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Abstract

A concurrent system consists of processes communicating via shared objects, such

as shared variables, queues, etc. The concept of wait.freedom was introduced to cope

with proce3J failures: each process that accesses a wait-free object is guaranteed to get

a response even if all the other processes crash. But what if these wait-free objects

themselves fail? For example, if a wait-free object "crashes", all the processes that

access that object are prevented from making progress. In this paper, we introduce the

concept of fault.tolerant wait-flee objects, and study the problem of implementing them.

We give a universal method to construct fault-tolerant waR-free objects, for all types

of "responsive" failures (including one in which faulty objects may "lie"). In sharp con-

trast, we prove that many common and interesting object types (such as queues, sets,

and test&set) have no fault-tolerant wait-free implementations even under the most

benign of the "non-responsive" types of failure. We also introduce several concepts and

techniques that are central to the design of fault-tolerant concurrent systems: the con-

cepts of self-implementation and graceful degradation, and techniques to automatically
increase the fault-tolerance of implementations. We prove matching lower bounds on

the resource complexity of most of our algorithms.

"Researchsupportedby NSF greatsCCR-8901780 and CCR-9102231, DARPA/NASA Ames grantNAG-

2-593, grants from the IBM Endlcott Programming Laboratory and Siemens Corp.
t Also supported by an IBM graduate fellowskip.



1 Introduction

1.1 Background and motivation

A concurrent system consists of processes communicating via shared objects. Examples of

shared object types include data structures such as read/write register, queue, set, and

tree, and synchronizationprimitivessuch as test_set, fetch&add, and compare_svap.

Even though differentprocessesmay concurrentlyaccessa shared object,the objectmust

behave as ifallthese accessesoccur in some sequentialorder.More precisely,the behavior

of a shared objectmust be linearizable([HWg0]). One way to ensure linearizabilityisto

implement shared objectsusing criticalsections[CHP71]. This approach, however, isnot

fault-tolerant:The crash of a process while in the criticalsectionof a shared objectcan

permanently preventthe restof the processesfrom accessingthat object.This lackoffault-

toleranceled to the concept of wait.freeimplementations of shared objects.Informally,a

shared objectiswait-freeifeveryoperationinvocationon thatobjectisreturneda response

even ifsome or allother processesin the system crash.

Thus, a concurrentsystem inwhich allsharedobjectsare wait-freeisresilienttoprocess

crashes. However, such a system isnot resilientto shared objectfailures.I For example,

the "crash"ofa singleshared objectstopsallthe processesthat need to accessthat object.

Motivated by this observation,we study the problem of implementing wait-freeshared

objectsthat are also/ault-tolerant.With such objects,the system isguaranteed to make

progressdespiteprocess crashes and the failuresof some underlying objects.To the best

of our knowledge, the issue of ]ault'tolerant walt-free shared objects has not been addressed

before. (To simplify notation, hereafter "object" denotes a "Shared object".)

1.2 Object failures

We classify object failures into two broad categories: Responsive and non-responsive. We

require that objects subject to responsive failures continue to respond (in finite time) to

operation invocations. The responses may be incorrect. In contrast, objects subject to

non-responsive failures are exempt from responding to operation invocations. Such objects

may "hang" on the invoking process.

We divide responsive failures into three sub-classes: R-crash, R-omission, and R-arbitrary.

An object subject to R-crash failure behaves correctly until it fails, and once it fails, it re-

turns a distinguished response 2. to every invocation. As with R-crash, an object subject to

R-omission failures may return the correct response or a 2.. However, even if it responds 2.

to a process p, a subsequent operation invocation by a different process q may get a correct

response. This behavior models an object O made of several components, some of which

failed. The operation by p "ran into" a failed component of O, while the one by q only

encountered correct components of G. Finally, objects subject to R-arbitrary failures may

"lie", i.e., return arbitrary responses to operation invocations.

l Even "software" objects have nnderlyin 8 hardware components. The softwaxe and/or the hardware

couldbe faulty.



Similarly, we divide d0n-responsive failures into crash, omission, and arbitrary. An

object subject to crash failure behaves correctly until it fails, and once it fails, it never

responds to operation invocations. An object subject to omission failures may fail to re-

spond to the invocations of an arbitrary subset of processes, but continue to respond to the

invocations of the remaining processes (forever). The behavior of an object subject to an

arbitrary failure is completely unrestricted: it may not respond to an invocation, and even

if it does, the response may be arbitrary.

1.3 Fault-tolerant objects

Let T be an object type and let £ = (T1,T2,... ,T_) be a list of object types, k function

2" : T1 × T2 x ... × T_ _ T is an implementation o/T from £ if O = I(ol, o2,..., o_) is a

wait-free object of type T whenever oi (1 < i < n) is a wait-free object of type Ti. We call

0 a derived object (o/2") and oi's the base objects of O. 2" is t.tolerant for a failure model

A/[ if O behaves correctly even if a maximum of t base objects of O fail according to ¢t4.

The implementation 2" is a self.implementation if 7"1 = T2 = ... = T,_ = T. In

other words, in a self-implementation the base objects are required to be of the same

type as the derived object. For example, consider the object type 2-process queue (i.e., a

queue that can be accessed by at most two processes). Ixt Section 6.3, we show that (for

every t) there is a t-tolerant self-implementation of 2-process queue for R-arbitrary failures.

Intuitively, this means that using a set of wait-free 2-process queues, t of which are subject

to R-arbitrary failures, we can implement a failure-free wait-free 2-process queue. Thus in

a self-implementation fault-tolerance is achieved through replication.

1.4 Results

To study whether a general object type has a t-tolerant implementation, we focus on two

particular object types: consensus 2 and register. Herlihy [Hergl] and Plotkin [Plo89]

showed that one can implement a wait-free object of any type using only consensus and

register objects. Thus, if consensus and register have t-tolerant implementations, then

every object type has a t-tolerant implementation.

We first study the problem of tolerating responsive failures. We give t-tolerant self-

implementations of consensus for R-crash, R-omission, and K-arbitrary failures. For

R-crash and R-omission failures, our self-implementation is optimal requiring only t + 1 base

consensus objects if t of them may fail. For R-arbitrary failures, our self-implementation is

efficient requiring O(t log t) base consensus objects. We also give t-tolerant self-implementations

of register for B.-crash, R-omission, and R-arbitrary failures. Combining the above results

with [Her91, Plo89], we conclude that every object type T has a t-tolerant implementation

(from consensus and register) for all responsive models of failures. Moreover, if T im-

plements consensus and register, then T has a t-tolerant self-implementation. This

=A consensus object supports two operations, propose O and propose I, and satisfies the following two

properties. An operation gets a response v only if there is some prior invocation of propose v. Further, the

response is the same for all invocations of both operations.

3



implies that familiar object types such as (2-process) queue, stack, test_set, fetch_tadd,

and (N-process) compare&swap have t-tolerant seLf-implementations even for R-arbitrary

failures!

What about tolerating non-responsive failures? Unfortunately, the results are mostly

negative. We show that there is no 1-tolerant implementation of consensus even for crash

failures, the most benign of the non-responsive models of failures. 3 This immediately implies

that any object type T that implements consensus (such as queue, stack, test&set,

swap, compare&swap, etc.) has no 1-tolerant implementations for crash failures. In con-

trast, we show that register has a t-tolerant self-implementation even for arbitrary fail-

ures. In addition to these universality and impossibility results, this paper contains the

following results.

Let Z be a t-tolerant implementation for failure model _. By definition, every derived

object of Z is guaranteed to behave correctly even if up to t base objects fail according to

_i. But what happens if more than _ base objects fail? In general, the derived object may

experience a more severe failure than _/_! We say a t-tolerant implementation for a failure

model .Ad is gracefully degrading if the failure of more than t base objects (according to

_4) cannot cause the derived object to experience a more severe failure than 2vt. From a

1-tolerant gracefully degrading seLf-implementation of any object type T for a failure model

.h4, we show how to recursively construct a t-tolerant self-implementation of T for _A. This

provides a method for automatically increasing the fault-tolerance of an object.

In general, graceful degradation increases the cost of an implementation. For instance,

consider t-tolerant implementations of consensus for R-omission failures. As already men-

tioned, there is such an implementation using only t + 1 base objects. However, this im-

plementation is not gracefully degrading. In fact, we show that, in this case, graceful

degradation requires at least 2t + 1 base objects, and we give a matching algorithm.

We prove that there is a large class of object types that have no gracefully degrading

implementations for R-crash. Intuitively, this means that whatever the implementation,

the failure of the implemented object will be more severe than R-crash, even i£ all its base

objects can only fail by R-crash.

We study the problem of translating severe failures into more benign failures [NTg0].

In particular we show that given 3t + 1 (base) consensus objects, at most t of which are

subject to R-arbitrary failures, we can implement a (derived) consensus object that can

only fail by R-omission. We also show that this translation from R-arbitrary to R-omission

is resource optimal.

We also show that arbitrary failures can be viewed as having two orthogonal compo-

nents: omission and R-arbitrary. Specifically, for any object type T, given any t-tolerant

seLf-implementations Zr and Z" of T for omission failures and R-arbitrary failures respec-

tively, we show how to construct a t-tolerant self-lmplementation of Y for arbitrary failures.

This decomposition simplifies the problem of tolerating arbitrary failures.

3The impossibility of implementing a fault-tolerant consensus objec_ fzom any finite list of base objects,

one of which may crash, is shown using the impossibility of solving the consensus problem among a finite
number of proeeJJes, one of which may crash [LAA87],



2 Preliminaries

A concurrent system consists of processes communicating via (shared) objects. A process

interacts with an object by invoking an operation, and receiving a corresponding response

from the object. Processes may exhibit arbitrary variations in their execution speeds.

Further processes may crash. That is, a process may stop at any point in its execution and

never take any steps thereafter.

An object is specified by a type. An object type T is defined by N(T), OP(T) and

A(T), where N(T) is the maximum number of processes that may access an object (9 of

type T, OP(T) is the set of operations supported by O, and A(T) specifies how O behaves

when these operations are applied sequentially. For concreteness, we assume A(T) is a

finite/infinite state non-deterministic automaton where some states are designated as initial

states. There is a transition from state s to state t labeled (op, v) iff invoking the operation

op when the object is in state s may leave the object in state t, returning the response v.

We say a sequential execution S = (opl, vl), (op2, v2), . . . , (opk, vk) from state s is consistent

with Tiff, viewing A(T) as a directed graph with states as nodes and transitions as directed

edges, there is a directed path labeled S from state s. Further S is consistent with T if
there is some initial state s of T such that 5 from s is consistent with T.

Each process may have at most one pending invocation on any given object. That is, a

process p cannot invoke an operation on an object O unless the previous operation of p on

object O has already received a response. However, operations from different processes may

overlap on an object. The sequential specification is therefore not sufficient to understand

the behavior of an object. We use linearizability defined by Herlihy and Wing [HW90]

as the criterion for the correctness of an object. Informally, linearizability requires every

operation execution to appear to take effect instantaneously at some point in time between

its invocation and response. We make this more formal below.

Let O be an object shared by the processes Pi, i = l, N. Let Et be an execution of

the concurrent system (Px,P2,...,PN, O) up to time t. Define TI(Et), the history of the

ezecution Et, as follows: (pi,op, v,t,,te) E 7"[(Et) iif process pi invokes operation op in Et

at time t,, and that operation completes at time te returning the response v. Further,

(pi,op,*,t,,ve) E 7"/(Et) if[ process pi invokes operation op in Et at time ts, and that

operation does not complete by time t. We say T/(E_) is linearizable with respect to type

T if and only if there exist a sequence 5 of (operation, response) pairs and a one-to-one

correspondence ,f from 7"/(Et) to 3 satisfying the following:

• 5 is consistent with respect to T.

• I81 -- IT/(Et)[, i.e., there are exactly as many elements in the sequence S as there are

in the set _(Et).

• If _ ---- (Pi,oP, v,_,,te) E 7_(Et) and f(_) = 5j, then 8j = (op, v). (Here Sj denotes

the jth element of the sequence $.)

• = n(E,) and/(7) =Sj, then "qi = (op, v) for some v E Z.



• If,7' (p. ov',,/,t; t'),,7" " " " "" " ' "- , = LPi, op , v , _s, re) E 7-l(Et), and t_ < ts, then f (_r) = Sk,

and f(_") = St for some k < I.

An object (9 is of type T if for every t, and every execution Et of the concurrent system

(Pl,P2,... ,PN, O) up to time t, TI(Et) is linearizable with respect to T. We say that that T

is an N-process type, if N = N(T). Any object of an N-process type is an N-process object.

Objects are either primitive or derived. A primitive object is completely "external" to

the invoking process. In other words, after a process invokes an operation on a primitive

object, it may simply wait for the object to return the response. In contrast, a derived object

O is "implemented" in software from base objects (each one of which is either derived

or primitive). Such an implementation provides a procedure Apply(pi, op, O) (for each

op E OP(T) and 1 < i < N(T) ) that process pi must execute in order to invoke an operation

op on O and receive the corresponding response from O. Each step in Apply(pi, op, O) is
either an invocation on a base object of O, or checking if a base object has returned a

response to a previous, invocation 4, or some local computation.

We now define walt-freedom for primitive and derived objects. A primitive object is

wait-free if every operation invocation by every process gets a response in finite time. A

derived object 0 is wait.free if Apply(pl, olo, O) (for each op e OP(T) and 1 < i < N(T))

returns a response in a finite number of steps, regardless of the execution speeds of the

remaining processes. Unless mentioned otherwise, all the objects considered in this paper

are walt-free.

3 Models of failure

An objectisOnlY an abstrac-t-ion-witha multitudeof possibleimplementations.For instance,

itmay be implemented as a hardware module in a tightlycoupled multi-processorsystem,

or as a servermachine in a message passingdistributedsystem. Whatever the implementa-

tion,the realityisthat hardware components sometimes fail,and when thishappens, the

implementation failsto provide the intended abstraction.

Object failuresmay lead to unsatisfactorysystem behavior.For instance,the "crash"

of an objectpreventsthe progressof allprocessesthat accessthe object.Similarly,ifthe

object returns "incorrect"responses,the system behavior............alsobecomes incorrect,it is

thereforeimportant to implement derivedobjectsthat behave correctlyeven ifsome ofthe

base objectsofthe implementation fail.The costand the complexityofsuch a fault-tolerant

implementation depends on thefailuremodel, i.e.,the manner in which a failedbase object

departs from itsexpected behavior. In thispaper,we definea spectrum offailuremodels

that fall into two broad classes: Responsive and non.responsive.

4Note that p_ does not "block" for the response from the object; It only "polls" for the response, then
proceeds to the next step.



3.1 Responsive models of failure

An object subject to responsive failures responds to every operation invocation. The re-

sponse is possibly incorrect, but the object never fails to respond. We describe below three

increasingly severe models of responsive failures.

3.1.1 R-crash

R-crash is the most benign model of object failure. This model is based on the premise

that an object detects when it becomes faulty. Informally, an object subject to R-crash

behaves correctly until it falls, and once it fails, it returns a distinguished response 2. to

every operation invocation. More precisely, an object (9 of type T subject to R-crash failure

satisfies the following three properties. Let Et be any execution of the concurrent system

(Pl,p2,. • • ,P/V, (9) up to time t, and 7_(Et) be the corresponding history, as defined before.

1. O is wait-free.

(p ,op ,v ,t,,te) E 7"/(Et), and Q < t_, then = 2..2. If(p, ' ' ' ' ' ' v'

3. Let TI'(Et) = TI(Et) - {(p, op, 2.,t,,te) E 7"{(Et)}. Then n'(Et) is linearizable with

respect to T.

3.1.2 R-omission

Suppose O is a wait-free object implemented from some "hardware components". We

informally argue that (9 may exhibit a more severe failure than R-crash, even if one of its

"hardware components", say f, fails by R-crash. If a process p executes an operation op

on (9 that accesses .f, f returns 2. to p, causing p to return ± for op. Suppose a different

process q later executes some operation op' on (9 and op' does not require q to access .f.

Process q does not "notice" the failure of .f, and thus completes op' returning a non-2-

response. This violates the "once 2-, evera£ter _l_" property of R-crash.

Suppose that after p gets 2- it does not access (9 again. To q, this scenario is indistin-

guishable from one in which p had crashed just before accessing f. Since the implementation

of (9 from its components is wait-free, it is designed to tolerate p's apparent crash, and the

non-2- response to q must be correct.

In view of these considerations 5, we formalize the R-omission model of failure as follows.

An object (9 of type T subject to R-omission failures satisfies the following properties.

1. (9iswait-free.

2. Let Et be any execution of (Pl,P2,. • • ,p/v, (9) up to time t with the following property:

If a process p_ gets a response 2. from (9 for some invocation in Et, then p_ does not

SA formal justificationfor the R-omission model isgiven in Section 8.



invoke any operation on O subsequently in Et. Defining _(Et) as before, obtain

_'(Et) by replacing every tuple of the form (p, op, i, t,, re) by (p, op,., t,, _c). Then

_l(Et) is linearizable with respect to T.

3.1.3 R-arbitrar:y

An object subject to R-arbitrary failures is free to return arbitrary responses to operation

invocations. The only property we require from such an object is that it be wait-free.

3.2 Non-responsive models of failure

Each responsive model of failure has its non-responsive counter-part. The difference lies in

the fact that an object subject to a non-responsive failure model may also fail to respond

to operation invocations.

3.2.1 Crash

Crash is the most benign of all non-responsive models of failure. Informally, an object

subject to a crash failure behaves correctly until it fails, and once it fails, it never responds

to any operation invocations. More precisely, an object O of type T subject to a crash

failure satisfies the following properties.

1. If in a (temporally) infinite execution of the concurrent system (Pl,p2,..., PN, (9), CO

never responds to an invocation of some process pi, then the total number of responses

from (9 in that (temporally) infinite execution is finite.

2. If Et is any execution of the concurrent system (Pl,P2,..-,PN, (9) up to time _, and

_/(Et) is the corresponding history, then _(Et) is linearizable with respect to T.

3.2.2 Omission

Omission failures are more severe than crash. An object subject to omission failures satisfies

only property 2 of the crash model.

3.2.3 Arbitrary

An object subject to arbitrary failures is not required to satisfy any properties at all. Thus

the behavior of such an object is completely unrestricted. In particular, the object may

choose not to respond to an invocation. Even if it does, the response can be arbitrary.
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4 Definition of fault-tolerant implementations

Let T be an object type and let £ = (T1, T2,..., T_) be a list of object types (Ti's are not

necessarily distinct). A function 2" : T1 x T2 x ... x Tn _ T is an implementation of T

from £ if (9 = I(ol,b2,...,On) is a wait-free object of type T whenever ol (1 < i < n) is

a wait-free object of type Ti. We call O a derived object (of2-) and oi's the base objects of

O. The resource complezity of 2" is n, the number of base objects that make up a derived

object of the implementation. 2- is t.tolerant for a failure model ,Lt if O behaves correctly 6

even if a maximum of t base objects of O fail according to jk4. Note that, in general, if

more than t base objects fail according to/¢_, O may experience a more severe failure than

,_4. We say that 2" is gracefully degrading if: when base objects only fail according to ,_4,

O is only subject to failures of type ,£4. r

The implementation 2" is a self-implementation if T1 = T2 = ... = Tn = T. In other

words, in a self-implementation the base objects are required to be of the same type as the

derived object.

5 Some basic results

Gracefully degrading self-implementations have the desirable property that they can be

composed recursively to realize any extent of fault-tolerance. This is formalized in the

following lemma.

Lemma 5.1 (Booster Lemma) Ira type T has a t-tolerant gracefully degrading self implementation

Z of resource complexity n for a failure model ¢_4, then T has a (t 2 + 2t)-tolerant gracefully

degrading self implementation of resource complexity n 2 for .£4.

Proof (sketch) Let 2" = A(Ol, o2,...,on) F(ox, o2,..., on). Define

2-' = A(ol, o2,..., 0,2) F(F(ol,..., o,_), F(on+l,..., o2,_),..., F(o(,-1),_+x,.. •, o_)). It is

easy to verify that 2" is a gracefully degrading (t 2 + 2t)-tolerant self-implementation of T

for AA. []

Recursive application of the booster lemma gives the following corollary.

Corollary 5.1 If a type T has a 1-tolerant gracefully degrading self implementation of re-

source complexity k for a failure model .AA, then T has a t-tolerant gracefully degrading

self-implementation of resource complexity O(t l°g/c) for .,%4.

In Section 6.1.4, we illustrate how this corollary can be applied to construct a t-tolerant

self-implementation of consensus for R-arbitrary failures.

Our next result states that arbitrary failures have a responsive (R.-arbitrary) and a non-

responsive (omission) component. Thus the problem of tolerating arbitrary failures can be

6That is, O remains wait-flee and liaearizable with respect to T.
7Even _f all the base objects of O fail!



reducedto two strictly simpler problems: tolerating R-arbitrary failures and tolerating
omission failures.

Lemrna 5.2 (Decomposability of arbitrary failures) A type T has a t-tolerant self implementation

.for arbitrary failures, if and only if T has a t.tolerant self-implementation Z' for R-arbitrary

failures and I" for omission failures.

Proof (sketch) The "only if" direction is obvious. To prove the "if" direction, suppose

there are I' = X(ol, o2,..., ore) FA(OI, o2,..., ore) and2:" = X(Ol, o2,..., On) Fo(ot, o2,..., On).

Define 2" = A(Ol,O2,... ,on,n)FO(FA(Ot,... ,Orn),... ,FA(o(,_-l)rn+l,... ,o,m)). It can be

verified that 2" is a t-tolerant self-implementation of T for arbitrary failures. [3

6 Tolerating responsive failures

To study whether an arbitrary object type has a t-tolerant implementation, we focus on

two particular object types: consensus and register. Herlihy [Her91] and Plotkin [Plo89]

showed that one can implement a wait-free object of any type using only consensus and

register objects. Thus, if consensus and register have t-tolerant implementations, then

every object type has a t-tolerant implementation.

6.1 Fault-tolerant implementation of consensus

In the following, we first define the object type N-consensus. We then present a t-tolerant

self-impleme_ntation of N-consensus that works..four both R=cr_as_h____d__R-omi.'ssion failures.

This implementation requires t + 1 base N-consensus objects, and is resource optimal.

Following that, we show how to translate R-arbitrary failures of N-consensus objects to

R-omission failures. O ur t rauslation is also pr0ved t0be resource opt'tmal. Although the
above two results can be chained together to obtain a t-tolerant self-implementation of

N-consensus for R-arbitrary fa_ures, the resultant self-implementation is not resource effi-

cient: it requires O(t 2) base consensus objects. We therefore present an alternative efficient

self-implementation of resource complexity O(tlog t).

6.1.1 N-consensus object type

The consensus problem for a system of N processes is defined as follows. Each process Pi

is given a binary input vi initially. The consensus problem requires each correct process

to eventually reach the same (irrevocable) decision value d such that d 6 {vl,v2,... ,VN}.

The object type N-consensus is defined so that an object of this type makes the consensus

problem solvable in a system of N processes.

N-consensus is an N-process type that suppoyts two operations, propose Oand propose

I, and has the following sequential specification. If the first operation invoked is propose

v, then every invocation (including the first) is returned the response v. Together with

10



linearizability,this sequential specification implies that an o--bject 0 is of type N-consensus

iff it satisfies the following three properties:

• Validity: (9 returns a response v E {0, 1} to an invocation (from process p) only if

there is a prior invocation of propose v on O (by some process, possibly p itself).

• Agreement: If (9 returns vl, v2 to two invocations, and vl, v2 E {0, 1}, then vl = v2.

• Integrity: The response returned to an invocation by O is either 0 or 1.

Let loc := Propose(p, v, O) denote that process p invokes propose v on O and stores the

response returned in its local variable loc.

6.1.2 Tolerating R-crash and R-omission failures

We present a t-tolerant self-implementation of N-consensus for R-omission failures. Since

R-omission failures are strictly more severe than R-crash, the same implementation also
works for R-crash failures.

A consensus object satisfies weak integrity if every response returned by the object is

in {0,1,-}.

Proposition 6.1 Any N-consensus object that fails by R-omission satisfies validity, agree-

ment, and weak integrity. Conversely, if a failed N-consensus object satisfies validity, agree-

ment, and weak integrity, then the failure is R.omission.

Proof Follows from the definitions. []

O1, O2,..., Ot+l : N-consensus objects

Procedure Propose(p, vp, O) /* up E {0, 1} */

estimatep, w, k : integer local to p

begin

estimatep := vp
fork := ltot+ldo

w := propose(p, es_imatep, Ok)

if w _ 2. then estimatep := w

retura( estimatev )
end

Figure i: t-tolerantself-implementationof N-consensus forR-omission

11



Theorem 6.1 Figure I gives a t-tolerant self-implementation of N-consensus for R-omission

failures. The resource complexity of the implementation is t + 1 and is optimal.

Proof (Sketch)

Assume that at most t base objects fall by R-omission. We show below that the derived

object (9 is a correct N-consensus object.

.

.

O satisfiesvalidity:Using Proposition6.1, and the fact that p does not change

estirnatepifa base objectreturns1, itiseasy to verifyby an inductionon k that

ifestimatepequalssome value u at any point,then thereisa priorinvocation(from

some processq) ofPropose(q, u, O).

O satisfies a_reement: Since at most t base objects fail, there is an Ok (1 _< k < t + 1)

that does not fail. So Ok returns the same response w E {0, 1} to every process that

accesses it. This implies that for all p that access Ok, estimatep = w when p completes

the k th iteration of the loop, and due to Proposition 6.1, it never changes thereafter.

Thus O returns the same response w to every p.

Itisobvious that O always returns0 or I,and that O iswait-free.

Any t-tolerantserf-implementationforR-omission failuresmust handle the casewhere

tbase objectsfail(by R-crash)initially.Itisthereforeobviousthat the resourcecomplexity

of t + 1 of our serf-implementation is optimal. D

The above (self) implementati?nis not gracefully degra_g: For instance, suppose that

vp = 0 and Vq = 1, and the t + 1 base objects fail by R-crash initially, it is easy to see that

O returns 0 to p and 1 to q. Thus O does not satisfy agreement, and by Proposition 6.1,

the failure of O is more severe than R-omission. In fact, we will now show that 2t + 1 is

both a lower and upper bound on the resource complexity of a t'toierant gracefully degrading

self-implementationofN-consensus forR-omissions.The self-implementationthatrequires

2t+ I base objectsisgiven in Figure 2.

Claim 6.1 Let v be the value o/estimatep and V be the value o/Vp at the end of k iterations

(1 < k < 2t + 1) of the for-loop o/Propose(p, vp, O) in Figure e. Then v E {0,1}, and

Vp[1..k] contains only 1 's and v 's.

Proof By an easy inductionon k. :......... []

Theorem 6.2 Figure Z gives a t-tolerant gracefully degrading self-implementation o/N-consensus

for R-omission.

Proof Assume all failures of base 9bjectsaxebF:R-9_ssign. We first show that, even if

more than t base objects fail, O satisfies validity, agreement, and weak integrity:

IAs will be shown later in Theorem 8.2, there is no gracefully degrading implementation of N-consensus

for R-crash.
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01,02, • ••, 02t+1 : N-consensus objects

Procedure Proposs(p, vp, O) /* vp 6 {0,I} */

Vp[1..2t + 1], estirnatep, w, k: integer local to p

begin

1 estimatep := up
2 fork:=lto2t+ldo

3 w := propose(p, estimat%, Ok)

4 Vp[kI := w
5 if (w # -L)A(w # estimatep) then

6 estimatep := w

7 Vp[1... (k - 1)1 := (±,±,...,'L)

8 if Vp has more than t _1.'s then

9 retura(.L)

10 else return(estimatep)
end

Figure 2: t-tolerant gracefully degrading self-implementation of N-consensus for R-omission

. O satisfies validity: Using Proposition 6.1, and the fact that a process p does not

change estimatep if a base object returns ,L, it is easy to verify by an induction on

k that if estirnatep equals some value u at any point, then there is a prior invocation

(from some process q) of Propose(q, u, O).

, O satisfies agreement: Suppose, for a contradiction, there exist two processes p and

q such that Propose(p, vp, O) returns 0 and Propose(q, Vq, (9) returns 1. From Claim

6.1, and lines 8, 9 of the algorithm, it follows that Vp has at least t + 1 O's at the end

of the execution of Propose(p, vp, (9) and Vq has at least t + 1 l's at the end of the

execution of Propose(q, vq, 0). This is possible only if there is a k (1 < k < 2t+1) such

that Propose(p, estimate m Ok) returned 0 and Propose(q, estimateq, Ok) returned 1.

Thus OI, does not satisfy agreement. By Proposition 6.1, the failure of Ok is not

R-omission, a contradiction.

3. 0 satisfies weak int%_rity..: Trivial to verify.

4. O satisfies int%,rity if at most t base objects fail: Let O/t, ,O/t2,... ,O_, (kl < k2 <

,,, < ki) be all the correct base objects. Since at most t fail, we have I >. t + 1.

By the integrity and agreement properties of O/q, there is a v 6 {0, 1} such that for

all p, Propose(p, estimatep, Ok,) returns v. Thus for all p estimatep = v at the end

of kl iterations of the for-loop in Propose(p, vp, O). Using this and Proposition 6.1,

it is easy to verify that at the end of the execution of Propose(p, vp, O), Vp[ki]= v

13



and estimatep = v for all p and for all 1 < i < I. This implies, by lines 8, 9 of the

algorithm, that Propose(p, vp, O) returns v.

From 1, 2, and 4 above, we conclude that the self-implementation is t-tolerant for R-

omission. From 1, 2, and 3 above, together with Proposition 6.1, we conclude that the

self-implementation is gracefully degrading for R-omission. []

Theorem 6.3 The resource complezity of any t-tolerant gracefully degrading implementa-

tion o/N-consensus (N >_ 2)/or R-omission is at least 2t + 1.

Proof For a contradiction, assume that there is a t-tolerant gracefully degrading imple-

mentation 27 from E = {T1,7"2,..., Tn}, of N-consensus for R-omission, where n _< 2t. Let

O = 27(O1, 02,..., On). Consider the following interleaving of processes p and q.

Scenario

1. Process p invokes Propose(p, 0, (P) and executes the steps of Propose(p, 0, O) until ei-

ther it accesses exactly t base objects or it completes the execution of Propose (p, 0, O),

whichever is earlier. Let Sp denote the set of base objects accessed by p. Every base

object O E Sp behaves correctly to p's invocations. Note that ISpl < t.

2. Process q invokes and completes the execution of Propose(q, 1, O). Let Sq denote the

set of base objects accessed by q, and Tq = Sq - Sp. The base objects behave as

follows: Every base object O E Sp accessed by q returns ± to q and undergoes no

ch_ge in its state; every base object O E Tq behooves correctly to q's invocations. So

q sees at most [Sl_I < t failures of base objects.

3. Process p resumes execution (thus ISpl = t), and completes any remaining steps of

Propose(p, 0, O). The base objects behave as follows: Every O E Tq accessed by p

returns .L to p; every O E Sj, L Tq accessed by p behaves correctly to q's invocations.

Note that Tq = Sq - Sp C {0i, 02,... ':On} : Sp' and thus ITql< n - t < t. So p sees

at most [Tql < t failures of base objects.

In a scenario such as the above, we assume that all steps in item k strictly precede

every step in item k + 1.

We make the following conclusions from the above Scenario.

o From the characterization of how the fz_aled-base objects behave, it is clear that all

failures are by R-omission. Since 2" is gracefully degrading, the failure of (P is ho more

severe than R-omission. Thus, by Proposition 6.1, O satisfies validity, agreement, and

weak integrity.

, In the scenario described, neither process "knows" that the other process is also

running. Thus, by validity and weak integrity, Propose(p,0, O) must return either 0

or 1, and Propose(q, 1, O) must return either 1 or _L.
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3. In the scenariodescribed,neitherprocessseesmorethan t baseobjectfailures.Since2"
is t-tolerant, it followsthat neitherPropose(p,0, (9) nor Propose(q, 1, (9) may return

2.. Together with Conclusion 2, this implies that Propose(p, 0, O) returns 0 and

Propose(q, 1, (9) returns 1. Thus object O violates agreement (required by Conclusion

1). We conclude that 2" is not a gracefully degrading t-tolerant implementation.

[]

6.1.3 Translation from R-arbitrary to R-omission

A t-tolerant translation from a failure model .AA to a (less severe) failure model .£4' for object

type T is a self-implementation 2" : T × T × ... × T ---*T such that O = 2"(ol,o2,... ,o,_)

fails according to ._4' if a maximum of t base objects of O fall according to .L_ (and the

remaining base objects are correct). Note that if no base objects fail, by definition of an

implementation, O does not fail either.

In this section, we present a t-tolerant translation from R-arbitrary to R-omission for

N-consensus. It is easy to see that this translation can be used along with the t-tolerant seif-

implementation for R-omission to obtain a t-tolerant self-implementation of N-consensus

for R-arbitrary failures. This is the principal motivation for studying such a translation.

We will also show that the resource complexity, 3t + 1, of our translation is optimal.

Since a consensus object that suffers an R-arbitrary failure may return a non-binary

response, we find it convenient to define f-propose(p,v,O) as in Figure 3.

Procedure f-propose(p, V, O)

begin

loc :-" propose(p, V, O)

if loc E {0, 1} then

return(lot)

else return(0)
end

Figure 3: Filtering an arbitrary response to a binary response

Let {D be the derived object of the translation in Figure 4. The base objects of O are

All... 2t + 1], B[1...t]. In the following claims, assume that at most t base objects suffer

R-arbitrary failures, and the remaining are correct.

Claim 6.20 satisfies weak integrity. Further, if no base object fails, 0 satisfies integrity.

Claim 6.30 satisfies validity.
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A[1 ...2t + 1], B[1...t]: wait-free N-consensus objects

Procedure Propose(p, vv, O)

countv[O..1],-w, i, beliefv : integer local to p

begin

1 Phase 1:countv[O..1 ] := (0,0)
2 fori:= 1 to2t+l do

3 w := f-propose(p, Vv, A[i])

4 co nt [ ] := cou.tp[ ] + 1
5 Phase 2: Choose beliefv such that

count,[belief,] > count,[_].
6 for i := l to t do

7 if belie h _ f-propose(p, beliefv, B[i])

8 return(l)

9 exitPropose

10 return(belie f v)
end

Figure 4: E-toleranttranslationfrom R-arbitraryto R-omission forN-consensus

Proof Suppose O returns v E {0,I} to the invocationPropose(p, vv, O ) (from process

p). Then v = beliefv (by line 10), and countv[v ] = countv[beliefv] > t + 1 (by line 5). So

there is at least one correct base object A[i] such that propose(p, vv, A[i]) returned v. By

validity of A[i], it follows that some process q invoked propose(q, Vq, A[i]) where vq = v.

This impliesthat q invoked Propose(q,v, 0). []

Claim 6.40 satisfies agreement.

Proof Suppose (9 falls to satisfy agreement by returning vl E {0,1} to some process p, and

v2 E {0, 1} to a different process q where vl _ v2. O returns vl to p implies vl = belief v.

Similarly v2 - beliefq. Since vl _ v2, we have beliefv _ beliefq. It is easy to verify that

if all of A[1...2t + 1] are correct, then beliefv = beliefq. It follows that at least one of

a!!... 2t+ 1]
Further O returns vl to p implies for all 1 < i < t propose(p, beliefp, B[i]) returns

belief v = vl to p. Similarly, for all 1 < i < t propose(q, beliefq, B[i_ ret_s beliefq = v2

to q. Thus all t base objects B[1... t] fail by not=satis_g agreement. Thus counting the
failed A[i]'s and B[i]'s, we have more than t failed base objects, a contradiction. []

Together with Proposition 6.1, the above claims trivially imply the following theorem.

Theorem 6.4 Figure 4 presents a E-tolerant translation from R-arbitrary failures to R-
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omission failures for N-consensus. The resource complezity o/the translation is 3t + 1.

Theorem 6.5 The resource complezity of any translation 72 from R-arbitrary to R-omission

for N-consensus is at least 3t + 1.

Proof For a contradiction, assume the resource complexity of 1- is n <_ 3t. We prove

the theorem through a series of claims, involving "indistinguishable" scenarios. Let O =

1"(ol,o2,... ,on). In the following we say a process p touches a base object oi if during the

execution of Propose(p, vp, O), p executes propose(p,., oi).

Claim 6.5 Suppose p ezecutes Propose (p, O, O) to completion. If all base objects are cor-

rect, then p touches at least t + 1 base objects.

Proof Suppose the claim is false, and p touches only oil, oil,..., oi., (m <_ t) before exiting

Propose(p, 0, O). Since all base objects are correct, O satisfies validity and integrity. Hence

Propose(p, 0, O) returns 0. Now consider the following two scenarios.

Scenario Sl

1. p executes Propose(p,0, O) to completion touching only oQ,oil,...,oi, " (m <_ t).

Propose(p, 0, O) returns 0.

2. q executes Propose(q, 1, O) to completion.

Scenario S2

1. oi,, oil,..., oi,, fail and behave as though they are touched by p exactly as in scenario

Sl. This is possible since m _< t.

2. q executes Propose(q, 1, O) to completion.

Since no base objects fail in S1, O behaves correctly. In particular, O satisfies integrity and

agreement. Thus Propose(q, 1, O) returns 0 in S1. Clearly $1 _ $2 (We write S1 _q $2

to denote that Scenarios S1 and S2 are indistinguishable to process q). So Propose(q, 1, O)

returns 0 in S2 also, violating validity. By Proposition 6.1, this failure of (9 in S2 is not

R-omission. Since fewer than t + 1 base objects fail in S2, the translation 1" is incorrect, a

contradiction. [:3

Claim 6.6 Consider

Scenario $3

1. p ezecutes Propose(p, O, O) up to the point where it has ezactly touched t base objects

Oil _ Oil_ •.. _Oit.
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2. q ezecutes Propose(q, 1, O) to completion.

Then Propose(q, 1, (9) returns I.

Proof Let S = {base objects touched by q} - {%,oi_,...,oit}. Let oA, oj2,... ,oj_ be

all the base objects in S arranged so that the first invocation of q on oh is before the first

invocation of q on %+_. Note that k _< n - t < 2t.

Let 321 represent scenario $2 when m = t. Since fewer than t + 1 base objects fail in

$2 I, the failure of (9 cannot be more severe than R-omission. Hence, by Proposition 6.1,

(9 satisfies validity and weak integrity in S2'. So Propose(q, 1, (9) returns 1 or 2- in S2'.

Since S2' _q $3, we conclude Propose(q, 1, O) returns 1 or _t_in S3. Further since no base

object fails in $3, (9 satisfies integrity in $3. So Propose(q, 1, (9) returns either 0 or 1 in

$3. Together the above two conclusions imply the claim. []

Claim 6.7 Consider

Scenario $4

1. p ezecutes Propose (p, O, O) up to the point where it has ezactly touched t base objects

_°

OQ , 0i2, • • • , Oi_ .

Let oil, oj2,..., ojh be as defined above (note k < 2t). q ezecutes Propose (q, 1, O) up

to the point where it has touched ezactly {oh, oj_,..., oj__, }.

3. p completes the ezecution ofPropose(p,O, (gJ.

Then Propose (p, O, C)) returns O.

Proof Consider

Scenario S5

1. p executes Propose(p, 0, (9) up to the point where it has exactly touched t base objects

Oil_Oi2_..._OQ.--: :!- ..... :; : ....

2. The base objects oil , oj2,..., oi__ , fail and behave as though they are touched by q

exactly as in S4.

3. p completes the execution of Propose(p, 0, (9).

Since k < 2t, the number of failed base objects in S5 = k - t < t, and therefore (by

Proposition 6.1) O satisfies validity and weak integrity. So Propose(p, 0, (9) returns either 0

or 2. in $5. Since clearly $4 _p SS, Propose(p, 0r (9) returns either 0 or 2. in $4 also. However

since no base object fails in $4, O must satisfy integrity in 54. Thus Propose(p, 0, (9) returns

0 in S4. []
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Claim 6.8 Consider

Scenario $6

1. p ezecutes Propose(p, O, O) up to the point where it has ezactl_] touched t base objects

Oil , Oi2 , " " " , Oi t"

2. q ezeeutes Propose(q, 1, O} to completion, returning 1, by Claim 6.6.

3. Let oja ,oj2,..., oj_ be as defined above (note k < 2t). {oj__,+l , ojk_,÷2,... , oj_} fail
and behave as though they are never touched by q.

4. P completes the ezecution of Propose (p, O, (9).

Then Propose(p, 0, (9) returns O.

Proof Since $5 _p 56, Propose(p, 0, (9) returns 0 in S6. []

From the above claim, it is clear that O does not satisfy agreement in $6. Hence, by

Proposition 6.1, the failure of O in $6 is more severe than R-omission. Since fewer than

t + 1 base objects fail in 36, the translation 27 is incorrect, a contradiction. This completes

the proof of Theorem 6.5. []

6.1.4 Tolerating R-arbitrary failures

Since N-consensus has a t-tolerant self-implementation for R-omission failures, and has a

t-tolerant translation from R.-arbitrary to R-omission failures, it follows that N-consensus

has a t-tolerant self-implementation for R-arbitrary failures also. However the resulting self-

implementation is expensive, requiring (3t + 1)(t + 1) base objects. Our main goal in this

section is to present a t-tolerant self-implementation for R-arbitrary failures whose resource

complexity is only O(t log t). This implementation employs the divide-and-conquer strategy.

In the following, we first present the base step: obtaining a 1-tolerant self-implementation

(Figure 5). This requires 6 base consensus objects, while the above mentioned approach

through translation requires 8 base consensus objects. Then we show the recursive step of

obtaining a t-tolerant self-implementation from a t/2-tolerant self-implementation (Figure

6).

Claim 6.9 If at most one of Oi, 0i+1, and Oi+2 (i = i or 4) fails, then an ezecution e of

Access(p, Oi, Oi+1, 0i+2, v) (See Figure 5) returns _ only if there is some other ezecution

e I of Access(q, Oi, Oi+t, and 0i+2, _) (for some q) that either precedes or is coneurrent
with e.

Claim 6.10 If none ofOi, 0i+1, and Oi+2 (/= I or 4)fails, then, for allp and q, Access(p,

Oi, 0i+1, Oi+2, vp) returns the same value as Access(q, Oi, 0i+1, 0i+2, vq).

Theorem 6.6 Figure 5 gives a 1-tolerant gracefully degrading self implementation of N-consensus

for R-arbitrary failures.
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Oi : N-consensus objects (1 < i < 6)

Procedure Access(p, O1, 02, 03, v)

countp[O..1], w: integer local to p

begin

co ntp[0..1]:= (0,0)
fori:= lto3do

w := f-propose(p, v, Oi)

if countv[O ] > county[1 ] then
return(0)

else return(I)
end

Procedure Propose(p, v, (P)

begin

v := A¢¢ess(p, O1,O2,O3,v)

v := Access(p, O4, 05, 06, v)

return(v)
end

Figure 5: 1-tolerantself-implementationofN-consensus forR-arbitraryfailures

Proof Suppose that at most one of Oi (1 < i < 6) fails. Then either none of O1, O2, and

03 fails or none of O4,Os, and 06 fails. Validity of O follows from Claim 6.9. If none of

04, Os,_andO_ fails, agreement of O :follows from Claim 6.10. If none of O1,02' and 03

fails, agreement of (9 follows from Claims 6.9 and 6.10. It is obvious that O always returns

0 or 1, is wait-free, and gracefully-degrading. []

Given the 1-tolerant gracefully degrading self-implementation in Figure 5, by ap-

plying the Booster lemma (Lemma 5.1) we can obtain a t-tolerant self-implementation

of N-consensus for R-arbitrary failures. However, the resulting resource complexity is

O(tlos2 s), which is even higher than the complexity of the implementation through transla-

tion mentioned above. We therefore present below an alternative efficient recursive strategy.

See Figure 6.

Theorem 6.7 Figure 6 give# a t-tolerant (gracefully degrading) sell-implementation of N-consensus

for R-arbitrary �allure# of resource complexity O(tlogt).

Proof We prove the theorem through a series of claims. In all of them we assume that at

most t base objects fail.

2O



Ao[1...3t + 1],Ai[1...3t + 1],B[1...4t+ 1]: (0-tolerant)N-consensus objects

O1 : FL_A]-tolerant N-consensus object

02 : L_J-tolerant N-consensus object

Procedure Propose(p, Vp, O)

countp[O..1], WitnessCountp[O..1], beliefp, anslp, ans2p, v_, i, w : integer local to p

begin

countp[O..1], WitnessCountp[O..1] := (0,0,0,0)

2

3

4

Phase 1: for i := 1 to 3t + 1 do

w := f-propose(p, vp, A_ [i])

if w = vp then countp[vp] := countp[vp]+l

5 Phase 2: anslp := f-propose(p, vp, O1)

6

7

8

Phase 3: for i := 1 to 4t + 1 do

w := f-proposo(p, artslp,B[i])

Witne$$Co_Rt?[to] := WitRessCo_Rtp[w]+ l

9

I0

Ii

Phase 4: for i := 1 to 3t + 1 do

w := f-propose(p, vp, AT[i])

ifw = _ then count_[_-_p]:= countp[_]+l

12

13

14

15

16

17

18

19

Phase 5: Choose beIie Cpsuch that WitnessCountp[beliefp] > WitnessCountp[b-_iefp].

if WitnessCountp[beliefp] > 3t + 1 and countp[beliefp] > 2t + 1 then

return(beliefp); exit Propose

if WitnessCountp[beliefp] >. 2t + 1 and countp[beliefp] _> t + 1 then

v_ := beliefp
!

else vp := vp

ans2_ ;= propose(p, v_, 02)

return( ans2p)
end

Figure 6: Efficient t-tolerant self-implementation of N-consensus for R-arbitrary failures
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Claim 6.11 If Oi fails, then 02 does not fail.

Proof Since 01 and 02 are derived objects of F_A]-tolerant, and L_j-tolerant self-

ft-1]implementations of N-consensus respectively, O1 and Oz tolerate up to ,-T- and L_-_]
failed base objects respectively. Since at most t base objects fall, both O1 and 02 cannot

fail. []

Claim 6.12 If01 does not fail, then 0 satisfies validity and agreement.

Proof Suppose O1 does not fall. Since a correct O1 satisfies agreement, we have anslp =

anslq = v for all p, q. Thus every process proposes the same value v to every B[i] in Phase 3.

Since at most t objects in B[1... 4t + 1] lie (fail), beliefp = v and WitnessCountp[beliefp]>_

3t + 1 (for every p).

Also by the validity of O1, some process q will have invoked propose(q, v, 01) before

any process gets the response v from O1. This implies that q will have finished Phase

1 before any process begins Phase 3. Since at most t objects in A_[1... 3t + 1] may Lie,

it follows that for all p, countp[v]> 2t + 1 by the end of Phase 4 of p. Thus we have

WitnessCountj,[beliefp] > 3t + 1 and countp[beliefp] > 2t + 1 (for every p). Hence every p

decides v (the proposal of q) by line 14. []

Claim 6.13 If 01 fails, 0 satisfies validity and agreement.

Proof Suppose O1 fails. Then by Claim 6.11, O2 does not fail. We need to consider two

cases.

CASE 1 Suppose some process p returns by line 14. This implies that WitnessCountr,[beliefp ]

> 3t + 1 and countp[beliefp] > 2t + 1. Since at most t base objects may fail, it follows that

WitnessCountq[beliefp] > 2t + 1 and countq[beliefp] > t + l (for ever7 q). This_ imp_es, by

_ei2, beiie f q = belie/p, and let vai= belief p. Six_ce-W i-tnes-sCountq[bei_ef q] > 2t -+ 1 and

countq[beliefq] > t + 1 (for every q), either q returnsbe/iefq = val by line 14 and we_have

' to beliefq = val by line 16. Thus every q that doesagreement between p and q, or q sets vq
' = val on 02. Since 02 does not fail, by validity of 02,not return by line 14 proposes Vq

' = val, and q returns ans2q = val by line i9. Again we have agreement betweenans2q = Vq
p and q.

To see that O satisfies validity, note that countp[beliefp] >_ 2t + 1 implies that some

process proposed beliefp = val on at least t + 1 objects _a-A-[_ti-_fr[i... 3t + 1].

CASE 2 Suppose no process returns by line 14. Then every q returns ans2q by line

19. Since 02 does not fail, we have (for all p, q) ans2p = ans2q = val. Thus O satisfies

agreement. .....

I .... val.By the validity of O2, some process p must have proposed val to O2. That is vp

' equals either vp or beliefp. Ifv_ = vp, then clearly O satisfies validity. IfIn the algorithm, vp

vp' = beliefp # vp, then p must have executed line 16. It follows that countp[beliefp]_> t + 1.

This implies, considering that at most t objects in Abetief_ [1... 3t + 1] fail, that some process
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= ' = beIiefr, = Vqq proposed vq beliefp on some object in Abeli_Ip [1... 3t + 1]. Thus vaI = vp

and Vq is the initial proposal of q. Thus O satisfies validity. O

Claim 6.14 The resource complezity of the implementation in Figure 4 is O(tlogt).

Proof Denoting the resource complexity of the t-tolerant (gracefully degrading) self-

implementation of N-consensus for R-arbitrary failures by f(t), we have the following

recurrence: f(t) = 2f(t/2) + 2(3t + 1) + (4t + 1) and f(1) = 6. Hence the result. []

To complete the proof of Theorem 6.7, note that agreement and validity follow from

Claims 6.12 and 6.13. It is obvious that the implementation is wait-free, gracefully degrad-

ing, and that O satisfies integrity. []

6.2 Fault-tolerant implementation of register

The register type supports two operations, read and write v. The sequential specification

is simple: read returns the most recent value written. Lamport defined a weaker (non-

linearizable) object known as safe register fLare86]. In the following, we first show how to

build a fault-tolerant safe register from safe registers, some of which may suffer R-arbitrary

failures. We then resort to the register construction results in the literature to show that

register has a serf-implementation for R-arbitrary failures.

Lemma 6.1 Using 2t + 1 1-reader, 1-writer safe registers, at most t of which may suffer

R-arbitrary failures, we can implement a failure-free I-reader, 1-writer, safe register.

Proof (sketch) To read the safe register, the reader reads all base registers, and returns

the majority response. If there is no majority, it returns an arbitrary value. To write a

value v into the register, the writer writes v to all base registers. It is easy to verify that

the above strategy implements a safe register that behaves correctly even if a maximum of

t base registers suffer R-arbitrary failures. []

It is possible to implement a multi-reader, multi-writer, atomic register using 1-reader,

1-writer, safe registers [Blo87, BP87, cwg0, HVgl, Lain86, NW87, Pet83, PB87, Sch88,

SAG87, Vid88, Vid89, VA86]. Thus we have the following theorem.

Theorem ti.8 zegister has a t-tolerant self-implementation for R-arbitrary failures.

6.3 Universality results

We now describe how to implement fault-tolerant wait-free shared objects of a generic type.

An object type T is finite if A(T) has only a finite number of states. Also let N-consensus

with reset be an N-process object type informally defined as follows: An object O of this

type behaves exactly like an object of type N-consensus with the difference that O supports

an extra operation reset. Applying "reset" to O will initialize O and make it available for
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a fresh round of consensus. The operation "reset" is required to work only in the absence

of concurrent operations 9.

Herlihy showed that every finite object type I° has an implementation from (N-consensus

with reset, unbounded register) ([Hergl]). The use of unbounded regbsters was re-

placed by boolean registers by Plotkin ([Plo89]). Using Plotkin's result, together with

Theorems 6.7 and 6.8, we obtain the following corollary.

Corollary 6.1

• Every finite object type has a t.tolerant implementation from (N-consensus with

reset, boolean register) for R-arbitrary failures.

• [/a finite object type implements N-consensus with reset and boolean register

then T has a t-tolerant self.implementation/or R.arbitrary failures.

Herlihy's construction can be easily modified to yield a universal implementation from

(N-consensus with reset, unbounded register) even for infinite object types. Thus

Corollary 6.1 holds even if T is an infinite object type, provided that boolean register is

replaced by unbounded register in the statement of the corollary.

Herlihy showed that queue, stack, test&set, fetch&add etc. implement 2-consensus,

and compare_svap implements N-consensus [Hergl]. It is easy to show that test&set and

compare&swap implement boolean register, and queue, stack, and fetch&add imple-

ment unbounded register. Thus,

Corollary 6.2 The following object types have t-tolerant self implementations for R-arbitrary

failures: (_-proeess) queue, stack, test&set, fetch&add, and (N-process}comp_re&svap.

7 Tolerating non-responsive failures

Unlike responsive failures, non-responsive failures are almost always impossible to cope

with. We first show the impossibility of implementing a consensus object from any finite

list of base objects, one of which may crash. We do so by a reduction from the consensus

problem among a finite number of processes, one of which may crash. The latter problem

is known to be unsolvable [FLP85, LAA87].

Theorem 7.1 There is no 1-tolerant implementation of 2-consensus for crash failures.

9Therefore N-consensus leith reset cannot be defined modularly through sequential specification and

liaearizability.

1°An object type T is finite if A(T), the automaton giving the sequential specification of T, has only a
finite number of states.
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Proof Suppose the theorem is false and there is a finite list f. = {T1,T_.,... ,2]} of object

types such that there is a 1-tolerant implementation 2" of 2-consensus from £ for crash
failures.

Now consider the following concurrent system S in which all objects are registers. Pro-

cesses in S are {Pl,P2} U Cqjll _<j <_ l}, and the registers are {decision} U {invocation(i,j),

response(j, i) I1 < i < 2, 1 < j <__l}. We claim that the consensus problem is solvable in S

even if at most one process in S may crash. The following is the protocol. Let vi E {0, 1}

be the input of pi. The idea is that process q1 (1 < j <__l) simulates an object oj of type

Tj, and process pi (i = 1, 2) simulates the execution of propose(v/) on the derived object

2"(Ol,..., oz). The details are as follows.

InitiaLize all registers to 1. The process pi simulates the execution of the proce-

dure propose (vi) of the implementation 2" as explained below. If propose (vi) requires

pi to invoke some operation op on oi, pi appends op to the contents of invocation(i,j). If

propose(v/) requires Pi to check if a response to some outstanding invocation on oi has

arrived, Pi checks if a response has been appended (by qj) to response(j, i). If propose(vi)

requires Pi to decide some value v, Pi first writes v in decision register, then decides it, and

halts execution. Also pi periodically checks if the register decision contains a v E {0, 1}. If

so, it decides v and halts execution.

Process q1 simulates the base object oi as follows, q1 checks the registers invocation(I, j)

and invocation(2, j) in a round-robin fashion. When it notices that some operation op has

been appended to invocation(i,j), it applies op to the local copy of oi that it maintains

and appends the corresponding response to response(j, i). Also qj periodically checks if the

register decision contains a v E {0, 1}. If so, it decides v and halts execution.

It is easy to verify that the above protocol solves the consensus problem among the

l + 2 processes in S even if at most one of them crashes. To see this, consider the following

cases"

1. No process crashes: Since every qi, the process simulating object oi, is correct and

propose(vi) executed by Pl (i = 1, 2) is a wait-free procedure, it follows that one of

pl and P2 or both eventually write a value v E {0, 1} into decision. Thus every correct

process eventually decides v.

2. pl crashes: By our assumption that at most one process crashes, process p2 and q1

(1 < j _< I), the process simulating object oi, are all correct. Together with the fact

that propose(_2) is a wait-free procedure, this implies that P2 eventually writes a

decision value v into decision and decides v. Every other correct process eventually

observes _ in decision and decides v ....

.

4.

p2 crashes: By a symmetric argument.

qk crashes (for some 1 _< 1¢</): This corresponds to the crash of the simulated base

object ok. Since 2" is 1-tolerant, the execution of propose(v_) by process pi (i - 1, 2)

eventually terminates. Thus one of Pl and P2 or both write a value v into decision.

Thus every correct process eventually decides v.
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In all the above cases, since 2" is an implementation of 2-consensus the following holds:

if both pl and p2 write into the decision register, then they both write the same value, and

this value is either vl or v2.

We showed that we can use 2- to solve the consensus problem in system S, and this

contradicts the imp6ssibility result of Louis and Abu-Amara [LAA87]. []

We can strengthen the above result as follows. Suppose that at most one base object

may fail, and it can only do so by being "unfair" (i.e., by not responding) to at most one

process. Furthermore, suppose, the identity of this process is a priori "common knowledge"

among all the processes. Even with this extremely weak model of object failure, called

1-unfairness to a known process, we can prove the following:

Theorem 7.2 There is no 1-tolerant implementation of 2-consensus for 1-unfairness to

a known process.

Proof (Sketch) Assume the theorem is false, namely, there is a 1-tolerant implementation

of 2-consensus for 1-unfairness to process pl. Now proceed as in the proof of Theorem 7.1.

Cases 1, 2, and 3 still hold. Consider Case 4, where q_ crashes (for some 1 < k < l). This

corresponds to the crash of the simulated base object o_. This object is now potentially

unfair to both Pl and P2. But 2" tolerates unfairness to only pl. We circumvent this difficulty

by modifying p2's protocol as follows. If propose (v2) requires p2 to invoke some operation

op on Some oi, P2 appenc_-_ to the Contents o_ _n_vo-ca_n(2,j), :as before, _ut" n0w i_t also

waits until a corresponding response is appended to response(j, 2) (by process qj).ll Thus,

if p2 attempts to access ok after the crash of qk: it will simply Wait for the response forever.

Therefore, at worst, the crash of qk looks like o_ is unfair to pl, and p2 is extremely slow.

Since 2" tolerates the unfairness of 0ne base object to Pl, I(ol,..., or) continues to behave as

a wait-free consensus object. Hence the procedure propose(v1) executed by pl eventually

terminates returning the decision value. As before, this value is written into decision, and

eventually every correct process decides. Again, we have a contradiction to the impossibility

result in [LAA87]. []

Let C be the class of all object types that can implement 2-consensus. From the above
two theorems we have

Corollary _'.1 For all T 6 C, there is no l'tolerant implementation of T for crash or

I.unfairness to a known process.

From [Her91] and this corollary, we conclude that Queue, Stack, Test&Set, Fetch&Add,

Compare&Swap, and several other common types do not have a 1-tolerant implementation

for crash or 1-unfairness to a known process. In contrast to the above impossibility results

we show

Theorem 7.3 register has a t-tolerant self.implementation for arbitrary failures.

1lit is easy to see that with thls modification Cases 1, 2, and 3 still hold.
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This followsfrom

Lemma 7.1 Using 5t + 1 1-reader, i.writer safe registers, at most t of which may suffer

arbitra_ failures, we can implement a failure-free 1-reader, 1-writer, safe register.

Proof (Sketch) Informally, the reader invokes 'read' on all registers (on which it has no

pending invocation) and waits until 4t + 1 respond. It then returns the majority value. If

there is no majority, it returns an arbitrary value. The writer writes to all registers (on

which it has no pending write). It waits until 4t + 1 of them return a "operation completed"

response. It is easy to verify that the above strategy implements a safe register that works

correctly even if a maximum of t base registers suft_er arbitrary failures. []

8 Other basic results

Consider a system that supports a given set H of primitive hardware objects. Assume that

these objects may fail, but if they do, they are guaranteed to only fail by R-crash. Suppose

we wish to build an object O using only objects in H, and (9 is only required to function

correctly in the absence of failures. However, when objects in H fail by R-crash, we would

like O to fail only by R-crash. This last requirement is desirable for two reasons:

• The simple "once .1_, everafter _1." property of R-crash is the most benign type of

failure.

• Such an object O appears like any other primitive hardware object of the system:

With O, the system would be no d_erent, in functionality and failure semantics,

from one that supports H U {O} as its primitive hardware objects.

In our terminology, a (0-tolerant) gracefully degrading implementation is exactly what

we are looking for. The e_stence of such an implementation depends on the type of O and

the types of the objects in H. Unfortunately, as we show below, most objects do not have

such implementations even when/_" includes very powerful objects.

An object type T is order-sensitive if it is a deterministic N-process type (N _> 2) and

the following holds: There exist state S in A(T), operations op, op' (not necessarily distinct)

in OP(T), and values u, v, u', v' such that each of (op, u),(op', u') and (op', v'),(op, v) is a

sequential execution from state S consistent with T, and u _ v and u' _ v'. Queue is an

example of an order-sensitive object type. To see this, instantiate S to the state in which

there are two elements 5 and 10 in the queue (5 in the front), and both op and op' to deq.

Now we have u = 5, u' = 10, v' = 5, andv = 10. Thusu _ v andu I _ v', as required.

Stack, Test&Set, Compaze&Svap are some otherexamples oforder-sensitiveobjecttypes.

An objecttype isnon order-sensitiveifitisdeterministicand not order-sensitive.Examples

ofnon order-sensitivetypes includeregister, sticky bit, move, and swap.

Theorem 8.1 There is no (O-tolerant) gracefully degrading implementation of any order-

sensitive object t_tpe for R-crash from an_l list of non order-sensitive object types.
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Proof Omitted. {2

Preserving the failures semantics of the underlying system is a highly desirable property

of an implementation. For R-crash, the above theorem shows that this property is not

achievable in many cases: implementations necessarily amplify the severity of the R-crash

failures of the underlying system. For example, consider a system that supports registers

and sticky bits in "hardware". In such a system any object can be implemented [Plo89],

including (for example) queues. Assume the given registers and sticky bits only fail by

R-crash. Can we implement a queue that also fails by R-crash? The above theorem shows
that this cannot be done!

Requiring a derived object to inherit the R-crash semantics of its base objects is even

more difficult if add the requirement that the derived object be 1-tolerant. Even if we do

not restrict the types of primitives available in the underlying system, such implementations

do not exist for most objects of interest! This is shown by the theorem below.

Theorem 8.2 There is no 1-tolerant gracefully degrading implementation of any order-

sensitive object type for R-crash.

Proof For a contradiction, assume /: = {T1,T2,... ,Tn} is a list of types such that

there is a 1-tolerant gracefully degrading implementation I of T from Z: for R-crash. We

prove the theorem through a series of claims, involving "indistinguishable" scenarios. Let

• v' be as given in the definition of order-O = I(01,02, ..O_), and o19, op', S, u, v, u',

sensitive types.

Claim 8.1 Suppose 0 is in state S, and processes p and q ezecute Apply(p, op, O) and

Apply(q, op', O) respectively. For any interleaving of Apply(p, o17,O) and Apply&, op', O),

either Apply(p, op, O) retur:n, s u and Apply(q, op', O) returns u' or Apply(p, op, O) returns

v and Apply(q, op I, 0_) reruns v I.

Proof- in the lineariznti0aof-tlae-execution hlstox:y:-eitiler Apply(p, op, O) precedes Apply(q, op', O)

or Apply(q, op', O) precedes Apply(p, op, O). This, together with the definitions of u, u', v, v',

and the fact that T is a deterministic type, trivially imply the claim. O

Claim 8.2 There ezists a sequence a-of steps (of p) and-a step s (of p) such t)_at the

following Scenarios S1 and S2 are possible.

Scen_r:_o $_ (scenario starts with 0 in state S)

1. Process p initiates and partially ezecutes Apply(p, op, O) by completing the steps in

_. Process q initiates and completes (all the steps of) kpply(q, op', 0), returning v'.

3. p completes the remaining steps of Apply(p, op, 0), returning v.

Scenar$o S:_ (scenario starts with 0 in state S)
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1. p initiates and (partially) ezecutes Apply(p, op, O) by completing the steps in a.s.

2. q initiates and completes (all the steps of) Apply(q, op', 0), returning u'.

3. p completes the remaining steps o/Apply(p, op, 0), returning u.

Proof Clearly if process p executes no steps of Apply(p, op, (9) before process q initiates

and completes Apply(q, op r, 0), then Apply(q, op', O) must return v'. Further if p initiates

and completes all the steps of Apply(p, op, O) (let /3 be this sequence of steps) before q

initiates and completes Apply(q, op', O), then Apply(q, op', O) must return u'. Together

with Claim 8.1 by which Apply(q, op I, O) must return either u' or v', the above implies that

there exists a sequence a of steps and a step s such that a.s is a prefix of _ for which the
claim holds. U

Hereafter we will assume Ok is the base object accessed by p in step s.

Claim 8.3 Consider

Scenario S3 (scenario starts with 0 in state S)

1. p initiates and (partially) ezecutes Apply(p, op, (9) by completing the steps in a.s.

_. q initiates and completes (all the steps of) Apply(q, op', 0), returning u' (as in $2).

3. 01,02,... ,On fail by R-crash.

4. P completes the remaining steps of Apply(p, op, O).

Then Apply(p, ol9, O) returns u.

Proof Suppose Apply(p, op, O) returns ±. Since I is gracefully degrading, the failure

of O must appear like R-crash. This requires, given that Apply(q, op', O) returns a non-a_

response, that Apply(q, oio_, O) precede Apply(p, op, O) in the linearization order. Doing

so, however, implies that (op _, u') is a sequential execution from S consistent with T. This

cannot be true since u' # v', T is deterministic, and (op I, v I) is a sequential execution from

S consistent with T. Thus Apply(p, op, O) cannot return _l_.

Suppose Apply(p, op, (9) returns w where 2. # w # u. Since in the linearization,

either Apply(p, op, O) precedes Apply(q, op', (9) or Apply(q, op', (9) precedes Apply(p, op, O),

it follows that either (op, w),(op u') or (op1,u'),(op, w) is a sequential execution from S
consistent with T. This cannot be true since T is deterministic and (op, u),(op_,u _) and

(opl,vl),(op, v) are sequential executions from S consistent with T and w # u, u I # v I.

We conclude that Apply(p, op, O) must return u. []

Claim 8.4 Consider

Scenario $4 (scenario starts with 0 in state S)
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2.

3.

4.

5.

Then

p initiates and (partially) ezecutes Apply(p, op, O) by completing the steps in _.s.

Ok fails b71R-crash.

q initiates and completes (all the steps of) Apply(q, op', 0).

Oz,...,Ok-z and Ok+z,...,On also fail by R-crash.

p completes the remaining steps of Apply(p, 029, 0}.

Apply(p, op, O) returns u and Apply(q, op', O) returns u'.

Proof Clearly S4_pS3. Therefore, as in 33, Apply(p, o19,O) returns u in $4. Since 2" is 1-

tolerant, and since only Ok has failed by the completion of Apply(q, op', O), Apply(q, op', O)

must return a non-% response. From the definitions of u, u_,v,v t, it is easy to verify that

the only non-_l_ response that satisfies Iinearizability is u'. []

Claim 8.5 Consider

Sc,nar_o $5 (scenario starts with 0 in state S)

1. p initiates and partially ezecutes Apply(p, op, O) by completin 9 the steps in _.

2. Ok fails by R-crash.

3. q initiates and completes (all the steps of) Apply(q, op', O).

4. 01,...,0k-i and Ok+x,...,On also fail by R-crash.

5. p completes the remaining steps of Apply(p, op, O).

Then Apply(p, op, O) returns u.

Proof Clearly SS_qS4. Therefore Apply(q, op', O) returns u' as in S4. By similar argu-

ments as in Claim 8.3, it can be shown that Apply(p, op, O) returns U.... []

Claim 8.6 Consider

Scenario s6 (scenario starts with 0 in state S)

1. p initiates and partially ezecutes Apply(p, op, O) by completing the steps in o_.

_. q initiates and completes (all the steps of) Apply(q, op r, O).

5. All base objects Oz,02,... ,On fail by R-crash.

4. P completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, O) returns u, and Apply(q, op _, O) returns v_.
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Proof Since36 _p SS, Apply(p,op,O) returnsu asinSS. SinceS6 _q Sl, Apply(q,opr,O)
returnsv_as in Sl. []

Neither (op,u),(op',v')nor (op',v'),(op,u) isa sequentialexecutionfrom S consistent

with T. Hence the executionin Claim 8.6isnot linearizable.Thus the failureof O in S6 is

more severethan R-crash.We conclude that2"isnot a gracefullydegrading implementation

forR-crash,a contradictionwhich concludesthe proof of Theorem 8.2. []

The above discussionraisessome questionson the "practicality"ofthe R-crash model:

Even if"hardware" objectsfailby R-crash,"software"objectsdon't.The R-omissionmodel

definedin thispaper does not have thisseriouslimitation.In fact,for any t >_ 0 every

object type has a t-tolerant gracefully degrading implementation from (universal type,

register) for R-omission. In other words, implementations preserving the R-omission

semantics of the underlying system always exist. This is a formal justification for adopting
the R-omission model of failure.
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