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PREFACE

This report contains essentially the thesis written by Mahyar R. Malekpour

entitled "Simulator for Concurrent Processing Data Flow Architectures" in fulfillment of

the Masters Degree at Old Dominion University. The use of brand names in this report is

for completeness and does not imply NASA endorsement.
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CHAPTER ONE

Introduction

1.1 Overview

As the use of computers affects increasingly broader segments of the world, many

of the problems to which people apply computers grow continually larger and more

complex. Demands for faster and larger computer systems increase steadily and outpace

the recent advances in technology. Computer architects have followed two general

approaches in response to this demand. The fii'st uses exotic technology in a fairly

conventional serial computer architecture. The second approach exploits the parallelism

inherent in many problems. The parallel approach requires a system with multiple

processors working concurrently on the same algorithm. Due to inherent concurrency in

applications such as real-time signal processing and control systems, a special model is

needed to describe the system behavior and predict its performance for real-time

application.

Strategies for control of computations on multicomputer architectures can be

classified broadly as control-flow, demand driven, and data-driven [1]. In control flow

computers, explicit flows of control cause the execution of instructions. In demand-

driven architectures, the execution of operations are triggered by the requirements for

outputs. In data-driven architectures (also known as data-flow computers), the

availability of operands triggers the execution of operations.

The data-flow concept has already attracted the attention of many researchers [2].

A number of decentralized data-flow architectures have been developed, motivated

mainly by the desire to improve performance through the use of concurrency [3].

However, only a few researchers have tried to develop a theoretical model for evaluating



computation in a data-driven architecture 14], [5]. These models do not appear to be

adequate in addressing the complex issues of repeated execution of algorithms. There is

a need for a simple, but effective, model for real-time, data-driven computations in order

to investigate the relative merits of different algorithm decompositions and

implementation strategies in a hardware independent context. Ongoing research efforts

at Old Dominion University have lead to the development of a new marked graph model

for describing data and control flow associated with the execution of algorithms in real-

time data flow architectures [6], [7]. The model is identified by the acronym ATAMM

which stands for Algorithm To Architecture Mapping Model [8], [1]. The model was

designed by Stoughton and Mielke in conjunction with NASA Langley Research Center,

in order to describe the control, communication, and scheduling issues not included in

other models [8]. The architecture is assumed to be a homogeneous multicomputer data

flow architecture consisting of two to twenty identical computers or functional units each

having a capability for processing, communication, and memory. The algorithms are

assumed to be decision free and require large computations, i.e., large-grained, which

include such computations as matrix addition, multiplication, etc.. The granularity level

of the algorithm decomposition is set high to keep the relative communication overhead

small.

The Algorithm to Architecture Mapping Model (ATAMM) is a new Petri net

based model capable of describing the execution of large-grained algorithms on data-

flow architectures. In the data-flow model of computation, operations proceed on the

availability of data rather than the action of a program counter as in the von Neuman

model of computers. Large- grained means that the time required to execute data by an

algorithm operation is much greater than the time to transfer data between the operations.

The ATAMM model provides a description of the data and control flow

necessary to specify the criteria for predictable execution of an algorithm by a data-flow

architecture. The ATAMM model also provides the means to investigate different
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algorithm decompositions without having to consider the hardware. Once the intended

hardware is selected, the model can be used to match the algorithm requirements with the

hardware capability in order to achieve optimum performance.

- 1.2 Research Objective

The objective of this research is to develop a software simulator capable of

simulating execution of a graph on a given system under the ATAMM rules. The

purpose of the simulator is to empower a study of behavior, performance, and reliability

of a multicomputer data flow system without having to build a hardware prototype. This

simulator is able to assist with the development of ATAMM-based architectures and the

investigation of theories concerning the ATAMM model. The simulator is to be user-

friendly and flexible to permit examining different attributes of a generic system.

Evaluation of the simulator is conducted through several case studies.

The simulator provides the means to identify an architecture by specifying

different parameters of the system in order to evaluate the periodic execution of an

algorithm on a given hardware. Architecture parameters include such variables as graph-

node execution time, communication latency, and memory read-write latencies. The

simulator is capable of detecting and recovering from faults, and also provides the means

to obtain performance measurements. The perh)rmance measurements indicate the graph

latency, throughput, concurrency, and resource utilizaticmattained by the system. Results

of execution of an algorithm by the simulator are comparable to the results of the ADM

system. In order to ease and facilitate user interactions, this user-friendly software is

developed within a window environment.

1.3 Organization

A brief description of the ATAMM model and related performance issues are

presented in Chapter Two. The ATAMM model and its application is presented in



Section 2.2. Section 2.3 is a brief introduction of the Advanced Development Model

(ADM) system. In Section 2.4, the ATAMM Multicomputer Operating System (AMOS)

for the ADM system is presented as an example implementation of ATAMM. The major

components of the AMOS are identified and AMOS operation is explained using a state

diagram description and an overhead model associated with AMOS operation is

_:onsidered. Also, an approach that extends ATAMM to the modeling of a fault tolerant

system is presented in Section 2.5. Different classes of faults and fault tolerance

strategies in AMOS and the ADM system are discussed.

The development of software for design and simulation of an ATAMM based

system is presented in Chapter Three. Section 3.2 is a brief introduction of object-

oriented methodology. A brief description of system requirements, the programming

environment and the language used in the development of the ATAMM Simulator is

presented in Section 3.3. Objects and relationships among them are introduced in

Section 3.5. The Simulator-Kernel, Processors, Network, Graph, Graph-Manager, and

PC objects are discussed in Sections 3.6 through 3.11, respectively. Inputs and outputs

of the simulator and the format of the input and output files are discussed in Section 3.12.

Experimental results are described in Chapter Four and provide a demonstration

of the software developed in Chapter Three. Real algorithms are chosen for case studies

to prove the practical applicability of the ATAMM Simulator. The last algorithm

considered fi_rthe case studies is a three-node chain graph. The simulated results of this

graph are compared with that of the ADM system and are presented in Section 4.6.

Finally, some observations and experimental findings are addressed in Section 4.7.

A summary and topics for future research are stated in Chapter Five.
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CHAPTER TWO

Background

2.1 Introduction

The purpose of the ATAMM Simulator is to model the behavior of

multicomputer architectures based on the ATAMM model. The ATAMM model for

describing the data and control fow associated with a certain class of algorithms and

distributed-processing systems is presented in this chapter. A brief description of the

ATAMM model and its application is presented in Section 2.2. Section 2.3 is a brief

introduction of the Advanced Development Model (ADM) system. The ADM is an

example of an ATAMM implementation on the VHSIC hardware. In Section 2.4, the

major components of the ATAMM Multicomputer Operating System (AMOS) are

identified and AMOS operation is explained using a state diagram description. Different

classes of faults and fault tolerance strategies in AMOS and the ADM system are

discussed in Section 2.5.

2.2 ATAMM Model

Multicomputersare increasingly being used for real-time applicationssuch as

aerospace or nuclear power plants[91.In a typicalreal-timesystem,a number of sensors

provide input data to a computer which then analyzes the input data by some predefined

algorithms. This information is used to send output signals to actuators or displays. A

few characteristics required of such computers are repeated execution of the same

algorithm, highly predictable and reliable performance, and hard deadlines for outputs.

The ATAMM model is based on a special class of timed Petri nets. Petri nets are

a tool for the study of systems with discrete events. A Petri net is a special kind of

directed graph capable of describing data and control flow of a system [10]. Petri nets
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serve as both a graphicaland mathematicaltool. The reader is expectedto be familiar

with Petrinet theory so a detaileddiscussionpertainingto the topic will not be provided.

The reader unfamiliar with Petri nets may refer to [10] for a discussionof Petri net

theory.

An importantsubclassof Petrinet is the markedgraph. In a markedgraphevery

edge is an inputto only one transitionand an output of exactly one transition. In other

words, each edge has exactly one input and one output. This restrictioneliminatesthe

possibleconflictof havingoneplaceasinput to morethanone transition. Markedgraphs

can be used to model the processingof decision-freealgorithms[5]. An example of a

markedgraphis presentedin Figure2.1. Circlesrepresentnodes(transitions)andline

transition

transition enabled k., /
for firing "_J

Figure2.1. PartialMarkedGraph.

segmentsrepresentedges(places). Tokensrepresentingthe availabilityof signalsor data

are indicatedby blackdotson theedges. A nodeis "enabled"for "firing"by the presence

of tokens on all of its input edges. The node "fires"'by encumberingall input tokens,

delayingfor sometimeinterval,anddepositingone tokenon eachoutputedge.

The ATAMMmodelprovidesthe analyticalmeansto integratethe algorithmdata

flowwith the dataflow architecture[111. The ATAMMmodelconsistsof three Petrinet



marked graphs which incorporate general specifications of communication and

processing associated with each computational event in a data flow architecture. The

algorithm marked graph (AMG), the node marked graph (NMG), and the computational

marked graph (CMG) constitute the three main components of the ATAMM model. A

flow diagram portraying the ATAMM modeling integration is presented in Figure 2.2.

// Algorit
Marked /) _ Marked )

\ Graph / \ Graoh //

/_C ff ............... ./omputational_
MarkedJ
Graph •

Figure 2.2. ATAMM Model Components.



Given an algorithm decomposition, the primitive operations and their data

dependencies are described by the algorithm marked graph (AMG). While the nodes

(circles) represent different tasks, the edges (line segments) represent data dependence as

well as data containers. Tokens are used to indicate the presence of data on the edges.

Squares are used to indicate sources and sinks of algorithm marked graphs. An example

AMG is provided in Figure 2.3.

3

Figure 2.3. Example AMG.

It is desirable to analyze the performance of a particular algorithm graph without

actually running it on any hardware. It is also important to be able to develop control

parameters to ensure the orderly computaticm of the tasks. These problems are resolved

in the graph theoretic context by the Node Marked Graph (NMG). The NMG is also a

marked graph. Given some computing environment assumptions, the NMG specifies the

functional unit activities which must_occur in order to execute a primitive operation

represented by an AMG node. One assumption is that the computing environment will

contain global memory for storage of data associated with each AMG edge. The global

memory may be centralized or distributed among the functional units [11]. Each
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functional unit contains local memory for the storage of data and the code to execute any

primitive operation of the AMG. A functional unit must read data from global memory

into its local data container, process the data, and write the data back to global memory

for access by other functional units. To ensure safety of data, a functional unit is not able

to start processing a task until output data for that operation has been consumed. This is

implemented by introduction of backward control edges in an AMG from the successor

to the predecessor node. An NMG describing these activities is displayed in Figure 2.4.

OE
IE

IF DR DP OF '

Read Process Write

PR

Figure 2.4. NMG Description Computing Activity.

A token at the labeled edges indicates the following:

IF Input Buffer Full

IE Input Buffer Empty

OF Output Buffer Full

OE Output Buffer Empty

DR Data Read

DP Data Processed

PR Process Ready

9



The NMG of Figure 2.4 is a detailed specification of not only the activities to be

performed by a functional unit but also the conditions which "enable" those operations.

The read node is "enabled" when it is ready, input is available, and the output has been

read by the successor operation. To "fire" the node, a functional unit is assumed to be

available to undertake these activities. The functional unit assigned to the read transition

will not be available until after completion of processing the AMG node and writing the

data. This is indicated by appearance of tokens on the output edges of the AMG node.

The two modeling steps of ATAMM discussed so far have specified data flow

with the AMG, and the functional unit activities and control flow required of each AMG

node. The CMG is a marked graph which incorporates the AMG and NMG

specifications into one graph. Thus, the CMG displays the data and control flow

necessary to implement a decomposed algorithm on a multiprocessor data flow

architecture [11]. The CMG is constructed from the AMG by replacing every transition

by the corresponding NMG. The source and sink of the AMG are represented the same

way in the CMG. AMG edges are replaced by edge pairs, a forward directed edge for

data flow and a backward directed edge for control flow. The resulting CMG is shown in

Figure 2.5.

The CMG of Figure 2.5 has certain characteristics that should be briefly

mentioned. Execution of the CMG results in live, reachable, safe, deadlock free and

consistent behavior. Liveness indicates that every transition of the graph can be fired

from the initial marking [8]. Reachability implies that an output will be produced for

every input. The CMG is safe because the backward control edges prevent data from

being overwritten. The backward control edge prevents the enabling of a primitive

operation until previous output data are consumed. The CMG is also deadlock-free

because once assigned to a primitive operation, a functional unit will always be able to

complete execution. Consistency implies that the CMG will periodically produce output

10



wheninput is appliedperiodically[8]. This also meansthatprimitiveoperationsalsoare

executedperiodically.

Figure 2.5. Example CMG.

Two types of concurrency are possible when executing an algorithm

decomposition as specified by the CMG. First, primitive operations without dataJ
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dependencymaybe simultaneouslyperformedon the same data set. This is referredto

as parallelconcurrencyand providesparallelismon a singledata set [12]. It is the result

of inherentparallelismin the algorithm. However,the amountof parallelconcurrency

dependson the numberof parallelpaths in the algorithmdecompositionand the number

of availablefunctionalunits. Second,as with any dataflow computer,new data setsare

acceptedfor executionbefore the completionof previousdata set computations. This

simultaneousprocessingof differentdatasets is referredto as pipelineconcurrency[12].

This type of concurrencyhas a direct effect on throughput. The amount of pipeline

concurrencydependson the numberof availablefunctionalunits as well as the structure

of the AMG.

The AMG andCMGof a given algorithmdecompositioncan be used to calculate

performancemeasurements. Two importantperformancemeasurementsare the time

betweeninput andoutput (TBIO)andthe time betweenoutputs(TBO). TBIO is directly

related to graph latency which indicatesthe amount of parallel concurrency attained.

TBO is associated with throughput and therefore reflects the amount of pipeline

concurrencyachieved.

Lowerboundsfor TBIO andTBO can be calculatedusing the CMG. The lower

bound,TBIOLB,is determinedfrom the CMG by determiningthe longestpath between

the inputsourceand theoutput sink. More formally,let Pi be the ith directedpath in the

CMGandT(Pi) be the totalpath time associatedwithPi. TBIOLBis thendefinedas

TBIOLB= Max(T(Pi) ), (2.1)

wherethe maximumis takenover all paths in the CMG[8]. A proofof this theoremcan

be foundin [1] andis basedon criticalpath theory.

TBOLB is a parameter indicating how quickly primitive operations can be

repeatedperiodically. Let Ci be the ith directedcircuitin the CMGandT(Ci) denotethe

12



total path time associated with Ci. Also, let M(Ci) denote the number of tokens

containedin Ci. Then,TBOLBis definedas

TBOLB = Max(T(Ci)/M(Ci) ), (2.2)

wherethe maximumis takenover all circuitsin theCMG [8].TBOLBis thusthe largest

time per token of all CMG circuits.The CMG circuits which determine TBOLB are

called criticalcircuits. A proof of Equation2.2 can be found in [1] and is based on the

maximumnode firingrateof markedgraphs.

Knowledgeof TBOLBis importantbecauseit determinesthe minimuminjection

intervalof graphinput. Datamay temporarilybe acceptedwithin a time intervalshorter

thanTBOLBbut at the cost of increasedgraphlatency(TBIOwill increase). However,

it is important in real-time applicationsto have low graph latency as well as high

throughput. The ATAMM model provides the means to match the algorithm

requirementswith resourceavailability for optimum performanceand to establish the

criteria for predictableperformance. Predictableperformanceis attainedby maintaining

an inputinjectionratewithinthe rangedeterminedby ATAMM.

Systems implementing the ATAMM model consist of three components, the

graphmanager,the globalmemory,anda set of functionalunits or resources. The graph

manager is responsiblefor ensuring that the overall system operates according to the

ATAMMrules. The graphmanagerupdatesand monitorsthe statusof the CMG. When

a read transition of this graph is enabled, the graph managerassignsa functionalunit

from the queue of available functional units to perform the correspondingalgorithm

operation accordingto priority if more than one node is enabled. The graph manager

updates the marking of the CMG using status informationreported by the functional

units. Therefore, the graph managerrequiresa communicationpath to each functional

unit. The datacorrespondingto inputand outputsignalsfor each AMG node are stored

13



in the globalmemory. Thus, the globalmemory also requiresa communicationpath to

each functionalunit. The functionalunit is the logicalcomponentthat executesall three

node marked graph (NMG) transitions of each algorithm operation. Therefore, the

internal token marking at the "DP" edge is not important to the graph manager. The

"PR"edge alsoprovidesonly redundantinformation. The functionalunit communicates

with the graphmanagerto update the statusof the CMG,and with the global memoryto

read and write data. The communicationsbetween the graph manager, the global

memory, and functional units are asynchronousand are carried out by means of a

communicationchannel. In order to ensure that all functionalunits have an identical

copy of the graph data structure, a functionalunit grabs the communicationchannel

beforechangingthe graphdata structure. The updatedgraphdata structureis transmitted

to all functionalunits by a broadcast,and only then does the functionalunit release the

communicationchannelfor othercommunication.

The graph manager and global memory may be distributed among all the

functional units. This distribution of activities has the advantage of increasing the

numberof functionalunits in the systemandat the same timeimprovingthe potentialfor

achievinga higher degree of fault tolerance to processor failure. Also, a distributed

global memoryeliminatesthe needfor sharedmemoryamongfunctionalunits.

The integration of the graph manager with the hardware's operating system

constitutes the ATAMM Multicomputer Operating System (AMOS). The resource

queue, globalmemory,and the algorithmmarkedgraph providethe necessarysupportto

AMOS. An AMOS controlled architecture consisting of IBM PC-AT's has been

developed and tested to validate the ATAMM rules [13], [14]. In this testbed, a

centralized graph manager and centralized global memory were utilized. Another

testbed,called the AdvancedDevelopmentModel (ADM)has also beendeveloped[15].

The ADM system is composed of four functionalunits, utilizing a distributed graph

managerand distributedglobalmemory.

14



2.3 ADM system

A VHSIC ATAMM data-flow architecture, called the Advanced Development

Model (ADM), has been developed [15]. The ADM system consists of four identical

VHSIC 1750A processors which communicate over a dual PI-bus as shown in Figure

2.6. A 1553B communication module is also connected to the PI-bus. The 1553B serves

as a gateway for input and output data flow from an IBM PC-AT. Communication over

the PI-bus is accomplished by broadcasting and use of direct-memory access. The 1553B

module is connected to the IBM PC-AT by a single line communication link (serial

communication). Data are transferred between the 1553B module and the IBM PC-AT

by synchronous communications. In addition to input and output, this link is used for

fault injection, fault recovery, modification of the algorithm graph in real-time, and

passing information back to the IBM PC-AT for testing purposes. The 1553B also acts

as a source and a sink for the algorithm graph and thus is responsible for controlling the

input injection rate to the 1750A processors and collecting the output. All processors,

1750A's and 1553B, communicate over an IEEE-488 bus to a Microvax computer which

is used to download AMOS code, application programs, and files for debugging

purposes. The performance of AMOS on the ADM has been characterized [16].

I
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Figure2.6. Layoutof ADMSystem.

2.4 AMOS Description

An example of AMOS is the integration of the graph manager with the ADM

hardware. The state diagram description of the AMOS is shown in Figure 2.7. AMOS is

composed of five states: Idle, Examine, Execute, Test, and Update. Initially, all

functional units awake in the state labeled Idle. A functional unit remains in this state

until its identification number (ID) appears at the top of the resource queue (First- In-

First-Out) of available functional units. Upon finding its ID, the functional unit

undergoes a state transition to the Examine state. In this state, the functional unit

actively monitors the status of the CMG until a read transition for an algorithm operation

becomes enabled. Once an enabled read node is identified, the functional unit assigns

itself to perform the algorithm operation. To progress to the next state, the Execute state,

the functional unit grabs the Plbus, removes its ID from the top of the resource queue,
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updates the CMG, reads the input data, and broadcasts the updated information to other

functional units announcing that an algorithm operation has been initiated (fired). The

functional unit then releases the PI-bus. This broadcast is called an "F" broadcast.

SELF NODE

SELF EXAMI

T2 'INT INT _

ODE

Figure 2.7. AMOS State Diagram.

The "F"broadcastcontainsthe updatedversionof theCMG,the updatedresource

queue, and the ID of the functionalunit processingthe AMG node. This broadcast,as

well as the two others discussednext, providethe status informationnecessaryfor the

graph manager to maintain the status of the CMG. Since the graph manager is
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distributed,thiscommunicationis especiallyimportantto ensurethatall individualgraph

managerscontain thesameCMGmarking.

The functionalunit remainsin the Executestate until the algorithmoperationis

complete. After completionof the algorithmoperation,the functionalunit undergoes

anotherstatetransitionto the Test state. It grabsthe PI-bus,updatesthe CMG,writesthe

output data, and broadcasts the updated information to other functional units. This

broadcast, termedan "D" broadcast,providesthe updatedCMG and the data generated

by the primitiveoperationto the other functionalunits. The functionalunit then releases

the PI- bus.

The Test statecorrespondsto a diagnosticcheckof the functionalunit. This state

provides the means to remove a functionalunit from the system for inspectionduring

realtime operation. Upon a successfulself-test, the functionalunit places its ID at the

bottomof the availablequeue and returnsto the initial Idle state. This state transitionis

accompaniedby a grabbingof the PI-bus,updatingthe resourcequeue, broadcastingthe

updated information, and a release of the PI-bus. This broadcast is named an "R"

broadcast.

Since the operation of the system is asynchronous, the graph manager must

generally be interrupt driven. While in any state, the CMG and resource queue in the

globalmemory of a functionalunit can be updatedby "F", "D", or "R" broadcastfrom

otherfunctionalunits.

The "F", "D", and "R" broadcastsnot only providethe communicationnecessary

for integrity of overall system operation, but also the means to analyze the system

performance. By labeling, time tagging, and storinginformationabout each broadcast, •

such as the event (F, D, or R), the node number, and functional unit ID, the token

movement within the CMG, and the token movement within the AMG, as well as

functionalunit activitycan be reconstructed.Othermeasurementssuch as TBIO, TBO,

and functionalunit utilizationandconcurrencymayalsobe extracted.

18



2.5 FaultInjection,Detectionand Correction

Barry W. Johnson states that "The concept of fault tolerance has become

increasinglyimportantduringthe past decadebecauseof the increaseduse of computers

in the vital aspectsof almosteveryone'slife. Computersare no longerconfinedto use as

powerful calculators where their incorrect performancecan produce little more than

frustrationand lost time. Instead, computersare now integrated into commercialand

military aircraft flight control systems, industrial controllers, space applications, and

banking systems. In each application, erroneous computer performance can be

devastatingto financialrecords,environmentalsafety,nationalsecurity,and evenhuman

life" [17]. Two types of faultsare modeledand handled in the ADM system. One is a

self-test fault detected while in the Test state. Once a self-test fault is detected, the

functionalunit is assumedto remain in the Test state. The other fault is a data-error

detectedwhen in the triplemodularredundancy(TMR)mode. The data-errorfault is the

result of a defectivefunctionalunit thatgeneratesan erroneousresult.

To provide a degree of fault tolerance, a triple modular redundancy (TMR)

schemeprovidesadequateredundancyin the systemwherea singleerror can be detected

and corrected. The TMR approach implementedin the ADM system triplicates the

processingand the dataassociatedwith eachAMGnodes. An operationrepresentedby a

simplexAMG nodeis nowrepresentedby three AMGnodeswith colorextensionto red,

green, and blue. The rules for enablingand firing a simplexAMG node (Section 2.2)

nowappliesto a TMR AMGnode,wherethe three-coloredAMG nodes are enabledand

fired by three functional units, simultaneously. Each colored node triplicates its output

data for each colored successornode. These data are also color referenced. In TMR

mode, when a colored node fires, a majorityvote is performedon all colored input data

to select the correct data to process. The majorityvote is also performedat the sink so

that thecorrect data,as the finalproductof the graph,ischosen.
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If only the detection of single errors is desired, a duplex implementation of the

algorithm graph would suffice. However, in duplex mode, the AMG nodes are duplicated

and are identified by the colors red and green. The rules for enabling and firing a duplex

node is the same as its TMR counterpart. A graph may be executed in simplex, duplex,

or TMR mode. A description of the AMG transformation from simplex to duplex and to

TMR is shown in Figure 2.8.
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Figure2.8. Simplexto TMRTransformation.
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CHAPTER THREE

Simulator Development

3.1 Introduction

The development of the ATAMM Simulator is presented in this chapter. This

Simulator allows the study of the behavior of algorithms in multicomputer data flow

architectures operating in real-time based on the ATAMM model. The purpose of the

Simulator is to permit an architecture-independent study of behavior, performance, and

fault tolerance of a system without having to build a hardware prototype.

The Simulator represents a homogenous multicomputer data flow architecture.

Object-oriented programming methodology, Section 3.2, lends itself to modeling

different parts and relationship among the parts of a generic system. With this approach,

simulation of the parallel execution of nodes of a graph by functional units is easily

realized. The Simulator consists of six classes of objects. These objects are Graph, a set

of nodes and edges; Graph-Manager, that represents the graph manager; Processors,

which represents a set of functional units; Network, that represents a set of

communication channels; PC, as the front-end of the ADM system; and Simulator-

Kernel, that manages a multitasking environment for other objects to function. The

Simulator- Kernel, Processors, Network, Graph, Graph-Manager, and PC are discussed

in Sections 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11, respectively. Section 3.5 is a discussion on

the evolution of these objects and the relationship among them. The programming

environment and language used in the development of the ATAMM Simulator are

discussed in Section 3.3.

The Simulator's input and output requirement and formats are discussed in

Section 3.12. As shown in Figure 3.1, the input to the Simulator is expressed as a
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marked graph and the output of the Simulator is an FDT (Fire, Data, Time) file. The

FDT file is a collection of time-tagged events which provide a means of evaluating the

system performance and graph execution. Basic information in the FDT file includes the

time occurrence of each event, name of the event, node number, node color, functional

unit ID, and the current mode of the operation. The format of the FDT file is discussed

in Section 3.8.4. The FDT file serves as the input to the Analyzer [18] which is a

software tool that graphically displays algorithm and processor activities. The

measurement capabilities of the Analyzer include graph latency, throughput,

concurrency, resource utilization, and system overhead [18].

Marked

Graph _ FDT-_ zer_- Simulator ..- Analy

A
I
I CTL
I

--.- Design

Figure 3.1. Flow of Information Among the Softwares Developed for ATAMM.

3.2 Object-oriented Programming

Structured programming flourished because it was efficient in terms of human

resources. Building and testing programs in discrete pieces enabled large applications to

be developed in less time with fewer bugs than their non- structured counterparts. In
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addition,the run-timeimpactof structuringbecomeslessevident as a programgrowsin

size. Object-orientedprogrammingextends structured programmingby encapsulating

bothdata and theirassociatedfunctions[19].

In traditionalprocedurallanguageslike C or Pascal,the programmerdefinesdata

structuresand writesfunctionsand proceduresto operateon the data. Althoughnormally

a correspondenceexists between whichfunctionsoperate on which types of data, most

procedurallanguagesoffer no formal supportfor this correspondence;it is entirelythe

programmer'sresponsibilityto managesuchan abstraction.

In an object-orientedapproach,bothdata and operationsthat workwith that data

are combined into a single logicalunit known as an object. Dividing a program into

objects encompassing both data and operations makes the program more closely

represent the logical design that is being implemented. As a result, object-oriented

programsare generallyeasier to understandand maintainthanproceduralprograms.

Object-orientedprogrammingis merely the art of breakinga programdown and

organizingit. In the case of structured programs, the primary concern is what the

programis doing. A structuredprogramis based on operations. When writing object-

oriented programs, the program is organized around data types and their associated

operations. It is a significantchange in perspective;instead of functionalhierarchies,

thereare data hierarchies. Programmingin an object-orientedlanguageinvolvescreating

objectsandsendingthemcommandsor messagesto do things.

Object-orientedprogramsare basedon four concepts:classes, objects, methods,

and inheritance. A "class" is similar to a Pascal RECORD. It describes an overall

structure for any numbero1'typesbased upon it. The main differencebetween a class

and a record is that a class combines data fields (called "instance variables") and

proceduresand functions(called"methods")that actupon the data.

An "object" is a variable of a class. All objects derived from a class are

consideredmembersof thatclassand sharesimilarcharacteristicsof thatclass.
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"Methods" are procedures and functions encapsulated in a class or object. Calling

a method is referred to as "passing a message to an object." Object-oriented programs do

most of their works by sending messages to objecls.

Object-oriented programming lends itself to modeling different parts of a

complex entity and the relationships among its parts. The objects can be defined and

developed separately to ensure privacy of data, reusability, and readability. This also

makes maintenance and debugging more manageable and systematic.

3.3 Programming Environment and Language

The implementation of the ATAMM Simulator requires a powerful software

environment. The Simulator is developed in the Microsoft Windows1 environment

because of its object oriented programming capabilities including message passing, a

non-preemptive operating system, and a vast library of graphics routines, especially the

windowing capabilities. Using Microsoft Windows, the classes of objects are defined as

separate windows (parent) and their subclasses as child windows. Every object, parent or

child, can display all of the relevant information in its own independent window which

allows the displays of different windows to be viewed at the same time. This provides an

analysis capability that would otherwise be lost if it were only possible to view one

display at a time.

The objects are defined and developed separately to ensure privacy of data,

reusability, and readability. This also makes maintenance and debugging more

manageable and systematic. The Simulator is written in the C programming language.

The main reasons are: 1) it provides good data structures, control flow primitives, and a

rich set of operators; 2) since C is a comparatively low level language having easy

1 Microsoft Windows is a trademark of Microsoft Corporation.
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access to Processors-levelinformation,it forms a good systemprogramminglanguage;

and 3) MicrosoftWindowslibraryroutinesare generatedin this language.

Other Microsoft Windows environment features include the capability to run

more thanone applicationin parallel,permittingthe user to run more than one instance

of the Simulatorat the same time,thereby providinga means to simulateand compare

two or more simulationssimultaneously.As another example, the Simulator and the

Analyzerprograms can be running concurrentlyallowingan easier transitionbetween

them.

3.4 Animation

Traditionalsimulatorsrequireusers to rememberand type a great deal to specify

the input/outputrequirements. This impedeslearningand retention,especiallyby casual

users. Utilizingthe vast graphicslibraryof the MicrosoftWindowsdevelopmentkit, the

Simulatorwas developedemphasizingrecognitionover recall: seeing and pointing over

remembering and typing. Therefore, menus are extensively used instead of on-line

commands. Most of the user-interactionis through dialogueboxes and mouse I/O in

windows so only slight use of the keyboardis required. Also, to interactwith the user

during the simulation process, an animated display of the play of the graph, the

movementof tokens, the statusof functionalunits, and the statusof the communication

channelare provided.

3.5 Objects and Their Relationships

The main logical componentsor objects of the Simulatorare, in part,a result of

the ATAMM. Since the ATAMM is a set of rules by which an algorithmgraph can be

mappedto an architecture, the three mainclasses of objects:Graph-Manager,Graph, and

Processorsnaturallyresult. Any system has some means of communicationamong its

components;so the fourth object, Network, evolved. For ADM compatibility the fifth
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object, PC, are added. In addition, there is a need to provide a management for

arbitrationamong these objects, thus Simulator-Kernelare introduced. Interconnection

among these entities is p(_rtrayedin Figure 3.2. Table 3.1 is a list and descriptionof

messagespassedamong theseobjects.

Simulator
Kernel PC

Figure 3.2. Relationships Among the Objects.
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M¢ss_tg¢ Action

WM_STP LoadanSTPfile.
WM_GRAYMENU Disablemenu.
WM_SHOWMENU Enablemenu.
WM_NEWCHILDS Createnewchildren.
WM_WRITEMSG Prompta message.
WM_RUNONELOOP Instructallchildrento RUN.
WM_UPDATE Updatethe graphstructure.
WM_RUN Performthetask.
WM_FIRE Firethe node andissuean "F"message.
WM_DATA An "F"broadcast.
WM_RESOURCE An "R" broadcast.
WM_WRITING An "D"broadcast.
WM_UPDATING Updatingthe graph.
WM_BROADCAST Broadcastthe graphstructure.
WM_RELEASE Releasethe channel.
WM_CHANNEL Channelis granted.
WM_GETCHANNEL Try to grabthe channel.
WM_REQUEST Requesta nodeto process.
WM_REREQUEST Request for a node, with possible higher

priority,to process.
WM_NODE1 AnenabledAMGnode found.
WM_NODE2 HighestpriorityenabledAMGnode found.
WM_SOURCE_REQUEST Requesta sourceto fire.
WM_SOURCE_REREQUEST Requestfor a source with higher priorityto

fire.
WM_SINK_REQUEST Requesta sinkto fire.
WM_SINK_REREQUEST Request for a sink with higher priority to

fire.
WM_SHOW_TOKENS Show current value of the tokens of the

edges.
WM_WAITING Wait untilotherFU'supdatetheirgraphs.
WM_REMOVE Removethe functionalunit.
WM_RESTORE Restorethefunctionalunit.
WM_INSERT_EDGE Inserta controledge.
WM_DELETE_EDGE Deletethe controledge.
WM_INCREASE_QUEUE Increasequeuesizethe edge.
WM_DECREASE_QUEUE Decreasequeuesize the edge.
WM_1553_REQUEST 1553Brequestsfor thechannel.

Table 3.1. A list and description of messages passed among the objects.
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3.6 Simulator-Kernel

The Simulator-Kernel provides, manages, and simulates the multitasking

environment where the functional units can operate without conflict. Hence, this object

is the operating system for the Simulator and thus the heart of this software. The

arbitration among different objects is enforced in a non-preemptive manner, where every

object is given enough time to accomplish its task. This is easily realized by employing

object-oriented programming methodology.

The Simulator-Kernel object passes control to a constituent object and by doing

so suspends itself. This gives the target object the full control over the system. Upon

completion of its task, the target object returns control back to the Simulator-Kernel.

Transfer of control is accomplished through the message passing capability of object-

oriented programming. This process continues for all objects, in an orderly fashion, until

simulation of the graph is complete.

The order in which the objects are invoked is as follows. First, the Processors

object, described in the following section, is invoked. It, in turn, passes control to its

constituents, functional units, in an orderly fashion. Second, the Network object is

invoked to carry out its communication task. The Network, described in Section 3.8, in

turn, passes control to its child objects. The Processors and the Network have the same

behavior as the Simulator-Kernel toward their constituents. Finally, the PC, described in

Section 3.11 is inw_ked to perform its task. The hierarchy of passing control to the

lowest level objects, children objects, is portrayed in Figure 3.3.
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Figure3.3. Hierarchyof Objects.

Thus far, the functionalityof the Simulator-Kernelfrom an internal information

viewpointwas described. However,anotherfunctionalaspectof this objectis its central

role with respectto user interactions. The Simulator-Kernelobjectand all otherobjects

that require user interactkm have their own independent windows through which

informationmay be passed and/or displayed. For these objects, the terms object and

windoware usedinterchangeably.
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For user interactions,the Simulator-Kernel'swindow provides a set of menus.

These menusare categorizedaccordingto their functionalities. The "File" menuallows

the user to save and retrieve a set-up file (STP), discussedin Section3.8.1, to open an

outputfile to store theevents of simulationof graphsfor furtherstudy, and to specifythe

mode of operation. The mode of operationcan be simplex,duplex, or triple modular

redundancy(TMR). The "FileType"menu lets the user select the typeof output file as

either FDT or ADM. The speed of the simulationcan be adjusted through a "Speed"

menu to slow, medium,or fast. The durationof simulationsof algorithmgraphscan be

specified by selecting the appropriateoption from the "Run" menu. These options

includethe numberof clock ticks, the numberof events, and the numberof data packets.

This windowas well as all otherwindowsof the Simulatorhave twooptionsin common.

"Pause"is provided to pause the simulationprocess at any time. Selectingthis option

againwill resumethe simulationprocess. The otheroptioncommonamongthe windows

is the "Help"option wherespecificguidancefor individualwindowsis provided.

Simulationof the graphmaybe triggeredby specifyingthe numberof clock ticks,

the numberof eventsreported,or the numberof data packets fed to the graph. In any

case, the Simulatorkeeps track of clock ticks, number of events, and number of data

packets in and out of the graph. It also reports the current statusof these activitiesfor

user'sinformationupon receiving(acquiring)controlof the system. Speedof simulation

may be adjusted to fast, medium,or slow at any time. This provisionis provided for

animationpurposeswherethe simulationof thegraphis carriedoutat the desiredpace.

Since this window is the heart of this software, existence of other windows

dependon its existence,i.e., closingthiswindowresultsin terminationof the Simulator.

3.7 Processors

The Processors object treats its child objects in the same manner as its parent

object, the Simulator-Kernel. The Processors is a set of three types of functional units.
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These are functional units that operate on the source of the graph (IFU), functional units

that operate on the sink of the graph (OFU), and up to twenty regular functional units

(FU) that perform the tasks represented by the AMG node of the graph. The IFU and

OFU are the corresponding computing elements of the ADM system, the 1553B. They

are special functional units that do not operate on the AMG nodes of the graph. Because

of ADM compatibility, the Processors is confined to one IFU and one OFU.

The Processors passes control to the functional units objects, in order, and by

doing so suspends itself. The order in which these objects are invoked is now described.

First, the IFU object is invoked to inject new data into the graph. The injection interval is

determined by the sources of the graph. Second, the OFU object is invoked to fetch the

graph output. Finally, the functional units, FU's, are called upon to carry out the

execution of the AMG nodes of the graph.

Through Processors' window, the number of functional units can be specified to

match a particular architecture. The number of functional units at the start of the

simulation of algorithm graphs is the maximum number of resources for the duration of

the simulation process. The number of available functional units of a system is crucial to

the operation of the Simulator. More specifically, in the case of functional unit failures,

reduction in the number of available resources may affect overall performance of the

system and possibly change the mode of operation. The mode of operation is constantly

monitored by the Graph-Manager object, Section 3.10. When the number of available

functional units drops to two, the mode of operation is adjusted so that the highest mode

possible is duplex. When there is only one active functional unit, the only possible mode

is simplex. Nevertheless, recovery of functional units and thus increasing the number of

available resources doesn't affect the mode of operation. The number of functional units,

however, for practical reasons is limited to twenty [8]. Also, through the Processor's

window, the time it takes a functional unit to conduct a self-test may be adjusted. Since
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the Processorsobject representsa homogenoussystem, the test time is identicalfor all

functionalunits.

To inform the user of the status of the system, contents of the availablequeue

(QUEUE),the working pool (WORK), the diagnosticspool (DIAG), and the recovery

pool (RECOV) of functional units are displayed at run time. The colors used to

distinguishQUEUE, WORK, DIAG, and RECOV are green, red, yellow, and white,

respectively. This status reporting is accomplishedby another child object of the

Processors'calledfunctionalunitsqueues(FUQS).

:_.7.1 F_mct|on_dUnits (FU's)

To carry out execution of an AMG node of any kind, upon availability, a

functional unit, of any type, has to communicate with the graph manager to find an

enabled node. To fire the AMG node, the functional unit has to grab the channel in order

to read the input to the node and to broadcast the updated graph, an "F" broadcast. To

grab the channel all functional units must compete. The channel is granted based on the

specified protocol of the defined architecture. Section 3.8 is a complete description of

communication network protocols. The hierarchy of flow of messages among functional

units, the Graph, and the Graph- Manager objects is portrayed in Figure 3.4.

To complete execution of an AMG node, the attached functional unit goes

through a sequence of states as depicted in Figure 3.5 [20]. These states define the

operating system characteristics of the ATAMM Multicomputer Operating System

(AMOS). The state diagram of functional units is described in the following Section.
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WM-RUN
WM-WAKEUP

Processors

WM-DATA WM-REQUEST
WM-FIRE WM-REREQUEST
WM-WAITING WM-BROADCAST
WM-REPORT WM-RELEASE
WM-RESOURCE WM-SOURCE-REQUEST

FUi WM-SINK-REQUE_

WM-SHOW-TOKENS WM-SOURCE-REQUEST

FUQS WM-INSERT-EDGE WM-SINK-REQUESTWM-INC-QUEUE-S_ZEWM-DATA
WM-DELETE-EDGE WM-FIRE
WM-DEC-QUEUE-SIZE
WM-SHOW-QUEUE-SIZE
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Figure 3.4. Hierarchyof Flowof MessagesThroughProcessorsObjects.
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Figure 3.5. State of a Functional Unit.

The current state of a functional unit, labeled and time tagged, along with other

information about the current state, such as the node number, and functional unit ID are

stored in an FDT file upon entering the state. This information can later be analyzed by

reconstructing the token movement within the CMG and the token movement within the

AMG, as well as functional unit activities by the Analyzer [18]. These operating system

states are also displayed in the window of each functional unit. Every functional unit
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reports its current status by coloring the appropriate rectangle representing the current

state red. If a functional unit is disabled, e.g., in the case of a self-test failure, its state

cannot be determined.

3.7.2 FU State Diagram Description

When idle, the functional unit continuously examines the queue of available

functionalunits (QUEUE), first to check if there are at least as many functionalunits in

the QUEUEas the MODE of the system andsecond, to check if it is one of them. When

it finds itself at the top of the QUEUE, it searches for an enabled AMG node based on

prioritiesassigned to the nodes. An enabled node is detectedby examining all inputand

outputedges of the node. This searchcontinuesuntil anenablednode is found. Having

an AMG node to execute, the functionalunitselects a colored-node,based on its position

in the QUEUE, to fire.

On Hold Read ( grabchannel)

To read inputs associated with the node, the functionalunit has to get hold of a

channel. The durationof this state depends on the traffic and communicationchannel

protocol.

Update and Read

After establishing a communication link, the functional unit conducts a second

search for enablement of nodes with higher priorities than the previously enabled nodes.

Selecting a node with the highest priority, the functional unit migrates from the QUEUE

to the pool of working functional units (WORK). It then broadcasts the updated graph.

This broadcast is called the "F" broadcast. After reading the node's input data, the

functional unit releases the communication channel. After reading every input,

depending on the MODE of operation, the functional unit may have to vote and select the
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proper input. Specifically,in TMR mode, the functionalunit votes on the three sets of

inputsandchoosesthe correctset for processing.

In the ADM system,sincethe inputsto the nodes are stored in the local memory

of the functionalunit, the functionalunit doesn't need to hold on to the communication

channel. The functional unit, therefore, releases the channel before reading the input

dataof the node.

In this state, the functionalunit executes the applicationprogram. To do so,

control is passed to the applicationprogram. Upon completionof the task, control is

passedbackto AMOS. The durationof thisstate is the sameas the executiontime of the

applicationprogram.

On Hol_lWrite( grabchannel)

To write the generatedoutputs, the functionalunit has to get the hold of a

channel. The durationof this state dependson the traffic and communicationchannel

protocol.

UpdateandWrite

After establishinga communicationlink, the functionalunit migrates from the

WORK queue to the diagnosticsqueue (DIAG). In this state the functionalunit writes

the output data to the proper locations. It then broadcaststhe updated graph. This

broadcastis termed the "D" broadcast. If an error were detected at the Read state, the

color of the node and ID of the functionalunit responsiblefor the error are broadcast.

The communicationchannelis thenreleased.

Test

In this state the functional unit performs a self-test. Upon completion, the

functionalunit requestsfor a channel.Durationof thisstatedependson the test routine.
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On Hold Update ( grabchannel )

To let the system know about its availability to undertake another task, the

functional unit needs to grab a channel.

After establishing a communication link, the functional unit migrates from the

diagnostics queue to the queue of available functional units, if the self-test were

successful. Otherwise, it removes itself from the diagnostics queue. It then broadcasts

the updated graph. This broadcast is called the "R" broadcast and releases the

communication channel.

The IFU and OFU are special functional units, and therefore only go through

some of the operating system states to accomplish their duties. Specifically, the IFU

goes through the Idle, On_Hold_Write, and Update and Write states, while the OFU goes

through the Idle, On_Hold_Read, and Update and Read states. The state diagrams of the

IFU and OFU are shown in Figures 3.6 and Figure 3.7, respectively.
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39



,L
E F UpdateIdle ---, On-Hold-Read---/ /

Read

I

Figure 3.7. States of an OFU.

3.8 Network

The Network object treats its child objects in the same manner as its parent

object, the Simulator-Kernel. Due to ADM compatibility, the Network is confined to

one communication channel corresponding to the PI bus of the ADM system. The

Network passes control to the channel and by doing so suspends itselL To grab the

channel all functional units must compete. The hierarchy of message flow among the

Network, the Channel, and functional units objects are portrayed in Figure 3.8. The

channel is granted based on the specified protocol of the defined architecture. These
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protocolsinclude priority and first-come,first-servestrategies. In the priorityprotocol,

the physical proximityof the functionalunits is the criterion for granting the channel.

The priority of the functionalunits is identifiedby their unique ID's. This protocol is

adopted by the ADM system. Since the IFU and OFU are closest to the PI bus

semaphore,they have the highestpriority. In the first-come,first-serveor first-in, first-

out (FIFO)protocol,the channelis grantedto the functionalunits basedon their request

time. The channelreportsits currentstatus,Idle or Busy,by coloringred the appropriate

rectangle representingthe current state red. The state diagram of the communication

channelis shownin Figure3.9.

To accomplishits task, the Networkstores all requests for the channeland then

based on the criteriaimposedby the specifiedcommunicationprotocolgrants a request.

These requestsare storedin the request-queueof the Network. To informthe userof the

statusof the Network,the content of the request-queueis displayedat run time. This is

accomplishedby anotherchildobjectof the Networkcalledchannelqueues(CHQS).

Through Network's window, such parameters as GrabTime, UpdateTime,

BroadcastTime, and WaitTime may be adjusted to reflect the desired network's

characteristics.For a definitionof thesevariablesrefer to thehelp filesprovidedwith the

Simulator.
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Figure 3.9. Communication Channel State Diagram.
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3.9 Graph

An algorithmmarkedgraph is the essentialand necessarypart of the ATAMM

modeland the Simulator. An algorithmmarkedgraphconsistsof a set of nodes,a set of

edges,a setof sources,anda setof sinks. The Graphobjectprovidesthe meansto create

and update algorithmgraphs, with the desiredcharacteristics,for simulationpurposes.

The ATAMMSimulator,as a research and designtool, is flexibleand powerfulenough

to simulatea graphat any markingstate. The Graphobjectprovidesthe necessarymeans

to initialize both data and control edges with the tokens so that the behavior of the

algorithmgraphs starting at certain marking states can be studied. While simulatinga

graph, the Graphobjectdisplaysmovementof tokenson the data andcontroledges. The

animateddisplayof the markingof graphsprovidesa meansto symbolicallyobservethe

play of the algorithmgraphon the specifiedsystem. Since the Simulatoris capableof

simulatingmultipleindependentgraphswhereeach graphmay havemultiplesourcesand

multiple sinks, the Graphobjectis designedaccordinglyso that multiple graphsmay be

created.Regardlessof the numberof graphs,the total numberof nodes is confinedto at

most twenty. As stated in chapter 2, this restrictionis due to practical reasons. The

numberof sourcesand sinks are at most ten, and numberof edges at most sixty. Since

the Simulatoris independentof grain size, thesenumbersare arbitrary.

Although the final product of this object, algorithmgraphs, are accessibleby

other objects, other objects cannot modify the algorithm graphs. Any run-time

modificationto the graphs,e.g., addinga control-edge,is performedby the Graphobject

upon receivingthe correspondingmessageswith the necessaryparameters. A numberof

messagespassedto the Graphobjectare listedin Figure3.4 andTable 3.1.

To create a graph, the Graph object'swindow providesa set of menus for user

interactions. Thesemenus are categorizedaccordingto their functionalities. The "File'_

menu allowsthe user to save andretrievea graph file (GPH).The GPH file is discussed
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in Section 3.12.1. To draw an element of the graph: source, node, sink, edge, or control-

edge, the corresponding item may be selected from the "Draw" menu. The "Edit" menu,

however, lets the user select, delete the selected element of the graph, and clear the entire

drawing. The "Update" menu provides the means to specify the timing parameters of the

nodes, sources, and sinks, the number of tokens on any edge, and the queue size of any

edge. The timing parameters include read-time, process-time, and write- time for the

nodes, write-time and injection-time for sources, and read-time for sinks.

Although the primary color used in drawing a graph is black, green is used to

identify the control-edges and red is used to indicate the selected element of the graph

that may be deleted.

To draw a graph, having selected the desired element from the "Draw" menu,

clicking the left-mouse button results in creation and display of that element of the graph

centered at that point. Nodes are represented by circles, sources and sinks by rectangles

with their names in them, and edges by segmented lines. The queue of an edge is

displayed as a square centered on the last segment of that edge with the initial size of one

displayed above the square. Also the initial token of that edge, zero, is displayed inside

of the square representing the queue. Each element of the graph has its unique ID.

When displaying a source, a node, or a sink, their ID is also displayed within their

representative shapes. Successive clicking of the left-mouse button results in creation and

display of that element with its consecutive ID number. The ID's of all elements start

with one.

The graphs created in this module are suitable to run in any mode. The data

structures of the graph are listed in Figure 3.10. These data structures are essentially the

same as the data structures used in the development of AMOS. However, some additional

parameters such as "location" and "TERM KIND" are added for drawing and simulation

use. The AMOS data structure is described in Appendix A.
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typedefstruct {
short ID,

NEXT,
enable_ctr,
busy_ctr,
done_ctr,
id[3],
input_summary[3],
output_summary[3];

long read_time,
process_time,
write_time,
test_time;

short inputs[3],
outputs[3];

RECT location;
} nodes_rec;

typedefstruct {
short ID,

NEXT,
KIND,
token,
segment,
edge_color,
items,
output_width,
next_input,
next_output,
terminal,
initial,
TERM_KIND,
INIT_KIND,
LINE_SEGMENTS;

POINTPTS[ MAX_SEGMENT] ;
RECT location[ MAX_SEGMENT- 1] ;
RECT q_location;
}edges_rec;

Figure 3.10. Data structures of the Graph object.

45



typedefstruct {
short ID,

NEXT,
enable_ctr,
busy_ctr,
done_ctr,
output_summary[3];

long write_time,
process_time,
inject_time;

short outputs[3] ;
RECT location;
} sources_rec;

typedefstruct {
short ID,

NEXT,
enable ctr,
busy_ctr,
done__ctr,
input_summary[3];

long read_time;
short inputs[3] ;
RECT location;
}sinks_rec;

Figure3.10. (continued)Datastructuresof the Graphobject.
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3.10 Graph-Manager

The graph manageris responsiblefor ensuringthat the overall system operates

accordingto the ATAMMrules. The Graph-Managerobject, representingthe graph

manager of the ATAMM, updates and monitors the status of the CMG. When a read

transitionof the algorithmgraphis enabled,the Graph-Managerassignsa functionalunit

from the queue of available functional units to perform the correspondingalgorithm

operationaccordingto priority if more than one nodeis enabled. The Graph-Manager

updates the marking of the CMG using status informationreported by the functional

units. Status information is reported to the Graph-Manager via passing messages. A

numberof these messagesare depicted in Figure 3.4 andTable 3.1. The mode of the

operation is constantly monitored by the Graph-Manager object. In the advent of

functionalunit failures,when the numberof availablefunctionalunits dropsto two, the

mode of operation is adjusted accordinglyso that the highest mode possible is duplex.

When there is only one active functional unit, the only possible mode is simplex.

Nevertheless,the recoveryof functionalunits and thusincreasingthe numberof available

resourcesdoesn'taffect themode of operation.

The graph manager constantly monitors the well-being and number of the

available functional units. When the number of active functional units changes, the

graph manageridentifies a new operatingpoint correspondingto the current numberof

availablefunctionalunits. System operationat the new operatingpoint is achieved by

adjustingthe injectiontime of the sourcesand by modificationof the AMG through the

additionor deletion of the controledges and increasingor decreasingthe queue size of

the edges. To accomplishthis task, a set of actual operating points are selected by

identifyingas many operatingpoints as the numberof availableresources. Each such

point specifiesthe systemtime performance,TBIO andTBO, for a particularnumberof

availableresources. The set of actualoperatingpointsselectedin this wayis compiledin

a controlfile (CTL),discussedin Section3.12.3.
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The graphmanagermayeitherbe centralizedor distributed,as stated in Chapter

2. The graph manager,in the ADM system,is distributedamong the functionalunits,

1750A's. In this simulationsoftware, the graph manager, representedby the Graph-

Managerobject,is logicallypartitionedfrom the computingelements,and therefore,can

be thoughtof either as part of the functionalunits, a distributedgraphmanager,or as a

centralizedentity.

Since the Graph-Managerdoesn't require user interactions, it doesn't have a

windowand is incorporatedin the Graphwindow.

3.11 PC

The PC object emergeddue to the need for ADM system compatibility. The

hierarchy of the flow of messages among Simulator-Kerneland the PC objects is

portrayedin Figure 3.11. The PC object representsthe front-end of the ADM system.

This objectsupplies the algorithmgraphwith inputsand stores the outputs of the graph

in an output file. The inputs are periodicallysupplied to the graph at the injection

intervals specified by the sources of the algorithmgraph. The outputs, however, are

periodicallystored at communicationintervals, where the communicationinterval is

assumedto be shorterthan the injectioninterval.

WM-RUN
WM-CHANNEL

Simulator
Kernel PC

Figure 3.11. Hierarchy of Flow of Messages Through PC Object.
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The PC object also is a means to contrM performance of the graph based on the

current number of active resources. To control performance of the graph, the status of

the functional units is constantly monitored. A change in the number of active resources

invokes a new performance operating point and the graph is modified appropriately by

adding or deleting control edges and/or increasing or decreasing queue sizes of the edges.

The appropriate actions are invoked from a control file (CTL), Section 3.12.3. This file,

however, must be first loaded prior to starting simuIation of the graph.

Injection of faults to the system is conducted via the PC object and through the

control-blocks. The self-test fault is simulated by directing a functional unit to fail

during the self-test. However, the failed functional unit is assumed to be able to detect

its own failure. As the result of this fault, the functional unit will not advance to the next

state. This, in effect, will result in removal of the functional unit from the system. Since

the maximum number of resources during the execution of algorithm graphs is a fixed

number, adding a functional unit to the system is possible only after removal of a

defective functional unit. Adding a functional unit to the system corresponds to the

replacement of a defective functional unit. To add a functional unit to the system, the

corresponding functional unit is directed to bypass the Test state and thus join the

working force of the system. The functional unit then accomplishes this task by inserting

itself in the queue of available resources, an "R" broadcast. The particular action taken

by a functional unit is conveyed by the CTL file.

The off-line user interface to the system may be turned on by choosing the

FAULT option of the PC's menu. When in off-line control mode, the communication

interval may be adjusted to meet the desired need.

~

3.12 Inputs and Outputs

The primary input to the Simulator is a marked graph, as illustrated in Figure 3.1.

The marked graph may either be developed through user interaction or loaded from an
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existing file via the Graph window. The Simulator, however, doesn't necessarily need

additional input files. It can run a graph (or multiple graphs), with user interactions and

without loading any files. Nevertheless, there are management files that can be loaded to

speed up user interactions. These files are identified by their extensions and are depicted

in Figure 3.12. These files contain information, as designed by the user, about systems

(STP), graphs (GPH), and injection control, control blocks, performance plane

characteristics, and fault tolerance schemes (CTL). These files and their formats are

discussed in the following sections.

CTL STP Draw/LoadGPH

Simulator

FDT STP GPH

Figure 3.12. Simulator Inputs and Outputs.

The Simulatorhas twomeansof output. The screen is the primary outputof the

Simulatorwhere an animatedplay of a graphis displayed,in real-time,via the Graph's

window. The animatedactivitiesof thesystemare portrayedvia the functionalunits' and

communication'swindows. The other means of output is a file, either in the FDT or
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ADM format, where the time-tagged status events generated by the functional units are

stored for further analysis by the Analyzer [18].

3,12,1 GPH File

The graph (GPH) files contain a list of information pertaining to the graphs

developed via the Graph object's window. Basic information conveyed in the GPH file

includes number of nodes, edges, sources, and sinks, their logical location in the Graph

object's window, and relationships among them. The information about the edges reveal

the ID and the type of entities that the edges link. Also, other parameters associated with

each edge are a color (for TMR use), type of edge, number of line segments that

constitute the edge, size of the queue of the edge, and number of tokens on that edge. The

information about the nodes, the sources, and the sinks include such timing parameters as

read, write, and process time. The graphs are created and stored in the TMR form. There

is a one-to-one correspondence between the graph structure in memory and the

information stored in the GPH file. This makes the loading of the graph into memory

faster. Every record of the GPH file consists of a descriptive name that identifies a

parameter followed by the value of that parameter. The format of the GPH file and its

records are described in the BNF2 notation and are presented in Figure 3.13. Figure A.1

is an example of an GPH file.

2Backus-Naur's Formula (BNF).
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Format: {<separator> <CR> {<string> <integer> <CR>}n}P

wheren is an integerandrepresentsnumberof nodes, sources,sinks, or edgesof

the graphfor a particularp, and p is an integerwith a value of four. The corresponding

valueof n for a particularvalue ofp is definedbelow.

p_. n

1 numberof nodes

2 numberof edges

3 numberof sources

4 numberof sinks

separator= a stringof length twenty. This stringis used to separatedifferent

entitiesof the graph.

string= a descriptivenameof up to tencharacters.

integer= an integervaluecorrespondingto thestringidentifier.

Figure 3.13. GPH file format using the BNF notations.
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9,12,2 STP FIle

The set up (STP) file containsthe key characteristicsof a system. Someof this

informationaddresses the mode of operation, while other parts reflect some of the

characteristicsof the Processors'andthe Network'sobjects.The parametersrelatedto the

Processors' object include the number of functional units and the test time of the

functionalunits. The parametersrelated to the Network'sobject consist of grab time,

broadcasttime, update time, wait time, and type of the communicationprotocol. The

format and an example of an STP file are presentedin Figure 3.14 and Figure A.2,

respectively.
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Format: {<string> <integer> <CR>}9

string= an identifierof up to ten characters.
integer = anintegervalue correspondingto the stringidentifier.

Identifier Value

MODE Mode of operation
1 -> Simplex
2 -> Duplex
3 -> TMR

NumofFUS Numberof functionalunits, 1 to 20.

Protocol Type of protocol employedby the Network
0 -> FIFO
1 -> Priority

GrabTime Minimumamountof time it takesto grab the channel semaphore.

BDCT Time Minimum amount of time it takes to broadcast the updated graph.

Test_Time The time it takes to complete a self test by a functional unit.

Updt_Time The time it takes to update the graph.

Walt_Time The time it takes to service an interrupt.

Figure 3.14. STP file format.
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_,12,3 CTL File

The control-blocks contain the necessary information to improve the performance

of an algorithm graph under limited availability of resources. The control-blocks of an

algorithm graph are stored in a control-blocks (CTL) file. The CTL file contains all the

necessary information about injection of inputs and faults and management of the graph

via control- edges and queue sizes of the edges.

This file contains three types of information, an injection table (T_TABLE) of up

to twenty entries, one entry per functional unit, a fault table (FAULT_TABLE), and a

control table (CTRL_TABLE) of up to twenty elements, one element per functional unit.

This information is collectively termed "control-blocks". The information conveyed by

the FAULT_TABLE includes functional unit ID, initial and terminal nodes of an edge,

and the type of actions to be taken. The actions include inserting or deleting of control-

edges between the initial and terminal nodes, increasing or decreasing the queue size of

an edge, identified by the initial and terminal nodes, fault injection, and recovery of the

functional units.

This file must be loaded in prior to starting the simulation process if changes in

the number of resources are expected. The format and an example of an CTL file are

presented in Figure 3.15 and Figure A.3, respectively.
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Format: {<IT> 20} <CR>} Injection Table.

{<D_P F1 F2 F3> <CR>} 10 Fault Table.

{<N> <CR>}

{{<Action Initial Terminal Size> <CR>}13}N ControlTable.

Where IT, D_P, F1, F2, F3, N, Action, Initial,Terminal, and Size are integers.

Identifier Description

I_T Injectionrateof new operatingpoint.

D_P Data Packetsfed into the graph.

F1 ID of FU to be killed duringself-test.

F2 ID of FU to be addedto the system.

F3 ID of FU to be removedfrom the system.

N Number of control blocks. This number must be same as

maximumnumberof FU'sat the startup.

Action Type of modificationto the graph
0 -> Stop.
2 -> Inserta controledge.
3 -> Delete the controledge.
4 -> Increasequeuesize of the edge.

5 -> Decreasequeuesize of the edge.

Initial ID of Initialnode.

Terminal ID of the terminalnode.

Size Desired size of the queue of the edge specified by Initial and

Terminal.

Figure 3.15. CTL file format.
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3.12.4FDT FII_

TheFDT fileisdesignedaroundtheAnalyzerandisdescribedindetailin[18].

Nevertheless,forconveniencethedescriptionandformatoftheFDT filesisrestated

here.

Evaluatingtheperformanceofa concurrentprocessingsystembasedon the

ATAMM requiresinformationconcerningthestateofeachprocessorandthealgorithm

with respectto time. The broadcastof eventsasa processorprogressesthroughthe states

of AMOS was discussedin Section2.7.2. By knowingthe graph structure,theseevents

imply information about the movement of tokens within the CMG. Therefore, by

recording these events along with the time of occurrence, processor and algorithm

activitycan be reconstructed.

The FDT (Fire,Data, Time) file containsa list of informationpertainingto each

AMOS broadcast, in order of occurrence, which provides a means of evaluating the

systemperformanceand graphexecution. Basicinformationin the FDTfile includesthe

time occurrenceof the event, name of the event, blocknumber,node color, FU ID, and

the currentmode (simplex,duplex,TMR)of thesystem.

The capabilityof evaluatingoverheadis made possibleby addinginformationto

each AMOSbroadcast. This informationis the time spentwaiting for a communication

channel and the time spent updating the graph structure for the broadcast.The update

time also includes the read and write time associatedwith processinga node when

attached to the respective "F" and "D" broadcasts. The format of the FDT file is

presentedin Figure 3.16.
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Format: {<T,Tlme,M,Mode,Event,N,Node,C,Color,Resource> <CR>}P

Where T, M, N, C, P, and Event are charactersandvariablesTime, Mode, Node,

Color, andResource have integervalues.

Identifier De_cripfl0n

Time Time of the event

Mode 1 -> Simplex

2 -> Duplex

3 -> TMR

Event Name of the event

Node AMG node number
E ON_HOLD_READING; channel wait for "F" broadcast
F READING; update for "F" broadcast
I PROCESSING; "F" broadcast
P ON_HOLD_WRITING; channel wait for "D" broadcast
S WRITING; update for "D" broadcast
O TESTING; "D" broadcast
T ONHOLD_RETURNING; channel wait for "R" broadcast
Q UPDATE_Q; update for "R" broadcast

R IDLE; "R" broadcast

Color Color of the AMG node
1 -> Red
2 -> Green
3 -> Blue

Resource ID number of FU processing the AMG node, ID of IFU processing

a source, or ID of OFU processing a sink

Figure 3.16. FDT file format.
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CHAPTER FOUR

CaseStudiesand ExperimentalResults

4.1 Introduction

In this chapter,casestudiesof fouralgorithmsare presentedas a demonstrationof

the application capabilities of the ATAMM Simulator in studying the behavior of

algorithm graphs under the ATAMM rules. These case studies are conducted and

presented in a manner that typicallywould take the user of the Simulatorthrough the

proceduralsteps for creating algorithmgraphs and evaluatingthe desired system. The

first algorithm is the space surveillancealgorithm. This algorithm is of particular

importancebecause it is to be run on the ADM system. The second algorithmis the

decomposedstateequationfor discretelinearsystems. This algorithmis chosenbecause

of its real world applicabilityand its recursivefeatures. The third algorithmconsists of

multiplegraphswith multiplesourcesand multiplesinks. This case study is considered

to demonstrateothercapabilitiesand featuresof the Simulatorbeyondthe ADM system.

The fourth algorithmis a chain that is currentlybeingimplementedon the ADM system.

Results of the simulationof this algorithmare to be compared with the results of the

ADMsystemto verifycompliancewith the ADMsystem.

A brief descriptionof the simulationprocedureusing the ATAMMSimulatoris

presentedin Section4.2. Section4.3 is a descriptionof the spacesurveillancealgorithm.L

Results of four case studies of that algorithmfor the ideal and non- ideal cases are also

presented in Section 4.3. The decomposedstate equation algorithm along with its

simulationresultsare discussedin Section4.4. The multiplegraphalgorithmalongwith

its simulationresultsare presentedin Section4.5. In Section4.6, the simulatedresultsof

a three-nodechain graphare comparedwith that of the ADMsystem. Finallyin Section
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4.7, effects of different ordering of nodes based on their priorities on the performance of

the algorithm graphs are demonstrated.

4.2 Setup Procedure

The first step in using the Simulatoris the creationof the algorithmgraph in the

Graph window. Once the algorithmgraph is created, the desired architecture can be

designed through the Processorsand Network windows. If the injection of faults is

desired,control-blocksare loaded via the PC window and the fault flag is raised. To

store the simulatedresults for further analysis, an output file must be openedvia the

Simulator-Kernelwindow. The type of outputfile, the modeof operation,and the speed

of the simulationprocesscan be specifiedvia the Simulator-Kernelwindow. Having all

of the parametersspecifiedand an outputfile opened,simulationof the algorithmgraph

is triggeredby specifyingthe durationof the simulationprocessvia the Simulator-Kernel

window. The speed of the simulationcan be adjusted to the desiredpace at any time.

Also, simulation of an algorithm graph may be paused from any window of the

Simulator. Nonetheless,the simulationprocessmay be halted only via the Simulator-

Kernel or the PC windows. Abnormalterminationof the simulationprocess,by closing

the Simulator-Kernelwindow,will resultin a lossof the outputfile.

The simulatedresultscan be further analyzedvia the Analyzer[18]. The desired

operating point and injection rate can be selected in order to obtain the maximum

throughputof the graph. Maximumthroughputof the graphis achievedwhen the graph

runs at steady state where TBIO and TBO are constant and TBO is minimal (TBOLB).

To arrive at the TBOLB,the systemis startedwith the valueof TBOLBpredictedby the

DesignTool [21]andthe valuesof TBO andTBIO are observedvia the Analyzer. Since

the Design Tool doesn't take all the parametersof a real systeminto consideration,the

simulatedTBOLBwill be slightlyhigher. Therefore,the injectionrate is increaseduntil

the steady stateis reachedandTBOLBis found.
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4.3 Space Surveillance Algorithm

The space surveillance algorithm graph, drawn in the Graph window, is depicted

in Figure 4.1. The nodes describe algorithm operationsand are labeled based on their

priorities. Signalswhich are transferredfrom one node to anotherare shown as directed

edges. The timing parametersof the source, sink, and nodes of this graph, consistent

with the ADM implementation,aredisplayedin Figure A. 1. However, for convenience

the timing parametersare restatedhere. The nodes have a read-time of zero units and a

write-timeof three units. The process-timeunits of the nodes are:

N0d_ Procqss-Time

1 60

2 310

3 70

4 1240

5 100

6 1050

The write-timeof the source is zero units and the read-timeof the sink is three units.

The injection-timeof the sourceis initiallyset to the predictedvalueof 1250units.

Parametersof the Processorsand Networkobjects, based on some preliminary

assumptions,are tailored to match the ADM system characteristics. These parameters

are displayedin Figure A.2. The communicationprotocol is based on the prioritiesof

the functionalunits. The test-timeof the functionalunitsis threeunits.

The Space SurveillanceAlgorithmgraphis studiedfor two special cases. First,

this graph is run under the ideal conditionsas describedin Section4.3.1. Second, the

graph is run under the physical constraints of the ADM system and for preselected

operatingpoints. This case is describedin Section4.3.2.
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Figure 4.1. Space Surveillance Algorithm.
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4.3.1 SP_C¢S_rv¢illance Algoril;hm,Ideal Case

This case study is primarily conducted for validating the results of the simulation

with the theoretical predictions. In this study of the Space Surveillance Algorithm, all of

the parameters of the system are set to zeros. All Network parameters: grab-time,

broadcast-time, wait-time, and test- time of functional units are zeroed. The read-time

and write- time of the nodes are assigned to their ideal value of zero. With the parameters

so specified, the only parameter that contributes to the final outcome of the graph is the

process- time of the nodes. The inputs are assumed to be continuously available at the

injection time so that the graph will not have to wait for input data and can run at the

maximum throughput.

The ideal case is simulated for a system with four identical functional units. The

functional units initially wake up in the Idle state, Figure 4.2. The current states of the

functional units are reflected in the functional-unit- queues (FUQS) window of the

Processor window as well as in the state diagram of every functional unit. The marking

of the graph after processing a few data packets are displayed in Figure 4.3. Figure 4.4 is

a display of the status of the functional units. While one of the functional units is idle,

two others are processing two nodes, and yet another functional unit is undergoing a self-

test. The current state of the communication channel is portrayed in Figure 4.5. The

functional units contending for the channel are shown in channel-queues (CHQS)

window of the Network window, Figure 4.5.
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Figure 4.2. Functional Units' Initial State.
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Figure 4.3. Markings of the Graph after a few Data
Packets.
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Figure4.4. FunctionalUnits'State aftera fewData
Packets.
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Figure 4.5. Channel's State after a few Data Packets.
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The Simulator-Kernelwindowis shownin Figure4.6 where the overallstatusof

the simulationprocessis continuouslyreported. Specifically,the mode of operation,the

number of clock ticks and events since the beginning of the simulation process, the

numberof data packetsfed to the graph, and the output file and type are reported. This

generalinformationaboutthe systemand the algorithmgraph providesufficientdatafor

monitoringthe statusof the simulationprocess. In the adventof any abnormalbehavior,

the state diagramof the functionalunits (Figures4.7 and 3.5), the state diagramof the

communicationchannel (Figures 4.8 and 3.9), and marking of the algorithm graph

provideadequatedetailsto pinpointthe problem. The mostcommonabnormalbehavior

is chiefly due to improperinitial markingof the graph,particularlythe initial markings

on the recursivepaths.

File File!ype Speed
Bun Pause Help

NODE= I
CLOCK= 0
EUENT = 0

PACKETS [H = 0
-) space.fdt

Figure 4.6. Simulator-Kernel.
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Figure4.9. SimulatedResults.
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Analysis of the simulationresults of this case study reveal that although the

predicted TBOLB is 1240 time units (process time of the largest node), the actual

TBOLBfor this graph is experimentallyfound to be 1247time units (Figure 4.9). The

simulatedTBOLBis less than0.5 percentmorethan the predictedvalue. The increasein

the TBOLBis due to the overheadimposedby the communicationchannel. Since this

ATAMM Simulator is intended for the real systems and in real systems the

communicationchannel is assumed to have a non- zero grab-time, every broadcast

requiresgrabbingthe channelandthuscontributesto the overhead. Specifically,the time

it takesa functionalunit to processa node andto go backto the idlestate is the process-

timeplus threebecauseof the three, "F", "D",and "R"broadcasts. Also,sincethe system

has only one communicationchannel,the contentionfor the channelhas contributedto

this overheadas well. Nevertheless,this overheadis not includedin the non-idealcases,

becausein simulatingreal systems,thechannelis assumedto havea non-zerograb-time.

4.3.2 SpaceSurveillanceAlgorithm,Non-IdealCases

In this case study, the Space Surveillance algorithm is simulated under the

physicalconstraintsof the ADM system. To comparethe simulatedresultswith that of

the theoreticalpredictions,twooperatingpointsfromthe performanceplane of this graph

[21], are chosen. For the operatingpointwith the numberof resourcesequal to four,the

nodes havea read-time of zerounits anda write-timeof threeunits. The process-timeof

the nodes is the same as the ideal case. The write-timeof the source is zero units and

read-timeof the sink is three units. The test-timeof the functionalunits is three units.

The theoretical prediction indicate that TBOLB is 1247 time units. The simulated

results, however,indicatethat, Figure 4.10, TBOLBis 1266 time units. The simulated

TBOLB is 1.4 percent more than the predicted value. This is primarily due to the

overheadinherentin the real system,specificallythe communicat!onlatencies. The other
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• factor that contributesto this overheadis the communicationchannelcontentionwhere

morethanone functionalunit contendfor the communicationchannel.

For the operatingpointwith the numberof resourcesequal to two, the algorithm

graph is modifiedto improveperformance. The modifiedalgorithmgraph is shownin

Figure 4.11 wherethe queue size of someedges is increasedand two controledges are

added. The controledges are added from node 3 to node 2 and from node 4 to node 3.

Analysis of the modifiedalgorithmgraph indicates that for the same injection-timeas

previous case, TBIO should increase. This arrangementcorrespondsto a horizontal

move in the performance-planeof this algorithm[1]. The simulatedresults, given in

Figure4.12, indicatea slightincreasein thevalue ofTBO at the steadystate.

Gracefuldegradationof operationof an algorithmgraph in real-time systemsis

modeled by the ATAMM model and is reflected in the performance-planeof the

algorithmgraph. As the numberof availableresourceschanges,newoperatingpointsare

selected and the injectionrate is adjusted and/or the graph is appropriatelymodified

(Section 3.10). The desired operating points and the required modificationsare pre-

selectedby the userandare conveyedby an CTLfile.

The above two cases are combined to show the graceful degradation of the

operationof an algorithmgraphin real- time. To showthe transitionof the operationof

the algorithmgraph from one operatingpoint, operating point equal to 4, to another,

operatingpointequal to 2, two of the functionalunits are removedfrom the systemafter

reaching the steady-state operation. The new injection rate and information about

modificationsof the graphare shownin FigureA.3. For thiscase study, the CTL file of

FigureA.3 must be loadedvia the PC windowand the FAULToption must be selected.

Asexpected,the simulatedresultsshownin Figure4.13 indicatethat the TBO andTBIO

at the steady-stateand for operatingpointsequalto 4 and 2 are the same as the previous

case studies. Figure4.14 showsthe reductionin the numberof resources. The modified

graphis the sameas in Figure4.11.
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Figure 4.10. Simulated Results.
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Figure 4.11. Space Surveillance Algorithm.

71



PACKET TBI TBO TBIO R ,._
1 7 2481 2474 2 iiiJiJ
2 1266 1587 2795 2 ii!iii

::::::
3 1266 1347 2876 2 !ii_ii
4 1266 1565 3175 2 iilii
5 1266 1347 3256 2 iiilii

:::=::

6 1266 1565 3555 2 iii!ii
7 1266 1347 3636 2 !!!!!iii!ili
8 1266 1565 3935 2 iliJll

:::::::

9 1266 1347 .016 2 iiiiiii
10 1294 1565 4287 2 !ililil
11 1565 1347 4069 2 iiiiiii
12 1347 1565 4287 2 iilliii

:::.*:;:

13 1565 1347 4069 2 iiiJiil
::=::::

14 1347 1565 4287 2 _EiiJili
15 1565 1347 4069 2 iiiiill

:::::z:
16 1347 1565 4287 2 _ii!_ii
17 1565 1347 4069 2 "_

Figure4.12. SimulatedResults.
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Figure 4.14. Simulated Results.
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4.4 Decomposed State Equation

Consider the problem of computing the output of a discrete linear system given a

sequence of inputs to the system. Let the system be described by the state equation

X(K + 1) = A X(K) + B U(K + 1),

and output equation

Y(K + 1) = C X(K + 1)

where X is a p-vector, U is an m-vector, and Y is a r-vector. The primitive operations are

defined as matrix multiplication and vector addition.

For the purpose of this case study, the state equation is decomposed so that the

node times are reduced and parallel execution of nodes is possible [11]. This

decomposition lowers the value of TBO, due to reduced node time, and thus increases

throughput. The decomposition of the state equation is performed as follows,

X2(K + 1) = A21 A22 X2 (K) + B2 ( U(K + 1) ),

and

1(Y(K+I)) =(C1, C2) X2(K+I) "

The AMG representing the decomposed state equation is drawn in the Graph

window of the ATAMM Simulator and is shown in Figure 4.15. The nodes and the

edges are labeled in accordance with the above two equations.
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Figure4.15. DecomposedStateEquation.

To compare the simulatedresults with that of the theoretical predictions, an

operatingpointequal to 8 from the performanceplane of this graph [21] is chosen. For

this operating point, the parameters are specified as shown in Figure 4.16. The

theoreticalpredictionindicatesthat theTBOLBis 1000timeunits. The simulatedresults

indicatethat, Figure4.17,TBOLBis 1158time units. The theoreticalpredictionsandthe

simulatedfindingsof all graphsare tabulatedandshownin Table4.1. As is indicatedin

Table 4.1, the overheadfor this graphis quite noticeable,about 15 percent. As stated

earlier, the amount of overheadalso dependson the contentionfor the communication

channel.Contentionfor the communicationchannel is a direct productof the numberof

parallelpaths in the graph as well as the numberof nodes that can concurrentlyfire. In
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other words, contention is directly proportional to the amounts of parallel and pipeline

concurrency (Section 2.2).

The study of the AMOS's state diagram reveals that the "R" broadcast accounts

for one third of total broadcasts and thus one third of communication overheads. To

study the contribution of different parameters to the overhead, the Decomposed State

Equation graph is simulated after eliminating the test-time of the functional units, as

shown in Table 4.1. As expected, the overhead is slightly reduced. The amount of

reduction, of course, is directly proportional to the value of test-time. This study is

carried on even further where by combining the "R" broadcast in the "D" broadcast and

eliminating the test-time, the Test state of the AMOS state diagram is bypassed. The

simulated results, tabulated in Table 4.1, signify over 30 percent increase in performance.

These results are indications of the amount of overhead contributed by the third

broadcast and continuous testing of the functional units. However, if it is not necessary

to test the functional units continuously, or if it is desired to test the functional units

every so often, the current state diagram of the AMOS needs to be modified to provide

the required flexibility.

A new modified state diagram for AMOS is proposed where the capability for

deciding to conduct a self test by the functional units is provided, Figure 4.18. With the

proposed state diagram, it is possible to completely isolate the overhead associated with

the Test state of AMOS or to test the functional units at the desired intervals. Thus, it is

now possible to manage the tradeoff between performance and fault tolerance.
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MODE1
NumofFUS 8
Protocol 1
Grab_Time 3
BDCT_Time 2
Test_Time 2
Updt_Time 2
Wait_Time 0

Node Pr0¢gss-Time Read-Time Write-Time
• 1 500 0 0
2 500 0 0
3 200 0 0
4 200 0 0
5 800 0 0
6 800 0 0
7 400 0 0
8 400 0 0
9 150 0 0
10 800 0 0
11 800 0 0
Source - - 0
Sink - 0 -

Figure4.16. STPfile and timingparametersfor theDecomposedStateEquation.
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Figure 4.17. Simulated Results.
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Percentage
Predicted Sim'ed Sim'ed Over-

Algorithm TBOLB TBQLB TBIO R head Comment

Space 1240 1247 2366 4 0.56 Ideal case.

Space 1247 1266 2404 4 1.52

Space 1439 1456 2913 2 1.18

StateEq. 1010 1158 1448 8 14.65

StateEq. 1010 1154 1451 8 14.25 test-time= 0.

StateEq. 1008 1102 1386 8 9.32 Bypassing the Test
stateof AMOS.

i I

Table 4.1. Predicted and simulated results of the case studies.
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Figure 4.18. Modified AMOS State Diagram.

4.5 Multiple Algorithm Graphs with Multiple Sources and Sinks

This case study is consideredto demonstrateother capabilities and featuresof the

Simulator beyond its ADM system compatibility. The ATAMM Simulatoris capable of

concurrentlysimulating multiple independentgraphs as well as graphs with multiple

sources andsinks. Since all sources,sinks, and nodes have priorities, the multiplegraphs

created in the Graph window are inherently prioritized. Therefore, when creating the

multiple graphs, the order in which the nodes are created and connected to each other

defines the prioritiesof the nodes and hence a priority relationshipamongthe graphs. In

80



graphs with multiple sources and/or sinks, the sources have independent injection rates.

The sources independently contribute to the overall performance of the graph. By

controlling the injection rate of the independent sources, it is possible to find the overall

TBOLB of the graph.

Two graphs are considered for this case study. The graphs are drawn in the

Graph window of the Simulator and are shown in Figure 4.19. The first graph has two

sources and two sinks. The second graph is a three-node chain with a single source and a

single sink. Since the source, sink, and nodes of the second graph have higher ID's than

the first graph, the first graph has higher priority than the second graph. The injection

rate of the sources of the first graph are 420 and 220 time units, respectively and the

injection rate of the second graph is 420 time units. The process-time of all nodes of

both graphs is 100 time units. The read-time and write- time of all nodes and sinks of

both graphs is 5 time units.

Analysis of the simulated results indicate that simultaneous simulation of both

graphs is faithfully carded out. The results also indicate that the individual graphs are

simulated in compliance with the ATAMM rules.
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Figure4.19. MultipleGraphswithMultipleSourcesand Sinks.

4.6 Chain Graph

An AMG consistingof a three node chain is currentlybeing implementedon the

ADM system. The graphis shownin Figure4.20. This graphis consideredfor this case

study and the results of the simulationof this graph will be comparedwith that of the

ADM system. Comparisonof the results demonstratesthe compliance of the ADM

system with the ATAMM model as represented by the Simulator taking all of the

parametersof the ADM systeminto account.
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Figure 4.20. Three Node Chain Graph.

Another aspect of this case study is the demonstration of some of the fault

tolerant features of the Simulator as well as the ADM system. Through this case study

injection of faults, changes in the operating points, and the use of the control blocks are

demonstrated.

The initial operating point chosen for this graph is equal to 3. For this operating

point, the parameters are specified as shown in Figure 4.213. The theoretical predictions

indicate that, for an operating-point equal to 3, the TBOLB is 2489 time units. The

simulated results indicate that, Figure 4.23, TBOLB is 2527 time units. However, the

experimental results of the ADM system indicate that TBOLB is 2761 time units. The

theoretical predictions, simulated findings, and experimeilt_,lresults of this graph for all

3 To compare the simulated results with the results of the ADM syste_-,a,the data attained
from the ADM system are normalized.
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operatingpointsare tabulatedand shownin Table4.2. The CTL file for this case study

is shown in Figure 4.22. As the CTL file indicates, the functionalunits 2 and 3 will

malfunctionwhen data packets7 and 15, respectively,are injected by the source. The

defective functional units will remove themselves from the system (Section 3.10)

immediatelyif they are in the Test state or upon entering the Test state. As seen in

Figure4.23the fault injectioncausedthefunctionalunits 2 and 3 to be removedfrom the

systemat thecompletionof datapackets4 and 12respectively.

A study of Table4.2 indicatesthat the simulatedTBOLBis about8 percentless

than the experimentalTBOLBachievedby the ADM systemfor an operating-pointequal

to 2. The discrepancybetweenthe simulatedand the experimentalresultsis due to two

reasons. First, the timing parametersassociatedwith the nodes and the system were

extractedfrom the resultsof the ADMsystemand averagesof the extractedvalueswere

used in the simulationprocess. Second,there is certain randomnessassociatedwith the

: communicationchannelprotocoladaptedin the currentversionof the ADMsystem.

The changesin the numberof resourcesfor this case study are shown in Figure

4.24 (the upperportionof this and the nextFiguresis that of the simulatedresultswhile

the bottomportion is thatof the ADMsystem). The simulatedandexperimentalresource

utilizationsare shownin Figure 4.25. The functionalunit activitiesare shown in Figure

4.26. As is evident in Figures 4.2414.25, and 4.26, the simulatedand experimental

resultsare highlycomparable. The consistencyin the simulatedandexperimentalresults

is an indication of the compliance of the ADM system with the ATAMM rules.
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MODE1
NumofFUS 3
Protocol 1
Grab_Time 4
BDCT_Time 3
Test_Time 60
Updt_Time 0
Wait_Time 0

No_lg Pr0cess-Time Re_d Time Write Time
1 1556 3 3
2 843 3 3
3 2480 3 3
Source - 3
Sink - 3

Figure 4.21. STP file and timing parameters for the Chain Algorithm.

85



00000000000000000000
7002
15003
0000
0000
0000
0000
0000
0000
0000
0000
3
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Figure4.22. TheCTLfilefortheCh_nGraph.
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000o
0000
0000
0000
0000
0000

_ 0000
0000

Figure 4.22. (continued) The CTL file for the Chain Graph.
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Figure 4.23. Simulated Results Corresponding to Output Data Packets.
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(Design Tool) (ADM)
Theoretical Predicted Simulated Experimental Operating- Point
TBOLB TBOLB TBOLB TBOLB R

2489 2489 2527 2761 3

2489 2489 2583 2764 2

2489 4903 5122 5338 1

Table 4.2. Results of the Chain Graph case study.
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Figure 4.24. Simulated and ADM Results.
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Figure 4.25. Simulated and ADM Results.
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Figure 4.26. Simulated and ADM Results.
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4.7 Experimental Results

Effects of different orderings of nodes based on their priorities on the

performance of the algorithm graphs are briefly discussed in Section 4.7.1. However, a

formalproof of thesefindingsrequiresan extensivestudyof all possiblecasesandthus is

beyond scope of this thesis.

4,7,1 Effectsof NodePriorityon Performance

A three-nodechain graphis consideredto show the effect of different ordersof

priorities of nodes of a graph on the performanceof that graph. For this study two

extremecases of orderingsof the nodes are considered. First, the nodes are orderedin

ascendingorder from the sourceto the sink with the lowest numberhaving the highest

priority. The read and writetime of the nodes,write time of the source,and read time of

the sink are 5 time units while process time of the nodes are 100 time units. For an

operating-pointequal to 1 and an injection-timeof zero, the simulatedTBO and TBIO

are 459 and 1189 time units, respectively. Second, the nodes are ordered in the

descendingorder from sourceto sink. The simulatedTBOand TBIO are 459 and 876

time units, respectively. Primary analysisof the simulatedresults indicate that for the

case where the nodes are in ascendingorder 1) it takeslonger to reach the steadystate,

Figure4.27 (the upperportionof this and nextFiguresis that of the ascendingordering

of the nodes), 2) TBIO is longer, because more data packets are fed into the graph

duringoneTBIO,Figure4.28, and 3) at steadystate,TBO is the sameas for descending

orderingsof the nodes. However,for an operating-pointequal to 2, the results are less

dramatic. For an operating-point equal to 3, the simulated TBO and TBIO are 232 and

804 time units, respectively,for both cases. Therefore,if there are as many functional

units as nodes in the graph, then different orderings of priority of the nodes do not
i

increasethe TBIO.
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Figure 4.27. Simulated Results.
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CHAPTER FIVE

Conclusion

5.1 Summary

The ATAMMmodel,a new Petri net basedmodeldevelopedby the researchers

at the Old DominionUniversity,provides the analyticalmeans to integrate algorithm

dataflowwith data- flowarchitecture.The ATAMMmodelprovidesa descriptionof the

data and control flow necessaryto specify the criteria for predictableexecutionof an

algorithmby a data flow architecture. The ATAMMmodelalso providesthe means to

investigatedifferentalgorithmdecompositionswithouthaving to considerthe hardware.

Once the intendedhardwareis selected,the modelcan be used to match the algorithm

requirementswith the hardwarecapabilityin orderto achieveoptimumperformance.

A simulation program was developedand is presentedin this thesis in order to

productively aid the user of an ATAMMbased distributed-processingsystem in the

evaluationand design process of a particular system to determine its optimum

performance. The software is referred to as the ATAMMSimulator. The Simulator

provides the means to permit an architecture-independentstudy of behavior,

performance,and reliabilityof a systemwithouthaving to build a hardwareprototype.

Resultsof executionof an algorithmby the Simulatorarecomparableto the resultsof the

ADM system. The Simulatoris able to assist with the developmentof ATAMMbased

architecturesand the investigationof theoriesconcerningthe ATAMMmodel. In order

to ease and facilitateuser interactions,this user-friendlysoftwarewas developedwithin a

window environment. Utilizing a window environmentpermits the Simulator to run

concurrently with other software applications(such as the Analyzer). The window

environmentalsopermitsoneto viewall of the Simulatordisplayssimultaneously.
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As a demonstrationof the applicationcapabilitiesof the ATAMMSimulator,case

studies were performed on four different algorithms. First the Space Surveillance

Algorithmwas consideredwhere for the ideal case, complianceof the simulatedresults

with the theoreticalpredictionswas verified. Second, the DecomposedState Equation

for discrete linearsystems was consideredto exhibit the effect of presenceof recursive

paths in the algorithmgraph. Third, multiplealgorithmgraphswith multiplesourcesand

sinks were considered to demonstrateother capabilitiesand features of the Simulator

beyond the ADM system. The last algorithmconsideredwas a three-nodechain graph.

Simulatedresultsof the three-nodechain graphwere shownto be comparableto that of

the ADMsystem.

The Simulator'scapabilityto incorporateattributesof a genericsystem was also

exhibited. These Simulator features are essential in order to productively study an

ATAMM-basedsystem. The Simulatorwas used to determinethe effects of overhead

associatedwith a real system on the performanceof the algorithmgraphs. Without the

Simulator,suchinvestigationof systemoverheadwouldbe difficult. The Simulatoralso

was used to determineperformanceof the Space SurveillanceAlgorithmand the three-

node chain graph in a degraded mode. For these two algorithms,injection of faults,

changes in the operating-points,and the use of the control blocks were demonstrated.

The results of these case studies were presentedthrougha set of ATAMMSimulator

windowdisplays. Finally, it was shown that the order of priorities of the nodes in an

algorithmgraphis very important. For lowTBIO,high priority nodesmust be closer to

the sink andlow prioritynodescloserto the source.
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5.2 Topics for Future Research

Current research is concentrated in extending the capabilities of the ATAMM

Multicomputer Operating System, and thus expanding the problem domain of ATAMM.

The enhanced AMOS is to be implemented in the Generic VHSIC Spaceborne Computer

(GVSC), a spaceborne, four-processor breadboard which is also based on the 1750A

instruction set architecture. In this regard, the ATAMM model is being generalized to

permit multiple concurrent instantiations of selected graph nodes. Also, the simultaneous

play of multiple graphs, each having a distinct source node and sink node, is being

developed. Three separate strategies for implementing multiple graphs are being

considered. These strategies are referred to as the parallel execution strategy, the time

multiplexing strategy, and the priority interrupt strategy. The different strategies are

selected to address classes of problems which arise in real- time applications. Efforts are

also being made to incorporate the features of fault-tolerance and branching in the

ATAMM model.

Future research could involve the inclusion of more classes of faults and better

fault detection and recovery strategies. Enhancements to ATAMM to include graphs

with multiple sources and sinks and graphs with variable node times should also be

investigated. The ATAMM model should also be enhanced to incorporate heterogeneous

architectures as well as systems with multiple communication channels. These

enhancements will thus require modifications to the ATAMM Simulator as well as other

tools developed around the ATAMM. In addition, any enhancements or modifications to

the ATAMM model will no doubt spawn other meaningful research topics for future

consideration.
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APPENDICES

A.1 Overview

The data structure of AMOS is tailored for the use of the Simulator development.

Section A.2 is a detailed description of this data structure. Some examples of the input

and output files of the Simulator are listed in Section A.3. Figure A.1 is an example of

an GPH file. Figure A.2 is an example of an STP file and Figure A.3 is an example of an

CTL file.

A.2 Description of Simulator Data Structure

The data structure of AMOS consists of two arrays, BLOCKS and EDGES, that

hold all of the information regardingnodes and edges of an algorithm graph. Also, there

is a table, PRIORITY, that holds information regarding order of precedence of nodes of

the algorithm graph. In addition, there are four queues, QUEUE, WORK, DIAG, and

RECOV, that hold information about current status of functional units. The QUEUE is

an FIFO queue of functional units, WORK is a pool of working functional units, DIAG

is diagnostics pool, and RECOV is a pool of functional units to be recovered by the

system. In this section a detailed descriptionof this data structure is presented.

Every functional unit, every 1750A, has an instance of AMOS. After every F, D,

and R command, the AMOS structure is updated by the 1750A and broadcast to all other

active 1750As. To make the broadcasting more manageable the variables BLOCKS,

EDGES, PRIORITY, QUEUE, and etc. are defined as arrays. Also these arrays are

assumed to reside in memory back to back so that broadcasting is accomplished by

simply copying a portion of memory of one 1750A to all other 1750As. Although these

variables are defined as arrays, they are treated as link lists, i.e., the link list is
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implemented using array indices. The link list structure reflects the dynamic structure

inherent in this architecture model.

FIRING is a global variable that holds the ID of the block being fired. It is used

to ensure that all of the colored-nodes of the block are fired before firing the next block.

A block is a node of AMG. In TMR mode, it is a set of three colored-nodes, red, green,

and blue and in SIMPLEX mode a set of only one node. Its primary use is in TMR

mode. If there is no block being fired, then it is set to zero. MODE, a global variable,

indicates the mode of operation and is initially set by the user to SIMPLEX, 1, or TMR,

3. In TMR mode, when the number of functional units drops to less than three, AMOS

will change the value of MODE to SIMPLEX to reflect the decrease in the number of

functioning resources. BLOCKS is an array of N elements with components BLOCKS[ j

], the range of j is from 0 to N, where N represents the number of nodes in the AMG

graph. EDGES is an array of M elements with components EDGES[ k ], the range of k

is from 0 to M, where M represents total number of edges in the AMG graph. QUEUE,

WORK, DIAG, and RECOV are arrays of size equal to the maximum number of

available functional units at the start up. These arrays are described in the following

paragraphs.

BLOCKS

BLOCKS[j] is an element of the array BLOCKS and holds all information about

a block. BLOCKS[j] consists of nine variables. FUNCTION_ID is an integer

representing the task ID or a pointer pointing to the application program. ID is a three

element array which holds ID of functional units assigned to the colored-nodes of the

block. It is used to keep track of functional units for future recovery purposes.

BUSY_CTR is a counter that holds the number of functional units working on the block.

It is incremented after every F-transition command and decremented after every D-

transition command. DONE_CTR is a counter that holds the number of functional units
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releasedfrom the block. It is used to check if a block can be enabled. It is set to zero

when the blockis enabledand is incrementedby every D-transition.ENABLE_CTRis a

counter that holds the numberof enabledcolored-nodesthat have not yet fired. When

the block is firable the ENABLE_CTRis set to the MODE of operation. It is

decrementedafter every colored-nodeof a block is fired (F-transition). INPUTSis an

arrayof pointershavingcomponentsINPUTS[i],the rangeof i is from 0 to 2. INPUTS[i]

is the header pointer pointing to a link list of input (incomingdata) edges to the ith

colored-node. OUTPUTSis an arrayof pointershavingcomponentsOUTPUTS[i],the

range of i is from 0 to 2. OUTPUTS[i]is the headerpointer pointing to a link list of

output (outgoing data) edges originating from the ith colored-node. (It implicitly

representsall backwardcontroledgesfrom all successornodes to this node.) FigureA.4

is a pictorial representationof these two link lists. IN_SUMMARYis an array of

integers with components INSUMMARY[i], the range of i is from 0 to 2.

IN_SUMMARY[i]is a summaryof INPUTS[i]. It is an integerhavinga valueequal to

the number of input edges of the ith colored-nodewhen all have data and is zero

otherwise. OUT_SUMMARY is an array of integers with components

OUT_SUMMARY[i],the range of i is from 0 to 2. OUT_SUMMARY[i]is a summary

of OUTPUTS[i]. It is an integer having value equal to the number of outgoingedges

originatingfrom the ith colored-nodewhenall are emptyand is zero otherwise. A block

is enabledunder the followingconditions:

1.DONE_CTR= MODE,

2. All IN_SUMMARY[i]s,i = 0..2, are non-zero,and

3. All OUT_SUMMARY[i]s,i = 0..2, are non-zero.

EDGES

EDGES[k]is an elementof the array EDGESand holds all informationabout an

edge. EDGES[k]consistsof elevenvariables. EDGEQUEUE is a circular link list that
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holds addresses of the memory locations where the data are stored. The addresses are

accessible to the INITIAL and TERMINAL blocks to write and read data, respectively.

For future recovery purposes the length of the queue, L, is one more than the

SEGMENTS or, number of Dummy nodes plus two. Structure of each element of the

EDGE_QUEUE consists of three elements; a) LABEL is a pointer to the beginning of

the data container, b) ID holds the ID of the functional unit which wrote the data into that

data container, and c) NEXT is a pointer to the next element of the EDGEQUEUE.

SEGMENTS is an integer equal to the number of dummy nodes on the edge plus one. It

is used to check capacity of the EDGE_QUEUE of the edge. If SEGMENTS is equal to

ITEMS, then EDGE_QUEUE is full and no more data can be written into it. ITEMS is a

counter indicating the number of data items on the edge. The range of ITEMS is from

zero to SEGMENTS. It is incremented, by the INITIAL node, every time new data are

written on the edge. It is decremented, by the TERMINAL node, every time

OUTPUT_WIDTH becomes zero. INITIAL holds the block number of the origin of the

edge. It is used to update the graph and can also be used to check the integrity of the

graph. TERMINAL holds the block number of the destination of the edge. It is used to

update the graph. EDGE_COLOR indicates the color of the INITIAL node of the edge.

It is also used to update the graph. The value of color is identified as 1 for red, 2 for

green, and 3 for blue. OUTPUT_WIDTH, a counter, is set to MODE when its present

value is zero and ITEMS is non-zero. It is decremented by one for each F-transition of

the TERMINAL block. TERMINAL_PTR is a pointer to the element of the

EDGEQUEUE where the TERMINAL node reads data. It is updated every time

OUTPUT_WIDTH becomes zero. Updating TERMINAL_PTR means that it should be

pointing to the next element of the EDGE_QUEUE. Updating is performed by the

TERMINAL node. INITIAL_PTR is a pointer to the element of the EDGE_QUEUE

where the INITIAL node writes data. It is updated every time an output is written to the

edge. Updating INITIAL_PTR means that it should be pointing to the next element of
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the EDGE_QUEUE. Updating is performed by the INITIAL node. NEXT_INPUT is a

pointer to the next edge which is an input edge to the TERMINAL block.

NEXT_OUTPUT is a pointer to the next edge which is an output edge of the INITIAL

block. NEXT_INPUT and NEXT_OUTPUT are used to examine all of the input and

output edges of a block, respectively.

OUEUE

Each element of the QUEUE is a record of three components ID, COLOR, and

NEXT. ID holds ID of an available functional unit. COLOR is a variable containing the

color of the colored-node of the enabled block that the functional unit will process.

COLOR carries valuable information only when it belongs to one of the top MODE

elements of the QUEUE. The COLOR value is assigned according to the position of the

functional unit in the top of the QUEUE; first red, second green, and third blue. NEXT

holds the index of the next element of the QUEUE. It is used to treat this array as a link

list. If NEXT is zero, thenthere are no more elements in the list. The first element of

this array is used as dummy head node of the link list and to keep track of content of the

array, more specifically, COLOR field of the first element holds the number of

functional units in the array.

WORK, DIAG. RECOV

WORK, DIAG, and RECOV have the same structure as QUEUE but are treated

differently. QUEUE is a FIFO queue while WORK, DIAG, and RECOV are pools of

functional units. WORK is a pool holding ID of all of the working functional units.

DIAG is a pool holding ID of all of the in-test functional units. RECOV is also a pool of

functional units but it holds ID of the resources to be recovered by the system.
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PRIORITY

It is an array holding block numbers. The positionin the array determinesthe

block'spriority. The blockat the firstelementis theblockwith the highestpriorityin the

graph.
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A.3 Figures

..Simulator.Version.2.0..
NODES 6
INDEX 1
ID 1
NEXT 0
ENB_CTR 0
BSY CTR 0
DON_CTR 0
READ_TIME0
PROS_TIME60
WRTE_TIME3
INPUTS 52545
OUTPUTS 10 30 50
LOCATION 125 143 165 183
INDEX 2
ID 2
NEXT 0
ENB CTR 0
BSY_CTR 0
DON_CTR 0
READ_TIME 0
PROSTIME 310
WRTE_TIME 3
INPUTS 1 21 41
OUTPUTS 2 22 42
LOCATION 120 292 160 332
INDEX 3
ID 3
NEXT 0
ENB CTR 0
BSY CTR 0
DON_CTR 0
READTIME 0
PROSTIME 7O
WRTE TIME 3
INPUTS 6 26 46
OUTPUTS 9 29 49
LOCATION 228 222 268 262
INDEX 4
ID 4
NEXT 0
ENB_CTR 0
BSY_CTR 0
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DONSTR 0
READ_TIME 0
PROS_TIME 1240
WRTE_TIME 3
INPUTS 7 27 47
OUTPUTS 8 28 48
LOCATION 337 143 377 183
INDEX 5
ID 5
NEXT 0
ENB_CTR 0
BSY_CTR 0
DON_CTR 0
READ_TIME 0
PROS_TIME 100
WRTE_TIME 3
INPUTS 2 22 42
OUTPUTS 3 23 43
LOCATION 326 302 366 342
INDEX 6
ID 6
NEXT 0
ENB CTR 0
BSY_CTR 0 i
DON_CTR 0
READ_TIME 0
PROS_TIME 1050
WRTE_TIME 3
INPUTS 103050
OUTPUTS 4 24 44
LOCATION 422 234 462 274
,o.°o**°oooe.o°ooool

EDGES 30
INDEX 1
ID 1
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 2
INITIAL 1
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TERM_KIND 1
INIT_KIND 0
LINE_SEG 1
POINTS 88 233 120 312
LOCATION 88 233 120 312
Q_LOC 94 262 114 282
INDEX 2
ID 2
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 5
INITIAL 2
TERM_KIND 1
INIT_KIND1
LINE_SEG 1
POINTS 160 312 326 322
LOCATION 160 312 326 322
Q_LOC 233 307 253 327
INDEX 3
ID 3
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 6
INITIAL 5
TERM_KIND I
INIT_KIND 1
LINE_SEG 1
POINTS 366 322 422 254
LOCATION 366 254 422 322
Q_LOC 384 278 404 298
INDEX 4
ID 4
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NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN- 0
NEXT_OUT 0
TERMINAL 1
INITIAL 6
TERM_KIND 3
INIT_KIND 1
LINE_SEG 1
POINTS 462 254 523 259
LOCATION 462 254 523 259

Q_LOC 482 246 502 266
INDEX 5
ID 5
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 1
TERMINAL 1
INITIAL 1
TERM_KIND 1
INIT_KIND 0
LINE_SEG 1
POINTS 88 233 125 163
LOCATION 88 163 125 233

Q_LOC 96 188 116 208
INDEX 6
ID 6
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1

EDG_COLOR l
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
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NEXT_OUT 0
TERMINAL 3
INITIAL 1
TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 165 163 228 242
LOCATION 165 163 228 242

Q__LOC 186 192 206 212
INDEX 7
ID 7
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0

OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 6
TERMINAL 4
INITIAL 1
TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 165 163 337 163
LOCATION 165 163 337 163
Q_LOC 241 153 261 173
INDEX 8
ID 8
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1

EDG_COLOR 1
ITEMS 0

OUT_WIDTH 0
NEXT_IN 3
NEXT_OUT 0
TERMINAL 6
INITIAL 4
TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 377 163 422 254
LOCATION 377 163 422 254
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Q LOC 389 198 4119218
INDEX 9
ID 9
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1

EDG_COLOR 1
ITEMS 0
OUT_WIDTH ()
NEXT_IN 8
NEXT_OUT 0
TERMINAL 6
INITIAL 3
TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 268 242 422 254
LOCATION 268 242 422 254
Q_LOC 335 238 355 258
INDEX 10
ID 10
NEXT 0
KIND 0
TOKEN 0
SEGMENT 2
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN 9
NEXT_OUT 7
TERMINAL 6
INITIAL 1

TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 165 163 422 254
LOCATION 165 163 422 254

Q LOC 283 198 303 218
INDEX 21
ID 21
NEXT 0
KI ND 0
TOKEN 0
SEGMENT 1

EDG_C()LOR 2
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ITEMS 0

OUT_WIDTH 0
NEXT_IN 0
NEXT OUT 0
TERMINAL 2
INITIAL 1

TERM_KIND l
INIT_KIND 0
LINE_SEG 1
POINTS 0000
LOCATION 0 0 0 0
Q_LOC 0 0 0 0
INDEX 22
ID 22
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT IN 0
NEXT OUT 0
TERMINAL 5
INITIAL :2
TERM_KIND I
INIT KIND 1
LINE SEG l
POINTS 0000
LOCATION 0000

Q LOC 0 0 0 0
INDEX 23
ID 23
NEXT (1
KIND 0
TOKEN 0
SEGMENT 1

EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT OUT 0
TERM1NAL 6
INITIAL 5
TERMKIND 1
IN1T KIND 1
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LINE_SEG 1
POINTS 0000
LOCATION 0 0 0 0
Q__LOC 0000
INDEX 24
ID 24
NEXT 0
KIND 0

p

TOKEN 0
SEGMENT 1

EDG COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 1
INITIAL 6

TERM_KIND 3
INIT KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0 0 0 0
Q LOC 0 0 0 0
INDEX 25
ID 25
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0

OUTWIDTH 0
NEXT_IN 0
NEXT_OUT 21
TERMINAL 1
INITIAL 1

TERM_KIND 1
INIT_KIND 0
LINE_SEG 1
POINTS 0000
LOCATION 0 0 0 0

Q_LOC 0 0 0 0
INDEX 26
ID 26
NEXT 0
KIND 0
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T()KEN ()
SEGMENT I
EDG_C()L()R 2
ITEMS ()

()UT_WIDTI I ()
NEXT_IN ()
NEXT_()UT ()
TERMINAL 3
INITIAL i
TERM_KIND I
INIT_KIND 1
LINE_SEG I
P()iNTS 0()00
L()CATI()N () () 0 ()
Q_L()C () () 0 ()
INDEX 27
ID 27
NEXT 0
KIND ()
TOKEN ()
SEGMENT I
EDG_C()L()R 2
ITEMS 0
()UT W1DTII 0

NEXT_IN ()
NEXT_()UT 26
TERMINAL 4
INITIAL I
TERM_KIND I
INIT KIND I
LINE_SEG 1
POINTS ()00()
L()CATI()N () 0 () 0

Q_L()C 0 ()()()
INDEX 28
ID 28
NEXT 0
KIND 0
T()KEN 0
SEGMENT I
EDG_C()IJ)R 2
ITEMS (1

()UT WIDTH 0
NEXT1N 23
NEXT_()UT ()
TERMINAL 6
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INITIAL 4

TERM_KIND I
INIT_KIND I
L1NE_SEG i
POINTS 0{)()()
L{)CATI()N {)() ()1)

Q_LOC 000()
INDEX 29
ID 29
NEXT {)
KIND 0
T()KEN 0
SEGMENT I

EDG_C()LOR 2
I'FEMS (}
()UT_WIDTH 0
NEXT_IN 28
NEXT_()UT 0
TERMINAL 6
INITIAL 3
TERM KIND 1
INIT_KIND 1
LINE_SEG I
POINTS 00(10
L()CATI()N {I1)(1{)
Q_L()C () 0 (1{1
INDEX 30
ID 30
NEXT 0
KIND 0
T()KEN 0
SEGMENT 2

EDG_C()LOR 2
ITEMS ()

OUT_WIDTH ()
NEXT_IN 29
NEXT_()UT 27
TERMINAL 6
INITIAL I
TERM_KIND I

INIT_KIND I
LINE_SEG I
P()INTS 1)1}{}1)
L()CATI{)N 0 () {}{)

Q_L()C (}()()()
INDEX 41
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1D 41
NEXT 0
KIND 0
TOKEN (}
SEGMENT I
EDG_C()L()R 3
ITEMS 0

OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 2
INrTIAL 1

TERMKIND 1
INIT_KIND 0
LINE_SEG 1 ,,
P()INTS 0000
L()CATI()N () 0 0 ()
Q I.()C 0 0 0 ()
INDEX 42
ID 42
NEXT ()
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_ OUT 0
TERMINAL 5
INITIAL 2

TERMKIND 1
INIT_KIND I
LINE_SEG I
P()INTS 01) 011
L()CATION () () 0 ()
Q L()C ()()() ()
INDEX 43
ID 43
NEXT ()
KIND ()
T()KEN ()
SEGMENT I
EDG_C( )L()R 3
ITEMS 0

OUT_WIDT1 ! ()
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NEXT_IN ()
NEXT_OUT 0
TERMINAL 6
INITIAL 5

TERM_KIND 1
INIT_KIND I
LINE_SEG I
POINTS 0000
LOCATION 0 0 0 0
Q_LOC 0 0 0 0
INDEX 44
ID 44
NEXT 0
KIND 0
TOKEN 0

/ SEGMENT 1

EDG_COLOR 3
ITEMS 0

OUT_WIDTH ()
NEXT_IN 0
NEXT OUT 0
TERMINAL 1
INITIAL 6
TERM_KIND 3
INIT KIND 1
LINE SEG I
POINTS 0000
LOCATION 0000
Q_LOC 0 0 0 0
INDEX 45
ID 45
NEXT 0
KIND 0
TOKEN (I
SEGMENT 1

EDG_COLOR 3
ITEMS 0

OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 4 l
TERMINAL 1
INITIAL 1
TERM_KIND !
INIT_KIND ()
LINE_SEG I
POINTS 000()



L()CATION (I (I (1(I

Q_L()C 0 0 0 I)
INDEX 46
ID 46
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1

EDG_COLOR 3
ITEMS 0

OUT_WIDTH ()
NEXT_IN 0
NEXT_OUT 0
TERMINAL 3
INITIAL 1

TERM_KIND 1
INIT KIND 1
LINE_SEG 1
POINTS 00()0
L()CAT[ON 0 0 () (1
Q_L()C 0 0 0 0
INDEX 47
ID 47
NEXT 0
KIND 0
TOKEN 0
SEGMENT I

EDG_COLOR 3
ITEMS 0
OUT_WIDTH ()
NEXT_IN 0
NEXT_OUT 46
TERMINAL 4
INITIAL 1
TERM_KIND 1
INIT_KIND 1
LINE_SEG I
POINTS 0000
LOCATION 0 0 ()()
Q_L()C 0 0 0 ()
INDEX 48
ID 48
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
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EDG_COLOR 3
ITEMS 0
()UT_WIDTH 0
NEXT_IN 43
NEXT_OUT 0
TERMINAL 6
INITIAL 4
TERMKIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000

Q_LOC 0000
INDEX 49
ID 49
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1

EDG_COLOR 3
ITEMS 0
OUT_WIDTH ()
NEXT_IN 48
NEXT_OUT 0
TERMINAL 6
INITIAL 3
TERM_KIND 1
INIT_KIND 1
LINE_SEG I
POINTS 0000
LOCATION 0 0 0 0

Q__LOC 0000
INDEX 50
ID 50
NEXT 0
KIND 0
TOKEN 0
SEGMENT 2

EDG_COL()R 3
ITEMS o
OUT WIDTH 0
NEXT_IN 49
NEXT_OUT 47
TERMINAL 6
INITIAL I

TERM_KIND I
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INIT_KIND 1
LINE,SEG 1
PO1NTS 0000
LOCATION 0 0 0 ()
Q_LOC 0 0 0 ()
..,°,,.H,,..°..°***

SOURCES I
INDEX 1
ID 1
NEXT 0

ENB_CTR 0
BSY_CTR 0
DON_CTR 0
WRTE_TIME 3
PROS_TIME 0
INJT_TIME 1265
OUTPUTS 5 25 45
LOCATION 8 223 88 243
...°°....°,,°,°..°°,

SINKS 1
INDEX 1
ID I
NEXT 0

ENB_CTR 0
BSY_CTR 0
DON CTR 0
READTIME 0
INPUTS 42444
LOCATION 523 249 583 269

Figure A.I. GPIt file, Space Surveillance Algorithm.

MODE 1
NumofFUS 4
Protocol I
Grab_Time 1
BDCT_Timc 1
Test_Time 3
Updt_Time 0
Wail Time ()

Figure A.2. STP file, an example.
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12651265126512650000000000000000
1000
2000
3000
4000
5000
6000
7002
8003
9000
10000
4
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2431
2321
4122
4462
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
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oooo
00o0
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Figure A.3. The CTL file for the Space Surveillance Algorithm.
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Null Null
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Blocks[4]=E

_ Inputs[O]

.....Outputs[O]....

Figure A.4. A Piclorial Represenlation of inpuls and Outputs Link Lists.
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