N A SA —CR=]59, €04

NASA Contractor Report 189604
NASA-CR-189604
19920016025

SIMULATOR FOR CONCURRENT PROCESSING
DATA FLOW ARCHITECTURES

Mahyar R. Malekpour, John W. Stoughton,
and Roland R. Mielke

OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
Norfolk, Virginia

Grant NCC1-136
March 1992

National Aeronautics and
Space Administratipn

Langley Research Center
Hampton, Virginia 23665-5225

PREFACE
This report contains essentially the thesis written by Mahyar R. Malekpour
entitled "Simulator for Concurrent Processing Data Flow Architectures” in fulfillment of
the Masters Degree at Old Dominion University. The use of brand names in this report is

for completeness and does not imply NASA cndorsement.

TABLE OF CONTENTS

Page
LIST OF TABLES ... ettt ettt sttt s sivessssanaesstassessnasssnnassanns vi
LIST OF FIGURES........... reeeereeeeteee e e te e et eyt e e b e e et e b e e bt e e bt e s b e s e b b e e R e e e e b e e rtsesanesebes . Vil
LIST OF SYMBOLS........... ettt et e et e e ta e bae s beesrbesbtessanesssnessaassrsesnsesresssas X
Chapter
1. INEPOAUCIION . .cceiiiteeeeeiee ettt tee sttt e e st ae e s s s saraaeeessssssaeaassssnnnas 1
Lol OVEIVICW ciiiiiiiiiiiieeieeeeeesec e esitee e st s svaeeesnaeessaene s vveeees 1
1.2 ReSCarch ObJECHVE covviiviiiiicciieie ettt e e enar e 3
1.3 Organizationccccvvveeeeeeeeeeecineereeeeeennns rerrerereeeeeeeeereaaaaaaaraas el
2. Background.......ccccoeoiiieeiiniiieiinieeeecneeeeeire e rereeeeeeraeeeeeneneas revereeeennned
2.1 Introductionccceecveeevvernnnennne, vreeeenes rreereennraeeeeennns reeeeeene vreeeennd
2.2 ATAMM Model............... Feeereeesteeree st e s bae st e b b e ssnte e b asensessraessnans 5
2.3 ADM SYSICML..ucurrrerercirinreriiiierecnreieainees vesveneanes verrsrenseeserenennens 13
2.4 AMOS DeSCriplion ..eeeeeeeverceeenienneesieeereeeseensneens rrererrrereenreeenne 16
2.5 Fault Injection, Detection and COITCCtON..eeuvviveecveeeiiireeerireeeeiienn 19
3. Simulator DevelopPmChL.. ..ottt ee e 22
31 INOTUCHON ettt ae e s e e e s e e sar e s 22
3.2 Object-oricnted Programming. ... eerreniennieeeneenneeeseesiseeennes 23
3.3 Programming Environment and Languageveeveeivvvevvnceeiieeeeeninns 25
3.4 Animation......cveernreerneeenneeens rreereens creveeeas ceeeeereeeenaes crreeeeennns 20
3.5 Objects and Their RelationShips....cooveernnniieeeniiieeeeieeeeenns 26
3.6 SIMUlator-Kernelooooiiiviiiiniiiiiiiiiieieienneeccnneeessneenns 29
3.7 PrOCESSOTS ouviiiiiiiiiiiiiiieiiicitte ettt sereeesiraseesraneens RURPRRRNG 3 |
3.7.1 Functional Units (FU'S) c.c..eeivviiiiiiiiiiiiiiniiiccnniennnneens 33

iii

3.7.2 FU State Diagram DesCription...cccueeeeenveerniveneeiensnineennns 36

3.8 NCIWOTK.coeteiiiienienitintinierit e etestessreesressreesiessteessessseessaesasesnsensen 40

3.9 Graph.....cccovvveevvvrennnneen. e 43

3.10 Graph-Manager.....cccceeeveerrrrreierseessenssueroeessiessisesssseesssessssesssasens 47

BUIT PGttt ettt sre et e s et e a et b e b 48

3.12 Inputs and OULPULS ..ecvueereeieeiierrerrierieeeeeenreeessressreesrneessrnesananns 49

3.12.1 GPH FIIC .ottt e saeesaeens 51

3.12.2 STP FIle auiiiiiiiiiiiiiiiiicciientecreeseeceeeeeeeeeseesseesone 53

3.12.3 CTL FilCu.uuuiiiiiiiiiiiiieiiiniiecitecteceteesnessse s sveessvaesnes 55

3.12.4 FDT FilC....coiiiiiiiiiiiiiicieniestcceeetecrce et saneseaens 57

4. Case Studies and Experimental RCSUILS......ovvveeieieeeeciiee e ceeevee e 59

4.1 INIrOAUCHION v.evvveeeerieerteeireeieeereeeeteeesteenraessreesrnesssaesraesssnsasasasnses 59

4.2 Setup Procedure.......ccovueeivveeecieeiniiireenireensieeeeereeesessaeeessseesesssnennns 60

4.3 Space Surveillance AlgOrithm......cccceevvveirennieiicreenienrrerneeesrennne 61

4.3.1 Space Surveillance Algorithm, Idcal Casecvveeveneeee. 63

4.3.2 Space Survcillance Algorithm, Non-Ideal Cases.............. 69

4.4 Decomposed State EQUation.......ovecvvererreeneeneenieenenssenesnaesiesssenns 74

4.5 Multiple Algorithm Graphs with Multiple Sources and Sinks......... 80

4.6 Chain Graph.....coccieeiinieeeieceeseenrreeeeereeeeeeee e s ereessseesseesnsenns 82

4.7 Experimental RESUILS ..ccc.oiiivvirivinieenienienienieeiresieeseeeeessnesneesnes 93

4.7.1 Effects of Nodc Priority on Performance.......c.cccoevverennne. ..93

5. CONCIUSTON ..utiiiiiieiiieriinreerreecreceteeeeeseeessbeesabe s aeeesbeesaseesssaessseasesseasssaeans 96

5.1 Summary ... 96

5.2 Topics for Future ReSCarchccccvvveerrieiiieeiennnniieerenenieieeereenannns 98

REFERENCES ...ttt seesne e ee s sree s sraessnessnessmaesssessns 99
APPENDICESciiiiitiiiiiiiiieiitieesesieeteetcete et ssse st eesaeesae s bessbnsssaassaesns 101
AL OVEIVIEW . eiiiiiiieiiiiiiniiireniieeesieeseieeeesitessseessssssessssnesssssesessssseasssssssassnns 101

iv

A.2 Description of Simulator Data STUCIUICovvevvevieeeeeeeeeeeeeceeeeeeeeeee 101

A3 FIZUIES (oiiiiiiiieteceees ettt e aeeesasessaesssanessaeeanaes 107

LIST OF TABLES

TABLE PAGE
Table 3.1. A list and description of messages passed among the objects. ... 28
Table 4.1. Predicted and simulated results of the case SIUAICS.veveerereereereereereeresrevoas, 79
Table 4.2. Results of the Chain Graph case SWAY.o.vveeievieeereneereeeeeeeeeereseeeeseeeeeonns 89

Vi

LIST OF FIGURES

FIGURES PAGE
Figure 2.1. Partial Marked Graph...........o.oueeieeeeeeeeeeeeeeeeeeeeeeeoeeeeoeeo, reeerenes 6

Figure 2.2. ATAMM Model COMPONCALS.voveieceiveeeeeeeeeee oo w1

Figure 2.3, EXampIC AMG.....coiriireiiiereeiceeee et eeeee e e eses e, 8

Figure 2.4. NMG Description Computing ACVilY......cvverveevevvevneonn, et 9

Figure 2.5, EXample CMG. ..ot ee e 11
Figure 2.6, Layout 0f ADM SYSICIM c...ovviviveneeeeeeeeeeee oo 16
Figure 2.7. AMOS State DIa@Iam. c.c....oovveieeeeeeeeeeeeeeeeee e 17
Figure 2.8. Simplex to TMR Transformation.e.eeveeeeeee e 21
Figure 3.1. Flow of Information Among the Softwares Developed for ATAMM. ... 23
Figure 3.2. Relationships AMong the OBJCCS....vvveevreereeeeeeeeeeoeoeeoeoeeoeooo 27
Figure 3.3, Hierarchy 0f OBJCCLS. .oueuiuiuiririiiiiceee oo 30
Figure 3.4. Hicrarchy of Flow of Messages Through Processors Objects.34
Figure 3.5, Statc of @ Functional Unit.ooeevieieeeeeeeeeeeeeee e, 35
Figure 3.6, States 0f an TRU. oo e 39
Figure 3.7, States o an OF UL ..o e 40
Figure 3.8. Hicrarchy of Flow of Messages Through Network Objecteeeniiiiniieenen, 42
Figure 3.9. Communication Channel State DIaram......coveeeeeevereeeeeeeeoeeoeeeoeoeoeeos 42
Figure 3.10. Data structures of the Graph OBJCCL wveveeeeeeereeereeeeeeeee oo, 45
Figure 3.11. Hicrarchy of Flow of Messages Through PC Object...vuneeeeieverersrernnnn. 48
Figure 3.12. Simulator Tnputs and OUIPULS. ...c.veeeivieeeeeeeeee oo e, 50
Figure 3.13. GPH file format using the BNF NOGHONS. c.ev.veveveeeeererereeseereeoeeeoos 52
Figure 3.14. STP I1E TOMMAL. c..cecuieieiriieieiiteecteceeee e ee e e e 54

vii

Fiéure 3.15. CTL fIle fOrmat.cciiiiiiiiiiiiiiiiiiiciic e cesaaree s 56
Figure 3.16. FDT e fOrMal.ccoiiiiiiiiiiiiiiiiiiiiiiiieenenecniiiicteeecee s s sssssnsnsnnneesessons 58
Figure 4.1. Space Surveillance Algorithm. e 62
Figure 4.2. Functional Unit's Initial SLalC. ...oooviiiviiiiiniiiiniiiiiiiccieenee e 64
Figure 4.3. Markings of Graph after a few Data Packets. .ooooiviiiiniiiieeeeinnninienennns 64
Figure 4.4. Functional units' State after a few Data Packets....ooovnieeeeneee. PPN 65
Figurc 4.5. Channel's State after a few Data Packets. e SRR ¢ 1o
Figure 4.6. Simulator-Kernel co.coiiiniiniiniiiiiiienicnicceiienieeneeen. creeenreennnn. 00
Figure 4.7. State Diagram of Functional Units. c..ocoeovveeiieiiieiineiniecnireeeee e 67
Figure 4.8. State Diagram of COMMUATCATON CHANNCL. weveeeeoeereeee oo 67
Figure 4.9. Simulated RESUILS. .oviriiiiiiereetccecte et esee s ..68
Figure 4.10. Simulated RESUIS...ciiiiiiiiiiiiierecieccinrcsieceses s siveee e e e 11
Figure 4.11. Space Surveillance Algorithm.......cccooeieennne. ceeerees ceeeeerreeearaeeesrenenns 71
Figure 4.12. Simulated Results.....oiiviniiniinnniininns e 72
Figure 4.13. Simulated RESUIS....coiiiiiiiiiirreccreercree et reeeeersetrraenessarans 72
Figure 4.14. SImulated RESUIS.....iiiiiiiieer ettt cesrecssrerecssreeeesenneeens R K
Figure 4.15. Decomposed State Equation.........veeenee. ceerere e vrresssssererasessnsnnasnesee 1D
Figure 4.16. STP file and timing parameters for the Decomposed State

EQUALTON. ceiiiieieiieeeee ettt ettt sta e s re e s saa e s e e s aaa e sbaaaas vreeeeneann 77
Figure 4.17. Simulated ReESUIS. ..ottt 78
Figure 4.18. Maodificd AMOS State Diagram.ccccveiiveiiiiiiiniiiniineeneceeeeeseeeeeeivinnnens 80
Figure 4.19. Multiple Graphs with Multiple Sources and Sinks.......ccccveevevveeeenne. veeenen.82
Figure 4.20. Three Node Chain Graph. ..o rceecscrcee e 83
Figure 4.21. STP file and timing parameters for the Chain Algorithm.....ocevveeienineennns 85
Figure 4.22. The CTL file for the Chain Graph.oociiiiiniicinireeerccenreeeen e 86
Figure 4.23. Simulated Results Corresponding to Output Data Packets.oooeevnnenen.. 83
Figure 4.24. Simulated and ADM Results. ..., e e SOORRRRRN

viii

Figure 4.25. Simulated and ADM RCSUILS.oovvivireeeeeeeeeeeeeeeeeeeeeeeeeeee e eesee e 91

Figure 4.26. Simulatcd and ADM RESUILS.ovovviriieirieeeeeeeereeeeeeeeeeeseesseeeseeseessssenes 92
Figure 4.27. Simulated RESUNS.....ovieiiieeietciceee e 94
Figure 4.28. Graph Play in One TBIO....c.cooviieriieriieieier ettt eeeeeeese e e esesenons 95
Figurc A.1. GPH file, Space Surveillance Alorithm. ..ove.eeeeeevveeeeeeereeeren, — 121
Figure A.2. STP file, an CXAMPIC. cuovrvireiieieeeeietccceeceeeeee et ev e es e 121
Figure A.3. The CTL file for the Space Surveillance Algorithm.ceevvevevevverreannn. 123
Figure A.4. A Pictorial Representation of Inputs and Qutputs Link Lists. vvvvveennn..... 124

LIST OF SYMBOLS

SYMBOL DESCRIPTION

ADM Advanced Development M()dcll

AMG Algorithm Marked Graph

AMOS ATAMM Multicomputer Operating System
ATAMM Algorithm to Architecture Mapping Model
G ith circuit in the CMG

CMG Computational Marked Graph

DP Data processed

DR Data rcad

E FDT file event: waiting for the channel in order to read
F FDT file event: reading

FDT Fire Data Time

FU Functional Unit

I FDT file event: processing

IBM International Business Machines

ID Identification

IE Input bulfer empty

IF Input bulTer full

1/0 Input/Output

M(C;) Number of tokens in C;

N Number of nodes in the AMG

NMG Node Marked Graph

0 FDT file cvent: testing

OE Output buffer empty

OF Output buffer full

P FDT file event: waiting for the channel in order to write

P; ' ith path between source and sink in AMG

PR Process ready

Q FDT file event: returning FU ID (o the resource qucue

R FDT file event: idle

S FDT file cvent: writing

T EDT file event: waiting for the channel in order to return the FU
ID to the resource queue; or a time interval »

Tl Time interval for one stay in the idle state of AMOS

T2 Time interval for one stay in the examine state of AMOS

T3 Time interval of the execute state of AMOS

T4 Time interval of the test statc of AMOS

TS Time interval of the update state of AMOS

TB Broadcast time

TBI Time Between Inputs

TBIO Time Between Input and Output (Graph Latency)

TBIOL B Lower bound limit of TBIO

TBO Time Between Qutputs

TBOLB Lower bound limit of TBO

TBOpmin Minimum TBO due to overhead requirements

TCE Total Computing Effort

T(C;) Sum of transition times in Cj

Te Evaluation time interval

TE Time to exccute the algorithm operation belonging to the critical

node

xi

TG
Simplex
Duplex

TMR
T(P))

Channel grab time

A single copy of a graph

Two copies of a graph

Triple Modular Redundancy, three copics of a graph
Sum of transitions times in P;

Set up file extension

Control file extension

Graph file extension

Fire, data, time file ¢xtension

Xii

CHAPTER ONE

Introduction

1.1 Overview

As the usce of computers affects increasingly broader segments of the world, many
of the problems to which people apply computers grow continually larger and more
complex. Demands for faster and larger computer systems increase steadily and outpace
the recent advances in technology. Computer architects have followed two general
approaches in response to this demand. The first uses exotic technology in a fairly
conventional serial computer architecture. The second approach exploits the parallelism
inherent in many problems. The parallel approach requires a system with multiple
processors working concurrently on the same algorithm. Due to inherent concurrency in
applications such as real-time signal processing and control systems, a special model is
necded to describe the system behavior and predict its performance for real-time
application.

Strategics for control of computations on multicomputer architectures can be
classificd broadly as control-flow, demand driven, and data-driven {1]. In control flow
computers, explicit flows of control causc the execution of instructions. In demand-
driven architectures, the execution of operations are triggered by the requirements for
outputs. In data-driven architectures (also known as data-flow computers), the
availability of operands triggers the exccution of operations.

The data-flow concept has already attracted the attention of many rescarchers [2].
A number of decentralized data-flow architectures have been developed, motivated
mainly by the desire to improve performance through the use of concurrency [3].

However, only a few rescarchers have tried to develop a theoretical model for evaluating

computation in a data-driven architecture [4], [5]). These models do not appear to be
adequate in addressing the complex issues of repeated execution of algorithms. There is
a need for a simple, but effective, model for real-time, data-driven computations in order
to investigate the relative merits of different algorithm decompositions and
implementation strategics in a hardware independent context. Ongoing research‘ efforts
at Old Dominion University have Icad to the development of a new marked graph model
for describing data and control flow associated with the execution of algorithms in real-
time data flow architectures [6], [7]. The model is identificd by the acronym ATAMM
which stands for Algorithm To Architecture Mapping Model [8], [1]. The model was
designed by Stoughton and Mielke in conjunction with NASA Langley Research Center,
in order to describe the control, communication, and scheduling issues not included in
other models [8]. The architecture is assumed to be a homogeneous multicomputer data
flow architecture consisting of two to‘twenty identical computers or functional units each
having a capability for processing, communication, and memory. The algorithms are
assumed to be decision free and require large computations, i.e., large-grained, which
include such computations as matrix addition, multiplication, etc.. The granularify level
of the algorithm decomposition is set high to keep the relative communication overhead
small.

The Algorithm to Architecture Mapping Model (ATAMM) is a new Petri net
based model capable of describing the execution of large-grained algorithms on data-
flow architecturcs. In the data-flow model of computation, operations proceed ‘on the
availability of data rather than the action of a program counter as in the von Neuman
model of computers. Large- grained means that the time required to execute data by an
algorithm opcration is much greater than the time to transfer data between the operations.

The ATAMM model provides a description of the data and control flow
necessary to specily the criteria for predictable execution of an algorithm by a data-flow

architecture. The ATAMM model also provides the means to investigate different

algorithm decompositions without having to consider the hardware. Once the intended
hardware is sclected, the model can be used to match the algorithm requirements with the

hardware capability in order to achieve optimum performance.

1.2 Research Objective

The objective of this rescarch is to develop a software simulator capable of
simulating cxecution of a graph on a given systcm under the ATAMM rules. The
purpose of the simulator is to empower a study of behavior, performance, and reliability
of a multicomputer data flow system without having to build a hardware prototype. ' This
simulator is able to assist with the development of ATAMM-based architectures and the
investigation of theories concerning the ATAMM model. The simulator is to be user-
fricndly and flexible to permit examining diffcrent attributes of a generic system.
Evaluation of the simulator is conducted through several case studies.

The simulator provides the means to identify an architecture by specifying
different parameters of the system in order to evaluate the periodic execution of an
algorithm on a given hardware. Architecture parameters include such variables as graph-
node execution time, communication latency, and memory read-write latencies. The
simulator is capable of detecting and recovering from faults, and also provides the means
to obtain performance measurements. The performance measurements indicate the graph
latency, throughput, concurrency, and resource utilization attained by the system. Results
of exccution of an algorithm by the simulator arc comparable to the results of the ADM
system. 1In order to easc and facilitate user interactions, this user-friendly software is

developed within a window environment.

1.3 Organization
A brief description of the ATAMM model and related performance issues are

presented in Chapter Two. The ATAMM model and its application is presented in

Section 2.2. Section 2.3 is a bricf introduction of the Advanced Development Model
(ADM) system. In Section 2.4, the ATAMM Multicomputer Operating System (AMOS)
for the ADM system is presented as an example implementation of ATAMM. The major
components of the AMOS are identified and AMOS operation is explained using a state
diagram description and an overhead model associated with AMOS operation is
considered. Also, an approach that extends ATAMM to the modcling of a fault tolerant
system is presented in Scction 2.5. Different classes of faults and fault tolerance
strategies in AMOS and the ADM system are discussed.

The development of software for design and simulation of an ATAMM based
system is presented in Chapter Three. Section 3.2 is a brief introduction of object-
oricnted methodology. A brief description of system requircments, the programming
environment and the language used in the development of the ATAMM Simulator is
presented in Section 3.3. Objects and relationships among them are introduced in
Section 3.5. The Simulator-Kernel, Processors, Network, Graph, Graph-Manager, and
PC objects are discussed in Sections 3.6 through 3.11, respectively. Inputs and outputs
of the simulator and the format of the input and output files are discussed in Section 3.12.

Experimental results are described in Chapter Four and provide a demonstration
of the software developed in Chapter Three. Real algorithms are chosen for case studies
to prove the practical applicability of the ATAMM Simulator. The last algorithm
considered for the case studics is a three-node chain graph. The simulated results of this
graph are compared with that of the ADM system and are presented in Section 4.6.
Finally, somc observations and experimental findings are addressed in Section 4.7.

A summary and topics for future research are stated in Chapter Five.

CHAPTER TWO
Background

2.1 Introduction

The purpose of the ATAMM Simulator is to model the behavior of
multicomputer architectures based on the ATAMM model. The ATAMM model for
describing the data and control flow associated with a certain class of algorithms and
distributed-processing systems is presented in this chapter. A brief description of the
ATAMM model and its application is presented in Section 2.2. Section 2.3 is a brief
introduction of the Advanced Development Model (ADM) system. The ADM is an
example of an ATAMM implementation on the VHSIC hardware. In Section 2.4, the
major components of the ATAMM Multicomputer Operating System (AMOS) are
identified and AMOS operation is explained using a state diagram description. Different
classes of faults and fault tolerance strategics in AMOS and the ADM system are

discussed in Section 2.5.

2.2 ATAMM Model

Multicomputers are increasingly being used for real-time applications such as
aerospace or nuclear power plants [9]. In a typical rcal-time system, a number of sensors
provide input data to a computer which then analyzes the input data by some predefined
algorithms. This information is uscd to send output signals to actuators or displays. A
few characteristics required of such computers are repeated cxecution of the same
algorithm, highly predictable and reliable perf ormance, and hard deadlines for outputs.

The ATAMM model is based on a special class of timed Petri nets. Petri nets are
a tool for the study of systems with discrete cvents. A Petri net is a special kind of

directed graph capable of describing data and control flow of a system [10]. Petri nets

serve as both a graphical and mathematical tool. The reader is expected to be familiar
with Petri net theory so a detailed discussion pertaining to the topic will not be provided.
The reader unfamiliar with Petri nets may refer to [10] for a discussion of Petri net
theory.

An important subclass of Petri net is the marked graph. In a marked graph every
edge is an input to only one transition and an output of exactly one transition. In other
words, each edge has exactly one input and one output. This restriction eliminates the
possible conflict of having onc place as input to more than one transition. Marked graphs
can be used to modecl the processing of decision-free algorithms [5]. An example of a

marked graph is presented in Figure 2.1. Circles represent nodes (transitions) and line
transition

token

place

r

transition cnabled

. /
for firing e

Figure 2.1. Partial Marked Graph.
segments represent edges (places). Tokens representing the availability of signals or data
arc indicated by black dots on the edges. A node is "enabled” for "firing" by the presence
of tokens on all of its input edges. The node "fires" by encumbering all input tokens,
delaying for some time interval, and depositing one token on each output edge.
The ATAMM model provides the analytical means to integrate the algorithm data

flow with the data flow architecture [11]. The ATAMM model consists of three Petri net

marked graphs which incorporate general specifications of communicﬁtion and
processing associated with each computational cvent in a data flow architecture. The
algorithm marked graph (AMG), the node marked graph (NMG), and the computational
marked graph (CMG) constitute the three main components of the ATAMM model. A

flow diagram portraying the ATAMM modcling intcgration is presented in Figure 2.2.

Algorithm Compuling

Environment

Algorithm
Directed
Graph

Node
Marked
Graph

Algorithm
Marked

Computational

Marked
Graph

Figure 2.2. ATAMM Model Components.

Given an algorithm decomposition, the primitive operations and their data
dependencies are described by the algorithm marked graph (AMG). While the nddes
(circles) represent diffcrent tasks, the edges (line segments) represent data dependence as
well as data containers. Tokens are used to indicatc; the presence of data on the edges.
Squares are uscd to indicate sources and sinks of algorithm marked graphs. An example

AMG is provided in Figure 2.3.

/

— - L A~
Si "“’(1 (3)_ {z)—’ So

Figure 2.3. Example AMG.

It is desirable to analyze the performance of a particular algorithm graph without
actually running it on any hardwarc. It is also important to be able to develop control
parameters to ensure the orderly computation of the tasks. These problems are resolved
in the graph theoretic context by the Node Marked Graph (NMG). The NMG is also a
marked graph. Given some computing cnvironment assumptions, the NMG specifies the
functional unit activities which must occur in order to exccute a primitive operation
represented by an AMG node. One assumption is that the computing environment will
contain global memory for storage of data associated with ecach AMG edge. The global

memory may be centralized or distributed among the functional units [11]. Each

- functional unit contains local memory for the storage of data and the code to execute any
primitive operation of the AMG. A functional unit must read data from global memory
into its local data container, process the data, and write the data back to global memory
for access by other functional units. To cnsure safety of data, a functional unit is not able
to start processing a task until output data for that operation has been consumed. This is
implemented by introduction of backward control edges in an AMG from the successor

to the predecessor node. An NMG describing these activities is displayed in Figure 2.4. -

OE

PR

Figure 2.4. NMG Description Computing Activity.

A token at the labeled edges indicates the following:

IF Input Buffer Full

IE Input Buffer Empty
OF Output Buffer Full
OE Output Buffer Empty
DR Data Read

DP Data Processed

PR Process Ready

The NMG of Figure 2.4 is a detailed specification of not only the activities to be
performed by a functional unit but also the conditions which "enable" those operations.
The rcad node is "enabled” when it is rcady, input is available, and the output has been
read by the successor operation. To "fire" the node, a functional unit is assumed to be
available to undertake these activities. The functional unit assigned to the read transition
will not be available until after completion of processing the AMG node and writing the
data. This is indicated by appearance of tokens on the output edges of the AMG node.

The two modeling steps of ATAMM discussed sd far have specified data flow
with the AMG, and the functional unit activitics and control flow required of each AMG
node. The CMG is a marked graph which incorporates the AMG and NMG
specifications into one graph. Thus, the CMG displays the data and control flow
necessary to implement a decomposed algorithm on a multiprocessor data flow
architecture [11]. The CMG is constructed from the AMG by replacing every transition
by the corresponding NMG. The source and sink of the AMG are represented the same
way in the CMG. AMG edges are replaced by cdge pairs, a forward directed edge for
data flow and a backward directed edge for control flow. The resulting CMG is shown in
Figure 2.5.

The CMG of Figure 2.5 has certain characteristics that should be briefly
mentioned. Execution of the CMG results in live, reachable, safe, deadlock free and
. consistent behavior. Liveness indicates that every transition of the graph can be fired
from the initial marking [8]. Reachability implies that an output will be produced for
every input. The CMG is safe because the backward control edges prevent data from
being overwritten. The backward control edge prevents the enabling of a primitive
operation until previous output data are consumed. The CMG is also deadlock-free
because once assigned to a primitive operation, a functional unit will always be able to

complete execution. Consistency implies that the CMG will periodically produce output

10

when input is applied periodically [8]. This also means that primitive operations also are

executed periodically.

3

o
»n

Figure 2.5. Example CMG.
Two types of concurrency are possible when executing an algorithm

decompolsition as specified by the CMG. First, primitive operations without data

11

dependency may be simultancously performed on the same data sct. This is referred to
as parallel concurrency and provides parallclism on a single data sct {12]. It is the result
of inherent parallelism in the algorithm. However, the amount of parallel concurrency
depends on the number of parallel paths in the algorithm decomposition and the number
of available functional units. Second, as with any data flow computer, new data sets are |
accepted for execution before the completion of previous data set computations. This
simultaneous processing of different data sets is referred to as pipeline concurrency [12].
‘This type of concurrency has a direct effect on throughput. The amount of pipeline
concurrency depends on the number of available functional units as well as the structure
of the AMG.

The AMG and CMG of a given algorithm decomposition can be used to calculate
performance measurements. Two important performance measurements are the time
between input and output (TBIO) and the time between outputs (TBO). TBIO is directly
related to graph latency which indicates the amount of parallel concurrency attained.
TBO is associated With throughput and therefore reflects the amount of pipeline
concurrency achieved.

Lower bounds for TBIO and TBO can be calculated using the CMG. The lower
bound, TBIOj B, is determined from the CMG by determining the longest path between

the input source and the output sink. More formally, let P; be the ith directed path in the

CMG and T(P;) be the total path time associated with P;. TBIOj g is then defined as

TBIOLg = Max(T(P})), @2.1)

where the maximum is taken over all paths in the CMG [8]. A proof of this theorem can

be found in [1] and is based on critical path theory.

TBOL R is a parameter indicating how quickly primitive operations can be

repeated periodically. Let C; be the ith directed circuit in the CMG and T(C;) denote the

12

total path time associated with Cj. Also, let M(C;) denote the number of tokens

contained in C;j. Then, TBOj g is defined as
TBOL_B = Max(T(C;)/M(C;)), (2.2)

where the maximum is taken over all circuits in the CMG [8]. TBO[g is thus the largest

time per token of all CMG circuits. The CMG circuits which determine TBOp g are

called critical circuits. A proof of Equation 2.2 can be found in [1] and is based on the
maximum node firing rate of marked graphs.

Knowledge of TBOf p is important because it determines the minimum injection

interval of graph input. Data may temporarily bc accepted within a time interval shorter -
than TBOL g but at the cost of increascd graph latency (TBIO will increase). However,
it is important in real-time applications to have low graph latency as well as high
throughput. The ATAMM model provides the means to match the algorithm
requirements with resource availability for optimum performance and to establish the
criteria for predictable performance. Predictable performance is attained by maintaining
an input injection rate within the range determincd by ATAMM.

Systems implementing the ATAMM mode!l consist of three components, the
graph manager, the global memory, and a set of functional units or resources. The graph
manager is responsible for ensuring that the overall system operates according to the
ATAMM rules. The graph manager updates and monitors the status of the CMG. When
a read transition of this graph is enabled, the graph manager assigns a functional unit
from the queue of available functional units to perform the corresponding algorithm
operation according to priority if more than one node is enabled. The graph manager
updates the marking of the CMG using status information reported by the functional
units. Therefore, the graph manager requires a communication path to each functional

unit. The data corresponding to input and output signals for each AMG node are stored

13

in the global memory. Thus, the global memory also requires a communication path to
each functional unit. The functional unit is the logical component that executes all three
node marked graph (NMGQG) transitions of cach algorithm operation. Therefore, the
internal token marking at the "DP" edge is not important to the graph manager. The
"PR" edge also provides only redundant information. The functional unit communicates
with the graph manager to update the status of the CMG, and with the global memory to
read and write data. The communications bctween the graph manager, the global
memory, and functional units are asynchronous and are carried out by means of a
communication channel. In ofder to ensure that all functional units have an identical
copy of the graph data structure, a functional unit grabs the communication channel
before changing the graph data structure. The updated graph data structure is transmitted
to all functional units by a broadcast, and only then does the functional unit release the
communication channel for other communication.

The graph manager and global memory may be distributed among all the
functional units. This distribution of activitics has the advantage of increasing the
number of functional units in the system and at the same time improving the potential for
achieving a higher degree of fault tolerance to processor failure. Also, a distributed
global memory eliminates the need for shared memory among functional units.

The integration of the graph manager with the hardware's operating system
constitutes the ATAMM Multicomputer Operating System (AMOS). The resource
queue, global memory, and the algorithm marked graph provide the necessary support to
AMOS. An AMOS controlled architecture consisting of IBM PC-AT's has been
developed and tested to validate the ATAMM rules [13], [14]. In this testbed, a
centralized graph manager and centralized global memory were utilized. Another
testbed, called the Advanced Development Model (ADM) has also been developed [15].
The ADM system is composed of four functional units, utilizing a distributed graph

manager and distributed global memory.

14

2.3 ADM system

| A VHSIC ATAMM data-flow architecture, called the Advanced Development
Model (ADM), has been developed [15]. The ADM system consists of four identical
VHSIC 1750A processors which communicate over a dual PI-bus as shown in Figure
2.6. A 1553B communication module is also connected to the PI-bus. The 1553B serves
as a gateway for input and output data flow from an IBM PC-AT. Communication over
the PI-bus is accomplished by broadcasting and usc of direct-memory access. The 1553B
module is connected to the IBM PC-AT by a single line communication link (serial
communication). Data are transferred between the 1553B module and the IBM PC-AT
by synchronous communications. In addition to input and output, this link is used for
fault injection, fault recovery, modification of the algorithm graph in real-time, and
passing information back to the IBM PC-AT for testing purposes. The 1553B also acts
as a source and a sink for the algorithm graph and thus is responsible for controlling the
input injection rate to the 1750A processors and collecting the output. All processors,
1750A’s and 1553B, communicate over an IEEE-488 bus to a Microvax computer which
is used to download AMOS code, application progréms, and files for debugging

purposes. The performance of AMOS on the ADM has been characterized [16].

15

IEEE 488 BUS MICROVAX

- COMPILE
- DOWNLOAD
- DEBUG

Communication
Link
1750A 1750A 1750A 1750A 1553B

IBM PC-AT

- CONTROL

PI-BUS - DATA IN/OUT

- GRAPH STATUS

- INSERT FAULTS

- DISPLAY RESULTS

Figure 2.6. Layout of ADM System.

2.4 AMOS Description

An example of AMOS is the integration of the graph manager with the ADM
hardware. The state diagram description of the AMOS is shown in Figure 2.7. AMOS is
~composed of five states: Idle, Examine, Execute, Test, and Update. Initially, all
functional units awake in the state labeled Idle. A functional unit remains in this state
until its identification number (ID) appears at the top of the resource queue (First- In-
First-Out) of available functional units. Upon finding its ID, the functional unit
undergoes a state transition to the Examine state. In this state, the functional unit
actively monitors the status of the CMG until a rcad transition for an algorithm operation
becomes enabled. Once an enabled read node is identified, the functional unit assigns
itself to perform the algorithm operation. To progress to the next state, the Execute state,

the functional unit grabs the PIbus, removes its ID from the top of the resource queue,

16

updates the CMG, reads the input data, and broadcasts the updated information to other
functional units announcing that an algorithm operation has been initiated (fired). The

functional unit then releases the PI-bus. This broadcast is called an "F" broadcast.

SELF NODE

EXECUTE
T3

Figure 2.7. AMOS State Diagram.

The "F" broadcast contains the updated version of the CMG, the updated resource
queue, and the ID of the functional unit processing the AMG node. This broadcast, as
well as the two others discussed next, provide the status information necessary for the

graph manager to maintain the status of the CMG. Since the graph manager is

17

distributed, this communication is especially important to ensure that all individual graph
managers contain the same CMG marking.

The functional unit remains in the Execute state until the algorithm operation is
complete. After completion of the algorithm operation, the functional unit undergoes
another state transition to the Test state. It grabs the PI-bus, updates the CMG, writes the
output data, and broadcasts the updated information to other functional units. This
broadcast, termed an "D" broadcast, provides the updated CMG and the data génerated
by the primitive operation to the other functional units. The functional unit then releases
the PI- bus.

The Test state corresponds to a diagnostic check of the functional unit. This state
provides the means to remove a functional unit from the system for inspection during
realtime operation. Upon a successful self-test, the functional unit places its ID at the
bottom of the available queue and returns to the initial Idle state. This state transition is
accompanied by a grabbing of the PI-bus, updating the resource queue, broadcasting the
updated information, and a release of thé PI-bus. This broadcast is named an "R"
broadcast.

Since the operation of the system is asynchronous, the graph manager must
generally be interrupt driven. While in any state, the CMG and resource queue in the
global memory of a functional unit can be updated by "F", "D", or "R" broadcast from
other functional units. |

The "F", "D", and "R" broadcasts not only provide the communication necessary
for integrity of overall system operation, but also the means to analyze the system
performance. By labeling, time tagging, and storing information about each broadcast,
such as the event (F, D, or R), the node number, and functional unit ID, the token
movement within the CMG, and the token movement within the AMG, as well as
functional unit activity can be reconstructed. Other measurements such as TBIO, TBO,

and functional unit utilization and concurrency may also be extracted.

18

2.5 Fault Injection, Detection and Correction

Barry W. Johnson states that "The concept of fault tolerance has become
increasingly important during the past decade because of the increased use of computers
in the vital aspects of almost everyone's life. Computers are no longer confined to use as
powerful calculators where their incorrect performance can produce little more than
frustration and lost time. Instead, computers are now integrated into commercial and
military aircraft flight control systems, industrial controllers, space applications, and
banking systems. In each application, erroneous computer performance can be
devastating to financial records, environmental safety, national security, and even human
life" [17]. Two types of faults are modeled and handled in the ADM system. One is a
self-test fault detected while in the Test state. Once a self-test fault is detected, the
functional unit is assumed to remain in the Test state. The other fault is a data-error
detected when in the triple modular redundancy (TMR) mode. The data-error fault is the
result of a defective functional unit that generates an erroneous result.

To provide a degree of fault tolerance, a triple modular redundancy (TMR)
scheme provides adequate redundancy in the system where a single error can be detected
and corrected. The TMR approach implemented in the ADM system triplicates the
processing and the data associated with each AMG nodes. An operation represented by a
simplex AMG node is now represented by three AMG nodes with color extension to red,
green, and blue. The rules for enabling and firing a simplex AMG node (Section 2.2)
now applies to a TMR AMG node, where the three-colored AMG nodes are enabled and
fired by three functional units, simultancously. Eac}; colored node triplicates its output
data for each colored successor node. These data are also color referenced. In TMR
mode, when a colored node fires, a majority vote is performed on all colored input data
to select the correct data to process. The majority vote is also performed at the sink so

that the correct data, as the final product of the graph, is chosen.

19

If only the detection of single crrors is desired, a duplex implementation of the
algorithm graph would suffice. However, in duplex mode, the AMG nodes are duplicated
and are identified by the colors red and green. The rules for enabling and firing a duplex
node is the same as its TMR counterpart. A graph may be executed in simplex, duplex,
or TMR mode. A description of the AMG transformation from simplex to duplex and to

TMR is shown in Figure 2.8.

20

SIMPLEX AMG

Di,j

TMR AMG
Di,j.R

Figure 2.8. Simplex to TMR Transformation.

21

CHAPTER THREE

Simulator Development

3.1 Introduction ‘

The development of the ATAMM Simulator is presented in this chapter. This
Simulator allows the study of the behavior of algorithms in multicomputer data flow
architectures operating in real-time based 6n thc ATAMM modcl. The purpose of the
Simulator is to permit an architecture-independent study of behavior, performance, and
fault tolerance of a system without having to build a hardware prototype.

The Simulator represents a homogenous multicomputer data flow architecture.
Object-oriented programming methodology, Scction 3.2, lends itself to modeling
different parts and rclationship among the parts of a generic system. With this approach,
simulation of the parallel execution of nodes of a graph by functional units is easily
realized. The Simulator consists of six classes of objects. These objects are Graph, a set
of nodes and edges; Graph-Manager, that represents the graph manager; Processors,
which represents a set of functional units; Network, that represents a set of
communication channels; PC, as the front-end of the ADM system; and Simulator-
‘Kernel, that manages a multitasking environment for other objects to function. The
Simulator- Kernel, Processors, Network, Graph, Graph-Manager, and PC are discussed
in Scctions 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11, respectively. Scction 3.5 is a discussion on
the evolution of these objects and the relationship among them. The programming
environment and language used in the development of the ATAMM Simulator are
discussed in Section 3.3.

The Simulator's input and output requircment and formats are discussed in

Section 3.12. As shown in Figure 3.1, the input to the Simulator is expressed as a

22

marked graph and the output of the Simulator is an FDT (Fire, Data, Time) file. The
EDT file is a collection of time-tagged cvents which provide a means of evaluating the
system performance and graph execution. Basic information in the FDT file includes the
time occurrence of cach event, name of the event, node number, node color, functional
unit ID, and the current mode of the operation. The format of the FDT file is discussed
in Scction 3.8.4. The FDT file serves as the input to the Analyzer [18] which is a
software tool that graphically displays algorithm and processor activities. The
measurement capabilitics of the Analyzer include graph latency, throughput,

concurrency, resource utilization, and system overhead [18].

Marked

Graph FDT
s > Simulator ————>{ Analyzer

Figurc 3.1. Flow of Information Among the Softwares Developed for ATAMM.

3.2 Object-oriented Programming
Structured programming flourished because it was efficient in terms of human
resources. Building and testing programs in discrete pieces cnabled large applications to

be developed in less time with fewer bugs than their non- structured counterparts. In

23

addition, the run-time impact of structuring becomes less evident as a program grows in
size. Object-oriented programming cxtends structured programming by encapsulating
both data and their associated functions [19].

In traditional procedural languages like C or Pascal, the programmer defines data
structures and writes functions and procedures to operate on the data. Although normally
a correspondence exists between which functions operate on which types of data, most
procedural languages offer no formal support for this correspondence; it is entirely the
programmer's responsibility to manage such an abstraction.

In an object-oriented approach, both data and operations that work with that data
are combined into a single logical unit known as an object. Dividing a program into
objects encompassing both data and operations makes the program more closely
represent the logical design that is being implemented. As a result, object-oriented
programs are generally easicr to understand and maintain than procedural programs.

Object-oricnted programming is merely the art of breaking a program down and
organizing it. In the casc of structured programs, the primary concern is what the
program is doing. A structured program is based on operations. When writing object-
oriented programs, the program is organized around data types and their associated
operations. It is a significant change in perspective; instead of functional hierarchies,
there are data hicrarchics. Programming in an object-oriented language involves creating
objects and sending them commands or messages to do things.

Object-oriented programs are based on four concepts: classes, objects, methods,
and inheritance. A "class" is similar to a Pascal RECORD. It describes an overall
structure for any number of types based upon it. The main difference between a class
and a record is that a class combines data ficlds (called "instance variables") and
procedures and functions (called "methods”) that act upon the data.

An "object" is a variable of a class. All objects derived from a class are

considered members of that class and share similar characteristics of that class.

24

"Methods" are procedures and functions encapsulated in a class or object. Calling
a method is referred to as "passing a message to an object.” Object-oriented programs do
most of their works by sending messages (o objects.

Object-oriented programming lends itsell to modcling different parts of a
complex entity and the relationships among its parts. The objects can be defined and
developed scparately to ensure privacy of data, rcusability, and readability. This also

makes maintenance and debugging more manageable and systematic.

3.3 Programming Environment and Language

The implementation of the ATAMM Simulator requires a powerful software
environment. The Simulator is developed in the Microsoft Windows! environment
because of its object oriented programming capabilitics including message passing, a
non-preemptive operaling system, and a vast library of graphics routines, especially the
windowing capabilities. Using Microsoft Windows, the classes of objects are defined as
separate windows (parent) and their subclasses as child windows. Every object, parent or
child, can display all of the relevant information in its own independent window which
allows the displays of different windows to be viewed at the same time. This provides an
analysis capability that would otherwise be lost if it were only possible to view one
display at a time.

The objects are delined and developed separately to ensure privacy of data,
rcusability, and readability. This also makes maintenance and debugging more
manageable and systematic. The Simulator is written in the C programming language.
The main reasons arc: 1) it provides good data structures, control flow primitives, and a

rich sct of operators; 2) since C is a comparatively low level language having easy

Microsoft Windows is a trademark of Microsoft Corporation.

25

access to Processors-level information, it forms a good system programming language;
and 3) Microsoft Windows library routines are gencrated in this language.

Other Microsoft Windows environment features include the capability to run
more than one application in parallel, permitting the user to run more than one instance
of the Simulator at the same time, thercby providing a means to simulate and compare
two or more simulations simultaneously. As another example, the Simulator and the
Analyzer programs can be running concurrently allowing an easier transition between

them.

3.4 Animation

Traditional simulators require uscrs to remember and type a great deal to specify
the input/output requirements. This impedes learning and retention, especially by casual
users. Utilizing the vast graphics library of the Microsoft Windows development kit, the
Simulator was developed emphasizing recognition over recall: seeing and pointing over
remembering and typing. Therefore, menus are extensively used instead of on-line
commands. Most of the user-interaction is through dialogue boxes and mouse I/O in
windows so only slight use of the keyboard is required. Also, to interact with the user
during the simulation process, an animatcd display of the play of the graph, the
movement of tokens, the status of functional units, and the staius of the communication

channel arc provided.

3.5 Objects and Their Relationships

The main logical components or objects of the Simulator are, in part, a result of
the ATAMM. Since the ATAMM is a sct of rules by which an algorithm graph can be
mapped to an architecture, the three main classes of objects: Graph- Manager, Graph, and
Processors naturally result. Any system has some means of communication among its

components; so the fourth object, Network, cvolved. For ADM compatibility the fifth

26

object, PC, are added. In addition, therc is a need to provide a management for
arbitration among these objects, thus Simulator-Kernel are introduced. Interconnection
among these entitics is portrayed in Figure 3.2. Table 3.1 is a list and description of

messages passed among these objects.

Simulator
Kernel

Processors h

Graph Manager

Figure 3.2. Relationships Among the Objects.

27

Message

Action

WM_STP
WM_GRAYMENU
WM_SHOWMENU
WM_NEWCHILDS
WM_WRITEMSG
WM_RUNONELOOP
WM_UPDATE
WM_RUN
WM_FIRE
WM_DATA
WM_RESOURCE
WM_WRITING
WM_UPDATING
WM_BROADCAST
WM_RELEASE
WM_CHANNEL
WM_GETCHANNEL
WM_REQUEST
WM_REREQUEST

WM_NODEI

WM_NODE2
WM_SOURCE_REQUEST
WM_SOURCE_REREQUEST

WM_SINK_REQUEST
WM_SINK_REREQUEST

WM_SHOW_TOKENS

WM_WAITING
WM_REMOVE
WM_RESTORE
WM_INSERT_EDGE
WM_DELETE_EDGE
WM_INCREASE_QUEUE
WM_DECREASE_QUEUE
WM_1553_REQUEST

Load an STP file.

Disable menu.

Enable menu.

Crcate new children.

Prompt a message.

Instruct all children to RUN.

Update the graph structure.

Perform the task.

Fire the node and issue an "F" message.

An "F" broadcast.

An "R" broadcast.

An "D" broadcast.

Updating the graph.

Broadcast the graph structure.

Release the channel.

Channel is granted.

Try to grab the channel.

Request a node to process.

Request for a node, with possible higher
priority, to process.

An enabled AMG node found.

Highest priority enabled AMG node found.
Request a source to fire.

Request for a source with higher priority to
fire.

Request a sink to fire.

Request for a sink with higher priority to
fire.

Show current value of the tokens of the
cdges.

Wait until other FU's update their graphs.
Remove the functional unit.

Restore the functional unit.

Insert a control edge.

Delete the control edge.

Increase qucue size the edge.

Decrease queue size the edge.

1553B requests for the channel.

Table 3.1. A list and description of messages passed among the objects.

28

3.6 Simulator-Kernel

The Simulator-Kernel provides, manages, and simulates the multitasking
environment where the functional units can opcrate without conflict. Hence, this object
is the operating system for the Simulator and thus the heart of this software. The
arbitration among differcnt objects is enforced in a non-preemptive manner, where every
object is given enough time to accomplish its task. This is easily realized by employing
object-oriented programming mcthodology.

The Simulator-Kernel object passes control to a constituent object and by doing
so suspends itself. This gives the target object the full control over the system. Upon
completion of its task, the target object returns control back to the Simulator-Kernel.
Transfer of control is accomplished through the message passing capability of object-
oriented programming. This process continues for all objects, in an orderly fashion, until
simulation of the graph is complete.

The order in which the objects arc invoked is as follows. First, the Processors
object, described in the following section, is invoked. It, in turn, passes control to its
constituents, functional units, in an orderly fashion. Second, the Network object is
invoked to carry out its communication task. The Network, described in Section 3.8, in
turn, passes control to its child objects. The Processors and the Network have the same
behavior as the Simulator-Kernel toward their constituents. Finally, the PC, described in
Section 3.11 is invoked to perform its task. The hierarchy of passing control to the

lowest level objects, children objects, is portrayed in Figure 3.3.

29

Simulator
Kernel

Processors

Figure 3.3. Hicrarchy of Objccts.

Thus far, the functionality of the Simulator-Kernel from an internal information
viewpoint was described. However, another functional aspect of this object is its central
role with respect to user interactions. The Simulator-Kernel object and all other objects
that require user interaction have their own independent windows through which

information may be passed and/or displayed. For these objects, the terms object and

window are used interchangeably.

For user interactions, the Simulator-Kernel's window provides a set of menus.
These menus are categorized according to their functionalities. The "File" menu allows
the user to save and retrieve a set-up file (STP), discussed in Section 3.8.1, to open an
output file to store the events of simulation of graphs for further study, and to specify the
mode of operation. The mode of operation can be simplex, duplex, or triple modular
redundancy (TMR). The "FileType" menu lets the user select the type of output file as
cither FDT or ADM. The speed of the simulation can be adjusted through a "Speed”
menu to slow, medium, or fast. The duration of simulations of algorithm graphs can be
specified by selecting the appropriate option from the "Run" menu. These options
include the number of clock ticks, the number of events, and the number of data packets.
This window as well as all other windows of the Simulator have two options in common.
"Pause” is provided to pause the simulation process at any time. Selecting this option
f again will resume the simulation process. The other option common among the windows
is the "Help" option where specific guidance for individual windows is provided.

Simulation of the graph may be triggered by specifying the number of clock ticks,
the number of events reported, or the number of data packets fed to the graph. In any
case, the Simulator keeps track of clock ticks, number of events, and number of data
packets in and out of the graph. It also reports the current status of these activities for
user's information upon receiving (acquiring) control of the system. Speed of simulation
may be adjusted to fast, medium, or slow at any time. This provision is provided for
animation purposes where the simulation of the graph is carried out at the desired pace.

Since this window is the heart of this software, existence of other windows

depend on its existence, i.e., closing this window results in termination of the Simulator.

3.7 Processors
The Processors object treats its child objects in the same manner as its parent

object, the Simulator-Kernel. The Processors is a set of three types of functional units.

31

These are functional units that operate on the source of the graph (IFU), functional units
that operate on the sink of the graph (OFU), an‘d up to twenty regular functional units
(FU) that perform the tasks represented by the AMG node of the graph. The IFU and
OFU are the corresponding computing clements of the ADM system, the 1553B. They
are special functional units that do not operate on the AMG nodes of the graph. Because
of ADM compatibility, the Processors is confined to onc IFU and one OFU.

The Processors passes control to the functional units objects, in order, and by
doing so suspends itself. The order in which these objects are invoked is now described.
First, the IFU object is invoked to inject new data into the graph. The injection interval is
determined by the sources of the graph. Sccond, the OFU object is invoked to fetch the
graph output. Finally, the functional units, FU's, are called upon to carry out the
exccution of the AMG nodes of the graph.

Through Processors’ window, the number of functional units can be specified to
match a particular architecture. The number of functional units at the start of the
simulation of algorithm graphs is the maximum number of resources for the duration of
the simulation process. The number of available functional units of a system is crucial to
the operation of the Simulator. More specifically, in the case of functional unit failures,
reduction in the number of available resources may affect overall performance of the
system and possibly change the mode of operation. The mode of operation is constantly
monitored by the Graph-Manager object, Section 3.10. When the number of available
functional units drops to two, the mode of operation is adjusted so that the highest mode
possible is duplex. When there is only onc active functional unit, the only possible mode
is simplex. Nevertheless, rccovery of functional units and thus increasing the number of
available resources doesn't affect the mode of operation. The number of functional units,
however, for practical reasons is limited to twenty [8]. Also, through the Processor's

window, the time it takes a functional unit to conduct a self-test may be adjusted. Since

32

the Processors object represents a homogenous system, the test time is identical for all
functional units.

To inform the user of the status of the system, contents of the available queue
(QUEUE), the working pool (WORK), the diagnostics pool (DIAG), and the recovery
pool (RECOV) of functional units are displaycd at run time. The colors used to
distinguish QUEUE, WORK, DIAG, and RECOV are green, red, yellow, and white,
respectively. This status reporting is accomplished by another child object of the

Processors' called functional units queues (FUQS).

3.7.1 Functional Units (FU's)

To carry out execution of an AMG node of any kind, upon availability, a
functional unit, of any type, has to communicate with the graph manager to find an
enabled node. To fire the AMG node, the functional unit has to grab the channel in order
to read the input to the node and to broadcast the updated graph, an "F" broadcast. To
grab the channel all functional units must compete. The channel is granted based on the
specified protocol of the defined architecture. Section 3.8 is a complete description of
communication network protocols. The hicrarchy of flow of messages among functional
units, the Graph, and the Graph- Manager objects is portrayed in Figure 3.4.

To complete execution of an AMG node, the attached functional unit goes
through a sequence of states as depicted in Figure 3.5 [20]. These states define the
operating system characteristics of the ATAMM Multicomputer Operating System

(AMOS). The state diagram of functional units is described in the following Section.

33

Simulator
Kernel

WM-RUN
WM-WAKEUP

Processors
WM-RUN
WM-DATA WM-REQUEST
WM-FIRE WM-REREQUEST
WM-WAITING WM-BROADCAST
WM-REPORT WM-RELEASE
WM-RESOURCE WM-SOURCE-REQUEST
. WM-SINK-REQUEST
WM-REPORY
WM-SHOW-TOKENS WM-SOURCE-REQUEST
WM-INSERT-EDGE WM.SINK-REQUEST
WM-INC-QUEUE-SIZE \ WM-DATA
WM-DELETE-EDGE WM-FIRE

WM-DEC-QUEUE-SIZE
WM-SHOW-QUEUE-SIZE

Graph
Manager

Figure 3.4. Hierarchy of Flow of Messages Through Processors Objects.

34

\‘L Idle, Examine Graph _ L

o
o
o
a
a
=5
o
=
@
oo
=9
&

r
|
|
|
|
:
|
|
I
|
|
|
|
|
|
|
|
:
|
|
|
|
|
|
|
|
|
I
1
|
|
|
|
|

-
Il
b
b
o
[
1

gl
|

Pt |

|
|
|
|
i
|
I

Process
)LP

On-Hold-Write

b e e ————————————————————————— e

Figure 3.5. State of a Functional Unit.

The current statc of a functional unit, labeled and time tagged, along with other
information about the current state, such as the node number, and functional unit ID are
stored in an FDT file upon entering the state. This information can later be analyzed by
reconstructing the token movement within thc CMG and the token movement within the
AMG, as well as functional unit activities by thc Analyzer [18]. These operating system

states are also displayed in the window of cach functional unit. Every functional unit

35

reports its current status by coloring the appropriate rectangle representing the current
state red. If a functional unit is disabled, e.g., in the case of a self-test failure, its state

~ cannot be determined.

7.2 FU State Diagram Description

Idle

When idle, the functional unit continuously examines the queue of available
functional units (QUEUE), first to check if there are at least as many functional units in
the QUEUE as the MODE of the system and second, to check if it is one of them. When
it finds itself at the top of the QUEUE, it scarches for an enabled AMG node based on
priorities assigned to the nodes. An enabled node is detected by examining all input and
output edges of the node. This search continues until an enabled node is found. Having -
an AMG node to execute, the functional unit selects a colored-node, based on its position
in the QUEUE, to fire.

n_Hold R rab channel

To read inputs associated with the node, the functional unit has to get hold of a
channel. The duration of this state depends on the traffic and communication channel
protocol.
Update and Read

After establishing a communication link, the functional unit conducts a second
search for enablement of nodes with higher priorities than the previously enabled nodes.
Selecting a node with the highest priority, the functional unit migrates from the QUEUE
to the pool of working functional units (WORK). Tt then broadcasts the updated graph.
This broadcast is called the "F" broadcast. After reading the node's input data, the
functional unit releases the communication channel. After reading every input,

depending on the MODE of operation, the functional unit may have to vote and select the

proper input. Specifically, in TMR mode, the functional unit votes on the three sets of
inputs and chooses the correct set for processing.

In the ADM system, since the inputs to the nodes are stored in the local memory
of the functional unit, the functional unit doesn't need to hold on to the communication
channel. The functional unit, therefore, rclcases the channel before reading the input
data of the node.

Process

In this state, the functional unit exccutes the application program. To do so,
control is passed to the application program. Upon completion of the task, control is
passed back to AMOS. The duration of this state is the same as the execution time of the
application program.

On_Hold Write (grab channel)

To write the gencrated outputs, the functional unit has to get the hold of a
channel. The duration of this state depends on the traffic and communication channel
protocol.

te and Wri

After establishing a communication link, the functional unit migrates from the
WORK queue to the diagnostics queue (DIAG). In this state the functional unit writes
the output data to the proper locations. It then broadcasts the updated graph. This
broadcast is termed the "D" broadcast. 1f an crror were detected at the Read state, the
color of the node and ID of the functional unit responsible for the error are broadcast.
The communication channel is then released.

Test
In this statc the functional unit performs a self-test. Upon completion, the

functional unit requests for a channel. Duration of this state depends on the test routine.

37

On_Ho t rab channel

To let the system know about its availability to undertake another task, the
functional unit needs to grab a channel.
Update

After establishing a communication link, the functional unit migrates from the
diagnostics queue to the queue of available functional units, if the self-test were
successful. Otherwise, it removes itself from the diégnostics queue. It then broadcasts
the updated graph. This broadcast is called the "R" broadcast and releases the
communication channel.

The IFU and OFU are special functional units, and therefore only go through
some of the operating system states to accomplish their duties. Specifically, the IFU
goes through the Idle, On_Hold_Write, and Update and Write states, while the OFU goes
through the Idle, On_Hold_Read, and Update and Read states. The state diagrams of the

IFU and OFU are shown in Figures 3.6 and Figure 3.7, respectively.

38

Idle

On-Hold-Write

O Update
&
Write

Figure 3.6. States of an IFU.

39

E F | Updat
Idle |—>|On-Hold-Read = P
Read

Figure 3.7. States of an OFU.

3.8 Network

The Network object treats its child objects in the same manner as its parent
object, the Simulator-Kernel. Due to ADM compatibility, the Network is confined to
one communication channel corresponding to the PI bus of the ADM system. The
Network passes control to the channel and by doing so suspends itself. To grab the
channel all functional units must compete. The hierarchy of message flow among the
Network, the Channcl, and functional units objects are portrayed in Figure 3.8. The

channel is granted based on the specified protocol of the defined architecture. These

40

protocols include priority and first-come, first-serve strategies. In the priority protocol,
the physical proximity of the functional units is the criterion for granting the channel.
The priority of the functional units is identificd by their unique ID's. This protocol is
adopted by the ADM system. Since the IFU and OFU are closest to the PI bus
semaphore, they have the highest priority. In the first-come, first-serve or first-in, first-
out (FIFO) protocol, the channel is granted to the functional units based on their request
time. The channel reports its current status, Idle or Busy, by coloring red the appropriate
rectangle representing the current state red. The state diagram of the communication
channel is shown in Figure 3.9.

To accomplish its task, the Network stores all requests for the channel and then
based on the criteria imposed by the specified communication protocol grants a request.
These requests are stored in the request-queue of the Network. To inform the user of the
status of the Network, the content of the request-queue is displayed at run time. This is
accomplished by another child object of the Network called chahnel queues (CHQS).

Through Network's window, such parameters as GrabTime, UpdateTime,
BroadcastTime, and WaitTime may be adjusted to reflect the desired network's
characteristics. For a definition of these variables refer to the help files provided with the

Simulator.

41

Simulator
WM-RUN

Kernel WM-BROADCAST

WM-RELEASE

WM-1553-REQUEST

WM-RUN
WM-CHANNEL

@(WM-GETCHANNEL

WM-REPORT

Figure 3.8. Hierarchy of Flow of Messages Through Network Object.

Idle ?

- Figure 3.9. Communication Channcl State Diagram.

2

3.9 Graph

An algorithm marked graph is the essential and necessary part of the ATAMM
model and the Simulator. An algorithm marked graph consists of a set of nodes, a set of
edges, a set of sources, and a set of sinks. The Graph object provides the means to create
and update algorithm graphs, with the desired characteristics, for simulation purposes.
The ATAMM Simulator, as a research and design tool, is flexible and powerful enough
to simulate a graph at any marking state. The Graph object provides the necessary means
to initialize both data and control edges with the tokens so that the behavior of the
algorithm graphs starting at certain marking states can be studied. While simulating a
graph, the Graph objcct displays movement of tokens on the data and control edges. The
animated display of the marking of graphs provides a means to symbolically observe the
play of the algorithm graph on the specificd system. Since the Simulator is capable of
simulating multiple independent graphs where each graph may have multiple sources and
multiple sinks, the Graph object is designed accordingly so that multiple graphs may be
created. Regardless of the number qf graphs, the total number of nodes is confined to at
most twenty. As stated in chapter 2, this restriction is due to practical reasons. The
number of sources and sinks are at most ten, and number of edges at most sixty. Since
the Simulator is independent of grain size, these numbers are arbitrary.

Although the final product of this object, algorithm graphs, are accessible by
other objects, other objects cannot modify the algorithm graphs. Any run-time
modification to the graphs, e.g., adding a control-edge, is performed by the Graph object
upon receiving the corresponding messages with the necessary parameters. A number of
messages passed to the Graph object are listed in Figure 3.4 and Table 3.1.

To create a graph, the Graph object's window provides a set of menus for user
interactions. These menus are categorized according to their functionalities. The "File"

menu allows the user to save and retrieve a graph file (GPH). The GPH file is discussed

43

in Section 3.12.1. To draw an element of the graph: source, node, sink, edge, or control-
edge, the corresponding item may be selected from the "Draw" menu. The "Edit" menu,
however, lets the user select, delete the selected clement of the graph, and clear the entire
drawing. The "Update” menu provides the means to specify the timing parameters of the
nodes, sources, and sinks, the number of tokens on any edge, and the queue size of any
edge. The timing parameters include read-time, process-time, and write- time for the
nodes, write-time and injection-time for sources, and read-time for sinks.

Although the primary color used in drawing a graph is black, green is used to
identify the control-edges and red is used to indicate the selected element of the graph
that may be deleted.

To draw a graph, having sclected the desired element from the "Draw" menu,
clicking the left-mouse button results in creation and display of that element of the graph
centered at that point. Nodes are represented by circles, sources and sinks by rectangles
with their names in them, and edges by segmented lines. The queue of an edge is
displayed as a square centered on the last segment of that edge with the initial size of one
displayed above the square. Also the initial token of that edge, zero, is displayed inside
of the square representing the queue. Each element of the graph has its unique ID.
When displaying a source, a node, or a sink, their ID is also displayed within their
representative shapes. Successive clicking of the left-mouse button results in creation and
display of that element with its consecutive ID number. The ID's of all elements start
with one.

The graphs created in this module arc suitable to run in any mode. The data
structures of the graph are listed in Figure 3.10. These data structures are essentially the
same as the data structures used in the development of AMOS. However, some additional
parameters such as "location” and "TERM KIND" are added for drawing and simulation

use. The AMOS data structure is described in Appendix A.

44

typedef struct {

short ID,
NEXT,
enable_ctr,
busy_ctr,
done_ctr,
id[3],
input_summary[3],
output_summary[3] ;

long read_time,
_process_time,
write_time,
test_time ;

short inputs[3],
outputs[3] ;

RECT location ;

} nodes_rec ;

typedef struct {
short 1D,
NEXT,
KIND,
token,
segment,
edge_color,
items,
output_width,
next_input,
next_output,
terminal,
initial,
TERM_KIND,
INIT_KIND,
LINE_SEGMENTS ;
POINTPTS [MAX_SEGMENT] ;
RECT location [MAX_SEGMENT -11];
RECT q_location ;
} edges_rec

Figure 3.10. Data structures of the Graph object.

45

typedef struct {

short ID,
NEXT,
enable_ctr,
busy_ctr,
donc_ctr,
output_summary[3] ;

long write_time,
process_time,
inject_time ;

short outputs [3] ;

RECT location ;

} sources_rec ;

typedef struct {

short ID,
NEXT,
enable_ctr,
busy_ctr,
done_ctr,
input_summary[3] ;
long read_time;
short inputs [3] ;
RECT location ;
} sinks_rec ;

~ Figure 3.10. (continued) Data structures of the Graph object.

46

3.10 Graph-Manager

The graph manager is responsible for ensuring that the overall system operates
according to the ATAMM rules. The Graph-Manager object, representing the graph
manager of the ATAMM, updates and monitors the status of the CMG. When a read
transition of the algorithm graph is enabled, the Graph- Manager assigns a functional unit
from the queue of available functional units to perform the corresponding algorithm
operation according to priority if more than one node is enabled. The Graph-Manager
updates the marking of the CMG using status information reported by the functional
units. Status information is reported to the Graph-Manager via passing messages. A
number of these messages are depicted in Figure 3.4 and Table 3.1. The mode of the
operation is constantly monitored by the Graph-Manager object. In the advent of
functional unit failures, when the number of available functional units drops to two, the
mode of operation is adjusted accordingly so that the highest mode possible is duplex.
When there is only one active functional unit, the only possible mode is simplex.
Nevertheless, the recovery of functional units and thus increasing the number of available
resources doesn't affect the mode of operation.

The graph manager constantly monitors the well-being and number of the
available functional units. When the number of active functional units changes, the
graph manager identifies a new operating point corresponding to the current number of
available functional units. System operation at the new opcrating point is achieved by
adjusting the injection time of the sources and by modification of the AMG through the
addition or deletion of the control edges and increasing or decreasing the queue size of
the edges. To accomplish this task, a set of actval operating points are selected by
identifying as many operating points as the number of available resources. Each such
point specifies the system time performance, TBIO and TBO, for a particular number of
available resources. The set of actual operating points selected in this way is compiled in

a control file (CTL), discussed in Section 3.12.3.

47

The graph manager may either be centralized or distributed, as stated in Chapter
2. The graph manager, in the ADM system, is distributed among the functional units,
1750A's. In this simulation software, the graph manager, represented by the Graph-
Manager object, is logically partitioned from the computing clements, and therefore, can
be thought of either as part of the functional units, a distributed graph manager, or as a
centralized entity. |

Since the Graph-Manager doesn't require user interactions, it doesn't have a

window and is incorporated in the Graph window.

3.11 PC

The PC object emerged due to the nced for ADM system compatibility. The
hierarchy of the flow of messages among Simulator-Kernel and the PC objects is
portrayed in Figure 3.11. The PC object represents the front-end of the ADM system.
This object supplies the algorithm graph with inputs and stores the outputs of the graph
in an output file. The inputs are periodically supplied to the graph at the injection
intervals specified by the sources of the algorithm graph. The outputs, however, are
periodically stored at communication intervals, where the communication interval is

assumed to be shorter than the injection interval.

WM-RUN
WM-CHANNEL

Simulator
Kernel

Figure 3.11. Hierarchy of Flow of Messages Through PC Object.

48

The PC obiject also is a means to control performance of the graph based on the
current number of active resources. To control performance of the graph, the status of
the functional units is constantly monitored. A change in the number of active resources
invokes a new performance operating point and the graph is modificd appropriatcly by
adding or deleting control edges and/or increasing or decreasing queuc sizes of the edges.
The appropriate actions arc invoked from a control file (CTL), Section 3.12.3. This file,
however, must be first loaded prior to starting simulation of the graph.

Injection of faults to the system is conducted via the PC object and through the
control-blocks. The sclf-test fault is simulated by directing a functional unit to fail
during the self-test. However, the failed functional unit is assumed to be able to detect
its own failure. As the result of this fault, the functional unit will not advance to the next
state. This, in effect, will result in removal of the functional unit from the system. Since
the maximum number of resources during the execution of algorithm graphs is a fixed
number, adding a functional unit to thc system is possible only after removal of a
defective functional unit. Adding a functional unit to the system corresponds to the
replacement of a defective functional unit. To add a functional unit to the system, the
corresponding functional unit is directed to bypass the Test state and thus join the
working force of the system. The functional unit then accomplishes this task by inserting
itself in the queue of available resources, an "R” broadcast. The particular action taken
by a functional unit is conveyed by the CTL file.

The off-line user interface to the system may be turned on by choosing the
FAULT option of the PC's menu. When in off-line control mode, the communication

interval may be adjusted to meet the desired need.

3.12 Inputs and Outputs
The primary input to the Simulator is a marked graph, as illustrated in Figure 3.1.

The marked graph may cither be developed through user interaction or loaded from an

49

existing file via the Graph window. The Simulator, however, doesn't necessarily need
additional input files. It can run a graph (or multiple graphs), with user interactions and
without loading any files. Nevertheless, there arc management files that can be loaded to
speed up user interactions. These files are identified by their extensions and are depicted
in Figure 3.12. These files contain information, as designed by the user, about systems
(STP), graphs (GPH), and injection control, control blocks, performance plane
characteristics, and fault tolerance schemes (CTL). These files and their formats are

discussed in the following sections.

CTL STP Draw/Load GPH

Simulator

R

FDT STP GPH

Figure 3.12. Simulator Inputs and Outputs.

The Simulator has two means of output. The screen is the primary output of the
Simulator where an animated play of a graph is displayed, in real-time, via the Graph's
window. The animated activities of the system are portrayed via the functional units' and

communication's windows. The other means of output is a file, either in the FDT or

50

ADM format, where the time-tagged status events generated by the functional units are

stored for further analysis by the Analyzer [18].

12,1 GPH File

The graph (GPH) files contain a list of information pertaining to the graphs
developed via the Graph object's window. Basic information conveyed in the GPH file
includes number of nodes, edges, sources, and sinks, their logical location in the Graph
object's window, and relationships among them. The information about the edges reveal
the ID and the type of entities that the edges link. Also, other parameters associated with
each edge are a color (for TMR use), type of edge, number of line segments that
constitute the edge, size of the queue of the edge, and number of tokens on that edge. The
“information about the nodes, the sources, and the sinks include such timing parameters as
read, write, and process time. The graphs are created and stored in the TMR form. There
is a one-to-one correspondence between the graph structure in memory and the
information stored in the GPH file. This makes the loading of the graph into memory
faster. Every record of the GPH file consists of a descriptive name that identifies a
parameter followed by the value of that parameter. The format of the GPH file and its
records are described in the BNF2 notation and are presented in Figure 3.13. Figure A.1

is an example of an GPH file.

2Backus-Naur's Formula (BNF).

51

Format: {<separator> <CR> {<string> <integer> <CR>}N}P

where n is an integer and represents number of nodes, sources, sinks, or edges of
the graph for a particular p, and p is an integer with a value of four. The corresponding

value of n for a particular value of p is defined below.

p__n

1 number of nodes
2 number of edges
3 number of sources
4 number of sinks

separator = a string of length twenty. This string is used to separate different
entities of the graph.

string = a descriptive name of up to ten characters.

integer = an integer value corresponding to the string identifier.

Figure 3.13. GPH file format using the BNF notations.

52

3.12.2 STP File

The sct up (STP) file contains the key characteristics of a system. Some of this
information addresses the mode of operation, while other parts reflect some of the
characteristics of the Processors' and the Network's objects. The parameters related to the
Processors' object include the number of functional units and the test time of the
functional units. The parameters related to thé Network's object consist of grab time,
broadcast time, update time, wait time, and type of the communication protocol. The
format and an example of an STP file are presented in Figure 3.14 and Figure A.2,

respectively.

53

+ Format: {<string> <integer> <CR>)?
string = an identificr of up to ten characters.

integer = an integer value corresponding to the string identifier.

ntifier Val
MODE Mode of operation
1 -> Simplex
2 -> Duplex
3->TMR
NumofFUS Number of functional units, 1 to 20.
Protocol Type of protocol employcd by the Network
0 -> FIFO
1 -> Priority
Grab_Time Minimum amount of time it takes to grab the channel semaphore.
BDCT_Time Minimum amount of time it takes to broadcast the updated graph.
Test_Time The time it takes to complete a self test by a functional unit.

Updt_Time The time it takes to update the graph.

Wait_Time The time it takes to service an interrupt.

Figure 3.14. STP file format.

54

12 TL Fil
The control-blocks contain the necessary information to improve the performance
of an algorithm graph under limited availability of resources. The control-blocks of an
algorithm graph are stored in a control-blocks (CTL) file. The CTL file contains all the
necessary information about injection of inputs and faults and management of the graph
via control- edges and queue sizes of the edges.
This file contains three types of information, an injection table (T_TABLE) of up
to twenty entries, one entry per functional unit, a fault table (FAULT_TABLE), and a
control table (CTRL_TABLE) of up to twenty elements, one element per functional unit.
This information is collectively termed "control-blocks". The information conveyed by
the FAULT_TABLE includes functional unit ID, initial and terminal nodes of an edge,
and the type of actions to be taken. The actions include inserting or deleting of control-
edges between the initial and terminal nodes, increasing or decreasing the queue size of
an cdge, identified by the initial and terminal nodes, fault injection, and recovery of the
functional units.
This file must be loaded in prior to starting the simulation process if changes in
the number of resources are expected. The format and an example of an CTL file are

presented in Figure 3.15 and Figure A.3, respectively.

55

Format: {<I_T>20} <CR>} Injection Table.
{<D_P F1 F2 F3> <CR>}10 Fault Table.
{<N> <CR>}
{{<Action Initial Terminal Size> <CR>}13}N Control Table.
Where I_T, D_P, F1, F2, F3, N, Action, Initial, Terminal, and Size are integers.

Identifier Description

LT Injection rate of new operating point.

D_P Data Packets fed into the graph.

F1 ID of FU to be killed during self-test.

F2 ID of FU to be added to the system.

F3 ID of FU to be removed from the system.

N Number of control blocks. This number must be same as

maximum number of FU's at the start up.

Action Type of modification to the graph
0 -> Stop.
2 -> Insert a control cdge.
3 -> Delete the control edge.
4 -> Increase queue size of the edge.

5 -> Decrease queue size of the edge.
Initial ID of Initial node.
Terminal ID of the terminal node.
Size Desired size of the queue of the edge specified by Initial and

Terminal.

Figure 3.15. CTL file format.

56

3.12.4 FDT Fijle
The FDT file is designed around the Analyzer and is described in detail in [18].

Nevertheless, for convenience the description and format of the FDT files is restated
here. |

Evaluating the performance of a concurrent processing éystem based on the
ATAMM requires information concerning the state of each processor and the algorithm
with respect to time. The broadcast of events as a processor progresses through the states
of AMOS was discussed in Section 2.7.2. By knowing the graph structure, these events
imply information about the movement of tokens within the CMG. Therefore, by
recording these events along with the time of occurrence, processor and algorithm
activity can be reconstructed.

The FDT (Fire, Data, Time) file contains a list of information pertaining to each
AMOS broadcast, in order of occurrence, which provides a means of evaluating the
system performance and graph execution. Basic information in the FDT file includes the
time occurrence of the event, name of the event, block number, node color, FU ID, and
the current mode (simplex, duplex, TMR) of the system.

The capability of evaluating overhead is made possible by adding information to
each AMOS broadcast. This information is the time spent waiting for a communication
channel and the time spent updating the graph structure for the broadcast. The update
time also includes the read and write time associated wiih processing a node when
attached to the respective "F" and "D" broadcasts. The format of the FDT file is

presented in Figure 3.16.

57

Format: {<T,Time,M,Mode,Event,N,Node,C,Color,Resource> <CR>}P
Where T, M, N, C, P, and Event are characters and variables Time, Mode, Node,
Color, and Resourcé have integer values.
Identifier Description
Time Time of the event
Mode 1 -> Simplex
2 -> Duplex
3->TMR
Event Name of the event

Node AMG node number

ON_HOLD_READING; channel wait for "F" broadcast
READING; update for "F" broadcast

PROCESSING; "F" broadcast

ON_HOLD_WRITING; channel wait for "D" broadcast
WRITING; update for "D" broadcast

TESTING; "D" broadcast

ON_HOLD_RETURNING; channel wait for "R" broadcast
UPDATE_Q; update for "R" broadcast

IDLE; "R" broadcast

A OoOHO»ww—TMm

Color Color of the AMG node
1->Red
2 -> Green
3 -> Blue

Resource ID number of FU processing the AMG node, ID of IFU processing

a source, or ID of OFU processing a sink

Figure 3.16. FDT file format.

58

CHAPTER FOUR

Case Studics and Experimental Results

4.1 Introduction

In this chapter, case studies of four algorithms are presented as a demonstration of
the application capabilities of the ATAMM Simulator in studying the behavior of
algorithm graphs under the ATAMM rules. These case studies are conducted and
presented in a manner that typically would take the user of the Simulator through the
procedural steps for creating algorithm graphs and evaluating the desired system. The
first algorithm is the space surveillance algorithm. This algorithm is of particular
importance because it is to be run on the ADM system. The second algorithm is the
decomposed state equation for discrete linear systems. This algorithm is chosen because
of its real world applicability and its recursive features. The third algorithm consists of
multiple graphs with multiple sources and multiple sinks. This case study is considered
to demonstrate other capabilities and features of the Simulator beyond the ADM system.
The fourth algorithm is a chain that is currently being implemented on the ADM system.
Results of the simulation of this algorithm are to be compared with the results of the
ADM system to verify compliance with the ADM system.

A brief description of the simulation procedure using the ATAMM Simulator is
presented in Section 4.2. Section 4.3 is a description of the space surveillance algorithm.
Results of four case studics .of that algorithm for the ideal and non- ideal cases are also
presented in Section 4.3. The decomposed state equation algorithm along with its
simulation results are discussed in Section 4.4, The multiple graph algorithm along with
its simulation results are presented in Section 4.5. In Section 4.6, the simulated results of

a three-node chain graph are compared with that of the ADM system. Finally in Section

59

4.7, effects of different ordering of nodes based on their priorities on the performance of

the algorithm graphs are demonstrated.

4.2 Setup Procedure |

The first step in using the Simulator is the creation of the algorithm graph in the
Graph window. Once the algorithm graph is created, the desired architecturé can be
designed through the Processors and Network windows. If the injection of faults is
desired, control-blocks are loaded via the PC window and the fault flag is rafsed. To
store the simulated results for further analysis, an output file must be opened via the
Simulator-Kernel window. The type of output file, the mode of operation, and the speed
of the simulation process can be specified via the Simulator-Kernel window. Having all
of the parameters specified and an output file opened, simulation of the algorithm graph
is triggered by specifying the duration of the simulation process via the Simulator-Kernel
window. The speed of the simulation can be adjusted to the desired pace at any time.
Also, simulation of an algorithm graph may be paused from any window of the
Simulator. Nonetheless, the simulation process may be halted only via the Simulator-
Kernel or the PC windows. Abnormal termination of the simulation process, by closing
the Simulator-Kernel window, will result in a loss of the output file.

The simulated results can be further analyzed via the Analyzer [18]. The desired
operating point and injection rate can be sclected in order to obtain the maximum

throughput of the graph. Maximum throughput of the graph is achieved when the graph
runs at steady state where TBIO and TBO are constant and TBO is minimal (TBOgp).

To arrive at the TBO[g, the system is started with the value of TBOjy g predicted by the

Design Tool [21] and the values of TBO and TBIO are observed via the Analyzer. Since

the Design Tool doesn't take all the parameters of a real system into consideration, the

simulated TBOp g will be slightly higher. Therefore, the injection rate is increased until

the steady state is reached and TBOg g is found.

60

4.3 Space Surveillance Algorithm

The space surveillance algorithm graph, drawn in the Graph window, is depicted
in Figurc 4.1. The nodes describe algorithm operations and are labeled based on their
priorities. Sighals which are transferred from one node to another are shown as directed
edges. The timing parameters of the source, sink, and nodes of this graph, consistent
with the ADM implementation, are displayed in Figure A.1. However, for convenience
the timing parameters are restated here. The nodes have a read-time of zero units and a

write-time of three units. The process-time units of the nodes are:

Node Process-Time

1 60
2 310
3 70

4 1240
5 100
6 1050

The write-time of the source is zero units and the read-time of the sink is three units.
The injection-time of the source is initially set to the predicted value of 1250 units.

Parameters of the Processors and Network objects, based on some preliminary
assumptions, are tailored to match the ADM system characteristics. These parameters
are displayed in Figure A.2. The communication protocol is based on the priorities of
the functional units. The test-time of the functional units is three units.

The Space Surveillance Algorithm graph is studied for two special cases. First,
this graph is run under the ideal conditions as described in Section 4.3.1. Second, the
graph is run under the physical constraints of the ADM system and for preselected

operating points. This case is described in Section 4.3.2.

61

=| Simulator Kernel =] Processors [v]~
Filp—id ip

B Eile Edit Draw Update Pause Help -

Figure 4.1. Space Surveillance Algorithm.

62

43.1 Surveillance Algorithm, Ideal Case

This case study is primarily conducted for validating the results of the simulation
with the theoretical predictions. In this study of the Space Surveillance Algorithm, all of
the parameters of the system are set to zeros. All Network parameters: grab-time,
broadcast-time, wait-time, and test- time of functional units are zeroed. The read-time
and write- time of the nodes are assigned to their ideal value of zero. With the parameters
so specified, the only parameter that contributes to the final outcome of the graph is the
process- time of the nodes. The inputs are assumed to be continuously available at the
injection time so that the graph will not have to wait for input data and can run at the
maximum throughput.

The ideal case is simulated for a system with four identical functional units. The
functional units initially wake up in the Idle state, Figure 4.2. The current states of the
functional units are reflected in the functional-unit- queues (FUQS) window of the
Processor window as well as in the state diagram of every functional unit. The marking
of the graph after processing a few data packets are displayed in Figure 4.3. Figure 4.4 is
a display of the status of the functional units. While one of the functional units is idle,
two others are processing two nodes, and yet another functional unit is undergoing a self-
test. The current state of the communication channel is portrayed in Figure 4.5. The
functional units contending for the channel arc shown in channel-queues (CHQS)

window of the Network window, Figure 4.5.

63

= S Processo v a

Update Pause Help
- FU1 [~ = FUQS -
s I e B e
P =l FU2 |-
(o I | T e T
= W = [=] fu3 [«
Em | O O 0o o e
o ||| = =] _Fu4 |-
= e I o | B e TR e N o |
. =
@ OFU -~ — o
] 3 e R ¢ I e |

Figure 4.3. Markings of the Graph after a few Data
Packets.

64

| %% Processors:.
Update Pause

-] FU1 |- - FUQS -
= =] _Fuz [« ® z &
=B IR il
= B = [FU 3 [«
(] |l =3
— O O 3
= PROCESSING
-] oFu |«
- o - —-—
= FU
== L1 1 [
o = T |

Figure 4.4. Functional Units' State after a few Data
Packets.

pdate Strategics Esc |
CH1

. 3

Figure 4.5. Channel's Statc after a few Data Packets.

65

The Simulator-Kernel window is shown in Figure 4.6 where the overall status of
the simulation process is continuously reported. Specifically, the mode of operation, the
number of clock ticks and events since the beginning of the simulation process, the
number of data packets fed to the graph, and the output file and type are reported. This
general information about the system and the algorithm graph provide sufficient data for
monitoring the status of the simulation process. In the advent of any abnormal behavior,
the state diagram of the functional units (Figures 4.7 and 3.5), the state diagram of the
communication channel (Figures 4.8 and 3.9), and marking of the algorithm graph
provide adcquate details to pinpoint the problem. The most common abnormal behavior
is chiefly due to improper initial marking of the graph, particularly the initial markings

on the recursive paths.

File FileType Speed
Run Pause Help
MODE = 1
CLOCK = 0
EVENT = O
PACKETS IN = 0O
-2 space.fdt

Figure 4.6. Simulator-Kernel.

66

ause

] Help |

Update P
gi=| FU1 - - FUQS -
s [e B e |
= o
= =] FU 2 -
- IFU |
= | I -
=L o) [
m '
= o
| = =

oy ? T
tegies Pause

or

AdA

CH1

Busy]

Figure 4.8. State Diagram of Communication Channel.

67

Performance

CONOTVEWN=

1247
1247
1247
1247
1247
1247
1247
1247

Figure 4.9. Simulated Results.

2368
1249
1248
1248
1247
1247
1247
1247
1247

68

2362
2364
2365
2366
2366
2366
2366
2366
2366

EEEESEEERFEEFEER

Analysis of the simulation results of this case study revecal that although the

predicted TBO[B is 1240 time units (process time of the largest node), the actual
TBOL g for this graph is experimentally found to be 1247 time units (Figure 4.9). The
simulated TBO[_ is less than 0.5 percent more than the predicted value. The increase in

the TBOp g is due to the overhead imposed by the communication channel. Since this

ATAMM Simulator is intended for the rcal systems and in real systems the
communication channel is assumed to have a non- zero grab-time, every broadcast
requires grabbing the channel and thus contributes to the overhead. Specifically, the time
it takes a functional unit to process a node and to go back to the idle state is the process-
time plus three because of the three, "F", "D", and "R" broadcasts. Also, since the system
has only one communication channel, the contention for the channel has contributed to
this overhead as well. Nevertheless, this overhcad is not included in the non-ideal cases,

because in simulating real systems, the channel is assumed to have a non-zero grab-time,

432 urveillance Algorithm, Non-Ideal Cases

In this case study, the Space Surveillance algorithm is simulated under the
physical constraints of the ADM system. To compare the simulated results with that of
the theoretical predictions, two operating points from the performance plane of this graph
[21], are chosen. For the operating point with the number of resources equal to four, the
nodes have a read- time of zero units and a write-time of three units. The process-time of
the nodes is the same as the ideal case. The write-time of the source is zero units and

read-time of the sink is three units. The test-time of the functional units is three units.

The theoretical prediction indicate that TBOp g is 1247 time units. The simulated
results, however, indicate that, Figure 4.10, TBO[g is 1266 time units. The simulated

TBOLR is 1.4 percent more than the predicted value. This is primarily due to the

overhead inherent in the real system, specifically the communication latencies. The other

69

~ factor that contributes to this overhead is the communication channel contention where
more than one functional unit contend for the communication channel.

For the operating point with the number of resources equal to two, the algorithm
graph is modified to improve performance. The modified algorithm graph is shown in
Figure 4.11 where the queue size of some edges is increased and two control edges are
added. The control edges are added from node 3 to node 2 and from node 4 to node 3.
Analysis of the modified algorithm graph indicates that for the same injection-time as
previous case, TBIO should increase. This arrangement corresponds to a horizontal
move in the performance-plane of this algorithm [1]. The simulated results, given in
Figure 4.12, indicate a slight increase in the value of TBO at the steady state.

Graceful degradation of operation of an algorithm graph in real-time systems is
modeled by the ATAMM model and is reflected in the performance-plane of the
algorithm graph. As the number of available resources changes, new operating points are
selected and the injection rate is adjusted and/or the graph is appropriately modified
(Section 3.10). The desired operating points and the required modifications are pre-
selected by the user and are conveyed by an CTL file.

The above two cases are combined to show the graceful degradation of the
operation of an algorithm graph in real- time. To show the transition of the operation of
the algorithm graph from one operating point, operating point equal to 4, to anothér,
operating point equal to 2, two of the functional units are removed from the system after
reaching the steady-state operation. The new injection rate and information about
modifications of the graph are shown in Figure A.3. For this case study, the CTL file of
Figure A.3 must be loaded via the PC window and the FAULT option must be selected.
As expected, the simulated results shown in Figure 4.13 indicate that the TBO and TBIO
at the steady-state and for operating points equal to 4 and 2 are the same as the previous
case studics. Figure 4.14 shows the reduction in the number of resources. The modified

graph is the same as in Figure 4.11.

70

Performance

Select

-
-
[)
-~
m
-

R ODNOVIEWN -
EEEEEEEEEED

File Edlt Draw pdatc Pause | | | Help

Figure 4.11. Space Surveillance Algorithm.

71

‘ Performance . @

-
2
[x]
~
m
y

TBI TBO TBIO
7 2481 2474

OB ~NOVTEWN-

Figure 4.12. Simulated Results.

.. Performance’

Select

T8I T80 TBIO
9 2404 2395

-
n
[x)]
-~
m
-

CANOWVMETWON-

Figure 4.13. Simulated Results.

72

=] B " Reso Utilization

Yiew Select 4 Resources... 1.3 % +
3 Resources... 7.4 %
space42.fdt TRE 2 Resources... 95.7 %
1 Resource.... 100.0 %
4 0 Resources... 0.0 %
I Computing Effort... 83116
3 Resource Utilization... 51.1 %

'Y i N R R R
I R e

Figure 4.14. Simulated Results.

73

4.4 Decomposed State Equation

Consider the problem of computing the output of a discrete linear system given a
sequence of inputs to the system. Let the system be described by the state equation

X(K+1)=AX(K)+BUK+1),
and output equation
YK+1)=CX(K+1)

where X is a p-vector, U is an m-vector, and Y is a r-vector. The primitive operations are
defined as matrix multiplication and vector addition.

For the purpose of this case study, the state equation is decomposed so that the
node times are reduced and parallel execution of nodes is possible [11]. This
decomposition lowers the value of TBO, due to reduced node time, and thus increases

throughput. The decomposition of the state equation is performed as follows,

X1K+1) A11 A1z X1 (K) Bl
[XZ(K+1)] =[A21 Azz] [XZ(K)] + [BZ] (UK+1)),

and

X1 K+1)
(Y(K+1)) =(C1,C2)[x2(K+1)]

The AMG representing the decomposed state equation is drawn in the Graph
window of the ATAMM Simulator and is shown in Figure 4.15. The nodes and the

edges are labeled in accordance with the above two equations.

74

SOURCE1

Figure 4.15. Decomposed State Equation.

To compare the simulated results with that of the theoretical predictions, an
operating point equal to 8 from the performance plane of this graph [21] is chosen. For

this operating point, the parameters are specified as shown in Figure 4.16. The

theoretical prediction indicates that the TBOp g is 1000 time units. The simulated results

indicate that, Figure 4.17, TBO[g is 1158 timc units. The theoretical predictions and the

simulated findings of all graphs are tabulated and shown in Table 4.1. As is indicated in
Table 4.1, the overhead for this graph is quite noticeable, about 15 percent. As stated
earlier, the amount of overhead also depends on the contention for the communication
channel. Contention for the communication channel is a direct product of the number of

parallel paths in the graph as well as the number of nodes that can concurrently fire. In

75

other words, contention is directly proportional to the amounts of parallel and pipeline
concurrency (Section 2.2). |

The study of the AMOS's state diagram reveals that the "R" broadcast accounts
for one third of total broadcasts and thus one third of communication overheads. To
study the contribution of different parameters to the overhead, the Decomposed State
Equation graph is simulated after eliminating the test-time of the functional units, as
shown in Table 4.1. As expected, the overhead is slightly reduced. The amount of
reduction, of course, is directly proportional to the value of test-time. This study is
carried on even further where by combining the "R" broadcast in the "D" broadcast and
eliminating the test-time, the Test state of the AMOS state diagram is bypassed. The
simulated results, tabulated in Table 4.1, signify over 30 percent increase in performance.
These results are indications of the amount of overhead contributed by the third
broadcast and continuous testing of the functional units. However, if it is not necessary
to test the functional units continuously, or if it is desired to test the functional units
every so often, the current state diagram of the AMOS needs to be modified to provide
the required flexibility.

A new modified state diagram for AMOS is proposed where the capability for
deciding to conduct a self test by the functional units is provided, Figure 4.18. With thé
proposed state diagram, it is possible to completely isolate the overhead associated with
the Test state of AMOS or to test the functional units at the desired intervals. Thus, it is

now possible to manage the tradeoff between performance and fault tolerance.

76

MODEI!1

NumofFUS 8

Protocol 1

Grab_Time 3

BDCT_Time 2

Test_Time 2

Updt_Time 2

Wait_Time 0

Node Process-Time Read-Time _ Write-Time
1 500 0 0
2 500 0 0
3 200 0 0
4 200 0 0
5 800 0 0
6 800 0 0
7 400 0 0
8 400 0 0
9 150 0 0
10 800 0 0
11 800 0 0
Source - - 0
Sink - 0 -

Figure 4.16. STP filc and timing parameters for the Decomposed State Equation.

77

.54 Performance < - . o4

Select

-]
b4
[y]
-~
m
-f
-
[--]
i

T80 TBIO
46 1428 1382

CONOVITWN=

Figure 4.17. Simulated Results.

78

Percentage
Predicted Sim'ed Sim'ed Over-

Algorithm TB(2@ T_BO_L& TBIO R head Comment

Space 1240 1247 2366 4 0.56 Ideal case.

Space 1247 1266 2404 4 1.52

Space - 1439 1456 2913 2 1.18

State Eq. 1010 1158 1448 8 14.65

State Eq. 1010 1154 1451 8 14.25 test-time = 0.

State Eq. 1008 1102 1386 8 9.32 Bypassing the Test
state of AMOS.

Table 4.1. Predicted and simulated results of the case studies.

79

Figure 4.18. Modified AMOS State Diagram.

4.5 Multiple Algorithm Graphs with Multiple Sources and Sinks
This case study is considered to demonstrate other capabilities and features of the
Simulator beyond its ADM system compatibility. The ATAMM Simulator is capable of
iconcurrently simulating multiple independent graphs as well as graphs with multiple
sources and sinks. Since all sources, sinks, and nodes have priorities, the multiple graphs
created in the Graph window are inherently prioritized. Therefore, when creating the
multiple graphs, the order in which the nodes are created and connected to each other

defines the priorities of the nodes and hence a priority relationship among the graphs. In

80

graphs with multiple sources and/or sinks, the sources have independent injection rates.
The sources independently contribute to the overall performance of the graph. By
controlling the injection rate of the independent sources, it is possible to find the overall
TBOj g of the graph.

Two graphs are considered for this casc study. The graphs are drawn in the
Graph window of the Simulator and are shown in Figure 4.19. The first graph has two
sources and two sinks. The second graph is a three-node chain with a single source and a
single sink. Since the source, sink, and nodes of the second graph have higher ID's than
the first graph, the first graph has higher priority than the second graph. The injection
rate of the sources of the first graph are 420 and 220 time units, respectively and the
injection rate of the second graph is 420 time units. The process-time of all nodes of
both graphs is 100 time units. The read-time and write- time of all nodes and sinks of
both graphs is 5 time units,

Analysis of the simulated results indicate that simultancous simulation of both
graphs is faithfully carried out. The results also indicate that the individual graphs are

simulated in compliance with the ATAMM rules.

81

File Edit Draw Update Pause

1 1 1 1
SOURCEL 0] o 0] [0—{SINK1

1 1
[SouRce?] {o] \?_/ {6} {STNKZ]
1 1 1 1
o)

Figure 4.19. Multiple Graphs with Multiple Sources and Sinks.

4.6 Chain Graph

An AMG consisting of a three node chain is currently being implemented on the
ADM system. The graph is shown in Figure 4.20. This graph is considered for this case
study and the results of the simulation of this graph will be compared with that of the
ADM system. Comparison of the results demonstrates the compliance of the ADM

system with the ATAMM model as represented by the Simulator taking all of the

parameters of the ADM system into account.

82

File Edit Draw Update Pause Help

1

1 1 1
SOURCE1 [) o 0] ° (0] o | 0—{ SINK1

Figure 4.20. Three Node Chain Graph.

Another aspect of this case study is the demonstration of some of the fault
tolerant features of the Simulator as well as tﬁe ADM system. Through this case study
injection of faults, changes in the operating points, and the use of the control blocks are
demonstrated.

The initial operating point chosen for this graph is equal to 3. For this operating

point, the parameters are specified as shown in Figure 4.213. The theoretical predictions

indicate that, for an operating-point equal to 3, the TBOp g is 2489 time units. The
simulated results indicate that, Figure 4.23, TBOp g is 2527 time units. However, the

experimental results of the ADM system indicate that TBOp g is 2761 time units. The

theoretical predictions, simulated findings, and experimeital results of this graph for all

3 To compare the simulated results with the results of the ADM syster, the data attained
from the ADM system are normalized.

83

operating points are tabulated and shown in Table 4.2 The CTL file for this case study
is shown in Figure 4.22. As the CTL file indicates, the functional units 2 and 3 will
malfunction when data packets 7 and 15, respectively, are injected by the source. The
defective functional units will remove themselves from the system (Section 3.10)
immediately if they are in the Test state or upon entering the Test state. As seen in
Figure 4.23 the fault injection caused the functional units 2 and 3 to be removed from the

system at the completion of data packets 4 and 12 respectively.

A study of Table 4.2 indicates that the simulated TBOyp g is about 8 percent less

than the experimental TBOp g achieved by the ADM system for an operating-point equal

to 2. The discrepancy between the simulated and the experimental results is due to two
reasons. First, the timing parameters associated with the nodes and the system were
extracted from the results of the ADM system and averages of the extracted values were
- used in the simulation process. Second, there is certain randomness associated with the
" communication channel protocol adapted in the current version of the ADM system.

The changes in the number of resources for this case study are shown in Figure
4.24 (the upper portion of this and the next Figures is that of the simulated results while
the bottom portion is that of the ADM system). The simulated and experimental resource
utilizations are shown in Figure 4.25. The functional unit activities are shown in Figure
4.26. As is evident in Figures 4.24; 4.25, and 4.26, the simulated and experimental
results are highly comparable. The consistency in the simulated and experimental resuits

is an indication of the compliance of the ADM system with the ATAMM rules.

84

MODEI!1

NumofFUS 3

Protocol 1

Grab_Time 4

BDCT_Time 3

Test_Time 60

Updt_Time 0

Wait_Time 0

Node Process-Time Read Time _Write Time
1 1556 3 3
2 843 3 3
3 2480 3 3
Source - - 3
Sink - 3 -

Figure 4.21. STP file and timing parameters for the Chain Algorithm.

85

00000000000000000000
7002
15003
0000
0000
0000
0000
0000
0000
0000
0000
3
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000 -
0000
0000
0000
0000
0000

Figure 4.22. The CTL filc for the Chain Graph.

86

0000
0000
0000
0000
0000
0000
0000
0000

Figure 4.22. (continued) The CTL file for the Chain Graph.

87

Performance

1 20 4966
2 15 2527
3 2506 2527
4 2527 2527
5 2527 2538
6 2527 2588
7 2527 2583
8 2589 2583
9 2583 2583
10 2583 2583
11 2583 2583
12 2583 2583
13 2583 4287
154 . 2583 2560
15 2583 5122
16 6766 5122
17 5122 5122
18 5122 5122
19 5122 5122
20 5122 5122
21 5122 5122

22 5122 5122
i3 i

13

I 1=

4946
7458
7479
7479
7482
7543
7599
7593
7593
7593
7593
7593
9297
9274
11813
10169
10169
16169
10169
18169
10169
10169

bk b oh A DA ANNNNNNNNWRWWOWR

Figure 4.23. Simulated Results Corresponding to Output Data Packets.

88

(Design Tool) (ADM)
Theoretical ~ Predicted Simulated Experimental Operating- Point
TBOr B TBO[B TBO1 B TBO[B R
2489 2489 2527 2761 3
2489 2489 2583 2764 2
2489 4903 5122 5338 1

Table 4.2. Results of the Chain Graph case study.

89

=/ Performance [v]~
Select
L 2527 2527 7479 3 4+
5 2527 2530 Tu82 2
6 2527 2588 7543 2
I 7 2527 2583 7599 2
8 2589 2583 7593 2
i ¢ 2583 2583 7593 2
10 2583 2583) 7593 2
11 2583 2583 7593 2
12 2583 2583 7593 2
13 2583 4287 9297 1
14 2583 2560 9274 1
15 2583 5122 11813 1

:.L.L-LMNNNNNNNW

Figure 4.24. Simulated and ADM Results.

90

| FU Utilization [+]=

S

Select

L % Utihization

Figure 4.25. Simulated and ADM Results.

91

=] FU Activity -
VYiew Select
simfdt

3 Nodes

View Select
adm fdt
3

] R e

Figure 4.26. Simulated and ADM Results.

92

4.7 Experimental Results

Effects of different orderings of nodes based on their priorities on the
performance of the algorithm graphs are briefly discussed in Section 4.7.1. However, a
formal proof of these findings requires an extensive study of all possible cases and thus is

beyond scope of this thesis.

4.7.1 Effects of Node Priority on Performance

A three-node chain graph is considercd to show the effect of different orders of
priorities of nodes of a graph on the performance of that graph. For this study two
extreme cases of orderings of the nodes are considered. First, the nodes are ordered in
ascending order from the source to the sink with the lowest number having the highest
priority. The read and write time of the nodes, write time of the source, and read time of
the sink are 5 time units while process time of the nodes are 100 time units. For an
operating-point equal to 1 and an injection-time of zero, the simulated TBO and TBIO
are 459 and 1189 time units, respectively. Seccond, the nodes are ordered in the
descending order from source to sink. The simulated TBO and TBIO are 459 and 876
time units, respectively. Primary analysis of the simulated results indicate that for the
case where the nodes are in ascending order 1) it takes longer to reach the steady state,
Figure 4.27 (the upper portion of this and next Figures is that of the ascending ordering
of the nodes), 2) TBIO is longer, becausc more data packets are fed into the graph
during one TBIO, Figure 4.28, and 3) at steady state, TBO is the same as for descending
orderings of the nodes. However, for an operating-point equal to 2, the results are less
dramatic. For an operating-point equal to 3, the simulated TBO and TBIO are 232 and
804 time units, respectively, for both cases. Therefore, if there are as many functional
units as nodes in the graph, then different orderings of priority of the nodes do not

increase the TBIO.

93

oY

Select

PACKET TB1 R +
1 26 1 B
2 31 1
3 1
{ y 1
5 1
6 1
7 1
8 1
9 1

*

==I Performance

Select

PACKET TBI TBO TBIO R

1 26 W74 448 1
2 31 459 876 1
3 459 459 876 1
L 459 459 876 1
5 459 459 876 1
6 459 459 876 1
7 459 459 876 1
8 459 459 876 1
9

-

Figurc 4.27. Simulated Results.

94

| Graph Play [~]-]
View Select
ascendfdt TGP

3 3 4

2
1 4
1 124 43 . .
hd A e A E?ssei5ilksl!sgx?usnnzs‘isgg B
- Graph Play v]~
Yiew Select

descend.fdt TGP

3 4

2 4

| TIME 1402

Figure 4.28. Graph Play in One TBIO.

95

CHAPTER FIVE

Conclusion

5.1 Summary

The ATAMM model, a new Petri nct based model developed by the researchers
at the Old Dominion University, provides the analytical means to integrate algorithm
data flow with data- flow architecture. The ATAMM model provides a description of the
data and control flow necessary to specify the criteria for predictable execution of an
algorithm by a data flow architecture. The ATAMM model also provides the means to.
investigate different algorithm decompositions without having to consider the hardware.
Once the intended hardware is selected, the model can be used to match the algorithm
requiremeﬁts with the hardware capability in order to achieve optimum performance.

A simulation program was developed and is presented in this thesis in order to
productively aid the user of an ATAMM based distributed-processing system in the
evaluation and design process of a particular system to determine its optimum
performance. The software is referred to as the ATAMM Simulator. The Simulator
provides the means to permit an architecture-independent study of behavior,
performance, and reliability of a system without having to build a hardware prototype.
Results of execution of an algorithm by the Simulator are comparable to the results of the
ADM system. The Simulator is able to assist with the development of ATAMM based
architectures and the investigation of theories concerning the ATAMM model. In order
to case and facilitate user interactions, this user-friendly software was developed within a
window environment. Utilizing a window enviromnent permits the Simulator to run
concurrently with other software applications (such as the Analyzer). The window

environment also permits one to view all of the Simulator displays simultaneousiy.

96

As a demonstration of the application capabilities of the ATAMM Simulator, case
studies were performed on four different algorithms. First the Space Surveillance
Algorithm was considered where for the ideal case, compliance of the simulated results
with the theoretical predictions was verified. Sccond, the Decomposed State Equation
for discrete linear systems was considered to exhibit the effect of presence of recursive
paths in the algorithm graph. Third, multiple algorithm graphs with multiple sources and
sinks were considered to demonstrate other capabilities and features of the Simulator
beyond the ADM system. The last algorithm considered was a three-node chain graph.
Simulated results of the three-node chain graph were shown to be comparable to that of
the ADM system.

The Simulator's capability to incorporate attributes of a generic system was also
exhibited. These Simulator features are esscntial in order to productively study an
ATAMM-based system. The Simulator was used to determine the effects of overhead
associated with a real system on the performance of the algorithm graphs. Without the
Simulator, such investigation of system overhead would be difficult. The Simulator also
was used to determine performance of the Space Surveillance Algorithm and the three-
node chain graph in a degraded mode. For these two algorithms, injection of fauits,
changes in the operating-points, and the use of the control blocks were demonstrated.
The results of these case studies were presented through a set of ATAMM Simulator
window displays. Finally, it was shown that the order of priorities of the nodes in an
algorithm graph is very important. For low TBIO, high priority nodes must be closer to

the sink and low priority nodes closer to the source.

97

5.2 Topics for Future Research

Current research is concentrated in extending the capabilities of the ATAMM
Multicomputer Operating System, and thus expanding the problem domain of ATAMM.
The enhanced AMOS is to be implemented in the Generic VHSIC Spaceborne Computer
(GVSC), a spaceborne, four-processor breadboard which is also based on the 1750A
instruction set architecture. In this regard, the ATAMM model is being generalized to
permit multiple concurrent instantiations of sclected graph nodes. Also, the simultaneous
play of multiple graphs, each having a distinct source node and sink node, is being
developed. Three separate strategics for implementing multiple graphs are being
considered. These strategies are referred to as the parallel execution strategy, the time
multiplexing strategy, and the priority interrupt strategy. The different strategies are
selected to address classes of problems which arise in real- time applications. Efforts are
also being made to incorporate the features of fault-tolerance and branching in the
ATAMM model.

Future research could involve the inclusion of more classes of faults and better
fault detection and recovery strategies. Enhancements to ATAMM to include graphs
with multiple sources and sinks and graphs with variable node times should also be
investigated. The ATAMM model should also be enhanced to incorporate heterogeneous
architectures as well as systems with multiple communication channels. These
enhancements will thus require modifications to the ATAMM Simulator as well as other
tools developed around the ATAMM. In addition, any enhancements or modifications to
the ATAMM model will no doubt spawn other meaningful research topics for future

consideration.

98

(1]

(2]

(3]
(4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

Sukhamoy Som, "Performance Modeling and Enhancement for the ATAMM
Data Flow Architectures,” Ph. D. Dlssertatmn Old Dominion University,
Norfolk, Virginia, May 1989.

T. Agerwala and Arvind, "Data Flow Systems," Computer, pp. 10-13, February
1982.

J. Tiberghien, New Computer Architectures, Academic Press, London, 1984.

Tadao Murata, "Relevance of Network Theory to Models of Distributed/Parallel
Processing," Journal of Franklin Institute, pp. 41-49, 1980.

Tadao Murata, "Synthesis of Decision-Free Concurrent Systems for Prescribed
Resources and Performance," IEEE Transactions on Software Engineering, pp.
525-530, November 1980.

J. W. Stoughton and R. R. Mielke, "Petri-Net Model for Concurrent Processing of

Complex Algorithms," Proceedings of Government Microcircuit Applications
Conference, San Diego, CA, November 1986.

R. R. Mielke, J. W. Stoughton, And S. Som, "Modeling and Performance Bounds
for Concurrent Processing,” Proceedings of the 8th International Conference on
Distributed Computing Systems, San Jose, CA, June 1988.

Roland R. Mielke, John W. Stoughton and Sukhamoy Som, "Modeling and
Optimum Time Performance for Concurrent Processing,” NASA Contractor
Report 4167, August 1988.

C. M. Krishna, K. G. Shin, and 1. S. Bhandari, "Processor Tradeoffs in
Distributed Real Time Systems," IEEE Transactions on Computers, vol. 36, pp.
1030-1040, September 1987.

Tadao Murata, "Petri Nets: Properties, Analysis and Applications," Proceedings
of the IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

John W. Stoughton and Roland R. Miclke, "Strategies for Concurrent Processing

of Complex Algorithms in Data Driven Architectures,” NASA Contractor Report
181657, February 1988.

99

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

S. Som, B. Mandala, R. R. Mielke and J. W. Stoughton, "A Design Tool for
Computations in Large Grain Real-Time Data Flow Architectures,” Proceedings
of the IEEE Southeastcon '90, New Orleans, Louisiana, April 1990.

S. Som, J. W. Stoughton and R. R. Mielke, "Performance Prediction, Simulation,
and Measurement for Real-Time Computing in a Class of Data Flow
Architectures,” Technical Paper Presented at the ISMM International Conference
on Computer Applications in Design, Simulation and Analysis, New Orleans,
Louisiana, March 1990.

W. R. Tymchyshyn, "ATAMM Multicomputer System Design," Master's Thesis,
Old Dominion University, Norfolk, Virginia, August 1988.

R. R. Mielke, J. W. Stoughton, S. Som, R. Obando, M. Malekpour, and B.
Mandala, "Algorithm to Architecture Mapping Model (ATAMM) Multicomputer
Operating System Functional Specification," NASA Contractor Report 4339,
November 1990.

P. J. Hayes, R. L. Jones, H. F. Benz, A. M. Andrews, J. W. Stoughton, R. R.
Miclke, M. Malekpour, and P. R. Appleget, "VHSIC Multiprocessor
Implementation of the ATAMM Strategy," GOMAC91/ 1991 Digest of Papers,
pp. 521-525, November 1991.

Barry W. Johnson, Design and Analysis of Fault-Tolerant Digital Systenzs;
Addison-Wesley Publication Company Incorporated, 1987 pp. 2.

R. L. Jones, "Diagnostics Software for Concurrent Processing Computer
Systems," Master's thesis, Old Dominion University, Norfolk, VA, August 1990.

S. R. Ladd, "Performance Issues," Computer Languages, pp. 125-128, August
1989.

M. Malekpour, R. Obando, R. R. Miclke, and J. W. Stoughton, "ATAMM
Simulation Tool for Data Flow Architectures," Proceedings of the 21st Annual
Pittsburgh Conference on Modeling and Simulation, May 1990.

B. Mandala, "A Software Design Tool for Predictable Performance in Real-Time,

Data Flow Architectures,” Master's thesis, Old Dominion University, Norfolk,
VA, December 1990.

100

APPENDICES

A.1 Overview

The data structure of AMOS is tailored for the use of the Simulator development.
Section A.2 is a detailed description of this data structure. Some examples of the input
and output files of the Simulator are listed in Scction A.3. Figure A.1 is an example of
an GPH file. Figure A.2 is an example of an STP file and Figure A.3 is an example of an

CTL file.

A.2 Description of Simulator Data Structure

The data structure of AMOS consists of two arrays, BLOCKS and EDGES, that
hold all of the information regarding nodes and edges of an algorithm graph. Also, there
is a table, PRIORITY, that holds information regarding order of precedence of nodes of
the algorithm graph. In addition, there are four queues, QUEUE, WORK, DIAG, and
RECOV, that hold information about current status of functional units. The QUEUE is
an FIFO queue of functional units, WORK is a pool of working functional units, DIAG
is diagnostics pool, and RECOV is a pool of functional units to be recovered by the
system. In this section a detailed description of this data structure is presented.

Every functional unit, every 1750A, has an instance of AMOS. After every F, D,
and R command, the AMOS structure is updated by the 1750A and broadcast to all other
active 1750As. To make the broadcasting more manageable the variables BLOCKS,
EDGES, PRIORITY, QUEUE, and etc. are defined as arrays. Also these arrays are
assumed to reside in memory back to back so that broadcasting is accomplished by
simply copying a portion of memory of onc 1750A to all other 1750As. Although these

variables are defincd as arrays, they are trcated as link lists, i.e., the link list is

101

implemented using array indices. The link list structure reflects the dynamic structure
inherent in this architecture model.

FIRING is a global variable that holds the ID of the block being fired. It is used
to ensure that all of the colored-nodes of the block are fired before firing the next block.
A block is a node of AMG. In TMR mode, it is a set of three colored-nodes, red, green,
and blue and in SIMPLEX mode a set of only one node. Its primary use is in TMR
mode. If there is no block being fired, then it is set to zero. MODE, a global variable,
indicates the mode of operation and is initially sct by the user to SIMPLEX, 1, or TMR,
3. In TMR mode, when the number of functional units drops to less than three, AMOS
will change the value of MODE to SIMPLEX to reflect the decrease in the number of
functioning resources. BLOCKS is an array of N elements with compoﬁents BLOCKS] j
], the range of j is from 0 to N, where N represents the number of nodes in the AMG
graph. EDGES is an array of M elements with components EDGES] k], the range of k
is from 0 to M, where M represents total number of edges in the AMG graph. QUEUE,
WORK, DIAG, and RECOV are arrays of size equal to the maximum number of
a\failable functional units at the start up. These arrays are described in the following

paragraphs.

BLOCKS

BLOCKS]j] is an element of the array BLOCKS and holds all information about
a block. BLOCKSJ[j] consists of nine variables. FUNCTION_ID is an integer
representing the task ID or a pointer pointing to the application program. ID is a three
element array which holds ID of functional units assigned to the colored-nodes of the
block. It is used to keep track of functional units for future recovery purposes.
BUSY_CTR is a countér that holds the number of functional units working on the block.
It is incremented after cvery F-transition command and decremented after every D-

transition command. DONE_CTR is a counter that holds the number of functional units

102

released from the block. It is used to check if a block can be enabled. It is set to zero
when the block is enabled and is incremented by every D-transition. ENABLE_CTR is a
counter that holds the number of enabled colored-nodes that have not yet fired. When
the block is firable the ENABLE_CTR is sct to the MODE of operation. It is
decremented after every colored-node of a block is fired (F-transition). INPUTS is an
array of pointers having components INPUTS]i], the range of i is from 0 to 2. INPUTSIi]
is the header pointer pointing to a link list of input (incoming data) edges to the ith
colored-node. OUTPUTS is an array of pointers having components OUTPUTSJi], the
range of i is from 0 to 2. OUTPUTSIi] is the header pointer pointing to a link list of
output (outgoing data) edges originating from the ith colored-node. (It implicitly
represents all backward control edges from all successor nodes to this node.) Figure A.4
is a pictorial representation of these two link lists. IN_SUMMARY is an array of
integers with components IN_SUMMARY][i], the range of i is from 0 to 2.
IN_SUMMARY]i] is a summary of INPUTS[i]. It is an integer having a value equal to
the number of input edges of the ith colored-node when all have data and is zero
otherwise. OUT_SUMMARY is an array of integers with components
OUT_SUMMARY]i], the range of i is from 0 to 2. OUT_SUMMARY(i] is a summary
of OUTPUTSI[i]. It is an integer having value equal to the number of outgoing edges
originating from the ith colored-node when all are empty and is zero otherwise. A block
is enabled under the following conditions:

1. DONE_CTR = MODE,

2. All IN_SUMMARY]i]s, i = 0..2, are non-zero, and

3. All OUT_SUMMARY]Iils, i = 0..2, are non-zero.

EDGES
EDGESIK] is an element of the array EDGES and holds all information about an
edge. EDGES[K] consists of eleven variables. EDGE_QUEUE is a circular link list that

103

holds addresses of the memory locations where the data are stored. The addresses are
accessible to the INITIAL and TERMINAL blocks to write and read data, respectively.
For future recovery purposes the length of the queue, L, is one more than the
SEGMENTS or, number of Dummy nodes plus two. Structure of each element of the
EDGE_QUEUE consists of three clements; a) LABEL is a pointer to the beginning of
the data container, b) ID holds the ID of the functional unit which wrote the data into that
data container, and ¢) NEXT is a pointer to the next element of the EDGE_QUEUE.
SEGMENTS is an integer equal to the number of dummy nodes on the edge plus one. It
is used to check capacity of the EDGE_QUEUE of the edge. If SEGMENTS is equal to
ITEMS, then EDGE_QUEUE is full and no more data can be written into it. ITEMS is a
counter indicating the number of data items on the edge. The range of ITEMS is from
zero to SEGMENTS. It is incremented, by the INITIAL node, every time new data are
written on the edge. It is decremented, by the TERMINAL node, every time
OUTPUT_WIDTH becomes zero. INITIAL holds the block number of the origin of the
edge. It is used to update the graph and can also be used to check the integrity of the
graph. TERMINAL holds the block number of the destination of the edge. Itis used to
update the graph. EDGE_COLOR indicates the color of the INITIAL node of the edge.
It is also used to update the graph. The value of color is identified as 1 for red, 2 for
green, and 3 for blue. OUTPUT_WIDTH, a counter, is set to MODE when its present
value is zero and ITEMS is non-zero. It is decremented by one for each F-transition of
- the TERMINAL block. TERMINAL_PTR is a pointer to the element of the
- EDGE_QUEUE where the TERMINAL node reads data. It is updated every time
OUTPUT_WIDTH becomes zero. Updating TERMINAL_PTR means that it should be
pointing to the next element of the EDGE_QUEUE. Updating is performed by the
TERMINAL node. INITIAL_PTR is a pointer to the element of the EDGE_QUEUE
where the INITIAL node writes data. It is updated every time an output is written to the

edge. Updating INITIAL_PTR means that it should be pointing to the next element of

104

the EDGE_QUEUE. Updating is performed by the INITIAL node. NEXT_INPUT is a
- pointer to the next edge which is an input edge to the TERMINAL block.
NEXT_OUTPUT is a pointer to the next edge which is an output edge of the INITIAL
block. NEXT_INPUT and NEXT_OUTPUT arc used to examine‘all of the input and

output edges of a block, respectively.

QUEUE

Each element of the QUEUE is a record of three components ID, COLOR, and
NEXT. ID holds ID of an available functional unit. COLOR is a variable containing the
color of the colored-node of the enabled block that the functional unit will process.
COLOR carries valuable information only when it belongs to one of the top MODE
elements of the QUEUE. The COLOR value is assigned according to the position of the
functional unit in the top of the QUEUE; first red, second green, and third blue. NEXT
holds the index of the next element of the QUEUE. It is used to treat this array as a link
list. If NEXT is zero, then there are no more elements in the list. The first element of
this array is used as dummy head node of the link list and to keep track of cont:ent of the
array, more specifically, COLOR field of the first element holds the number of

functional units in the array.

WORK, DIAG, RECOV

WORK, DIAG, and RECOV have the same structure as QUEUE but are treated
differently. QUEUE is a FIFO queue while WORK, DIAG, and RECOV are pools of
functional units. WORK is a pool holding ID of all of the working functional units.
DIAG is a pool holding ID of all of the in-test functional units, RECOV is also a pool of

functional units but it holds ID of the resources to be recovered by the system.

105

PRIORITY

It is an array holding block numbers. The position in the array determines the
block's priority. The block at the first element is the block with the highest priority in the

graph.

106

A.3 Figures

..Simulator.Version.2.0..
NODES 6

INDEX 1

ID 1

NEXT O
ENB_CTR 0
BSY_CTR 0
DON_CTR 0
READ_TIME 0
PROS_TIME 60
WRTE_TIME 3
INPUTS 52545
OUTPUTS 103050
LOCATION 125143 165 183
INDEX 2

ID 2

NEXT O
ENB_CTR 0
BSY_CTR 0
DON_CTR 0
READ_TIME 0
PROS_TIME 310
WRTE_TIME 3
INPUTS 12141
OUTPUTS 22242
LOCATION 120 292 160 332
INDEX 3

1D 3

NEXT O
ENB_CTR 0
BSY_CTR 0O
DON_CTR 0
READ_TIME 0
PROS_TIME 70
WRTE_TIME 3
INPUTS 62646
OUTPUTS 92949
LOCATION 228 222 268 262
INDEX 4

ID 4

NEXT O
ENB_CTR 0
BSY_CTR O

107

DON_CTR 0
READ_TIME 0

PROS_TIME 1240
WRTE_TIME 3

INPUTS 72747

OUTPUTS 8 28 48
LOCATION 337 143 377 183
INDEX 5

D 5

NEXT 0

ENB_CTR 0

BSY_CTR 0

DON_CTR 0

READ_TIME 0

PROS_TIME 100
WRTE_TIME 3

INPUTS 22242

OUTPUTS 3 2343
LOCATION 326 302 366 342
INDEX 6

D 6

NEXT 0

ENB_CTR 0

BSY_CTR 0

DON_CTR 0

READ_TIME 0

PROS_TIME 1050
WRTE_TIME 3

INPUTS 10 30 50
OUTPUTS 4 24 44
LOCATION 422 234 462 274

....................

KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 1
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 2
INITIAL 1

- 108

TERM_KIND 1
INIT_KIND 0

LINE_SEG 1

POINTS 88233 120 312
LOCATION 88 233 120 312
Q_LOC 94262114282
INDEX 2

ID 2

NEXT 0

KIND 0

TOKEN 0

SEGMENT 1
EDG_COLOR 1

ITEMS 0

OUT_WIDTH 0

NEXT_IN 0
NEXT_OUT 0
TERMINAL 5

INITIAL 2
TERM_KIND 1
INIT_KIND 1

LINE_SEG 1

POINTS 160 312 326 322
LOCATION 160 312 326 322
Q_LOC 233307253 327
INDEX 3

D 3

NEXT O

KIND 0

TOKEN 0

SEGMENT 1
EDG_COLOR 1

ITEMS 0

OUT_WIDTH 0

NEXT_IN 0
NEXT_OUT 0
TERMINAL 6

INITIAL 5
TERM_KIND 1
INIT_KIND 1

LINE_SEG 1

POINTS 366 322 422 254
LOCATION 366 254 422 322
Q_LOC 384278 404 298
INDEX 4

ID 4

109

NEXT O

KIND 0

TOKEN 0

SEGMENT 1
EDG_COLOR !

ITEMS 0
OUT_WIDTH 0
NEXT_IN" 0
NEXT_OUT 0
TERMINAL 1

INITIAL 6
TERM_KIND 3
INIT_KIND 1
LINE_SEG 1

POINTS 462 254 523 259
LOCATION 462 254 523 259
Q_LOC 482246 502 266
INDEX 5

ID 5

NEXT 0

KIND 0

TOKEN 0

SEGMENT |
EDG_COLOR 1

ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 1
TERMINAL 1

INITIAL 1
TERM_KIND 1
INIT_KIND 0

LINE_SEG 1

POINTS 88233125163
LOCATION 88 163 125233
Q_LOC 96 188 116 208
INDEX 6

ID 6

NEXT 0

KIND 0

TOKEN 0

SEGMENT 1
EDG_COLOR 1

ITEMS O
OUT_WIDTH 0
NEXT_IN 0

110

NEXT_OUT 0
TERMINAL 3

INITIAL 1

TERM_KIND 1
INIT_KIND 1

LINE_SEG 1

POINTS 165 163 228 242
LOCATION 165 163 228 242
Q_LOC 186 192206 212
INDEX 7

ID 7

NEXT O

KIND 0

TOKEN 0

SEGMENT 1
EDG_COLOR 1

ITEMS 0

OUT_WIDTH 0

NEXT_IN 0

NEXT_OUT 6
TERMINAL 4

INITIAL |

TERM_KIND 1
INIT_KIND 1

LINE_SEG 1

POINTS 165 163 337 163
LOCATION 165 163 337 163
Q_LOC 241153261173
INDEX 8

ID 8

NEXT O

KIND 0

TOKEN 0

SEGMENT 1
EDG_COLOR 1

ITEMS O

OUT_WIDTH 0

NEXT_IN 3

NEXT_OUT 0
TERMINAL 6

INITIAL 4

TERM_KIND 1
INIT_KIND 1

LINE_SEG 1

POINTS 377 163 422 254
LOCATION 377 163 422 254

111

Q_LOC 389 198 409 218
INDEX 9

D 9

NEXT 0

KIND 0

TOKEN 0

SEGMENT |
EDG_COLOR 1

ITEMS 0
OUT_WIDTH 0
NEXT_IN 8
NEXT_OUT 0
TERMINAL 6

INITIAL 3
TERM_KIND 1
INIT_KIND |

LINE_SEG 1

POINTS 268 242 422 254
LOCATION 268 242 422 254
Q_LOC 335 238 355 258
INDEX 10

D 10

NEXT 0

KIND 0

TOKEN 0

SEGMENT 2
EDG_COLOR 1|

ITEMS 0
OUT_WIDTH 0
NEXT_IN 9
NEXT_OUT 7
TERMINAL 6

INITIAL 1
TERM_KIND 1
INIT_KIND |

LINE_SEG 1

POINTS 165 163 422 254
LOCATION 165 163 422 254
Q_LOC 283 198 303 218
INDEX 21

ID 21

NEXT 0

KIND 0

TOKEN 0

SEGMENT |
EDG_COLOR 2

ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 2
INITIAL 1
TERM_KIND 1
INIT_KIND 0
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 22

ID 22
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 5
INITIAL 2
TERM_KIND |
INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 23

ID 23
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 6
INITIAL 5
TERM_KIND I
INIT_KIND 1

113

LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 24

ID 24

NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 1
INITIAL 6
TERM_KIND 3
INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 25

ID 25

NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 21
TERMINAL 1
INITIAL 1
TERM_KIND 1
INIT_KIND 0
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 26

ID 26

NEXT 0
KIND 0

114

TOKEN 0
SEGMENT 1
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 3
INITIAL |
TERM_KIND |
INIT_KIND |
LINE_SEG |
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 27

ID 27
NEXT 0
KIND 0
TOKEN 0
SEGMENT |
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 26
TERMINAL 4
INITIAL |1
TERM_KIND 1
INIT_KIND 1
LINE_SEG |
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 28

1D 28
NEXT 0
KIND 0
TOKEN 0
SEGMENT |
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 23
NEXT_OUT 0
TERMINAL 6

1S

INITIAL 4
TERM_KIND |
INIT_KIND 1|
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 29

1D 29
NEXT ()
KIND 0
TOKEN 0
SEGMENT |
EDG_COLOR 2
ITEMS 0
OUT_WIDTH ()
NEXT_IN 28
NEXT_OUT 0
TERMINAL 6
INITIAL 3
TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 30

ID 30
NEXT ()
KIND 0
TOKEN 0
SEGMENT 2
EDG_COLOR 2
ITEMS 0
OUT_WIDTH 0
NEXT_IN 29
NEXT_OUT 27
TERMINAL 6
INITIAL |
TERM_KIND |
INIT_KIND |
[LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 41

Ho6

ID 41

NEXT 0
KIND 0
TOKEN 0
SEGMENT |
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 2
INITIAL 1
TERM_KIND 1
INIT_KIND 0
LINE_SEG |
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 42

1D 42
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 5
INITIAL 2
TERM_KIND 1
INIT_KIND |
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 43

ID 43
NEXT 0
KIND 0
TOKEN 0
SEGMENT |
EDG_COLOR 3
ITEMS 0
OUT_WIDTII 0

117

NEXT_IN 0
NEXT_OUT 0
TERMINAL 6
INITIAL 5
TERM_KIND 1
INIT_KIND 1
LINE_SEG |
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 44

ID 44
NEXT 0
KIND 0
TOKEN 0
SEGMENT |
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL |
INITIAL 6
TERM_KIND 3
INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 45

ID 45
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 41
TERMINAL |
INITIAL |
TERM_KIND 1
INIT_KIND 0
LINE_SEG 1
POINTS 0000

118

LOCATION 0000
Q_LOC 0000
INDEX 46

ID 46
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 0
TERMINAL 3
INITIAL 1
TERM_KIND 1
INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 47

ID 47
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 0
NEXT_OUT 46
TERMINAL 4
INITIAL 1
TERM_KIND 1
INIT_KIND |
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 48

1D 48
NEXT 0
KIND 0
TOKEN 0
SEGMENT |

119

EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 43
NEXT_OUT 0
TERMINAL 6
INITIAL 4
TERM_KIND 1
INIT_KIND 1
LINE_SEG |
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 49

ID 49
NEXT 0
KIND 0
TOKEN 0
SEGMENT 1
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 48
NEXT_OUT 0
TERMINAL 6
INITIAL 3
TERM_KIND 1
INIT_KIND I
LINE_SEG |
POINTS 0000
LOCATION 0000
Q_LOC 0000
INDEX 50

ID 50
NEXT 0
KIND 0
TOKEN 0
SEGMENT 2
EDG_COLOR 3
ITEMS 0
OUT_WIDTH 0
NEXT_IN 49
NEXT_OUT 47
TERMINAL 6
INITIAL |
TERM_KIND 1

120

INIT_KIND 1
LINE_SEG 1
POINTS 0000
LOCATION 0000
Q_LOC 0000
SOURCES |
INDEX |

ID 1

NEXT 0
ENB_CTR 0
BSY_CTR 0
DON_CTR 0
WRTE_TIME 3
PROS_TIME 0
INJT_TIME 1265
OUTPUTS 52545
LOCATION 8 223 88 243

....................

ID 1

NEXT 0

ENB_CTR 0

BSY_CTR 0

DON_CTR 0

READ_TIME 0

INPUTS 424 44
LOCATION 523 249 583 269

Figurc A.1. GPH file, Space Surveillance Algorithm.

MODEI
NumofFUS
Protocol
Grab_Time
BDCT_Time
Test_Time
Updt_Time (
Wait_Time (

L) em e — N

~ ~

Figure A.2. STP file, an example.

121

. 12651265 126512650000000000000000
- 1000
2000
3000
4000
5000
6000
7002
8003
9000
10000
4
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
2431
2321
4122
4462
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

122

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Figure A.3. The CTL file for the Spacé Surveillance Algorithm.

Null Null

Blocks[4]=E

S

Tnputs[0]

~ Outputs[0]

Figure A.4. A Pictorial Representation of Inputs and Outputs Link Lists.

124

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this coltection of information 1 pstimated o average 1 hour pet response, including the time tor reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing thi collec tion of information. Send comments rgarding this burden estimate or any other aspect of this
collection of ntormation, including suggestions 1or feduding this burden to Wastungton Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefterson

Daves tighway, Stite 1204 Adington, VA 77702 4302, Wnd to the Ot e of Manasgement and Budaet, Paperwork Reduction Propact (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1992

3. REPORY TYPE AND DATES COVERED

Contractor Report

3/1/90-2/28/91

4. TITLE AND SUBTITLE

Simulator for Concurrent Processing Data Flow Architectures

5. FUNDING NUMBERS

G NCC1-136

6. AUTHOR(S)

Mahyar R. Malekpour, John W. Stoughton, and Roland R. Mielke

590-32-31-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Old Dominion University Research Foundation
P. O. Box 6369
Norfolk, Virginia 23508-0369

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-189604

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: PaulJ. Hayes

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 33

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A software simulator capable of simulating execution of an algorithm graph on a given system under
the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of
modeling the execution of large-grained algorithms on distributed data flow architectures. Investi-
gating the behavior and determining the performance of an ATAMM based system requires the aid of
software tools. The ATAMM Simulator presented is capable of determining the performance of a
system without having to build a hardware prototype. Case studies are performed on four algorithms
to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be
comparable to the experimental results of the Advanced Development Model system.

14. SUBJECT, TERMS

15. NUMBER OF PAGES

Simulation software; Dataflow architecture; Multicomputer operating system; 137
Petri nets; Concurrent processing 6. PRICE CODE
A07
17 SECURITY CLASSIFICATION |18, SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Peoscribed by ANSI Std Z39-18
248-102

