
/C / ,'

//i 6/-

8_

(NASA-CR-190330) A THIRO ORDER RUNGE-KUTTA

ALGnRITHM ON A MAHIFOLD (Arizona State

Univ.) 9 p

N92-25731

Unclas

G3/6! 0091206

A THIRD ORDER RUNGE-KUTTA ALGORITHM
ON A MANIFOLD

P. E. Crouch, R. G. Grossman and Y. Yan

Center for Systems Science and Engineering
Arizona State University

Laboratory for Advanced Computing
University of Illinois at Chicago

December, 1991; Revised March, 1992

ABSTRACT

We describe a third order Runge-Kutta type algorithm with the property that itpreserves

certain geometric structures. In particular,ifthe algorithm is initializedon a Lie group,
then the resultingiteratesremain on the Lie group.

1. INTRODUCTION

The the main purpose of thispaper isto describe a classof Runge-Kutta type algorithms

with the property that they preserve certaingeometric structures.We give some numerical

resultsfor a particularthirdorder algorithm of thistype. To explain the basic idea,we first

describehow the algorithm would apply to the situationof integratinga differentialequation
on a finitedimensional Lie group G. Let L(G) denote the Lie algebra of G and letYI,...,Y1v

denote a basis of L(G), identifiedas left(or right)invariantvector fieldson (7. We wish to

numerically integratesolutionsof differentialequations evolving on G of the form:

= F(x(0) =(0)= v •c (1)
where

N

F(x) = _ a_'(x)Y_,(x), a _' E C°°(a) (2)
/J=l

We say that such an algorithm is geometrically stable if x" • G implies that x "+1 E O. In
order to apply traditional algorithms to this situation, one can embed G as a submanifold of
a Cartesian space. In general, due to approximation errors, traditional algorithms are not
geometrically stable, in the sense that although the initial value of the iteration scheme may
lie exactly on the submanifold defined by G, subsequent iterates drift off the submanifold.
One can modify such a scheme by projecting the iterates z" back onto the group before
computing the next approximation ="+_. The algorithms we consider here are not of this
type; rather we assume:

Assumption 1. There is an oracle which exactly computes the exponential map:

exp : L(G) _ O.

It turns out that this provides enough structure to yield a natural class of geometrically

stable integration algorithms.

Typeset by AA,4,9-TEX

Remark 1.1 The algorithms we consider here have the property that if G is the abelian

group R N, then they reduce to classical Runge-Kutta algorithms.

Remark 1.2 For some groups, such as SO (3), the exponential map can be written in closed

form (see section 3 below); while for other groups, no such closed form expressions are
known. However, in these latter cases we can approximate the exponential map to any

desired accuracy (even off line) and, in particular, to an accuracy independent of the order
of the underlying algorithm, computed under Assumption 1.

Remark 1.3 Since elements of the Lie algebra may be viewed as invariant vector fields on the
group, their values at one point, say at the identity, determine their values throughout the

group. Assumption 1 therefore implies that we can exactly solve (or solve to any prescribed

accuracy) the "constant coefficient" differential equations obtained from equations (1) and

(2) by substituting constants for the coefficient functions a". The idea of solving a general
differential equation by "freezing" the coefficients at a point to get a "constant coefficient"
differential equation is a very old one.

Remark 1.4 If M is a homogeneous space so that M may be identified with a quotient of
two Lie groups, G/H, then we may consider G as a subset of the diffeomorphism group of
M. Thus, G acts on M by differentiable mappings (g, x) _ g. z and every element of M may
be expressed in the form g ._, for some fixed x • M and some g • G. We may now consider a

slightly more general version of the equations (1) and (2), evolving on a homogeneous space
M:

&(t) = F(x(t)), x(O) = p • M, (3)

where
N

F(x) = Z a_(x)Y_ (x)' aO • C°°(M) (4)

and

d x)l_=o, x • M.
Y_ (x) = _-_(exptY, .

Here Y_, are elements of L(G) described above. Denoting the flow of an arbitrary vector field
F on M also by "exp," (t, x) _ exptF(x), it is well known that we have:

(5)

It is easy to extend our algorithms to problems defined by the equations (3) and (4), since by

equation (5), the differential equation obtained from equation (3) by freezing the coefficient
functions a" has solutions that are also determined by the oracle in assumption 1, and by the
evaluation of quantities g -z, x E M and g • G. A simple class of examples that are captured
by this more general situation are those in which M is one of the spheres S". In section 4 we
give results of numerical experiments where we compare our algorithm with other classical
algorithms for the case where M is the two sphere.

Remark 1.5 Our algorithms generalize from differential equations evolving on Lie groups
and homogeneous spaces to more general manifolds. However, in this case we must replace
the oracle in assumption 1 by a similar object, which is able to compute exact solutions of
the corresponding differential equations with frozen coefficients.

In section 2 we describe the class of algorithms. In section 3 we define a computation
model and measure the complexity of the algorithm with respect to this model. Section 4
contains some numerical studies and Section 5 contains some concluding remarks.

2. DESCRIPTION OF THE ALGORITHMS

Consider a differential equation (3), on a manifold M, with initial condition p and defined

by a vector field F having the form:

N

F(x) = E aS(x)As(x)' x e M (6)
S=I

where A s are vector fields on M and at` are coefficient functions on M. Then, given any real
valued function ¢ on M, we may expand the solution x(h) in a Taylor series about h = 0, in

the following way:

¢(x(h)) = ¢(exphF(p)) =
(7)h_ h3

¢(p)-4- hF(¢)(p) -4--_. F(F(¢))(p) -4---_F(F(F(¢)))(p) +...

where F(¢) denotes the Lie derivative of ¢ by F. The new class of algorithm we introduce
here is obtained by comparing this Taylor series with the Taylor series about h = 0, obtained

from the following expressions:

(8)

where
N

Ff(x) = __, aS(p)At,(x)
l.t.._l

N

F_(x) = E aS(exP hc21F_(p))As(x)
S=I

N

F_(x) = E at'(ezP hc3uF_(exp hc31F_(p)))As(z)

(9)

_=1

... etc. The constants c_ and co, i = 1...k, j < i are determined as solutions of the equations
obtained by insisting that the Taylor series agree up to and including terms in hM, where M
(< k) will be the order of the resulting algorithm.

Algorithm 1 (Adapted to Lie groups) To integrate the equations (1) and (2), we set M = G,

As = Y, in equation (6) and obtain the algorithm:

x '_+1 = exphckF[", exphck-lF["_.l...., exphclF[", x" (10)

where multiplication of two elements gl,g2 in G is denoted by gl • g2. Notice that if z" _ G,
then z "+1 _ G as required for a geometrically stable algorithm. The vector fields:

if"
are left invariant vector fields on G, obtained by freezing the coefficient functions at` of F at
various points in G as demonstrated by the equations (9).

Algorithm 2 (Adapted to homogeneous spaces G/H) To integrate equations (3) and (4), we

set M = G/H, A t, = Y_ in equation (6) and obtain the algorithm:

z '_+_ = ezphckF_ _. ezl:,hc__lF["_._ ezphclF[", z" (11)

where (by using equation (5)) we may assume that the vector fields

again lie in L(G). Thus, if z" e G/H, then z "+1 _ G/H also, as required for a geometrically
stable algorithm.

Remark 2.1 The equations constraining the constants ci and cij, i = 1...k,j < i may be

derived in different ways. The paper [3] uses the algebra of Cayley trees generated by

labeled, ordered trees introduced in [7], [8] and [9] to derive the equations. The paper [4]

derives the constraint equations via a careful geometric analysis of the equations (7), (8) and

(9).
These results show that for third order algorithms, M = 3, we obtain multiple solutions of

these equations for k = M = 3, just as in the case G = R N. However, the analysis of fourth
order case M = 4 is significantly more complicated and not complete at this time. We report
on the performance of one such third order algorithm in section 4 by choosing one of the
sets of solutions.

Remark 2.2 If G -- R N and Y_ = e_ is the standard jth basis vector in R N, then

F_ = r(p), F_ = F(p+ hc_lF_), F_ = F(p+ hc3tF_ + hc32F_) (12)

etc , and the update rule (10) becomes:

x n+l = x '_+ h(clF_" + c2F_" +... +ckF_"). (13)

Equations (12) and (13) are now in the standard form of an explicit classical Runge-Kutta
algorithm. In this case we can always take k to be the order M of the algorithm.

3. A COMPUTATIONAL MODEL

In this section we describe the numerical cost of the algorithm with respect to the following
computational model:

(1) If gl, g2 E G, then the cost of evaluating their product in G, (gx "g2), is one group evaluation
unit.

(2) If g e G and x _ G/H, then the cost of evaluating the product g- z, is one homogeneous
space evaluation unit.

(3) If f: G --* R (y: G/H ---, R) is a function on G (on G/H), then the cost of evaluating f

at g _ G (at x _ G/H), is one function evaluation unit.

(4) If Y _ L(G), then the cost of evaluating ezpY is one exponential evaluation unit.
(5) If

_" c R, Y, c L(G)

then the cost of evaluating:
N

is one vector multiply evaluation unit.
(6) If _ E R, Y E L(G), then the cost of evaluating aY E L(G), is one scalar multiply evaluation

unit.

(7) If a, b E R, then the cost of evaluating a+ b, ab, stria, x/_, etc., is one arithmetic evaluation
unit.

Theorem 3.1 If G has dimension N, then Algorithm 1 (equations (9) and (10)) on a Lie group G
requires:

(1) k(k+ 1)/2 groupevaluationunits.
(2) kN function evaluation units.

(3) k(k + 1)/2 scalar multiply evaluation units.

(4) k(k + 1)/2 arithmetic evaluation units.

(5) k(k + 1)/2 exponential evaluation units.

(6) k vector multiply evaluation units.
Algorithm 2 (equations 9 and 11) on a homogeneous space G/H requires the evaluation units 2
through 6 and:

(7) k(k + 1)/2 homogeneous space evaluation units.

Example 3.1 If G = R N, so that equations (9) and (10) are replaced by equations (12)

and (13), then items 5 and 6 in theorem 3.1 are not required in the algorithm, one group
evaluation costs N arithmetic evaluation units and one scalar multiply also costs N arithmetic

evaluation units. Thus, in this case, each step of the algorithm costs kN function evaluations
and k(k + 1)(N + 1/2) arithmetic operations. As noted before, in this case we may insist that
the order of the algorithm is simply k.

Example 3.2 If G = SO (3) is viewed as a subgroup of the 3 x 3 nonsingular matrices, then

we may write the differential equations (1) and (2) in the form:

[_ = S(w(R))R, R • SO (3) (14)

Here S(.) is a 3 x 3 skew symmetric matrix, satisfying S(a)b -- b x a, where x is the cross product
of vectors a, b • R 3. Then oracle must solve the equation with frozen coefficients, _(R) = a:

i=t= S(e)R, a • R 3, R • SO (3). (15)

This equation has an explicit solution:

R(t) = es(_)'R(O) = es(c)¢tR(O), _ = c¢, cTc = 1 (16)

where

es(c)¢' = (la + S(c) sin(¢t) + S(c) _(1 - cos(¢t))). (17)

Using theorem 3.1, we may compute the cost of each step of algorithm 1 applied to the
equation (14). Because of the simple structure of equation (14), there is no cost associated
with the vector multiply operation; clearly group evaluation is simply matrix multiplication of
3 x 3 matrices; scalar multiply costs three arithmetic evaluation units; exponential evaluation
involves the computation in equations (16) and (17) and function evaluation is simply the
evaluation of w(R). The total cost of each step of algorithm 1 is approximately 100(k(k + 1)/2))
arithmetic evaluation units and 3k function evaluation units.

We may compare the cost of integrating equation (14) using algorithm 1, with the cost of

integrating the same equation when viewed simply as an equation evolving in/_9 and using a
classical Runge-Kutta, as analyzed in example 3.1, with N = 9. The cost of each step of the
classical algorithm is then (27k + 19(k(k + 1)/2)) arithmetic evaluation units and 3k function
evaluation units. Assuming that the step length and k are both equal, the geometrically

exact algorithm 1 is more expensive, as expected.

Example 3.3 Since S _ is the homogeneous space of SO (3), we may write equations (3) and

(4), for M = S 2 in the form:

÷ = w(r) x r, r • R 3. (18)

We solve the same equation with frozen coefficients, ,_(r) = a, using the oracle for SO (3) in

equations (16) and (17).
Using theorem 3.1 we see that the cost of algorithm 2, applied to equation (18), can

be calculated as in example 3.2, with the only significant difference being that each group
evaluation unit is replaced by a homogeneous space evaluation unit which is the product of
a 3 x 3 matrix with a three vector. Thus the cost of each step of algorithm 2 is approximately
70(k(k+l)/2) arithmetic evaluation units and 3k function evaluation units, where each function
evaluation is simply the evaluation of _(r). The cost of integrating equation (18) via a classical
Runge-Kutta algorithm may be computed using example 3.1 as (9k + 19(k(k+ 1)/2)) arithmetic
evaluation units and 3k function evaluation units per step. Again, it is clear that algorithm
1 is more expensive, assuming that the step length and k are both equal.

4. NUMERICAL EXPERIMENTS

We based our numerical experiments on equation (18) and tested algorithm 2 on three

functions ,_(r) chosen at random, as given below: We note that in the case of Wl the equation

(18) already has frozen coefficients relative to the structure of the homogeneous space S 2 as
explained in example 3.3.

We integrated equation (18) using three schemes:

A. The classical "Kutta" algorithm, which is an example of a third order Runge-Kutta
algorithm described in example 3.1, using the coefficients:

cl = 1/6, c2 = 2/3, c3 = 1/6,

c21 = 1/2,c31 = -1,c32 = 2.

B. The algorithm 2, with coefficients:

Cl = 1, c2 = -2/3, c3 = 2/3,

c21 = -1/24, cm = 161/24, c32 = -6.

C. The Runge-Kutta algorithm found in the I.M.S.L. package.

All numerical experiments were performed on a VAX 6000-420. Schemes A and B were

implemented in Fortran in double precision. Three different step lengths were tested, h = 0.01,
0.05 and 0.1. The main test of the new algorithm 2 (scheme A) is the accuracy with which

the algorithm maintains iterates on S 2. In our case we used an initial state:

r 1 : r 2 --" r 3 :-- 1

so that an iterate r" remains on S 2 as long as

e" = 2 + 2 +

satisfies e" = 3.
In the following tables we tabulate the error e" - 3 for the classical algorithm (scheme A)

and the IMSL algorithm 3 (scheme C) for h = 0.05 and 0.1. All the new algorithms (scheme B)
and the IMSL algorithm for h = 0.01 gave zero error for all times up to t = 1000 and hence have not
been tabulated. Times for t > 20 in tables 4.2 and 4.3 have not been tabulated either, since

in these cases the algorithms converge to an equilibrium of the equation.

Table 4.1 en -3 for equation 18 with coefficient fns _1

Time t A A A C C

h=0.01 h=0.05 h=0.1 h=0.05 h=0.1

0.5 -.35E-5 -.43E-3 -.33E-2 -.10E-9 -.17E-7

1 -.70E-5 -.86E-3 -.66E-2 -.30E-9 -.35E-7

2 -.14E-4 -.17E-2 -.13E-1 -.60E-9 -.69E-7

5 -.35E-4 -.43E-2 -.32E-1 -.15E-8 -.17E-6

10 -.70E-4 -.86E-2 -.62E-1 -.29E-8 -.35E-6

20 -.14E-3 -.17E-1 -.llE+0 -.58E-8 -.69E-6

50 -.35E-3 -.41E-1 -.23E+0 -.14E-7 -.17E-5

100 -.70E-3 -.78E-1 -.34E+0 -.29E-7 -.35E-5

200 -.14E-2 -.14E+0 -.41E+0 -.58E-7 -.69E-5

500 -.35E-2 -.27E+0 -.43E+0 -.15E-6 -.17E-4

1000 -.70E-2 -.37E+0 -.43E+0 -.29E-6 -.35E-4

Table 4.2 en- 3 for equation 18 with coefficient fns w2

Time t A A A C C

h=0.01 h=0.05 h=0.1 h=0.05 h=0.!

0.5 -.41E-7 -.53E-5 -.44E-4 -.20E-9 -llE-7

1 -.14E-6 -.18E-4 -.15E-3 -.60E-9 -.34E-7

2 -.39E-6 -.50E-4 -.40E-3 -.70E-9 -.40E-7

5 -.62E-6 -.77E-4 -.60E-3 .30E-9 .26E-7

10 -.62E-6 -.77E-4 -.60E-3 .30E-9 .26E-7

20 -.62E-6 -.77E-4 -.60E-3 .30E-9 .26E-7

Table 4.3 en -3 for equation 18 with coefficient fns w3

Time t A A A C C

h=0.01 h=0.05 h=0.1 h=0.05 h=0.1

0.5 -.57E-6 -.59E-4 -.27E-3 .45E-7 .32E-5

1 -.66E-6 -.69E-4 -.34E-3 .48E-7 .35E-5

2 -.68E-6 -.71E-4 -.35E-3 .49E-7 .35E-5

5 -.68E-6 -.71E-4 -.35E-3 .49E-7 .35E-5

10 -.68E-6 -.71E-4 -.35E-3 .49E-7 .35E-5

20 -.68E-6 -.71E-4 -.35E-3 .49E-7 .35E-5

In the following tables we tabulate the differences between iterates of the first component,
n, computed _singthe IMSL routine with h = 0.01, and the corresponding iterates computed
using schemes A, B and C (h = 0.05,0.1) and

Table 4.4 Difference between iterates of rl, computed with the IMSL Runge-Kutta routine,
h = 0.01 and the stated algorithm, for equation 18 with coefficient fns wl

A A A B B B C C

t/h 0.01 0.05 0.1 0.01 0.05 0.1 0.05 0.1

0.5 . 17E-5 .18E-3 .llE-2 .00E+0 .00E+0 .00E+0 -.50E-9 -.28E-7

1 .28E-5 .41E-3 .38E-2 .00E+0 .00E+0 .00E+0 .14E-8 .99E-7

2 .38E-6 -.llE-3 -.23E-2 .00E+0 .00E+0 .00E+0 -.27E-8 -.19E-6

5 -.25E-4 -.32E-2 -.25E-1 .00E+0 .00E+0 .00E+0 -.31E-8 -.27E-6

10 -.51E-4 -.64E-2 -.49E-1 .00E+0 .00E+0 .00E+0 -.42E-8 -.40E-6

20 -.10E-3 -.12E-1 -.88E-1 .00E+0 .00E+0 .00E+0 -.70E-9 -.25E-6

Table 4.5 Difference between iterates of rl, computed with the IMSL Runge-Kutta routine,
h = 0.01 and the stated algorithm, for equation 18 with coefficient fns w2

A A A B B B C C

t/h 0.01 0.05 0.1 0.01 0.05 0.1 0.05 0.1
0.5 -.59E-7 -.73E-5 -.57E-4 -.16E-6 -.19E-4 -.14E-3 .00E+0 .19E-8
1 -.20E-7 -.41E-5 -.49E-4 -.51E-7 -.15E-4 -.19E-3 .20E-9 .llE-7
2 -.29E-6 -.38E-4 -.33E-3 -.50E-6 -.71E-4 -.63E-3 .30E-9 .16E-7

5 -.53E-7 -.64E-5 -.48E-4 .56E-7 .80E-5 .73E-4 .10E-9 .46E-8
10 -.91E-7 -.llE-4 -.88E-4 .10E-9 .20E-7 .23E-6 .00E+0 .37E-8
20 -.91E-7 -.11E-4 -.88E-4 .00E+0 .00E+0 .00E+0 .00E+0 .38E-8

Table 4.6 Difference between iterates of rl, computed with the IMSL Runge-Kutta routine,
h = 0.01 and the stated algorithm, for equation 18 with coefficient fns w3

A A A B B B C C

t/h 0.01 0.05 0.1 0.01 0.05 0.1 0.05 0.1

0.5 -.64E-6 -.81E-4 -.62E-3 -.59E-6 -.10E-3 -.99E-3 .11E-7 .79E-6

1 -.19E-6 -.25E-4 -.20E-3 .62E-6 .58E-4 .17E-3 .llE-7 .78E-6

2 -.llE-6 -.97E-5 -.18E-4 -.llE-6 -.61E-5 .47E-4 .llE-7 .76E-6

5 -.15E-6 -.16E-4 -.77E-4 -.60E-9 -.15E-6 -.18E-5 .llE-7 .77E-6

10 -.15E-6 -.16E-4 -.77E-4 .00E+0 .00E+0 .00E+0 .llE-7 .77E-6

20 -.15E-6 -.16E-4 -.77E-4 .00E+0 .00E+0 .00E+0 .llE-7 .77E-6

5. DISCUSSION

In this note, we have examined a class of geometically stable numerical integration algo-
rithms. The price of geometric stability is an increased cost of computation, when compared
to a classical algorithm of the same type, with the same number of stages and the same step
length. The exact cost is examined in section 3. However, the numerical results in section
4 demonstrate that the new algorithms are capable of achieving performance comparable
with the IMSL routine, (which is fifth order) at larger step lengths (h = 0.05/0.1) compared
with h = 0.01. Thus, it seems that the new class of algorithms does indeed have desirable
properties, making them worthy of further investigation.

In the work [4] the authors have described a similar class of geometrically stable multi-
step algorithms on Lie groups, G, which also have the property of degenerating to classical
multistep counterparts in the case G = R y.

REFERENCES

[i]J. C. Butcher, "An order bound for Runge-Kutta methods," SIAM J.NumericalAnalysis,

12 (1975), pp. 304-315.

[2] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, John Wiley, 1986.
[3] P. Crouch, R. Grossman, and R. G. Larson, '_Trees, bialgebras, and intrinsic numerical

algorithms," Zaboratory for Advanced Computing Technical Report Number LAC90-R23, University
of Illinois at Chicago, May, 1990.

[4] P. E. Crouch and R. Grossman, "Numerical integration of ordinary differential equa-
tions on manifolds," Laboratory for Advanced Computing Technical Report Number LAC91-R3, Uni-
versity of Illinois at Chicago, 1991.

[5] P. Crouch, R. Grossman, and R. G. Larson, "Computations involving differential oper-
ators and their actions on functions," Proceedings of 1991 International Symposium on Symbolic and
Algebraic Computation, ACM, 1991, pp. 301-307.

[6] R. Grossman,"Using treesto compute approximate solutions of ordinary differential
equations exactly," Computer Algebra and Differential Equations, M. F. Singer, editor, Academic
Press, New York, 1991, in press.

[7] R. Grossman and R. Larson, "Hopf algebraic structures of families of trees," J. Algebra,

Vol. 26 (1989), pp. 184-210.

[8] R. Grossman and R. Larson, "Labeled trees and the efficient computation of deriva-
tions," in Proceedings of 1989 International Symposium on Symbolic and Algebraic Computation, ACM,

1989, pp. 74-80.
[9] R. Grossman and R. Larson, "The symbolic computation of derivations using labeled

trees," Journal of Symbolic Computation, to appear.

[10] V. S. Varadarajan, "Lie Groups, Lie Algebras, and their Representations," Prentice-
Hall, Inc., 1974.

