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ABSTRACT

This report outlines the development of a general purpose aerodynamic solver for

compressible turbulent flows. Turbulent closure is achieved using either two-equation

or Reynolds stress transport equations. The applicable equation set consists of Favre-

averaged conservation equations for the mass, momentum and total energy, and trans-

port equations for the turbulent stresses and turbulent dissipation rate. In order to

develop a scheme with good shock-capturing capabilities, good accuracy and general

geometric capabilities, a multi-block, cell-centered finite-volume approach is used. A

Roe flux-difference splitting technique, coupled with a MUSCL scheme, is applied to

the system of conservation and transport equations. Viscous fluxes are discretized

using a finite-volume representation of a central-difference operator and the source

terms are treated as an integral over the control-volume. The methodology is vail-

dated by testing the algorithm on both two-dimensional and three-dimensional flows.

Both the two-equation and Reynolds stress models are used on a two-dimensional

10 ° compression ramp at Math 3, and the two-equation model is used on the three-

dimensional flow over a cone at angle of attack at Mach 3.5. With the development of

this algorithm, it is now possible to compute complex, compressible high-speed flow

fields using both two-equation and Reynolds stress turbulent closure models, with the

capability of eventually evaluating their predictive performance.



1 Introduction

There has been an increasing desire to predict the turbulent flow behavior over

complicated aerodynamic geometries in both low- and high-speed flows. This goal

will certainly lie outside the scope of direct numerical simulations (DNS) and even

large eddy simulations (LES) in the near future [1], even with anticipated increases

in computational speed. Thus practical computations will necessarily rely on the

utilization of phenomenological models for the turbulent transport equations. Until

recently, work in these areas was further limited to the incompressible regime with

relatively little focused research in the compressible area [2]. In the incompressible

regime, there has been significant progress in the area of predictive solutions for tur-

bulent flows in a wide variety of cases to date. In the more complex flow situations,

the simpler turbulence models can be readily implemented and these have been used

most extensively. Their success has been measured by their performance in generat-

ing mean flows and wail pressures, which are not strongly dependent on the correct

modeling of turbulent transport properties. However, the complex flows where tur-

bulent transport is important require more sophisticated turbulence models in order

to capture the underlying physics.

It is only with the initiation of such national priority efforts as the National

Aero-Space Plane (NASP) and the High-Speed Civil Transport (HSCT) that there

has been a strong impetus into the compressible regime for these turbulent stress

closure models. Unfortunately, the practical aerodynamic flows that we are ultimately

interested in are three dimensional with strong vortical regions and generally far from

equilibrium. As has already been noted, such fully three-dimensional flows cannot be

adequately predicted using simple eddy viscosity type models because of the strong

anisotropies in the flow. It is necessary to increase the physics within the turbulent

transport models, and this can be done by advancing to Reynolds stress transport

models. While these models contain improved capabilities for the stress anisotropies

and the associated strain histories, their computational stiffness has lessoned their

appeal to tile general user community. These stiffness problems can be traced to the

near-wall corrections applied to the high Reynolds number versions of the transport

models. For this reason, wall function corrections have proved useful since they can

remove the stiffness problems; however, this is done at the expense of constraining

the Reynolds stress transport models to attached flows.

Tile task at hand is to develop a versatile means of implementing Reynolds stress

transport models into generally applicable aerodynamic codes for application to high-

speed compressible flows. This task, while straightforward in concept, is practically

very cumbersome because of the significant number of terms in the turbulent trans-

port equations and the nonlinear coupling between the mean flow equations and the

transport equations. Add to this tile unknown correlations resulting from the com-

pressibilty of the flow and one can see that it is a challenging task to effectively

develop a robust computational tool for studying complex compressible flows using



Reynolds stress turbulence models.

Mean conservation and transport equations used in the solution of compressible

turbulent flows are presented in Section 2. These include the conservation of mean

mass, momentum and energy, as well as the transport equations for the various tur-

bulent Reynolds stresses and turbulent dissipation rate. The models for the unknown

turbulent correlations in the high Reynolds number form of these equations are also

presented. The corrections to these models to account for the near-wall effects of

solid boundaries is discussed separately in Section 3. In Section 4, the 12 partial

differential equations (7 for the two-equation model) comprising the solution set are

recast in vector form. The dependent variable vector includes the density, velocities,

total energy, turbulent Reynolds stresses and dissipation rate. The discretization of

the resulting inhomogeneous flux equation, expressed in generalized coordinates, is

then discussed.

In the context of the present report where the intent is to establish the differential

and numerical framework for the solution of_he equations, it is not advantageous to do

a detailed predictive study of particular compressible flows. It is necessary, however,

to compute some representative flow fields in order to validate the capabilities of

the numerical code. Detailed comparisons will require the choice of a more accurate

near-wall model for the Reynolds stress formulation. The two flows that will be

considered here are the two-dimensional compression ramp and the three-dimensional

cone. For the ramp problem, the flow is computed using both the two-equation and

Reynolds stress models, and for the cone problem only the two-equation model is

used. The results from the calculations are given in Section 5 where profiles at

selected streamwise (ramp) or azimuthal (cone) stations are shown for both the mean

and turbulent quantities.
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2 Conservation and Transport Equations
...................................

It has been known for some time that the optimal way, both mathematically and

physically, of formulating both the mean conservation equations and the Reynolds

stress transport equations is to employ Favre or mass-weighted averages [3, 4]. This

is due to the resulting similarity between the incompressible and compressible form

of the equations. For completeness, the relevant mean conservation and Reynolds

stress transport equations are given here. An3, dependent flow variable f can be

decomposed using the usual Reynolds decomposition given by

where

f = f + f', (2.1)

or a Favre-average given by

where

= ,-_lim -rl fo _ f(x, t) dt

f=f+f", (2.2)

] = =-.Pf (2.2.)
P

In the equation development that follows, the dependent variables are the density

p, the pressure p, the temperature T, the velocity ui, the turbulent Reynolds stress

vii and the turbulent dissipation rate eO. The differential equations are written in

Cartesian tensor notation for compactness and consistency. In the following deriva-

tions, the "=" sign for the unknown correlations means the exact functional form,

and the "__" sign means the modeled or approximate form.

2.1 Conservation Equations

The mean conservation equations for mass, momentum and total energy can then be

written as

MASS

0tp + (_fik),k = 0 (2.3)

MOMENTUM

where

O_(_) + (_fi,-aj+ N_j),j = _j,j - (_,_j),j (2.4)



2

_-- 3-fiEtk,kSij + -fi(Eti,j + fij,i) (2.4a)

is the viscous stress tensor with _ the mean molecular viscosity calculated from
Sutherland's law.

TOTAL ENERGY

where

_iui

_j = -xT,j

-- _j

-- II H fv -- llrPll

pE u s = CvPttjl Jr--puivij -[-

It II

uiui (2.5a)
2

(2.5b)
-- II II II

pu i u i uj

2 ' (2.5c)

_j is the mean heat flux vector, and g is the mean thermal conductivity. The energy

equation is written in terms of the total energy because this formulation is necessary

in order to effectively employ shock capturing techniques in the numerical solution

algorithm [5].

2.2 Transport Equations

Equation (2.4) contains the Favre-averaged Reynolds stress tensor, ('Sj =- u_'u']).

In the utilization of a two-equation closure, the individual stress components are

obtained by way of a Boussinesq approximation relating the turbulent stresses to

mean velocity gradients,

_firij ..._ 3_fikSij __ 2__t [,o_ij 2 __ - (2.6)

with the eddy viscosity given by

k2
gt = C,_--, (2.6a)

£

where Sii(-- (fii,j + fij, i)/2) is the strain rate tensor, and C_, a constant usually taken

to be (0.09). This type of closure is clearly inaccurate in regions close to solid bound-

aries, since it assumes an isotropic distribution of the stresses with respect to the

kinetic energy. This is easily demonstrated by recalling that in the near-wall region

asymptotic analyses [6] show that while the streamwise and spanwise normal stresses

behave as the kinetic energy (i.e. as O(y2), where y is the distance normal to the

wall), the transverse normal stress r_ goes as O(y4). A near-wall correction is clearly

5



needed and this will be the topic of discussion in the next section for both the two-

equation and Reynolds stress models. Nevertheless, this two-equation approach is

quite useful since it couples the turbulent kinetic energy equation with an appropri-

ate scale equation so that there are only two transport equations which need to be
solved.

The Reynolds stress transport equation approach solves transport equations for

the individual stress components as well as an appropriate scale equation. While

the deficiencies with the use of the Boussinesq approximation are removed, they are

replaced with the complicating factor of needing to solve six transport equations for

the various stress components (the Reynolds stress tensor being symmetric for flows of

interest in aerodynamic flight). The incorporation of the Reynolds stress formulation

within a general Navier-Stokes solver is intended to ultimately serve as a means of

comparison with the two-equation formulation.

Since the turbulent kinetic energy equation is simply the contraction of the full

Reynolds stress transport equation, it suffices to outline tile modeling of the Reynolds

stress transport equation and point out any differences that may result.

REYNOLDS STRESS TRANSPORT

where the right hand side represents the turbulent stress transport produced by the

turbulent production, Pij, the deviatoric part of the pressure strain-rate correlation,

IId the pressure dilatation, IIid_, the mass flux variation, Mij, the viscous diffusion,

D_j, the turbulent diffusion, D_j, and the turbulent dissipation rate. These terms are

given by

P_j = ---_r_k_j,k -- -drjkfii,k

IId. p'u' p'u' 2 ,
'3 _- i,j + j,i -- -_Ptttk,k6ij

ilioj = 2 ,

tt t t t t

Dij = (6riku j -}- rYjkUi),k

D_j [=- "- "- " j i= -tpui ,iuk + (p uiSjk + p'u'jSik)],k

O.t ttt t i£ij ik j,k "_-- 6r j k tt i,k.

(2.7a)

(2.7c)

(2.7d)

(2.7f)

(2.7g)

The general form of the turbulent kinetic energy equation is obtained from Eq. (2.7)

using the definition/_" = 7ii/2.

The remaining transport equation that is used in both two-equation and Reynolds

stress closures adopted here is the turbulent dissipation rate equation. Using the

6
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defining relationship shown in Eq. (2.7g), it is derivable from the fluctuating mo-

mentum equation. As in the incompressible case (e.g. [7]), this equation is quite

complex and there is no direct experimental evidence about any of the terms in the

equation. The approach that has been taken to date in the development of a dissipa-

tion rate model that can be used in compressible flows is to partition the dissipation

rate into a solenoidal (incompressible) component and a compressible component

[8, 9]. Compressibility effects are then represented as asymptotic corrections to the

incompressible (solenoidal) dissipation rate. This allows for the direct utilization of

the incompressible form of the dissipation rate transport equation. The form of the

dissipation rate partitioning that is adopted in the present work is given by [9]

¢ -- t:s + _c

__ e,(1 + chMt 2) (2.8)

where al(= 0.6) is a numerical constant extracted from comparisons with direct

simulation data [2], and Mr(= v'_,i/g_o_) is the tm'bulent Mach number. A general

high Reynolds number form of the isotropic solenoidal dissipation rate equation has

been derived [10].

DISSIPATION RATE EQ UA T[ON

4 1 Do

Ot (-fie_) + (fikpe,),k = -- 5-fie_ fii,i + -pc, f, Dt---+Pc,-D¢o+D t +D v (2.9)
_$ £$

where P_ is the production, D_, is the destruction, D_ is the turbulent diffusion, and
D v is the viscous diffusion.

C$

2.3 Higher-Order Correlation Models

As can be seen from an examination of the compressible mean conservation and tur-

bulent transport equations, there are several higher order correlations which need to

be modeled. In the incompressible regime, several of these terms have well estab-

lished models which have been tested and proven in a variety of flow situations. The

modeling of the unknown correlations in the compressible case is not as mature so

there are more uncertainties in the predictive capabilities of these equations. Since

this is a very active research area at the present time, the focus of the present report

is to develop the numerical techniques for a rather general form of the equations.

As new models are developed, they then can be easily implemented into the existing
numerical structure.

In the equation for the total energy, Eq. (2.5), both the viscous diffusion and the

energy flux need to be modeled. The viscous diffusion term that appears in the total

energy equation is the contraction of the corresponding term in the Reynolds stress

transport equation, Eq. (2.7e). In the solution of the Reynolds stress transport equa-

tions in incompressible high Reynolds number flows, this term is frequently neglected



since it is usually dominated by turbulent diffusion effects. When it is taken into

account, it is usually treated simply in its gradient diffusion form and is written as

I I I Ioik j + ~- + + (2.10)

The contraction of Eq. (2.10) leads to the appropriate model for the viscous diffusion

term in the total energy equation.

The energy flux term, Eq. (2.5c), requires models for both the heat flux and

triple velocity correlation terms. At present there has not been any consistent effort

to develop alternatives to the gradient diffusion hypothesis for the heat flux term.

For simplicity, the heat flux term is then modeled as

--"--'_" " -_tT,j (2.11)puj i __

where _t is the thermal eddy diffusivity which is given here as (cf. Eq. (2.6a)),

_.t = C _k---_2- #____L (2.12)
_'Pr, e_ Prt"

As is seen by the form of Eq. (2.12), the thermal eddy diffusivity used here is simply

the usual eddy viscosity divided by the turbulent Prandtl number Pr,(= 0.9).

• The remaining contribution in the energy flux term is the triple correlation or the

turbulent diffusion term. This term is also present in the Reynolds stress equation in

its uncontracted form (cf. Eq. (2.7f). This term has also been traditionally modeled

with a gradient diffusion hypothesis by using a turbulent eddy viscosity. The form

adopted here is given by

_ ,, ,,_ ,, 2 -fik2(lij,k + rjk,i + 7"ik,j) (2.13)
ptt i ttj U k _ -- 5On ----_

where C_ is a numerical constant which is assigned the value of 0.18. This is an

isotropized version of the model used by Launder, Reece, and Rodi [11]. In their

model, the coefficient 6', was chosen to be 0.11, but in its present form the higher

value used here is more appropriate. This model incorporates the functional form of

the eddy viscosity relationship defined previously but with a different proportionality

coefficient, fit/ok, with at, = 0.75. Contraction of Eq. (2.13) will lead to the required

functional form used in the energy flux model.

The models required for closure of the total energy equation have now been identi-

fied and it is necessary to examine the remaining unknown correlations in the Reynolds

stress transport equations. The mass flux variation appearing in the Reynolds stress

transport equation is represented by Eq. (2.7d). Consistent with the other correla-

tions which are unique to tile compressible formulation, the mass flux term is also

modeled by invoking the gradient diffusion hypothesis;

-- C____.k___2_ P' - (2.14)
U_' ,-o -fiO'p es p '' = -fi2"--_p p,i

8
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where ap is a constant whose value is 0.5.

The modeling of the pressure dilatation term has been the subject of analysis

following the partitioning ideas invoked earlier for the dissipation rate term [12, 13].

The form proposed in [12] is used here and is given by

ja j + (2.15)

where a2(= 0.6) and a3(= 0.2) are numerical constants calibrated by comparison

with direct numerical simulations [12].

The only remaining model that needs to be determined is for the deviatoric part

of the pressure-strain rate correlation, Eq. (2.7b). At present there has been no work

directed toward the development of a compressible pressure-strain rate correlation

model. The approach taken has been to use variable density extensions of the incom-

pressible form of the model. The compressibility effects have then been isolated into

the pressure dilatation term which has been solely derived for compressible flows. In

light of this approach and the fact that there are a significant number of pressure-

strain rate models presented in the literature, it is sufficient in the present context

to present the functional form of a commonly used model and show its incorporation

into the numerical algorithm. One of the most commonly used pressure-strain rate

correlation models is the model of Launder, Reece and Rodi [11]. While it is only

linear in the anisotropies of the Reynolds stress, it has been used extensively on a

variety of flows. The high Reynolds number form of the equation is given by

nfj ¢,j, + (2.16)

¢i j l = -Cl-pebij (2.16a)

1 8C2 - 2 "D, 1¢ij2 - C211+ 8(Pij - -_PkkSij) 11 ( i -- 5Pkk ij)

30C2
2_k(_; o- + 5j,_ - 2fik,k3;j) (2.16b)55

where C1 and C_ are numerical constants given by 3.0 and 0.4, respectively, and

bij -_ _-_(Tij- _kt_ij) (2.17a)

Dij = ---prikUk,j -- pT"jk(_k,i (2.17b)

It should be emphasized that the pressure-strain rate correlation is the subject of

extensive research and that other models have been proposed which should perform

better than the above model (e.g. [14] ). However, comparing a variety of closure

models is not the intent of the present report, but is a course of study being actively

pursued and will be reported on later.

The remaining equation that needs to be modeled is the solenoidal dissipation rate

equation, Eq. (2.9). This equation has been examined recently [15, 10] for application

to compressible flows. The models for the terms in Eq. (2.9) are given by



1Dp

P Dt - [1 - m(_ - 1)]fii,i (2.18a)

cs_ . 1
Pc, = -C_l _ prij (ui,i - -__k,kSij ) (2.18b)

7?_, C -_
= _2P k

(2.18c)

D _ = C_ rkles,t (2.18d)
\ e_ /,k

D v = (_,,_),k (2.18e)
¢s

where C_1, C_2 and C¢ are modeling coefficients which take the values 1.50, 1.83 and

0.15, respectively, 3' is the ratio of specific heats (= 1.4), and rn(_ 0.7) is the exponent

of a power law approximation for the mean molecular viscosity [16].

Equation (2.9) can then be rewritten as

+- _2p_- + C_ (_e,,k),k (2.19)
' \ C:s ,k

This now completes the specification of the transport equations and closure models

needed for the solution of turbulent flows. The models presented up to this point have

been high Reynolds number models, that is, models applicable to flows away from

walls. In the presence of solid boundaries, the desire is to integrate directly to the wall

so that wall functions do not have to be implemented. While the use of wall functions

reduces the stiffness of the equation set, it constrains the application of the models

to attached flows. Integrating directly to the wall requires near-wall modifications

to the models already presented. For clarity, these near-wall modifications will be

discussed in the next section for both the two-equation and Reynolds stress models.

10
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3 Near-Wall Corrections

The equation sets presented in the previous section outlined the high Reynolds

number form of the equations. In the presence of solid boundaries, these equations

need to be modified to account for the low Reynolds number flow near the solid

surface. This area has received considerable attention in the incompressible regime

(e.g. [17, 18]) while in the compressible regime work is only beginning [10]. Due to

the uncertainty in developing such near-wall models at this point, it suffices here to

show the types of modifications that are incorporated into the high Reynolds number

models of the previous section.

As was alluded to in the previous section, the two-equation turbulence models

suffer from inaccurate distribution of Reynolds stress values in the vicinity of walls.

This inaccuracy is accounted for by introducing a wall damping function into the

defining relationship for the eddy viscosity, Eq. (2.6a). The modified near-wall form
is

_2

= C. f .-p--,

where the damping function f_, is given by

(3.1)

+ [1 (
where y+ is the distance normal to the wall in wall variables, and Ret is the turbulent

Reynolds number defined as k2/;,cs. Note that far from the wall the value of f,

is delimited by unity to consistently merge with the high Reynolds number form of

the models. This analytic representation for f_ is by no means unique; however,

comparison with direct simulation results [19] in incompressible boundary-layer flow

has shown this to be a reasonable representation of the correct near-wall behavior.

Note that it also carries over to the subsequent implementation of the eddy viscosity

in the other closure approximation of the previous section. This includes the triple

correlation model used in Eq. (2.13) which now becomes

2 C k2
-_u_'u]ug __ -5- fi sf,'_(Tij,k + rjk,i + Tik,j).

or, for the two-equation model

(3.3)

1 ,,_., , Pt
~ ---(k,k + rik,i).-_-_ui ul Uk - (3.4)

O"k

where O'k = 0.75.

The remaining term that needs to be modified in the equations to account for the

presence of solid boundaries is the destruction term, T)_, in the solenoidal dlsspation

rate equation. This term is then rewritten as

11



t

C r --_8 2

= (3.5)

where [6]

[f2= 1-exp _ 1-_exp\ 36 ]

Note that in the absence of f2 the destruction term increases without bound as the

wall is approached.

For the Reynolds stress closure, a near-wall correction needs to be used for the

pressure-strain rate Correlation. This has been the topic of research in wal!rbounded

incompressible flows for some time [18], but with mixed success. Nevertheless, since

the intent here is not to validate or compare models, it suffices to implement a near-

wall correction which typifies the form and structure of a near-wall closure that can

be implemented in the present numerical formulation. The near-wall modification

that is adopted here is a variable density extension of the Shima model [20]. Even

though this model has deficiencies which will be pointed out shortly, it is readily

amenable to implementation in complex flows because it lacks any dependency on

the wall normals [21] which cause ambiguities in complex flow situations. The Shima

model introduces a near-wall correction to the pressure-strain correlation given by

II_j __¢i*jl+ ¢_j2 + ¢ij_ (3.7)

where

¢i*jl _- -C'_-pebij (3.8)

with

Cl = c, + - c,)f 

jew = exp [-(0.015v/ky/$)4], (3.8b)

¢02 given by Eq. (2.16b), and C1 = 3.0. The coordinate y is measured normal to the

surface. The near-wall correction ¢ij_ is given by

d)ij2 = [a( Pij - PkkSi.i) + fl-fil,:(fti,j + fij,i- 5fik,kS_j)]f_, (3.9)

where a = 0.45 and/3 = 0.08.

A near-wall correction to the solenoidal dissipation rate needs to be implemented.

For consisitency, the model proposed by Shima [20] is again used in the present study.

The solenoidal dissipation rate equation is easily modified to include the near-wall

Shima correction by replacing Ca with a C_"1 defined as

C_'I = Ce,(i + f_), (3.10)

12
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and adding

7 C es_s (3.11)

where
02k

_ = e_ - V OxlOx_ (3.11a)

to the right hand side of Eq. (2.19). With the introduction of the near-wall model,

the closure coefficients Cd, C_2 and C_ are given by 1.35, 1.80 and 0.15, respectively,

and f_ is given by Eq. (3.8b). Since the destruction term, :Des, in the Shima model

does not include any near-wall damping effect (f2 = 1, cf. Eq. (3.5)), it is readily ap-

parent that the destruction term in the solenoidal dissipation rate equation increases

unbounded as the wall is approached. The effect of this deficiency becomes more

pronounced as the grid resolution is increased and, therefore, needs to be corrected

for quantitative comparisons.

The true test of these near-wall corrections lie in their application to a variety of

wall-bounded compressible flows. The intent in this work is to develop the numerical

framework for application to such flows and future work will focus on the testing

of different types of models which are better posed and more suited for comparison

purposes.

13



4 Numerical Implementation

In the previous sections, the mean Navier-Stokes and turbulent transport equa-

tions were developed using Cartesian tensor notation. This notation compacted the

form of the equations so that the various models could be discussed with some gen-

erality. Of course the component equations need to be discretized - for a total of 7

equations for a two-equation model and 12 equations for the Reynolds stress model.

It is most convenient to discuss the discretization of these equations by defining vector

arrays for the dependent variables and analyzing a set of vector equations. In ad-

dition, for notational simplicity, the overbars and tildes are dropped from the mean

variables with the understanding that these are Favre-averaged variables.

Expanding Eqs. (2.3), (2.4), (2.5) and the modeled forms of (2.7) and (2.9), the

mean Navier-Stokes and turbulent transport equations can be written in vector form

in an arbitrary coordinate system (_, r/, _) as:

00 0(k- kv)
--+ +
Ot O_ Orl

where 1_ is the vector of dependent variables

0(d-dr) 0([z- H.)
+ - S (4.1)

p

flu

pv

pw

pE

prj:,:

I pryy

pTzz

pvxy

prxz

pryz

pe

(4.1a)

and F, G, H are the inviscid (convective) fluxes, Fv, Gv, H. are the viscous (diffu-

sive) fluxes, and S represents the source terms due to production, destruction, and
redistribution.

An equation of state is required to complete the system of equations. The perfect

gas equation of state is used in this study:

1 2
p = (7-1)[pE - _p(u + v_ + w_) - pk] (4.2)

The presence of the turbulent kinetic energy term in the equation of state arises

from the Favre-averaging and creates a strong coupling between the mean equations

and the normal Reynolds stress components for the Reynolds stress models or the

turbulent kinetic energy equation for the two-equation models.

14



4.1 Discretization

The semi-discrete, finite-volume form of Eq. (4.1) is written as:

(O0,/Ot)#k + [(,b-_)v_M]_+,/_,j,k -[(t"-
+[(G- Gv)Vq/J]i,j+l/2,k - [(G - Gv)_7_/J]i,j_l/2,k

+[(//- Hv)V_/J]i,j,k+I/2- [(/-/- fJ[v)V_/J]i,j,k-i/2

= 0

(4.3)

where the fluxes are defined at the interfaces of the computational cell bounding the

cell-average value, Qijk. The definition of the numerical flux function approximating
the interface flux determines the characteristics of the numerical scheme. The current

emphasis is to develop a method capable of calculating high-speed flow about complex

configurations. Problems of interest include separated flows, flows with large pressure

gradients, and shock/boundary-layer interactions. This requires that we develop a

scheme with good shock-capturing capabilities, good accuracy and general geometric

capabilities.

Upwind schemes have proven reliable for calculating flows with strong shocks.

Additionally, Roe's approximate Riemann solver [22] has been shown to be accurate in

viscous flows [23]. Upwind schemes allow the dissipation required of shock-capturing

schemes to be scaled according to each wave type recognized by the flux function,

thereby minimizing the numerical dissipation. (See e.g. [24] for an excellent review of

upwind differencing techniques.) The Roe approximate Riemann solver for the mean

flow equations coupled with two-equation turbulence models was previously derived

and reported in [5]. Section 4.2 derives the scheme for the mean flow equations

coupled with a Reynolds stress turbulence model.

Second-order spatial accuracy for the inviscid terms is attained by using the

MUSCL scheme of van Leer [25]. The variables interpolated are p, ui, p, rij, and

e. The rain-rood limiter [26] is used to avoid spurious oscillations in the neighbor-

hood of a discontinuity. Other limiters are available and will be investigated in future

work to improve monotonicity and convergence behavior.

The remaining terms to be discretized are the diffusive fluxes and the source

terms. Consistent with the elliptic nature of the diffusive fluxes, a finite-volume

representation of a second-order accurate central-difference operator [26, 27] is em-
ployed. Derivatives required in the diffusive flux evaluation at the cell interface are

approximated with Gauss's divergence theorem, integrating around an auxiliary cell

centered at the interface. Flow variables required at this interface are obtained from

arithmetic averaging of neighboring cell averages. Derivatives required for the source

terms are also calculated using Gauss's divergence theorem by integrating around the
computational cell.

To accomodate geometrically complex configurations, we implement a multi-block

procedure which requires C o grid continuity.
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4.2 Roe Flux-Difference Splitting

The interface flux for tile finite volume formulation is calculated in each of the three

coordinate directions as the solution of a locally one-dimensional Riemann problem

normal to the cell interface (the so-called operator splitting approach)

Ot + On = 0 (4.4)

(4.4.)
n>0

where n is the coordinate normal to the cell interface (_, v/or _) and

pU

puU + fi_p

pvU + fiyp

pwU + fi_p

pUH

F- IWl p r=
J pUTty (4.4b)

pUT_z

pUT:_

pUrx_

pUryz

pUe

= fixu + fiyv + fizW. (4.4c)

The solution of the Riemann problem results in a shock wave, a contact discontinuity,

and a rarefaction evolving in time at the interface (see Fig. 1). The interface flux

can then be determined as the flux at the left or right state incremented by the flux

differences crossed from that state to the interface. The exact solution of the Riemann

problem requires an iterative procedure and is quite expensive. A cheaper alternative

developed by Roe is to construct the solution to the approximate, linearized problem:

_-q+_ 0=0 (4.5)

where the jacobian matrix, A = 0F/0Q, is evaluated at an average state such that

it satisfies the jump condition between the flux states at the right and left:

F.- TL = _(On- OL) (4.6)

(The complete form of the Jacobian matrix and the symmetrization matrices is given

in the Appendix). The Jacobian matrix, A, has twelve eigenvalues, Ai,
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The Roe averaged variables that satisfy Eq. (4.6) are

(4.7)

= _fi-i-PR (4.8a)

= v_HL + v_HR

_+v_
A

q_= i_ + _=+ _2

(4.8b)

(4.8c)

(4.8d)

(4.8e)

(4.sf)

(4.89)

v_rijL + V_T;jRA

T/j =

k = (_ + _ + _)/2

(4.8h)

(4.8i)

+ v/_ (4.8/)

The interface flux can finally be written as the average of the interface flux calcu-

lated from the left state crossing negative running waves and the right state crossing
positive running waves, as:

-- 1-

This may be written in a more computationally efficient manner as

Fi+1/2 -_ _[FR -_ "-EL -- E l+XFl]

(4.9)

(4.10)
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where the flux differences can be derived as:

_p_ Av/d2)

1
fi
f)
63

A

A

ry_
rz_
A

r_y

rxz
A

r_

+_

i_vll/xP-_al= IX_-_l_,p-_,',_J 2a_

with A(.) = (')R - (')L.

0

Au -- h_AU

Av - fiuAU
Aw - hzAU

ilAu + tar + thAw - UAU + Ak
A r_x

Aryy
A r_

A T"xy
Arxz

A r_
Ae

1

fi + fi_h

z3+ fluff

zb + hzh

h+ua

Tyy
A

Tzz
A

T.y
A

ry_

1I
fi - hxfi

huh

zb - hzh

r_u
A

"rz_

Txy

Txz
A

%.

(4.10a)

(4.10b)

(4.10c)
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4.3 Time Integration

The conservation and transport equations given by Eq. (4.1) must be integrated

in time to provide a steady-state solution. The Reynolds stress and two-equation

turbulence models are known to exhibit stiff behavior, especially in the near-wall

region. Therefore, an implicit time integration is used to integrate the equations.

The Euler implicit time integration scheme can be written in delta form as:

[' 1Z-£i + - Av)+ - + - Cv)- D  XQ= -R n (4.11)

where AQ = Qn+l _ Qn and A = OT'/OQ, B = OG/OQ, C = OH/OQ, A_ = OF_/OQ,

B_ = Od_/OQ, C_ = ofI_/OQ, D = OS/OQ are the Jacobian matrices and R '_ is the

steady-state residual at time n. Eq. (4.11) results in a large banded system of block

matrices which must be inverted at each time step to update the solution.

The storage requirements to solve Eq. (4.11) exactly for a large three-dimensional

problem are prohibitive. Therefore, an approximate solution at each time step is

obtained by solving a factored form of the equation. A spatially split, approximate

factorization scheme can be written as the following four sweeps (the fourth sweep is

a point implicit treatment of the source terms) through the flowfield:

[I- JAtD] AQ' = -JAtR _

[I + JAt_(m- Av)]AQ" = AQ'

[I + JAtf,(B- B_)]AQ'" = AQ"

[I + JAt6¢(C-C_)]AQ = AQ"

Qn+l = Qn+AQ

(4.12)

The first factor requires only a block inversion at each point in the flowfield. The

three spatial factors require the inversion of a block pentadiagonal system (block

12 x 12 matrices for Reynolds stress models or block 7 × 7 matrices for two-equation

models) in each of the three coordinate directions (_, r], ¢') as the computational stencil

for the inviscid fluxes spans five cell-centers. A computational savings can be gained

by treating the inviscid fluxes as first-order accurate in the implicit sweeps. This

reduces the system to block tridiagonal matrices. There is no reduction in accuracy at

steady-state due to the implementation in delta form. A second benefit of first-order

implicit differencing of the inviscid fluxes is gained from the unconditional diagonal

dominance of the first-order system.

The source terms are currently treated in a point implicit manner in the above

algorithm. Recent work on approximate factorization schemes with source terms [28]

recommends including the source terms in the spatial factors rather than as a separate

inversion to reduce factorization error. The current scheme has been chosen to avoid

storing the source Jacobian and to facilitate the implementation (at a future date) of

a diagonalized version of the scheme [29].
The source term is a function of both the conserved variables and derivatives

of the conserved variables, S = S(Q, cOQ/Oxi). For the current calculations, D is
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J

simplified to include only the implicit contributions from the conserved variables in

order to preserve the point implicit treatment. The inclusion of the OS/O(OQ/Oz_)

terms is possible in the spatially split factors, but is not included at present. The net

result of neglecting the contribution due to the derivatives of the conserved variables

is to essentially decouple the turbulence transport equations from the mean flow

equations in the source term treatment. This is exactly what most researchers have

implemented when they solve the mean flow equatlons coupled and then update the

turbulence tranpsort equations separately. However, there is still a coupling of the

normal stress components with the mean flow equations as can be seen from the
Jacobian matrices.

=

i

T
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5 Results

As mentioned previously, the intention in this report is not to evaluate turbulent

closure models but to develop a numerical methodology which is capable of using

either two-equation or Reynolds stress closure models in the solution of compressible

flow equations. The task of evaluating closure models in an unambiguous fashion

requires the use of a common numerical procedure so that any bias from the numerics

can be consistently minimized. As was discussed in the previous section, there are a

variety of ways of handling both the coupling of the equations and the differencing

of the various terms. With the development of the technique outlined in this report,

it will now be possible to evaluate a variety of closure models. This evaluation is

presently just beginning and will be the subject of future reports.

In this section, the results from some initial computations using both two-equation

and Reynolds stress models will be presented. These are not intended as a compari-

son of model performance, rather these are intended to illustrate the numerical code's

capability. In fact, a fair comparison of closure models in wall-bounded compress-

ible flows may not be possible at this time. As has been alluded to earlier, the high

Reynolds number form of both two-equation and Reynolds stress models has been

fairly well established, even in the compressible regime for moderately high Mach

numbers. However, the development of appropriate near-wall models for these clo-

sures in order to integrate directly to the wall has not been completed, particularly in

the compressible high Mach number regime. This is particularly crucial when one real-

izes that the stiffness problems commonly associated with the Reynolds stress models

are due to an improper balance of terms in t!:e modeled equations for the near-wall

region. Another factor complicating any sensible comparison of two-equation and

Reynolds stress models is the lack of experimental data. Even in cases where there

are data, the data are by no means complete, that is, measurements of turbulence

profiles are rare and without them any comparisons of model performance is indi-

rectly obtained through comparisons with mean flow variables. The approach taken

here is to use a variable density extension of an incompressible near-wall model and

to analyze its ability to calculate the turbulent stress components. The k - e version

of the Speziale, Abid and Anderson model [6] will be used for the two-equation tests

and the Shima model [20] will be used for the Reynolds stress test.

One test case that will be presented is the two-dimensional flow over a 10 ° com-

pression ramp. The ramp flow is Mach 3 with a mean flow Reynolds number of

10 x 10 6 and adiabatic wall conditions. The free-stream temperature, T_, is set at

300°K. The flow field will be calculated using both the two-equation and Reynolds

stress models.

A second test case is the three-dimensional flow over a 5° cone at 2 ° angle of

attack. The cone flow is Mach 3.5 with a mean flow Reynolds number of 2.21 x 10 r

and adiabatic wall conditions. The free-stream temperature is 311°K. The cone

flow field will be run with the two-equation model only just to validate the three-
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dimensional capability of the code.

The boundary conditions for the calculations are applied explicitly. The inflow

data are completely set to free-stream values for supersonic calculations. The free-

stream turbulent kinetic energy level is speci_ed as 1%, and the free-stream turbulent

eddy viscosity is assumed equal to the free-stream molecular viscosity. From the

free-stream value of turbulent kinetic energy and turbulent eddy viscosity, the free-

stream value of solenoidal dissipation rate is obtained from Eq. (2.6a). An isotropic

distribution is assumed for the normal components of the Reynolds stress tensor

with the shear stress components set to zero for consistency. Outflow boundary

conditions are zeroth-order extrapolations of the variables. The farfield boundary

conditions for mean variables are held to free-stream values since the grid domain

extends outside the bow shock of the flat-plate leading-edge (for the ramp problem)

or the cone apex. Turbulence variables are obtained from zeroth-order extrapolation

from the interior. This Neumann condition is used to minimize any farfield bias to

the interior turbulence levels. The wall boundary conditions are specified as zero

velocity (ui = 0), zero Reynolds stresses (Tij = 0), and adiabatic or specified wall

temperature. At the wall, the pressure is extrapolated from the interior solution with

a zeroth-order extrapolation, and the solenoidal dissipation rate is equated to the

second derivative of the turbulent kinetic energy (a consequence of evaluating the

turbulent kinetic energy equation at the wall).

The results from the ramp calculations will be shown first. The domain was

discretized using a 101 by 51 mesh, with high grid clustering in the near-walt region,

for both the two-equation and Reynolds stress calculations. It does not appear to

be worthwhile to do grid refinement studies in the context of the present report

since the closure models have not been finalized nor has a suitable (sufficiently well

documented) set of test cases been chosen here. These are the topic of future research

and are presently being initiated. Nevertheless, with the same grid structure, it will

be possible to get a qualitative comparison of both the two-equation and Reynolds

stress closures. The mean pressure and velocity, turbulent Reynolds stresses (kinetic

energy) and turbulent dissipation rate variables that will be shown are all normalized

by the free-stream mean pressure, free-stream mean density, free-stream mean velocity

and flat-plate/ramp length.

Pressure contours for the 10 ° ramp using the two-equation model are shown in

Fig. 2. Note that the domain shown is inclusive of the plate leading-edge (lower left

corner of figure). The shock is captured very cleanly with no apparent oscillations,

validating the shock capturing properties of the upwinding procedure for the coupled

set of equations. The apparent thickening of the shock at the outer extent of the

domain is due to the coarse grid in this region resulting from high grid stretching to

provide adequate resolution in the near-wall region. The shock appears to affect the

boundary layer near the start of the ramp and then has minimal direct affect farther

downstream; however, as subsequent plots will show, the start of the ramp will have

an affect on the flow field farther downstream along the ramp.
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The mean velocity profiles are shown in Fig. 3. These profiles are the Favre-

averaged Cartesian mean velocities ui = (u, v, 0), normalized by the free-stream ve-

locity U_, with the domain set between x = 0.0 and x = 1.0. The start of the ramp

is located at x = 0.5. The four stations show one set of profiles upstream of the ramp

(x ---- 0.396), a second at the start of the ramp (x = 0.499), a third slightly down-

stream of the ramp (x = 0.598), and a fourth further downstream along the ramp

(x = 0.808). The figure shows the dominance of the x-component of velocity over the

entire range, although after the ramp, the y-component does increase significantly

over its flat-plate value. At the first station, the 5-velocity is essentially coincident

with the vertical axis. The small backflow at the start of the ramp can be seen in the

x = 0.499 plot.

Streamwise variation of the turbulent kinetic energy is shown in Fig. 4. The

downstream development of the turbulent kinetic energy is clearly altered by the

presence of the ramp. The ramp causes an increase in the turbulent energy away

from the wall at the expense of the peak energy level near the wall (x = 0.499).

Further downstream, the profile recovers and tends toward its flat-plate distribution.

Figure 5 shows the corresponding turbulent dissipation rate evolution. Once again,

there is seen a significant effect on the turbulence as the flow is subjected to the

compression ramp. At x = 0.499, the peak in the dissipation rate is shifted away

from the wall and then by x _ 0.808 it has recovered just as in the turbulent kinetic

energy case. Unfortunately, the quantitative aspects of these results are questionable,

since the dissipation rate should have its maximum value at the wall (e.g. [10]).

Clearly, the model used is unable to capture this trend and needs to be improved.

Such improvements are the focus of research at this time, and as these improvements

in the models are developed they will be incorporated into the numerical code.

As a further validation of the code capabilities, the previous ramp flow was also

computed using the Reynolds stress turbulence model of Shima [20]. The pressure

contours for the flow are shown in Fig. 6. The results are qualitatively consistent

with the results from the two-equation model. As was shown in the previous results,

the shock itself does not affect the turbulence quantities within the boundary layer

flow, but the effects of the ramp start will have an effect on the turbulence quantities

both at the start as well as farther downstream along the ramp. Again the shock is

captured cleanly with minimal oscillations, verifying the shock capturing capability

of the scheme including Reynolds stress models. The shock thickening at the outer

region of the domain is again due to grid coarseness in this region.

Mean velocity profiles are shown in Fig. 7 at the same streamwise stations shown

for the two-equation model. The start of the ramp has the effect of retarding the flow

near the wall, with the _ velocity profile at x = 0.499 showing that the flow is near

incipient separation. The two-equation results did show separation at this point, but

it was rather weak. Clearly, the initiation of the ramp causes a strong deceleration of

the flow and this affects the turbulence at the ramp start as well as downstream. The

velocity profiles computed using the Reynolds stress model are fuller than those from
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the two-equation model suggesting that the predicted wall skin friction is higher. As

in Fig. 3, the _-component velocity only begins to have an impact at the ramp start,

and in this case the effect on the flat-plate and near the ramp start are minimal.

The turbulent kinetic energy shown in Fig. 8 is obtained from the trace of the

normal stress components of the Reynolds stress tensor. The qualitative features of

the profiles are similar to those obtained using the two-equation model. The effect of

the ramp once again causes the turbulent kinetic energy to increase farther from the

wall and then to subsequently relax back farther downstream. A comparison with the

two-equation results in Fig. 4 clearly shows that the Reynolds stress closure produces

a significantly smaller response to the ramp start than the two-equation closure. The

difference in magnitude between the two-equation and Reynolds stress results is easily

explained. In the two-equation case, the Reynolds stress components are extracted

from the Boussinesq approximation which causes a 'rapid response' of the stresses

to the abrupt change of geometry at the ramp start; whereas, the Reynolds stress

model has inherent relaxation and memory characteristics that cause a more tempered

response to such geometric changes.

Figure 9 shows the turbulent dissipation rate profiles at various streamwise sta-

tions. These results suffer from the same deficiency that the dissipation rate from the

two'equation model had in that the dissipation rate does not peak at the wall. Other-

wise, the trends are the same as in Fig. 5 where the ramp caused the dissipation rate

to increase initially and then relax back to its flat-plate level farther downstream. In

this case, the turbulent dissipation rate levels are less than the corresponding levels

for the two-eqaution closure. This is, of course, consistent With trends shown for the

turbulent kinetic energy.

An advantage of the Reynolds stress closure model is the ability to give the be-

havior of the component stresses. The normal stress components are shown in Fig. 10

where the 7_x, ryu and r_ Reynolds stresses are shown. As the figure shows, the rx,

and r_z components dominate in their contribution to the turbulent kinetic energy.

The start of the ramp initiates a large increase in the level of component energy from

the flat-plate levels, which as the kinetic energy plot shows, persists downstream to

the x = 0.598 station. All three components show an increase in energy level over

a wide region of the boundary layer at this station. This 'overshoot' has diminished

somewhat by the station x = 0.808.

The only component of the Reynolds shear stress to survive in this two-dimensional

flow is the r_u component. Figure 11 shows its variation with downstream distance.

The shear stress profile is also affecte d by- the ramp start, although not to the same

extent as the other turbulence profiles. In addition, downstream of the ramp start,

along the ramp, the Reynolds shear stress goes positive in the near-wall region. While

some regions of positive shear stress may be expected near the point of incipient sep-

aration, the wide streamwise extent of the positive shear stress values is questionable.

This widespread effect is probably due to an error in the near-wall model and/or

the grid resolution in this region. Shima's Reynolds stress model was developed for
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incompressibleflows and may prove to be inadequatefor compressible,high Mach
numberflow fieldswith a simple variable density extension. Downstream of the ramp

start, the shear stress levels relax back to their flat-plate levels.

The next set of results to be shown are for the three-dimensional turbulent flow

over an axisymmetric cone at angle of attack. The domain was discretized into a 49

by 65 by 25 mesh (streamwise by normal by circumferential), with high grid clustering

once again near the solid surface. Three-dimensional calculations are computationally

intensive and for the purposes of the present report, only a two-equation turbulent

closure model was applied to this flow. The variables shown will be normalized as

before in the ramp case.

Figure 12 shows the cone at angle of attack to the mean flow with pressure contours

superimposed. The bow shock is again captured with no apparent oscillations. The

grid has extreme resolution in the near wall region (approximately 20 grid points

are within the region y+ < 20), resulting in an extremely coarse grid at the outer

boundary and thick bow shock. Inviscidly, this cone flow field would exhibit conical

scaling, where the solution would be constant along rays eminating from the cone

apex. Due to viscous effects, the flow field exhibits only quasi-conical behavior away

from the cone apex, allowing us to look at a single cross-section of the calculation to

gain qualitative, but not quantitative, information about the entire flow field. For this

purpose, the station x = 0.83 (based cone length of unity), which is well downstream

of the cone apex, is chosen to show the azimuthal variation of the mean and turbulent

quantities.

The Cartesian mean velocity components/ti = (u, v, tb) (scaled by the free-stream

velocity) are shown in Fig. 13 at four azimuthal locations: ¢ = 86.25 ° (top, leeward

side), ¢ = 26.25 °, ¢ = -26.25 °, and ¢ = -86.25 ° (bottom, windward side). The ver-

tical coordinate is the radial distance measured from the x-axis. In all the figures, the

normal and circumferential velocities have minimal effect on the total mean velocity.

From the streamwise component profile, it appears that there is a strong suppression

of the turbulence on the windward side of the cone where the boundary layer is quite

thin. On the leeward side, a thicker boundary-layer region is present, since the layer

is not being constrained by a strong impinging mean flow.

Figure 14 shows the corresponding azimuthal variation of the turbulent kinetic

energy. The figure shows that the boundary layer is quite thin on both the leeward

and windward sides of the cone, although the leeward side boundary layer thickness

is about twice the size of the windward side. The peak turbulent intensity, which

occurs very near the wall, is relatively constant over the azimuthal range of the plot.

The solenoidal turbulent dissipation rate is shown in Fig. 15. As expected, the

trends are consistent with the kinetic energy profiles, with the peak dissipation rate

increasing as the windward side of the cone is approached. Note that significant

dissipation levels are constrained to regions very near the wall.
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6 Concluding Remarks

The purpose of this report is to :establish both the diFerential and numerical

framework for the development of a numerical algorithm for the solution of compress-

ible turbulent flow problems with both two-equatlon ancl Reyn0ids stress turbulence

closure models_ As the report has shown, the task is straightforward, but rather cum-

bersome. There are a significant number of unknown correlations which need to be

modeled and which have not received sufficient attention by the scientific community

to be adequately validated. This validation process, however, can only be accom-

plished by the development of the type of numerical code outlined here. With the

present tool, a variety of complex flows can be examined Using both the two-equation

and Reynolds stress closure models with the dual goal of developing better closure

models and comparing the predictive capabilities of both two-equation and Reynolds
stress formulations.

The test problems that were computed here were chosen to show the capabilities

of the code rather than to compare the models used. If a formal comparison were

intended, improved closure models would need to be used. Nevertheless, even with

this type of qualitative study, results were obtained for both the ramp and cone

problems which showed some interesting chararcteristic features of the mean and

turbulent flow field. Unfortunately, a more thorough study is rather computationally

costly and should only be performed after the methodology is validated. Work is

beginning on this next phase of research where improved versions of the two-equation

and Reynolds stress models will be implemented into the code which will be used for

predicting selected flow problems.
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Appendix

The aacobian matrices, (A,B,C), may be written for n = (_, r], ¢') as:

u,I, - r;'x _=H - (-_-_),.,_ %I-/- (_,-,)_ %x - (_-_)u,_ -_ -(-r-_)_/_ -(-,-_)_/u -('_-*)'P/_ o o o o

-- _'r=e _e 'r== fz_ :-:= Az 're: 0 _" 0 0 0 0 0 0

-- U'r¥_ Am 'r¥_V _W _rJVg, hz_'¥g 0 0 _ 0 0 0 0 0

-- _"rz.s h: _"zz _ _'zz _z'rzz 0 0 0 _ 0 0 0 0

- "_rz: _: _':: A_rzz Az_'zz 0 0 0 0 0 '_ 0 0

--_,_ Ace ¢'*i_¢ flee 0 0 0 0 0 0 0 '_

where

U = fixu + fi_v + fi, w

1
= $(7 -- 1)q 2
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B

oF = TAT-1 The symmetry matrix, T,The Jacobian matrix may be written as -_-

is given as:

T=

1 0 0 1 1 0 0 0 0 0 0 o

u [z r_x u+_xa u-fixa 0 0 0 0 0 0 0

v ly _y v+_a v-_ya 0 0 0 0 0 0 0

w [_ rhz w+fi_a w-fiza 0 0 0 0 0 0 0

q2/2+k V W H+Ua H-'Ua 1/2 1/2 1/2 0 0 0 0

r== 0 0 rxx rz= 1 0 0 0 0 0 0

ruy 0 0 Tyy ryy 0 1 0 0 0 0 0

r,, 0 0 "r.z "r,,. 0 0 1 0 0 0 0

rzy 0 0 r:r.y "rzy 0 0 0 1 0 0 0

r._z 0 0 "rxz "r_:z 0 0 0 0 1 0 0

ryz 0 0 ryz Ty_ 0 0 0 0 0 1 0

e 0 0 _ e 0 0 0 0 0 0 1

where

W = rh_u + rh_v + rhzW

m
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The inverse of the symmetry matrix, T -1, is given as:

T-1 _

1 - Tq_/2 Tu Tv

- V _ i_,

- W rhx _

Tq2/4- U/2a G/2a- Tu/2 %/2_ - T_/2

Tq2/4 + U/2a -fix/2a- Tu/2 -fiy/2a- Tv/2

- "rxz 0 0

- ryy 0 0

-- rz. 0 0

-- rxy o 0

-- rxz 0 0

--Tyz 0 0

--e 0 0

Tw -T T/2 T/2 T/2 0 0 0 0

l_ 0 0 0 0 0 0 0 0

mz 0 0 0 0 0 0 0 0

(zz/2a- Tw/2 T/2 -T/4 -T/4 -T/4 0 0 0 0

-hz/2a-Tw/2 T/2 -T/4 -T/4 -T/4 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

where

T--(7-1)/a 2

The vectors 1 and rh are non-unique, mutually orthogonal to n, and tangent vec-

tors in the plane of the cell interface. The flux differences given in Section 4 use

metric identities to provide a form which is independent of these tangency vectors for

computational efficiency.
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Figure 1: Diagram of shock and rarefaction wave solution to Riemann problem.

33



Figure 2: Pressure contours for Mach 3, 10° compression ramp using a two-equation
turbulence model.
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Figure 3: Streamwise variation of mean velocity profiles for 10 ° compression ramp

using a two-equation turbulence model: ///Uo_, --; _/U_, -- --
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Figure 4: Streamwise variation of turbulent kinetic energy profiles for 10° compression
ramp using a two-equation turbulence model.
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Figure 5: Streamwise variation of turbulent dissipation rate profiles for 10 ° compres-

sion ramp using a two-equation turbulence model.
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Figure 12: Pressure contours for Mach 3.5, 5 ° cone at 2 ° angle of attack using a

two-equation turbulence model.
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Figure 14: Azimuthal variation of turbulent kinetic energy for 5 ° cone at 2 ° angle of

attack using a two-equation turbulence model.
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Figure 15: Azimuthal variation of turbulent dissipation rate for 5 ° cone at 2 ° angle

of attack using a two-equation turbulence model.
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