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Abstract. Large scale optimization problems are tractable only if they are somehow decomposed.

Hierarchical decompositions are inappropriate for some types of problems and do not parallelize

well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear

constrained optimization that is naturally parallel. Despite some successes on engineering prob-

lems, the algorithm as originally proposed fails on simple two dimensional quadratic programs.

This paper carefully analyzes the algorithm for quadratic programs, and suggests a number of

modifications to improve its robustness.

1. Introduction.

Many engineering problems involve large scale optimization over many different disciplines.

As is the case with many large scale problems, a decomposition of the problem into subproblems

helps reduce the time and complexity of solution. The strategy governing the decomposition of

a large scale problem can directly affect the ease and accuracy of the solution. The concept of

a linear decomposition strategy [23] has been used with good results in a number of cases. This

method works very well in the case of a system that is amenable to such a decomposition, i.e., when

subsystems can be laid out clearly in a linear fashion. For this there should be a basic hierarchy

embedded in the problem.

For a system with many interdependencies between the probable subproblems, using a linear

decomposition strategy implies choosing one subsystem before another, thereby establishing an

artificial hierarchy. The order chosen will affect the solution iterates, making this strategy illsuited

or even nonconvergent for such nonhierarchic problems.

These considerations led Sobieski [22] to propose a new nonhierarchic decomposition strategy.

Since nonlinear optimization can be reduced to a series of quadratic programs, it is appropriate to

study this new algorithm first on quadratic programs. Thus, this paper first studies the various

tuning parameters occurring in this algorithm, using a model quadratic programming problem. A

series of experiments shows that modifications to the algorithm as originally proposed by Sobieski

[22] are necessary for convergence. This modified algorithm is then used to solve problems involving

a number of subsystems, each with a varying number of design variables.
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The testsarecarriedout onquadraticprogramming(QP) problemsof differentdimensions.
The decompositionthenyieldssubproblemswhicharealsoQPproblems.The methodemployed
to solvethesesmallerQPproblemsis eliminationofvariables[8]. Alsooptimizationpackagessuch
asMINOS[17]andQPSOL[12]wereusedto verify thecorrectanswers.

A detaileddescriptionof theoriginalalgorithm,modificationsto it, tabulationsof theresults
obtainedfor the testproblemsof differentdimensions,andanalysisof the resultsarepresented.

2. Problem Statement.

Consider the following nonlinear programming problem (NLP),

subjectto

minO(_)

g(x, y) < 0,

h(x,y)=O,

where x E E n, y E Ep, g is an m-dimensional vector function and h is a p-dimensional vector

function, x is the set of design variables and y is the set of behavior variables which are the

unknowns in each subsystem.

The approach (known as subspace optimization) is to solve this problem by solving a set of

subproblems. To outline the differences between the current scheme and simple decomposition, we

introduce the following terminology:

z = (Xl,X2,...,XN),

y = (y1,y2,...,yN),

g ,._

hi(x, y) e E p' ,

X i E E n_,

yi E E p_,

gi(z, y) e E'_,

(
nl -t- n2 + . . . "q-nN = n_

Pl + Pz +... + PN = P,

h"N '

ml + ...-I- mN = m,

hi(x,y) = Y'- h'(x,Y1,...,yi-l,yi+l,...,yN).

The sub vector X i is the set of design variables corresponding to the ith subsystem. Similarly

the sub vector yi is the set of behavior variables of the ith subsystem. For any vector function

f(x,y), let ](xi,y ') denote f with all the components X1,..., X i-1, X/+1, ..., X N, y1, ...,

yi-1, yi+l,..., yN fixed except for X _ and Yi. Note the assumption that each Yi can be explicitly

determined in terms of x and the other subvectors YJ.

3. Simple Sequential Decomposition.

The approach is to first divide the given large problem into a set of independent subproblems,

corresponding naturally to the subsystems comprising the larger system. The/tit subsystem would

be

min 6(X i)
X i

subject to 0i(Xi,Y i) _< 0,

h'(x',r') =o,



where the system of equalities h i = 0 is used to eliminate yi from _i. The subproblems are solved

sequentially for i = 1,..., N, with one pass through all the subsystems constituting one outer itera-

tion. The outer iterations are repeated until the same point (_, _) solves all N subproblems. While

solving the ith subsystem the values of X 1,... , X i-1, Xi+l, • • •, X N, y1,..., yi-1, yi+l ,..-, yN

are fixed. They can be chosen in a Gauss-Seidel manner where the first i - 1 X and Y subvectors

used have their latest values from solving the first i- 1 subproblems. A parallel algorithm, solving

the subproblems concurrently, would use a Jacobi scheme where the values of all the X j and YJ

vectors are updated only at the end of each major outer iteration. The ensuing discussion assumes

a Jacobi scheme.

4. Decomposition with Approximate Coupling.

In the scheme proposed by Sobieski [22], a measure of the constraints in each of the other

subsystems is also brought into the ith subsystem in the form of one cumulative constraint C_ per

subsystem. The approximate cumulative constraint C k of the kth subsystem in the ith subsystem

is obtained from the corresponding constraints gk E E 'nk as a linearization of the Kreisselmeier-

Steinhauser cumulative constraint

The p in the Kreisselmeier-Steinhauser function is a constant used to control the accuracy of the

cumulative constraint approximation. The linearization of this cumulative constraint of the kth

subsystem with respect to the variables of the ith subsystem is

In the ith subsystem the cumulative constraints of the other subsystems are brought in as

constraints. Therefore, a violated cumulative constraint of one subsystem may be satisfied by

decisions taken in every one of the other subsystems. Therefore, we introduce coefficients r_' to

represent the fractional "responsibility" assigned to the ith subsystem for reducing the violation

of the cumulative constraint of the pth subsystem, for each p = 1,...,N. Thus we have N 2

r-coefficients. The p'r i s axe defined in such a way that

N

P 1,Er i ----

i=1

Sobieski [22] suggested the initialization of the r-coefficients in such a way that they are proportional

to the degree of influence exerted by the ith subsystem on the pth cumulative constraint. This

initialization is discussed in the Appendix.

To further reduce the objective function we allow cumulative constraints to be violated in one

subsystem, provided that the violation will be offset by oversatisfaction of that constraint in another

subsystem. To account for such tradeoffs, we introduce the N 2 coefficients t_, corresponding to



the cumulativeconstraintof the pth subsystem when present in the ith subsystem. For the pth

cumulative constraint,
N

i=1

maintains the constraint at a value of zero. This condition and the condition on the r-coefficients

are enforced in what is called the coordination optimization phase, which is solved to update the

values of the r's and the t's at the end of every outer iteration. The t_'s are initialized at the

beginning of the algorithm to zero.

As has been described above, the r['s are needed only in the case of a violation and the

t_'s only when the constraints are critical, therefore only one of the two is needed at a time.
Therefore we introduce N coefficients s p which act as switches, one for each of the cumulative

constraints of the subsystems, s p is set to one (activating the r-coefficients) if the corresponding

constraint Kp _< 0 is violated at the outset of the system optimization procedure and stays at

one until the Kp is driven to a critical status (zero value). Once Kp becomes critical, s v is reset

to zero (activating the t-coefficients) and stays at zero until the system optimization procedure

terminates. The switch s i is applied selectively to the natural constraints g/of the ith subsystem
by(i.e., the constraints that are assigned to the ith subsystem) by multiplying the r-coefficient ri

a factor of max{_'(X_,Y_),O}, so that constraints which are already satisfied are not taken into
consideration.

Thus, the ith subsystem optimization problem is

subject to

O(X')
X _

_ , -- S )tl,' '
^ i i (1 s p_pC[(X',Y') <_ Kp(Xo,Yd)sP(1- r[) + - ,-,,

p = 1,...,i- 1, i+ 1,...,N,

tt' (X', Y') =0.

The constrained minimum of 0 obtained from each subsystem optimization is a function of

P and p (assuming they exist)P and t_, and its partial derivatives with respect to r_ t ithe constants r/

can be computed from the expressions given in the Appendix using gradient information for the O

and C functions. These derivatives are used for a linear approximation of O that is the objective

function for the coordination optimization phase, the last (and synchronizing) step of an outer

iteration.

The coordination optimization phase (COP) solves a linear program to adjust the coefficients

P and t_', so that the objective function 0 will be further reduced (if possible) at the end of ther i

next outer iteration. The linear program uses a linear extrapolation of 0 based on the partial

derivatives O0/Oz described above. Here z represents either an r or a t coefficient. Move limits

(upper and lower bounds U_, Or, Lf and gf for r_' and t_', respectively) are needed to prevent

large changes in the r- and t-coefficients caused by the nonlinearity of the original problem. For

the first COP execution, the p'r i s may be initialized as already suggested and the t_"s are initialized

to zero. For every subsequent execution, the r ip's and the P' aret i s initialized to the terminal values

from the previous COP execution. The result of the COP execution is a new set of r['s and

t_"s to be used in the next outer loop of subsystem optimizations. The adjustment of the r['s

4



and tV's to the new values amounts to a reassignment of the responsibility for eliminating the

constraint violations among the subsystems and to issuing a new set of instructions about trading

the constraint violations/oversatisfactions among these subsystems. Let (xo,yo) be the current

updated point (the result of the Jacobi outer iteration) and

N N to0 A P N N too . p

p=l i=1 _ri p=l i=1

where Ar/= (r/-(r/)0) and At_ = (t[-(t/)o). The partial derivatives t00/0r / and toO/Ot/are

evaluated at the optimal point computed by the ith subsystem optimization. Let

R = (r_,r_,...,r_,r21,...,r_,...,r_r,...,rN N)

and
T= 1 2(tl,*l,. . ., . . .,tL . . .,tL . . .,

Then O1 is a function of R and T. The linear program solved during the coordination optimization

phase is:

subject to

min OI(R,T)
R,T

N

I, p-1,...,N,
k=l

N

y t =0, p= 1,..,N,
k=l

O_<r__<l, p-1,...,N,

LVk <_ rVk<_ U_, p= l,...,N,

L_ <_ t_ <_ lJ_, p = 1,...,N,

k = 1,...,N,

5. Pseudocode for algorithm.

An algorithmic description of the whole process in pseudo-code is given next, using the fol-

lowing model quadratic programming problem (without the variables y and equality constraints

h(x, y) = 0) for specificity:
rain xtAx

X

where

subject to Bx <_ d,

All a12A12 ... alNA1N

al2At2 A22 ... a2N.A2N ]A= . . ". , B=

d2
d_ ,

d

Bll

 n.Bn
_N1BN1

X 2

N

fl12B12 ... _INB1N_

B22 "'" fl2NB2N I

• , , • J 9

f_N2BN2 ... BNN ]
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and X i E E m , Aij E E mx'i , Bij E E p'x'_ , di E E v', the A, are symmetric and positive definite

and the aij,/Sij are fixed "coupling" parameters, for all i,j = 1,...,N. Using notation defined

in the Appendix, pseudo-code for the algorithm applied to this quadratic programming problem

(qP) is:

Choose an initial estimate z and initialize the r-, s- and t-coefficients;

Repeat until minimum reached

begin

fori= 1 to N do

begin

Calculate the linearization C](X i) of the cumulative constraint for the jth subsystem, for

allj # i;

Calculate the ith subsystem's self responsibility

6i s'max{_i i i ' (1- i.= • (X_,yd),O}(l_r:)+ si) ti,

Solve the QP (ith subsystem)

minO(Xi) =(xi)tAiiXi+2(Zoqj(Xi)tAijgj)X, j#i

N

subject to _ t_ijBijX j _ di <_ _i, (flii = 1)
j=l

C] (X i) _< O, for all j # i;

Calculate (if not already available) the Lagrange multipliers A using the method given in

the Appendix.
O0 O0

Calculate Or---].and _. for j = 1,..., N;
--t

end

Solve the LP (Coordination Optimization Phase)

rain 01(R,T)
R,T

N

subject to _ r E = 1,
k=l

O_r_<l,

N

y:t :0, p:
k=l

p= l,...,N, k = l,...,N;

end (repeat)

6. Initial tests.

Testing of this algorithm was first performed on a simple 2 x 2 case:



Example 1.

min x_ -1-zl

subject to xl Jr fix2 <_ 4,

fiX1 + X2 > 2,

where z = (xl,x2) t E E 2.

Here each constraint is taken to be in a subsystem by itself with X 1 = (Xl) and X 2 = (x2). The

results are tabulated in Table I. The column headings are the starting points, the last column

gives the solutions for the different values of fl, and each entry contains a convergence code and
the number of iterations taken. The code IF means an infeasible subproblem is encountered at

the very first iteration and the procedure is terminated, R means the solution is reached in the

iteration indicated, but subsequently an infeasible subproblem is encountered, Wit means a wrong

point is reached before an infeasible subproblem causes termination, 0 means there is oscillation

through the number of iterations indicated, WC means there is convergence to a point other than

the solution, and NC means there is no convergence even after the number of iterations indicated.

TABLE I

Original algorithm applied to the 2 x 2 case.

0.0

0.1

0.3

0.5

1.0

(2,3) (4,-1) (1,-1) (10,3) solution

R 1 R i R It 1 (0.0,2.0)

WR 1 IF 1 WC IF I (0.198,1.98)

WR 1 IF 1 WC

Wit 1 IF 1 0

0 150 O 150 0

(0.8,1.5)

1 R 1

4 WC 4

5 WC 4

150 NC 150

150 0 150

IF 1 (0. 5,1.835)

Wit 1 (0.8,1.6)

0 150 (1.0,1.0)

As can be seen from the table, the main problem with the algorithm is not being able to

deal with infeasibility in a subproblem. Another reason for the algorithm not being successful is

the way the s coefficient is set permanently to zero once a constraint becomes critical. When a

constraint that was once critical becomes violated, the r coefficients cannot be brought in to reduce

the violation.

7. Modifications to the original algorithm.

Several modifications and variations of the original algorithm as described in [22] are discussed

next. The order of the topics is not significant.

Changes in setting of the switch coefficients s v.

When a Kp becomes critical, the corresponding s_' is set to zero and stays at zero until the

whole procedure terminates. This means that the term with the rV coefficient does not contribute

any longer to the constraints. If the constraint becomes violated later, then the violation cannot

be reduced using the r coefficients. Hence two alternatives to the _gorithm were considered. One
was to remove the s coefficient from the r term. The other was to set the s v coefficient at the end

of every outer iteration depending on whether the corresponding constraint was satisfied or not.
This would make one of the r or t coefficients active all the time. The second alternative performed

better in initial tests and therefore was selected.



Handling Infeasibility.

Because of the linearization and the allocation of responsibility, some subproblems may be

infeasible. The following procedure is employed to recover from infeasibility in a subsystem. A

new variable w is introduced in each of the constraints and a large multiple of this variable is added

to the objective function to be minimized. Thus, the corresponding sub problem would now be

min O(X') + Mw
X i

- _ -- s )ti,subject to [I'(Xi,Y') w < simax{Oi(xg,Y_),O}(1 - r_) + (1 ' '

- _ - s )t i,C_(Xi,Y i) w<If,(Xg,Y_)sv(1-'_)+(1 P ,

p = 1,...,i- 1, i+ 1,...,N,

where M is a large positive number.

The linear objective function in the Coordination Optimization Phase is formed using the

Lagrange multipliers obtained from the subproblems. The introduction of the variable w affects

these Lagrange multipliers. The sensitivity derivatives are affected considerably because of these

Lag-range multipliers, as indicated in the Appendix. A thought as to whether this was justified or

not led to two variations of the algorithm. In the first variation, in case of an infeasibility in any

subproblem, the Coordination Optimization Phase is omitted at the end of that outer iteration.

In the second variation, the COP is included in every outer iteration.

Limit on t coefficients.

Initially tests were performed with the t coefficients left unbounded, but clearly this is unwise.

A few variations for the bounds on the t's were considered. One possibility is keeping the bound

fixed throughout the procedure, but this may result in nonconvergence to the solution. Also the

bounds should not decrease too fast, because this may force convergence to a nonoptimal solution.

The bound is reduced by a factor of f = 0.8 at the end of every outer iteration. Thus, if the

bound at the first iteration is tl, then the bound at the ruth iteration is

trn = 0.8('n-1)tl.

A variation of having the bound at the mth iteration equal a factor ftoa(_-l) or a factor

f( rn-1)1/2 of the bound at the first iteration was also considered.

A later modification was to change the move limits on the t coefficients based on information

about the corresponding coefficients in the objective function of the COP. To ensure that no

subsystem is allowed a violation that cannot be offset by an equivalent oversatisfaction in the

other subsystems, a change was made to the move limits on the t coefficients, using information

about the corresponding sensitivities.

The apk coefficient (as described in the Appendix) is a measure of the sensitivity of the

pth cumulative constraint to the variables of the kth subsystem. The lower limit of t_ is now

max{-a vk, -tlim}, reasoning that the oversatisfaction expected of the pth cumulative constraint

in the kth subsystem will be restricted to what it can handle.
The initial value of the move limit on the t coefficient affects the results and the path taken.

Various values of this initial limit were tried.

At the beginning of every major iteration involving a new p, the initial value of the move limit

on the t coefficient may be reset to either the original value or some fraction of it.



Convergence Criterion.

The convergence criterion initially involved a measure of the difference between three successive

iteration values of the design vector. Later, tests revealed that with this criterion the procedure

could stop even if there was a chance for further improvement, because of changes in the values of
the r and t coefficients. Hence the difference between the values of the t and r coefficients were

also included in the convergence criterion. Thus, if 5',_-2 represents the normalized form of the

vector (x, R,T) at the (m- 2)th iteration and similarly for S,_-1 and S,n, then using the 2-norm

the convergence criterion is

{IS -i - s - ll + - s -lll _ o.oool.

Changes to the p coemcient.

After the required convergence criterion is met the p coefficient is increased and the whole

process is repeated again to check if the convergence criterion is still met, if not another major

iteration is performed. This is because with increasing p the cumulative constraint is closer to the

actual constraints. But the process is not started with a large p, as the problem is then very ill

conditioned.

Cross derivatives.

The cross derivatives are checked to see if one subsystem is at all dependent on the variables

of another subsystem, if not the corresponding r and t coefficients are fixed at zero.

Changes to the r coemcients.

The diagonal r coefficients r i are assigned a minimum value of 0.2 always, reasoning that every

subsystem always has some responsibility towards its own constraints.

No COP.

If the objective function of the COP is a constant then the COP is skipped for that iteration.

Resetting the t coefficients.

It was observed in one case that t coefficients (corresponding to one subsystem's constraint)

with equal derivatives in the objective function of the COP assigned extreme values to the corre-

sponding t coefficients even though there was no contribution to the objective function. Hence,

after the COP a check is performed on the t coefficients to see if for a particular p the sum of the

contributions of all the corresponding coefficients to the objective function of the COP is zero. If

so all the t coefficients corresponding to this p are forced to be zero. This check is performed for

all values of p.
Different combinations of these modifications were used on the following test problems and

the results are given in the tables following them.

8. Further tests.

The original algorithm as proposed by Sobieszczanski-Sobieski [22] did not prove to be suc-

cessful as indicated by Table I. Results of two of the most successful variations to this algorithm

tested on the 2 x 2 case are tabulated in Tables II and HI. The characteristics of the algorithms

used are given above the corresponding tables. "s updated" indicates that the s coefficient is

updated at the end of every outer iteration as indicated in the modifications given in Section 7.

"w used" means that an artificial variable w was introduced to deal with infeasible subprobiems.
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The inclusionor exclusion of the COP is in the case of an infeasibility in any subproblem. The

limit on the magnitude of the t coefficient is bounded at 1 initially and this bound is decreased by

using a factor of 0.8 as described in Section 7. The most successful version was used for larger test

problems like the 3 × 3 case with two subsystems and the 6 x 6 case with three subsystems. The

tests were carried out for five different values of fl and for five different starting points. The column

headings are the starting points, the last column gives the solutions for the different values of fl,

and each entry contains a convergence code and the number of iterations until the two-norm of the

change in (x, R,T) is less than 0.0001 . The code C means there is convergence to the solution,

WC means there is convergence but not to the solution, and NC means there is no convergence

even in the specified number of iterations.

TABLE II

s updated, w used, no COP,

t bounded at 1 and 0.8 update.

/_ (2,3) (4,-1) (1,-1) (0.8,1.5) (10,3)
0.0 C 6C 6C 6C 6C 6
0.1 C 56 C 54 C 53 C 53 C 55
0.3 c 50 c 57 c 51 c 52 c 44
0.5 c 7 c 55 c 42 c 48 c 40
1.0 C 7 C 8 C 7 C 47 C 46

solution

(0.0,2.0)

(0.198,1.98)

(0.55,1.835)

(0.8,1.6)

(1.O,l.O)

TABLE III

S updated, aJ used, COP,
t bounded at

(2,3) (4,-1) (1,-1)

0.0 C 6C 6C 6

0.1 C 56'C 53 C 53

0.3 C 50 C 50 C 51

0.5 C 7 C 45 C 42

1.0 C 7C 8C 7

1 and 0.8 update.

(0.8,1.5) (10,3)

C 6 C 6

C 53 C 56

C 52 C 5O

C 48 C 49

C 47 C 46

solution

(0.0,2.0)

(0.198,1.98)

(o.55,1.835)
(o.8,1.8)
(1.0,1.0)

Example 2.

rain x_+ x] + ::2

subject to ::1 + x2 + f_::3 < 4,

-::, - ::2 - _::3 < -2,

-fl::! - fl::_ - 5z3 < -2,

where x = (Xl,X2,X3) t E E 3

10



TABLEIV
s updated, w used, COP,

t bounded at 1 and 0.8 update.

0.0

0.1

0.3

0.5

1.0

(0,1,-3) (1,1,0) (4,0.1,0.8)(-10,3,-10) (0,0,0) solution

C 6 C 6 C 6 C 6 (1,1,0.4)

C 60

C 55

WC 54

C 47

C 6

C 60

C 56

C 45

C 46

(0.9819,0.9819,0.3607)C 59 C 60 C 59

C 56 C 56 C 56 (0.9569,0.9569,0.2870)

WC 54 C 47 WC 56 (0.8888,0.8888,0.4444)

C 46 WC 51 C 44 (0.6666,0.6666,0.6666)

Here, the first two constraints belong to one subsystem and the third constraint to another sub-

system, X 1 = (Xl, X2) and X 2 = (x3).

It was observed that changing the initial value of the bound on t affects the convergence of

the algorithm. For the WC entries in Table IV corresponding to f_ = 0.5, starting with a bound of

100 on t results in convergence to the solution for two of the three cases, and 1000 works for the

third case. An initial bound of 10 for t leads to convergence to the solution for the WC case with

= 1.0. However, initial bounds of 10, 100, or 1000 cause failure for other cases in Table IV.

Example 3.

min z_ + xl + x] + 2.5x_ + 2.5xI + 10xg
_g

subject to Xl+X2+x3+O-j3xs-2flx6<_4,

--_I -- Z2 -- Z3 -- fiX4 "_- 0 "Jr 0 <: --2,

-xl - x2 - 5z3 +0+ 0+ 0_< -2,

0 + 0+ 0+ x4 + x5 - fix6 _< -4,

]_Zl -J- _X2 "_- 0 -- 5X4 -- 4x5 - fix6 <_ 20,

_xl +_z2 -fix3 + 0 + 0- x6 _< -6,

where z : (Zl,X2, x3,x4, z5,x6) t E E 6

Here there are three subsystems with nl :- 3, n2 -- 2 and n3 = 1.

11



0.0

0.i
0.3

0.5

0.5

TABLEV
s updated w used, COP,

t bounded at 1 and 0.8 update.

(0,0,0, (1,2,3, (-10,4,4,
0,0,0) -1,1,5) 0.8,0.1,1)

C 6 C 6 C 6

WC 46 WC 80 WC 48

WC 51 NC 70 WC 50

WC 52 NC 70 WC 53

WC 16 WC 7 WC 13

(1,1,1,
1,1,1)

C 6

NC 70

NC 70

NC 70

NC 70

(-4,2,2, solution

0,1,1)

C 6 (0.6,0.6,0.6,-2.0,-2.0,6.0)

WC 48 (-2.4,-2.4,7.0,-1.7,-1.8,4.8)

WC 50 (-2.7,-2.7,8.0,-1.5,-1.8,1.9)

WC 53 (-1.7,-1.7,6.3,-1.5,-1.9,1.0)

WC 13 (-0.5,-0.5,4.2,-1.2,-2.0,0.7)

Appendix.

InitiMization of the r-coefficients.

The coefficients may be initialized on the basis of sensitivity information so as to assign a

greater responsibility for a cumulative constraint satisfaction (of the ith subsystem say) to those

subsystems that have a greater influence on that constraint. Let

OKp ,

(Kpk ) , =--"_ik _,xo, Yo).

Since 1 < p < N, 1 < k < N, and 1 < i < nk, there are Nnk such partial derivatives (Kpk)i, for

every k. Now define

a'k -=1N  I(K'k)'I' 1 _<p _< N, 1 < k < N,

which measures the influence of the kth subsystem's variables X k on the pth subsystem's con-

straints, as represented by Kp. Normalizing these N 2 influence coefficients gives the r-coefficients

a pk

E aPJ
j=l

_, l<_p<N, l<k<N.

Optimum Sensitivity AnMysis.

Let z denote either of r_' or t_, and define the modified constraint functions

_li(Xi,y i) = [li(Xi, y i) - [simax{_i(Xio,Y{),O}(1 - r_)+ (1 - si)t_] ,

¢r(Xi,y i) = Cr(Xi, Y i) - [kp (X_, Yd) sP(1 - r/p) + (1 - sP)/_],

i = 1,...,N, p=l,...,i-l,i+l,...,N.
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( °)Let Vi= -OX_"'" OX_, '

G _= _! -1

_}+1 '

k¢, j

and G_ denote the subvector of G a corresponding to the active constraints at the current point.

It is assumed that the dimension of G_ is less tha_ or equal to ni, and that the Jacobian matrix

ViG_ has full rank. Then the sensitivities of the minimum of O with respect to the constraints

#i _< 0, Cr <- 0 are given by the Lagrange multipliers

)_ -- __ [(v/ei4) (riGA)'] -1 (vie_)(rio ) t,

where everything is evaluated at the current point--the result of the Nth subsystem optimization.
v and pNow from this the sensitivities of the minimum of O with respect to the r_ t_ are given by

0O ,_t 8G_
Oz Oz "

Observe that from the form of G i, the partials cgG_A/OZ are trivial to compute. _ would not

be computed explicitly from the projection operator as described above, but rather from a QR

factorization of (V,G_)t, as described in Fletcher [8].
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