A 1-W, 30-GHz, CPW Amplifier for ACTS Small Terminal Uplink

Susan R. Taub
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

and

Raine N. Simons
Sverdrup Technology, Inc.
Lewis Research Center Group
Brook Park, Ohio

Prepared for the
Monolithic Microwave Integrated Circuit Space
and Ground Applications Symposium
cosponsored by the National Aeronautics and Space Administration
and the Jet Propulsion Laboratory
Pasadena, California, April 28–29, 1992
Post Coupler

A CPW-to-CPW post coupler is shown in figure 3. The CPW’s share a common ground plane that has an aperture. The coupler is formed by a metal post which passes through the aperture and contacts the strip conductors of the CPW. A pair of wire located to the sides of the post, tie the CPW ground planes to a common potential. The S-parameters for the coupler are shown in figure 4. The coupler works only marginally at 30 GHz, but shows excellent characteristics at 7 GHz. Work is being done, including computer simulations to better understand the behavior of this coupler.

MMIC Chips

Two MMIC chips were used, a three-stage and a single-stage amplifier chip. The gain compression of the three-stage chip is shown in figure 5. A typical chip has a power output of 190 mW, gain of 23 dB, and efficiency of 30.2 percent. Typical characteristics for the single-stage chip are: power output of 710 mW, gain of 4.2 dB, and efficiency of 24 percent. In order to achieve the required 1 W of output power, the MMIC chips were cascaded. The cascading configuration is shown in figure 6.

MMIC Carrier

A novel package, which consist of a carrier and housing, was developed to mount the MMIC chips in the amplifier. The carrier with housing is shown in figure 7. The carrier has CPW interconnects and provides heat-sinking, tuning, and cascading capabilities. The housing provides electrical isolation, mechanical protection, and a feed-through for biasing. Figure 8 shows the measured insertion and return loss of the carrier with a 50-Ω microstrip line in place of the MMIC. After subtracting the losses due to the test fixture, the insertion loss of the carrier is about 1.0 dB and the return loss is better than 15 dB.

Conclusions

The paper presents two schemes for the assembly of a 1-W, 30-GHz MMIC amplifier for the ACTS small terminal. The characteristics of TI MMIC chips, the post coupler, and the carrier have been presented. Future work includes: characterizing the power divider/combiner, tuning the MMIC chips, and assembling the amplifier.
References


<table>
<thead>
<tr>
<th>Power input</th>
<th>-25 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power output</td>
<td>1 W</td>
</tr>
<tr>
<td>Center frequency</td>
<td>29.634 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>29.1-30 GHz</td>
</tr>
<tr>
<td>Input connector</td>
<td>2.4 mm OS-50</td>
</tr>
<tr>
<td>Output waveguide</td>
<td>WR 28</td>
</tr>
</tbody>
</table>

Table 1: Amplifier requirements.

![Configuration diagram](image)

Brass fixture
Coaxial-to-waveguide output
Coaxial input
Copper tap
Ti amplifier chips on alumina carriers
(a) Alternate amplifier configuration.

![Diagram](image)

Coaxial input — Via hole
Rectangular waveguide output
CPW line on the bottom side
Ground plane
Ti amplifier chips
(b) Coax-to-CPW in-phase three-way radial nonplanar power divider/combiner.

![Diagram](image)

Port 1
Metal post
CPW
Port 2

Figure 3.—CPW-to-CPW post coupler.

![Graph](image)

(a) Insertion loss, dB
(b) Return loss, dB

Figure 4.—Post coupler S-parameters.
Figure 5.—Gain compression diagram of three-stage amplifier.

Figure 6.—MMIC combination scheme.

Figure 7.—Carrier with housing.

Figure 8.—Measured insertion loss and return loss of the carrier.
A 1-W, 30-GHz, CPW Amplifier for ACTS Small Terminal Uplink

Susan R. Taub and Rainee N. Simons

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191

This paper describes the progress to date of the development of a 1-W, 30-GHz, coplanar waveguide (CPW) amplifier for the Advanced Communication Technology Satellite (ACTS) Small Terminal Uplink. The amplifier is based on Texas Instruments' monolithic microwave integrated circuit (MMIC) amplifiers; a three-stage, low-power amplifier and a single-stage, high-power amplifier. The amplifiers have a power output of 190 mW and 0.710 W, gain of 23 and 4.2 dB, and efficiencies of 30.2 and 24 percent for the three-stage and one-stage amplifiers, respectively. The chips are to be combined via a CPW power divider/combiner circuit to yield the desired 1 W of output power.