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PREFACE
The first NASA Computational Fluid Dynamics (CFD) Conference was held at
NASA Ames Research Center on March 7 through 9, 1989. Conference objectives were
to disseminate CFD results to industry and university researchers, to promote
synergy among NASA CFD researchers, and to permit feedback from researchers
outside of NASA concerning issues facing the discipline of CFD. The focus of the

1989 conference was on the application of CFD technology. As a result of three

panel sessions held at the 1989 conference, the following conclusions were
reached:

NASA's program was too heavily focused on applications.

CFD developers need to better understand the needs of the users.
Industry needs more reliable and cost effective CFD tools.

Three critical areas of research were identified:

-- More algorithm research, particularly for Navier-Stokes solvers with
unstructured grids.

-- More research on geometric modeling with rapid, accurate, and
effective surface definition methods.

-- More research on grid generation stressing faster, more efficient,
and improved quality with emphasis on reduced set-up time and
complexity.

Additional concerns resulting from the panels may be found in NASA Conference
Publication 10038, Vol. 1, p. xiv.

The objectives of the second NASA CFD Conference, held at the Ames Research
Center on March 12 through 14, 1991, were the same as the 1989 conference: to
disseminate CFD research results to industry and university CFD researchers, to
promote synergy among NASA CFD researchers, and to permit feedback from
regsearchers outside NASA on issues pacing the discipline of CFD. However, the
focus of the 1991 conference was on the elements that comprise the discipline of
CFD, rather than on CFD applications. These elements are

Algorithm development and analysis
Algorithms for real gas/combustion modeling
. Algorithms for advanced computer architectures
Turbulence modeling/flow physics
Scientific visualication
Grid generation

Other CFD methodclogies

The intent of the 19291 conference was to ¢mphasice CFD development underway
at NASA Centers, rather than the applications activity.
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This publication is a collection of 20 presentations made by members of the
NASA Lewis Research Center staff; the members of the Institute for Computational
Mechanics in Propulsion (ICOMP); Sverdrup Corporation, Lewis Research Group; and
visiting academics at Lewis. Preseritation abstracts, (published in bound form
at the conference) as well as viewgraph material used during the conference are

included in this publication. The intent is to display research underway on the

fundamentals of CFD at Lewis.

The conference was sponsored by the 2Zerodynamics Division, Office of

Aeronautics, Exploration and Technology (OAET), NASA Headqguarters, Washington,
D.C.

This preface is based on an adaptation of that appearing in NASA Conference
Publication 10038, proceedings of the CFD Conference held at Ames Research
Center, 1989.

Louis A. Povinelli
NASA Lewis Research Center
April 8, 1991
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OBJECTIVE: DEVELOP VALIDATED ENGINEERING CLOSURE MODELS FOR
IMPLEMENTATION IN PROPULSION CFD

SCOPE: MODELING OF COMPRESSIBLE TURBULENT FLOWS
- TWO-EQUATION MODELS
- SECOND ORDER CLOSURE MODEL
- RENORMALIZATION GROUP THEORY (RNG)
- DIRECT INTERACTION APPROXIMATION (DiA)

TURBULENCE/CHEMISTRY INTERACTION
- PDF PLUS MOMENT CLOSURE MODELS

BOUNDARY LAYER TRANSITION

- MODELING OF BYPASS TRANSITION

- IMPROVEMENT OF NEAR WALL TURBULENCE ‘MODELS
- DNS OF BYPASS TRANSITION

e’
INTERNAL FLUID MECHANICS DIVISION esssscsnd

’f_" N/\SI\ LEWIS RESEARCH CENTER —'ﬂ

INTERNAL FLUID MECHANICS DIVISION
Dr. Lonnie Reid, Chief 2600
Dr. Louls A. Povinelil, Deputy Chief

COMPUTATIONAL FLUID DYNAMICS
BRANCH 2610
Dr. D. Raam Reddy, Chief

COMPUTATIONALTECHNOLOGY
= BRANCH 2620
John R. Szuch, Chief
HEAT TRANSFER Richard A. Blech, Deputy Chief
BRANCH 2630
Dr. Robert J. Simoneau, Chief
Frederick F. Simon, Deputy Chief

TURBOMACHINERY FLOW PHYSICS
BRANCH 2640
Dr. Raymond E. Gaugler, Chief
AEROTHERMOCHEMISTRY Jerry R. Wood, Deputy Chiet
BRANCH ) 2650
Dr. Edward J. Mularz, Chief 1
Erwin A. Lezberg, Deputy Chief

INLET, DUCT & NOZZLE FLOW PHYSICS

— BRANCH 2660
John M. Abbott, Chietf
COMPUTATIONAL METHODS FOR SPACE Dr. James R. Scott, Deputy Chief

BRANCH 2670}
Dr. Robert M. Stubbs, Chiet

—
INTERMAL FLUID MECHANICS DIVISION mumcmme







P A
— N’\SA LEWIS ‘RESEARCH CENTER ===

LEVEL OF EFFORT

IFMD PERSONNEL

7

CONTRACTORS

103
CIVIL SERVANTS

R
INTERNAL FLUID MECHANICS DIVISION s

F
— NNSN LEWIS RESEARCH CENTER ")

LeRC COMPUTATIONAL RESOURCES ON NETWORK
CRAY Y-MP (6 proc., 128 MW)
CRAY X-MP (2 proc., 8 MW)
CONVEX C220 (2 proc., 256 MB)
SCIENTIFIC VAXcluster (5 proc., 448 MB)
VM/CMS/UTS (2 proc., 128 MB)

GRAPHICS & VISUALIZATION (G-ViZ) LAB

ADVANCED COMPUTATIONAL CONCEPTS LAB (ACCL)
- INTEL iPSC/860 (16 nodes, 256 MB)
- ALLIANT FX/80 (8 proc., 128 MB)
- STELLAR GS1000 & IRIS 4D/320 (2 proc.)

I
INTERNAL FLUID MECHAMICS DIVISION s’



NI\S’\ : LEWIS RESEARCH CENTER T
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& COLOR HARD-COPY UNITS (16)

® ADMINISTRATION OF NAS ACCOUNTS (26,000 HRS.)
- IN-HOUSE, ~50%
.+ UNIVERSITY, INDUSTRY, ~50%

—_—
INTERNAL FLUID MECHAMICS DIVISION  mucesmme?

ON:

— NNSA LEWIS RESEARCH CENTER ~""")

DEVELOP VALIDATED, NUMERICAL SIMULATIONS FOR PROPULSION SYSTEMS

® ROCKETS

BY CONDUCTING CLOSELY COUPLED EXPERIMENTAL/COMPUTATIONAL RESEARCH

IFMD GOAL

® GAS TURBINES

€& HYPERSONIC AIR BREATHING SYSTEMS

® INLETS, DUCTS, NOZZLES
& COMBUSTORS

€@ TURBOMACHINERY COMPONENTS
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IEMD MAIN THRUSTS

@ ALGORITHM DEVELOPMENT

- NAVIER-STOKES
- LOW SPEED COMPRESSIBLE

- BOLTZMANN & DSMC

@ CLOSURE MODELING
- TURBULENCE & TRANSITION

- PDF MODELING FOR REACTING FLOWS

® REAL-TIME INTEGRATION OF CFD/EXPERIMENT (ICE)
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Developinent of New Flux Splitting Schemes

Meng-Sing Liou and Christopher J. Steffen, Jr.
Internal Fluid Mechanics Division
NASA Lewis Résearch Center

Maximizing both accuracy and efficiency has been the primary objective in
designing a numerical algorithm for computational fluid dynamics (CFD). This is
especially important for solution of complex 3D systems of Navier-Stokes equations
which often include turbulence modeling and chemistry effects. Recently, upwind
schemes have been well received for both their capability of resolving discontinu-
ities and their sound theoretical basis in characteristic theory for hyperbolic sys-
tems. With this in mind, we present two new flux splitting techniques for upwind
differencing.
~ The first method is based upon High-Order Polynomials Expansions (HOPE) of
the mass flux vector. The present splitting results in positive and negative mass-flux
components that vanish at M = 0. Thus the error in the Van Leer scheme which
results in the diffusion of the boundary layer is eliminated. We also introduce several
choices for splitting the pressure and examine their effects on the solution.

The second new flux splitting is' based on the Advection Upwind Splitting
Method (AUSM for short). In Navier-Stokes calculations, the diffusion error present
in Van Leer’s flux-splitting scheme corrupts the velocity vector near the wall. In the
AUSM, a proper splitting of the advective velocity component leads to an accurate
resolution of the interface fluxes. The interface velocity is defined using the Mach
number polynomial expansion in the mass flux, then the convective fluxes follow di-
rectly. Again, several choices of pressure splitting are possible among which a simple
Mach number splitting according to characteristics appears to be the best in terms
of accuracy. The scheme has yielded results whose accuracy rivals, and in some
cases surpasses that of Roe’s method, at reduced complexity and computational
effort.

The calculation of the hypersonic conical flow demonstrates the accuracy of
the splittings in resolving the flow in the presence of strong gradients. The second
series of tests involving the 2D inviscid flow over a NACA 0012 airfoil demonstrate
the ability of the AUSM to resolve the shock discontinuity at transonic speed and
the level of entropy generatioun at the stagnation point.

In the third case we calculate a series of supersonic flows over a circular cylin-
der. The Roe splitting in all conditions and grids tested yielded anomalous solu-
tions (sometimes referred to as the carbuncle phenomenon), which could appear as
nonsymmetric, protuberant, or indented contours, see Figs. 1. The AUSM gave
expected solutions in all calculations.

The fourth test deals with a 2D shock wave/boundary layer interaction. This
provides an opportunity to accurately resolve a laminar separation region and to
compare the ability to resolve a non grid-aligned shock with other methods, as
shown in Figs. 2.

19
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solution, and (b) the Roe solution displaying a protuberant, two-shock solution.
Note the calculations were performed for the front half plane, thus no symmetry

was imposed.
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Fig. 2 Mach contours for a shock wave/boundary layer interaction problem: (a)
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solution showing more diffusive waves.
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Motivation

To couple Accuracy and Efficiency together within an Upwind
Flux-Splitting Scheme .

Two Possible Improvements

1. Less Diffusive FVS Technique

* High Order Polynomial Expansion (HOPE)
» Unresolved Stability Concerns

2. New Advective Velocity Splitting Technique

+ Advection Upwind Splitting Method (AUSM)
« Simple, Accurate, Efficient and Robust

UpWinding in 1D

Conservation Law

ou N orF 0
ot or
' At "

Numerical Flux Function

Flux Vector Splitting (FVS)
A (more diffusive, more efficient)

Y Flux Difference Splitting (FDS)
(less diffusive, less efficient)
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Quasi-2D Viscous Conical Flow

Geometry Mo — 705
L of - .

0.42 x 10°

shock
Two-dimensiona!
section

boundary layer

Adiabatic Wall Boundary Condition
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Euler Equations

AUSM in 1D

oU N oF 0 T p
a1 a. — U = puL 2,
ot = Oz DE
~ Convective Flux

F. = (scalar)(convective velocity)
=

Fci+§ = (scalar)wwind (u)i+§’

Pressure Flux

F, = (scalar pressure)
Fpr = 0 + (07)iys (r%);
i+s

puU 0
puL p» + S p
pHu 0

Conical Flow: First Order Accurate Results

Pressure Profile

(Wiys = w(U;, Uiyy)

Temperature Profile

15 15
14 - a a 141
~ Van lecer
sl 13 " Roc‘
) o . AUSM
3] b
= » Van Leer & M = 7.95
é o Roe 2 Pr = 1.0
®azl . AUSM CE
M = 7.95
Pr = 1.0 A
|
1k i}
N ca,
T,
"Af
10 . . . - 10 l—t e
0 1 2 q 4 5 0 8 12 16
P/Pa /T :
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Conical Flow: First Order Accurate Results

Convective Velocity Profile

12.0 i
A i
A
1.8l
AA a Van Leer
1.6} A © Roe
AA « AUSM
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2D Shock Wave -
Boundary Layer Interaction

Geometry

Impinging Shock Reflecting Shock
Weak Wave
e

R - |
— Laminar
N Boundary
M = 2.0 Layer

Re = 2.96 x 10°
Shock Angle = 32.58°
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Conical Flow: Convergence Histories

First Order Accurate Scheme Second Order Accurate Scheme
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Mach 6.0 Blunt Body Flow: Carbuncle Phenomenon

Velocity Vectors
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Mach 3.0 Blunt Body Flow: Mach Number Contours

AUSM Scheme O(A) Grid Roe FDS Scheme O(A)
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xans x-ans
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Supersonic Blunt Body Flow

Geometry Bow
Shock

2D
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Inviscid Flow Assumed

Mach 6.0 Blunt Body Flow: Mach Number Contours
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C, %103

Shock Wave/Boundary Layer:

Friction Coefficient Pressure at the Wall
10 2.0p
1.8
8r —— Roe Solver 16l
el T AUSM Splitting )
o Exp. Result _ 144 openeo
al- » Separalion Region 12l /993“3
. 4 o, 1.0 L*me
4 ’ ogBo 0.81-
oo, P — ——  Roc Splitt
0 2 °/ : . p ILng
‘”\/ ) AUSM Splitling
ol 0.4} o bBxp. Resull
0.2}
__4 -
1 1 1 1 00 1 A L [ —
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
e X

*Experiment by Hakkinen, Greber, Trilling and Abarbanel

Conclusions

» Accuracy of AUSM rivals FDS schemes (i.e. Roe Splitting)

» Efficiency and Simplicity of AUSM rivals FVS schemes
(i.e. VanLeer Splitting)

. AUSM is a new family of Upwind Flux Splitting Tech-
niques
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N92-25 810

AN ITERATIVE IMPLICIT DDADI ALGORITHM
FOR SOLVING THE NAVIER-STOKES EQUATION

S.C. CHEN, N.S. LIU, and H.D. KIM
INTERNAL FLUID MECHANICS DIVISION
NASA LEWIS RESEARCH CENTER

An algorithm utilizing a first-order upwind split flux
technique and the diagonally dominant treatment is proposed to
be the temporal operator for solving the Navier-Stokes
equations. During the factorization process, if care is taken
to ensure the symmetry of the operator, the resulting
algorithm will be stable when spatial derivatives of the right
hand side residual are evaluated by the central differencing
scheme as well as the upwind dlfferen01ng Roe schene.

Temporal accuracy is assured by the inner Newton-iteration
process first introduced by Rai (1986).

Given the limit of a five-point stencil, the right hand side
flux derivatives are formulated by several commonly used
central and upwind schemes. Their performances are studied
~through a test case of free vortex convection in a uniform
stream. From these results, a superior treatment for

evaluating the flux term is proposed and compared with the
rest.

The application of the proposed algorithm to the full Navier-
Stokes equations is demonstrated through a calculation of flow
over a backward facing step. Results are compared against the
calculation done by using the fourth-order central
differencing scheme with artificial damping.
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OBJECTIVE

GIVEN A STENCIL OF 5 POINTS, FIND A
SCHEME THAT COMBINES THE MERITS
OF BOTH CENTRAL DIFFERENCING AND

UPWIND DIFFERENCING SCHEMES.

INTERNAL FLUID MECHANICS DiVISION cvvaucd
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Free vortex convection in a uniform stream of sonic

speed.

(a) Vorticity contours at the initial and final
stations.
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(c) Center line pressure profile at different time
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Temporal Operator

(P)

ol+D At+S At+At L +AtU, 1]AQ
i i i—1 P+

j i j-1 j+1
k k k-1 k+1
=At- RHS

p.1 @ (n-1)
RHS = —a X AQ/At+ (a—-1) AQ/At
q=1

(P (P (P (P (p) (p
JE OJF 0dG J(Ev) 9(Fv) 9J(Gv)

9 an oL 2t T om ot

Where D=A*-A"+B*-B" +Ct-C-
S = J (source terms)/dQ
L - Lower half of the flux Jacobian operators

U - Upper half of the flux Jacobian operators

Algorithm: In 2 Consecutive Steps

x (n)
[0t I+ DAt + S At + (LAt)] AQ = At- RHS

(n) * N
[o [+ DAt +SAt] AQ + [At L(AQ) + At U (AQ)]
(n)
= At- RHS

- (n+1)
[0 I+ DAt+S At + (UAD] AQ=At-RHS

(n+1) *x .
[al+ D At+S At] AQ + [At L(AQ) + At UAQ)]

(n+1)
= At - RHS
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. Formal Error in 2 Time Steps is

2- ERR ~—At2' U ("SLA“S?“'\J

+AE2. {L [a I +At(D+S)]_1 U} (A(*))

_At2-L (_S_QA_Q_..]
: ot

| -1
+AL2. {U [a1+At (D+S)] L} (6Q)

Define
(n) (n-1)
st - At )" At
(Q) (n-1)
P AQ AQ
=0y — = - (a-1) —
g-1 At At
Then
(P)
, ot At

_E__s_g__@g+6(Ev)+8(F\))%6(Gv)
8 on 8 & on &
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Geometry
~ Ax=Ay=1/4 (Vortex core radius = 1)

At =0.05 , [ Py =0.72

CFL ~ 0.7 v=1.4

Me = 0.5 1 Tw=519°R

I'=-05 p_=2374x 103 slug/ft3
Innerm = 4; NORDR =2 = Air

L Invisid

UV,P, T=1.()
Travel a total of 45 length in 900 steps.

Test 1 4th Order Central

Flux derivative in 1-D difference for

1 2 i
Ei= [ﬁ(EiH‘ Ei1) - Zh (Ej+o— Ej— 2)]

N,2 1 (4— n—1)
-3y _é. _4___'-%_ Egn)hn—‘l(N__)oo)
n=>5

* Contains only the odd derivatives leading error is of
order "4"
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Pressure

STATIC PRESSURE
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Vorticity Magnitude
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Consider:

E'; = [4th order central differencing]

N2 1 (4-2")

() n-1
n§53 nt Ei "

(A)

and

E'; = [3rd order upwind biased differencing]
|
(4-2"") oy na
I

1
53 nt

n§4 3 nt i | B)

The Dissipative Equivalence is

Diss = (A) - (B)
i.e.,
N, 2 _o N
Diss= - % 1 Q__Q____) E(,n) hn-1
12,3 i

= [3rd order upwind difference]

- [4th order central difference]
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E
Let = 4th central + y - DISS

5x
Then =

E; = {4th order central differencing

i
(N2 12 )
ni

n43

4y E(n) hn-11}

N2 14221 £y
n=53 N '

= {(1-v)-[4th order central difference]
+ ¥ +[3rd order upwind biased difference ]}

+ Trunc. error

Test 5. 3rd Order Upwind Biased Scheme
[ E. ) -3 E;+4E,
l_3h (Biy1-Eiq T 6h ( +4E;4-Eiy2)

N,2 n-1y (N, .
_y 14 rﬁ )E. hn‘l

n=5 3 : (odd derivatives)

NZZ 1 (2-2M1h E(n) -1

n=4 3 n (even derivatives)

* Leading error is of order "3"

Test 6

Set v = 0.18 so that leading error term has a coefficient of 0.015
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Case 2

Flow over a béckward-facing step

Rey 100 100
389 389
500 1000
600
1000
} }
4th order central Proposed
+ artificial viscosity scheme
(B =0.5) (v =0.5)

Max. L, - Residual < 5x10- for all cases

Mo =0.18 CFL =50.0
Pr = 0.72 NORDR =1
vy =14 Innerm =1

Air; viscous flow

U, T given
1~Vn=Pnn=0
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0 Measurements
Proposed scheme
----- 4th Order central

V - Velocity profiles

Re = 100
1 . e
r %% ;
[ % ,
> " 3] -
g :
Q 4 1 i ; s i _A_Jg.-._. -~__.~_.:
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X/S
d Measurements
Proposed scheme
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V - Velocity profiles
Re = 389
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O Measuremen ts

Proposed scheme
..... 4th Order control

V - Velocity profiles
Re = 1000

Static Pressure - 4th Order Central
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T Y \ |
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Static Pressure - Proposed Scheme

:&’ bt keI | ]
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V Component - 4th Order Central
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V Component - Proposed Scheme

37

Re = 1000
1 |
0
-3 Re = 389 37
B e H
o N —— S W =Y B
-3 Re =100 87
F N ,\S ,\ LEWIS RESEARCH CENTER :
: CONCLUDING REMARKS '

* CENTRAL DIFFERENCING:

SUSCEPTIBLE TO SPURIOUS OSCILLATIONS,
ARTIFICIAL DAMPING NEEDS TO BE ADDED.

* UPWIND DIFFERENCING:

INTPINSIC YET EXCESSIVE NUMERICAL DISSIPATION.

* PROPOSED SCHEME:

USES 4th ORDER CENTRAL DIFFERENCING SCHEME WITH
INTRINSIC NUMERICAL DISSIPATION PROVIDED BY THE
UPWIND DIFFERENCING SCHEME.

\.
- . INYERMAL FLUID MECHANICS DIVISION s
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N92-25811
The Proteus Navier-Stokes Code

Charles E. Towne and John R. Schwab
Internal Fluid Mechanics Division
-NASA Lewis Research Center

An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called
Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm
development or research on numerical methods, but rather on the development of the code itself. The objective is to
develop codes that are user-oriented, easily-modified, and well-docamented. Well-proven, state-of-the-art solution
algorithms are being used. Code readability, documentation (both internal and external), and validation are being
emphasized.

Proteus solves the Reynolds-averaged, unsteady, compressible Navier-Stokes equations in strong conservation law
form. Turbulence is modeled using a Baldwin-Lomax based algebraic eddy viscosity model (AIAA Paper 78-257.)
The governing equations are written in Cartesian coordinates and transformed into generalized nonorthogonal
body-fitted coordinates. They are solved by marching in time using a {ully-coupled ADI solution procedure (Briley
and McDonald, J. Comp. Phys., Aug. 1977) with generalized first- or second-order time differencing (Beam and
Warming, AIAA J., Apr. 1978.) The boundary conditions are also treatcd implicitly, and may be steady or
unsteady. All terms, including the diffusion terms, are linearized using second order Taylor series expansions.

In addition to solving the full set of Reynolds-averaged equations, options are available to solve the thin-layer or
Euler equations, and to eliminate the energy equation by assuming constant stagnation enthalpy. Artificial viscosity
is used to minimize the odd-even decoupling resulting from the use of ccntral spatial differencing for the convective
terms, and to control pre- and post-shock oscillations in supersonic flow. Two artificial viscosity models are avail-
able - a combination implicit/explicit constant coefficient model (Steger, AIAA J., July 1978), and an explicit non-
linear coefficient model designed specifically for flows with shock waves (Jameson, Schmidt, and Turkel, AIAA
Paper 81-1259.) At NASA Lewis, the code is run on the Cray X-MP and Y-MP computers, and is highly vector-
ized.

An extensive series of validation cases have been run, primarily using the two-dimensional planar/axisymmetric
version of the code. Several flows were computed for which exact solutions to the Navier-Stokes equations exist,
including fully-developed channel and pipe flow, Couette flow with and without a pressure gradient, unsteady
Couette flow formation, flow near a suddenly accelerated flat plate, flow between concentric rotating cylinders, and
flow near a rotating disk. Additional validation cases that have been successfully run include flat plate laminar and
turbulent boundary layers, boundary layers with confined separation, 2-D and 3-D driven cavities, normal and
oblique shock-boundary layer interactions, steady and unsteady flows past a circular cylinder, developing laminar
and turbulent pipe flows, and steady and unsteady flows in a transonic diffuser. The figure shows computed Mach
number contours and the static pressure distribution for flow through a transonic diffuser.

The two-dimensional version of Proteus has recently been released, and the threc-dimensional code is scheduled for
release in late 1991. The documentation consists of a three-volume user’s manual (Towne, Schwab, Benson, and
Suresh, NASA TM’s 102551-102553). Volume 1 is the Analysis Description, and presents the equations and solu-
tion procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equa-
tions and boundary conditions, the time and space diffcrencing formulas, the ADI solution procedure, and the
artificial viscosity models. Volume 2 is the User’s Guide, and contains information needed to run the program. It
describes the program’s general features, the input and output, the proccdure for setting up initial conditions, the
computer resource requirements, the diagnostic messages that may be generated, the job control language used to
run the program, and several test cases. Volume 3 is the Programmer’s Relerence, and contains detailed informa-
tion useful when modifying the program. It describes the program structure, the Fortran variables stored in common
blocks, and the details of each subprogram.
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THE PROTEUS NAVIER-STOKES CODE
By
» C. TOWNE
Inlet, Duct & Nozzle Flow Physics Branch

And

J. SCHWAB
Turbomachinery Flow Physics Branch
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PROTEUS NAVIER-STOKES CODE

¢ Objective

— Develop user-oriented, easily-modified, well-documented,
2- and 3-dimensional NaVIer-Stokes codes for aerospace
propulsion applications.

¢ Approach

— Use well-proven, state-of-the-art algorithms.
— Use a consistent, modular code structure.
— Emphasize documentation, code readability, and validation.

PROTEUS NAVIER-STOKES CODE
ANALYSIS SUMMARY

¢ Reynolds-averaged, unsteady, compressible
Navier-Stokes equations.

¢ Strong conservation-law form.
e Generalized nonorthogonal body-fitted coordinates.

e Convection and diffusion terms linearized
using second-order Taylor series expansion.

 Baldwin-Lomax algebraic turbulence model.

e Fully-coupled ADI solution procedure,
Beam-Warming generalized time differencing.

* Implicit steady/unsteady boundary conditions.
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PROTEUS NAVIER-STOKES CODE
CODE FEATURES

¢ 2-D, axisymmetric with swirl, or 3-D flow.

¢ Thin-layer and Euler options.

 Wide variety of boundary conditions.

e Constant stagnation enthalpy option.

» Constant-coefficient or adaptive artificial viscosity.
e First- or second-order time differencing.

e Variety of time step selection methods.

e Qutput files for CONTOUR and PLOT3D.
 Highly vectorized for Cray computers.

o Extensively commented.

e Three-volume documentation set.

— Analysis Description.
— User’s Guide.
— Programmer’s Reference.

PROTEUS NAVIER-STOKES CODE
VALIDATION CASES

e Exact Navier-Stokes solutions.

— Fully-developed channel and pipe flow.

— Couette flow w/wo pressure gradient.

— Couette flow formation.

— Flow near a suddenly-accelerated flat plate.
— Flow between concentric rotating cylinders.
— Flow near a rotating disk.
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PROTEUS NAVIER-STOKES CODE

Blasius Similarity Coordinate, 1

VALIDATION CASES

e Blasius flat plate boundary layer.
e Flat plate boundary layer with confined separation.
e Turbulent flat plate boundary layer w/wo heat transfer.

¢ Flow over a rearward-facing step.

‘s 2-D and 3-D driven cavity.

¢ Normal and oblique shock formation.
» Steady and unsteady flow past a circular cylinder.
¢ Flow past an airfoil.

® De'veloping laminar and turbulent flow in a
channel and pipe w/wo swirl.

* Developing 3-D flow in a square duct.

e Steady and unsteady turbulent flow in a transonic diffuser.

Laminar Boundary Layer on a Flat Plate

10 T ] ] |

Blasius Solution

O  Proteus, Re, = 40,000
O  Proteus, Re, = 60,000
A Proteus, Re, = 80,000

0.0 0.2 0.4 0.6 0.8 1.0 1.

Velocity, u/U,,
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x-Velocity, u

Static Pressure Coefficient Cp
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X—COORDINATE

HISTORY

Start.
First master file.

Emphasis placed on 2-D
code development.

Version 1.0 of 2-D code released.

Documentation published for
version 1.0 of 2-D code.

Version 1.2 of 2-D code released.

Preliminary Version 1.0 of 3-D code
ready for testing.
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PROTEUS NAVIER-STOKES CODE
2D Version
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PROTEUS NAVIER-STOKES CODE
CURRENT STATUS

e Version 1.2 of 2-D code available.
¢ 3-D code and documentation being upgraded.

e Two-equation k-g turbulence model
available in 2-D code.

o Grid patching (embedded boundary) capabmty
available for 2-D code.

* Validation studies underway.

— Laminar/turbulent compressible

flat plate boundary layers
— Laminar/turbulent flow past an airfoil.
— Turbulent flow in transonic diffusers.

PROTEUS NAVIER-STOKES CODE
NEAR-TERM PLANS

s Complete upgrade of 3-D code and documentation.

e |Investigate additional algebraic and pde
turbulence models.

e Create diagonalized version.

e Continue validation of 2-D code, emphasizing
turbulent flow and flow with heat transfer.

e Begin more intensive validation of 3-D code.
e Release 3-D code in fall of 1991.
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PROTEUS NAVIER-STOKES CODE
LONG-TERM PLANS

e Continue validation of 2-D and 3-D codes.

¢ Add zonal gridding capability.

* Investigate convergence acceleration techniques.
e Add algebraic Reynolds stress turbulence model.
e Investigate adaptive mesh schemes.

¢ Hold user’s workshop after 3-D code release.
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N92=~-95y 819
ACCURATE UPWIND-MONOTONE (NONOSCILLATORY)
METHODS FOR CONSERVATION LAWS

Hung T. Huynh
Internal Fluid Mechanics Division
NASA Lewis Research Center

The well-known MUSCL scheme of Van Leer (J. Comp. Phys., 1979)—a
second-order extension of Godunov’s first-order upwind-difference method— is con-
structed using a piecewise linear approximation. In order that the solutions are free
from oscillations, a constraint is imposed on the slopes of the piecewise linear recon-
struction. The MUSCL scheme is second-order accurate at the smooth part of the
solution except at extrema where the accuracy degenerates to first-order due to the
monotonicity constraint. Harten and Osher (SIAM J. Numer. Anal., 1987) resolved
this loss of accuracy by introducing the concept of nonoscillatory reconstruction.
Their UNO2 scheme involves no constraint, is uniformly second-order accurate, and
does not create oscillations. The UNO2 scheme is, however, very diffusive, e.g., it
smears contact discontinuities. '

To construct accurate schemes which are free from oscillations, we first intro-
duce the concept of upwind-monotonicity. Next, in a geometric framework in which
the median function plays a crucial role, we present Van Leer’s constraint and the
UNO2 scheme. In this framework, the constraint is extended in such a manner that
- extrema are not “clipped”, while upwind-monotonicity is preserved. At monotone
part of the data, the new constraints reduce to that of Van Leer for the second-
order case, and in the third order case, that of Colella and Woodward (J. Comp.
Phys., 1984). Several classes of schemes, which are upwind-monotone and of uni-
form second or third-order accuracy, are then presented. These schemes also satisfy
the nonoscillatory property of the UNO2 scheme. It is shown that the MUSCL,
UNO2 and all the popular TVD (total variation diminishing) schemes (Harten, J.
Comp. Phys., 1983; or Sweby, SIAM J. Numer. Anal., 1984) are members of the
new class. Moreover, each TVD scheme corresponds to a uniform second-order ac-
curate upwind-monotone scheme. The gain of accuracy is obtained by a few extra
lines of Fortran programming. These new schemes are also extensions of the au-
thors SONIC schemes (NASA TM 102010, 1989; also Yokota & Huynh, NASA TM
102354, 1990)

" Results for advection with constant speed are shown below. The initial profile
consists of a sin? wave, a square wave, a triangle wave and a semi-ellipse wave.
Each wave contains 20 grid points on a uniform grid of 200 points. Using periodic
boundary conditions, the profile is advected one period with CFL number 0.5. The
results after 400 time steps are shown in Figs. (A) for a member of the new class,
(B) for the UNO2, (C) for the PPM (Colella and Woodward, J. Comp. Phys.,
1984), and (D) for Roe’s “Superbee” schemes. It can be seen that the new scheme
compares favorably with the state-of-the-art methods.
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Upwind Shock-Capturing Methods

Why new methods?

TVD (Total Variation Diminishing) schemes
+ Capture shocks with high resolution
— First-order accurate near extrema
UNO2 scheme
+ Uniformly second-order accurate
+ Nonoscillatory, i.e., no new strict extrema
— Somewhat diffusive

New Class of Methods

New geometric framework

Existing schemes (TVD, UNO)
are presented in the new framework

New schemes
* Uniformly second-order accurate

* Upwind-monotone and nonoscillatory
* Extensions of TVD and UNO2 schemes

% L %% 0, a>0

ar Yor

u(z,0) = uo(x).

Approach

Projection or Reconstruction,

Evolution or Upwinding + Time stepping
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The task for piecewise linear reconstruction:
given the data {u;}, define (slope);
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Van Leer’s constraint

The linear reconstruction in cell 5 lies in
[min(u;—1, w5, wj41), max(uj—1, uj, ujt1)]
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The pictures

Constraint: (slope) ; lies between 0 and 2r,
r = m(s,t).

Algorithm: (slope); «— m((slope),,2r]

TVD schemes

Minmod scheme

(slope); = = m (s,1)

-

Average limiter

s+t
(slope),; = m( 5 ,27°>

Superbee scheme

(slope); = m [maxmod (s,t), 2]
maxmod (s,t) = %[sgn (s) + sgn (t)] max (|s], [¢])
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The Peter-Paul Principle

-
°
\
i
)
¢
’

PR N ——

i

. '] 4 *
,

-

Resolve shock well (Paul), 1st-order at extrema (Peter).

For TVD schemes, u}*" lies between u} and u}_;.

The data are monotone in [z;,z;41] if
Uj—1 S Uj < Ujpr < Ujpg, OF Ui 2> Uj 2 Ujpl = Ujp2.

A scheme is upwind-monotone if monotonicity of the data

. . A . n+1 o 3 . X
in [zj_1,z;] implies w7 lies between u; and ;1.

UNO2 scheme

.
@ i
,l'Q“ ’
Vv

LY
3

(Slope)j’z r=m (g, f)

+ Second-order accurate
+ Nonoscillatory
— Diffusive
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New methods

New constraint:
(slope), lies in I[0,2r, 7] = I[0, Fmax]

Tmax = sgn () max (2], |7]).

New algorithm: (slope), «+ m[(slope); ,Tmax |-

UNO (slope); = 7= m (3, t)

§+1
2 7Tmax)

SONIC-A (slopé)j = (it
SONIC-B (slope); = m [ maxmod (3, %), "max]

Second-order accurate and upwind-monotone

(A) FIRST—ORDER—-UPWIND SCHEME

.‘l .
D -,
= 'A\ R . .'\ ./\\V Y .:. /\“‘\ x
O v s’ ot

"ot

e

. -
v

(B) LAX—WENDROFF SCHEME

(C) WARMING—BEAM SCHEME

ATVA N

4

-~

¥,

(D) FROMM SCHEME

62



e

(A) MINMOD SCHEME
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(B) VANLEER SCHEME

(C) MUSCGL SCHEME

VLA

(D) SUPERBEE SCHEME

(A) UNO=2 SCHEME

‘.:1

(B) SONIC—VL SCHEME

NAL
MIATY

(C) SONIC—A SCHEME
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(D) SONIC—F SCHEME
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Conclusions

A new framework for shock-capturing methods was
presented

. Simple

. Geometric

. Uses the median function

The approach leads to new classes of methods:
. Compare favorably with existing methods
. Resolve discontinuities with high resolution
. Uniformly second-order accurate
. Upwind-monotone (therefore, nonoscillatory)
. Generalization of TVD and UNO2 schemes

. Vectorize on Cray
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N92-25818
Numerical Simulation of Conservation Laws

Sin Chung-Chang
Internal Fluid Mechanics Division
NASA Lewis Research Center

Wai Ming To
Sverdrup Technology, Inc.
Lewis Research Center Group
- NASA Lewis Research Center

A new numerical framework for solving conservation laws is being
developed. This new approach differs substantially from the well established
methods, i.e., finite difference, finite volume, finite element and spectral
methods, in both concept and methodology. The key features of the current
explicit scheme include: (a) direct discretization of the integral forms of
conservation laws, (b) treating space and time on the same footing, (c) flux

conservation in space and time, and (d) unified treatment of the convection and
diffusion fluxes.

The model equation considered in the preliminary study is the standard
1-D unsteady constant-coefficient convection-diffusion equation. In a stability
study, it is shown that the principal and spurious amplification factors of the
current scheme, respectively, are structurally similar to those of the
leapfrog/DuFori-Frankel scheme. As a result, the current scheme has no
numerical diffusion in th ial f pure convection is ynconditionall
le in th ial f pure ditfusion.

Assuming smooth initial data, it will be shown theoretically and
numerically that, by using an easily determined optimal time-step, the accuracy
of the current scheme may reach a level which is several orders of magnitude
higher than that of the MacCormack scheme, with virtually identical operation
count.
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Introduction

The focus of the current method development is entirely on the
integral form of conservation laws. Key features of the current
explicit scheme include:

» Direct discretization of the integral forms of conservation laws.

» Treating space and time on the same footing.

¢ Flux conservation in space and time.

e Unified treatment of the convection and diffusion fluxes.

¢ Low-operation count and high accuracy.

Unsteady 1-D Convection-Diffusion Equation

u , _du_ 2

+a— -u— =0 N4

ot %ox THax h
or : ds

e

V ° h = O S(V)
with

- Ju

h 4 jay—p =

_ (au " ax,)

or

fs(v) ﬁ)' d;Z 0 t
LOX

V = Any volume in space-time.
S (V) = Boundary of V.

h-ds = Flux of h leaving V through surface element ds.
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Basic Convervation Dbmains BCD's

For each BCD, it is required that

Sum of incoming fluxes = sum of outgoing fluxes <1>

As a result, <1> is also true for the union of any collection of BCD's.

Space - Time Mesh and BCD's

dx
def | =&
beE (dt) along a j mesh line “
x;‘=ij+n-bAt, t" = nAt ' x
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The Solution in a BCD P

D(j,n) = BCD centered at (x-rj‘, th). 1
at

D'(j,n) = Interior of D(j, n). [

u(x,t; j,n) = Approximation of u(x,t) in D'(j,n)

= arj‘ (X-x’j") + B? (t-t") + 'yrj‘

Since total flux leaving D'(j,n) =0
N=-aal
BJ J

Thus

uixt j;n) = aflix-x) - a(t-t")] + v

Fundamental Rélations (1)

u,t; j,n) = a;‘[(x—xg‘)—a(t—t")lw}‘ fu,n

E(X?,t"; jn) = Y? -

a) . )
(3,n)
)cl 3 fl(:/,n)

[du(x, t; j,n)]

= qf

Ix J def (a— b)At
X = xj!‘, t=tn K AX
def
ax o @02 =
(1,8) 2778 %] (18 (AX)
% N
Wi, 1) 53 10)j,m), #Qimy
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Invariant Property (1)

Let t
u=ug(xta,p : <1> (2.t)
H ;. ’
] ’
be a solution of '/
D
du , L -—’u_af! =0 <2> R
at - Tax  Tax2 ;o
) (ax, -x , 2t -t)
Let x, and t, be any real constants. Then

U= U (2x X, 2t -t; a, -p) <3>
is also a solution of <2>. As an example, consider
def
uglx, t;a, p) — e-4m2pt gjn [27(x-at)] <4>

The above property may be referred to as the p-t-p (parity-time
reversal-p reversal) invariance.

Invariant Property (2)

The main scheme of the Leapfrog/DuFort-Frankel method
i.e.,

n+1 n-1 n - n n n+l n-1, ,,n
ARSI no_yt ! —uttt o ul e Ut
2At 2AX (AX)2

is also p-t-p invariant. In other words, if
u'i' = ug(,n; a,p)

satisfy <5>, then so does (j* and n are constént integers )
U’j‘ =Uo(2i-J 2n-n a-p)

The present scheme is p-t-p invariant also. Other classical
schemes generally are not p-t-p invariant. p-t-p invariance

has an impact on the stability property.
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Stability Condition

1. The stability condition for the present scheme is

121‘2

i.e., stability is not dependent on the viscosity .

2. The present scheme has no numerical diffusion in the
special case of pure convection, and is unconditionally
stable in the special case of pure diffusion.

Inconsistency

¢ A smooth solution which satisfies the present or the Leapfrog/
Dufort-Frankel scheme at the mesh points will satisfy

du/ot + a du/ax—p d%u/x2=0 (n=0) <1>

as Ax—0 and At/Ax—0. t

° A characteristic line of <1> is R

t = constant i N N T O Y I Y O 6 A

DNONNNNS AN
R
—

Thus a discrete solution may converge to an analytical
solution only if (At/ Ax) — 0.

* For a typical classical scheme, stability requires that

(ZA)tZ = lL(AZ:(AX) be bounded. Thus, (At/Ax)—>0 as Ax—0
X
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Space - Time Mesh and BCD's

J-2 J-t J gt Ir2

' 2
pdet (9% , :
P~ {dt/ alonga j meshline ,
x?=ij+n-bAt, " = nAt ’ .

Problem Definition (1)

i=0 J=1 7=K~{ IJ=K

‘
’ . ’ /
e AL — A —™

_ | "
Analytical Solution: | -u=ugx,t) =" M sin[2n(x-ab)]

dug (i ) ,
10 = u,a(jAx, 0) = sin(2njAX) , a?= alpx,0) 21 cos (2rjAX)
]

‘ . n n n
wavelength = KAx =1 u(x,t; jn =a’j‘ [(x—xi)—a(t—t )]J"Yj
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Problem Definition (2)

A problem is defined by specifying the values of (i) physical
parameters a and p, (ii) the mesh parameters b, At and

Ax (= 1/K), and (iii) total running time t. The total time-step
number

= IN(t/At) def the integer nearest to the ratio (t/At)

Error of a problem is measured by:

E(b,n, At, k)& logw{——‘l——p& :( p) | ul - u (xn,t“)ﬂ
=1

Accuracy of present method is optimized when either

() ©=0or (i) 1-12 = y3 5.| 19 a—b)At/ax, § 2 apat/(Ax)?

~1
a=1, p=0.1
L e b=0, K=60
€ t =0.
| P QLT R OTUAD . At varies
(@) B
©
3 | def -
< N S | Re2ZL ¢/
g | i S
e S S o =(a—b)Ax=_1_
e : ' 4 24
z E :
- e
=) a—b)At
w -5 ' Present algorithm :(—-—-—-)—-=60At
. 00 MacCormack scheme A
H & Leapfrog/Dufort-Frankel
‘3 . : .
6| i Optimization:
-7 —1/ Y
_(’;00 l 0.l04 L 0.08 0.12

Courant number, T = 60 4t
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E(b, 390,1/(45 3 ), 30)

.. Presen! af ith a=1, m=0.01
o Maecg:rrﬁzgor; n:ame = = 1/5)
Ai Leopfrog/Dﬁfo:t'lFronkel N K= 30’ A;_ 1/(45
s b varies
5o dut 0.8
(4" V3
__20-b)
/—\ Optimization:
-3 _:..,._ . ..... i..\.. . : t = 0
{ or
4 i L 1 L 1_12 = vg Y
0.0 0.2 0.4 0.6 0.8 1.0

Courant number, 7 = 2u-b)/(3V3)

Special Property

Let K be the number of spatial mesh points. Then the
present marching scheme may be expressed as

uM = AT +B", n=0,1,2,.

Here (i) UM and UM+, respectively, are the 2K x 1 column
matrices representing 2K numerical variables at the time
levels n and n+1, (ii) bNisa given 2K x 1 column matrix at
the time level n, and (iii) A is a give 2K x 2K sparse matrix.

Unusual property: A-1is also sparse and is known explicity
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Conclusions (1)

e Flux conservation is the focus of method development.

e Unified treatment of space and time, also of convection
and diffusion fluxes.

e Stability is not dependent on the viscosity p. The
present scheme has no numerical diffusion if p =0
and is unconditionally stable if a = 0.

* The sparse matnx A in the present marching scheme
u"+1 = AUD + b" has the unusual property that A1
also sparse and is known explicity.

e The present scheme has the same invariant property of
the physical equation it models.

Conclusions (2)

e The present scheme is most accurate and stable when
+=0,i.e,b=a

» For the present scheme, mesh refinement may be made
locally without impacting global structure.

* Since initial data required include bothu and (du/ax)°,
initial-value specification of the present method is more
accurate than that of traditional methods.

¢ Assuming smooth, initial data, it is shown that, by using
an easily determined optimal time-step, the accuracy of
the current scheme may reach a level which is several
‘orders of magnitude higher than the MacCormack
scheme, with virtually identical operation count.
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N32-25814
A New Lagrangian Method for Real Gases at Supersonic Speed

C.Y. Loh and Meng-Sing Liou
Internal Fluid Mechanics Division
NASA Lewis Research Center

Abstract

With the renewed interest in high-speed flights, the real gas effect is of theoretical as
well as practical importance. In general, this real gas phenomenon is seen in the regions of
high gradients and discontinuities. The ability of numerically capturing them accurately,
viz with minimal numerical dissipation and oscillations, has been the main challenge to
the computational luid dynamist as well as numerical analyst over the past four decades.
In the past decade, upwind splittings or Godunov-type Riemann solutions have received
tremendous attention and as a result significant progress has been made both in the ideal
and non-ideal gas. However, almost all of these efforts have been exclusively formulated in
the framework of Eulerian description of fluid motion. Although the Lagrangian descrip-
tion has been used in several reports, they are always followed by a remap step from a
Lagrangian grid back to the original Eulerian one. This not only involves tedious interpo-
lation procedure but also can corrupt the accuracy which was gained by the choice of the
Lagrangian approach over the Eulerian one.

However, since all upwihd schemes used by today’s major CFD codes are strictly
formulated in 1-D framework, and only formally extended to multi-dimensions in space.
Consequently, the attractive property of crisp representation of discontinuities is lost and
search for genuine multi-dimensional approach has just been undertaken by several leading
researchers, but still based on Eulerian description. In this paper, we propose a new
alternative that is formulated using the Lagrangian description, for the calculation of
supersonic/hypersonic real-gas inviscid flows. This new formulation avoids grid generation
step which is automatically obtained as solution procedure marches in the “time-like”
direction. As a result, no remapping is required and the accuracy is faithfully maintained
in the Lagrangian level. Moreover, the ability of preserving the sharpness of discontinuities
in muti-dimensions is vividly demonstrated. In this paper, we will give numerical results for
a variety of real-gas problems consisting of essential elements in the high-speed flows, such
as shock waves, expansion waves, slip surfaces and their interactions. Finally, calculations
for flows in a generic inlet and a nozzle are presented.

75



QOutline

. New Lagrangian formulation and the conservation form
for 2-D steady supersonic flow (for perfect gas)

. Advantages of the new Lagrangian method

. Real gas version of the new Lagrangian method
. Godunov scheme and TVD scheine

. Numerical examples for supersonic rcal gas flow

. Concluding Remark

New Lagrangian formulation and the conservation
form for 2-D steady supersonic flow (perfect gas)

Independent variables of Eulerian formulation: x , y

Independent  variables of the new Lagrangian formulation: 7, £
(Hui and Van Roessel, 1985)

T — — — Lagrangian time

§ — — — stream function

Lagrangian conservation form:(Loh and Hui, J.C.P., V.89, 207, 1990)

OF | OF _

(')7'+—8_E—0 | (1)
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H 0
Ku+pV _ | —pv
k= Kv—pU |’ F= U
U —u
Vv —-v
where
] _ Y9y
T ar’ or
Oz 0y
U= , V==
0¢ 0¢

K = p(uV —oU)
H = (v +v°)/2 + h(p, p)

h(p,p) = @ P 7

Advantages of the new Lagrangian method

( 1) Truly multi-dimensional computation (no time splitting), a com-
putational cell is literally a fluid particle, physics is closedly followed.

( 2) Crisp slip line (contact ) resolution.( 1 point)

" ( 3) No grid generation is needed, grids are automatically generated
following streamlines.

( 4) Particularly appropriate for hypersonic computation

( 5) Ready for parallel computation.

Real gas version of
‘the new Lagrangian method

. Accurate real gas Riemann solver
. Decoding of E to find u,v,p,p

Tannehill’s EOS is used ( NASA CR 2470, 1974)
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Godunov/TVD scheme

initiadize
V... Ricmann solver
U andV
compute

flux vecor F

!

Ciodunov scheme

compute new

vector E

upgrade
E by TVD

limiter (Sweby)

}

decode E and
output u,v.p. p,

Uand vV

TVD scheme

time lines

[
/’/ streaunlines
e
/
Physical plane
E Tn AT Tr+1
] "Q

Ty T T T TTTrTY

Computational plane

Cell j {

N

C.20 4

cell j=1

boundary [

NN

output x and y

coordinates

Computational Domain and Mesh

s

Pressure, density and temperature contours for the real gas chan-

nel problem; (a) isobars, (b) isopycnics

0.00 1.00
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Numerical examples for
real gas supersonic flows

. Riemann problem

. Shock collision in converging channel

. Generic nozzle flow

P/Pmaz

0.0

'
time : shock
P = .25 '
B = -50 X slip 14
.y p line
M= 4,0 ; - 40k
2]
expansion
fan L
3.5 | .
=
3.0 4

1 " L N 1 L L A 2.0 . 1 " ] . Il N 1

0.0

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

distance along time line . " distance along time line
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P

pressure along a time line

density along time line
‘—“’uﬂmm{y//(mz—m.
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n o [
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typical time line

p=l. p= 1
uz=20 vty

or expansit
= v

solid plate

0s0 |

0.00 1.00 200

Pressure, density and temperature contours for a sophisticated °
real gas outlet problem, showing interactions among the waves and
shock reflection on the body surface; (a) schematic sketch, (b) isobars,
(<} isopynics and (d) isotherms.

Concluding Remarks

Accurate yet efficient real gas effect computation:
. As accurate as Tannehill’s EOS warrants
. Genuine steady approach saves CPU

. Bears all the advantages of the Lagrangian method mentioned above
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NO2-25815

A TIME-ACCURATE IMPLICIT METHOD FOR CHEMICAL
NON-EQUILIBRIUM FLOWS AT ALL SPEEDS

Jian-Shun Shuen
Sverdrup Technology, Inc.
Lewis Research Center Group
NASA Lewis Research Center

Summary

A new time-accurate coupled solution procedure for solving the chemical non-
equilibrium Navier-Stokes equations over a wide range of Mach numbers is de-
scribed. The scheme is shown to be very efficient and robust for flows with velocities
range from M < 10~ to supersonic speeds.

Description

Chemically reacting flows in aeropropulsion systems are often not amenable
to numerical algorithms developed for high speed compressible flows. Examples
include the rocket motor flow which involves a wide range of Mach numbers (from
near zero velocity at the closed end to supersonic at the nozzle exit) and flow in gas
turbine combustor where velocity is in the low subsonic range, yet the variation in
density is very large so as to preclude an incompressible approach. Unfortunately,
most available solution methods are usually applicable to either compressible flow
with moderate to high Mach numbers or incompressible flows, but not both. This
difficulty points out the need for a single solution technique that can be employed
in flows with wide Mach number range and large property variations.

There are two underlying reasons for the difficulty of low Mach number compu-
tations in compressible flows. When the Mach number becomes low, the eigenvalues
of the system differ widely so that the equations becomes stiff, resulting in signifi-
cant slowdown in the convergence rate. Another reason is the singular behavior of
the pressure term in the momentum equations as Mach number approaches zero,
causing large roundoff error and smearing the pressure variation field, and, conse-
quently, preventing the convergence.

In the present numerical algorithm, methods to overcome these difficulties are
proposed and successfully tested. The resulting code is then extended to consider
the effects of non-equilibrium chemistry and real-gas properties. Included in the
abstract are results from a linear stability analyses for the present algorithm (refered
to as the pressure based scheme) and a conventional compressible flow algorithm
(density-based algorithms) , and convergence histories for the convergent-divergent
nozzle flows. The transonic nozzle flow has an inlet Mach number of 0.03 and exit
Mach number 3.0. The subsonic cases are obtained by adjusting the nozzle back
pressure so that flow is not choked at the throat. These results demonstrate the
efficiency of the present method for flows over a wide Mach number range.
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MOTIVATION

e Reacting flows in aeropropulsion devices are often not amenable to
numerical algorithms developed for high speed compressible flows, e.g.,

- rocket motor — wide range of Mach numbers, from near zero velocity
at closed end to supersonic flow at nozzle exit.

- gas turbine combustor — low subsonic velocities, but large variation in
density precludes incompressible approach.

e Most popular codes for gas turbine combustor and other low-speed re-
acting flows are TEACH-type codes, which were based on technologies
developed more than 20 years ago.

e Compressible flow CFD technologies can be carried over to low-speed
flow regime.

OBJECTIVES

1. Development of an efficient and robust Navier-Stokes code for chemi-
cally reacting flows at all speeds.

2. Implementation of liquid-fuel spray combustion and turbulent combus-
tion closure models.

3. Demonstration of the capability of the code for aeropropulsion appli-

cations, including flows in gas turbine combustor, after burner, liquid
propellant rocket combustion chamber, etc.
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STABILITY ANALYSIS, CFL=100 STABILITY ANALYSIS, CFL=100
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Difficulties with Compressible Flow Algorithms at Low Mach
Numbers

¢ Disparities among system’s eigenvalues (stiffness), u, u + ¢, u — ¢, re-
sulting in significant slowdown in convergence rate.

¢ Singular behavior of pressure gradient term in momentum equations
as Mach number approaches zero,
*
P
Y M2

p*u*2 +

As Mach number is decreased, pressure variation (Ap* o« M?2) becomes

of similar magnitude as roundoff error of the large pressure gradient
term (p*/yM2).

METHOD OF APPROACH

Pressure Singularity Problem

e Pressure decomposed into two parts:

P=Potpg

py replaces p in momentum equations and retains p; as one of the
unknowns.

e Employs conservative form of the governing equations, but uses prim-
itive variables
(pg,u,v, 0, ¥3)
as unknowns. Conservation property preserved for flows at moderate

to high Mach numbers. Pressure field accurately resolved for low Mach
number flows.

Eigenvalue Stiffness Problem

e Pressure rescaled so that all eigenvalues have the same order of mag-
nitude. Physical acoustic waves removed and replaced by a set of
pseudo-acoustic waves which travel at speed comparable to fluid con-
vective velocity.
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Discretized Equations

3 A7 dA  9%A,
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R < 3QF —4Q" + Q""" +3(E-—Ev) _H

2At oz
JE i
A = ="y Au = aD«-u Py
aQ aQ
p=A2 .92
EYa) aQ

e Use dual-time stepping technique for time-accurate solutions.

¢ Fully implicit, {ully coupled solution method. Use L1J factorization for
multi-dimensional flows.

ONE DIMENSIONAL GOVERNING EQUATIONS
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CONVERGENCE HISTORY FOR THE C-D NOZZLE FLOW, CFL=100.

Non-Equilibrium Air Dissociation/Recombination Chemistry
5 Species, 'l Reaction Steps
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STABILITY ANALYSIS

Linear stability analysis of 1-D inviscid equations using Euler implicit time
marching technique.

STABILITY ANALYSIS, CFL=100
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CONVERGENT-DIVERGENT NOZZLE FLOW, Mi=0.01

Mocon Number

Non-Equilibrium Air Dissociation/Recombination Chemistry
5 Species, 11 Reaction Steps
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COMBUSTION OF n-P}ENTANE FUEL DROPLET

Non-Equilibrium n-Pentane - Air Combustion Chemistry
5 Species, | Global Reaction Step
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DROPLET COMBUSTION, M ~ 107%-107°

Ndu-Equilibrium n-Pentane - Air Combustion Chemistry
5 Species, 1 Global Reaction Step
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CONCLUSIONS

An eflicient and robust numerical algorithm has been developed for
chemically reacting flows at all speeds.

FUTURE PLAN

. Development and validation of the 2D /3D all-speed code for reacting
flows. ‘ |

. Implementation of zonal capability.

. Implementation of turbulence, turbulence/reaction closure, spray
combustion, and thermal radiation models.

. Reacting flow simulation for gas turbine combustor, rocket motor
combustion chamber, etc.
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Study of Shock-Induced Combustion Using an Implicit TVD Scheme

Shayne Yungster
Institute for Computational Mechanics in Propulsion
NASA Lewis Research Center

The supersonic combustion flowfields associated with various hypersonic propul-
sion systems, such as the the ram accelerator (a ramjet-in-tube concept), the oblique
detonation wave engine, and the scramjet, are being investigated using a new CFD
code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations
and species continuity equations in an efficient manner. It employs an iterative
method that is based on the lower-upper symmetric successive overrelaxation (LU-
SSOR) implicit factorization scheme, and a second order symmetric total variation
diminishing (TVD) differencing scheme. To accelerate the convergence of the basic
iterative procedure, this code can be combined with vector extrapolation methods,
such as the Minimal Polynomial (MPE) and the Reduced Rank (RRE) Extrapola-
tion. The extrapolation procedure solves a linear least squares problem and produces
a sequence of approximations that, in general, has better convergence properties than
the sequence obtained from the iterative scheme alone. Two different formulations of
the LU-SSOR factorization scheme are currently implemented. In one formulation,
the implicit operator includes the full Jacobian matrix of the chemical source term,
leading to a preconditioner matrix of size n, X n,, where n, is the number of species,
which has to be inverted at every grid point. If the number of species considered
is large, inverting this preconditioner can be very expensive. Therefore, a second
formulation has been introduced in which the Jacobian matrix is replaced by a di-
agonal matrix that is designed to approximate the time scaling effects obtained by
using the full Jacobian. In this formulation, no matrix inversions are required. Fig-
ure 1 shows the density residual history obtained with the two formulations (with and
without extrapolation) for the case of a supersonic flow past a compression corner.
The chemical nonequilibrium processes are simulated by means of a 9-species, 18-step
finite-rate H-air combustion model. When extrapolation is used, it is started after
Ny iterations, and is implemented in the so called “cycling” mode, using a sequence of
K.z vectors obtained from the iterative scheme. The overhead in CPU time due to
the use of extrapolation is very small (less than 1%).in the present case. The results
indicate that savings of up tp 40% in the overall computational work required to
reach convergence can be realized by using RRE in combination with the basic iter-
ative scheme (using both formulations). Similar results are obtained with MPE. The
results also indicate that for the present chemistry model, the diagonal formulation
is less efficient, requiring approximately 45% more CPU time than the Full Jacobian
formulation to reach convergence. The code is currently being applied to study shock
wave/boundary layer interactions in premixed combustible gases, and to investigate
the ram accelerator concept. Results obtained for a ram accelerator configuration
(Fig. 2) indicate a new combustion mechanism in which a shock wave induces com-
bustion in the boundary layer, which then propagates outwards and downstream.
The combustion process creates a high pressure region over the back of the projectile
resulting in a net positive thrust force.
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Objective

e To investigate shock-wave/boundary layer interactions
involving premixed combustible gases.

¢ To compute (based on the Navier-Stokes cquations) the
supersonic combustion flowficld in a ram accelerator, a
ramjet-in-tube concept.

(a) (b)
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o Diag. Jacobian

10-* 1.10 sec/iter
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~ with RRE
2 108 Ng=300, K, =20
2
§ 10710 |
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8 10772 | jacobian b\\ N
-

[ 125 sec/itert
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|- Full Jacobian
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.
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Figure 1: Supersonic reacting flow past a compression corner; (a) pressure con-
tours; (b) Convergence history of L, density residual (grid, 80 x 50).
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Figure 2: Nondimensional pressure (top) and température (bottom) contours
for a ram accelerator, a ramjet-in-tube device for accelerating projectiles to ultrahigh
velocities. Mixture: stoichiometric Hz-air, M = 6.7, P, = 1 atm, T, = 300°K,
Tw = 600°K. The vertical direction is magnified by a factor of 2.
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Equations and Transport preperties

e 2D /axisymmetric Reynolds-Averaged Navier-Stokes equations
(general coordinates).

e Species specific heat, conductivitiy and viscocity obtained from fourth
order polynomials of temperature. ’

¢ Conductivity and viscosity of mixture - Wilke’s mixing rule.
e Binary mass diffusivities - Chaﬁman-Enskog theory.

Combustion and Turbulence Models
¢ 9-species, 18-step chemistry model for hydrogen-oxygen combustion.
¢ Baldwin-Lomax Turbulence Model

- Numerical Method

o 'inite difference method.
e LU-SSOR implicit factorization scheme.
o Second-order symmetric TVD differencing scheme.

e Use of extrapolation techniques for convergence acceleration
(i.e. Reduced Rank and Minimal Polvnomial Extrapolation).

Reduced Rank Extirapolation Method (RRE)

e Given the vector sequence Q% Ql, ..., Q*!, with k¥ = Kjrax, com-
pute the differences

AQ = QI - @, j=0,1,..., k. (1)

e Next, determine the scalars Yo, 71, .., 7 by solving the constrained
least-squares problem

k . _
minimizel| AXO'yjAQfH (2)
j=
subject to f_yy; = 1.
e Tinally, set
I .

S“J‘. = };)"/,‘Q" (3)

.l.::( !

Although the ariginal definition of RRE is different, the definition given
above is equivalent to it and results in an implementation that is more
stable numerically.
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Numerical Method
e LU-SSOR implicit factorization scheme:
LT™W6Q = —At|RH S|
L=1+pAtD{A" +D;B* -~ A~ - B~ - (]
U=1I+pOtD{A”+DyB™+ A* + BY]
T =TI+ pAt[A* + B* — A~ - B|
ob Second-order symmetric TVD differencing scheme:

[RHS] = (Fi+§-k —Fijat Gixsy — GJ._,‘_Q + Wik
+ (Rj+§(b1'+} - R;-'_§¢j__} + RIH-%‘I’IH»‘} - Rl:—rbk—*)
Where
1 : R
oy = )0 ~ Qi)
{14 if |z| 2 &
()= { (=2 + 62)/26, if |2] < &
- 1
(614 = 6y + Vgl + 5(\/63 + & +yni+ mejyl

l1<b< 4

Reacting flow past a compression corner

H, - Air
$=1

Poo = 1 atm
T =900° K
M =45

Present Method RPLUS
p/p. — <
4+ T1/T.

M=45 :///
3r T_=900 K f /
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Convergence History of Ly Density Residual
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NONDIMENSIONAL PRESSURE (TOP) AND TEMPERATURE (BOTTOM) CONTOURS
Stoichiometric Hydrogen-Air, M=6.7, P=1 atm, T=300 K.
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NONDIMENSIONAL TEMPERATURE (TOP) AND MACH NUMBER (BOTTOM) CONTOURS

Stoichiometric Hydrogen-Air, M=7.2; P=1 atm; T=300 K.
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NONDIMENSIONAL TEMPERATURE (TOP) AND MACH NUMBER (BOTTOM) CONTOURS

Stoichiometric Hydrogen-Air; M=8.0; P=1 atm; T=300 K.

TEMPERATURE

MACH NUMBER

Conclusions

e A new CFD code that efficiently solves the Navier-Stokes equations
with finite-rate chemistry was presented.

The application of vector extrapolation methods to viscous, chemically
reacting flows was demonstrated.

Results indicate that significant savings in computational work can be

[
realized by using vector extrapolation methods in combination with
the basic iterative scheme.

e Ram Accelerator Concept: results indicate that viscous effects are

of primary importance. The combustion processes in the boundary
layer strongly affect the entire flowfield.
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UPWIND SCHEMES AND BIFURCATING SOLUTIONS
IN REAL GAS COMPUTATIONS

Ambady Suresh
Sverdrup Technology, Inc.
Lewis Research Center Group
NASA Lewis Research Center
and
Meng-Sing Liou
Internal Fluid Mechanics Division
NASA Lewis Research Center

The area of high speed flow is seeing a renewal of interest due to advanced
propulsion concepts such as the NASP, Space Shuttle, and future civil transport
concepts. Upwind schemes to solve such flows have become increasingly popular in
the last decade due mainly to their excellent shock capturing properties. Within
this class of upwind schemes the Osher scheme has a few distinct advantages, such
as a continuously differentiable numerical flux (making it especially attractive for

implicit schemes), entropy satisfying solutions and the exact resolution of stationary
shocks and contacts.

High speed flow is generally accompanied by changes in the chemical and ther-
modynamic composition of the gas which need to be taken into account. In the first
part of this paper we present the extension of the Osher scheme to equilibrium and
non-equilibrium gases. For the equilibrium case, the extension proceeds by choos-
ing the pressure and entropy as the independent thermodynamic variables so that
the Riemann invariants can be reduced to quadratures. Efficiency is achieved by
noting that the quadrature need be only as accurate as the discretization error. In
the non-equilibrium case, the determination of the intermediate points using Rie-
mann invariants involves iterative solution of a transcendental equation. As this is
computationally inefficient, an approximate method which involves no iteration is
presented. For simplicity, the source terms are treated explicitly. In both cases, the
formal extension is unique unlike the Roe scheme where there is a one parameter
family of solutions with no clear choice among them.

Computations based on the above scheme are presented to demonstrate the
feasibility, accuracy and efficiency of the proposed scheme. One of the test problems
is a Chapman-Jouguet detonation problem for which numerical solutions have been
known to bifurcate into spurious weak detonation solutions on coarse grids. Our
results indicate that the numerical solution obtained depends both on the upwinding
scheme used and the limiter employed to obtain second order accuracy. For example,
the Osher scheme gives the correct CJ solution when the super-bee limiter is used
but gives the spurious solution when the Van Leer limiter is used. With the Roe
scheme the spurious solution is obtained for all limiters.
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OVERVIEW

¢ Extension of the Osher Scheme for reacting flows.

e 2 species system o
e Intermediate and Sonic points
e Numerical results

e Bifurcating Z — N — D Detonations. -

e Theory
e Numerical Results

THEORY [Colella, Majda, Royturd (86)]
li M el:
1 ) ’
Uy + (—u“ + Ahz) =0
- \2 n

u~p/p
zZn = ko(u)z

For large kAz and/or Ah non-physical weak detonation waves
exist which travel at mesh speed —A&f

e Riemann Problems (ideal gas)
e Reacting nozzle flow

o7 — N — D detonations
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L

Using invariants is expensive due to exponents.

__ M
(L=

Ts

Uy = Ur(1 = 7,) + Ugr,

Freeze eigenvectors at (Ur+Ug)/2 and evaluate wave strengths
as:

1
Ay = %E[quipazlu]
Amy = —[-Ap+a?A
To—;i['- p+a p]

ATg = Az

Intermediate states obtained by transalation from left and
right. ‘
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For multispecies Uy and Up can be obtained only iteratively:
apl +bp¥ =c

However, Uy, Up need only be as accurate as the overall dis-
cretization error.

1) Source terms do not change wave pattern.

2) Along = = 0, solution approaches homogeneous
Riemann problem near origin. Li and Yu [1985]

» STRATEGY

Use homogeneous Riemann problem [Gottlieb, etc.] for up-
winding and add in source terms later.
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Riemann Problem: no longer self-similar.

R(z,t,Up,Ur) # R (?t’- Us, UR)

t
b

C
S
UR UL
Interface flux F;,, not well defined.
However . . .
2 Species System:

p pu 0

pu N puc +p _ 0

pE pEu + pu - 0

Pz |, puz |, —pk

z = mass fraction. z =1 (unburnt) 2z =0 (burnt)
k = k(z,T) = reaction rate

— ) k.2
E—m + §’U. —ZAIZ

_ nCviz+ 1 Cyo(l-2)
FY(Z) - Cyy :4Cya(l-:)
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BIFURCATING Z — N — D DETONATIONS

Problem » at

p=p2 pP=m
reh s, TR
z=0 =
r(z) = constant.
Solved on moving grid.
k - Step function of T'.
NUMERICAL RESULTS

e Bifurcation depends on limiter used and Riemann Solver.

R.S.\ Limiter | 1¥ Order | L.L. Limiter | Superbee

Osher-N B B NB
Osher-R B B NB
Roe B B B
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IDEAL GAS SHOCK TUBE PROBLEM

OSHER SCHEHNE NATURAL ORDER
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Fig. 2: Ideal gas shock tube problem. Frozen solution.
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C - J DETONAT!ON  PROBLEN

OSHER SCHEME NATURAL OROER
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Fig. 3: Chapman-Jouguet detonation problem on a fine grid.'
Reaction zone = 10 cells
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C - J ODETONATION  PROBLEN

OSHER SCHEME NATURAL ORDER
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Fig. 4a: Chapman-Jouguet detonation problem on a coarse grid.
Reaction zone = 1/10 cell, Superbee Limiter.
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C - J OETONATION

PROBLEN

OSHER SCHEME NATURAL OROER
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ODIVERGENT NOZZLE
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Fig. 5: Divergent Nozzle Problem. Reaction zone = 20 cells.
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CONCLUSTIONS

e The Osher scheme can be extended efficiently to reacting
Aows.

e Bifurcations in reacting flows require futher study.
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N92- 25 818
HIGH ORDER PARALLEL NUMERICAL SCHEMES
FOR SOLVING INCOMPRESSIBLE FLOWS

Avi Lin
University of Pennsylvania -

Edward J. Milner, May-Fun Liou, and Richard A. Belch
Internal Fluid Mechanics Division
NASA Lewis Research Center

The use of parallel computers for numerlcally solving flow
fields has gained a lot of importance in recent years. In most
cases, the parallel machine executes modified standard serial
CFD codes, taking advantage of parallelism by using special
constructs, directives, system commands and calls. In other
instances, numerical schemes and computational algorithms have
been changed or redesigned to increase performance of the
overall algorithm. This paper presents a new high order
numerical scheme for CFD specifically designed for parallel
computational environments.

A distributed MIMD system gives the flexibility of treating
different elements of the governing equations with totally
different numerical schemes in different regions of the flow
field. This heterogeneous parallel numerical approach is
sometimes technically complicated in terms of programming and
administering the various processes, but it is quite efficient
and contains enough free parameters for optimizing execution
speedup.

The parallel decompos1tlon of the governing operator to be
solved is the primary parallel split. The decomp051tlon of the
physical domain of the flow into subdomains is the secondary, or
optional, Spllt. At the coarsest parallel level, each of the
processors is ass1gned to solve a suboperator of the original
PDE operator over a given subdomain. An iterative numerical
procedure is employed. All of these splittings are designed to
ensure a high rate of convergence.

The primary parallel split was studied using a hypercube-like
architecture having clusters of shared-memory processors at each
node. The approach is demonstrated using as examples some
simple steady-state incompressible flows. Future studies should
investigate the secondary split because, depending on the
numerical scheme that each of the processors applies and the
nature of the flow in the specific subdomain, it may be possible

for a processor to seek a better, or hlgher order, scheme for
its particular subcase.
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—— N/SNA —— LEWIS RESEARCH CENTER —]

OBJECTIVE:

TO REDUCE THE TIME REQUIRED TO SOLVE
CFD PROBLEMS BY USING PARALLEL
PROCESSING TECHNIQUES

—— COMPUTATIONAL TECHNOLOGIES BRANCH

——— NASA LEWIS RESEARCH CENTER —]

DISCUSSION FRAMEWORK

o PARALLEL PROCESSING TECHNIQUE FOR
SOLVING A BLOCK TRIDIAGONAL SYSTEM

o SOME APPLICATIONS & RESULTS

o PARALLEL PROCESSING TECHNIQUE FOR
INVERTING A MATRIX

L — COMPUTATIONAL TECHNOLOGIES BRANCH
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A Parallel, Scalable, 2D Navier-Stokes Solver

Stream function, driven cavity, 50 by 50 grid

@  Parallel algorithm design provides efficient implementation on distributed
or shared memory machines
- 74% efficiency achieved on Hypercluster test bed
@ Scalable and portable algorithm
- basic building blocks ( e.g. matrix solvers )
- total solver .

@ Second-order accurate

ASSUME THAT

) B =K * B,

m,1

2) B,= K * B

m,2 2

3) B,= K * B,

m,3

——— NASA ? LEWIS RESEARCH CENTER —
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THEN

1)
2)
3)

4)
5)
6)

7)
8)
9)

L — COMPUTATIONAL TECHNOLOGIES BRANCH

(A, +A,, *xK;, + A K)*B,, =1
(AxK,+ A, +A;* 32 * B,,= I
(A3,l * Kx.a + A3,2 * Kz,s + As.a)* B3,3 =1

A, + AL+ A K;,=0
A xK+ A, +A,,=0
A+ ALK+ A3.3*@= 0

A, *’*' AL*Kp+A=0
A+ A, *+ A:*K;, =0
A3,x* Kl.z + A3,2 + A3,3 *= 0

m——— NNSA

LEWIS RESEARCH CENTER—=

THUS,

1) Bu=(Au+ AL+ AL ()Y

) Bu= (A A+ ALK

3)  Bua= (A2 [Kd+ Ar @+ A

) K= -ALxA,+ A+ [

5) = Al (A [K)+ A,)

6 K)=Ar (A + AL [K)

7) [Ky= (AL - AL A,» A Y 5(A %A, #Ay5 - A )
8 [Kals (Ao At AL 2 ALY s (A * AL 2 Ay - AL)

9 [Kaf= (Au-Aux AL+ ALy« (Ax AL+ Ay, —A,)

L— COMPUTATIONAL TECHNOLOGIES BRANCH
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SUMMARY

THE PARALLEL SOLVER:

+4+):
1) IS GENERAL

2) CONVERGES VERY QUICKLY

3) IS READILY EXPANDABLE
a) CAN BE USED WITH ONLY ONE PROCESSOR

b) WILL USE AS FEW OR AS MANY PROCESSORS
AS ARE AVAILABLE

__.....):

'1) PERFORMS SOME REDUNDANT CALCULATION
BECAUSE OF OVERLAP OF THE DATA

| —— COMPUTATIONAL TECHNOLOGIES BRANCH
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BLOCK TRIDIAGONAL SYSTEM

" BC 7] [ u 7] D]
ABC . u D
ABC u D
u D
ABC u D
ABC u D
ABC * u = D
. D
ABC u D
ABC u D
ABC u D
u D
[ ] [ ] [}
ABC u D
ABC u D

B AB_ L u _| L D _|]

= COMPUTATIONAL TECHNOLOGIES BRANCH
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BLOCK TRIDIAGONAL SYSTEM
BC 7] u 7] D]
ABC u D
ABC u D
u D
ABC u D
ABC u D
ABC * u = D
u D
ABC u D
ABC u D
ABC u D
u D
[ ] L ] [ ]
ABC u D
ABC u D
L AB_ | u ] | D
LL COMPUTATIONAL TECHNOLOGIES BRANCH
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BLOCK TRIDIAGONAL SYSTEM
" BC ] u ] D]
ABC u D
ABC u D
u D
I Y ABC T TTTTTTTTITTTTTIT u | DT
ABC u D
ABC * | u = D
u D
ABC u D
ABC u D
SR ARG ] I R I Dol
u D
L] L] [}
ABC u D
ABC u D
i AB | L u ] . D |
| COMPUTATIONAL TECHNOLOGIES BRANCH
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BLOCK TRIDIAGONAL SYSTEM

[ BC Cu D]
ABC u D
ABC u D
u D
ABC u D
ABC u D
ABC % u = D
. D
ABC u D
ABC u D
ABC u D
u D
[ ] L ] L ]
ABC u D
ABC u D

B AB L u D ]

LL: COMPUTATIONAL TECHNOLOGIES BRANCH

LEWIS RESEARCH CENTER™—]
BLOCK TRIDIAGONAL SYSTEM
’-@
* || = |
| | (2]
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L

Sresemnas

BLOCK TRIDIAGONAL SYSTEM

—— NNSGA LEWIS RESEARCH CENTER—

BC 7] T u D]
ABC u D
ABC u D
u D
T ABC T SIS ) I B
ABC u D
AB A 11 jrvene] D
. D
ABC u D
ABC u D
e ABG L L u_ 1Dt
u D
L] L 2 L]
ABC u D
ABC u D
| AB_| | u ] | D _
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HYPERCLUSTER TEST BED ARCHITECTURE

SP = SCALAR PROCESSOR
VP = VECTOR PROCESSOR
CP=CONTROL PROCESSOR
M =SHARED MEMORY

FEP BUS
—— NASA
EQUATIONS:
oTaeEo—d 2o {2 () + 5
rraedo H{Be2() 45
o oo iRe e B
Ei+ir=o.

ITERATION RESIDUAL ERROR

1 MAXIMUM ERROR = 0.15019E+02
MAXIMUM ERROR = 0.52285E+01
MAXIMUM ERROR = 0.23837E+01
MAXIMUM ERROR = 0.10327E+01
MAXIMUM ERROR = 0,39308E+00
MAXIMUM ERROR = 0.94527E-01
MAXIMUM ERROR = 0.47686E-02
MAXIMUM ERROR = 0.14872E-04
9 MAXIMUM ERROR = 0.78692E-09
10 MAXIMUM ERROR = 0.60396E-~13

0 N OO O a WwN
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FLOW NEAR A ROTATING DISK

Flow in the neighborhood of s disk
rotating in a fluid at rest

Velocy componsris: w-rsdial, -Circumisreniial, va-osi.
A layes of Suid s Carmied by the dlsk owing 10 T acton
of viscous forces. The contriagal forces i The hin laysr
9ivE i 10 secondary Aow which Js cieucied radialy
oubvard.
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FLOW NEAR A ROTATING DISK

¢ DISTRIBUTED MEMORY SIMULATION

e SERIAL MATRIX INVERTER

20

c

A

L

C s

T

|

M

E 1.0 1 Flow in the neighborhood of a disk

: rotating in a fhid at rest

Veloclly componenis: y-sadial, w-circumisrental, w-sal.
A tayer of Suld s carried by the disk owing 10 e acton

+ + + + + + of viscous forces. The coniilugal ferces in 1he Thin layer
1 2 3 4 5 8 7% st 10 sacondary fow which s Brecied radially

outward.
NUMBER OF PROCESSORS

| —— COMPUTATIONAL TECHNOLOGIES BRANCH
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BOUNDARY LAYER ALONG A PLATE

EQUATIONS:

U
uau +vau ___va’-u ” =
= Pl ok ——
oz ay oy’ oy o S
du , v ; —x ""’""5“‘54 .
a_'z + a_y"‘o »

=0: vu=v=0; =o00: u="U
y - ’ y et The boundary layer along a flat
plate 2t zero incidence

ITERATION RESIDUAL ERROR

MAXIMUM ERROR = 0.14258E+01
MAXIMUM ERROR = 0.26890E+00
MAXIMUM ERROR = 0.28632E-01
MAXIMUM ERROR = 0.24873E-03
MAXIMUM ERROR = 0.16154E-07
MAXIMUM ERROR = 0.11084E-11

O v s W N =

—— COMPUTATIONAL TECHNOLOGIES BRANCH
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l | B/ Sloan . A e R S R s 1
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MATRIX INVERSE

1,1 1,2 13 rBu Bm B1.3 I 0 0
2,1 2.2 2,3 * B2,1 Bz,2 B2.3 - 0 I 0
B B B 0 0 I
- 3,1 32 3.3_ N 3,1 3.2 3.: L J
| —— COMPUTATIONAL TECHNOLOGIES BRANCH
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BOUNDARY LAYER ALONG A PLATE

@ DISTRIBUTED MEMORY SIMULATION

® SERIAL MATRIX INVERTER

Vs
2.0 1 =
c U Y{ l—-."f%/ e {2
A '—’:X ittt LLLL, "
L
C 15
T The boundery layer along a flat
| plate at zero incidence
M
E
1.0 1

i 2 3 4 5 6
NUMBER OF PROCESSORS

—— COMPUTATIONAL TECHNOLOGIES BRANCH

——— NNSA LEWIS RESEARCH CENTER ——

A Parallel, Scalable, 2D Navier-Stokes Solver

Stream function, driven cavity, 50 y grid

@  Parallel algorithm design provides efficient implementation on distributed
or shared memory machines

- 74% efficiency achieved on Hypercluster fest bed
@ Scalable and portable algorithm

- basic building blocks ( e.g. matrix solvers )
- total solver

@® Second-order accurate
| —— COMPUTATIONAL TECHNOLOGIES BRANCH
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RELATIONSHIPS

1) A*B 4+ A+B + A xB I
11 11 12 21 13 31

2) A«=B + A=*B + A «B I
21 12 22 22 23 31

3) A+*xB + Ax*xB + As*B = 1
31 13 32 23 33 33

4) A*B + Ax*xB + Ax*xB = 0
11 12 12 22 13 32

S) A+*sB + A*B + AxB = 0
21 13 22 23 23 33

6) A =B + A = B, + A+B = 0

7) A+*xB + A+*xB + Ax«xB = 0
1,3 13 R 12 23 13 33

8) A*B + Au* B + A xB 0

9) A*B + A=*=B + A *B 0
31 12 32 22 33 32

L—— COMPUTATIONAL TECHNOLOGIES BRANCH
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N92-25819

An Efficient and Robust Algorithm For }
Time Dependent Viscous Incompressible Navier-Stokes Equations

John W. Goodrich
Computational Fluid Dynamics Branch
NASA Lewis Research Center

A recently developed finite difference algorithm is presented for unsteady in-

compressible Navier-Stokes calculations. The algorithm is extremely robust with
respect to Reynolds number, and has been used to directly compute incompressible
flows with smoothly resolved streamfunction, kinetic energy and vorticity contours
for Reynolds numbers as high as Re = 100,000 without requiring any subscale
modelling. The accompanying figure shows contour plots for the streamfunction
and vorticity at nondimensional times ¢t = 83 and ¢ = 84 from a transient calcu-
lation at Re = 25,000, with a 256 x 256 grid and At = -1-. The algorithm is

400 °

second order accurate in both time and space, with a Crank-Nicolson differencing
for the diffusion terms, with a lagged second order Adams-Basforth differencing for
the convection terms, and with central differencing for all space derivatives. There
is no constraint on the time step size from diffusion time scales, but the convection
time scales impose a stability constraint of f—;— < 1, and typically a CFL number of
0.75 or 0.80 is used. This algorithm is based on the fourth order Partial Differential
Equation for incompressible fluid flow which uses the streamfunction as the only
dependent variable,

ANy Y Oy Y oY 1 .., )
T +8yA8:c amAay ReA =0, forxin{l, andt > 0.

Notice that the vorticity does not enter into this formulation. Although the al-
gorithm currently is only for incompressible flows in two space dimensions, the
algorithm can be and is being extended to handle temperature dependant density,
subsonic compressible flows, and flows in three space dimensions. The algorithm
produces discretely divergence free velocity fields on a nonstaggered grid. The
streamfunction discretization is related to a primitive variable discretization on a
staggered grid, so that primitive variable velocity boundary conditions can be im-
plemented for the discrete streamfunction. The algorithm is extremely efficient with
respect to use of both CPU time and physical memory. A typical time dependant
calculation with a 128 x 128 spatial grid and At = —— requires approximately 2

1
160

MegaBytes of memory, and approximately 2.3 CPU seconds per time step on an
IBM RS/6000 model 530 workstation. Codes implementing the algorithm have been
run for problems of various scales on systems ranging from PC’s and workstations
to CRAY supercomputers. The algorithm has been implemented on an INTEL.
TOUCHSTONE parallel processor. Solutions will be shown for cavity and channel
flows at various Reynolds numbers.
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TIME DEPENDENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

%‘g._*_v.(uu)_.l_zl_;Auz—Vp—}-F, forx in 1, and ¢t > 0,

V.-u=0; forxin{l, andt > 0.

STREAMFUNCTION EQUATION FOR UNSTEADY INCOMPRESSIBLE FLOW

aA 1 ., oy 0y oy , oY .
—_— =AMt = A~ - — A Y] dt>0;
¥ dz 9y 48y 09z’ for x in 01, an

with

ux,t) = %'5’ and v(x,t) = —%’é, forxin(l, andt > 0.

* Tnitial and boundary conditions must be supplied.

== For 1 C R3,
== Vorticity and pressure DO NOT enter into the streamfunction formulation.
= A single equation for a single scalar unknown.

=3 The velocity solution is always divergence free, and so incompressible.

THE STREAMFUNCTION ALGORITHM FOR UNSTEADY INCOMPRESSIBLE FLOW

La(i"“) . %Bi(ivﬁ—l)
€

= La(i") + 2 Bi(i") - = [6, (&, (5")La(&" )) s, (5, (2")La(i")>]

# & [ (e ) -5 (8-man ) |

with )
vy = 2Ay(zin.:‘+1 -27._,), and v}; = _2A1(2?+1'j —z )
Z® =~ ¢Y(-,t,) on the discrete grid.

The discretization uses central spatial differencing throughout.

*

All variables are defined at each grid point.

Banded LU decomposition and multigrid solvers have been used.

== The variable ¥ is as smooth “as possible”.
=> The implicit equation is elliptic, for all Reynolds numbers.
= The local domain of dependance is the large symmetric 13 point discretization stencil.

=> The discrete solution is exactly incompressible, &, (u]";) +6,(v7;) =0.

= The stability limit is a CFL constraint, uiAu% < 1.
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A MULTIGRID SOLVER FOR THE LINEAR IMPLICIT EQUATIONS

La(z"*') — E%Bi(i"“) = Source Term(Z",2""")

* The Biharmonic operator is factored as two Laplacians.
* Point Gauss-Seidel smoothing (or Red Black Gauss-Seidel).
* Linear restriction and prolongation.

* A V-cycle with 3 iterations per grid level while coarsening, none while refining.

== w = A is introduced ONLY for iterating with the biharmonic operator.

= Implemented on scalar, vector and parallel systems,

TYPICAL PERFORMANCE DATA

CAVITY PROBLEM (IBM RS/6000 model 530 workstation)
* Square cavity transient from ¢t =0 to t = 1, at Re = 9600.

* 10 to 15 iteration cycles reduce residuals to less than 5.0 x 10712,

(1) 256 x 256 grid, &t = =, 7 grid levels, 6.6 MBytes storage, 10.2 sec/ts;

400
(2) 192 x 192 grid, &t = 547, 7 grid levels, 3.8 MBytes storage, 5.5 sec/ts;
(3) 128 x 128 grid, At = 1—;6, 6 grid levels, 1.7 MBytes storage, 2.5 sec/ts.

== CPU time increases “linearly” with the number of grid points:
(1) 1.54 x 10~ * sec/ts per grid point on the 256 x 256 grid;
(2) 1.48 x 10~ * sec/ts per grid point on the 192 x 192 grid;
(3) 1.50 x 10~ * sec/ts per grid point on the 128 x 128 grid.

== Required memory increases “linearly” with the number of grid points:
(1) 104.78 Bytes per grid point on the 256 x 256 grid;
(2} 106.97 Bytes per grid point on the 192 x 192 grid;
(3) 107.12 Bytes per grid point on the 128 x 128 grid.

= The number of iteration cycles/ts is independent of resolution and Reynolds number.
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STREAMFUNCTION MAX AND MIN COMPARATIVE DATA
The square driven cavity at Re=5000

The Streamfunction Minimum

SOUTCG Grid 'lbmin ZTmin Ymin
Kim and Moin 96 x 96 —-1.12 x 107!

. E - 6 __ 13 690 __ 138
Goodrich 128 x 128 -115x 107% 2% =222 55 = 356
Goodrich 256 X 256 ~1.18 x 107! 12 1

. . . - 7
Ghia, Ghia, and Shin 256 X 256 —~1.19 x 107 &2 2L

The Streamfunction Maximum

¢'ma: Tmaz Ymaz
. - 102 __ 20 —_ 1
Goodrich 128 x 128 3.44 x 107° 02 — 204 o=
. P - 206 :
Goodrich 256 x 256 3.13x 107° 2 ey
Ghia, Ghia, and Shin 256 X 256 3.08 x 10> 2 Ty

TRANSIENT DRIVEN CAVITY
Re = 25,000, 256 x 256 grid, ¢ = 10.25

v
ELI 1 ee

1

0o 0o s 00
o 03 a2 0.38 ‘0.8 . 1.0 3.00 0.2

0.8 0.8 .oy
H

STREAMFUNCTION CONTOURS VORTICITY CONTOURS

—— -0 9138 —— % #3008 T RO

1
l
1]
Ik
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STREAM FUNCTION CONTOURS
Re=5k, 256°256 grid. 1=748.45

v at y=0.5 as a function of x

0.2%

Re=5000, 256 by 256 grid, t=748.45

-0.25

-8.50

-0.73.

Y T T T
0.00 0.23% 0.3%0 0.13

T, - .
0.00 ~T L ¥
.00 e.2% [ -1 078 1.00

x QATA  w—=—— comgu'ed GO0 Chia gt et

Re=5000, 256 by 256 grid, t=748.45

Re=5000, 256 by 256 grid, t=748.45
u at x=0.5 as a function of y

voe

vorticity at y=1.0 as a function of x

300

E4s )

A %0
1.90

23% 4

p{1]
[

11y

150

0 30 T

100

R
323

0

3

) 30 P PP
” - r
~0 30 -G 23 8 oo 0 2% [2-1] [- 3041 t 00 o 00 e 2% Q % 915
v v
04ts e campuied 0 OO Ches ot ar
Data e G Gmguted O 00 Lnea et ot

Re = 5000, 128 x 128 grid, At = 15, t = 748.45, calculated data,

60’

compared with U. Ghia, K. N. Ghia and C. T. Shin, J. Comput. Phys. 48 , 387 (1982).
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TYPICAL PERFORMANCE DATA

CHANNEL PROBLEM (IBM RS/6000 model 530 workstation)
* Backward facing half height step with a parabolic inflow profile on the step corner.

* Transient from ¢ = 0 to ¢ = 100, Re = 800, 44, = 1.5 for inflow profile, At = 5.

* Qutflow Boundary Conditions are:

3y Pw %y ‘Y
oz’ o 9z’ az? oz'

10 to 35 iteration cycles reduce residuals to less than 5.0 x 10~*?
30 iterations per cycle on the coarse grid.

* Coded for 1024 x 32 grid with 4 grid levels using 3.5 MBytes storage.

(1) 800 x 32 grid, 25 diameter domain, 4.7 s/ts;
(2) 480 x 32 grid, 15 diameter domain, 3.1 s/ts;
(3) 224 x 32 grid, 7 diameter domain, 1.7 s/ts.

= Relative CPU time decreases with the length of the domain:
(1) 1.79 x 10™* sec/ts per grid point on the 800 x 32 grid;
(2) 1.95 x 10™* sec/ts per grid point on the 480 x 32 grid;
(3) 2.23 x 10~ * sec/ts per grid point on the 224 x 32 grid.
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VORTICITY CONTOURS
Re=25000, 256°256 grid, £t=83.00

STREAM FUNCTION CONTOURS
Re=25000, 256°256 grid, t=83.00

6.00
9.90 0.2% 0.50 6.1

VORTICITY CONTOURS
STREAM FUNCTION CONTOURS . : "
Re=25000, 256*256 grid.<t'=54.00 Re=250.00. 2564256 grid, 1=84.00

—_—— .0.0700
YO ceccens =320 160 seemess -5 0 vearzes w40

T O S TRPPEN PIRY — S —_— e

—_— a0 — g0 _— 1 —_— 310
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STREAM FUNCTION CONTOURS
Re=800, 64*448 grid, 0<=x<=7, t=30, ul=1.5
Backward facing step with parabolic inflow, code g4a32vc3.f

0.00 1.78 3.50 s.28 7.00
X
PSE  rreceee 20,030  semeees ~0.028  cveeee -0.020  wevese ~0.015  eeeee 0.010  --e-ee -0.005
0.00} 2,010 0.050 0.100 — 0.150
——  0.250 ——— 0300 0.350 —— 0,400 ——— 01450
— gl493 0.500 —— 0502 0.504 0.508
BACKWARD FACING STEP

Re = 2000, 32x 480 grid, 0<z < 15

o~
Il
[
(%,
-

o
t=35 o

0.

0.

¥
t=45 o

I3

]

x

t =150




SUMMARY

* Vorticity and pressure DO NOT enter into the streamfunction formulation.
* A single equation for a single scalar unknown in R?.

* The variable ¢ is as smooth “as possiblé”.

= Second order accuracy in both time and space.

== The discrete solution is exactly incompressible, 6, (u];) + 6, (v]";) = 0.

= The stability limit is a CFL constraint, H%Lf—i < 1.

== Implemented on scalar, vector and parallel systems.

== CPU time increases “linearly” with the number of grid points.

=3 Required memory increases “linearly” with the number of grid points.

=> The number of iteration cycles/ts is independent of resolution and Reynolds number.

=3 Extremely robust with reépect to Reynolds number.

GOALS
* Develop and adapt numerical methods.

* Investigate dynamic phenomena (instable, transitional, unsteady time asymptotic).

STEPS

* Incompressible flow (robust, fast, validated).

* Artifical outflow boundary conditions (Tom Hagstrom, Univ. of N.M.).

* Parallel processor implementation on INTEL iPSC (Rodger Dyson, NASA Lewis).
* Temerature dependant density (Boussinesq approximation).

* Chemistry models (Marty Rabinowitz, NASA Lewis).

* Multilevel adaptive methods (Steve McCormick, Univ. Co. Denver).

* Compressible subsonic flow.

* Higher order differencing scheme.

* Three dimensional version.

APPLICATIONS

* Development of models for simplified chemical kinetics.

* Development of models for chemistry/turbulence interaction.

* Prediction of chemical emmisions (High Speed Research Program).

* Understanding instabilities (flashback, flaméout and accoustic/combustion interaction).
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N92-25820
ADVANCES IN ENGINEERING TURBULENCE MODELING

T.-H. Shih
Institute for Computational Mechanics in Propulsion
NASA Lewis Research Center

Some new developments in two-equation models and second order closure mod-
els will be presented. Two-equation models (e.g., k-e model) have been widely used.
in CFD for engineering problems. In most low- Reynolds number two-equation mod-
els, some wall-distance damping functions are used, especially in the eddy viscosity,
to acount for the effect of wall on turbulence. However, this often causes the con-
fusions and difficulties in computing flows with complex geometry and also needs
an ad hoc treatment near the separation and reattachment points. In this paper,
modified two-equation models are proposed to remove abovementioned shortcom-
ings. The calculations using various two-equation models are compared with direct
numerical simulations of channel flows and flat boundary layers.

Development of second order closure model will be also discussed with empha-
sis on the modeling of pressure related correlation terms and dissipation rates in
the second moment equations. All the existing models poorly predict the normal
stresses near the wall and fail to predict the 3 dimensional effect of mean flow on the
turbulence (e.g., decrease in the shear stress caused by the cross flow in the bound-
ary layer). The newly developed second order near-wall turbulence model to be
described in this paper is capable of capturing the near-wall behavior of turbulence
as well as the effect of three dimension mean flow on the turbulence.
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¢ Two-Equation Near-Wall Turbulence Models
o Second-Order Closure Models

¢ Modeling of Three-Dimensional Turbulent Flows

k-¢ model
The eddy viscosity vr is assumed in two-equation models as follows:

k2
vr = Cpf#—-g—-
vy = Cy fukt

where 7 = k/E. ;
The general k-¢ (or k-7) model equations are of the following forms:

k,t -+ Ujk,j = (EE + V) k’j] +II+ vy (Ui,j + Uj,i) Ui,j —€+ D

Ok J
[ (v _ € €€

€+ + Uje; = (;Z + 1/) f,j] +C1fi VT (Us; +U;3) Uiy — .C'zfzz +E
L\ € ¥

[ [ v 2 (v 2 (v
T:+U;T; = ( T+ V) 'r,]-] + = < L+ z/) kit —— (—7:- + 1/) TiTi
L\ Or2 1; E\on T \0r1 '

3,

+(1- Cel)%VT(Ui,j +Uj ) Usj + (Ceafo — 1)
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The damping function f,:

fu=Ff (ﬁ—:) = f(R:) — Jones and Launder model
fu = f(2Y) = f(y™) — for all other k-e¢ models

The parameter R; and y* are used for counting the wall effect.

The problems with the form of f,(y™) are following:

Near the separation region, f, — 0, = vr = 0;

In the flows with complex geometry, the y is not well defined.

yt is an unacceptable parameter.

Mean velocity profile (Rey, = 1410)
25
s
‘Gt t + +
20}t <
15F
+
T ©
D

10

........... Speziale, Adid & Anderson

— —— = Jones & Launder

- —~ — Lam & Bremhorst

______ Chien
sk £ el Nagaeno & Hishida

Shih '

+ + 4 Numerical Simulation

o Liis 1 [ XAZ] H LR
10! 102 10
' +
y~
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Turbulent kinetic energy (Re, = 1410)
B
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3
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3 (i Chien
L Nagano & Hishida
hif Shin
41 + + + HNumerical Simulation
Ry
T
i
c 1 1 1. 1. -
0 20 40 60 80

100



U+

In the present study, we suggest another pararf;eter:

o
- € 14

R

and the following modifications in Shih’s inodel:

fu=1—exp {03 [1 B exP(CﬁRm)]} |

Faor "1

E=¢ [1 - exp(——Rflz)]

where R; = k?/ve, Cy = 004, C3 = .0004, Cs = 1.2

200 . —T
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Another alternative:

4
o
Ve
and
fu=1- exp(——alRf/4 - azR,l/2 —azR,)
C() vr
Il =
[fz o k’J]

E=¢ [1 — exp(— ’]R1/2)]

where R; = k?/ve, a1 =5-1073, ag = 1075, a3 = 8-10~7, Cy = .01.

Second order modeling of near-wall turbulence
The exact equation for the Reynolds stress tensor is:

D

D Uits) = Pig + Tij + Dy +1L; — €55

where ( ) stands for an ensemble average, D/Dt = 8/t + U8/ 0zy..

—(wiue)Uj e — {ujwn) Uik
—{u; ujuk)

D(v) I/(uzu]) Lk
1
IL; = -;(um,j + u;p,i)

€ij = 20(ui,kUj k)
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Using the near-wall asymptotic behavior of turbulencell® as model
constraints, we formed a set of modeled transport equations for the
Reynolds-stress tensor and the dissipation rate of turbulent kinetic energy.

The proposed near-wall model for II;; — ¢;; is:

II;j—ei; = fw< [2(usu;) +4((uiug)njne+ (v up)ning) +2{upu) ngnin;n;)

where n, 1s a unit vector normal to the surface, and f,, = exp(—(R;/ 01)2)

R, = , C1 = 1.358R%*, R.r = u,6/v. u, is the friction velocity, § is
the thlckness of the boundary layer or the half width of the channel.

Away from the wall, the velocity pressure-gradient correlation II;; is
split into the rapid part H ) and the slow part H(z).

I; =0} + 11
The proposed model for H( ) — €5 is:

2
0 — €55 = —c(Bby; + 38501 = fu)

where

7.77

B=2+ { 1/2+801ln[1+624;( —II+2.311I)}} exp(— RI/Z)

F=14+ 27III + 911

II = —%b,‘_,‘bj,'
1
111 = Sbisbyubi
- big = (wiu)/(q?) — 6:5/3
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The rapid part of velocity pressure-gradient, HS) is modeled as fol-
lows(Shih and Lumley!*1:12}):

H(l) = ( + 2as{¢*)(Us; + U; i) — —(1 —as)(Pij — §-P6ij)

16

+ ( + -—05)(D,J P(Sij) + P;; — D,’j) + EbijP

—(
15

( 2) v l({wiue)Ujq + (uJuk)U a){urtg) — (witp)(ujug)(Up,g + Uy,p)l
where,

P' = —-(u,-'u.k)U- kE— (ujuk)U,- k
D;; = —-(utuk)Uk,, (ujur)Us,;
P

= "Pii

Il

1
as _'1—0(1 + Co F1/2)

Cy = 0.8[1 — exp(—(R;/40)?)]

Dissipation rate equation
The modeled dissipation rate equation derived in this work is:

€€
€t + Use; = (ve; — (eu;)) :
)t y ( ( )) (q )
€
— 1 -((1-2—)(%'%)17:',:' — o via . )(Ukw)(Ui.ﬂ — Ub,ii) Ui, jk
where
14 -1/2
Py = T +0.98[1 — 0.331n(1 — 5511)] exp(—2.83R; /")
’(/)1 ~ 2.1

g = —.15(1 — F)
v(q?),ilg?) s
4(g?)

€E=€—
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Direct numerical simulation of 3D channel flows:
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Turbulence modeling: Launder and Shima model
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Turbulence modeling: Present model
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N92-25821
On Recontamination and Directional-Bias Problems
in Monte Carlo Simulation of PDF Turbulence Models
Andrew T. Hsu
Sverdrup Technology, Inc.
Lewis Reseach Center Group
NASA Lewis Research Center

Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models.
The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and
the higher order correlations in the conventional moment closure models of the chemical source term can not be
neglected, making the applications of such models impractical. The probability density function (pdf) method
offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional
models.

The partial differential equaﬁon for the probability density function, P, can be written as

N
POP + piaal + Y Oy {wi(¥1, . ¥N)P)

=1

N N
= ~8a(B< Vali > P) =533 05, (< il > P)

=] j=1

where the terms represent the time derivative, mean convection, chemical reaction, turbulent convection, and
molecular mixing, respectively. The fact that the pdf equation has a very Jarge dimensionality renders finite
difference schemes extremely demanding on computer memory and CPU time and thus impractical, if not entirely
impossible. A logical alternative is the Monte Carlo scheme, wherein the number of computer operations increases
only linearly with the increase of number of independent variables, as compared to the exponential increase in a
conventional finite difference scheme.

A grid dependent Monte Carlo scheme following that of J.Y. Chen and W. Kollmann has been studied in the
present work. In dealing with the convection and diffusion of the pdf, the pdf equation is discretized on a given
grid, e.g., ' . . } R

Prydsy = @jPrje1 + B;Pry + 7iPrs-1
where
aj+h6,+7=1

However, if this is the only restriction satisfied by the numerical algorithm, the mass fractions may not be con-
served due to re-contamination, and directional-bias also appears. These phenomena are illustrated in Figure I:
Consider a mixing layer; use white balls to represent contaminants in the upper stream and black balls to represent
contaminants in the Jower stream. As the two streams move toward right, the location of the white balls and black
balls are interchanged randomly to simulate convection and diffusion. From Figure 1, it is clear that directional-
bias caused by recontamination caused the center of the mixing layer to drift downward. ( Directional-bias can
be partially corrected by changing sweeping directions. ) One also notices that after the first marching step, the
conservation law is violated, reflected in the Figure as missing white or black balls.

It is found that in order to conserve the mass fractions absolutely, one needs to add further restriction to the

scheme, namely
aj+ 7 = aj-1 + 741

A new algorithm was devised that satisfies this restriction in the case of pure diffusion or uniform flow problems.
Using the same example, it is shown that absolute conservation can be achieved. This result is shown in Figure 2.
One can see that the diffusion process is symmetric, and the problem of directional-bias is eliminated.

Although for non-uniform flows absolute conservation seems impossible, the present scheme has reduced the
error considerably.
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CLOSURE PROBLEM:

wlu't, - Turbulence Modeling
Yl - Analogy of shear stress: diffusion model.
Py e 1Y

pwi = pwty, ., 1, T, p)
But in gencral:.
P ?é /)'I.U(le, ) ,u:'flwaﬁ)

O unIe

® B ACK
———b

)
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The Simulation of Convection and Diffusion

pEd P = =0, (j < vl > I)
Discretize:

Ptoge =P+ 3P F vl

Where the coeflicients must satisfy:

ap+ B4y = 1

MONTE CARLO METHOD
(1) Use an ensemble of stochastic particles to represent the PDE

(2) The particles move in such a way that the PDF evolution equa-

tion is satisfied.

(3) Three steps: conveetion/diflusion; molecular mixing; chemical

reaction.
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PDF EVOLUTION EQUATION

- - N ~
Pl + je O, + p _}; Q. fwilyn, ..., PN) P}
.~\'_ N 9

= _—(‘)(I(/_; < l’:(l’:’!‘i > f)) - p X ¥ 0
i=] j=1

(< (,Jl(/)] > P)

Mean Convection

I
2) Chemical Reaction
)
) N

Turbulent, Convection

3
4) Molecular Mixing

(
Dimension: N+5 finite difference not feasible.

PROBABILITY DENSITY FUNCTION MODEL

~ / / pwi(Y1, oo, Yar T, p)P(Y1, ooy Yu, T, p)dY] ...d Y, dTdp.

EXAMPLES: .P “’l I
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0 ¢
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MOMENT CLOSURE MODEL

Example: T
wp = —BT" c:z:p(——,l-‘,i) P*YrYy

LR T + TI
Vi = Vr+ V]
Yp = Yr 4 VL

e wr can be expended into series and terms such as Y£Yy, YrT',

YAT!, and T"? have to be modeled.

Restrictions: T« T, T,~T
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Fig.17 Temperature distribution: HZ+F2=2HF
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Fig.2 probability mass function.
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CONCLUDING REMARKS

(1) For absolute conservation, the number of particles received in a
cell must equal to the number that are sent out from the same
cell:

aj+ 7 = ajo1+ Y4
(2) The particles that are replaced must be the particles that were
sent out.

(3) Store at least 3 arrays of random indices and move them succes-
sively.

(4) Elimninated the problem of recontamination and directional-bias
in the cases of uniform flow or pure turbulent diffusion. Reduced
error.

(5) In case of non-uniform flow, convection is needed, and thus (1)
can not be satisfied.

(6) The capability and accuracy of the present scheme are demon-
strated through the example of a turbulent non-premixed flame.
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NG2-25822

Implementation of a k-¢ Turbulence Model to RPLUS3D Code

Tawit Chitsomboon
Institute for Computational Mechanics in Propulsion
NASA Lewis Research Center

The RPPLUS3D code has been developed at the NASA Lewis Research
Center to support the national aerospace plane project. The code has the
capability to solve three dimensional flowfields with finite rate combustion
of hydrogen and air. The combustion processes of the hydrogen-air system
are simulated by an 18-reaction path, 8-species chemical kinetic mechanism.
The code uses a Lower-Upper (LU) decomposition numerical algorithm as
its basis, making it a very efficient and robust code. Except for the Jacobian
matrix for the implicit chemistry source terms, there is no inversion of a
matrix even though a fully implicit numerical algorithm is used.

A k-epsilon turbulence model has recently been incorporated into the RPLUS3D
code. Initial validations have been conducted for a flow over a flat plate.
Results of the validation studies will be shown. Some difficulties in imple-
menting the k-epsilon equations to the RPLUS3D code will also be discussed.
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MOTIVATION

¢ MOST APPLICATIONS ESPECIALLY FLOWS IN SCRAM-
JET COMBUSTORS ARE TURBULENT

¢ COMPLEX FLOWS IN SCRAMJET COMBUSTORS (e.g., NOR-
MAL H, INJECTION INTO SUPERSONIC AIR) WILL RE-
QUIRE AT THE MINIMUM A k-¢e MODEL

OBJECTIVE

o IMPLEMENT A HIGH REYNOLDS NUMBER k-¢ TURBU-
-LENCE MODEL

¢« A LOW REYNOLDS NUMBER MODEL IS NOT PRACTI-
CAL FOR A 3D CHEMICALLY REACTING CFD CODE

SOME FEATURES OF RPLUS3D

¢ 3D CFD CODE DEVELOPED AT NASA LEWIS RESEARCH
CENTER -

¢ FULLY IMPLICIT FINITE VOLUME L-U SCHEME

e CENTRAL-DIFFERENCE SCHEME WITH JAMESON-TYPE
AV. :

¢ FINITE-RATE HYDROGEN-AIR COMBUSTION (8-SPECIES,
18-STEP) :

e EFFICIENT: NO INVERSION OF MATRICES EXCEPT FOR
COMBUSTING FLOWS

¢ DEVELOPED ESPECIALLY FOR NASP COMBUSTORS

e COULD BE USED FOR GENERAL PROBLEMS BY SET-
TING VARIOUS SWITCHES
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. K-EPSILON TURBULENCE MODEL

- ¢« HIGH REYNOLDS NUMBER FORM
e ECONOMICAL FOR 3D COMBUSTING FLOWS
s LAW OF THE WALL
e SOLVE 2 PDE’S FOR k AND ¢ ;
e USE L-U ALGORITHM ( THE SAME AS THE FLOW SOLVER)
¢ DECOUPLE FROM THE FLOW SOLVER

e MODULAR PROGRAM : ONLY ONE SUBROUTINE CALL
FROM THE FLOW SOLVER

HIGH REYNOLDS NUMBER k-¢e MODEL

e STANDARD k-« MODEL

Opk = Opku; , 7N
ot + Ox; = PP =petV (M+0k)v}u
Opc | Ui _ 0 PE _ CopeS +V - (u+ )y
ot or; mk 2/)C K Oc €
WHERE
____Ou;
P = —uiuj%;
AND,

—55 = il + ) — (2/3)6(k + 1V - V)
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BOUNDARY CONDITIONS FOR k-« MODEL

s ASSUMPTIONS
-~ LOG LAW PROFILE
ut = (1/k)ln(Ey7)
~ LOCAL EQUILIBRIUM

dissipation = production

¢ PSEUDO CODE

— INTEGRATE FLOW EQUATIONS
— INTEGRATE k-¢ EQUATIONS

— FIND u, FROM LOG-LAW PROFILE BY NEWTON’S IT-
ERATION

— FIND k and ¢ AT THE FIRST CELL CENTER
k= (u,)2/\/317: €= (u,)*/Ky

- FIND vp = C k¢

DIFFICULTIES ENCOUNTERED

s RUN AT LOWER CFL NO. THAN LAMINAR CASLES

- DUE TO EXPLICIT VISCOUS TERMS IN THE FLOW
SOLVER

» IMPLICIT FORMULATION FOR BOTH CONVECTION AND
DIFFUSION TERMS

e PARTIALLY IMPLICIT SOURCE TERMS
e POSITIVITY OF k-¢ IMPOSED AUTOMATICALLY

€= Enkn+1/kn
s REQUIRES ARTIFICIAL DAMPING
e NO DAMPING AT TWO POINTS ADJACENT TO THE WALL
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LAMINAR FLOW OVER A FLAT PLATE

e MACH NO. = 0.5; 31 X 31 GRID

©,=0.10, ¢,=0.10, Mach=0.5

ob

Blasius
z = 6 cm
r = 12 c¢m.

1.2
1.0F
o
0.8k o o kt 48F + Computation
: 4+ gt i d - O Ven Driest correlation
+w 0.6 o L L
+” ., © ~ 4.0 +
2 0.4 o N A o
o ~ 3.6+ ¥
0.2 + o i Lo,
o} O i,
. o 3.2} e
0.0 e b ' ‘ ' . ; . .
0 1000 2000 3000 0.0 1.0 - 2.0 3.0
y Re,x1076
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24 .
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201 &0
3 | &°
o
16 + Computation
O Law of the wall
12+
0 1000 2000 3000

y+

Figure . Turbulent boundary layer flow over a flat plate.
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FUTURE PLANS

e MORE VALIDATIONS

-~ DOUBLE NORMAL JETS IN CROSS FLOW (UVA)
— SLANT JET IN CROSS FLOW (INASA LEWIS)

e« COMPRESSIBILITY EFFECTS
« PROBABILITY DENSITY FUNCTION (PDFT)
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N92-25823
TURBULENCE AND DETERMINISTIC CHAOS

Robert G. Deissler
LeRC Research Academy
NASA Lewis Research Center

ABSTRACT

Several Turbulent and nonturbulent solutions of the Navier-Stokes equations
are obtained. The unaveraged equations are used numerically in conjunction
with tools and concepts from nonlinear dynamics, including time series, phase

portraits, Poincare sections, largest Liapunov exponents, power spectra, and
strange attractors.

Initially neighboring solutions for a low-Reynolds-number fully developed
turbulence are compared. The turbulence, which is fully resolved, is sus-
tained by a nonrandom time-independent external force. The solutions, on the
average, separate exponentially with-time, having a positive Liapunov expo-
nent. Thus, the turbulence is characterized as chaotic.

In a search for solutions which contrast with the turbulent ones, the Reynolds
number (or strength of the forcing) is reduced. Several qualitatively
different flows are noted. These are, respectively, fully chaotic, complex
periodic (see the accompanying figure), weakly chaotic, simple periodic, and
fixed-point. Of these, we classify only the fully chaotic flows as turbulent.
Those flows have both a positive Liapunov exponent and Poincaré sections
without pattern. By contrast, the weakly chaotic flows, although having
positive Liapunov exponents, have some pattern in their Poincaré sections.

The fixed-point and periodic flows are nonturbulent, since turbulence, as
generally understood, is both time-dependent and aperiodic.

Besides the sustained (forced) flows, a flow which decays as it becomes
turbulent is examined. As in the sustained case, the flow is extremely
sensitive to small changes in initial conditions. The sensjtivity increases
with improved spatial resolution. For the finest grid (1283 points) the
spatial resolution appears to be quite good. -

As a final note, the variation of the velocity-derivative skewness of a
Navier-Stokes flow as the Reynolds number goes toward zero is calculated
numerically. The value of the skewness, which has been somewhat controver-
sial, is shown to become small at low Reynolds numbers, in agreement with
intuitive arguments that nonlinear terms should be negligible.
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TURBULENCE PROBABLY STILL MAIN UNSOLVED PROBLEM IN FLUID
DYNAMICS.

BUT CONSIDERABLE ADVANCES BEING MADE:

o NUMERICAL SOLUTIONS OF INSTANTANEOUS
NAVIER-STOKES EQUATIONS

o UTILIZATION OF CONCEPTS AND TOOLS FROM NONLINEAR
DYNAMICS, INCLUDING DETERMINISTIC CHAOS.
"DETERMINISTIC" REFERS TO THE EVOLUTION EQUATIONS
{NO RANDOM COEFFICIENTS.)

THESE TWO GO HAND IN HAND. IN FACT, USE OF NONLINEAR DYNAMICS IN STUDY
OF TURBULENCE (OR IN THE STUDY OF ANYTHING) DID NOT GET FAR UNTIL ADVENT
OF HIGH-SPEED COMPUTERS, BECAUSE THE NONLINEAR EVOLUTION EQUATIONS
(NAVIER-STOKES EQUATIONS IN CASE OF TURBULENCE) COULD NOT PREVIOUSLY BE

EFFECTIVELY USED.

HERE WE WANT TO TAKE A LOOK AT TURBULENCE BY USING CFD, TOGETHER WITH
CONCEPTS AND TOOLS FROM NONLINEAR DYNAMICS.

OBTAINED SEVERAL SOLUTIONS OF INSTANTANEOUS NAVIER-STOKES
EQUATIONS AT LOW REYNOLDS NUMBERS-BOTH TURBULENT AND NONTURBULENT

FLOW KEPT FROM DYING OUT BY TIME-INDEPENDENT FORCING TERM
ALTHOUGH FORCING WAS STEADY, RESULTING FLOW WAS OFTEN
HIGHLY UNSTEADY AND RANDOM IN APPEARANCE

THIS 1S A REMARKABLE FEATURE OF MANY TURBULENT FLOWS - E.G,, A
TURBULENT (TIME DEPENDENT) FULLY DEVELOPED PIPE FLOW MAY BE
PRODUCED BY A STEADY PRESSURE GRADIENT
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SOLVED NUMERICALLY THE UNAVERAGED THREE-DIMENSIONAL
NAVIER-STOKES EQUATIONS WITH A TIME-INDEPENDENT

FORCING TERM

. ' 2
an =_6(Uiuk)_l_a_p_+v 0 Uj s
ot 6Xk p OXI 6Xka !

3
WHERE Fi= D Ma; "g? cos "G . %
n=l
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WHERE Lo < k(2,1,1) % - KL,2,1) ;- k(1,12 —
Rea=(u?) Xghv

b= CLLD 2g-q1,-L1) Y- 0,1,-0)

AND 6 6X|6Xl bxlxk

PLOT OF FORCING TERM F; ON PLANE MAGNITUDE OF FORCING VECTOR ON PLANE
THROUGH GRID CENTER . THROUGH GRID CENTER
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oS \:ga“ig',‘.: 22055
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USED A CUBICAL COMPUTATIONAL GRID (0 TO  2rn ON A SIDE)
WITH FOURTH-ORDER SPATIAL DIFFERENCING. 32° GRID POINTS

USED A PREDICTOR-CORRECTOR TIME DIFFERENCING (SECOND-ORDER LEAPFROG
PREDICTOR AND THIRD-ORDER ADAMS-MOULTON CORRECTOR)
BOUNDARY CONDITIONS: PERIODIC

OBTAINED ASYMPTOTIC (LONG-TERM) SOLUTIONS

TO INSURE EXCITATION OF AS MANY MODES AS POSSIBLE
AT A GIVEN REYNOLDS NUMBER, INITIAL CONDITIONS ON

MOST OF FLOWS WERE SPATIALLY CHAOTIC

MAGNITUDE OF CHAOTIC INITIAL VELOCITY VECTOR
ON PLANE THROUGH GRID CENTER

X0
0.0, 0,0 0
< ":‘0"“:’"",
Eziﬂ._ ‘o" 25 "! %
SIS S 9 \\‘;";&“

) D

N

£
=

N
CONNNS2ZZZ 7722
SRS NN/ L LS NS
AN AN
&G N7 75N
AR5 NN ‘

IO/
NYS22Z: E::s ‘Q::I(‘
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CALCULATED SPATIAL VARIATION OF VELOCITY

Re, =

ON PLANES THROUGH GRID CENTER

13.3

PLOT OF PROJECTION OF VELOCITY-VECTOR FIELD

At S S -
L R ot ol g o

N
- - P

Vi

DR Pl

NN
AR NEN

ON x4-x, PLANE THROUGH GRID CENTER
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up(r.r.n)

us(m,r,m)

Time sertes

-2

ASYMPTOTIC
REYNOLDS NUMBER

) Rea = 478

SIMPLE PERIODIC FLOW
Rea = 6.24
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UNCONVERGED
-1
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Re, = 6.24
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-~
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Re, = 6:60

L] r
%
-
o
u , (90/B, 21416, 230/16)
g
‘:ﬁ )
v, (9w/D, 2116, 238116}
A
| Apparent Re, = 6.72
fold 4
ol— [s
u4 (98, 21716, 23w16) | J/
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.3 [ 1 I S (N A N N
-5 -4 -3 -2 -1 0 1 2 3 4
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aperiodic flow
2 — Re, = 6.72
._3 S
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Re, = 6.89
-3
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(m m m
- 4
P T M It M I I
-5 -4 -3 -2 -1 0 1 .2 .3
Uq (98, 211/16, 231/16)
COMPLEX PERIODIC FLOW
4 —
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ug (9w/8, 211/16, 23r/16)
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= (o3
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Liapunov exponent plots

(aperiodic flows)
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WEAKLY CHAQTIC FLOW FULLY CHAOTIC FLOW

Re, = 6.72 Re, = 6.93

Spectral 3
components

03 = . i

10 [+] 5 10 1.5 20 25 30 235 A 45 7
Frequency Frequency
b —
= Re, = 6.24 = Re, = 6.89
10° L =
POWER-SPECIRUM - ~
COMPONENTS 107 |— |
OF - =
U2 (m, m m I~ —
10? - =
IN‘T | \ ll' I
10 | | | } I .‘Il et
0 5 0w B 0 5 0 15- 0 5 3N B 0 45 50
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Power spectra
(Periodic flows)
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Poincaré sections
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SUMMARY

FIXED POINT
LIMIT CYCLE, SIMPLE PERIODIC (PERIOD 1)
LIMIT CYCLE, COMPLEX PERIODIC (PERIOD 2)

WEAKLY CHAOTIC FLOW (LIAPUNOV EXPONENT POSITIVE, POINCARE SECTION HAS
* SOME PATTERN)

LIMIT CYCLE, COMPLEX PERIODIC (PERIOD 4) (PERIODIC WINDOW)

FULLY CHAOTIC FLOW (LIAPUNOV EXPONENT POSITIVE, POINCARE SECTION HAS NO
APPARENT PATTERN, TURBULENT)
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N92-25824

STABILITY OF COMPRESSIBLE TAYLOR-COUETTE FLOW
by
K. Kao
Visiting Researcher

University of Colorado

and
C. Chow
University of Colorado

OBJECTIVES

e To develop both analytical and numerical tools that can be used to predict
the onset of instability and subsequently to simulate the transition process by
which the originally laminar flow evolves into a turbulent flow.

e To conduct the preliminary investigations with the purpose of understanding
the mechanisms of the vortical structure of the compressible flow between two
concentric cylinders.
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INCOMPRESSIBLE TAYLOR VORTICES

* If the angular velocity of the inner

Axisymmetric laminar
Taylor vortices

cylinder is larger than a critical

value, Couette flow becomes unstable
so that a secondary flow starts to
appear with nonvanishing radial

and axial velocity components;

this new flow, called Taylor-Couette

flow, is in the form of opposite
toroidal vortices arranged next to
each other in the axial direction.

COMPRESSIBLE TAYLOR VORTICES

e In the presence of heal transfer and angular motions, the influence of compress-
ibility is nontrivially coupled and its eflect on stability has yet to be determined.

o The addition of compressibility to the stability analysis greatly increases its com-
plexity, since even in the lincarized analysis there will now exist fluctuations
not only in velocity and pressure but also in density, temperature, viscosity and
thermal-conductivity.

J”/U/
Lop YA/

f f\/O7\

195
PRECEDING PAGE BLANK NOT FILMED

S»
£

A ":f,L;‘




GOVERNING EQUATIONS

¢ Mean Flow

momentun:
o |"\or
cixergy:
110f oT
Prror ar

¢ Boundary Conditions

at r=1:

I,

and at r = :
n T

] +pM* (7 - 1)(%—:i

P _ wi

o TP

w\], 2 ?_":;1".)=0
3] r\or 1

Ry

VIR Iy

2
w
r)

1
w=1 T=1, P_~——7M,, p=1
R3¢ by
= =—-—=1’
Ctme T

GOVERNING EQUATIONS

s Small Perturbation

B(&,m, (. t) = @ + d(n)expli(aé + B¢ — wt)]

where

&G

computational coordinates in axial, radial

and circumerential directions, respectively

3

steady unperturbed flow,

=[on ‘/oa Wo; Po, Tos Posr Moy ’\0) K‘o]T

E®R &

complex disturbances
disturbance wave number in & direction
disturbance wave number in ¢ direction
complex frequency
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¢ Boundary Conditions for Disturbances

cabr=1: a,v,w,

1]

-'-—-0
0

~
It

u, 3, W,

and at r =

R

Note that no boundary conditions are required for pressure fluctuations when the

equations are solved on a pressure staggered mesh.

METHOD OF SOLUTION

» Numerical solutions for the mean flow

s Chebyshev collocation spectral method for stability analysis
Momentum and Energy Equations:
Gauss-Lobatto points for 4,9, w, T
Continuity Equation:

Gauss points for p

Momentum and Lnergy Iiquations:
AcLL}é +BarLar (g +1§°P) + Co (g +IE°P)

= w|{DgrLleL (¢ + IgLP) + Egy (‘IS + IgLP)]

Continuity Equation:
BoLgI¢ ¢+ Ca(18,4 + P) = wEG (1€, 6 + P)

where

P =(p)

=
il
S € @ 2

and
A, B, C, D, E: coeflicient matrices
: spectral diflerentiation operator

1. spectral interpolation matrix
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VERIFICATION

Comparison of the Critical Reynolds Number for Temporal Stability of Taylor-
Couette Flow (R;/R3=0.5)

Sparrow el al? " Present
Q3/%; Re, Re.
0.0000 68.19 68.187
0.0600 73.02 73.422
0.1250 84.30 84.346
0.1800 107.21 106.923
0.2350 221.33 220.867
-0.16 66.18 66.172
-0:20 70.03 69.895
-0.30 80.93 80.418
-0.35 88.81 89.947
-0.50 114.24 115.025

RESULT AND DISCUSSION

MEAN VELOCITY PROFILES

R}/R3=0.5 and Q3=0

(T3 /T =05 (b)T3 /Ty =1.0 ()T /Ty =15
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RESULT AND DISCUSSION

MEAN TEMPERATURE PROFILES

R}/R3=0.5 and Q=0
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RESULT AND DISCUSSION

EFFECT OF TEMPERATURE RAT1O

a=3.162, Q=0
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RESULT AND DISCUSSION

EFFECT OF SPIN MOTION

M=10 and Re=500
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RESULT AND DISCUSSION

M=10, Re=800, 013/0Q;=0.0
a=6.2, and J=1.0

Radial-Velocity fluctuation

cell paitern of &

RESULT AND DISCUSSION

M=1.0, Rte=R00, 03/(;=0.18

a=6.2, and J=1.0

Radial-Velocity fluctualion

1.0}
05
& 0.0k
08 ‘\/
-1.0 ’
1 ] 1 1
0.0 0.4 0.8
n
cell patternof & cell pattern of %
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RESULT AND DISCUSSION

M=1.0, Re=800, n;/ﬂ;=-0.5

a=6.2, and 9=1.0

Radial:Velacity Ructuation

1.0}
05¢

= 00K

—-0.5¢

-1.0}
0.0 0.4 0.8

“cell patiernof &

cell pattern of &

CONCLUDING REMARKS

e lor the case of rotating inuner cylinder, the higher Mach number flows are unstable
to a larger range of wave numbers.

¢ By increasing the temperature ratio, the flow between counter rotating cylinders
is stabilized with the growth rate decaying in a lincar fashion. However, the effect
of increasing temperature ratio is to amplify the maximum growth rate in the flow
with a positive rotating speed ratio.

e Further examinations can be made on those eflects of axial flow, gap width, finite
axial length, and other possible influential factors.
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NO2-25825

Techniques for Animation of CFD Results '
Dr. Jay Horowitz
Computer Science Division
NASA Lewis Research Center
-and
Jeffery C. Hanson
Sverdrup Technology, Inc.
Lewis Research Center Group
NASA Lewis Research Center

Intro

Video animation is becoming increasing vital to the CFD researcher, not just
for the presentation results, but for recording and comparing dynamic visualizations
that are beyond the current capabilities of even the most powerful graphic worksta-
tions. To meet these need Lewis Research Center has recently established a facility
to provide users with easy access to advanced video animation capabilities. How-
ever, producing animation that is both visually effective and scientifically accurate
involves various technological and aesthetic considerations that must be understood
both by the researcher and by those supporting the visualization process. Many of
these considerations will be addressed in the presentation.

Scan Conversion

Conversion of high-resolution workstation images to low-resolution television
images is performed by hardware that either converts only a portion of the screen,
or invokes various pixel-averaging techniques. The former can result in excessive
aliasing, whereas the latter can result in smearing and disappearance of points and
lines. Both can have trouble displaying semi-transparent objects from workstation
using bit-mask transparency algorithms. Scan conversion is a major problem in
accurately portraying Computational Fluid Dynamics grid geometry.

Color Conversion

Translation of the workstation’s red-green-blue component color space to the
composite NTSC color system can generate various artifacts. This can be a major
problem when color is used to convey scientific information. Several techniques are
used at LeRC overcome these problems including: color-table adjustment to avoid
over-saturation, and the use of edge-outlined contour plots to emphasize subtle color
differences.

Spatial Ambiguities

Since passive viewers are denied the interactivity of workstations, that allows
researchers to accurately determine spatial relationships and resolve visual ambigu-
ities, it is critical that recorded data be easily understood. Careful attention must
be paid to relative object and ’eamera’ movements and scene content. In addition,
advanced display techniques such as solid, smooth-shaded stream-tubes instead of
line-segment tracers can significantly improve flow visualization.
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L.eRC advanced Graphics & VISualization laboratory
(Video Animation Subsystem)

RGB 'Monitor/
Local User ~Local Viewing (RGB)
AR | B | N VTR's
D
. NTSC
,,,,,,,,,,,,,,,,,,,,,,,, Abekas A60 [.g__,_@_l
Locat Control .
Ethernet |

Remote Image X-fer
& Control

LINK (Labwide CATV)

Remote Viewing (NTSC)
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Scanline

Red Signal

AIILIIIISs

Green Signal

Blue Signal

Workstation RGB Color Domain
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Scanline
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Luminance Signal B
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Composnc Slg,nal
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Effect of Scan Conversion
on Texture Patterns

Workstation

NTSC Color Artifacts

* Zippers
* Dot Crawl
* Saturation

Image at risk
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Modify Colormaps to avoid over-saturation

Luminance:

Y =0.29%r + 0.59%g + 0.11*b
C hrominance:

I=0.59%r-0.27*%g - 0.32*b

0=0.2[*r - 0.52*g + 0.31*b
Saturation:

S=("+0%)

1/2

OK. If -0.25<(Y-S),(Y+S)<1.0
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Tedhuiq—ue& for CFD Animation

* Use t}uck lmes when possible
ine c ,urr edges lf possible
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N92-25326

DISTRIBUTED VISUALIZATION FOR COMPUTATIONAL FLUID DYNAMICS

Don J. Sosoka and Anthony A. Facca
Computer Science Division
NASA Lewis Research Center

Distributed concurrent visualization and computation in Computational Fluid
Dynamics is not a new concept. Specialized applications such as RIP
(Realtime Interactive Particle-tracer) and vendor specific tools like DGL
(Distributed Graphics Language) have been in use for some time. Little work
however, has been done to put together a concise, easy to use set of routines
which would allow the CFD code developer to take advantage of this
technology. Recent advances in the speeds of the supercomputer and graphics
workstations have made it possible to realize many of the applications for
distributed visualization which have fong been envisioned. Among these are
the ability to "watch” a CFD code as it runs on a supercomputer, to perform
interactive grid generation on a local workstation interacting with a solver
running on the supercomputer, and ultimately, to "steer” the CFD run
interactively from the workstation. For any of these applications to be
developed, a set of tools are required to provide this distributed capability to the
scientist. Three components can be identified as being necessary to make this
capability useful to the CFD researcher. First, a FORTRAN-callable set of
network routines must be provided to "link-up™ the distributed processes and
provide continuous process-to-process communication. Data is moved from the
computational process to the visualization process transparently. Secondly, a
FORTRAN-callabie set of visualization functions must also be provided to the
CFD researcher. These functions must allow the researcher to easily view the
data in a meaningful, understandable way. Finally, some empirical data should
be available to provide guidance to the researcher on the type of applications
which would benefit from this kind of distributed processing. Several problems
must be addressed in providing each of these three components. In dealing
with the network, capacity is always a concern. Binary data compatibility
between machines with vastly different architectures is a major factor which
must be addressed. Most importantly, ease of use from the CFD code
developers point of view must be maintained in delivering a useful solution.

This paper describes a current project underway at NASA Lewis Research
Center to provide the CFD researcher with an easy method for incorporating
distributed processing concepts into program development. Details on the
FORTRAN callable interface to a set of network and the visualization functions
are presented along with some results from initial CFD case studies that employ
these techniques.
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OBJECTIVE:

PROVIDE CFD RESEARCHERS AN EASY METHOD TO

INCORPORATE DISTRIBUTED VISUALIZATION TECHNIQUES
INTO THEIR PROGRAM DEVELOPMENT.

DISTRIBUTED VISUALIZATION:

CONCURRENT GRAPHICAL RENDERING ON ONE SYSTEM
OF RESULTS, AS THEY ARE COMPUTED ON ANOTHER.

Convex C220

Distributing Computational Code

Cray Y/MP

XDR Encoder
i

Network

SGI 4D/340

Interface
2 J 4 |- 8

[ |
Network

Interface

XDR Decoder
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APPLICATIONS FOR DISTRIBUTED VISUALIZATION IN CFD

Convergence ! Status Checking (PEEKER)

Interactive /- Batch Grid Generation

immediate Visualization of Time-Dependent Calculations

Interactive "Steering" of Remote Computations

Supercomputer Personal Workstation

DEGREES OF DISTRIBUTED VISUALIZATION

e All computation, scientific visualization, and graphics
performed remotely.

ex: Ultra Frame Buffer

e Computations and scientifi¢c visualization done remotely,
graphics performed by the workstation.

ex: DGL for SGIl workstations
¢ Numeric Computations done remotely, all scientific
visualization and graphics performed by the workstation.

most difficult to impiement

e requires network interface capable of
transferring transparent binary data

highest payoff
e provides greatest degree of parallelism

® no static datasets required to visualize resuits

221



TOOLS REQUIRED FOR DISTRIBUTED VISUALIZATICN

o FORTRAN-Callable Set of Nefwork interface Routines

¢ establish network connection between processes

e provide continuous process-to-process communication

o FORTRAN-Callable Set of Visualization Functions
e incorporate state-of-the-art rendering technology
e utilize non-proprietary graphics interface

e encompass all current CFD post-processing capability

Design Goal: Make Routines Easy to Use From a CFD Code
Developers Point of View

Open Close Routines:
OPNCON -- Open a "connect” on a port
OPNLIS -- Open a "listen" on a port

Send Routines:
PUTRA1 -- Send array of real numbers
PUTIA1 - Send array of integer numbers
PUTSTR -- Send character string
PUTRA2 -- Send 2-dimensional array real numbers
PUTIA2 -- Send 2-dimensional array of integers

Receive Routines:
GETRA1 -- Receive array of real numbers
GETIA1 -- Receive array of integer numbers
GETSTR -- Receive character string
GETRA2 -- Receive 2-dimensional array real numbers
GETIA2 Receive 2-dimensional array of integers
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jc **% get data from the network

c *** access the network !

0

Sample SEND program. .

c¢ establish network connection

CALL OPNCON( eee )
°

c transfer 2D computational array

XDR Encoder

CALL PUTRA2( eee ) I
. Network
. Interface
c Sampl.e RECEIVE program. . Network
4 Interface
c accept network connection |

CALL OPNLIS( eee )

¢ receive 2D array from server

CALL GETRA2( eee )

e e s o o e e e o A AN

XDR Decoder

¢ %% SUD/NETWORK RECEIVE CODE -
PARAMETER (ID=80,JD=70)
REAL xgrd (ID,JD),ygrd(ID,JD)
REAL ws (ID, JD) i

call OPNLIS

100 CONTINUE !

call GETIAl(l,nx,istat)

call GETIAL(1,ny,istat)

call GETRA2 (nx,ny,2,ws,istat)
call GETRA2 (nx,ny,2,xgrid,istat)
call GETRA2(nx,ny,2,ygrid,istat)

‘e kk% jntroduce data to SVP

call GDATA(nx,ny,nx,ny,xgrid,Ygridﬂ

call FDATA(ws,’ ') :

call GENCON(’ ') i

call CLRSVP
GOTO 100
STOP
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N9Z2-25827
TECHNIQUES FOR GRID MANIPULATION AND ADAPTATION

Yung K. Choo
Internal Fluid Mechanics Division
NASA Lewis Research Center

Peter R. Eisemann
Program Development Corporation
and
KiD. Lee
University of Illinois

Two approaches have been taken to provide systematic grid manipulation for
improved grid quality. '

One is the control point form (CPF) of algebraic grid generation. It provides
explicit control of the physical grid shape and grid spacing through the move-
ment of the control points. The control point array, called a control net, is a
sparse grid-type framework in physical space. The CPF-based grid manipula-
tion has many merits. The method is efficient and easy to implement, since its
formulation is algebraic and concise. Grid quality can be easily enhanced by
numerous local and global grid distribution strategies. It is also compatible with
various complementary operations needed in a quality grid-generation proce-
dure. It works well in the interactive computer graphics environment and hence
can be a good candidate for integration with other emerging technologies.

The other approach is grid adaptation using a numerical mapping between the
physical space and a parametric space. Grid adaptation is achieved by
modifying the mapping functions through the effects of grid control sources. The
source strengths are extracted from the distribution of flow or geometric
properties on the initial grid. Grids can be made adaptive to geometry, flow
solution, or grid quality, depending on what property is used to define the
source strengths. One advantage of the method is that the basic characteristics
of the initial grid can be retained while adapting it to grid quality. The use of grid
control sources allows for linear combinations of different controls based on the
‘superposition principle. And the grid can be adapted to more than one property
through a series of mappings. The source formulation promotes smooth
variations in the grid, even with irregularly distributed sources. The adaptation .
process can be repeated in a cyclic manner if satisfactory resuits are not
achieved after a single application.
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OUTLINE

1. EXPLICIT GRID MANIPULATION BY USER

TECHNICAL APPROACH - CONTROL POINT FORM (CPF)
OBJECTIVES / ADVANTAGES

STATUS / RESULTS

FUTURE DIRECTION

2. GRID ADAPTATION TO SOLUTIONS, QUALITY

TECHNICAL APPROACH - NUMERICAL MAPPING
with GRID CONTROL SOURCE

OBJECTIVES / ADVANTAGES
STATUS /RESULTS
FUTURE DIRECTION

OBJECTIVES

TO DEVELOP EASY, EXPLICIT GRID MANIPULATION CAPABILITY

ADVANTAGES
THE CPF-BASED GRID GENERATION:

- ISVEFFICIENT AND EASY TO IMPLEMENT

- CAN EASILY ENHANCE GRID QUALITY BY VARIOUS LOCAL/GLOBAL
GRID DISTRIBUTION STRATEGIES

- CAN BE USED AS A COMPLEMENTARY TOOL AS WELL AS A STAND-ALONE TOOL
- WORKS WELL IN THE INTERACTIVE COMPUTER GRAPHICS ENVIRONMENT

- ALLOWS TO MANIPULATE GEOMETRY (FREE-FORM.BOUNDARY)

- MAKES INTERACTIVE CFD ATTRACTIVE
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TECHNICAL APPROACH - CONTROL POINT FORM (CPF)

CONSTRUCTION OF A CURVE & A CONTROL NET

j Cm-1)

Qr,t) =T(r,t)rayfl -G 1(N] [P(1,t) (t)]
+ @by 1 (r)[P(N - 1, t) - FN(t)]
+afl -0y ()] [P(r,1 1(r)]
+ aghy_g (£)[P(r M - 1) - En r)]

TURBO/I INTERACTIVE PROCESS




TURBO/I INTERACTIVE PROCESS - CONTINUED
CHANGING THE NUMBER OF CONTROL POINTS

TURBO/I INTERACTIVE PROCESS - CONTINUED
STRETCHING
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GEOMETRY MODIFICATION USING FREE-FORM BOUNDARY

Domain of
influence

Domain of influence-,

Free form

——d |

TURBO/I AS A COMPLEMENTARY TOOL
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FUTURE DIRECTION

SURFACE GRID CONTROL USIN G CONTROL POINT FORM

INTERACTIVE ADAPTIVE GRID GENERATION

TECHNICAL APPROACH
NUMERICAL MAPPING WITH GRID CONTROL SOURCE

(s,t) parametiic domain o' distribution solution-adapted grid

isobars on initial grid o* distribution (') parametric domain isobars on adapted grid
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Grid control sources definition:

s
0fkl

where

Mapping modification:

-’

sTy =
'y =
where (s’,t")
s 4
Ukl s & gkt

wifo| + w

w;l‘f" + wll

ij
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OBJECTIVES

TO DEVELOP GRID ADAPTATION CAPABILITY TO SOLUTIONS, GRID QUALITY,
AND GEOMETRY TO OBTATIN ACCURATE PREDICTION OF COMPLEX FLOWS

ADVANTAGES
THE APPROACH IS EASY TO IMPLEMENT AS ONE OF THE REDISTRIBUTION
SCHEME.

THE USE OF GRID CONTROL SOURCES ALLOWS TO ADAPT THE GRID BY USING
LINEAR COMBINATIONS OF FLOW PROPERTIES.

THE APPROACH CONTROLS BOTH GRID DENSITY AND QUALITY WITHOUT
ANY ADVERSE INFLUENCE OF ONE TO THE OTHER.

THE GRID ADAPTATION SCHEME CAN BE INTEGRATED WITH WELL-DEVELOPED
FLOW SOLVERS AS SUBROUTINES.

NEEDS

FULL 3D ADAPTATION WITH REDUCED COST

STATUS / RESULTS

2D ADAPTATION TO SOLUTIONS, GRID QUALITY

APPLICATION OF 2D ADAPTATION TECHNIQUE TO 3D PROBLEMS
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CORNER FLOW
GRID COMPARISON

Initial grid

Initial grid Initial grid
@ x=0.407 @ x=0.638 @ x=1.000
T R |
I ity i W
L I‘I%l“ g “ ““ : H'i ! I T
| | 4 ‘?““ % & } “‘
Tl
Adapted grid Adapted grid | Adapted grid
@ x=0.407 @ x=0.688 @ x=1.000

CORNER FLOW
SOLUTION COMPARISON

Density contours

Density contours Density contours
on initial grid on initial grid on initial grid
@ x=0.407 @ x=0.688 @ x=1.000
%
g\ | D %
T _ gD |
Density contours Density contours Density contours
on adapted grid on adapted grid on adapted grid
@ x=040 @ x=0.633 @ x=1.000
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FUTURE DIRECTION
EXTEND IT TO FULL 3D ADAPTATION
EXPLORE AND IMPLEMENT COST REDUCTION SCHEMES
EXPLORE POSSIBLE BENEFITS FROM PARALLEL COMPUTING

APPLY IT TO CHALLENGING PROPULSION PROBLEMS

INTERACTIVE GRID GENERATION
Program TURBO |

CONSTRUCT A SIMPLE CONTROL NET  COMPUTE & EXAMINE INITIAL SELECT A CONTROL POINT TO
GENERATE SURFACE GRID GRID ‘ MODIFY GRID

EXAMINE NEW GRID COMPUTE NEW GRID TRANSLATE THE CONTROL POINT
-ACCEPT OR REPEAT THE PROCESS
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