
generate a response that will cause

harm to anyone or anything

. Resource Consumption Correctness:
No more processor time, storage,
bandwidth, etc. are used than is

allowed

. Utility Correctness: The system
.(sufficiently) satisfies the user's

needs.

02/20/92 I-8



The Verification Puzzle

~ User
Interface

Resource Functional
Consumption |
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The Verification Puzzle ...

o—= Three aspects ta showing

correctness - consistency, completeness
and termination.

1. Consistency

. The system is both externally and
internally consistent

» External - correct outputs and
actions (e.g., hitting ESC from any
window produces the same result)

» Internal - all internal items are
consistent (e.g., integer variables are
only assigned integer values)

02/20/92 I-10



‘The Verification Puzzle ...

o—= Aspects to showing correctness ...

2. Completeness

« The system does all it should
» Accepts all required inputs
» Performs all required actions
» Creates all required outputs

» Maintains all required data

. More difficult than checking
consistency

02/20/92 I-11



The Verification Puzzle ...

o—= Aspects to showing correctness ...

3. Termination

. correct programs produce the right
output for all possible inputs

. consistency and completeness show
that all outputs are correct

. termination shows that output is
always generated

02/20/92 I-12



The Verification Puzzle ...

There are many different types of software

. Large software systems vs. smaller
self-contained problem solvers

- Highly complex vs. less complex
software

« Critical software vs. noncritical
software

- Expert system vs. a traditional
software problem; that can be
conveniently solved using expert
system techniques

02/20/92 I-13



The Verification Puzzle ...

A1 Vel e Y ————————

There are many V&V techniques

. Some are more suitable for certain
classes of correctness than others.

. Some are more suitable for certain
types, sizes and/or complexities of
software.

" The puzzle is to match techniques to
situations.

02/20/92 I-14
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The Verification Puzzie ...

o—x This large puzzle can be divided into
smaller puzzles called:

02/20/92

System Testing: Dynamic testing
of all classes of correctness of an
overall software system

Unit/integration Testing: Dynamic
testing of small self-contained pleces
of an overall system, focusing on
certain classes of correctness

« Static Testing: Analysis (desk

checking) of software specifications
(requirements, design) at different
levels of abstraction, focusing on
certain classes of correctness

I-15



The Verification Puzzie ...

These smaller puzzles are called fest
phases and will be discussed separately

. A breakup of these phases into an
ordered sequence of tasks is part of

the development life cycle.

« We will not restrict our discussion to
any specific life-cycle.

02/20/92 1-16



The Verification Puzzle ...

There Is a testing phase for each major
development phase

« System testing tests overall system
requirements.

+ Integration and unit testing test the
units and subsystems created during
system construction

« Static testing can be used to check all
representations of a system

» design, code, requirements, etc.

 There is an implied order to these
testing phases

» has cost implications

» implies earlier phases support later
phases

02/20/92 I-17



~ Phases of Correctness

==

/

Requirements | —»
Design —»
Code

System Test

Integration Test

Static Tes

02/20/92 I-18
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Overview of Test Phases

First, each phase will be examined,
highlighting:

« Characteristics:  An overall
description of the test phase

« Inputs: Each phase requires
certain information before it can be
applied.

« Implications: How the required
inputs can be acquired from other
development or testing phases.

Second, an example system will be
discussed. |

Third, for each phase, épecific techniques
will be discussed and illustrated using the
example

02/20/92 I-19
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System Testing

Characteristics

 Black box: Does not "look inside the
system” to see how it was
implemented; only looks at the
systems required and observed

behavior
R
S :
¥» )
M | gk e | B g
L ) = ?
1 B

S

 Behavior. Can be described in
terms of stimulus/response pairs

- Validation: Checks that the sytem will
satisfy the users' needs

02/20/92 -2



o—= Verification vs. Validation

Verification: "Am | building the product
right ?”

. Best when performed during system
development

. Emphasize showing correct
implementation of requirements

Validation: "Am | building the right
product ?"

. Best performed when the system Is
complete

. Can be partially done early via
prototyping

. Emphasis is on ensuring the
requirements are correct

02/20/92 -3
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System testing ...

Inputs
« The software system itself.
- ldeally, for each possible stimulus:
» description of the required response

» indication of criticality (i.e., safety
implications of the response)

» indication of response time allowed
(if constrained)

» description of user interface for the
stimulus/response

» indication of resources allowed for
generating the response

« In reality, impractical for all possible
stimuli

 Stimulus sequences can further be
described in terms of operational
scenarios
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Svstem Testing ...

- 9

-5
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System Testing ...

Implications

- Requirements can be specified in
terms of operational scenarios and
expected system responses

» The system can be developed so that
the classes of stimulus/response
pairs correspond to self-contained
units

» Stimuli tend to fall into classes or
groups

» These groups can be viewed as
units:.

» These, in turn, may have subunits
based on stimulus/response pairs

- To overcome the impracticalities of
system testing, these self-contained
units can be tested separately

1 This makes testing easier. This can be done regardless of how the system is actually
implemented. For example, the Space Shuttle Flight Software (FSW) is tested by principal function even
though this may not directly comrespond to how the FSW is implemented.

02/20/92 -6



'Unit/Integration Testing

Characteristics

. White Box: Does "look inside the
system" to see how it was
implemented; tests are created to
exercise the internals of the units.

. Behavior: Stimulus history can be
described in terms of internal
software "states" (e.g., sets of
variable values) and expected
transitions between states.

« Interfaces: Much of the testing may
focus on how well the separately
developed units (subsystems)
interface with each other (i.e., does
the system "hang together”).
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Unit/integration Testing ...

Inputs

« The software units themselves.

« Stimulus/response behavior for each
unit

- Identification of subsystems
(collections of units) along with their
required behavior

-+ -Scenarios (e.g., operational
scenarios) that indicate how the units
and subsystems will be used

02/20/92 -8



Unit/Integration Testing ...

Implications (0—= modularity has many
benefits)

. Units can be developed and tested
separately (if design uses proper
encapsulation).

. The system can be incrementally
integrated and tested until the full
system is achieved (build a little, test

a little).

. Separation of units greatly reduces
the re-verification burden by reducing
the effects of changes.

02/20/92 o-9
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Unit/integration Testing ...

Implications ...

» Design bridges the gap between the
problem (requirements) and the
tested solution.

« Individual units and subsystems can
be more easily mapped to
requirements.

« Once tested, the detailed behavior
need not be re-tested during system
testing.

However, it is still impractical to test
exhaustively and many types of errors
can be more cheaply found by
analyzing the design/code.

- This impracticality can be handled by
static testing which we will discuss
next.
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Static Testin

Characteristic

. Analysis: Software is not
dynamically executed; instead itis
analyzed statically (e.g., inspection).

. Specifications: Can take many
different forms but are generally
different from stimulus/response
behavior.

. General: Can be performed on
software, design, requirements,
testcases, etc.

. Abstraction: Whereas dynamic
testing is on different sizes of
software (units, subsystems), static
testing is on different levels of
abstraction (requirements through
detailed implementation).
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Static Testing ...

Complementary to Dynamic Testing

» Dynamic testing is needed because:

» Humans can not execute software in
their head very fast.

» Humans have difficulty managing
large numbers of small details.

 Static testing is needed because:

» Comprehensive dynamic testing is
impossible.

» Humans can perform more
comprehensive analysis than the
checking of individual
stimulus/response pairs.

» Humans can analyze abstract
descriptions (unlike computers).
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Static Testing ...

H Abstraction and refinement

. Abstraction

» Simplifying the description of a
system by suppressing less
important details

» More important actions are only
considered

» Similar objects can be considered
identical

02/20/92 o-13



_ - Static Testing ...

Refinement

» |Is the incremental use of abstraction

» Involves creating nested levels of
description, each higher level
refinement more abstract than lower
ones

b3

- 0—=x Together, abstraction and refinement
allow humans to find problems much
better than computers can |
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Static Testing ...

Inputs -

. Description of the problem to be
solved (can be very high level)

. Description of requirements (safety,
user interface, etc.)

- Specifications of the item (e.g.,
design object) to be statically tested,
possibly at different levels of
abstraction.

02/20/92 o-15



Static Testing ...

Implications

¢« P ten =
s 8.

[ IR

- Because static testing can be done
on anything at almost any time (does
not have to wait for something
executable), it can be done hand-in-
hand with development; this
decreases cost.

- Static testing and design are natural
- precursors activities for unit / |
integration testing.

4
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Life-Cvcle Models

. The testing phases are compatible with
many standard, well-defined life-cycle

models.
Example model : DoD 2167
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Life Cycle Models ...

Example model: NASA Model
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NASA Life-Cycle Model
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Life Cycle Models ...

Example model: European Space Agency
Model

02/20/92 I-21
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Problem Description

Consider the following problem:

A simple traffic light controller at a four way
intersection has car arrival sensors and
pedestrian crossing buttons. In the absence of
car arrival and pedestrian crossing signals, the
traffic light controller switches the direction of
traffic flow every 2 minutes. With a car or
pedestrian signal to change the direction of traffic
flow, the reaction depends on the status of the
auto and pedestrian signals in the direction of
traffic flow; if auto pedestrian sensors detect no
approaching traffic in the current direction of
traffic flow, the traffic flow will be switched in 15
seconds, if such approaching traffic is detected,
the switch in traffic flow will be delayed 15
seconds with each new detection of continuing
traffic up to a maximum of one minute.
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Problem Description ...

1.Take a few minutes and write down the
key tasks the traffic controlleris to do

2. Exchange your descriptions with a
neighbor and then spend a few minutes
deciding how well their description fits
your understanding of the traffic

controller

3. Ask yourself "is this a testable
description of the system?”

02/21/92 -3
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Black Box View

Initialiblack box view of system testing
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Refinement

Refine Requirements based.on further
understanding of the problem

. State becomes evident

» What is the color of the lightin a
given direction?

» How long has the controller waited to
switch the light?

. State helps identify and classify
stimulus/response histories.

. The state remaining constant might
imply testing one scenario verifies
the other scenario as well.

Continuing this refinement will lead to a
more organized test approach.

. Operational scenarios can be
constructed/selected.
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Refinement ...

%"Lﬁz = ST - TEher. 28 st CIS WP

« “Car Artives from
the West

e No North-South
Traffic for 15
seconds following
last signal change

« Switch West-East light to
Green
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Identification of State

 IUGCTIUTIVAIWIT W8 e

. Car Arrives from |+ Pedestrian Arrives
the West from the West

« No North-South « No North-South
Traffic for 15 Traffic for 15
seconds following seconds following
last signal change last signal change

. Switch West-East light to
Green

02/21/92 m-7
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General Techniques

Regression Testing

. Typically a maintenance activity

- Requires some process for capturing
and retrieving test cases

. Assume that the traffic controller is

" to be changed so that a pedestrian or
car may have to wait up to 1.5
minutes at a red light.

« All scenarios involving no
‘pedestrians or cars waiting atared
light during a 2 minute interval
should work as before.
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General Techniques ...

Prototyping ® =<

- Develop a working model to test
aspects of requirements or design

- E.g., prototyping of a red/green light
system might reveal the need for a
yellow light.
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General Techniques ...

re ol

Cértipeting Designs
. Define mutliple design teams

» Design can mean any particular
representation of the system (e.g.;
requirements, code, etc.)

. Each team designs a solution

. Either select one that is best or
merge the differing solutions into one
common solution that is best

02/21/92 v4



General Techniques ...

Independent V&V

H L e .
D 1','.

 Define a team that will perform V&V
on the software

« Must be independent of the
development team to avoid any
potential bias in analysis of the
product

« Usually applied at the System Testing
level, but can be applied anywhere in
the process
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Functional Correctness

Focus:

+ Make sure that all identified scenarios
work correctly.

» e.d., For each controller stimulus, is
the correct response generated?

Specific functional testing methods

 Realistic Testing

» Focus on those functions used the
most.

» Realistically, the majority of the time
a request to change traffic flow is
received from a car instead of a
pedestrian.

» Therefore, select the appropriate
majority of cases to exercise this
scenario.
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Functional Correctness ...

runcuoiidal AUt e e

Specific functional testing methods ...
. Attribute-based Test Case Selection

» Choose test cases based on an
attribute or characteristic such as

- Complexity, Criticality, Reliability,

» Tests can be chosen according to

. Statistical Record-keeping
- Random
- Error Guessing

. Example: Scenarios involving both a
"~ request to change traffic flow and an

approaching traffic signal appear to
be more complicated.
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Functional Correctness ...

Specific functional testing methods ...

- Cause-Effect Graphing

» Technique for selecting tests that
exercise combinations of causes

» Highlights interesting cases

G A dentty

o=
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Functional Correctness ...

Specific functional testing methods ...

. Boundary-Value Testing

» |dentifies cases at the boundaries of
each stimulus/response class

» Example, what happens when on-
coming traffic is detected at the exact

time a timer expires?

- This exercises the boundary value
of when the timer should expire so
that the light will change

02/24/92 V-5
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Safety Correctness

Focus:

- Verify that no stimulus generates an
unsafe response

Specific Safety Correctness methods

- Stress Testing

» Choosing "off-nominal” tests that
will determine if the system can
operate safely in high stress and/or
critical situations.

» Examples:

» What happens when if the pedestrian
repeatedly hits the change signal
button?

» What happens if a power surge
occurs while a pedestrian repeatedly
hits the change signal button?
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User-Interface Correctness
Focus

. Demonstrate that the human to
computer interface is correct

Specific User Interface Correctness
methods

. Active Interface Testing

» Choosing tests that will determine
if the interface to an external agent
(e.g., a person) works correctly

» Examples:

- How heavy does the car have to be to
trip a signal to the controller?

- Does a stuck pedestrian button
prevent a signal to change traffic
flow from being received?
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Resource Consumption Correctness

Focus:

- Show environment resources are
used correctly when a response is
generated

Specific Resource Consumption
Correctness methods

- Performance Testing

» Choosing tests that "push the
envelope" (speed, accuracy, etc.)

» Examples:

- How will a delay in receiving a
request to change traffic flow affect
changing the light?

e.g., What happens at time tQ

+14.999 when a pedestrian signal
was received at time tg ?
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Unit/Integration
Testing
Techniques



3

Functional Correctness

Branch Coverage

« Choosing tests that will cover all
possible outcomes of each internal
logical decision (e.g., if-then-else)

NorthrSouth Light is Green
West-East Light is Red

T = current time

l{u}
2 N

——>  t<T+2 minutes ——————p Switch Light

No {1 l { Yes

| Ao Wing o Lig
Pedestrian Waiting o Light
Yes {l}l

»  Process Signal
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Functional Correctness ...

Path Coverage

. Choosing tests that will cover all
possible combinations of outcomes

of each internal logical decision

NorthrSouth Light is Green
West-East Light is Red

T = current time

lm
No {3 3 No

P t<T+2 minutes —————ro> Switch Light

lY&s 123

AmoWa'(n)itngonLign
Pedestrian Waiting on Light
Yes {12}

—)  Process Signal
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Functional Correctness ...
Condition Coverage

« Choosing tests that will cover all
possible situations that could lead to
an internal logical decision choice

T = current time

lm

N {13 3 No
—— 1 <T+2 minutes ——————p Switch Light

»  Process Signal
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Functional Correctness ...

Partition Analysis

. Branch, Path and Condition coverage
focus on implementation

» This may not be sufficient

. Build input domains by analyzing the
specification for a given
implementation

. Blend this with the domains for
Branch, Path and Condition coverage
for more complete test suites
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Functional Correctness ...

InterProcedural Dataflow Testing

. Focuses on coverage testing for
areas where units interact

» Look at Global data and Passed
Parameters

. Involves Building a Definition/Use
Table

» |dentifies pairs of statements for
each variable based on definition and

use

. Can be complex to build without
some automated assistance
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Functional Correctness ...

InterProcedural Dataflow Testing

Procedure IsMax(l, J: In Integer; Max:
Out Integer) Is
Beginifi>J
Then Max :=1;
Else Max := J;
End If;
End IsMax;

Definition/Use Table for IsMax
Variable Definition Use

Max 3 6
4 6
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Functional Correctness ...

Flavor Analysis

. Attempts to find errors of omission

+ Documents:
» expected sequences of actions

» assertions about the effects of a
piece of code

« Methods:

» Data Comments: documents
abstractions used in program
construction

» Operator Comments: documents a
legal "ordering” of operators

« Goal: Compare actual execution
against expectations
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Functional Correctness ...

Mutation Testing

. Changing the software to determine if
the current set of test cases are good
enough to detect the change.

- This technique evaluates the
effectiveness of the current set of

test cases.

North-South Light is Green
W Ligh 5 Red

T = current time
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Safety Correctness

Reliability Testing

- |ldentify structures that could
adversely affect system reliability if

they fail

» These structures do not necessarily
have to be error-prone themselves

- For example, most functions rely on
clock. All major system functions will
fail if the clock fails.
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User Interface Correctness

Prototype Evaluation

. Test the user-interface pieces of the
system early (before the other
subsystems are finished)

. Involves either stubbing out some
pieces of the system or developing a
simulation

. For example: the interfaces to the
light and signal hardware could be
"stubbed out" and simulated so the
traffic light software can be
prototyped.
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Static Testing



Functional Correctness

Inspections

. Formal/Informal (or walkthrough)
inspections follow a set of rules to
guide a reader, moderator, author,
and several experts through
inspecting a work product.

. Continuous inspections involve just
an author and a peer. The peer
frequently reviews the work of the

author.

. The use of inspections is probably
~ the biggest single advancement in
the practice of verification.

» There is hard psychological evidence
that introducing an "active
verification frame of mind"
significantly reduces errors
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Functional Correctness ...

Anomaly Analysis

- Involves looking at sequences of
events for certain types of
"anomalies".

» data flow anomalies such as "use-
set” and "set-set-use"

» physical units mismatch such as
"length * volume"

« Examples:

» after a light change, the clock
counter is referenced before it is
reset

» there is an expression involving
"light color multiplied by time" which
doesn’'t make sense




Functional Correctness ...

Object-Oriented Analysis

. Object = set of data + associated
operations.

. The set of data has certain "legal”
values.

- Each operator accepts data with only
certain values.

« Analysis involves checking that no
combination of operators will resulit
in a data item getting an illegal value
or an operator being called with an
illegal input.

« Analysis will assure that the object
can never be put in an "illegal” state.

- Objects can be mapped to classes of
scenarios.
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Functional Correctness ...

Object-Oriented Analysis
« Example:
» time_counter is an object

time_counter should never be
negative

b

~

» reset and decrement are operators
on time_counter

» reset sets time to 120

A4

» decrement decreases time counter
by 1 if time_counter is greater than
zero, otherwise it does-nothing to
time_counter

» time_counter can be shown to be
guaranteed to always be non-
negative
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Functional Correctness ...

FUIIVUVIIG! A S  ———

Compilation Testing

. For some languages, such as Ada,
the compiler can detect some kinds
of errors in the architecture of

software

Defect Analysis.

. Involves identifying kinds of common
errors such as divide by zero

. Checking for instances of these
common errors
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Functional Correctness ...
Stepwise Refinement

- A general technique of separating a
unit into equivalent descriptions,
each at increasing levels of detail.

- Analysis involves comparing each
level of detail to the preceeding one,
- checking for consistency and
completeness.

A
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Functional Correctness ...

Axiomatic Analysis

. Involves specifying a "precondition”
and "postcondition” for each
fragment of code

. Each fragment is checked to see if
the postcondition is guaranteed to be
true after the fragment is executed,
assuming the precondition was true
before the fragment executed.

. ‘Combined fragments are analyzed to
see if preconditions are always
satisfied and the end postcondition
guarantees the desired resulit.
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Functional Correctness ...

Symbolic Execution

« Uses pre/post conditions to trace
execution of the implementation

« Uses mathematical symbols to act as
placeholders for real values (similar
to classes)

Prove: ( Y=X' or Y=X' )
And ( Y>=0 and X=X )

pc true, X: a, Y: -
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Safety Correctness

Hazard Analysis

. A hazard is a very undesirable
situation (e.g., the light being green
in both directions)

. Each hazard is analyzed to determine
how it could arise (e.g., a hardware
failure results in one light stuck to
green)

. The system is analyzed to ensure that
a hazardous state can never be
reached (e.g., before red light is
changed to green, the other lightis
checked to make sure it is not stuck
green)
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Safety Correctness ...

Fault Analysis

- A fault is a potential error in the
system (e.g., failure of the module
that controls a light_timer)

- Analysis is performed to determine
the safety effects of potential faults
(e.g., failure of light_time means that
a light will remain the same color, say
green)
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o—= Key Points

1. Verification vs. Validation

- Verification: building the system
right

- Validation: building the right system

2. Static, Unit/Integration, and System
Testing

- Static: desk checking/code reviews
« Unit/integration: testing in pieces
« System: Overall V&V




o—= Key Points ...

3. Consistency vs. completeness

. Completeness: Does all it should

. Consistency: Does it correctly

4. Use of abstraction and refinement
. Abstraction: Suppress details
. Refinement: Incremental abstraction

5. Benefits of modularity

. Divide and Conquer




™

Techniques ...

Each type of testing: -

. focuses on a different size of
software

looks at different categories of
errors/faults

uses certain techniques

» can find errors more cheaply than a
later type of testing

can reduce the cost of later types of
testing by providing information (e.g.,
units, interfaces)

- helps ensure a higher quality system
(e.g., the system doesn't "crash” at
the beginning of the first system test)




Techniques

. There are many more techniques than the
ones discussed.

. No technique by itself is sufficient for all
levels of software and all types of faults.

. Choosing the right set of techniques is
important but can be difficult (the V&V
puzzle).

. Techniques can be grouped into three
types of testing
1.Static Testing
2.Unit/Integration Testing
3.System Testing
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Techniques Vs. Phases

Techniques Phases

General System Unit Static
Active Interface v
Testing
Anomaly Analysis v
Attribute-Based Test v
Case Selection
Axiomatic Analysis v
Boundary Testing v
Branch Coverage v
Cause-Effect v
Graphing
Competing Designs v
Compilation Testing v
Condition Coverage v
Defect Analysis v

B-2
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Techniques Vs. Phases ...

Techniques

General

Phases

System Unit Static

Error Guessing
Fault Analysis
Flavor Analysis
Hazard Analysis
Independent V&V
Inspections

Interprocedural
Dataflow Testing

Mutation Testing

Obiject Oriented
Analysis

Partition Testing

Path Coverage

v
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Techniques Vs. Phases ...

Techniques Phases
General System Unit Static
Performance Testing 4
Pre/Post Condition - v
Testing
Prototyping v
Random Testing v
Realistic Testing v
Regression Testing v
Reliability Testing v
Stepwise Refinement v
Stress Testing v
Symbolic Execution v
B-4
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Techniques Vs. Correctness

Techniques - Kinds of Correctness
General Functional Safety Ul RCC Utility
Active Interface v
Testing ,
Anomaly Analysis 4
Attribute-Based Test v
Case Selection
Axiomatic Analysis v
Boundary Testing v
Branch Coverage v
Cause-Effect v
Graphing
Competing Designs v
Compilation Testing v
Condition Coverage v
Defect Analysis v
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Techniques Vs. Correctness ...

Techniques Kinds of Correctness
General Functional Safety Ul RCC Utility
Error Guessing v v
Fault Analysis v
Flavor Analysis v
Hazard Analysis v
Independent V&V v
Inspections v
interprocedural v
Dataflow Testing
Mutation Testing v
Object Oriented v
Analysis
Partition Testing v
Path Coverage v
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Techniques Vs. Correctness ...

Techniques Kinds of Correctness
General Functional Safety Ul RCC Utility
Performance Testing v
Pre/Post Condition v
Testing
Prototyping v
Random Testing v
Realistic Testing v
Regression Testing v
Reliability Testing v
Stepwise Refinement 4
Stress Testing v
Symbolic Execution v
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Techniques Vs. References

R

Techniques References

Active Interface Testing 32
Anomaly Analysis | 32,2
Attribute-Based Test Case 32
Selection
Axiomatic Analysis 7,14
Boundary Testing 26
Branch Coverage 26
Cause-Effect Graphing 26

"| Competing Designs 16
Compilation Testing : 32
Condition Coverage | 26
Defect Analysis o 32
Error Guessing 26
Fault Analysis 17,18
Flavor Analysis 13
Hazard Analysis 17,18
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Techniques Vs. References ...

~_Techniques References
Inspections 5,26
interProcedural Dataflow Testing 9
Mutation Testing

Object Oriented Analysis 36,22,15
Partition Analysis 31

Path Coverage 26
.Performance Testing 32,322
Pre/Post Condition Testing 20
Prototyping

Random Testing 32
Realistic Testing | 32
Regression Testing | 32
ﬁeliability Testing 32
Stepwise Refinement 27-28,23-25
Stress Testing 1,26
Symbolic Execution 8, 11
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Introduction



Goals

1.To understand the differences and
similarities between Expert Systems and
conventional software.

2.To understand how the differences
impact verification and validation.

3.To understand applicable analysis
methods/techniques to overcome these
impacts.
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Overview

1.We will discuss how expert systems are
software, but a unique type of software.

. Different implementation languages

. Different problem types

2 To illustrate language differences, V&V of
two solutions to the Traffic Light
Controller problem will be discussed.

3.To illustrate problem differences, a new
version of the Traffic Controller Problem,
that is more like a "true” expert system
problem will be discussed.

4.Using the new problem, we will discuss
both new expert system V&V techniques
and modified "conventional” V&V

techniques.
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Expert System
Differences



Experts systems are software

Expert systems are:
. computer programs

. written using a programming
language

. executed in a (deterministic)
computer

A program may not be easily classified as
conventional or expert system.

. May include some but not all
‘characteristics

. May be part expert system, part
conventional

Problems that look expert system may be
easily (or better) solved with a
conventional solution .
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Expert System Implementation

Differences

Often uses some type of "Al language",
e.g.:

- Forward and/or backward chaining
rules

 Frames

 "Al language” characteristics

» declarative (what) instead of
imperative (how)

» separation of control and data

- execution sequence is not
apparent (but is implicit)

» language semantics unclear or
complex (works by "magic”)

- e.g., conflict resolution
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Expert System Implementation
Differences ...

Often developed iteratively

. especially if design by knowledge
aquisition

. especially if it is unclear whether the
solution will work satisfactorally

No explicit algorithm is used, e.g.,

t=10
While t < tg+ 2 minutes Loop
If Auto or Pedestrian
signal received
Then Process-Signal
Exit
- Endf
End Loop

vertcaea B Voxdiman
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Expert System Problem Differences

Often solve problems requiring human
expertise

 solution already exists (in someones
head) and is translated to a different
form

- e.g., capturing the "rules of thumb” of
an expert and mechanically applying
them

- often called "shallow” or "surface
level” reasoning systems

» as opposed to model-based (or
"deep" reasoning)

» sometimes called "design by
knowledge aquisition” as opposed to
"design by analysis”
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Expert System Problem Differences

Expert Systems often solve problems that
have been difficult to solve with
conventional software approaches

Sometimes rely on human judgement for
correctness of solutions (i.e., are "fuzzy")

May replace or just augment human expert
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Two Traffic Light
Controller
Implementations



Overview

TLC problem does not have expert system
problem characteristics.

TLC problem could be implemented using
either conventional or expert system
implementation approach.

After further analysis of the problem, we
will look at a conventional and expert
system approach to the problem.

Though the problem "looks conventional”,
an expert system approach to
implementation works very well.

Finally, we will look at V&V of each solution
and compare the differences.
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Scenario Testing

Test case scenarios can be developed by
looking at possible combinations of
events.

Some event definitions:

switch: traffic light changes

approaching: controller detects an
approaching auto or pedestrian in the
direction of the current flow of traffic

waiting: controller detects an auto or
pedestrian waiting for the light to change
(in the direction opposite the current flow
of traffic) -

(. event): ordered pair describing an
elapsed time, t, and the event that occurs
(should occur)after that elapsed time.
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Scenario Testing ...

The following scenarios are generated from
our understanding of the problem

1.(2 minutes, switch) (2 minutes,
switch) ...

2.(t: t < 2 minutes, approaching) (2
minutes, switch)

3.(t: t < 2 minutes,waiting) (15 seconds,
switch)

4.(t: t < 2 minutes, approaching) (t: t <1
minute 45 seconds, waiting) (15
‘seconds, switch)

5. ...
This list is NOT exhaustive; In fact, itis

impossible to come up with an exhaustive
list since the possibilities are infinite.
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- Testing State Changes

An alternative approach is to think of the
problem as changes in the state of the
traffic control system.

Then test that the system makes all the
correct state changes.

For example, the system can be said to be
in one of the following unique states.

 S1: In a 2 minute wait before
changing the light

- S2: In a 15 second wait before

changing the light and has been in
this state for less than 45 sec.

« S3: In the remainder of a 1 minute
wait before changing the light
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Testing State Changes ...

With the following event possibilities

Approaching

Waiting

Time expires

< 45 sec. in S2

>= 45 sec. in S2
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Testing State Changes ...

State Diagram

S1 = 2 Minute Wait
82 = 15 Second Wait (< 45s so far)
S; = Remainder of 1 Minute Wait
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Testing State Changes ...

If

. State diagram is analyzed and shown
to be correct

. Implementation can be shown to
make all transitions correctly

Then

. It is reasonable to think the
implementation is correct

Because there are only 7 transitions,
compared to an infinite number of
scenarios, testing state changes is easier.
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Testing State Changes ...

This type of approach is sometimes called
"conformance testing"; the implementation
conforms to the abstract solution (the state
diagram in our case).

But only transitions involving switching the
light are actually visible.

We can either test all ways of getting to
visible transformations or "look inside" the
implementation.
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Handouts (1.2.5) and Class Exercise

1.Divide into 3 teams.

- Procedural Implemenation Team
« "Short" CLIPS implementation Team

- "Longer" CLIPS Implementation
Team

2.Study solution

3.Develop tests to "cover” all parts of the
given solution.
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Conventional Implementation

Case State Is
When S1 and Time Expires =
State = SL;
When Sl and (Approaching Or
Light Changes) =
State = SL;

When Sl d(:p?mchingOr
an

State = SL
Resct 2 Minute Timer;

When S2 and NOT Timer Expired =
State = S2;

When S2 and Timer Expired =
Siate = S6;
Reset Timer;

Switch Light;
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Expert System Implementation

If time expires Then switch Light
If in S1 and approaching Then start S1
If in S1 and waiting Then start S2

If timer expires Then
sw1tch and retract timers

changes or approaching Then
long tlmer |

Setshortandmedmmtnmers
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Comparison and V&V Implications

Expert System approach turned out to be
easier/shorter.

« Production rules directly map to state
transitions

» if (old state) then (new state) (and
action)

« Pattern matching simplified the rules

» (3-4 times the number of Ada
"whens" as CLIPS rules).

» Procedural approach wound up
implementing a crude inference
engine.
» A loop with a big nested case
statement in it.

Therefore V&V should be easier on expert
system implementation, right?
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Comparison and V&V Implications ...

Procedural appoach has fewer and simpler
internal interactions.

. Execution order is very explicit

» whens "executed" exactly once per
“cyc'eﬂ

» priorities are used in CLIPS to
control execution

. Pure functions (no side effects)
» Function "Change_Light" affects
several rules

- No "garbage collection” concerns

» CLIPS implementation must retract
old facts

Therefore, because more subtle things
must be tested in the expert system
approach, it should be harder to V&V,
right?
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Comparison and V&V Implications ...

Both approaches have V&YV issues.

0—-x Each has different V&V concerns.

Procedural concerns
« More decisions to test (more code)

« Overall control structures to test
(e.g., termination of the loop around
the large case statement)
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Comparison and V&V Implications ...

Expert System concerns

03/11/92

Must test correct cleanup of old facts
- facts are retracted only if they are
no longer needed

Must test that there are no invalid rule
interactions.

Must test function side-effects.

‘Must test that rule patterns are not

too broad (i.e., act against too many
instances)

Must test that rules only fire at the
right time (e.g., only at the end of a
"cyc'e")
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Comparison and V&V Implications ...

These different concerns create the need
for different test approaches and different
techniques for testing expert systems.

« Procedural testing focuses on
ensuring that the implementation
solves all aspects of the problem.

- Expert system testing focuses on
ensuring that the implementation
does not have unexpected
interactions.

« V&V of both must test that it solves
the problem and "does not do funny
things" but the emphasis is a little
different in each case.

« Most of the rest of part 2 will cover
new expert system testing
- techniques that address the new

emphasis.
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Comparison and V&V Implications ...

Different view of expert system V&V

« Would expect expert system failures
to be more like errors humans make.

» Expert system computation model
based on how some psychologists
believe humans think.

» Conventional software based on a
much different computation model.
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Comparison and V&V Implications ...

Some sample errors humans make:

- Slips/Lapses: usually caused by
interruption in train of thought
(overlapping rule sequences)

- New exceptions: applying knowledge
that always worked in the past to a
new situation which turns out to be
an exception (rules with LHS too
broad)

- Erroneous beliefs: (bad rules)
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Handout (3.4.6.7) and Exercise

1.Compare shorter and longer CLIPS
versions.

2 Discuss differences in rule interactions

3. Lbok at handouts.
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Testing Good and Bad Rule Based Designs

The design of expert systems can greatly
simplify the new testing concerns.

The shorter version:

- has fewer rules

has more complex rules

is less modular

has more rule interactions

has a subtle problem (can you spot
it?)

The shorter version is harder to analyze
(and thus to verify).

The longer version can be tested in pieces.
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Light Controller
Problem



New Problem

Consider the following problem:

At certain times of the day an intersection
becomes congested, the electronic traffic light
controller becomes inadequate and a
policeman is used to direct the traffic. The
same policeman has been directing traffic at
this intersection for a number of years and
there are much fewer complaints from citizens
about having to wait at this intersection (than
there were several years ago). It is now
desirable to make the electronic system
“smarter” so it can handle the same amount of
flow as the policeman while being as fair as the
policeman (i.e., he doesn’t force any one
direction to wait for a longer time than another
direction).
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New Problem ...

The new system will function as before when
traffic is "light" and will switch to "smart mode”
when the traffic becomes heavy. In "smart
mode", the system will look at

. the length of traffic in each direction (new
sensors will be installed to provide this
information)

. the number of people waiting to turn left
as opposed to going straight (new
sensors will be installed to indicate how

'many people are waiting in the left turn
lane)

. the speed of traffic going through the
intersection (new sensors will be
installed to provide this information)
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New Problem ...

Using this information, the system will
decide when to allow a street (north/south,
east/west) to either go straight, turn left, or
wait on another street.

1.Take a few minutes and write down the
key tasks the traffic controller is to do

2.Exchange your descriptions with a
neighbor

3.Spend a few minutes deciding how well
their description fits your understanding
of the problem.

- Is this a testable description of the
system?

« How is it different from the
conventional problem?

» Are there any new V&V issues,
compared to the conventional
problem?
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Knowledge Acquisition Results

Initial knowledge acquisition from the
policeman reveals the following:

. the policeman walks a beat a few
blocks from the intersection and
when he hears several horn honks
close together, he goes to the
intersection to help clear the traffic

. if the line is so long in any direction
that he can't see the end of it then he
lets those directions (including
turning left) go for about three
minutes before changing

. otherwise, he lets each direction go
for about two minutes, except for
turning left which he allows for about
one minute
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Knowledge Acquisition Results

Initial Knowledge Acquisition ...

03/11/92

He lets the longest direction go about
half a minute longer than the other
directions

If the line waiting to tumn left is small
when compared to the opposing
direction, he will skip them for one
cycle (i.e., let each other direction go
once more)

If the line waiting to go straight is

-small, compared to the perpendicular

direction, let it go for half a minute
less

If you can notice a car that has been
waiting for three cycles and has not
gone, let that direction go half a
minute longer (that line is just
moving slow; this roughly
corresponds to less than 20 cars per
cycle for 3 cycles).




Exercise

Analyze these high level results

 Look for conflicting statements

. Identify some test scenarios that will
determine if this solution seems to
satisfy the goals

. Think of some scenarios that this
solution does not seem to cover.

. Discuss whether this is an expert
system problem or not
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Problem Features

Is the solution being created for the first
time or does it already exist in someone's
head ?

Is it a shallow or deep reasoning solution?

Would this be difficult to solve with
conventional software?

Does it rely on human judgement?

Will it replace or augment a human expert?
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Expert System
- Implementation
V&V Techniques



Overview

This section will summarize some key
techniques:

« specific to expert systems
- specific to implementation (e.g.,
rules, frames)
Each technique will be discussed in terms
of

« overall description

implementation construct/aspect
‘addressed

error detection capability

tools available

example(s) based on TLC problem
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Overview ...

Will cover the most common/important
techniques.

Tools and automation will be discussed,
though few tools are commercially
available.

More discussion on how to use these
techniques will be covered in Part 3 -
Guidelines.
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Rule Consistency Checking1,2

Attempts to find errors by checking for
certain classes of "anomalies".

- Anomaly = a type of relationship
between two or more rules that
"seems wrong" , e.g.,

A->BandC
B-> not C

- Anomalies generally indicate an error

Specific to rule-based implementation
(forward or backward)

Can find all "anomalies"” but a human must
analyze anomaly to see if it is a problem.

Many research tools available, no
significant commercial offerings.
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Rule Consistency Checking ...

Reachability anomalies (shorter CLIPS
version)

- Dead-end rules

» Del_old_changes does not affect any
other rule

» |s a dead-end rule because the fact to
be modified should have been
"signal_change” instead of
"signal_changes”

« Unreachable rules (shorter CLIPS
_version)

» If signal_changed then ...

» Would be unreachable because
"signal_changed” is not created by
any other rule (should be
"signal_change")
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Rule Consistency Checking ...

Reachability anomalies ...

« Cycle Rules
» Update_time is in a cycle

» This "anomaly” does not indicate an
error in this case

» Why?
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Rule Consistency Checking ...

Redundant Rules (longer CLIPS version)

- set_long_timer:

if light_changed or
signal.in_direction green
then
set long_timer
retract medium_timer
retract short_timer

« retract_medium_timer:

if light_changed

then
retract medium_timer
retract short_timer

- There is an attempt to retract medium
timer twice if light_changed
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Rule Consistency Checking ...

Conflicting rules (longer CLIPS version)

- set_long_timer:

if light_changed or
signal.in_direction green
then
set long_timer
set medium_timer
set short_timer

 retract_medium_timer:

if light_changed

then
retract medium_timer
retract short_timer

- there are two conflicting actions if
light_changed (set and retract timer)
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Rule Consistency Checking ...

Dead-End Rule (Rule C) | Unreachable Rule (Rule C)
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Rule Consistency Checking ...

Graphing Techniques
« Petri-Nets2,15,17

» Useful in describing dynamic
behavior of discrete event systems
(e.g., rule firings)

» Similar to other diagramming
techniques (e.g., state diagrams,
cause-effect diagrams, etc.)

Basic Elements
®,®,® Tokens
Tj ‘{ >

s O
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Rule Consistency Checking ...

Graphing Techniques ...

o Petri Nets ...

» Builds a network of propositions
(e.g., rule antecedents and

consequents)
» "Tokens" are traced through the
network
Rule: If X has feathers
Then X is a bird
Initial:
Feathers(x) Bird(x)
&——0O
Result:
Feathersx) Bird(x)

(F—
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Rule Consistency Checking ...

Graphing Techniques ...

e Petri Nets ...

» Tracing highlights the kinds of
consistency errors just discussed

» Can be helpful in finding
completeness anomalies

- Directed Graphs (or Network Flows)2

» Rules are converted into a collection
of directed arcs (directed because of
inference)

» First build a list of antecedent and
consequent propositions

» Generate an edge to the graph for
each antecedent/consequent pair

» Many algorithms exist for analyzing
reachability issues
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Rule Consistency Checking ...

Graphing Techniques ...
. Connectivity Graphs16

» Different kinds of matrices:

- facts vs. rules, clauses vs.
rules, clauses vs. facts, etc.

» Matrices can then be represented as
undirected graphs connecting
elements of the matrices

» Can Help to identify the major areas
of correctness

- e.g., for Rulebases:
completeness ,
consistency, redundancy,
dead-end rules

» Can also assist in design (e.g.,
identifying modularity)

» Supported by simple matrix
operations (see Handout #8)
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Data Consistency Checking3,4,5

Checking that data use is consistent with
data definition

Checks data/facts

Can find mismatches between data
definition and use

Is supported by some tools (e.g., CRSV)

«. E.g., use of deftemplates in longer
version of TLC can catch errors like
the mispelling of "signal_change” in
del_old_changes rule (in shorter
version)
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Sensitivity Analysis6

Determining the sensitivity of one
parameter (data item) to changes in other
parameters

More a debugging than an error finding
technique

Supported only by a research tool

Most directly applicable to classification
problems
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~ Sensitivity Analysis ...

E.g., Suppose, the goal was to output
system state based on system variables

» Given:
» §1 = long_timer only

» S92 = short timer and medium timer
not within 15 sec of expiring

» S3 = by short timer and medium timer
withing 15 sec of expiring

- S1 is least sensitive because it does

not depend on the value of the
medium timer
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Structural Testing”

Attempting to execute all parts ofa
knowledge base

Can be adapted to cover any type of KB
construct

Does not detect any errors, just tries to
ensure comprehensive testing

Commercial tools available but are not
widely used (e.g., Expert/Measure)
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Structural Testing ...

E.g., generate test cases for longer CLIPS
solution that cover:

« each rule

« each path from update_time to
timer_expires

- an assertion and a retraction of at
least one instance of each fact
template

The creation of coverage tests can help
one find errors.
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Specification-Directed Analysis8.9

Checking that implementation matches
specification

. Specification := assertion about a
part of the implementation, like a
"mini requirement”

Useful for all aspects of a knowledge base

Useful for finding any type of
implementation error

Not supported by any commercial tools but
research prototypes exist
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Specification-Directed Analysis

+ in Timer module of the longer CLIPS
version

- assertion is that timer names are
unique

by analyzing timer_name-conflict
rule, it can be verified that the
assertion is true (at the end of each
cycle)

Sometimes called "Formal Methods" (but
can be informal)
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Specification-Directed Analysis ...

Some useful types of assertions

» data value constraints

» e.dg., timer constraint

- postconditions for rules

» e.d., timer_name-conflict satisfies
postcondition "exactly one timer
called 2name will exist”
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Specification-Directed Analysis ...

Some useful types of assertions ...
 abstract functions

» @.g., light change action can be
abstractly described as

direction := NS if direction = EW
EW if direction = NS
- (precondition, postcondition) pairs
» e.g., for change-light function

pre: green-light = NS or EW

post: green-light = NS or EW and
green-light /= green-light’
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Decision Tables10

Very popular in the early and mid "70s

Once thought of as a complete
development methodology

Really is a specification approach

Very similar to rule-based progamming

» Left side := condition columns

» Right side := action columns

» A row is called a rule
Has some differences from rule-based
programming

» No pattern matching or unification

» No chain of inference
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Decision Tables ...

Completeness checking

« Figure total number of rules
» Product of number of possible
entries in each column

+ Ensure each rule is considered

Consistency checking similar to rule
consistency checking

- Redundancy, overlapping rules
- Contradictory rules

o etc.
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Decision Tables ...

Example: Complete TLC solution (25*6=192
rules)

Appro- | Wait- 2Min |1Min |15 Sec | Current | New Change
aching |ing Timer |Timer | Timer |State | State | Light
Vehicle | Vehicle | Expires | Expires | Expires _

0 0 0 0 0 1 0 1

1 0 0 0 0 1 1 0

0 1 0 0 0 1 3 0

Example: Abstract TLC solution (24*3=48
rules)

Appro- | Waiting | Time In state | Current | New Change
aching | Vehicle | Expires | <45 Sec State State Light
Vehicle

0 0 0 0 1 1 0
1 0 0 0 1 1 0
0 1 0 0
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Decision Tables ...

Number of rules can get very large

Is practical and effective if used on small
modules

Example: Timer module (23 = 8 rules)

Set for | Expired | Error Expires= Set Time Print
99999 True Message
0 0 0 0 0 0
1 0 0 0 1 0
0 1 0 1 0 0
1 1 0 ? ? ?
0 0 1 0 0 1
1 -0 1 0 0 1
0 1 1 ? ? ?
1 1 1 ? ? ?

Class Exercise: Answer the following

- What action do you think should be
in the "question mark” rule entries?

- what does the Timer module actually
do? |
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Expert System
Problem V&V

- Techniques



Overview

Techniques In this section will be problem
oriented

- will treat solution as a black box

We will not care how the solution is
"coded".

« could be rules, frames, procedural,
“mixture

« could be nonmonotonic, case-based,
or just a big decision table
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Overview ...

We will be concerned with

1.Is the system based on correct
knowledge ?

2. Does the system adequately solve the
problem ?

3.Does the system satisfy all correctness
objectives such as

» safety

» user interface
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Knowledge Aquisition Correctness
Checking11

Looking for inconsistencies and "holes” in
knowledge aquired from the expert.

Similar to analyzing system requirements.

Made easier by representing the knowledge
in a consistently structured form.

Example: How does the expert traffic
controller know when to stop and go back
to conventional mode?
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Minimum Competency Testing12

Certifying the competency of an expert
system by giving it the same test as would
be given to a human expert

Certification exams exist for many types of
human experts.

. CPA
. MD

. PE
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Minimum Competency Testing ...

The approach may assume the expert
system will make errors as an expert would
(i.e., not expected to get 100% correct on
the exam)

Expert can be asked to identify what he
would expect a novice, advanced beginner,
etc. to be able to do.

Similar to statistical testing (exam is a
representative sample)

Discussion: What things would be in a
certification test for a new human traffic
controller.
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Disaster Testing

Involves identifying scenarios that indicate
potential disaster (during knowledge
aquisition) and guarding against them.

. experts are often good at recognizing
potential disasters

. for most experts, many disaster
situations are "common sense" (this

‘knowledge must be drawn out)
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Disaster Testing ...

Tests can specifically be generated to
check that the system recognizes potential
disasters and prevents them from
occuring.

- Can also be used in conjuction with
specification-directed verification
(disaster forms the
specification/constraint).

- Example TLC disaster: two
intersecting directions not allowed to

go at the same time
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Expert Review13

The expert is the expert.

Some answers can only be judged correct
by the expert.

Expert can check:
. test scenarios

. test results

Expert may not understand implementation
details
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Expert Review ...

e ———

With minimal training, an expert can also
check

 Acquired knowledge

» Did you hear what he thought he said
?

» Are there any "holes" or deficiencies
in what he told you ?

- Knowledge base design

» Is overall problem solving approach
correct ?

» Was any aquired knowledge
misinterpreted ?

The key to expert review is formatting the
review material so the expert can easily
understand it.
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Explicit Modelling14

Different kinds of models:
- set of equations

« a small scale replica (e.g., toy
airplane model)

- a metaphor (i.e., making analogy)

- any simplified representation of a
system

"Instead of having no models in a KBS,
there are often a multitude of unexpressed

models;"14
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Explicit Modelling ...

Different people may each have a different
model for the same system (but should all
be consistent)

- client (e.g., traffic control system)

« user (e.g., traffic light switching
system)

- developer (e.g., state machine)

Helps with V&V by facilitating abstraction

Leads into model-based reasoning18
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Explicit Modelling ...

The concept of modelling is
straightforward, practice can be difficult

. Identifying a suitable model
. Mapping the model to the system

. Reasoning about the model

However difficult, it is usually worthwhile

. Models are alway created14. They are
just often implicit (not documented).

. An explicit model can make the
system easier to understand; this
helps all aspects of development and

use.
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Explicit Modelling ...

Example: Timer module

« Timers are countdown clocks with
alarms

- Asserting a timer creates a new clock
which begins to count down to zero

- Alarm goes off when the clock counts
down to zero

Example: CLIPS inference engine

* There are 2 lists of rules: KB and
agenda.

» There is a list of facts.

- Each cycle, the inference engine goes
through the KB list and the fact list,
picking rules to put on the agenda.
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Introduction



Goals

1. To understand guidelines on the
application of V&V techniques

2. To understand how to V&V a system
which includes expert system(s)

3. To understand how to tailor V&V based
on specific needs and characteristics
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Overview

Discuss some common misceptions
about software (including expert
systems)

Make some inferences about what
should be in a set of expert system
V&V guidelines

Discuss a set of V&V guidelines

Discuss tailoring of guidelines

1_3 “ericunm [ Yashaan




Common
Misperceptions



Software in general:

The only important deliverable of a
software project is the executable version

of the program.

Software must be understood by its
users.

Software must be understood by its
maintainers.

Software must be re-tested as it is
changed. |

Therefore software should be well-
documented and V&V work products

(e.g., test cases) should be saved1

sl ) Vo ke
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Software in general ...

Small Prototypes can be scaled up into full-
scale solutions.

 "The heart of the problem is whether
the problem solving method used in a
prototype - which solves only a small
portion of the problem - will scale up

to solve the entire problem"2

- "Building large programs is NOT like
building small ones and software
engineering is different from most

other engineering disciplines.”3
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Software in general ...

Methodical examination of software is too
costly.

- Don't confuse rigor with formality

. "... by understanding what would be
involved in constructing a formal
argument, a programmer can do a far
better job constructing a rigorous

informal one"3

Software can be proved correct

- One can prove certain properties
about software (e.g., the algorithm
never results in deadlock)

- One can not prove all aspects of
correctness.

Vertnsam B Vasduan
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Expert Systems/Al in particular:

Expert Systems are Magic.

Expert Systems are quick and easy to build

« "Al entails massive software
engineering."4

« "Software engineering is harder than
you think: | can not emphasize
strongely enough how true this

statement is."4

Vertcaam B Vauduan
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Expert Systems/Al in particular ...

All "expert systems” are expert systems

« Just because a program is written in
an "expert system language" does
not make it (fully) an expert system.

 Just because a program is written in
a "conventional language” does not
prevent it from being an expert
system

Expert Systems are all "Expert” Systems.

- Most Expert Systems have a
significant amount of conventional
code/function (survey results indicate
at least 45% of the developed system

is conventionald).
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Expert Systems/Al in particular ...

The hueristic nature of Expert Systems
make them inherently unreliable.

 They are still predictable.

» They should be as effective as the
hueristic

+ They should be safe (i.e., be relied
upon not to create a hazard)
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Expert Systems/AI in particular ...

Learning an Expert System shellis all we
need to know about Expert Systems.

. Knowledge representation (i.e.,
language) is key to expert systems
and V&V of them

. Knowledge aquistition, reasoning
paradigms, and software engineering
are also needed skills

» Domain engineer: knowledge
centered

» System engineer: computer centered

03/11/92 -8



Implications for
Guidelines



Overview

So far we have:

. Reviewed conventional and expert
system V&V techniques

. Pointed out key V&V ideas (e.g., the
V&V puzzie)

. Studied a sample problem (traffic
light controller) |
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Overview ...

From this, we can make some inferences
about what should be in a set of ES V&V
standards and guidelines.

From these inferences, we can

» Develop a set of ES V&V guidelines

- Develop some tailoring criteria

Note: Many implications may seem trivial
but they lead to important guidelines.
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Conventional Validation Implications

Validation: "Am | building the right
product?” |

« Must be able to know if a product is
right or not

. There must be some known criteria
that the right product will satisfy
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Conventional Validation Implications

Verification Puzzle: Different kinds of
correctness ’

 Must know which kinds of
correctness are important

» Utility Correctness at a minumum
(satisfies user's needs)

*  Must know user's needs
« Should check that the understanding

of problem to be solved is both
complete and consistent

- May tailor V&V based on size,
complexity and criticality

* Must pick the V&V techniques to fit
the puzzle

03/11/92 -5



Conventional Validation

P VY ikl

Black Box View: Based on observable
behavior ‘

. Must be able to validate correctness
based on observable response from

known stimulus
» Can not validate system just by
seeing that correct knowledge went
into it

Operational Scenarios: Stimulus/response
descriptions based on how the system is
expected to be used

. User can describe how he expects to
use the system and developer can
obtain stimulus/response from the

user's description(s)
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Conventional Verification

Implications

Prototyping: Early model of possible
system ‘

 Understanding of the desired system
can be validated before system
development begins

Verification Puzzle: Comprehensive
validation of large complex systems is too
difficult, but system can be "incrementally
validated” by performing separate, static,
unit/integration, and system testing

- Verification greatly reduces the
difficulty of validation
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Conventional Verification
Implications ...

Verification: "Am | building the system
right ?" |

- Must know/understand the system
that is being built

. Must know how the system is to be
built (i.e., need design)

Modularity: Structured "divide and
conquer” approach has many benefits

. System should be modularized to
reduce the verification effort
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Conventional Verificatidn
Implications ...

Different Techniques catch different types
of problems and none are comprehensive

 Mutliple V&V techniques must be
used

The earlier an error is found, the more
cheaply it can be fixed.

- Emphasize techniques which can be
applied early

- Perform verification as early as
practical
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Conventional Verification
Implications ...

Techniques work at different levels (e.g.,
static analysis vs. statistical testing)

. Verification should be planned so
that techniques are applied when and
where they are appropriate

Static testing techniques work at many
different levels and can be applied early

. These techniques are important

Abstraction, refinement, and proper
documentation ease the application of
static testing techniques

. Design should use abstraction,
refinement, and associated
documentation (e.g., specifications)

Merinsnd o slaz
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General Expert System V&V
Implications

Expert systems are software

- Same basic conventional V&V
implications hold for expert systems

Expert Systems may satisfy some, but not
all, implementation and problem
characteristics

+ Verification approach must be

tailored for the specific type of expert
system being built
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_Expert System Validatidn
Implications

May just mechanically apply expert's "rules
of thumb" (as opposed to solving a
problem)

. Validation must rely on comparison
with the expert

May solve a very difficult problem (e.g.,
complex scheduling) where correct
solutions are not known

« Validation may be able to only

address "reasonableness” of
solutions (e.g., feasible schedule)

May solve a problem with only fuzzy or
subjectively correct answers

. Each test result must be checked by

an expert

LT L) Vo daan
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Expert System Verification
Implications

Internal interactions may be unclear and/or
complex '

- Manual analysis may be very difficult
(i.e., Inspections)

Execution sequence may not be explicit

- Verification of problem solving
method may be very difficult

Expert Systems often built iteratively (in
small chunks)

- Testing should be iterative (to catch
errors early)

 Regression testing will be done often
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Other (Common Sense) Implications

There is no way to know if the system will
meet the user's needs without doing
something that would be called V&V.

. V&V must be done

V&YV takes time (and money)

. Development schedule and cost
should account for V&V

The best person to determine correctness
is the expert

. The expert should be involved in V&V

A "fresh look" can often find errors better

. Independent (unbiased) V&V should
be done if practical
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Guidelines



Overview

The implications for V&V directly lead to
some specific guidelines which will be
discussed first. -

Based on the guildelines,
recommendations for how to develop a
V&V approach will be discussed.

Finally, you will have the opportunity to
practice developing a V&V approach on a
case project.
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Project Management Guidelines

Plan for V&V

* Include V&V in schedule (e.g.,
inspections)

* Include V&V cost in total
development cost (typical V&V cost is
25% of total project cost, spread
throughout the development cycle)

* Allocate resources for V&V (e.g.,
expert's time)

Plan to spend time developing a good
design (so static testing won't be too hard)
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Project Management Guidelines ...

Pick a Life-cycle that includes all 3 test
phases (and follow it).

 Standardizing on a life-cycle aids in
planning and management of V&V.

Tailor V&V approach based on:
1.Expected size and complexity

2.Type of expert system (based on
characteristics)

3.Types of correctness that matter
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Project Management Guidelines ...

Use Configuration Management
- Ensure system is correctly integrated

« Ensure testers know what they are
testing (e.g., version control)

- Helps manage the effects of complex
internal interactions

Reserve a significant portion of the
expert's time for helping with V&V (25%).

Prototype for early validation but clearly
separate prototyping from development

Plan to do V&V as the system is iteratively
developed (not all at the end).
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~ Problem Analysis Guidelines

Try to narrow the problem domain as much
as possible

. "Knowledge based systems have a
greater likelihood of succeeding -
and, in a sense, of being valid - when
they address a narrowly defined

problem."8

. "If an expert system starts with vague
objectives, some may conclude that it
doesn't matter what the eventual
system does, because anything is

better than nothing."”
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Problem Analysis Guidelines ...

Do not try to pre-determine whether the
solution will be an "expert system” or not.

Expect .the System to work

* Survey results indicated a significant
percentage did not expect the Expert
System to be as accurate as the
expertd

* "The difficulty with low expectations
is that they become self-fulfilling"3
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ReguirementsGuidelines

Write Requirements.

. Something is needed to V&V the
system against.

» "A good programmer understands
what his program is supposed to do
and why he expects his program to

do it"3

Document the following (at a minimum):

. expected behavior

. operational scenarios (how the
system is expected to be used)
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Requirements Guidelines ...

Consider each kind of correctness when
writing requirements.

1. Functional

2. Safety

3. User-Interface

4. Resource Consumption

5. Utility
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Design Guidelines

Design modular systems

. Modules can be V&V'ed separately

. V&V of many little systems is easier
than V&V of one large system

 Reduces regression testing

Use abstraction and refinement
« Makes static testing easier

. Allows verification during design

Cross reference design to requirements
and code

. Facilitates completeness checking
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Design Guidelines ...

Some design hints

* Pick a design notation and stick with
it across the application (needed to
verify consistency).

» The Level of Formalism is NOT as
important as the consistency of
Formalism

» "1 will contend that conceptual
integrity is the most important
consideration in system design. It is
better to have a system ... reflect one
set of design ideas, than to have one
that contains many good but
independent and uncoordinated

ideas"” - Fred Books6
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eneral Guidelines

G

Consider an independent group for final
V&V, or at least try to include some
independent reviews

. A "fresh look" often finds add.itional
errors

. Will help determine if system is
adequately documented

Always try to find as many errors as early
as possible

. Errors found early are much cheaper
to correct

Use a mixture of V&V techniques

. There is no single comprehensive
technique

Verinasrs Vo dann
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V&V Technique Guidelines

During integration of large systems, test
higher level control and user-interface
functions first (stubbing out lower level
details if necessary)

Perform regression testing at each iteration
- Emphasize modules that changed

* Perform "health test” of overall
system
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V&V Technique Guidelines ...

Emphasize static testing techniques for
evaluation of detailed functional
correctness

03/11/92

. Based on design notation/formalism,

write design specifications and
perform specification-directed
analysis

If rule-based implementation, perform
rule consistency checking

Use data-consistency checking,
especially if implementation is frame-

based.

If developing a classification-type
expert system, perform sensitivity
analysis to evaluate sensitivity of

classes to distiguishing criteria

Yer indad® Va vldny
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V&V Technique Guidelines

Use realistic testing for evaluating utility
and user-interface correctness

- Will the system satisfy the user needs

based on how they plan to (would like
to) use the system ?

Selectively choose test cases for testing
functional correctness (do not attempt to
be comprehensive, as in static testing)

» Emphasize critical and complex
functions

- Randomly exercise other functions
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V&V Technique Guidelines ...

Use stress/performance testing to evaluate
resource consumption correctness

After selective testing, measure coverage
and look for major "holes” in coverage
(rules not covered, facts not used etc).
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Recommended Aggroach

1. Analyze Problem (ongoing activity)

- ldentify areas of uncertainty and/or
complexity that may require

prototyping
- Ildentify areas of high criticality
- ldentify available expertise

» Is problem to be solved by
knowledge acquisition or analysis ?

- Identify/document expected behavior
and operational scenarios

- Identify aspects of problem that
match expert system criteria, but do
not anticipate expert system
implementation.
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Recommended Approach ...

2.Do initial planning

. Do not attempt comprehensive up-
front planning.

» True expert systems are usually
developed in a highly iterative
manner

. Determine objectives for next
iteration.

. Determine criticality of correctness.
. Estimate size and cost (include V&V).

» If V&V is listed as separate cost, it is
in danger of being "cut”

. Define milestones that follow a life-
cycle.

Yeringse Voubarn
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Recommended Approach

2.Do initial planning ...

- Reserve resources
» Expert's time
» Consider identifying IV&V group

» Look for available V&V tools
(especially those that assist an
expert5)

* Ensure:
» Problem is not too broadly defined

» Adequate requirements exist / will
exist
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Recommended Agproach

3.Perform design and specification-driven
analysis

. As each module is refined/completed,
verify functional correctness and
completeness.

. Always map back to higher level
design, requirement, prototype, or
problem description.

. Hold periodic inspections and involve
expert(s).

. Based on implementation approach,
use additional static testing
techniques (e.g., rule consistency
checking)
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Recommended Apgroach

4.As each increment is completed

« Test overall execution (high level
control) e.g.,

» Screens/windows look OK
» Files opened/closed correctly

» Functions respond to appropriate
user inputs

» Output appears in the right place
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4.As each increment is completed ...

03/11/92

Recommended Apgroach

Perform realistic and/or statistical

testing

Perform stress testing

Measure coverage and look for

"holes"

Regression test unchanged features

Perform field testing with user's and

experts

Iv-22
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Discussion

As a class discussion exercise, develop a

V&V plan and approach for the Traffic Light
Controller problem.

1.Discuss initial planning issues

2.Discuss additional requirements that
are needed

3.Discuss additional testing that is
needed
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_Exercise

For your case study problem (5-10 min. for
each step):

1.Analyze the problem
2.Do initial planning

3.Pick a general implementation
approach.

4.Develop a very high level design
(including specifications) and trace
back to problem statement (may be
only for a piece of the total problem)

5.Generate an argument for the
completeness and correctness of the

very high level design.

et tnsuat | Vesdstarn
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Exercise ...

Then, trade problems with another group
and for your new problem, continue to:

6.Generate a realistic set of test
scenarios

7.Describe additional types of testing
that are needed
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- 1. Pamnas, D.L., Clements, P.C., "A Rational Design
Process: How and Why to Fake It", IEEE
Transactions on Software Engineering, Feb., 1986

Describes why one would wish to document a
product as if it were designed according to an
idealized development process/methodology, even
if was developed in a very ad-hoc manner. Also
includes suggestions on what the documentation of
a product should contain.

2. Fox, M.S., "Al and Expert System Myths, Legends,
and Facts", IEEE Expert, Feb., 1990
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of Al technology.

3. Guttag, J.V., "Why Programming is Too Hard and
What to Do About It", Research Directions in
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development techniques, offers some very candid
opinions in thispaper.
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Workshop Handout #1

Procedure Traffic_Controller
Is

—* . ’
-mTraﬁcmneusesthemﬁonofaTﬁnerwdmhe

2_Mimte_Timer, 1_Minute_Timer, 15_Second_Timer : Timer;

—*

- Retums'IRUEwhenu'aﬁcisapproachinginﬂ:eamandimcﬁm
- of traffic flow at the current clock time

— ELSE -> FALSE

-

Function Approaching Traffic Retumn (True, False);

—<*

- Rea:ms‘IRUBwhmtraﬁc(antoorpedwu-ian)reqneslsa
- change in the light at the current clock time

— ELSE -> FALSE

-*>

Function Wait_Signal_Received Return (True, False);

—

— Retums the current time
-

Function Clock Retumn Time;

-
- ReunmmUEwhenﬂwcnnmtclockﬁmeexceedsthetime
- specified by the Timer '

— ELSE -> FALSE

-

Function Expired(T: In Timer) Return (True, False);

—-<*
- Switchﬁumﬂ:ecunemdirecﬁmoftraﬁcﬂowtomeopposhe

;rocedmeSwi:ch(L: In Out Light);



Workshop Handout #1

State:CunentStateoftheTraﬁCCommnet

Possible msd:eTraﬁcComollercanbehm:

State_1 : 2M_Timer := Clock+2 Minutes
NS-Light := Green

State_2 : 2M_Timer Is Unchanged
NS-Light := Green
Clock Updated by 1 second

State_3 : IM_Timer := Clock+1 Minnte
15S_Timer := Clock+15 Seconds
NS-Light := Green



Workshop Handout #1

—*

— State_1 Transitions

— Truth Table

- Waiting Traffic Approaching Traffic Satisfied By:
- T T 13

- T F 13

- F T 1.1

- F F 12

-

<* 1.1 *> When State_1 And (Approaching Traffic And
_ NOT Waiting_Traffic) =
State := State_1;
<* 12 *> When State_1 And (NOT Approaching_Traffic And
NOT Waiting_Traffic And =>
State := State_2;
<* 1.3 *> When State_1 And (Waiting_Traffic) =
State := State_3;



23 T T T
23 T F T
23 F T T
- 23 F F T
- 24 T T F
- 24 T F F
-22 F T F
- 21 F F F
- Whathappenswhmmcomingu-afﬁcisdewaeda:theexact
— same time the timer expires?
—-*>
<* 2.1 %> When State_2 And (NOT Approaching Traffic And
NOT Waiting_Traffic And

NOT Expired(2M_Timer)) =>
State := State_2;
<* 2.2 *> When State_2 And (NOTWaiting_TrafﬁcAnd
NOT Expired(2M_Timer) And
Approaching_Traffic)) =>
State := State_1;
<* 2.3 *> When State_2 And (Expired(2M_Timer)) =
State := State_6;
<*24 bWthm_ZAnd(Waiﬁng_TraﬁcAnd
NOT Expixed(m_'l"nner)) =>
State := State_3;
—*
— End State_2 Transitions
—*>
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—<*
State_3 Transitions

Assumptions : Detecting additional waiting traffic does
not effect state transition

Approaching_Traffic
3.1 T

32 F
—-*>
<* 3.1 *> When State_3 And (Approaching Traffic)y =>
State := State_5;
<% 3.2 *> When State_3 And (NOT Approaching_Traffic) =>
State := State_4;
—<‘ ‘

— Truth Table:
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Whattnppenswhentheoncomingtrafﬁcisdewaedatme
exaasaneﬁmethattheﬁmere:pira?

—<*

— State_4 Transitions

- Asmpﬁm&()ncewmﬂngmﬁcisdmddemuonof
- oncoming traffic is irrelevant

- Truth Table:

- Approaching_Traffic 15S_Timer Expired IM_Timer Expired
- 44 T T T

- 44 T F T

- 44 F T T

- 44 F F T

- 42 T T F

- 43 T F F

- 42 F T F

- 41 F F F

>

<* 4.1 *> When State_4 And (NOT Expired(15S_Timer) And

NOT Expired(1M_Timer) And

NOT Approaching.'rrafﬁc)) =
State := State_4;

<* 42 *> When State_4 And NOT Expired(1M_Timer) And

Expired(15S_Timer)) =
State = State_6;
*> When State_4 And (Approaching_Traffic And
NOT Expired(1M_Timer) And
NOT Expired(15S_Timer)) =>

o -
- '

<44 «> When State_4 And (Expired(1M_Timer)) =>

State := State_6;
—<*
— End State_4 Transitions
—F>
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A
§
E:

Assumptions : Physically impossible for the 15S_Timer to
expire at the same time it is set
Truth Table:
Approaching_Traffic IM_Timer Expired
5.1 T T
- 52 T F
- 51 F T
- 53 F F
-
<* 5.1 *> When State_5 And (Expired(1M_Timer)) =
State := State_6;
<* 5.2 *> When State_5 And (Approaching Traffic And
NOT Expired(1M_Timer)) =>
State := State_5;
<*53 bWthm_SAnd(NGTAppmadﬁng_TmfﬁcAnd
NOT Expired(IM_Timer)) =>
State := State_4;
-t

— End State_5 Transitions
-*>



(time 1)

(signal NS car 370)
(signal EW car 400)
(signal NS car 420)
(signal EW car 425)
(signal EW car 450)
(signal NS car 460)
(signal NS car 470)
(signal NS car 480)
(signal NS car 490)
(signal NS car 500)
(end 600)

)

(defrule update-time (declare (salience -1))
21 <- (time 7t)

=
(retract 7f1)
(assert (time =(+ 7t 1))

)

(defrule trigger-signal-change
(green 7direction ?)
(ﬁme ?t) . » . . ))
(signal ?other_direction 7 %) (test (neq ?direction ?other_direcion

=>
(assert (signal-change ™))
)

(defrule del-old-changes
71 <- (signal-changes 7dt)
(time )
(test (> (- 1t 7dt) 120))
=>
(retract 1)
)
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(defrule trigger-signal-delay
(green ?direction ?7) -
(time 7)

(signal ?direction ? t)
=

) (assert (signal-delay ?t))

(defrule del-old-delays
1 <- (signal-delay ?dt)
(time 1)

(test (> (- ¢ 7dt) 15))
=

(retract 2f1)
)

(defrule change-no-signal
1 <- (green ?direction 7last_changed)
(time %)
(test (>= 7t (+ 7ast_changed 120)))
(not (signal-delay 7))
(not (signal-change ?))
=
(retract 7f1)
(if (eq ?direction NS) then (bind 2other_direction EW)
else (bind ?other_direction NS))
(assert (green ?other_direction %))
)(fpdnwmt”m'?otbu_di:ecﬁon " (no signal) at " ?t cxif)
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defrule change-no-delay
( 21 <- (green 7direction MNast_changed)
(time 7t) :
262 <- (signal-change 7sg)
(not (signal-delay 7))
(test( >= %t (+ 75g 15)))
=>
retract 7f1 7£2) o
Eif (eq ?direction NS) then (bind ?othu:_dnemon EW)
else (bind ?0other_direction NS))
assert (green 9other_direction 7t)) ]
tfpﬁntomt"green"?othet_direction" (no delay) at " 7t ciif)

)

defrule change-delay
( 91 <- (green 7direction Nast_changed)
(time M)
2 <- (signal-change ?sg)
3 <- (signal-delay ?sd)
(test (>= Tt (+ 7sg 60)))

(oo 2direction NS) then (bind %other_direction EW)
(e se (bind %other_direction NS))

assert (green Zother_direction 71))
Efp:intontt "green " 7other_direction " (delay) at " ‘%t cif)
) )

(defrule stopit
(tme )
(end 712)
(test (>= "Nt N2))
=>
(halt)
)



update_time
trigger_signal_change

del_old_changes
trigger_signal_delay
del_old_delays
change_no_signal
change_no_delay

update_time

trigger_signal_change
del_old_changes
trigger_signal_delay
del_old_delays

change no_signal
change _no_gelay

Workshop Handout #3

time=t time=t+1

signal time=time signal_change

iemal directi _ directi

time> signal_changes + 120 Asignal _changes

signal=green_direction signal_delay=t
time="¢

time>signal _delay+15 Asignal_delay

Asignal_delay last_changed=time
Asignal_change
time>=last_changed+120

Asignal_delay last_changed=time
time> signal_change+15

trigger_signal_change time=t+1
del_old_changes
nigger_signal_delay
del_old_delays
change_no_signal
change_no_delay
update_time

change_no_delay

del_old_delays

change_no_signal

change_no_delay

change_no_signal

change_no_signal
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7= Simulated Solution to Traffic Light Controller Problem =

---------------------------------------------------------------

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

oo
1244

5; Priorities: -2 : for updating the timer
hoes -l:fwﬂ!ingsrwetntbemdofeachcycle
" O:ﬁgnﬁngomifﬂwlightsmdtobechanged

------------------

---------------------------------------------------------------
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“:: TIME module
;;;Updatetimecountatendofuchcycle

”9

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

(deftemplate time
(field is (type NUMBER))

)
(deffacts time_facts

(time (is 0))
(stop-time 600)
)

; Transitions

;<updateﬁmea:ﬂ1eendofeach cycle >
;<* time := time + 1 *>
(defrule count_time (declare (salience -2))
1 <- (time (is t))
=>
(modify 21 (is =(+ 1t 1)))
)

-< halt when stop time reached >
(defrule stopit
(stop-time 1)
(ame (is 7t))
=>
(halt)
)
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------------------------------------------------

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

;;;Aﬂowtimcxstobeassatedandﬁgm'eoutwhmtheycpire.
3»; Usage: Assert a time called some name and set for some time.
s When that time has elapsed, the timer will have the

s expires_at field set to true.

---------
-----------------------------------------------------------

;Model:Tnna'isacomdownﬁmerthatcountsdownwm&me

(deftemplate timer
(field called (type 7VARIABLE))
(field set_for (type NUMBER))
(field has_expired (allowed-words TRUE FALSE) (defanlt FALSE))
; private
(field expires_at (type NUMBER) (defanlt 99999))
)

;Consuﬁhn: set_for>0

(defrule timer_error

(timer (called ?name) (set_for ?sf))

(test (<= ?sf 0))
=>

(fprintout t "TIMER_ERROR: " ?name ctif)
)
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: Constraint: only one timer of a given name

: This is resolved be deleting oldest timer.

(defrule timer_name-conflict

21 <- (timer (called ?name) (expires_at %ea-1))

(timer (called 7name) (expires_at ?ea-2))
(test (< 7ea-1 7ea-2))

=> (retract 7f1)

)

: Initial: expires_at := time + set_for
; Transitions

:< initialize expires_at >
(defrule initialize_expires_at
2f1 <- ( timer (expires_at 99999) (set_for 7sf) )

(time (is 7))
=>>

(modify ?f1 (expires_at =(+ 7sf 1))
)

;<indiweﬁmahasexpired>

(defrule timer_expired
9f1 <- ( timer (expires_at ?ea) (has_expired FALSE) )

(time (is 7t))
(test (<= Tea M)

=>
(modify 71 (has_expired TRUE))
)
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rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

;,:;Simulamewandpedmﬁanm'ivalsensozs.

292?

------------------------------------------------------------------

; State Data
(deffacts signal_facts

(signal_data NS car 370)
(signal_data EW car 400)
(signal_data NS car 420)
(signal_data EW car 425)
(signal_data EW car 450)
(signal_data NS car 460)
(signal_data NS car 470)
(signal_data NS car 480)
(signal_data NS car 490)
(signal_data NS car 500)

)

; Model: Signal_daaisalistofsignal_msandtims;
; thetimeindimwwhmthesignalwmbesimulmd

(deftemplate signal
(field in_direction (allowed-words NS EW))
(field signalled_by (allowed-words car pedestrian))
)
; Constraint: none
; Initial: none
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; Transitions

:< assert signal > .
(defrule assert_signal
(signal_data ?direction type Mtime)
(time (is ?time))
=>
(assert (signal (in_direction ?direction)
5oy (signalled_by type)

-< retract signal at end of cycle >
(defrule retract_signal (declare (salience -1))
71 <- ( signal (in_direction ?direction) (signalled_by 7type))
=
(retract 7f1)
)
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rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

------------------------------

--------------------------------------------------------------

(if (eq 7*green-light* NS) then
(bind ?*green-light* EW)
(bind 7*red-light* NS)

else

(bind 7*green-light* NS)
(bind ?*red-light* EW)
))

;< reset light-changed fact at end of cycle >
(defrule retract-light-changed (declare (salience -1))
1 <- (light-changed)
=>
(retract 7f1)
)



------------------------------------------------------------------

---------

-----------------------------------------------------------------

7 OVERVIEW: Each cycle, figure out how long to wait to change lighs,
b switchingﬂ:eligtnifitistimetodoso.

;- A collection of timers are used to figure out when to change
;;;r.helights.'rheteisalong(Zmin.)timerfor"no signal” mode,
.-« a short timer (15 wc.)for"signaltochange" mode, a mediom

;;; timer (1 min.)for"signaltochangebutwaiﬁngonamr" mode.

;;;'I'heshonandmedimntimersa:esetwhenthereisasignalto
.- change the light.
;;;‘I'heshorttimerismetuchthneapproachingu'aﬁcismd
;;;(andmwai!inngonasignaltochangethcligm).
;;;‘I'hel.iglnischangedwhenanytimaapirw.

...................

-----------------------------------------------------------------
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; Constants

(defglobal :
?*long-time* = 120
7*medinm-time* = 60
P*short-time* = 15

)

; Initial
(deffacts traffic_light_controller-facts
(timer (called long) (set_for 7*long-time+))
)
; Transitions

;< light-changed or approaching traffic -> set long timer >
(defrule set-long-timer
(or (light-changed)
(signal (in_direction ?direction&:(eq ?direction M green-light*)))
) .

=> :
(assert (timer (called long) (ser_for 7*1ong-time*)))
)

;< signal to change the light -> set medium and short timers >
(defrule set-medium-timer

(signal (in_direction directiond&::(eq ?direction P*red-light*)))
=

(assert (timer (called short) (set_for P short-time*)))

(assert (timer (called medium) (set_for 7*medium-time*)))
)
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;<appmaching:rafﬁcdmdandmedinmﬁmaexists
-> reset short timer > '

(defrule reset-short-timer »
(signal (in_direction 7direction&:(eq ?direction 7*green-light*)))
(timer (called medium))

=>

(assert (timer (called short) (set_for ?*short-time*)))
)

:< timer expires -> change light >
(defrule timer_expires
(timer (has_expired TRUE))
(time (is 7t))
=
(change-light)
)(fpu:imontt"changeliglnat"?t " " 7*gyeen-light* crif)

;<1iginchanged->mactmedinm and short timers >
(defrule retract-medium-timer
(light-changed)
9] <- (timer (called medium))
7£2 <- (timer (called short))
=
(retract 21 2)
)

10
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reset_short_timer

retract_medium_timer

timer_expires

time=stop_time

timer.expires_at=time

signal data at_time=time

light_changed

ight_changed or
signal=green_light
signal=red_light
medium_timer.expres_at
signal=green_light and
light_changed

timerhas_expired=TRUE

time=t=1
(halt)

timer.has_expired=TRUE

signal="direction
signal. _data="direction

Alight_changed

long_timer.expires_at
=time+120
short_timer.expires_at
=time+15

=timer+60

short_timer.expires_at

’medium_timer, Ashort_timer

(change_light)
light_changedcoum_time

timer_expired



it

timer_expired

Workshop Handout #6

timer_expires
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assert_signal

retract_si

retract_light _changed

set_long_timer
set_medium_timer
reset_short_timer

retract_mediom_timer

set_long_timer
set_medium_timer
reset_short_timer

timer_expires
timer_expires
timer_expires
retract_light changed

set_long timer
medinm_timer
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introduction

The purpose of this handout is to examine the benefits of applying connectivity graph analysis
to the two CLIPS rule-bases generated for the traffic controller problem. Please refer to
Landuaer (reference number 16 in Part 2 of the Presentation Material) for more complete
descriptions of this approach. Nazareth (reference number 2 in Part 2 of the Presentation
Material) also provides some of the more theoretical foundations for similar work in directed
graphs (i.e., network flow). The first step in applying connectivity graphing techniques is to
generate a compilete list of rules and facts (this handout will only consider facts; other items
such as clauses could be considered). Tables 1 and 2 on pages 2 and 3 show these lists from
the first CLIPS implementation of the traffic controller problem.

Tables 3 and 4 on pages 4 and 5 show the lists of rules and facts from the second CLIPS
implementation of the traffic controller problem. In general, whether building these
connectivity graphs or not, generating a list of facts and rules can be very helpful in avoiding
redundancies.
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Identifier Rule-Name
R4 Update_Time
Ro Trigger_Signal_Change
R3 Del_Old_Changes
Rg Trigger_Signal_Delay
Rs Del_Old_Delays
Ré Change_No_Signal
R7 Change_No_Delay
Rg Change_Delay
Rg Stopit

Table 1: List of Rules from the Non-Modular Traffic Controller

CLIPS Implementation
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Identifier Facts
F1 time 2t
Fa green ?direction ?
F3 signal ?other-direction ? 2t
Fa signal_changes 2dt
Fs signal_change 7t
Fe signal_delay ?dt
F7 end 2t

Table 2: Facts from the non-Modular Traffic Controller CLIPS

Implementation
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Identifier Rule Names
R4 Count_Time
R2 Stopit
R3 Timer_Error
R Timer_Name_Conflict
Rs Initialize_Expires_At
Re¢ Timer_Expired
R7 Assert_Signal
Rg Retract_Signal
Rg Retract_Light_Changed
R10 Set_Long_Timer
R11 Set_Medium_Timer
R12 Reset_Short_Timer
R13 Timer_Expires
R1a Retract_Medium_Timer

Table 3: List of Rules from Modular Traffic Controller

Implementation
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identifier Facts
F1 time (is ?t)
F2 stop_time 7t
F3 timer (called ?) (set_for ?) (has_expired ?)
Fa signal (in_direction ?) (signalled_by ?)
Fs light_changed
Fe signal_data ? ? ?

Table 4: List of Facts from Modular Traffic Controller
Implementation

Generating Connectivity Graphs

Based on these tables, connectivity matrices can be generated. These matrices are good for
examining a knowledge base to see how "interrelated" things are. Tables 5 and 6 on pages 7
and 8 show connectivity matrices derived trom the fact and rule lists. These matrices are built
by placing a 1 in each slot where a given fact is used on either the right or left hand side of the
rule. A 0 in a given slot indicates that a particular rule does not reference the related fact.

The equations of interest for tables 5 and 6 are:

-+ (RFTR) * (RF)
* (RF)* (RFTR)

where (RF) is the initial Rule\Fact matrix and (RFTR) is the transpose of that
matrix (i.e., creating a matrix by making the rows into columns and vice
versa)
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The first equation shown generates a matrix that shows, given an ordered pair of facts (fi. ),
whether a particular rule references both facts fj and fj (i.e., facts fj and j have commonality).

A graph can be generated based on this matrix where facts serve as the vertices of the graph
and rules serve as the edges that connect these The second equation generates a similar
matrix that shows, given any ordered pair of rules, (T}, rj), whether a particular fact is common

to rules r; and e An undirected graph can also be generated from this matrix where the rules
serve as vertices and the facts as edges.

Analyzing Connectivity Graphs

What can be learned about the two implementations of the traffic controller problem from
these matrices? As it tums out, these matrices provide some important clues that can be
used to assess the design of the two different implementations. To see these clues begin by
considering the matrix generated from the ad-hoc CLIPS implementation (see Table 7 on
page 9). As stated earlier, an undirected graph can be drawn based on the generated matrix
where rules act as the vertices. Drawing a graph from the matrix in Table 7 generates, as
expected, a very complex series of interactions. In fact, there is at least one edge between
every rule and every other rule. This means that every rule has one or more facts in common
with all other rules. Clearly, this would be a more difficult rule-base to analyze because of all
these interactions.

What can be leamed using the matrix generated from the modular CLIPS implementation?
The matrix should show that this implementation is easier to analyze. In fact, the matrix of
Table 8 on page 10 clearly shows a simpler connectivity structure as evidenced by the number
of zeroes in the matrix (i.e., there are fewer edges in the graph). In addition, the matrix of
Table 8 highlights the modules defined in the design (i.e., areas where higher numbers are
clustered:; e.g., the boxes in the inner portion of the matrix in Table 8). To prove this, compare
the matrix of Table 8 to the modular CLIPS design found in handout number five.

An interesting side-benefit to this is that, for the modular approach, one can assess, using the
matrix of Table 8, the amount of coupling and cohesion that exists for each module. Every
module should be strongly cohesive (i.e., the module is completely defined without any
extraneous data or operations) and very loosely coupled (i.e., each module should have few, if
any, dependencies on other modules) In the case of Table 8 one could make the arguement,
for example, that the signal and timer modules should be combined to form one module due to
the indications of coupling found in the middie box of Table 8. The loose coupling is evident
by examining areas of the matrix in Table 8 that are not highlighted. The frequency of zeroes
indicates that little or no coupling between modules exists.
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Rules \ Facts | F1 F2 F3 Fs4 Fs5 Fg
R1| 1 0 0 0 0 0
R2| 1 1 0 0 0 0
R3[| o 0 1 0 0 0
Re| o 0 1 0 0 0
Rs| 1 0 1 0 0 0
Re| 1 0 1 0 0 0
R7| 1 0 0 1 0 1
Rg| o 0 0 1 0 0
Re| o 0 0 0 1 0
R1o| o 0 1 1 1 0
R11] o 0 1 1 0 0
R12| o 0 1 1 0 0
R13| 1 (] 1 0 (1 0
Ria] o (] 1 0 1 0
Table 5:  Connectivity Matrix for the Modular CLIPS
Implementation
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Rules \ Facts Fq F2 F3 Fa_ Fs Fe F7
R1| 1 0 0 0 0 0 0
R2| 1 1 1 0 1 0 0
R3| 1 0 0 1 0 0 0
Rg| 1 1 0 1 0 0 0
Rs| 1 0 0 0 0 1 (
Rg| 1 1 0 0 1 1 0
R7| 1 1 0 0 1 1 0
Rg| 1 1 0 0 1 1 0
Rg| 1 0 0 0 0 0 1
Table 6: Connectivity Matrix for Ad-Hoc CLIPS

Implementation
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Rules\Rules |R1 R2 R3 Ry Rs Rg Ry Rg Ry
R1f1 1+ 1 1 1 1 1 1 4
R2f1 4 1 2 1 3 3 3 4
R3f1 1 2 2 1 1 1 1 4
Raf1 2 2 3 1 2 2 2 q
Rsf1 1 1 1 2 2 2 2 4
Rel1 3 1 2 2 4 4 4 1
R711 3 1 2 2 4 4 4 1
Rgf1 3 1 2 2 4 4 4 1
Rof1 1 1 1 1 1 1 1 »

Table 7:  Connectivity Mapping between Rules (RF * RFTR) for

the Ad-Hoc CLIPS Implementation
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Rules \ Rules |R1 R2 Rs3 Ry Rs Rg Ry Rg Rg Rip R11 Ry2 R13 R14

R111oo111ooooo1o

Rz1zoo111ooooo1o

|’1300111100011111

Rglo o o o o o o o 1 1 0 0 0o 1
Rolo o 1+ 1 1 1 1 1 1|3 2 2 1 2
Riilo o 1 1 1 1 1 1 0 |2 2 2 1 1
R2lo o 1 1 1 1 1 1 0 |2 2 2 1 1
Rialt 1 1+ 1 2 2 1 0 o0 |1 1 1 2 1

R14oo1111oo121112

Table 8: Connectivity Mapping between Rules (RF * RFTR) for the Modular
CLIPS implementation
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Generating Read/Write Matrices

Additional graph techniques exist for analyzing correctness criteria in a rule-base. One of
these techniques works with matrices generated by examining the read/write relationships
between facts and rules.This particular technique will be explored from the perspective of
reachability (i.e., "can | get there from here?"). For example, Tables 9 and 10 on pages 15
and 16 show matrices that map rules to facts based on whether the fact appears on the right
or left hand side of the rule for the ad-hoc CLIPS implementation. Tables 11 and 12 on pages
17 and 18 show the analagous matrices for the modular CLIPS implementation. Each of
these matrices are built following a similar technique to the other connectivity matrices. A 1 is
placed in each slot where a rule and fact are "connected.” Zeroes indicate that there is no
relationship between a given fact and rule.

Once these matrices have been built, two different equations can be used to analyze
"reachability” issues within the knowledge base. The first equation below generates a matrix
that matches facts against other facts (see Tables 13 and 19 on pages 19 and 25). The
second equation matches rules against other rules (see Tables 14 and 20 on pages 20 and

26).
- (RATR) * (wr)
- (Wr) * (RTR)

where (Rd) is the initial Rule\Fact read matrix and (RdTR) is the transpose of
that matrix

Identifying Anamolies

Tables 13 and 19 on pages 19 and 25 show the fact to fact connectivity relationships for the
ad-hoc CLIPS and modular CLIPS implementations respectively. What useful information
does this matrix provide? These matrices indicate, for a given order pair of facts (fj and fj),
whether a rule exists that reads f; and writes fi. Following this line of reasoning for the ad-hoc
implementation, some anomalies in the rule-base are apparent. Anamolies, remember, do not
necessarily indicate an error exists, but rather indicate that the possibility for an error exists.
For example, consider the first column of the matrix. This column indicates that one rule
reads f1 and writes f1, but no other rules write f1. Is this a problem? Looking at the rule-base
this can be explained. The rule Update_Time (this is the rule that both reads and writes fact
f1) is intended to update the time at the end of each cycle in order to simulate a clock. A
salience value was added to the rule (i.e., this rule will not fire until a state is reached where
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no other rules at a higher salience can fire) to guarantee, among other things, that this rule is
the only rule than can update the time (i.e., fact f1). Therefore, this is not a problem.

Are there any other anamolies? Yes. Look at column three of the matrix in Table 13. The
column contains all zeroes. This indicates that no rules write fact f (this is also seen in the

write matrix of Table 10). Yet, Table 9 indicates there are rules that read fact f3. This is

clearly an anomaly. Once again, though, this is not an error. As it turns out, all variations of
fact {3 have been defined within a deffacts structure (see page 1 of Handout #2). A similar

line of reasoning can be used to explain the anomaly that the last column of the matrix (fact f7)
is also all zeroes.

What about the matrix for the modular implementation? Does this provide any useful
information? There are two columns in this matrix that contain all zeroes. The column for fact
fo can be explained using the line of reasoning from the previous paragraph. A deffact
structure was used to do the write for fact fo. The purpose of the rule that reads fo (which is
rule Ro) is to terminate the rule-base. Therefore, should rule Ra fire, the knowledge base

terminates and no more "writes" are performed. The same arguements follow for tact f6 which
also has all zeroes in its column. One process, then, for demonstrating correctness using
these matrices is to look for anomalies and then provide arguements that these, in fact, are
correct.

Anomalies also exist in the matrices of Tables 14 and 20 on pages 20 and 26. These
matrices show rules that are related because they read and write the same facts. For
example, the rules R4 and Rs are connected because they each read and write the fact fg.

Oné of the most curious anomalies in the matrix of Table 14 relates directly to the error
discovered in Handout #2. Examine the row and column for rule R3. Rule R3

(Del_Old_Changes) is connected with itself, but is not connected via facts to any other rule.
This indicates two things. First, Rgis a dead-end rule. In other words, rule R3 does not

influence the firing of any other rules. Second, Ra will, in fact, never fire because there are no
other rules that write fact f4. This is also evident in the inital read and write matrices, but is

probably easier to analyze using one matrix than by trying to visually combine the results of
two matrices.

Testing Reachability

Nazareth points out that for a connectivity matrix A, the equation AN will generate a matrix
showing whether a given rule, for example, can be reached from another rule across n edges
(based on a graph that can be generated based on the connectivity matrix) of a directed '
graph. Using the matrices generated so far, the definition would look something like this:

Aij = { 1 iff rule; -> rulej}
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This equation states that the matrix A will.contain a 1 whenever the result of firing rule;

influences the firing of rule; to fire. The matrix generated from A2, then, can be defined as
follows:

Ak := {1 iff rule; -> rulej -> ruley}

This definition can be carried forward to show elements of reachability (i.e., can a given rule
be influenced by another rule). In the framework of the matrices worked with in these
examples, this connectivity is done, when working with rules, by facts. In other words, a given
rule “writes” a fact and that influences the firing of other rules that also change facts that
influence other rules and so on. Following Nazareth's approach generates a narrow result
that allows one to focus on specific rules. For the examples here a more general reachability
result was desired. To achieve this more general result, the following equation was used:

A+A24+ A3+ . 4+ AN

This equation adds all of the AN matrices (each value greater than 0 was converted to one
since the concern was to show whether or not a rule was reachable from another rule not
necessarily how many edges in a graph were required to achieve that reachability). Tables 15
through 18 on pages 21 through 24 show the results of applying this equation to the ad-hoc
CLIPS implementation. Tables 15, 16 and 17 show successive impiementations while Tabie

19 shows the cumulative results of applying this equation to AS. Tables 21 through 24 on
pages 26 and 30 show the results as applied to the modular CLIPS implementation. Tables

21, 22, and 23 show successive approximations while Table 24 shows the result up to AS.
The examples stopped at AS because the matrices generated following that up to A14 were all
identical to AS.

The primary result from applying this approach is that the anomalies mentioned earlier
become more pronounced.These results become more pronounced because as the equation
is carried out more slots become filled with one's until at some point the matrices begin to
repeat. For the example, the row for R3 never changes because as was aiready discovered

this rule has essentially no bearing on the rest of the rule-base. The anomaly associated with
rule Rq also is still apparent because its column remained the same throughout.

The results of this equation when applied to the modular approach also provide interesting
results. These results can be summarized by recognizing that there are fewer anomalies to
consider for the modular case than for the ad-hoc case. This certainly supports the notion that
designing modular knowledge bases results in easier analysis. While it is a positive thing that
techniques such as these find anomalies, is it not better to design a system so that anomalies
are avoided? Designing a system in this matter reduces the analysis of these matrices to
confirmation that the system will perform as designed.
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Landauer presents formulas for building other interesting matrices that can be used to analyze
a rule-base. Nazareth also points to some interesting results that can be obtained by
representing a rule-base as a directed graph and then applying elements of graph theory to do
network flow analysis. These other techniques will not be considered here. However, the
student is encouraged to examine these other techniques because of similar benefits they

provide in analyzing a rule-base.
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Rules \ Facts Fi. F2 F3 F4 Fs5 Fg Fy
Ri| 1 0 0 o o 0 0
R2| 1 1 1 0 1 0 0
R3| 1 0 0 1 0 0 0
Re| 1 1 0 1 0 0 0
Rs| 1 0 0 0 0 1 0
Re| 1 1 0 0 1 1 0
Rz| 1 1 0 0 1 1 0
Rgl 1 1 0 0 1 1 0
Ro| 1 0 0 0 0 0 1

Table9: Read Matrix for Ad-Hoc CLIPS
Implementation
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Rules \ Facts Fqf Fo F3 Fs Fs Fe F7
R1| 1 0 0 0 0 0 0
R2| o 0 0 0 1 0 0
R3| o 0 0 1 0 0 0
Ra| o 0 0 0 0 1 0
Rs| o 0 0 0 0 1 0
Rg| o 1 0 0 0 0 0
R7| o 1 0 0 1 0 0
Rg| o 1 0 0 1 1 0
Rg| o 0 0 0 0 0 0
Table 10: Write Matrix for Ad-Hoc CLIPS Implementation
16 Handout #8



Rules\Facts |(F1 F2 F3 Fs4 Fs Fg
Ri| 1 0 0 0 0 0
R2| 1 1 0 0 0 0
R3| o 0 1 0 0 0
Ra| o (] 1 0 0 0
Rs| 1 0 1 0 0 0
Rg| 1 0 1 0 0 0
R7| 1 0 0 0 0 1
Rg! o 0 0 1 0 0
Ro| o 0 0 0 1 0

Rio] o 0 0 1 1 0
Ri1] o 0 0 1 0 0
R12| o 0 1 1 0 0
R13| 1 0 1 0 0 0
Ria| o 0 1 0 1 0

Table 11: Read matrix for Modular CLIPS Implementation
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Rules\Facts |[F1_F2 F3 Fa Fs Fe
R1| 1 0 0 0 0 0
R2! o 0 0 0 0 0
R3| o 0 0 0 0 0
Ra| o0 0 1 0 0 0
Rs| o 0 1 0 0 0
Re| © 0 1 0 0 0
R7| o 0 0 1 0 0
Rg| o0 0 0 1 0 0
Rg! o 0 0 0 1 0

Rio| © 0 1 0 0 0
R11] o 0 1 0 0 0
R12| o0 0 1 0 0 0
Ri1z| o0 0 0 0 0 (]
Ria] o0 0 1 0 0 0

Table 12: Write Matrix for Modular CLIPS implementation
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Facts \ Facts

Fi1 Fo F3 F4 F5 Fg Fzp

F1]1

“
L3
©O © ©o © o o

3
0

© © © ©o o o o

© o

© N N o

2
0

© © © © © o

Table 13:  Connectivity Mapping between Facts (RdTR * Wr)

for the Ad-Hoc CLIPS Implementation
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Rules \ Rules

313293“435"*6“7“839

Rg

Table 14: Connectivity Mapping betw
the Ad-Hoc CLIPS Implementation

OOOOOOQ

o o ©o o
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0
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een Rules (Wr * RATR) for
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Rules \ Rules

Rt R2 R3 R4 Rs Rg Ry Rg Ry

R1
R2

Table 15: Reachability Matrix (Rules\Rules) Step 2

1

o O o

© © © o

0

(A+A2)

1

1
0

© © © oo o o

1

1

1
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Rules \ Rules

Ry Ro R3 Rq Rs Rg Ry Rg Rg

-k
-h

1

@ IPRP2IISD

Table 16: Reachability Matrix (Rules\Rules) Step 3

(A+A2+A3)

o o o o

0
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1
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1

1

1
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1
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Rules \ Rules

R1 R2 R3 Ry R5 Rg Ry Rg Ry

Rg

Table 17: Reachability Matrix (Rules\Rules) Step 4
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Table 18: Reachability Matrix (Rules\Rules) Step 9
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Facts\Facts |F1 F2 F3 F4 F5 Fg
F1l12 o0 2 1 1 o
F2l0 o0 0 o o o
F3]1 0 5 0 1 o
Fslo o0 3 1 o0 o
Fslo o0 2 o 1 o
Felo o o0 1 o o

Table 19: Connectivity Mapping between Facts (RdTR
* Wrr) for the Modular CLIPS Implementation
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Table 20: Connectivity Mapping between Rules (Wr * RdTR) for the Modular
CLIPS Implementation
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Reachability Matrix (Rules\Rules) Step 2 (A+A2)

Table 21:
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Rules \ Rules | R1 R, R3 Ry R5 Rg Ry Rg Rg R0 R11 R12 R13 Ri4
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Table 22: Reachability Matrix (Rules\Rules) Step 3 (A+A2+A3)
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Rules\Rules |R1 R2 R3 Ry Rs Rg Ry Rg Ry R10 R11 R12 Ry3 R4

Rif1 1 1 1 1 1 1 1T 1 1 1 1 1 1
R2io0 o 0 0 0 0 0 0 o0 o
0 0 0 0

0 o

0 0
0 0

l=l1301111111111111

Fi1411111111111111

Table 23: Reachability Matrix (Rules\Rules) Step 4 (A+A2+A3+A4)
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Table 24: Reachability Matrix (Rules\Rules) Step 5 (A+AZ+ ... +AS)
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function fails to complete, oritl'aasbeendsterminedﬂtatMmmnotbe
&euedatheﬁglﬂtimsbadﬁevenﬁnengheigriﬁonatMETso.om.
mespociﬁcamrreewetyacﬁonsaredowmmthables.

Table 1: Nominal Launch Sequence Functions

Main Engine Ignition This is the main goal event and command issped
must occur at MET=0.0. It must
also occur between 2 and 2.3

Secondary Engines Ignition Mnst occur within 2 seconds of engine thrust > 90% (usually
propellant bieed valve ciosure. takes about .S sec)

confirmed
Table 2: Monitoring Conditions

MONITOR CONDITION CONTEXT




Engine Communication Failure Engine Command Word Bit 1 checked each .1 sec

pot reset upon receipt
Engine Failure Thrust lower than expected checked each .5 sec after engine
(<90% 2 seconds afier start) igniti
PIC ignition voitage Must achieve count of 100 checked each second after
- | within 4 sec of amming and not arming until ignition
drop below 90

Table 3: Error Recovery Actions
FRROR CONDITION RECOVERY ACTION

Engine Communication Failure Bit 1 pot reset on two If no engines are running, issue
consecutive commands. launch bhold.

If main engines not started,
shotdown engines and issue
launch hold.

If main engines started,
shutdown failed engine only if
doing so will still maintain
overall throst within safety

wos ooe

Correctness Considerations

It is extremely critical that monitoring andmmbefmcﬁmanymandﬂnemam
aaimispufomedwhﬁn.lmmcmemoondiﬁonom

It is critical that NLSFs be sequenced correctly.
Ahhonghdnlmchpmwmfngsymhsm&:eamimcﬁommaekamdmdsphymof

launch sequencing.
Hints
Nmﬂmbeuﬂesdonuspedfyaﬂﬂndmﬂsmdcnlyindndemphs. Only develop a test approach,

wammmdmmthmﬂmmasdaykaM(w
Mm}Akoﬁnkahtﬁngsmhgowmgmdwbﬂ&eWnﬁﬂb&



File Management interface

Baekgrouhleurpose

Mka@kﬂemmﬁmam@hawmmmu
hﬁmdm&muwmw'cmmelwwmpyﬂelmmm
mwmmmkmmﬂeamwmwmmmm
Mmmdhﬁgmﬂhhﬁﬁe}hmmwﬂmaﬁumm
language command like "put filel ameqﬂofﬁlgz‘mdwmﬁgmeomtheconeaﬁlemgemem
command to issne like “copy file] file2 /APPEND".

Functions

mmwwu&mmm

COPY file1 file2 /APPEND /REPLACE /NOPROMPT
(noptmptopﬁmisusedwimmereplaceandmopﬁms;ﬂnmis
not prompted if file2 already exists)

RENAME file1 file2 /NOPROMPT
(ﬂ'oenapmnptopﬁondoesnotpromptmewerif fie2 aiready exists)

DELETE file1 /NOPROMPT
(ﬂnnopmmptopﬁondosnotpmpﬂhemifﬂﬂ does not exist)

USE file1 file2 ... IN filen
(ﬂismnmdhputsﬂesappeaﬁngbeforemewletoﬁnpmgm
specified in filen)

LIST pattemn
(this command searches for files matching the pattern and ksts them;
mepamrndlmanasterisktoappeaasawidardformormre

)

mmmm.mmmmmmwmuwmmm
any natural order such as "replace file2 with file]”.

Hints

mmm,mmmmumm'm"mmumwmmm
mmummmmmumhmmmmw
mmmMmmthadﬁmmﬁmhmm(ﬂ
searchable) format.



Car Won't Start Diagnosis

msammmwmpmnmmmmwm«howm '
wmk.lhepmpmofﬂisprogumismquuydnmfainfomaﬁmabmsympmsandm
determine the best guess of why the car will not start.

Functions
Objects

The relevant parts of the car are:
BATTERY
STARTER MOTOR
STARTER SOLENOID
SPARK PLUGS
DISTRIBUTOR
CARBURETOR
GAS TANK
FUEL PUMP

Ihefmc&mofﬁﬁspmmkmdemﬁmwﬁchoftheabmobjecskhmﬁkdymfmh
mﬁmwsmﬁnglbfoﬂowhgﬁapodshﬁmﬁmmomd&mmmm

mmmgstoche&mmepsmmhbmy.ﬁmemmmmm&m
mwh&mlﬁdymk&wmkkm.ﬁhmm&ntsﬁmwm
ﬂ)eenginedosnotmomlhenthemostliblymismcbawy.

Kboﬁ:megasmnkaﬂbmymﬁmandhengimdoawmmmm&mlikﬂymh
either the starter or the starter solencid. If you can hear a "clicking sound” when you try to start it, then it
is probably the starter, else it is probably the solenoid.

K&mginedosnummthentheh‘h&yplaceismewhaeinhigﬁﬁmsym(spmplngsor
&mibmm).d:ecﬁngﬂnseisaﬁdeﬁdyﬁtd:embmmhedm.mﬁwﬁngmdokw
chedspaﬁgedngbad:phglﬁscahe&mbymmmewhewad:phgmdhoﬁngkdm
tobeplug(sothemenlpieceinsi&thewhei:vuydaetoﬂnplng). If you can see a spark when
uyhgmmhmﬁmmmmk&mdd:phgsmh&dypmwh
distributor is the likely problem. mmmmmsmmdam
hnnmhnmfuLd:ockwﬁchanbeavﬁcbdbywuﬁnghavymbb«glm(ﬁsshmﬂmhe
attempted by anyone with a heart condition).

l-'many,iftheginemswuandmforaﬁnlewlﬁle(mifhislssdmaacuﬂ)ﬂmuﬁbly
mkhhﬁdmeﬁhaﬁearhmawﬂzﬁdpmp.m&dpmpmbeww
removing the line from h&lmbhuﬁmﬁ&mhﬁﬂymwmhmﬁm.ﬁ
gsmglysqmmﬁmmehmmeﬁdpmpisﬁmandmeﬁhlymkhﬂnm
Nmﬂmﬁsl&pmaduekvuydmpmandsbmﬁoﬂyhemdhyamm(ag,
a mechanic) and only when the engine is cold.

Hints

Tqmm&mmmm;mmmmmmmumw
m&oﬁtﬁmwhm“”dﬁdnﬁy,m,mmmm



| Wakup Call Processing
Purpose and Background

A group of botels got together and decided to procure an antomated wakeap call system for use by all of
them_ In the requirements discussion meetings, there was a lot of debate over the "peak load time" issue.
At peak load time (around 7AM), there are many more wakup calls than the sysiem can handle at once.

so the calls must be pricritized. After mach debate and consulting experienced operators, 2 prioritization

Functions
A. Prioritization

Wakup call requests will be distingnished based on the cost of the room. All high class rooms (the most
expensive) get first priority, then medium class ones and finally low class ones. Calls are further
pﬁnﬁﬁndmﬁnzwvﬁchansmmdﬁmandamdingmbwlaeamgnm
is becoming. The lateness is given six times the weight as the earliness of the request. For example, if
MﬂAmwwmmmﬂmeaﬂBkmwm
late then wakup call B has a higher priority (60 for A vs. 66 for B).

A call can be given a higher priority in two ways.

1. it is more than twenty minutes late :
2. it is given "special priority” (this is not determined by this system but is
predetermined)

If either priority-raising condition holds, then call will be given higher priority within a room class. If
both conditions hold then the call with be given higher priority over all room classes.

B. Early Calling

Dnﬁngﬁmesofﬂzdayﬂmanhwnwhepeﬁhadﬁms,ansmbegiminmmeoﬂhe
mdﬁme(mwmmmm.mmaﬂsmumm,mm
above woiks exactly in reverse with the following exceptions.

1. high class can be called up to 5 minutes early

2. medium ciass can be called up to 10 minutes early

3. low class can be called up to 20 minutes early

4. if the special priority flag is set then the call can be made up to 20 minutes early

There are two additional considerations. The first is that a late call always bas priosity over an early call.
The second is that if two or more calls have the same priority then the choice is arbitrary.

Hints

Consider which parts of this system fit the expert system characteristics and which parts are more
conventional. What implementation/design approach do you think would fit this problem best and how
would this influence you test spproach ? Are there any critical aspects that deserve more attention than
others ? Couid the system monitor itself to see if it were opezating correctly ?



Description of Monkeys and Bananas Probiem
This version of the problem description is due to Peter Ludemanm (IBM).

Monkeys and Bananas

From the original NASA description. The presentation has been changed slightly.

Characteristics of objects and actions

The monkey has the following characteristics:
1. It has a location.
2. It is located on top of something (the floor or another object).
3. It may be holding an object.
An object has the following characteristics:
1. It has a location.
2. It is located on top of something (the floor or another object), or it is attached to the ceiling.
3. It has a weight (either light or heavy).
In addition, an object has the following characteristics if it is a chest:
1. It contains another object.!!
2. It is unlocked by another object (2 key).
The monkey may eat an object under the following conditions:
1. There exists a goal to eat the object.
2. The monkey is holding the object.
The monkey may hold an object under the following conditions:
1. There exists a goal to hold the object.
2. The monkey is at the same location as the object.

3. The object is attached to the ceiling and the monkey is on top of the ladder,? or both the monkey
and the object are on top of the same piace (either the floor or another object).

4. The monkey is holding nothing.
5. The weight of the object is light.
The monkey may move to a location under the following conditions:
1. There exists a goal to move to the location.
2. The monkey is on the floor.

11 Editor’s note: Presumably this should be “it may contain another object.
12 Editor’s note: and the ladder as at the same location.



The monkey may climb onto an object under the following conditions:
1. There exists a goal to climb onto the object.
2 The monkey is holding nothing 13
3. The monkey is at the same location as the object.
4. Both the monkey and the object are on top of the same place.

Initial Conditions
The goal is to eat the bananas.*
The initial conditions are:S
Table 1. Initial conditions. Empty entries indicate that the attribute does not apply to the object.
object location on top of holding weight contains uniocked
by
monkey t5-7 geen nothing
couch
green t5-7 floor heavy
couch
red couch t2-2 floor heavy
big pillow t2-2 red couch light
red chest 12-2 big pillow Light ladder red key
blue couch | t8-8 floor heavy
blue chest 17-7 ceiling light bananas blue key
green chest | t8-8 ceiling Lght blue key red key
red key t1-3 floor Lght
Actions

1. There exists a goal to jump onto the floor.

2. The monkey is not on the floor (see jumping up and down).
The monkey may drop an object under the following conditions:

1. There exists a goal to drop the object.

2. The monkey is holding the object.

13 Editor’s note: From looking at the program, it appears that this restriction is not enforced — in fact, it is clear that
this restriction is incorrect because it would prevent the monkey from climbing the ladder with the key (to unlock !
chest containing the bananas).
14 Editor's note: The goal is for the monkey to eat the bananas.
15 The original description missed out the following:
+ The red key is on top of the floor.



Note: the object may be dropped sither onto the floor or the place the monkey is on.
The monkey may uniock a chest under the following conditions:

1. There exists a goal to unlock the chest.

2 The chest can be unlocked by another object (the key).

3. The monkey is holding the key.

4, The monkey is at the same location,as the chest.

5. Both the monkey and the chest are on top of the same place.

Note: when a chest is unlocked, the object it contains is placed o top of the chest.

Commentary

Ahhoughthepﬁmuypddtﬁsmblmkforthcmonkeywwmcmwofmepakmmo
be attainable separate from the primary goal. That is, it should be possible to change the goal from eating
mmmwmwammmmamm The solution need not support
mmd“pd”knﬂmmmﬁsmbmmmmmntﬁsmmmshoddbwm
using goals. Any approgriate methodologies may be used to solve the problem.'
mmmm,whmmmammnamwupbhmmumdwwmw
problem. Knowledgetepxmaﬁmmuldmtbencdﬁwdforspedwhmsolvingthepmblm

The benchkmark should be able to run under two modes. One mode should run the benchmark printing all
mmmw&m,mmmmwwmammmm
has eaten the bananas. Tmmvu:ionsofthebendnmﬂ:orato@eswhchinasinghvusimoﬁhc
benchmark are suitable to provide this capability.

16 Editor's emphasis.



Case Study #1: A Solution
For The Traffic Controller
Problem Using Terms,
Operators and Productions



introduction

Case Study number one will provide a detailed example of designing an Expert
System solution to the Traffic Light Controller problem. The example is founded
on work done by IBM's Houston Scientific Center. This effort (with assistance
from Texas A&M University) combined the strengths of Production systems,
Term Subsumption Languages and Object-Oriented programming to define a
design language, called TOP (Terms, Operators and Productions), suitable for
building verifiable Expert Systems. For a more thorough discussion of these
different paradigms please refer to the References section of your class
notebook. A complete design for the Traffic Light Problem written using the TOP
design language is provided at the end of this study.

The design approach detailed in this case study represents an approach that
focuses on continually refining the problem definition as understanding of the
problem expands. Fortunately, as in conventional software design, this
approach can be neatly broken into steps. Verification and Validation
techniques, as appropriate, should be applied at each step. This discussion will
address appropriate Verification and Validation approaches at each step of the
development process.

Step 1: Knowledge-Base Architecture

To ease the verification effort, knowledge should be broken up into different
parts (i.e., modules). This analysis should focus on identifying the primary ideas
that describe the domain for a given system. In the case of the Traffic Light
problem, this can be done very easily. Be aware that the results of this step are
rarely final. As the problem becomes more clearly understood additional
changes to the architecture of the design will probably be needed.

TOP supports partitioning a knowledge base by allowing the designer to build
Ada-style packages. Each package defines the key ideas associated with a
given unit of knowledge. For example, from the Traffic Light problem, one could
easily identify several different units based on the key objects in the problem
description. These would be sensor, traffic_light and signal. Shown below is the
initial unit definition, using TOP syntax, for the sensor knowledge unit.

package SENSORS is

end SENSORS:

package body SENSORS is
end SENSORS:



Each unit will have a specification and a body. The specification will define the
interface to other units in the design. Each unit of knowledge should be loosley
coupled (i.e., it has few, if any, dependencies on other units) and strongly
cohesive (i.e., a given specificiation fully implements the knowledge).

Knowiledge in one unit may be required to define another knowledge unit. For
example, the definition of the signal unit depends on the defintion of the sensor
unit. This is true because the indicators that define a signal are received from an
open sensor. To show these relationships in a TOP design, use the WITH (this
syntax is also derived from Ada) clause. For example, the signal unit
specification would appear as follows:

with SENSORS;
package body SIGNALS is

end SIGNALS;
Verification/Validation Approaches:

Verification approaches at this level are very dependant on how well the problem
is understood. This understanding must come from the expert in the field along
with a detailed requirements document that specifies the required behavior of
the expert system. Analysis using these two sources should focus on showing
that the units defined cover the problem space (i.e., nothing was left out) and
that the partitioning of the problem into units is consistent and maintainable.
Visualization techniques such as structure charts, semantic nets, etc. can be
helpful in analysis of the architecture. |

Step 2: Define the Knowledge Terms

The next step in developing an Expert systém using TOP would be to completely
define each of the knowledge units. As mentioned, each knowledge unit in the
design captures a unique part of the overall knowiedge. In TOP, these unique
parts are described using Terms. The technique for identifying these terms is
called conceptualization of the domain.

What are Terms? Terms capture declarative domain knowledge. In other
words, terms are the words used to describe things in the problem domain.
Terms can be either concepts (an idea) or relations (something that relates
concepts). A simple method of identifying the highest levels of these terms is to
look for nouns (i.e., concepts) and adjectives (i.e., relations). For example, from
the Traffic Light Problem, one could define a concept for each of the units
described previously such as signal, sensor, etc.. These particular concepts
represent the highest level idea to be captured by their respective knowledge



units. These are the easiest concepts to identify. Further understanding of the
problem reveals refinements to these high level concepts, such as
Open_Sensor, Received_Signal, etc.. Each of these refinements serve to clarify
the primary idea captured by the knowledge unit and therefore belong in the
same knowledge unit as the highest level concept. Relations are also identified
based on an understanding of the problem. For example, from the Traffic Light
problem, the relation Has_Approaching would serve to relate the concepts of a
Signal and an Indicator (a special kind of number).

In TOP, refinement of high-level concepts and relations is captured by (1) the
specializes keyword and (2) the ability to specify what makes one term a
specialization of another. For example, the idea of an Received_Signal is the
same as that of a Signal except that the Has_Approaching and Has_Waiting
indicators are associated with a Received_Signal (the reverse is not true). There
may be cases where no definition is possible or desired. These terms are
considered primitive.

Verification/Validation Approach:

Conveniently, concepts and relations can be thought of as sets or classes of
things. The members of these sets are called instances. The definition
associated with a given concept or relation describes when something can be
classified as belonging to that given concept or relation. Clearly, if there are sets
then there are subsets. The specializes keyword serves t0 identify those terms
that are subsets. For example, instances of the concept Received_Signal are
also instances of Signal, but not necessarily the other way around. Only when
the instances satisfy the Received_Signal definition would they be classified as
both a Signal and a Received_Signal.

The advantage of viewing concepts and relations as sets is that there are lots of
good analysis techniques based on set theory. One simple technique to assist in
analyzing the concepts in a given unit is the Venn Diagram. Each knowledge
unit should capture one major set with all terms defined in that unit being subsets
of that one primary set. For example, from the Traffic Light Problem, all terms in
the unit, Signals, belong to one major set called Signal. If aterm in the unit does
not fit quite right into the main set then it should be partitioned into its own

knowledge unit.



S = {Set of all signals}

R={Set of all received

AQ = {Set of all received signals that indicate only appraoching traffic}
WO = {Set of all received signals that indicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signais}

The Venn Diagram should help in defining good concepts and relations and help
in finding those things that do not make good sets, but rather define some global
constraint that the system should operate under. As the Venn Diagram is
defined, there will be some parts of the unit definition that are not conveniently
described as sets. These parts describe more general constraints or conditions
on the knowledge. Typically they involve more than one term. TOP designs
include the definition of Global Constraints for the purpose of capturing these
important parts of the knowledge. These parts are best left out of the Venn
Diagram since they are constraints and not sets. However, the Venn Diagram
can help in analyzing the conditions that define each global constraint. Some
examples of these will be shown later as we expand the scope of the solution to
the Traffic Light Problem.



Verifying the terms is the simplest part of veritying the ES because of their
declarative nature. Just like the first step in this process, showing that the
definitions are correct depends on the requirements and inputs from the expert.
Many of the more difficult aspects of the ES design, such as sequencing, are not
an issue at this early step. However, declarative definitions can become quite
complex (i.e., they involve many conditions). To make the verification process
easier, it is helpful to capture small groupings of conditions into a higher level
condition (i.e., stepwise refinement/abstraction).

For example, from the Traffic Light Problem, an Approaching_Only_Signal is a
Received But_Not_Processed_Signal that indicates that a given signal indicates
that approaching traffic was detected while no traffic was waiting. By capturing
this detailed set of conditions as a concept, a name (or abstraction) can be
associated with those conditions. This means that other portions of the design
can check an instance's membership in the set Approaching_Only_Signal, rather
the specific conditions.

Step 3. Defining Tasks for Knowledge Units

After steps one and two the declarative part of the domain knowledge is
complete. Each knowledge unit captures a collection of terms that define a
piece of domain knowledge. However, nothing has been defined to transition
" instances of a given term (or set) to instances of another set. Therefore, the
next simplest step in our design process will be to identify tasks (e.g. object-
oriented programming refers to these as operators) that perform these
transitions. These tasks relate very nicely to the verbs in the problem
description. For example, the unit, Traffic_Light, contains a task (or operator)
called Switch that changes the light.

TOP uses the Method construct to allow designers to define the different tasks in
a given knowledge unit. TOP does not declare a task (or operator) explicitly, but
rather defines it as a collection of its methods. A given task may have many
different methods based on different situations under which they might be used.
For example, the method, Switch, from the Traffic_Light knowledge unit
performs a different function based on whether the light is currently red or the
light is currently green. These differing situations are specified using the Used
When clause of the Method.

Methods also contain pre and post conditions. Pre-conditions are specified
using the Requires clause and the post-conditions are specified using the To
Produce clause. For example, the method Open from the unit, Sensors,
requires that a given sensor is not already open. A post-condition specifies the
conditions that must be true when the expressions contained in the Involves
portion of the Method have finished execution. For example, when the method
Open finishes execution, the given sensor should be now classified as an
Open_Sensor. In fact, it is very straightforward to show that the post-condition

6



for this method will always be satisfied, because the method asserts that the
given sensor is now an Open_Sensor.

It is important to recognize the difference between the situation conditions and
the pre-conditons. Pre-conditions express a collection of binding conditions that
must be true for all methods of a given task. Situation conditions, however,
specify a disjoint collection of conditions used to determine which particular
method is selected for execution. >

Verification and Validation Approach:

Verification and Validation at this step in the design focuses on showing that the
correct tasks have been identified and that each method of a given task is
correct. Verifying that the correct tasks have been identified is fairly
straightforward. Once again, input from the requirements and an expert are
important is showing the correct tasks have been identified. Another technique
involves using the Venn Diagram approach outlined above. Since all concepts
of the unit are being viewed as sets one can analyze the identifed tasks to see
that these tasks perform all possible transitions (i.e., an instance of one kind of
set can always be transitioned to another kind of set). For example, in the Venn
Diagram that follows, the task Sense is shown to transition any instance of the
set Signalto its subset, Recsived_Signal. This does give the complete coverage
argument required. How does an instance of Received_Signal become an
instance of Approaching_Only_Signal? This one can be answered directly from
the definition of the concept, Approaching_Only_Signal. How can an instance of
Received_Signal become a Received_But_Not_ Processed_Signal? That
happens as a direct result of the task, Sense. How does an instance of
Received_Signal become an instance of Received_And_Processed_Signal?
Apparently, given the definition of the Signals unit there is nothing defined to
perform that mapping. Is this a problem? In some cases this might identify
something that has been left out of the design. In this case, maybe not. The
intention is to allow what ever unit that is processing the Received_Signal to
indicate when it has finished processing that signal (hence the concept,
Received_And_Processed_Signal is primitive). Therefore, no problem exists.
The diagram shown does not indicate how the opposite transitions can be made
(e.g., how does an instance of Received_Signal become an instance of just
Signal?). Take a few moments and figure out how to modify the diagram, based
on the TOP design, to reflect the missing parts.

Having shown that the correct tasks were identified, each task must be shown to
be correct. This is a three part process: verifying the situations, verifying the
pre-conditions and verifying the post-conditions. Verifying the situation
expression involves showing that the combination of all situation expressions
(i.e., each situation for each particular method of a task) covers all possible
conditions under which the task operates. For example, coverage exists for the
Switch task in the Traffic_Light unit, because a method is defined for each



possible state of the light (i.e., red or green). The arguement is easily shown to
be true because an instance of a light can only be a red-fight or a green-light.

Verification of pre-conditions involves showing that the Requires condition is a
necessary condition for all methods of a task. Verifying the post-condition
involves showing that the result of executing the Involves portion of the method
will produce the expected results. Showing that both the pre and post conditions
are correct depends a lot on input from the requirements and experts.

S = {Set of all signals}

R={Set of all received signals}

AO = {Set of all received signals that indicate only appraoching traffic}
WO = {Set of all received signals that inﬁicate only waiting traffic}

WA = {Set of all received signals that indicate both waiting and approaching
traffic}

P = {Set of all received and processed signals}

Step 4. Specifying Problem Solving Behavior/Tasks

Now that steps one through three have been completed, the basic building
blocks exist for defining the problem solving behavior of the Expert System. To
define this behavior it is beneficial to try and identify the problem solving



behavior by abstracting the specifics of what the system does to a general
approach. For example, using the Traffic Light Problem definition, an abstracted
problem solving approach might be as follows.

A goal exists that some activity should be performed (in this case, the light
should change). In order for this activity to be performed, however, a specific
event must take place (in this case, a period of time must expire). A subgoal,
then, is to watch for this specific event to take place. This subgoal depends on
..other.events (in this case, defining the desired interval of time to wait). Another
subgoal, then, is to watch for completion of these events.

Let's refine this description to be more specific for the Traffic Light Problem. The
desire is for the traffic light to change. What is required for this to happen? A
period of time must expire in order for the light to change. How does a period of
time expire? Clearly a period of timer expires when that exact number of time
units has passed. But, what period of time should expire? There are many
different circumstances under which a period of time is selected for expiration.
These different circumstances map directly to the specific scenarios (i.e.,
stimulus histories) discussed at the black-box view of the problem.

At this point, something interesting happens that was alluded to in step one. At
this point the Traffic Light Problem design has focused on three main units:
Sensors, Signals and Traffic_Light. However, refinement of the problem has
introduced a new unit that was not so apparent when the architecture was
initially defined. This unit, Timer_Unit, focuses on defining the measurement of
time periods to support the goal of periodically changing the traffic light. Shouid
this happen during design (and it usually will), the appropriate step is to re-work
steps one through three by adding in the new design unit. Venn Diagrams
describing Timer_Unit are shown next.



T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}
M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}
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T = {Set of all timers}

R = {Set of all running timers}

S = {Set of all short timers}

S' = {Set of all unexpired short timers}
M = {Set of all medium timers}

L = {Set of all long timers}

L' = {Set of all unexpired long timers}

Having modified the design to accomodate the Timer_Unit, the domain
knowledge is complete and sufficient for capturing the problem solving behavior.
TOPcaptures each part of the problem solving behavior as a Production. Each
production has a name that describes the intended action this production will
perform, a condition that must be satisfied in order for the desired action to be
taken, a body that performs the action by invoking tasks and a post-condition
that describes the expected result of performing the actions in the production
body. Given this description let's examine who our description of the problem
solving behavior for the Traffic Light Problem maps to the solution shown at the
back of this study. The unit, Traffic_System, contains the highest level
productions that exhibit the problem solving behavior described.

11




At the highest level of the behavior description is the goal to change the light.
The production, Change_The_Light, performs this action. As specified in the /f
condition of the production, achieving this goal depends on the required period
of time expiring; which, of course, matches the problem solving behavior defined
above. Next, let's exarine th& subgoal of causing a period of time to expire.
Well, the declarative knowledge explicitly states what causes a period of time to
expire, but how is that state achieved? Clearly, this state is achieved by
reducing the number of seconds until expiration to zero. The production,
Tick_The_Running_Timer, performs this action.

Let's examine our next subgoal and that is selecting a period of time to expire.
The global constraints shown in the unit, Traffic_System, capture the conditions
that guide selection of the appropriate timer based on the requirements (note
that these capture conditions involving more than one term). For example, the
global constraint, Timer_Should_Switch, will flag when a 15 or 60 second
interval should be used instead of the longer 120 second interval. Using these
abstratct conditions, the productions, ReStart_The_Running_Timer and
Switch_Timer perform the action of selecting the required interval of time to
expire.

Now that the problem solving method has been defined, the specific actions
each production will take must be defined. Typically, this will involve a stepwise
refinement activity involving specification of more abstract tasks that invoke less
abstract tasks. For example, the task, Switch_Light in unit Traffic_System
invokes the task Switch from unit Traffic_Light to change the light and the tasks
Start and Stop from the unit Timer_Unit to set a new expiration time for the next
change of the light. The other tasks in Traffic_System also reflect this process of
stepwise refinement.

Verification and Validation

Verifying this final step in the process is the most difficult part of the process.
The first step is to show that all necessary productions have been defined to
achieve the problem solving behavior. It is also necessary to show that the
sequencing of these activities is correct. The discussion outlined above is an
informal way to describe the problem so that sequencing can be verified.
Another way is to use a state-sequence expression. A state-sequence
expression explicitly dictates the expected order of invoking productions. A
simple expression for the Traffic_System unit might be as follows:

{ [ Tick_The_Running_Timer |
ReStart_The_Running_Timer |
Switch_Timer] -> Tick_The_Running_Timer -> Change_The_Light}

This expression simply states that Tick_The_Running_Timer,
ReStart_The_Running_Timer and Switch_Timer can be fired in a non-

12



deterministic fashion, but Tick_The_Running_Timer must always precede firing
the Change_The_Light production.

Next, all pre and post conditions must be verified as correct. This is a very
detailed process of mapping conditions in the productions to the composition of
conditions from the invoked tasks. For example, the If condition of the
production, Change_The_Light, must match the Requires condition for the
Switch_Light task. In addition, the result of executing Switch_Light must
produce a result that is compatible with the post-condition, if any, of
Change_The_Light. Fortunately, this is easy when post-conditions have been
specified. For this case, simply match the To Produce clause of the
Switch_Light task and the To Produce clause of the Change_The_Light

production.

Next, any tasks invoked by higher level tasks need to have their pre and post
conditions matched against the conditions in the invoking task. For example, in
the task, Switch_Light, it follows that the task Stop can be invoked for the timer
that just expired because an Expired_Timer is considered a Running_Timer and
the passed timer must be a Running_Timer for Stop to be used. This process is
repeated until all tasks are shown to produce the correct results with respect to
the productions that invoked them.

13



Specifications

Package Sensors Is

-

-- State Data
- Model

— A sensor is an item that contains (or sends) signals. Other
— objects “read"” the sensor to access new signals. A sensor
— can be "read” only after it has been "opened.”

Concept Sensor Is Primitive;
Concept Open_Sensor Specializes Sensor And Is Primitive;

- Constraints
- N/A

- Initialization
Traffic_Sensor Is_A Sensor;

- End State Data

»*

->
-.<.
- Transitions

— Problem Solving Method
— Whenever a signal has not been received and sensor. is
-- "open" then the sensor should be "read" for new signal
- values

Production Open_Sensors Is
1§
S Is_A Sensor And
NOT S Is_A Open_Sensor

Then
Perform Open(S)
End Production;

£ 2

-

-- Method Open(S: In Out Sensor)

- will open a sensor for processing
-- End Open; '

Method Open(Sn: Sensor);

--'>
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-- End Transitions

_'>

End Sensors;

With Sensors;
Package Signals Is

IIIISIIIIIII/{

-

State Data
Model

The signals package captures the notion of a signal. A
signal (represented by a 0 or 1) is used to notify the
traffic controller that some extemnal event has happened.
A signal is considered to be "received” when a new indicator
is received from the sensor. A signal is considered to
be "triggered” when the sensed value is a 1 from a "received”
signal.
Concept Signal Is Primitive;
Concept Indicator Specializes Number And Is Primitive;

Concept On_lIndicator Specializes Indicator And is Defined By
An indicator is ON when its value is 1

}
i Such That i Is_A Indicator And i = 1
End Concept;

Concept Off_indicator Specializes indicator And Is Defined By
An indicator is OFF when its value is 0

}
i Such That i is_ AlndlcatorAndlso
End Concept; .

Relation Has_Approaching(S: Signal; I: Indicator) Is Primitive;
Relation Has_Waiting(S: Signal; I: Indicator) Is Primitive;

Concept Received_Signal Specializes Signal And Is Defined By

{
A Received_But_Not_Processed_Signal is a Signal
that Has_indicator | that has just been received from a
sensor.

}
r Such That r Is_A Signal And
r Has_Approaching i1 And
r Has_Waiting i2
End Concept;
Concept Received_And_Processed_Signal Specializes
Received_Signal And Is Primitive;
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Concept Received_But_Not_Processed_Signal Specializes
Received_Signal And Is Defined By

It a received signal has not been processed then it is
a "received_but_not_processed” signal

}
t Such That t Is_A Received_Signal And
NOT t Is_A Received_And_Processed_Signal
End Concept;

Concept Waiting_Only_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

S Is_A Waiting_Only_Signal when only the
Waiting_Signal is triggered

}
s Such That
s Is_A Received_But_Not_Processed_Signal
s Has_Approaching i1 And
i1 Is_A Off_indicator And
s Has_Waiting i2 And
i2 Is_A On_Indicator
End Concept;

Concept Waiting_And_Approaching_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

S Is_A Waiting_And_Approaching_Signal when
both the Waiting_Signal and
Approaching_Signal is triggered

}

s Such That
s Is_A Received_But_Not_Processed_Signal

And
s Has_Approaching i1 And
i1 Is_A On_Indicator And
s Has_Waiting i2 And
i2 Is_A On_lIndicator
End Concept;

Concept Approaching_Only_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

S Is_A Approaching_Only_Signal when only the
Approaching_Signal is triggered

}
s Such That
s Is_A Received_But_Not_Processed_Signal
And
s Has_Approaching i1 And
i1 Is_A On_Indicator And
s Has_Waiting i2 And
i2 Is_A Off_Indicator
End Concept;
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Concept No_Waiting_Or_Approaching_Signal Specializes
Received_But_Not_Processed_Signal And Is Defined By

{
S Is_A Approaching_Only_Signal when only the
Approaching_Signal is triggered

}

s Such That
s Is_A Received_But_Not_Processed_Signal

And
s Has_Approaching i1 And
i1 Is_A Off_Indicator And
s Has_Waiting i2 And
i2 Is_A Off_Indicator
End Concept;

- Constraints
- N/A

— Initialization
Traffic_Signal : Signal;

-- End State Data

..'>

»

-<

Transitions

L 4

—<

- Whenever a signal has not been received and sensor is
— "open" then the sensor should be "read" for new signal
- vakes

Production Get_New_Signals Is
If
Traffic_Sensor: Open_Sensor And
NOT Traffic_Signal: Received_Signal
Then
Perform Sense(Traffic_Signal, Traffic_Sensor)
End Production;
—'>

_.<'

-~ Method Sense(s: in signal)
- will retrieve a new indicator from the sensor
-~ End Sense;

Method Sense(s: Signal; sn: Sensor);
-'>

-.<'

- Method Reset(s: in received_signal)

- willindicate that the received_signal, s, has been
- processed and cannot be processed again until a
-~ new indicator has been received

17



— End Reset;

Method Reset(s: Signal);
.-'>
- End Transitions

..'>

End Signals;

With Signals;
Package Timer_Unit Is

-

-<

- State Data

-- Model

— A Timer is an item that serves to mark the elapse of a given

- period of time. A Timer is considered to by "set” when a

— given period of time is associated with that timer. A "set”

-- timer is "expired” when that given period of time expires

- (i.e. is0)
Concept Timer Is Primitive;
Concept Tick Specializes Number And Is Primitive;
Relation Expires_in(T: Timer; CT: Tick) Is Primitive;
Relation Has_Expiration_Value(T: Timer; CT: Tick) Is

Primitive;

Relation Has_Secondary(P: Timer; S: Timer) Is Primitive;

Relation Is_Secondary_To(S: Timer; P: Timer)
Is Defined By

{
P Is_Secondary_To S when S Has_Secondary P
} :
(s.p) Such Thatpis_A Timer And s Is_A Timer And
p Has_Secondary s
End Relation;

Relation Switches_To(P: Timer; S: Timer) Is Primitive;
Concept Running_Timer Specializes Timer And Is Primitive;

Concept Long_Timer Specializes Timer And Is Defined By
The Long_Timer expires in 120 seconds
}
t Such That t Is_A Timer And

t Has_expiration_value ev And ev = 120
End Concept;

Concept Medium_Timer Specializes Timer And Is Defined By
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The Medium_Timer expires in 60 seconds

}
t Such That t Is_A Timer And
t Has_Expiration_Value ev And ev = 60

End Concept;
Concept Short_Timer Specializes Timer And Is Defined By

{
The Short_Timer expires in 15 seconds

}
t Such That t Is_A Timer And
t Has_Expiration_Value ev And ev = 15

End Concept;

Concept Expired_Timer Specializes Running_Timer And
Is Defined By
{

Only an "running” timer can expire. Expiration occurs
when the seconds remaining before expiration is 0.

}
t Such That t Is_A Running_Timer And
t Expires_inw Andw=0
End Concept;

Concept UnExpired_Short_Running_Timer Specializes
Running_Timer And Is Defined By

A short timer that is running but has not expired

}
t Such That t Is_A Running_Timer And
t Is_A Short_Timer And
NOT t Is_A Expired_Timer
End Concept;
Concept UnExpired_Long_Running_Timer Specializes
Running_Timer And Is Defined By

A long timer that is running but has not expired

}
t Such That t Is_A Running_Timer And
t Is_A Long_Timer And
NOT t Is_A Expired_Timer
End Concept;

- Constraints

Global Constraint
Timer_To_Use_When_None_Are_Running
Specializes Timer And Is Defined By

Use the long timer when no other timers are running
}
t Such That t Is_A Long_Timer And

NOT t Is_A Running_Timer And
('s Is_A Short_Timer And
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NOT s Is_A Running_Timer) And
( m Is_A Medium_Timer And
' NOT m Is_A Running_Timer)
End Global Constraint;

-- Initialization
M Is_A Timer
That Has_Expiration_Value 60;

S Is_A Timer
That Has_Expiration_Value 15 And
Has_Secondary M;

L Is_A Timer
That Has_Expiration_Value 120 And
Switches_To0 S;

- End State Data
-'>

..<.

- Transitions

4

-
- Whenever all timers are not running, start the timer the
- primary timer (in this case, the long timer)

Production Initial_Timer_Start Is
It
t: 'ﬁmer_To_Use_When_None_Are_Running
Then
Perform Start(t)
End Production;

..'>

<'
- Method Stop(t: Timer) Is
- Stop a running timer
- End Stop;

Method Stop(t: Timer);
-'>

»

—<

- Method Start(t: Timer) Is

—  Start a timer that is not running
- End Start;

Method Start(t: Timer);
.")

- End Transitions
-'>



End Timer_Unit;

With Timer_Unit;
Package Traffic_Light Is

Model

a given direction. The control of traffic fiow is achieved

- A"light” is an item that controls the flow of traffic in
- through the use of colors (red and green).

Concept Light Is Primitive;
Concept Red_Light Specializes Light And Is Primitive;
Concept Green_Light Specializes Light And Is Primitive;

- Constraints
- N/A

- Initialization
NS_Light : Red_Light;

-~ End State Data

->

-

.-<

- Transitions
- Method Switch(l: light)
--  will switch the color of the light in a given direction
-~ End Switch;

Method Switch(l: Light);

.—.>
-~ End Transitions

_'>

End Traffic_Light;

With Traffic_Light;
With Timer_Unit,;
Package Traffic_System Is

—.<
- State Data
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— Model

— Timers fall into certain "categories” based on the traffic

.- conditions. Timer_Should_Tick, Timer_Should_Switch and
— Timer_Should_Be_ReStarted define the possible categories
- for a timer based on traffic conditions.

-- Constraints
Global Constraint Timer_Should_Tick(t: Timer; s: Signal)
is Defined By

{
A Timer_Should_Tick when the no approaching or waiting
traffic is detected

}
t Such That t Is_A Running_Timer And
NOT t Is_A Expired_Timer And
s Is_A No_Waiting_Or_Approaching_Signal
End Global Constraint;

Global Constraint Timer_Should_Switch(t: Timer; s: Signal)
Is Defined By

{
A Timer_Should_Switch when the long timer is running
and a waiting signal is received.

}
t Such That t Is_A UnExpired_Long_Running_Timer And
(s Is_A Waiting_Only_Signal Or
s Is_A Waiting_And_Approaching_Signal }
End Global Constraint; -

Global Constraint Timer_Should_Be_Restarted(t: Timer;
. s: Signal)
Is Defined By

{

A Timer_Should_Be_ReStarted when the running timer
has not expired and the current signal indicates
approaching traffic. When the running timer is a long timer
a waiting signal will take precedence over the approaching
signal.

} :
t Such That (t Is_A UnExpired_Short_Running_Timer And
(s Is_A Approaching_Only_Signal Or
s Is_A Waiting_And_Approaching_Signal))
Or
(t Is_A UnExpired_Long_Running_Timer And
s Is_A Approaching_Only_Signal )
End Global Constraint;

Global Constraint Long_Timer_Expired_At(t: Timer; s: Signal)
Is Defined By ,

{
A Long_Timer_Expired_At when the running timer is
long and it has expired and a new signal has been
received but not processed.



}
t Such That t Is_A Long_Timer And
' t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
End Global Constraint;

Global Constraint Medium_Timer_Expired_At(t: Timer;
s: Signal)
Is Defined By

{
A Medium_Timer_Expired_At when the running timer is
medium and it has expired and a new signal has been
received but not processed.
}
t Such That t Is_A Medium_Timer And
t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
End Global Constraint;

Global Constraint Short_Timer_Expired_At(t: Timer; s: Signal)
Is Defined By

{
A Short_Timer_Expired_At when the running timer is
short and it has expired and a new signal has been
received but not processed.

}
t Such Thatt Is_A Short_Timer And
t Is_A Expired_Timer And
s Is_A Received_But_Not_Processed_Signal
End Global Constraint;

- Initialization

NS_Light : Red_Light;

- End State Data

-'>
—<

- Transitions

-—

3

-<

—~ Whenever the long timer is running and waiting traffic is
- detected then switch to running the short and medium
- timers

Production Switch_Timer Is
It
Timer t Should_Switch Because of s And
s Is_A Received_But_Not_Processed_Signal
Then
Perform Switch_Timer(t)
Perform Reset(s)
End Production;
-'>

-

—-<
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— Whenever no approaching or waiting traffic is detected
- the currently running timer should be pulsed

Production Tick_The_Running_Timer Is
if
Timer t Should_Tick Because of s And
sis_A Received_But_Not_Processed_Signal
Then
Perform Do_Tick(t)
Perform Reset(s)
End Production;
—')

~

-<

— Whenever the long timer is running and approaching
traffic (only) is detected or the short/medium timers are
running and approaching traffic is detected (iregardiess
of watting traffic) the running timer should be restarted

Production ReStart_The_Running_Timer Is
if
Timer t Should_Be_Restarted Because of s And
sis_A Received_But_Not_Processed_Signal
Then
Perform Re_Start(t)
Perform Reset(s)
End Production;
.-'>

_<'

- Whenever a running timer expires, the light should change
-~  and all timers are stopped

Production Change_The_Light Is
If
t Is_A Expired_Timer
Then
Perform Switch_Light(NS_Light)
End Production; :
—'>

..<'

— Method Do_Tick(t: Timer) Is

~ Decrements the number of seconds until a timer

— expires. Inthe case where a timer has a secondary

- timer (i.e., one that runs at the same time), both timers
- are decremented.

-- End Do_Tick;

Method Do_Tick(t: Timer);
-'>

—-<
— Method Re_Start(t: Timer) Is
—  Stops and Starts the timer at its maximum expiration



- time.
End Re_Start;

Method Re_Start(t: Timer);
...>

*

-—<

- Method Switch_Timer(t: Timer) Is

- Stops the currently running timer and tumns on the
- short/medium timers to measure when light should
-  change

End Swich_Timer;

Method Switch_Timer(t: Timer);
—’>

-

..<

- Method Switch_Light(t: Timer) Is

~  Changes the color of the light and stops running timer(s).
- End Switch_Light;

Method Switch_Light(l: Light);

..'>

- End Transitions

--'>

End Traffic_System;



Package Body Sensors Is

]

<
-- Transitions

--<'

-- Method Open(S: in Out Sensor)
-~ will open a sensor for processing
- End Open;

Method Open(Sn: Sensor) Is
Requires Sn Is_A Sensor And
NOT Sn Is_A Open_Sensor
Involves Open physical file
Assert Sn Is_A Open_Sensor
To Produce Sn Is_A Open_Sensor
End Method;

..'>

-- End Transitions

*

->

End Sensors;

Package Body Signals Is

*

-
— Transitions

-<

-~ Method Sense(s: in signal)

—  will retrieve a new indicator from the sensor

- End Sense;

Method Sense(s: Signal; sn: Sensor) Is
Requires sls_A Signal And
sn Is_A Open_Sensor
NOT s Is_A Received_Signal
Involves i = indicator from Sensor

If sensor finished transmitting Then

hatt
End If
Assert i Is_A Indicator
Assert s Has_Approaching i
i = next indicator from Sensor

If Sensor finished transmitting Then

halt



End If
Assert i Is_A Indicator
Assert s Has_Waiting i
To Produce s Is_A Received_Signal And
s Is_A Received_But_Not_Processed_Signal
End Method;
-.>

]

—_

-~ Method Reset(s: in received_signal)

- will indicate that the received_signal, s, has been
- procesedandcannotbeprocesedagainunﬁla
- new indicator has been received

-~ End Reset;

Method Reset(s: Signal) Is
Requires s Is_A Received_Signal And
s Is_A Received_And_Processed_Signal And
( s Has_Approaching i1 And
i1 Is_A Indicator ) And
( s Has_Waiting i2) And
i2: Indicator )
Invoives Retract il Is_A Indicator
Retract s Has_Approaching it
Retract i2 Is_A Indicator
Retract s Has_Waiting i2
Retract s Is_A Received_Signal
To Produce s Is_A Signal And
NOT s Is_A Received_Signal
End Method;

- End Transitions
-—'>

End Signals;

Package Body Timer_Unit Is

L

-.<
-- Transitions

..<'

-~ Method Stop(t: Timer) Is
—~  Stop a running timer
- End Stop;

Method Stop(t: Timer) Is
Requires tlIs_A Running_Timer And
t Expires_Ine
involves Retractt Is_A Running_Timer
Retract t Expires_Ine
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To Produce t Is_A Timer
End Method;
S
-.<.
- Method Start(t: Timer) Is
—  Start a timer that is not running
-- End Start;

Method Start(t: Timer) Is
Requires tis_A Timer And
NOT t Is_A Running_Timer And
t Has_Expiration_Value ev
Involves Assertt Is_A Running_Timer
Assert t Expires_Iin ev
To Produce t Is_A Running_Timer
End Method;

..'>

— End Transitions
—-'>

End Timer_Unit;

Package Body Traffic_LightIs

..<'

- Transitions
_<'
Method Switch(: light)
will switch the color of the light in a given direction
(when red switch to green)
(when green switch to red)

End Switch;

Method Switch(l: Light) is
Used When | Is_A Green_Light
Requires NOT |lIs_A Red_Light
involves Retract | Is_A Green_Light
Assert |1s_A Red_Light
To produce | Is_A Red_Light And
NOT | Is_A Green_Light
End Method;

Method Switch(l: Light) Is
Used When |is_A Red_Light
Requires NOTIIs_A Green_Light
Involves Retract!is_A Red_Light
Assert 1ls_A Green_Light
To Produce | Is_A Green_Light And
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NOT | Is_A Red_Light
End Method;
-
—~ End Transitions

-*

->

End Traffic_Light;

Package Body Traffic_System Is

: 4

-~
- Transitions

-<

- Method Do_Tick(t: Timer) Is

Decrements the number of seconds until a timer expires.

—~ Inthe case where a timer has a secondary timer (i.e.,
one that runs at the same time), both timers are
decremented.

End Do_Tick;

Method Do_Tick(t: Timer) Is
Used When tlis_A Long_Timer Or t Is_A Medium_Timer
Requires Timert Should_Tick Because of s And
t Expires_in w And
s Is_A Received_But_Not_Processed_Signal
involves Retractt Expires_inw
Assert t Expires_in (w-1)
Assert s Is_A Received_And_Processed_Signal
-To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-1)
End Method;

Method Do_Tick(t: Timer) is
Used Whent Is_A Short_Timer
Requires Timer t Should_Tick Because of s And
t Has_Secondary m And
t Expires_In w And
s Is_A Received_But_Not_Processed_Signal
Involves Retractt Expires_Inw
Assert t Expires_In (w-1)
Perform Do_Tick(m)
To Produce s Is_A Received_And_Processed_Signal And
t Expires_In (w-1)
m Expires_In 1 fewer seconds
End Method;
—.>

*

-<

-- Method Re_Start(t: Timer) Is

- Stops and Starts the timer at its maximum expiration
- time.



- End Re_Stan;

Method Re_Start(t: Timer) Is
Requires Timert Should_Be_ReStarted Because of s
And
sis_A Received_But_Not_Processed_Signal
involves Perform Stop(?t)
Perform Start(?t)
Assertslis_A Received_And_Processed_Signal
To Produce s Is_A Received_And_Processed_Signal
t Has_Expiration_Value w1 And
t Expires_In w2 seconds And
wl=w2
End Method;
.-'>

_<'

— Method Switch_Timer(t: Timer) Is

~  Stops the currently running timer and starts the
- short/medium timers for measuring light change
— End Switch_Timer;

Method Switch_Timer(t: Timer) Is
Requires Timer t Should_Switch Because of s And
t Switches_To pri And
pri Has_Secondary sec And
sis_A Received_But_Not_Processed_Signal
Involves Perform Stop(t)
Perform Start(pri)
Perform Start(sec)
Assertslis_A Received_And_Processed_Signal
_To Produce NOT t Is_A Running_Timer And
pri Is_A Running_Timer And
sec Is_A Running_Timer And
sls_ A Received_And_Processed_Signal
End Method;
.-'>

-

- Method Switch_Light(t: Timer) Is

— Changes the color of the light and stops running
-~ timer(s).

- End Switch_Light;

Method Switch_Light(:: Light) Is
Used When Long Timer t Expired_On's
Requires tls_A Expired_Timer And
slis_A Received_But_Not_Processed_Signal
Involves Perform Switch(l)
Perform Stop(t)
AssertsIs_A Received_And_Processed_Signal
To Produce
NOTslis_A Received_And_Processed_Signal
End Method;
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Method Switch_Light(l: Light) is
Used When Short_Timer t Expired_On sig
‘Requires t Has_secondary s And
t Is_A Expired_Timer And
sig Is_A Received_But_Not_Processed_Signal
involves Perform Switch(l)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal
To Produce NOT t Is_A Running_Timer And
sig Is_A Received_And_Processed_Signal
End Method;

Method Switch_Light(l: Light) Is
Used When Medium_Timer t Expired_On sig
Requires tIs_Secondary_To s And
t Is_A Expired_Timer And
sig Is_A Received_But_Not_Processed_Signal
Involves Perform Switch(l)
Perform Stop(t)
Perform Stop(s)
Assert sig Is_A Received_And_Processed_Signal
To Produce NOT t Is_A Running_Timer And
sig Is_A Received_And_Processed_Signal
End Method;

- End Transitions

-—>

End Traffic_System;
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Introduction

Technologies such as Cleanroom Software Engineering (Mills, et. al, 1987) promise to
dramatically improve the quality of software products by allowing their correctness to be
formally verified. In order to use these technologies, the design must be specified in a
design language and verification techniques must be used to prove the design is correct.
Numerous languages and techniques have been developed to specify and verify the
designs for procedural software. However, very little has been done for Knowledge
Based Systems (KBS). The methodologies for designing KBS are poorly understood and
verification and test even less understood.

The purpose of this case study is to discuss a language for the design and verification of
KBS application software. The basic intuitions and requirements for the design language
are discussed first followed by an outline of the design language syntax and semantics.
Next, the characteristics of the language are applied to defined a solution for the traffic
controller problem.

Basic Concepts

The design language presented here is based on two important intuitions about KBS:
 they are a mixture of procedural and non-procedural programming techniques

« they are not just unorganized collections of rules and frames but are intended to
operate in a specific manner by the developer

The idea that KBS are built from a mixture of procedural and non-procedural
programming techniques derives from the fact that many solutions are not strictly
procedural or non-procedural in nature. Rather, solution approaches are composed of a
number of different subprocesses with different interactions. Some are dependent on the
results of other processes and must be organized procedurally. Others may be performed
independently or in parallel once the proper context is established. It is this latter type
that KBS technologies, with their implicit control mechanisms, are best suited for. But it
requires a mixture of the two forms to produce a complete solution.

The idea that KBS are not unorganized collections of rules and frames is more subtle.
While some useful systems have been built this way, most applications are of such a
complexity that some organization or process must be used to decompose the problem.
This typically takes the form of a set of steps that must be performed or sequences of
events that must occur in order to solve the problem. This may be represented with state
or control variables which determine which rules are applicable at any point in time or it
may be implicit in the changes and availability of the objects referenced by the rules. In
the latter case, control is provided more by the inference engine than by the user. But
often the implicit control is not exactly what is desired and meta-level controls or



changes to the rules must be used to produce the desired result. In either case, there is
implicit meta knowledge in the problem solving process which is usually present in the
mind of the application builder but often hidden in the implementation.

These two intuitions suggest that KBS application design could be captured in a language
that is based, in part, on existing procedural software design languages but with
extensions that exploit the characteristics of KBS programming.

Forpracuc;alreasons, the ;:iesign language must also meet the following requirements:

. the design should be verifiable with a reasonable amount of effort and without a
deep understanding of the underlying KBS tool

« the design should be easily translatable into the underlying KBS tool's knowledge
representation language

These two reqiirements are conflicting, in that the language, to be casily verifiable,
should be as procedural as possible since techniques for verifying procedural designs are
understood. However, for the language to be translatable to a KBS tool's representation
language, it must exhibit a non-procedural, declarative style, which is inherently difficult

to verify.

Design Language Specification

The KBS Design Language (KDL) implements the requirements defined above for a
design language. The following sections summarize KDL's definition in terms of syntax,
semantics and correctness conditions.

Syntax

The syntax of the unique components of the KDL is summarized in figure . This design
language is not meant to replace existing procedural design languages but rather to
augment them to deal with the concepts embodied in KBS programming. The definitions
of global_data_definitions, local_data_definitions, and actions in WHEN and
WHENEVER statements are left unspecified in this definition so that structures from
other design or implementation languages may be used to specify details. This allows the
use of procedural control structures in the actions of WHEN and WHENEVER
statements in order to express functions that may be better expressed using procedural
means (e.g. WHILE loops, IF statements, etc.).



KB SEGMENT kb_segment_name (arguments)
[segment_intended_function]

. GLOBAL DATA
.-global_data_definitions

LOCAL DATA
~local_data_definitions
[when_intended_function]
when_name WHEN
[condition_expression]

DO INTERRUPTIBLE
[when_action_intended_function]

) actions ‘

END
[whenever_intended_function]
whenever name WHENEVER

[conditisn_cxpression]

DO
[whenever_action_intended_function]

actions
END
END KB SEGMENT kb_segment_name

~'I';-i;g;llu-e 1: KB Design Language Syntax

Semantics

The semantics of the design language are defined to accomplish the following goals:

* define the legal operation of the constructs
* restrict usage of the constructs to allow verification
* maximize the KBS tool independence of the language




The semantics of each of the basic components of the language, KB SEGMENT,
WHEN statements, and WHENEVER statements, are discussed below.

KB Segments: The KB SEGMENT provides the highest level of modularization and
scoping for a knowledge base. It defines a logical unit of work that performs a single
[segment _ intended_function]. KBS applications may be composed of one or more KB
SEGMENTS that may interact with other KB SEGMENT s or procedural functions.

‘p-

A KB SEGMENT is composed of definitions for global and local data, one or more
WHEN statements and zero or more WHENEVER statements. The WHEN statements
completely implement the :pv.segment_intended_function:epv. of the KB SEGMENT in
a non-deterministic manner. The WHENEVER statements support the WHEN
statements by providing opportunistic and data driven functions that can be used to
achieve the functions of 2 WHEN action. WHENEVERs are not active outside of the
context of an active WHEN statement. However, their functionality can be shared by all

WHEN statements.

WHEN Statements: WHEN statements represent a condition under which one or
more actions are to be performed. Their intent is to explicitly represent meta or control
knowledge in the design of the system and the conditions under which that processing is

appropriate.

The requirement of non-determinism of WHEN statements in accomplishing the
[segment_intended_function] allows for the specification of multiple possible solution
scenarios while forcing those scenarios to be independent of each other. This specifically
disallows the execution of a sequence of WHEN statements to accomplish the
[segment_intended_function] as such would represent an implicit intent of control which
would be difficult to verify.

The WHEN statement is composed of a [when_intended_function], a
[condition_expression], and 2 WHEN action part. The [when_intended_function]
specifies the abstract condition under which this WHEN statement is appropriate, and the
effect it will have. The [condition_expression] provides a more concrete specification of
the appropriateness conditions. The WHEN action part specifies a sequence of functions
that implement the [when_action_intended_function]. These functions are specified with
procedural specifications that represent the sequence of processing. They may be
implementeq using a mixture of procedural design statements and WHENEVER
statements. When WHENEVER statements are used, their intended function is specified
in the WHEN actions so that the WHEN statement can be verified in a self-contained
manner. The :pv.actions:epv. of a WHEN statement may also specify a CALL KB
SEGMENT action whose intent it is to invoke another KB SEGMENT.



Thc actions. of a WHEN statement allow two forms of execution to provide for different
implementation approaches. The DO form specifies that all actions within the structure
are executed sequentially without interruption. This is the normal semantic of procedural
programming languages and is appropriate if the implementation is to use either

prooedural programming or rule actions without demons.

'I'he DO INTERRUPTIBLE form specifies that WHENEVER statements apply
between each of the actions. This allows WHENEVER statements to be applied as soon
as the appropriate condition exists. DO INTERRUPTIBLE blocks may contain DO
blocks to specify that certain groups of actions are not interruptible. WHENEVER
statements apply only between individual :pv.actions:epv. and DO blocks within a DO
INTERRUPTIBLE block.

w WHENEVER statements represent OppOrtUNIstic or
data driven rules or demons that may fire at any time, and as many times as necessary
during the execution of a DO INTERRUPTIBLE block of a WHEN statement. If more
than one WHENEVER is eligible to fire (i.e. its [condition_expression] evaluates to
true) the order of firing of the WHENEVER statements can not produce different
results. As with WHEN statements, such a required ordering represents an implicit
control that should be explicitly stated in the design.

The components of 2 WHENEVER statement are similar to that of a WHEN providing
a whenever_intended_function., a [condition_expression], and a WHEN action. Unlike
the WHEN statement, however, the actions of a WHENEVER statement are performed
sequentially and are not interruptible by other WHENEVER statements.

Correctness Conditions

A set of correctness conditions or proof rules for verifying that 5 design is comrect have
been defined. These allow verification of the design at various levels of abstraction,
allowing either top-down or bottom-up verification techniques to be used.

Using a top down approach, the verification stages and associated primitives are as
follows:

KB SEGMENT: [segment_intended_function] is implemented
by [when_intended_function]s

WHEN: [when_intended_function] is implemented by
WHEN statement

WHEN Action Part: [when_action_intended_function] is
implemented by WHEN actions



WHEN INTERRUPTIBLE Actions: WHEN actions are implemented by their
refinement and by applicable WHENEVER

statements

WHEN (uninterruptible) Actions: WHEN actions are implemented by their

refinement

WHENEVER [whenever_intended_function] is implemented
by WHENEVER statement

WHENEVER Action Part: [whenever_action_intended_function] is

implemented by WHENEVER actions

Correctness conditions are defined for each construct or set of constructs at each level of
abstraction as mentioned above. The general approach to the correctness conditions is to
verify that the-components of the construct implement the function of the construct and
that the components are well behaved with respect to the restrictions imposed on them by
the semantics of the design language. This involves verifying that improper interactions
do not occur and that the results are deterministic.

The most significant part of the verification process with this design language is the
verification of the KB SEGMENT. and the WHEN INTERRUPTIBLE actions. The
verification of other parts of the language follows approaches similar to those used with

procedural programming languages.
The KB SEGMENT is correct if:

1 For all arguments, does performing all WHENSs accomplish
[segment_intended_function]?

2 Areall [when_intended_function]s independent of all other
[when_intended_function]s? That is, could the result of one
[when_intended_function] modify data used in another
[when_intended_function]?

The first correctness condition is easily verified by comparison with the
[segment_intended_function] and consideration of the data being processed. Each logical
set of data must meet the condition of and be properly processed by the
[when_intended_function]. The second correctness condition verifies that a WHEN
applies only once to a logical set of data. If sequences of WHENSs are required to
accomplish the intended function, then there is implicit control that has not been
specified and has been left for the reviewer to discover. Hence, this restriction not only
makes verification easier but forces control to be explicit.

A WHEN INTERRUPTIBLE Action is correct if, for all arguments:



1 Does performing the implementation of the WHEN action and applicable
WHENEVERSs accomplish the action

2 Does the execution of applicable WHENEVERs terminate?

3 Does the execution of applicable WHENEVERs produce‘ the same results
regardless of order (ie. is the result of the execution deterministic)?

These verification rules interact to verify that a set of WHENEVERs accomplish the
intended function of a WHEN action. These rules allow latitude on the part of the
designer in using WHENEVERSs, but this must be balanced with verifiability. The first
rule requires that all WHENEVERs in a KB SEGMENT be examined to determine if
their applicability is appropriate. The second rule allows multiple WHENEVERSs to be
used to accomplish a function but requires that their termination must be verifiable. The
third rule requires that the results of execution of multiple WHENEVERs be
deterministic and that implicit control sequences are not present. Verification of WHEN
INTERRUPTIBLE actions is potentially difficult because of the difficulty in predicting
the sequence of WHENEVER application. However, the structure of the design
language encourages isolation of function to small sets of WHENEVER:s that are more
easily verified.

Discussion

The KDL provides a structure that distinguishes control and opportunistic knowledge in
the design of a KBS. The explicit representation of control knowledge is important
because it provides a means to specify the abstract control flow the knowledge base was
designed to use. As knowledge bases are typically data driven, this type of information
is often encoded in rules along with other information using state variables, priorities, or
the conflict resolution scheme of the underlying system. This makes the control strategies
implicit and difficult to find, inhibiting understanding, debugging, and verification. By
providing a mechanism to represent control, the intentions of the designer are made
explicit and its correctmess can be more easily verified. This does not restrict the
implementation from using traditional techniques, such as state variables or priorities, but
specifies the effect that must be acheived for the implementation to be correct.

While the explicit representation of control knowledge is important, the representation of
data driven and opportunistic knowledge is a key feature of the KBS approach. This is
also represented in the language in the form of WHENEVER statements. As these are
pattern driven procedural statements, they can be used to represent any processing that
should be performed under a given set of conditions. They can also be used to represent
demons triggered by various actions that occur against data in the KBS making this
representation useful for mixed KBS and Object Oriented paradigms.

The work done on TOP (Terms, Operators, and Productions described in the first
solution to the Traffic Controller problem) embodies many similar concepts to the work



presented here. TOP Operators have similar characteristics to WHEN statements and
TOP Productions have similar characteristics to WHENEVER statements. TOP Terms
provide a much more formal definition of knowledge base objects and their semantics
than is specified in the KDL. In general, the TOP language is a precise KBS
development language that can be used to specify designs and be automatically translated
into a particular KBS tool langauge. The KDL is 2 much more flexible extension to
existing design languages. Additionally, the verification arguments for TOP have only
been informally defined and the language does not contain the semantic restrictions that
simplify verification. The KDL provides restrictions on the use of language constructs,
defines of the relationship between the constructs, and provides formal correctness
conditions to allow verification to occur. However, the similarities of the two efforts
should allow some of the verification characteristics of KDL to be applied to TOP.

A more general approach to knowledge base verification involving the use of relational
verification techniques has been proposed. However, these techniques are difficult to
use, making them currently impractical for use on real problems. The KDL attempts to
avoid this problem by separating control and opportunistic knowledge and providing
mechanisms for defining the function of groups of opportunistic rules to limit the need
for relational verification to small, easily managed sets of rules.

The KDL is being used in the development of the Automated Problem Resolution (APR)
prototype. The APR prototype is an aircraft flight replanning system being developed as
part of a study for future upgrades the the U.S. Federal Aviation Administration’s Air
Traffic Control system. The system requires the generation of multiple aircraft
maneuvers in a multiple problem environment and is a non-trivial problem in terms of
representation, problem solving approaches, and performance.

Our experience with the design language to date has been very positive. It provides a
vehicle to represent the designs that we are specifying for the APR project. It allows us to
specify the types of processing we expected to do in with KBS tools (TIRS in this case)
with a minimum of restrictions. It also provides a good mechanism to abstract the design
at various levels allowing the use of top-down stepwise refinement techniques. Because
of the issue of verifying the scope of applicability for WHENEVER processing, it
sometimes forces the structuring of the design into multiple KB segments each with their
own control and opportunistic sections. While this suggests the use of sub-KBs or
similar restrictive scoping mechanisms, this is not required by the design as long as the
semantics are the same. Hence, we expect that many of the KB Segments will be
implemented as guarded sets of rules rather than sub-KBs. The verification rules for the
design language are usable, allowing verification to occur quickly with minimal
consideration of complex situations. The only problems occur with the use of
WHENEVERs. The language allows WHENEVER:s to be used in arbitrarily complex
sequences. While this effectively allows the use of KBS programming techniques, it can
be difficult to verify in complex cases. The need for verification of the design often
encourages simplification of the design in these cases. Most importantly, the use of the
design language allows us to verify the correctess of the designs and utilize Cleanroom
Software Engineering effectively in the development of APR.



Summary and Conclusions

A design language for KBS has been described along with a brief description of the
verification approach that is to be used with the language. The language is an extension
of existing procedural design languages with structures for specifying control and
opportunistic components of KBS designs. The language supports the development of
KBS software using top down development and Cleanroom Software Engineering

techniques in a practical manner.

The design language is being used in the development of the APR aircraft flight
replanner prototype. Based on our experience to date, the language seems to provide
sufficient representational power to specify the types of processing expected in a KBS
while providing a practical mechanism for verifying the correctness of those designs.

While the language provides a good starting point for the use of design language and
verification techniques with KBS, there are a number of areas still to be investigated. The
language has only been used on a single project to date. While this project is relatively
large (1500+ rules) and utilizes a number of different problem solving techniques, there
is potential benefit from using this language in the development of other projects with
different characteristics. It has also been suggested that this language would be useful for
mixed KBS and object oriented paradigms, but this has not been investigated. Concepts
such as formal descriptions of data and their semantics, such as that provided in TOP, are
not currently part of the language and extension of the language to use data descriptions
should be possible and beneficial. Finally, the use of the language to represent problems
solved using backward chaining reasoning needs to be explored.

‘KDL Solution to the Traffic Controller Problem

A simple traffic light controller at a four way intersection has car arrival sensors and
pedestrian crossing buttons. In the absence of car arrival and pedestrian crossing signals,
the traffic light controller switches the direction of traffic flow every 2 minutes. With a
car or pedestrian signal to change the direction of traffic flow, the reaction depends on
the status of the auto and pedestrian signals in the direction of traffic flow; if auto
pedestrian sensors detect no approaching traffic in the current direction of traffic flow,
the traffic flow will be switched in 15 seconds, if such approaching traffic is detected, the
switch in traffic flow will be delayed 15 seconds with each new detection of continuing
traffic up to a maximum of one minute.

Observations

The problem is inherently a realtime asynchronous processing problem. Such problems
are not easily solved or understood. In that the intent is to provide a simple example, the
problem will be formulated as a synchronous problem.
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Assumptions

The following assumptions represent an interpretation of the requirements in areas that
were potentially ambiguous:

1.  Traffic flow in the direction of the signa} has no impact on the changing of the
signal when no traffic is waiting in the opposite direction. The wording of the
requirements seems to indicate that the 15 second time extension applies only
when traffic is waiting (It is possible to apply this 15 second extension to the 2

_minute default when no traffic is waiting. Some traffic controllers do work this
way as it minimizes impacts on traffic flow that are not necessary.)

2. The solution must allow for momentary action pedestrian crossing signals.
While an auto sensor will generally be on once an auto is waiting to cross the
signal, pedestrian crossing signals tend to be push-buttons that are only on
momentarily. The solution will assume that once such a button is pushed. The
pedestrian remains in the "waiting to cross” state until the signal changes. If this
assumption were changed to use sample/hold circuitry in the sensors, the use of
the traffic_waiting variable would not be required.

3.  The pedestrian and auto waiting signals are "ored" together for a given direction
of travel. This simplifies the processing of sensors as only one needs to be read
for a direction.

4.  The delay of traffic flow switch is interpreted to mean that a delay of 15 seconds
from the time of detection is to be applied. Other interpretations, such as adding
an additional 15 seconds to the current delay, are also possible. However, most
traffic controllers seem to work in the manner assumed here.

Solution Approach

The solution utilizes a polling approach that polls the sensors and performs switching on
a 1 second cycle. (Note that this is a simplification of the more general event driven
approach with asynchronous timers that would probably be used to implement real traffic
light controllers.)

On each cycle, the system will increment the intemal timers, read the sensors and update
the traffic light if necessary. This forms the basis for the control logic of the system that
is represented in the WHEN statement.

Two timers are maintained. The "time” timer represents current time and is used in
conjunction with the switch_time variable to determine when it is necessary to switch the
traffic flow. The wait_time represents the number of seconds traffic or pedestrians have
been waiting to pass. Only two timers are needed for this problem because there are only

11



two directions of travel and the uses of the timer are mutually exclusive. If the problem
were more complex, e.g. a three way intersection, more timers would be required.

The usage of the timers is as follows:

1.

2.

The time is incremented on every cycle of the system.

The wait_time timer is incremented whenever there is someone or something
waiting.

Whenever a vehicle or pedestrian is first detected in the stopped direction, the

switch_time is set to time + 15 seconds.

Whenever a vehicle or pedestrian is detected in the flowing direction and a
vehicle or pedestridn is wamng in the stopped direction the switch_time is (re)set
to time + 15 seconds

Whenever the time = switch_time, the traffic lights are switched, the
switch_time is set to time + 2 minutes and the wait_time set to 0.

Whenever the wait_time timer reaches 1 minute, the traffic lights are switched,
the switch_time is set to time + 2 minutes and the wait_time set to 0.

Notational Conventions

1.

We have adopted the notational convention that if there is only one When and
the Segment intended function is the same as the When intended funcuon then
the intended function of the When can be omitted.

We have adopted the notational convention that TRUE -> I (the identity
function in conditionals) is assumed if no alternative is given.

We have adopted the notational convention that frame instances or classes can
be referred to in the design using their type/class name. This is used in the
Crossing_traffic whenever.

Proof

2.

When Int ction i nts Segement Intended Function:

Since they are the same, this is obvious.

When Statement implements When Intended Function:

12



The When statement condition is always true. The When statement action
consists of initializing variables to indicate that the light has just switched traffic
flow to initial_flow_direction and and changing traffic flow for every second in
time per the When Intended function. Hence, the two are equivalent.

When Statement Initialize implements it's Intended Function:

Using the correctness conditions for KDL, the statement verifies if its
implementation and all applicable Whenever statements implement the intended
function. In this case, the implementation implements the intended function, and
it can'be seen from inspection that no Whenever's are applicable since they all
utilize a state variable that does not currently have a value.

When For Statement implements it's Intended Function:

By the correctness conditions for For statement verification, the statement
verifies if the composition of its body intended function for each iteration
implements the For statement intended function.

While the For appears to be infinite, making verification impossible, it is
actually not. Since wait time is incremented if traffic is waiting, the wait time
condition will eventually be reached. If traffic is not waiting, the third intended
function will do nothing until the switch time is reached (which will eventually
happen since time is incremented by the For loop). It is therefore sufficient to
verify that the composition of the For body for all sequences up until the
switch/wait time condition is met is correct in order to verify correctness of the
For.

The verification of the For loop requires that the alternatives of the For's
intended function be implemented. These are:

1. If no traffic is waiting to cross, change traffic flow in 120 seconds.

2. If traffic is waiting to cross and there is no traffic in the current direction
of flow, change traffic flow in 15 seconds.

3. If traffic is waiting to cross and there is traffic in the current direction of
flow, change traffic flow in 15 seconds, but not more than 60 seconds
total wait.

13



Verification of Condition 1: If no traffic is waiting to cross, time will be
incremented by the for loop until the switch time is reached. When the switch
time is reached, traffic flow will be switched and the switch time reset. As time
is set to 120 initially and is set to time+120 on each switching, traffic will be
switched every 120 seconds if no traffic is waiting.

Verification of Condition 2: If traffic is waiting and no traffic is detected in the
direction of flow, the third intended function will set traffic switch time to
time+15 seconds, and indicate that traffic is waiting. The traffic_waiting
indicator will prevent the time from being reset if no other events occur. As time
is incremented on each cycle, traffic will be switched in 15 seconds if no other
events occur.

Verification of Condition 3: If traffic is already waiting and traffic is detected
in the direction of flow, the second intended function will reset traffic switch
time for time+15 seconds. If traffic is currently (sensor input) waiting, the
switch time is reset to 15 seconds regardless of whether there is traffic in the
current flow direction or not. In addition, the first intended function will
increment wait time whenever traffic is already waiting. The "switch time”
intended function will switch traffic flow whenever the switch time reaches 0 or
the wait time reaches 60. Therefore, the condition is implemented by the
composition of the intended functions.

entati

By the correctness conditions for DO INTERRUPTIBLE intended functions,
the function is correct if its immediate actions and applicable whenevers
implement the intended function in a deterministic way.

The immediate actions consist only of read operation which is assumed to be
correct. By inspection it can be seen that no whenevers are applicable as the
value of state is not set.

DA W. 1 Function implementation:
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10.

The immediate actions consist only of an assignment to the state variable. The
only whenever applicable as a result of this state variable assignment is
Update_Wait_Time whose intended function is identical to the intended function
of the statement here with the addition of the check for wait time update

required.

While this is a trivial example, it indicates the use of state variables to isolate the

function of whenevers and the use of whenevers to implement conditional logic.

Switch time/Wait time Intended Function:

The immediate action contains only an assignment to the state variable. By
inspection of the whenevers, it can be seen that only the Switch_traffic and
Crossing_traffic whenevers are applicable. From their intended functions, it can
be seen that they each implement one alternative of the original intended
fanction. Since they both indicate that traffic flow change is not required as part
of their actions, they will be mutually exclusive.

Update Wait Time Whenever:

The condition and action of the whenever match the intended function of the
whenever. By inspection, it can be seen that no other whenevers are effected.

Switch_traffic Whenever:

The condition and action of the whenever match the intended function of the
whenever. By inspection, it can be seen that no other whenevers are effected
since they action of this whenever changes the state such that other whenevers
are not applicable.

Crossing traffic Whenever:

The condition and action of the whenever match the intended function of the
whenever. By inspection, it can be seen that no other whenevers are effected
since the action of this whenever changes the state such that other whenevers are

not applicable.
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KDL Solution for the Traffic Controller Problem

KB SEGMENT traffic_light controller (IN: sensor_stream, initial_flow_direction)
[ Given a traffic light just switched to initial_flow_direction,
For every second in time:
No traffic waiting to cross -->
change traffic flow 120 seconds after last change
[ no traffic in current direction of flow -->
change mraffic flow 15 seconds after
detecting traffic waiting to cross
[ change traffic flow 15 seconds after
detecting traffic in current direction of flow
but not more than 60 seconds after
detecting traffic waiting to cross |

LOCAL DATA
Parameter Switch_time: Parameter Wait_time:
Type: Integer Type: Integer
end end
P a;ayx:eeter Flow_direction: Parameter Traffic_waiting:
(EASTWEST,NORTHSOUTH) mj;ype: Boolean
end
Parameter Time: Parameter State:
Type: Integer Type: (UPDATE_WAIT_TIME,
end SWITCH_TRAFFIC ,NULL)
end
Frame Type Flow_sensor: Frame Eastwest_lane:
Direction: Type: Direction: EASTWEST
(EASTWEST NORTHSOUTH); end
Traffic_detected: Boolean;
end

Frame Northsouth_lane:
Direction: NORTHSOUTH
end
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WHEN
true

DO INTERRUPTIBLE
[F law_direction,Switch_n'me,Wait_time,Traﬁc_waiting =
initial_flow_direction,120,0,FALSE ]

Flow_direction := initial_flow_direction
Switch_time := 120

Wait_time :=0

Traffic_waiting := FALSE

State := NULL

[ For every second in time:
No traffic waiting to cross -->
change traffic flow 120 seconds after last change
| no traffic in current direction of flow -->
change traffic flow 15 seconds after
detecting traffic waiting to cross
| change traffic flow 15 seconds after
detecting traffic in current direction of flow
but not more than 60 seconds after
detecting traffic waiting to cross |
FOR time := 0 to forever
[ Read traffic direction sensors ]
Read(Sensor_stream,
Eastwest_lane.traffic_detected,
Northsouth_lane.traffic_detected)

[ Traffic_waiting --> Wait_time := Wait_time + 1]
state := UPDATE_WAIT_TIME

[ time = switch_time [ wait_time = 60 -->
change traffic flow;
switch_time,wait_time traffic_waiting := time+120,0,FALSE
| ((sensors detect traffic waiting & not traffic_waiting) |
(traffic_waiting &
sensors detect traffic in current direction of flow)) -->
switch_time traffic_waiting = time+15,TRUE ]
state := SWITCH_TRAFFIC '

END WHILE

END
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[ Wait time update required & Traffic_waiting -->
Wait_time := Wait_time + 1 ]
Update_Wait Time: WHENEVER

state = UPDATE_WAIT_TIME and
traffic_waiting

DO
wait_time := wait_time + 1

END

[ traffic flow change required &
(time = switch_time [ wait_time = 60) -->
change traffic flow;
switch_time,wait_time traffic_waiting := time+120,0, FALSE;
indicate that traffic flow change is not required]
Switch_trafficc WHENEVER

state = SWITCH_TRAFFIC and
(time = switch_time or wait_time = 60)

DO

[ Switch_time Wait_time,Flow_direction,Traffic_waiting :=
time+120,0,no0t Flow_direction FALSE ]

Switch_time := time+120

Wait_time :=0

Flow_direction := not Flow_direction

Traffic_waiting := FALSE

state := NULL

END
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[ traffic flow change required &
not (time = switch_time [ wait_time = 60) &
((sensors detect traffic waiting & not traffic_waiting) /
(traffic_waiting &
sensors detect traffic in current direction of flow))-->
switch_time traffic_waiting = time+15,TRUE;
indicate that traffic flow change is not required]
Crossing_trafficc. WHENEVER

state = SWITCH_TRAFFIC and

not (time = switch_time or wait_time = 60) and

((flow_sensor.traffic_detected = TRUE and
flow_sensor.direction <> Flow_direction and

traffic_waiting = FALSE) or

(traffic_waiting = TRUE and
flow_sensor.traffic_detected = TRUE and
flow_sensor.direction = Flow_direction))

DO
[ Traffic_waiting Switch_time := TRUE tfime+15 ]
Traffic_waiting := TRUE
Switch_time := time+15

. state := NULL

END
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