NASA Contractor Report-189590

Advanced Information Processing System:
Fault Injection Study and Results

Laura F. Burkhardt
Thomas K. Masotto
Jaynarayan H. Lala

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565
May 1992

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(MASA-CR-13895%0) ADVANCEDN INFORMATION N92-26105

PRITLSSING SYSTEM: FAULT INJECTIUM STUDY AND

RESHULY s Final Raport (2raper (Charles

>tark) Lab.) 154 p unclas
53/62 0091272

NASA Contractor Report-189590

Advanced Information Processing System:
Fault Injection Study and Results

Laura F. Burkhardt
Thomas K. Masotto
Jaynarayan H. Lala

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565
May 1992

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS. ..ot ea e e e s e e e v
LIST OF TABLES ...ttt ettt e e e st e e e e e st st een e saeaeannan vii
1.0 APPROACH TOFAULTINJECTION......ciiiiiiiiiiii e 1-1
U D €111 (o s L e (o B O 1-1

1.2 Test Case SpecifiCationoovuiuiiriiiiiiniiiiieiiia i ee e eae e aas 1-3
1.2.1 Al Possible Test Cases.......couiuiiieiiieiiieieiiiiaiiaieaneneeneanenees 1-3

1.2.2 Subset of Actual Test Cases.....ccccevveiireieierriiiiniiiiiareeeeneennnes 1-8

1.3 Test Case MEaSUTEMENLSeuiuiiinieriieeieniaeserenenenanraeeneneasasanensn 1-9

1.4 Test Case EXECUON....ccoiiiiiiiiiiiiiiiiiec e ereea e e eanees 1-10
1.4.1 Experimental Setup......cccccoiiiiiiiiiiiiiiiiiiiiieiiieieeeeieeen, 1-10

1.4.2 Test Case MEASUIEIMENLSuvuuirininiiieeeenenineneaneneeeeananannns 1-11

2.0 THE FAULT INJECTION ENVIRONMENTccociiiiiiiiiiiiiieeeeeaeee 2-1
2.1 OVEIVIEW .ottt et ettt te et ettt aeas 2-1
2.1.1 Hardware Fault Injection.............ccciiiiiiiiiiiiiiiiiiiiieinas 2-1

2.1.2 Software Fault Injectioncccovieiiiiiiiiiiiiiiieeeeeeaee, 2-3

2.2 FaultInjector Hardwarecooooviiiiiiiiiiiiiiie e 2-4

2.3 Fault Injection SOftwareccouiiuiiiiiiiiiiii i 2-16
2.3.1 The FIS Main MenU.....ccooooiiiiiiiiiiiiiiiiciiieiee e, 2-16

2.3.1.1 The FIS Edit Faults Menu........ccc..coveeveeivereennnnnnns 2-16

2.3.1.2 The FIS Multiplexer Signal Selection Menu................. 2-18

2.3.1.3 The FIS Boolean Function Selection Menu.................. 2-18

2.3.1.4 The FIS Fault Application Option...............c..ccceevven.n 2-19

2.3.1.5 The FIS Save FaultFile Optionc.cccoeiveennnnnn.. 2-22

2.3.1.6 The FIS Load Fault File Option............c..ccceevevinen.... 2-22

2.3.1.7 The FIS Reset OptON......ccccccieeeiciieeeeeeeriiirinne. 2-23

2.3.1.8 The FIS Quit Optionccevvininiiiiniiiiiiin e 2-23

2.3.2 Fault Injection Software - Multiple Fault Application.................. 2-23

3.0 APPLYING FAULTS TO THE I/O NETWORK........ccooovvviieeiinreeene. 3-1
3.1 Overview of AIPS /O NEtWOIK........cuiuniniiiiiiniiiiie e eenenenes 3-1

3.2 Specification of I/O Network Faultsooveiniiieiiiiiiniiaeaeaenenannn. 3-2
3.2.1 Creating Node and Link Faults...............ccceeiniieiniiiiineinanen, 3-2

3.2.2 Specification of Test CaSES.....uueuuieiieiiiiiiiieeieieeeeeeeeeieeeeeeeenns 3-3

3.3 TSt RESUIS . ..uvnieiniit e e 3-9
3.3.1 Maximum and Average TImes.............cceviuiiiiniiiniiienenennnnn, 3-10

3.3.2 Frequency HiStOZrams............ooouvveieiiiiiniieeeiiiiieeeeeieeeeees 3-23

PRECEDING PAGE BILANX NOT FILMED

3.3.2.1 Variance of the Detection Times........ovvieiieieieeinannnnn.. 3-24

3.3.2.2 Variance of the Reconfiguration Times....................... 3-24
3.3.2.2.1 Reconfiguration Variance-Second Reconfiguration
ACINPLS . .viiiiiiieeiiieieiiiiiiieeieeeaaaanas 3-25
3.3.2.2.2 Reconfiguration Variance-Presumed
Reconnection........cooovviiiiiiiiiiiiiiiiinann.. 3-25
3.3.2.2.3 Reconfiguration Variance-Inconclusive
Analysis...cccoiiiiiiiiiiii 3-26
3.3.2.2.4 Reconfiguation Variance-Simple and Complex
Error Symptoms.........coeveiiiiiiiiiiiiiiannnn. 3-26
3.3.3 Probability and Cumulative Density Functions......................... 3-74
3.4 1/O Network Fault Injection Conclusionsc..ccevviiiiiiiiiiiiiinninn.. 3-75
4.0 APPLYINGFAULTS TOTHE COREFTP......cceivviiiiiiiiiiiiiiiinineieienans 4-1
4.1 Overview Of AIPS FTP....cooiiiiiiiiicieen e 4-1
4.2 Specification of Core FTP Faults.......ccccooviiiiiiiiiiiiiiiiiiiiiincnnieeeneanes 4-3
4.2.1 Specification of Test Cases for Software-Injected Memory Faults.... 4-3
4.2.1.1 FastFDIR....o.iiiiiiiiiiiiiiii i een 4-4
4.2.1.2 Watchdog Timer Resetcocevviiiiiiiiiiieniininnenenn. 4-5
4.2.1.3 Background Self Test....cccoeiiiiiiiiiiiiiiiiiiienereneennnns 4-5
4.2.1.4 Hardware Exception Handler...............cccoiiiiiiiiinn, 4-6
4.2.2 Specification of Test Cases for Hardware-Injected Faults.............. 4-6
4.2.2.1 Transient FDIR.......coi it 4-6
4.2.2.2 Lost SOUl SYNC..c.uineiieiiiiiiiiiiiiiiiii e eeeae 4-8
4.2.2.3 System Restart...........cooiiiiiiiiiiiiiiiiiee 4-9
4.2.3 Reconfiguration......cociiuiiiiiiiiiiiiiie i e e e e 4-9
T B U O 2] PP 4-9
4.3.1 The Software Fault Injection Plan...........cccooiiiiiiniiiiiinnn.n. 4-9
4.3.2 The Hardware Fault Injection Plan................coooiviiiiiiinnnn... 4-18
4.4 Core FTP Fault Injection Conclusions..........cccecveveeeieiinernreecicnnnnenn. 4-21
4.4.1 Software Fault Injection Test Results...........ccciviiiiiniiniannnn.. 4-21
4.4.1.1 Maximum and Average Times.........ccoeivreruinrieninnenins 4-21
4.4.1.2 Probability and Cumulative Density Functions.............. 4-32
4.4.2 Hardware Fault Injection Test Resutls...........cccooeiiiiiinininnnn... 4-36
4.4.3 Design Flaws Uncovered by the Fault Injection Tests................. 4-37
4.5 Core FTP Fault Injection: Conclusions...........cc..cceeiueiiiiinienineneicennnns. 4-38
5.0 CONCLUSIONS ...ttt ee et et e e e e e et e e e an e aneenes 5-1
6.0 REFERENCES..... ittt e et e et ee e e ra et s eeeeans 6-1

iv

] []] (]] [] tl\)tl\)tl\)tl\)tl\,tl\)vkl\).l_"l-"l_"l_‘
=N SIANNER W= PDRLWN =

RS O B AR .
AN B UGN s b
MbhwWwN—O

[N e e e el Ve No I |

—OVOONAANNAWNROVORONIOANNEARWND=O

LWLWLWLWWWWWWWWLWWLWW
A A R A O R A A A B

WWIRNNNNDDDNDNN

WLIWLWWWLWWW

LIST OF ILLUSTRATIONS

Title Page
Hardware Configurations..........c.vueeiiiiiiiiiiiieiieiei e e eneennen 1-5
Software Configurations........c..ovviiiiiiiiieriiiiiiiiiiie e 1-6
Fault Injection Configuration..........c..ciiiiiiiiiiiiiiiiiii e, 1-7
Fault Injection Experimental SEtupcooviiiiiiiiiiiiiiiiiiieiieeeeanes 1-11
Experimental Setup-Software Fault Injection............ccccoveiieeviiiiunnnnnnne. 2-3
Fault Injector Logical Organizationccccouevniniiniiinininiiiniiiinennen. 2-6
Insertion of FET's between Socket and Deviceoo.oviiiiinininininanean.. 2-7
Fault Injector Implant..........cccoooiiiiiiiiiiiiiiiiii e 2-8
Fault Injector Hardware..........ccoooouiiiiiiiii e 2-9
Fault Description WOordcccciuiiiiiiiiii e 2-11
Mux A, B, CSelection Wordccooiiiiiiiiiiiiii e 2-12
Boolean Function Generator Data Wordcooooviiiiiiiiiiiniiieinene 2-13
The FISMain Menu......cc.ouiuiiiiiiiiii e 2-16
The FIS Edit Faults Menuccooiiiiiiiii e 2-17
The Fault Direction Optionsc.coeviiiiiiiiieiiiiiieieeieeeeeeeaanes 2-17
The Fault Type OpOnSc.viuiitiiiiiiiiiii e 2-18
The FIS Mux Signals Menu........cooiiiiiiiiiiii i 2-19
The FIS Boolean Function Menu............coooiiiiiiiiiiiiiiiiceieeea 2-19
The Boolean Function Options..........c..veviieiiininiiniieiiiiceeieeean 2-20
15 Node I/O Network-No Fault Configurationccoceviviuiininnennnn... 3-2
TeSt AL A 3-27
Test AL L D e 3-28
TSt AL G e 3-29
TeSt A2 A 3-30
TeSUAZDD oo, 3-31
TSt AL Gt 3-32
TeSE A3 A 3-33
TESt A B D i e 3-34
TSl AL G i e 3-35
TeSt Bl 3-36
Test Bl b o, 3-37
TSt Bl 3-38
TeSt B2l 3-39
TeSt B2, et 3-40
TSt Bl Gttt e 3-41
Test BlL3ia e 3-42
Test B3 b e, 3-43
TSt BB Gt 3-44
Test B.d.a...ooiii i 3-45
TSt CLl.au e 3-46
Test CoLb oo, 3-47
TSt Gl 3-48
Test Clud oo 3-49
TSt 2.t 3-50
Test C.2.b .ot 3-51
TeSt L2l i 3-52
TSt €3 i 3-53
TSt C.3.D oot e 3-54
Test D.l.ai i 3-55
TeStD.LD e 3-56

A A A
&N

HLWWWWWWWW

tlntl»wwwuuowww

RN AR R S R R
o] 00 ~J O NPWN=LULOUH DAL

£ Hobhb AL ARLALALLWWLWLWWLWWLWLLLWLWWW

13 S D 2 S RO U T 3-57

Test Dlud oneiniiii i e e e e 3-58
Test DlL2.a.eiiiiiii e e e 3-59
TSt D2 i e e 3-60
TeSt D.2.Cuiniiiiiiiiiii ittt a e ens 3-61
TeSt D.3.auiiiiiiiiiiiiiiii et a e e et aas 3-62
TSt D.3.b ceniniiiiii e 3-63
TeSt Did.a..ieiiiiiiiiiii et eaa e e 3-64
TESEDAD et et e e s 3-65
Test D.5.a. i e e 3-66
TSt DS eniiiiiii e e 3-67
TeSt D5.Cuuiiiiiiiiiii e 3-68
TSt D5 ettt e e 3-69
Test B lLa. .o e 3-70
TeSt Folaa. et ae 3-71
TSt B2l e et eaes 3-72
Test F.3.a. e 3-73
The Probability Density Function for the Detection Times.......cc.cceceeueennee. 3-74
The Cumulative Density Function for the Detection Times........................ 3-75
The Probability Density Function for the Reconfiguration Times................. 3-76
The Cumulative Density Function for the Reconfiguration Times................. 3-76
Fault Tolerant Processor: Functional View (One Channel) 4-2
Data Exchange Networkcoueiiiiiiiiiiiiiiii e 4-18
Fault Tolerant Clock Network.........cccovvuimeuiiiiiiriiiiiiiiireeireeniiennen. 4-19
The Probability Density Function for the Detection Times........c.cccevennnnee. 4-33
The Probability Density Function for the Detection Times: Expansion of the O to

10,000 mS. REZION ... ouoniiiiiiii e eraeranaeaes 4-34
The Cumulative Density Function for the Detection Times............c.c.cooue... 4-34
The Probability Density Function for the Reconfiguration Times................. 4-35
The Probability Density Function for the Reconfiguration Times: Expansion of

Range 0102400 ms.ouiiriiiiiiiiiiiiiiiic i e 4-35
The Cumulative Density Function for the Reconfiguration Times................. 4-36

vi

]
S
=
)

])]])]
— A BN

(38}

W N =

HPphbbLH W W N

LIST OF TABLES

Title Page
Fault Injector Address Spacec.ouviniuiiiiiiiiiiiiiiiiiiee e 2-10
Fault Type Selection...........cocoiuiiiiiiiiiiiiiiiii e 2-12
Mux A, B, C Source Selection......coieiiieiiiiiiieine et arrennnns 2-13
Boolean Functions of Two Variables......ccccccccciiiiiiiiiiiiiiiirennee s 2-14
Fault Direction Control.........cccociiiiiiiiiiiiiiiiii e 2-15
Victim Node Components-Schematic Location, Pin Number, and Fault Logic
) B TR 3-4
Victim Port Components-Schematic Location, Pin Number, and Fault Logic
Vel o e 3-5
Software Fault Injection Plan...........ccccocoimiiiiiiiiiniiiiiiiiiiiicieeeeees 4-17
Hardware Fault Injection Plan.............ccocoocoviiiiiiiiiiiimiiiineeeeiiinnn.. 4-20
Software Fault Injection Results.............ccooviiiiiiiiiiiiiiiiiiiieeae 4-26
Hardware Fault Injection Resultsccoooiiiiiiiiiiiiiiiii e 4-37

vii

viii

ADVANCED INFORMATION PROCESSING SYSTEM:
FAULT INJECTION STUDY AND RESULTS

1.0 APPROACH TO FAULT INJECTION
1.1 Introduction

The overall objective of the Advanced Information Processing System (AIPS) program is
to achieve a validated fault tolerant distributed computer system architectures suitable for a
broad range of applications, including those which have a failure probability requirement as
low as 109 at 10 hours. As a part of this process, an AIPS knowledgebase has been
developed. Various domains of the AIPS knowledgebase and a design-for-validation
methodology that uses the knowledgebase to synthesize computer system architectures are
described in [1]. The present report focuses on the fault injection study and its results,
which are a component of the performability knowledgebase.

To configure AIPS building blocks to meet specific application requirements, it is
necessary to characterize performability, i.e., performance and reliability, of building
blocks and of ensembles of building blocks as a function of fundamental architectural
parameters. The performability knowledgebase would eventually consist of all quantifiable
knowledge about the architecture that affects its performability. It is organized as analytical
and empirical relationships between three major domains: performance metrics, reliability
metrics and architectural parameters. The metrics and the AIPS architectural parameters are
described in Section 5 of [1], which also discusses the empirical relationships between
these three domains using the results obtained on the AIPS engineering model.

The requirement of extremely low system failure rates for the AIPS applications (typically
106 to 10-10 per hour) precludes computer reliability validation exclusively by any single
technique, tool, or approach. A balanced validation plan that uses analytical models,
formal proofs, empirical test and evaluation, and architectural attributes that enhance the
"validatability" of the system [1] can be cost effective and feasible in achieving validated
fault tolerant computer system architectures. The performability knowledgebase is an
important part of the balanced approach to validation. A set of analytical models has been
developed to characterize reliability and availability of the AIPS hardware building blocks.
To appreciate the role of empirical evaluation in constructing the performability
knowledgebase, we quote from [2] as follows:

"Design-for-validation concept consists of ... 1. The system is designed in such a manner
that a complete and accurate reliability model can be constructed. All parameters of the
model which cannot be deduced from the logical design must be measured. All such
parameters must be measurable within a feasible amount of time."

1-1

The design of the AIPS building blocks has adhered to this precept of the "design for
validation" methodology. For example, by complying with all the known theoretical
requirements for Byzantine resilience, the reliability of the AIPS Fault Tolerant Processor
or the Inter-Computer communications network can be modeled analytically with just a few
parameters. It is not necessary to exhaustively enumerate failure modes and show that each
mode is covered with the requisite probability [6]. The analytical models are discussed in
Section 4 of [1] in the context of the Advanced Launch System mission requirements. The
models are, however, general enough so that by changing a few parameters one can predict
the reliability and availability for other mission scenarios also. The reliability models use
three types of parameters: component failure rates, fault response times (detection and
reconfiguration times), and fault coverages (detection and reconfiguration coverages). The
component failure rates are estimated using the MIL-HDBK-217E. The other parameters,
however, must be deduced from the design or measured experimentally.

Since engineering models of the AIPS building blocks have been fabricated, it is feasible to
measure system response to faults and measure some of the parameters experimentally.
The analytical modeling and empirical characterization of the AIPS building blocks
complement each other. Analytical models are abstractions of physical reality. Test and
evaluation on the engineering model can help verify model assumptions, determine
unknown parameters and increase overall confidence, and hence claims of validation, in the
system.

Apart from gathering data for reliability parameter estimation, fault injection plays another
important role in the overall system validation. Fault injection can be used to obtain
feedback for fault removal from the design implementation. Again, the role of fault
injection in finding and fixing design errors should be kept in the proper perspective. One
cannot rely solely on fault injection to uncover design, specification and implementation
errors. Fault injection is not a substitute for the design-for-validation methodology.
However, it is a component of the methodology just as specifications, design reviews,
analytical models, and formal methods are.

If the fault injection process does not uncover a single flaw in the system under test, it does
not imply that there are no flaws in the system, only that the system is correct with respect
to the fault set to which it was subjected. But what if some design flaws are uncovered?
Does that mean the exercise was useless? On the contrary, a utility of the fault injection
technique is in uncovering shortcomings in the system. One gains a deeper understanding
of the fault tolerance design, a more fundamental appreciation of the cascade of events
triggered by a fault, including complex interactions between hardware and software
elements and the timing relationships between various events.

‘With the above discussion in mind, the goals of this fault injection study, as stated in the
statement of work, were as follows:

1. To test the system design specification for fault tolerance.
2. To obtain feedback for fault removal from the design implementation.

3. To obtain statistical data regarding fault detection, isolation, and reconfiguration
responses.

4. To obtain data regarding the effects of faults on system performance.

The organization of this report is as follows. The remainder of this section describes the
parameters that must be varied to create a comprehensive set of fault injection tests. The
subset of test cases selected for this study, the test case measurements, and the test case
execution are also described in Section 1. Both pin-level hardware faults using a hardware
fault injector and software-injected memory mutations were used to test the system.
Section 2 provides an overview of the hardware fault injector and the associated software
used to carry out the experiments. Sections 3 and 4 give detailed specifications of faults
and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively.
Section 5 summarizes the results and gives conclusions of the study.

1.2 Test Case Specification

This section explains how the test cases used in the AIPS Fault Injection Study were
derived. Section 1.2.1 describes the major parameters that could be varied in order to
create a comprehensive set of tests. Section 1.2.2 describes how the parameters actually
were varied in order to select from all the possible tests a limited subset that was executable
within the time and financial constraints of the Fault Injection Study.

1.2.1 All Possible Test Cases
Any given fault that is injected occurs within a particular context. This context consists of

the hardware environment, the software environment, and the fault injection environment.
Thus there are four major parameters that can be varied when creating test cases:

. Hardware environment

. Software environment

. Fault injection environment
. The actual fault

Hardware Environment

The hardware environment consists of the hardware building blocks that make up the
system during the particular test. These hardware building blocks may be arranged in
varying configurations. The parameters that describe the possible configurations are:

. Redundancy level of the victim FTP

1-3

. I/O network configuration
. IC network configuration

A graphical representation of all combinations of these parameters is shown in Figure 1-1.
For clarity, the variations of the parameters under the top level are shown only once.

Software Environment

Similarly, the software environment consists of the software building blocks that compose
the system during the particular test. These software building blocks may be arranged in
varying configurations. The parameters that describe the possible configurations are:

. Combinations of system functions and applications, and support functions
. Iteration rates of system functions

. Number of application tasks

. Computational loads of application tasks

. I/O requirements of application tasks

. IC requirements of application tasks

A graphical representation of all combinations of these parameters is shown in Figure 1-2.
In this case each parameter could take on multiple values, but the figure arbitrarily shows
only two. For clarity, the variations of the parameters under the top level are shown only
once.

Fault Injection Environment

The fault injection environment consists of attributes of the faults to be injected. These
attributes may be varied and arranged in different configurations. The attributes are:

. Number of FTPs monitoring fault injection
. Number of FCRs affected

. Number of simultaneous faults

. Duration of fault

. Random placement vs. selected placement
. Hardware injection vs. software injection

. Scope of fault (i.e., FCR, Board, Chip, Pin)

A graphical representation of all combinations of these parameters is shown in Figure 1-3.
For clarity, the variations of the parameters under the top level are shown only once.

siakeq g si9fe g
‘NOILYHNDIINOD ‘NOLLYHNOIINOD
AHOMLIN Ol AHOMULIN Ol
® ©

SHIOMISN YIOMIBN

SPON-0I ¢ 3PON-GI |

NOLLYHNDIINOD NOLLYHNDIINOD
NHOML3N O/l MYHOMLIN O/

®

X31dNA :d1d WILOIA

®

X31didl ‘:d1d WILOIA

®

Hardware Configurations

Figure 1-1.

1-5

(2 1ep) [(171eA)
1o ilef @
ol o] o
(9L -
(se) m
‘e
ao. _92 (175eA) Ma
oo | avO1dweo g
(L) (ve)
(2-18A) ©
SONddV (1 1ep) v
o) mus SNOLLYOMddY DI 'ON | m
b
2 aEp (2 18A) [(1 18A) s
il (1 “JeA) SINIWIHINOIY ON ol e 7
o/l (zL) o/ 0\:)
(L8) oA (01) 6 .
(z ‘rep) ,qmzd» (11eA) QVO1 H
avol dnoo {1 "5eA) QVO1 TYNOILVLNAWNOD oo | TYNOLLVLNANOO
(701) (1e) U (8) 2
(2 ‘1ep) (z:124) (11eA) wb
- e : SOoNddv¥ Hl
SoNddv (1 "12A) SNOILVOITddY O/l 'ON onon | sNotLvOnddv o oN e
o_:nw._“v (oL) 1N Ww
2 eley Z oley
@ WY On L e1ed @ W O/l 1D Wy on | 3y ® WY i
¢ oy 2 oley ¢ oy | aley
®NH d1d | ety @ Wd dLd W L | aied @ WY dLd ® @
(£7¢€) (89) (9¢) Aﬂ_zm&uac zmm.ﬁt
SIONHIS

S30IAY3S NOLLYOINAWWNOD Of B S3DIAHIS WILSAS O1 ¥ S3DIAHIS WALSAS TvOOT

(L9)

SIOINHIS WALSAS ON 2 SFOIAHIS WALSAS VOO

(r)

WALSAS TVOO1 (

1)

1-6

uoneandyuoy) uonddfuy jney -g-1 aundiy

s11nv4 ug

¢d b4

Nid | dIHD | aavo| s
O @O O &
NOILOAMNI
ws @) NOILDIPNI WH ©
17NV
1INv4 a310313S
WOONVY)| 6
=t 17NV4 QuvH
INIISNVHL @ @
S1InNv4
A1dILINN 6 1nv4 1 &
Q3L0344V HO | —

NVHL JHOW 6 @3L0344vHDd | @

Sd1d I1dILTNN NO
ONIHOLINOW 1INVA 9 d .14 FTONIS NO ONIHOLINOW 1INV .

1-7

The A Faul

Finally, each individual fault to be injected was determined by examining the possible
places at which to inject a fault in each particular fault region (i.e., FCR, board, chip,
pin). The individual faults are discussed in detail in Sections 3 and 4 of this report.

To reiterate, a test case consists of an actual fault within a fault injection
configuration within a software configuration within a hardware configuration.
The total number of possible test cases is the product of the number of hardware
configurations, software configurations, fault injection configurations, and faults, i.e.,

Ntot = NHw * Nsw * Nf1 * Nr

Each test case may be specified using the assigned numbers from Figures 1-1 through 1-3.
An example test case would be:

H1/2/3 - S1/2 - FI1/2/3/4/5/6/10 - F1

The hardware configuration for this test case consists of a triplex FTP as the victim (H1), a
15-node 1/O network (H2), and a 3-layer IC network (H3). The software configuration
includes only Local System Services (S1) and has the FTP RM executing at Rate 1. The
fault injection attributes include fault monitoring on a single FTP (FI1), only 1 FCR
affected by the injection (FI2), only 1 fault injected at a time (FI3), that fault being a hard
fault (FI4) selected for its ability to create a known effect (FIS). The fault is injected by
means of the hardware fault injector (FI6) and is applied at the pin level (F110). The actual
fault injected is Fault #1 (F1).

1.2.2 Subset of Actual Test Cases

If all possible variations of the hardware environment, software environment and fault
injection environment shown in Figures 1-1 through 1-3 were exercised with only one fault
each, this alone would represent approximately 594,000 test cases (8 hardware
configurations, 290 software configurations, 256 fault injection configurations). In order
to limit the test cases to a number consistent with the time and financial constraints of this
study, one hardware configuration, one software configuration, and two fault injection
configurations were chosen. The number of test cases, then, came from the different faults
that were injected within these two environments.

Using the notation given above, the two environments may be specified as

1 (1) H1/2/3 - S1/67/68/69/10771/12/13/74/15 - F11/2/3/4/5/6/10
an

(2) H1/2/3 - S1/67/68/69/10/71/72/13/74[75 - FI1/2/3/4/5/11/14

The hardware configuration in both cases consisted of a triplex FTP as the victim (H1), a
15-node I/O network (H2) and a 3-layer IC network (H3). The software configuration in
both cases included Local System Services, I/O System Services, and IC Communication
Services (567), FTP RM at 40 Hz (S68), /O RM every 2 seconds (S69), no I/O
applications (S70, S71, S72), and two IC applications (S73) doing minimal computation
(S74) and moderate IC communication (S75). The fault injection configurations included
fault monitoring on a single FTP (FI1), only 1 FCR affected by the injection (FI2), only 1
fault injected at a time (FI3), that fault being a hard fault (FI4) selected for its ability to
create a known effect (FIS). Faults were injected either at the pin level by the hardware
fault injector (FI6/FI10)) or at the chip level by software fault injection (FI11/FI14).

The actual faults that were injected are discussed in detail in Sections 3 and 4.

It should be noted that as an ongoing part of AIPS testing and debugging efforts, faults
have previously been injected at the FCR and card level. In the case of the core FTP, a
channel failure could be simulated by resetting either one processor or the entire channel.
Data exchange faults were simulated by use of specially constructed switches that grounded
power to pertinent parts of the data exchange hardware. In the case of the I/O network,
injected faults included resetting a node, unplugging a node card and unplugging links
between two nodes. These faults were inserted manually and the collection of fault
detection and reconfiguration times was not automated, so that collecting statistics about a
large volume of faults would have been very tedious and time-consuming.

1.3 Test Case Measurements

To achieve the goals stated in Section 1.1, certain information must be collected for
each test case.

Goal 1: to test the system design specification for fault tolerance.
This means it must be determined that an injected fault was actually tolerated, i.e., that the
system continued to perform correctly in the presence of the fault. This requires a record of
system performance before the fault is injected, which can then be compared to the record
of system performance during and after fault detection. To obtain this record of system
performance, all of the tasks executing in the system for an appropriate time period around
the fault injection must be tracked. In addition to the clock time at which each task
suspends and resumes, this record must give some indication of what the task was doing
so as to confirm that it is executing normally and is not in some erroneous state. In the
absence of tools that provide such a record, externally visible manifestations must be relied
on, such as correct functioning of the CRT and MAC displays, continued correct
configuration of I/O nodes, and continued communication between IC applications.

1-9

Goal 2: to obtain feedback for fault removal from the design
implementation. To do this the following questions must be answered for each test
case.

. Was the fault detected?

. Was the fault isolated?

. Was it correctly isolated?

. Did reconfiguration occur?

. Was the reconfiguration correct?

Goal 3: to obtain statistical data regarding fault detection, isolation,
and reconfiguration responses. This may be achieved by recording the times when
each of the three events (detection, isolation, reconfiguration) occurs.

Goal 4: to obtain data regarding the effects of faults on system
performance. The information required to answer this question is similar to that
required for Goal 1. A record of system performance before and after fault detection is
required to determine effects of a fault on performance. Short-term effects, i.e., the effect
of extra fault detection and identification overhead on system throughput must be
measured, as well as long-term effects, e.g., extra redundancy management time required
for 2-layer IC messages rather than 3-layer messages.

1.4 Test Case Execution

1.4.1 Experimental Setup

The experimental setup for injecting faults into the AIPS Distributed Engineering Model
and measuring their effects is shown in Figure 1-4. The Engineering Model is shown on
the right and consists of four Fault Tolerant Processors (FTPs), a fault-tolerant Inter-
Computer (IC) Communication Network, and a fault-tolerant Input/Output (I/O) Network.
On the left is the Fault Injection Software (FIS) that resides on a MicroVAX 3900
computer. This software controls the number and type of faults and the time of their
insertion. It also collects time information recorded by the FTP so that it can compute
performance measurements such as fault detection and reconfiguration times.

To create hardware-injected faults, the FIS communicates with a Fault Injector device by
means of a VAX Qbus interface. The Fault Injector interfaces with the Engineering Model
in such a way that a signal from the VAX will cause a fault to occur at any desired pin in
the Engineering Model. To create software-injected faults, the FIS communicates with the
FTP through a shared memory referred to as the Testport Interface. The only type of fault
injected by software is an emulated transient memory fault. The FIS also uses the Testport
Interface to retrieve the timing data recorded by the FTP.

The Fault Injector and the Fault Injection Software are discussed in detail in Section 2.

1-10

AIPS Distributed Engineering Model
(Simplified View)

/0
etwork
Inter-Computer
Network
FTP J
3
VAX 3900 < | Testport [TP
Interface 2
Fault Injection
Software
L] \ L
To
AIPS
\ Victim FTP
. FTP
Fault Fault /'r Device 4 1
Injector ;
Qbus Injector
Interface
T —J

Figure 1-4. Fault Injection Experimental Setup

1.4.2 Obtaining Test Case Measurements

The test case measurements described in Section 1.3 were gathered by the Fault Injection
Software and by visual inspection. This section explains how each type of measurement
was obtained.

One step in testing the system design specification for fault tolerance (Goal 1)
was to capture the record of system performance. This process was not automated and
incorporated within the Fault Injection Software for this study. Instead we relied solely on
visual observation of the CRT and MAC displays and configuration of the I/O network to
determine that the system functioned correctly during and after the fault. Since the display
tasks execute at the lowest priority, this ensured that no higher priority task was
monopolizing the system as a result of the fault.

To determine the correctness and completeness of the fault detection and
identification (Goal 2) for each test case, two methods were used. One was visual
inspection of the error logs that are maintained by the core FTP RM and the 1/O network

RM processes. These logs indicated whether a particular fault was isolated and, if so,
whether it was isolated correctly. The other method involved setting breakpoints in the
FTP code at the fault isolation and reconfiguration points and having the FIS verify that
these breakpoints were reached. In addition, the FIS verified that a fault was recovered
from before injecting the next fault.

Statistical data about the fault detection and identification (Goal 3) was
obtained by having the FIS note the time at which the isolation and reconfiguration
breakpoints were reached. In addition, the FTP code logged the time the fault was detected
in the Testport Interface.

The effects of faults on system performance (Goal 4) include both (1) the
additional time required by the particular FDIR process when it is dealing with a fault and
the subsequent scheduling delays incurred by other tasks, and (2) the effects on users of
the faulty component, e.g., an application task that receives erroneous input or cannot
transmit output because an I/O fault has not yet been detected and/or reconfigured around.
The additional time required by the FDIR processes has been measured at other times
during the life of the AIPS project and documented in a previous report [1]. Additional
measurements were also obtained in the I/O network portion of this Fault Injection Study
but not in the core FTP portion.

The scheduling delays incurred by non-FDIR tasks and the effects of a fault on users of the
faulty component require the same instrumentation as for Goal 1. This instrumentation was
not in place at the time of this study, and this data was not collected.

1-12

2.0 FAULT INJECTION ENVIRONMENT
2.1 Fault Injection Experiment Setup

2.1.1 Hardware Fault Injection

To inject hardware faults into the AIPS Distributed Engineering Model, a device called the
Fault Injector (FI) was designed and built at the Draper Laboratory [3]. The fault injector
interfaces with the Engineering Model on one end and with the VAX 3900 Qbus on the
other end. The number and type of faults and the time of their insertion are controlled by
the Fault Injection Software (FIS) that is resident on the VAX computer. The VAX and the
Engineering Model are linked together by a shared memory interface that was designed by
Draper Laboratory (referred to as the Testport Interface). This interface is used by the Fault
Injection Software to communicate with the AIPS system software executing on the Model.
As a result, the experimental setup is a closed loop system in which the executor, the FIS,
and the victim device on the Distributed Engineering Model are in constant touch with each
other. This setup, as shall be seen later, makes it possible to automate the fault insertion
process and to collect data that otherwise would not be possible to acquire.

Figure 1-4 is a block diagram of the experimental setup. The victim system is shown on
the right and is composed of four Fault Tolerant Processors (FTPs), a fault-tolerant Inter-
Computer (IC) Communication Network, and a fault-tolerant Input/Output (1/O) Network.
Each of these building blocks was built with wire-wrapped circuit boards and open paneled
chassis. Consequently, their electronic circuitry can be accessed by the Fault Injector's
implants, described in the following paragraph, in a relatively easy manner.

Faults are normally injected one pin at a time. To insert faults, controllable DIP extenders
or implants (part of the fault injector) are plugged into the DIP socket. Each implant
accepts the DIP pins it replaced and contains circuitry which can interrupt (or reconnect)
each DIP pin and each incidental signal line from their socket. Six implants, each of which
handles 8 DIP pins, are provided. Thus, up to 48 pins on one DIP or on a combination of
DIPs may be set up for fault injection at a given time.

The 48 implant pins of the fault injector are individually addressable by the VAX 3900.
Each pin appears as a Qbus address to the Fault Injection Software (FIS). The type of fault
to be produced at any pin is controlled by writing appropriate data to the Qbus address
corresponding to the pin. Once a fault or set a of faults has been defined, they can be
“enabled"”, that is, inserted into the victim by writing to another Qbus address. The fault
injector hardware listens to this address space, decodes the data, and produces the fault that
is requested. It also enables or clears the fault when appropriate data is written to the
enable/clear address.

It is possible to produce signals other than simply the stuck-at class of faults. Faults that
are boolean functions of signals on other pins can be generated. This can be used to

2-1

simulate faults which are rather unlikely but which have been known to happen. For
example, it is possible to turn a NAND gate into a NOR gate. Nonetheless, the main utility
of the Fault Injector lies in its ability to inject faults into tristate signals. For instance, the
data pins of a random access memory (RAM) have signals that are either inputs to or output
from the memory depending on whether memory is being written to or read from. To
inject a fault into such a device pin, the direction of the fault signal should be correct in
order to avoid any possible damage to the device. Such a signal can be produced by
generating the fault as a function of other signals on the device that determine the direction
of the data such as read/write and chip enable signals on the RAM DIP.

The Fault Injection Software has been written to facilitate automatic fault injection by
providing commands that are used to define the victim device, map its pins into implant
pins, specify the type of fault for each pin, and enable and clear faults. The FIS can
execute a series of such commands, making it possible to go through a number of faults
automatically once the victim device has been physically moved to the implants. Another
condition necessary for automatic fault injection is some form of communication between
the FIS and the AIPS system software to indicate whether the Engineering Model is ready
to accept a new fault. Such messages between the FIS and the Model are exchanged using
the Testport Interface. A modified version of the AIPS system software is responsible for
communicating the timing metrics to the Testport's memory. The same data path is used in
reverse to send messages from the FIS to the Distributed Model.

The FIS in conjunction with the AIPS software is able to record two times: the time of error
detection and the time of system reconfiguration. The important metrics, however, are the
time necessary to detect the fault and the time required to reconfigure around it. Since the
time of fault injection is known to the FIS, the difference between the fault injection and
error detection times constitutes the time required to detect the fault. Strictly speaking, this
should be called the error detection time. However, we hypothesize that the error is caused
by a fault. Therefore, the detection of an error is also an indirect indication of the
occurrence of a fault. Since this is the earliest indication of a fault, we will call this the fault
detection time. Also, the difference between the fault detection and the system
reconfiguration times equals the time necessary to reconfigure around the fault.

To communicate the fault detection time to the FIS, the AIPS system software reads the
AIPS real-time clock after the fault was detected and stores the time in the Testport
Interface. To indicate the reconfiguration time, the AIPS system software suspends
execution when it reaches a break-point at the end of the reconfiguration process. A
program, AIPSDEBUG, stores the real-time clock value in the testport interface. When the
FIS notices that the FTP is at the breakpoint, it reads the fault detection time and the
reconfiguration time from the Testport Interface. Subsequently, the FIS calculates the
times required for fault detection and reconfiguration. After these times have been
determined and recorded for later analysis, execution of the AIPS system software is
resumed to permit it to return to a state such that a new fault can be applied.

2-2

2.1.2 Software Fault Injection

To inject software faults into the AIPS Distributed Engineering Model, the Fault Injection
Software and Draper Laboratory's Testport Interface are utilized. The FIS inserts faults by
corrupting a channel's program and/or data memory. This is accomplished by sending
commands through the Interface. As with the hardware fault injection, the number and
type of faults and the time of their insertion are controlled by the FIS. After the designated
number of faults have been injected, the FIS employs the Testport Interface to retrieve the
fault detection and reconfiguration metrics.

AIPS Distributed Engineering Mode!
(Simplified View)

. 10
Network
Inter-Computer
FTP Network
3
—— e B et
VAX 3900 Testport FTP
Interface To 2
AlPS
Victim
Device
FTP FTP
4 1

Figure 2-1. Experimental Setup - Software Fault Injection

A block diagram of the software fault injection setup is shown in Figure 2-1. As can be
seen, this is a subset of system that is used for hardware fault injection.

The Fault Injection Software has been written to facilitate automatic injection of software
faults by providing commands that allow the user to define the memory region to be

2-3

corrupted, the value of the fault, and the FTP channel and processor in which to insert the
fault. As with hardware fault injection, the FIS can also execute a series of such
commands, making it possible to go through a number of faults automatically.

The Fault Injector Hardware and Software are described in more detail in Sections 2.2 and
2.3 respectively.

2.2 Fault Injector Hardware

The fault injector hardware used for this study is described in detail in Reference 3. For the
sake of completeness, a brief summary of the fault injector follows. A functional block
diagram of the fault injector is shown in Figure 2-2. The heart of the fault injector is a pair
of FETs that are interposed between the device pin and the socket pin. By turning on the
FETs, a direct connection is established between the device and the socket. This is the
normal situation when no fault is being injected on the pin. The device-socket connection
can be severed by turning off the FETs. Now any desired signal may be applied to the
device or the socket pin, whichever pin has the input signal (see Figure 2-3). A choice of
eight signals is provided, one of which may be selected by multiplexer M1 for the device
pin and by multiplexer M2 for the socket pin, as shown in Figure 2-2. A set of 48 FET
and mux pairs are provided, one pair for each victim pin. This allows one to extend up to
48 pins on one DIP or a combination of DIPs. The choice of faults for each circuit pin is as
follows.

1. Socket/Device Signal: This provides the original signal to the victim pin. That
is, no fault is injected.

2. MuxA: This signal is the output of multiplexer A as shown in
Figure 2-3. The inputs to the multiplexer are the 48
signals from the 48 pins that can be extended with the
FETs. That is, a signal from any circuit pin or gate may
be used as the fault or input signal for the victim pin.

3. MuxB: This multiplexer has the same function as Mux A.
4. Mux C: This multiplexer has the same function as Mux A.
5. f(A,B): This signal is the boolean function of two signals, the

outputs of multiplexers A and B. Any of sixteen
possible boolean functions may be specified.

6. f(A,B,O): This is a boolean function of f(A,B) and the output of
multiplexer C. Any one of sixteen possible functions
may be specified.

7. Ground: This provides the stuck-at-zero fault.

2-4

8. EXT: In addition to these seven selections, an externally
generated signal may be used as a fault.

Each of the above eight signals may also be inverted before being applied to the victim pin,
thus providing a choice of sixteen faults. The choice of faults thus includes stuck-at-one
and "complemented signal” type of faults.

Multiplexers A, B, and C and the boolean function generators provide an extremely
powerful capability to generate any type of fault. For example, certain faults in integrated
circuits can change a NAND gate into a NOR gate. It is possible with this fault injector to
simulate such a fault by extending all input and output pins of the target gate with FETs,
generating the required boolean function using inputs from the gate inputs, and replacing
the output with this signal. The main utility of this powerful capability, however, lies in
the ability to inject faults on tristate signal lines. The direction of the fault can be made a
function of other signals on the device, signals that determine the state of the tristate pin. It
is thus possible to inject faults into data pins of memory chips and other tristate devices.

The fault injector hardware is physically packaged as shown in Figures 2-5 and 2-6. The
FET pairs are mounted on an implant segment. Two sizes of implants are provided: 4 pin
extenders and 8 pin extenders. An 8 pin implant has 16 FETs mounted on it and can
extend one side of a 16 pin DIP. Dummy extenders that simply connect the socket and
device pins without going through a FET are also provided. These are used to extend those
device pins that are too sensitive to sustain that capacitance and/or time of delay of an
intervening FET.

In any event, the FET implants are connected to multiplexer boards through a flat ribbon
cable. As mentioned earlier, the fault injector has the capability of extending 48 device
pins. The signals on each of these pins are controlled by a dedicated pair of multiplexers
M1 and M2 (see Figure 2-2). Thus there is a total of 48 pairs of muxes. These are
packaged on six multiplexer boards as shown in Figure 2-6. Each board controls 8 pins.
One 8 pin implant or two 4 pin implants may be connected to each board. The six boards,
labeled A, B, C, D, E, and F, are identical multiwire boards. Each contains one sixth of
the multiplexers MA, MB, and MC. That is, each of the three 48:1 muxes (A, B, and C) is
logically partitioned into six 8:1 muxes. Since a board handles 8 pins, a signal from one of
these eight pins can be selected through the 8:1 mux (A, B, or C) on that board. The
outputs of six logical parts of each 48:1 mux are OR'ed and distributed to all six circuit
cards via the backplane. All 48 signals are then made available to each board. Each board
also has its own copy of the three boolean function generators as shown in Figure 2-3.
Functions f(A,B), F(A,B,C), and S(A,B,C) can be produced on any board. These
signals, along with the outputs of muxes MA, MB, and MC form the inputs to the muxes
M1 and M2.

2-5

48 units - 6 implants with 8 on each implant

N
<
To Dt_:vice] I
Fin T T
N ——
8:1 LA A
M __ B B
e C C —
| KAB) (AB) “'D—
| RABC) RABC) e 81
l— GND GND — M2
| EXT EXT —
D(0:3,15) D(4:7,15)
Dala ==swwmojp. : .
S(ABC) Fault Type and Direction Control
\
48 units - 6 cards with 8 on each card
ﬁ 48:1 - one sixth on each card
MA - A 6 units - one on each card
\
-1
Boolean f(AB;
Function - (AD)
’ W
MB B
D(0:3)
Bools aBe
ean
S(ABC) Function [
Boolean
e W Function ‘
MC »-C
D(8:11)
D(4:7)

Figure 2-2. Fault Injector Logical Organization

2-6

;gv

Device

Signal to/from Package

11
T

FET Direct Connection
Implant Control

||

Signal to/from Socket

Figure 2-3. Insertion of FETs between Socket and Device

2-7

Implant
Segments
(Each handles
8 Pins)

T~ To Multiplexer
Board

Victim
Socket

00

N
falala'a

.0"

/ Do

~ =& To Multiplexer
Board

Figure 2-4. Fault Injector Implant

6 Multiplexer Boards
(Each handles 8 pins)
| > .
=T
>0

F‘\ / | =
Segrcns < :[I:”: D%

\\

.\ <<l —

Control and
Qbus
Interface
(Double Height
Wire-Wrap
Board)

I

Figure 2-5. Fault Injector Hardware

Last, but not least, is the selection and control of the FETs, multiplexers, boolean function
generators, and fault enabling and clearing logic. The fault injector has been designed such
that it can be addressed as a Qbus device by a VAX 3900 computer. The data written to the
Qbus address space of the fault injector is used to perform the selection and control
functions. As shown in Figure 2-5, the backplane of the multiplexer boards is connected
by flat-ribbon cables to a control and Qbus interface card. This is a double-height wire-

wrap board that can be plugged into the VAX Qbus. It has the standard Qbus protocol and
address decoding circuitry. The fault injector occupies the address space 3E9801¢ -
3E9FF]6. This address space is mapped as shown in Table 2-1.

2-9

Address Mux Pi
3E9xx Board n
80-8E A 1-8
90-9E B 1-8
AQ-AE C 1-8
BO-BE D 1-8
CO0-CE E 1-8
DO-DE F 1-8

EO Mux A
E2 Mux B
E4 Mux C
E6 Boolean Function Select
EA Execute/Clear Fault
E8 and Unused
EC-FF

Table 2-1. Fault Injector Address Space

Circuitry controlling signals on each of the 48 pins (muxes M1, M2, and FETs) is
addressed individually (addresses 3E98016 to 3E9DE]¢). Data written to these addresses
selects one of the eight inputs to mux M1 or M2 and controls the point of fault insertion
(device or socket) by choosing mux M1 or M2. This is static operation. That is, the data
written to these addresses is latched in the fault injector. The type and direction of the fault
is thus determined, but the signal is not yet applied to the victim. To actually break the
device-socket connection and inject the fault signal, one must write to the Execute/Clear
address 3E9EA 16. Writing a "0001" to this address enables the chosen multiplexer M1 or
M2 on the chosen pin. It also turns off the pair of FETs on that pin. Faults on all the
previously "enabled" pins are asserted simultaneously. The most significant bit of the fault
selection data word determines if the pin is enabled. Writing a "0002" to the Execute/Clear
address disables the muxes and turns on the FETs, thus clearing the fault condition.

2-10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

EN/
DIS

0 0 1 X Y V4

Figure 2-6. Fault Description Word

Bits 0-3 of the fault description word select the type of fault going to the device pin, bits 4-
7 select the fault going to the socket, and bits 8-11 determine the direction of the fault (to
device or to socket) as shown in Figure 2-6. Bit 15 enables and disables the pin. A pin
must be enabled before a fault defined on it can be asserted. Bit 15 must be 1 for the pin to
be enabled. Bits 12, 13, and 14 should always be as shown in Figure 2-6.

If the fault direction is 0, the fault as determined by the data bits Y is sent to the socket pin
and data bits Z are ignored. If X is 8, then the fault as determined by Z is sent to the device
pin and Y is ignored. In addition to 0 and 8, there are fourteen other values that can be
assigned to X. Fault direction selected for these values of X is explained later in this
Section (illustrated in Table 2-5).

Y and Z select the fault signal as shown in Table 2-2. If Y/Z is 8, the original signal is
‘passed through the multiplexer unchanged. Stuck-at-1 and 0 faults can be generated by a
value of 6 and "E", respectively. The signal can be inverted if Y/Z is 0. Other more
complex faults can be chosen as outputs of multiplexers A, B, C, or a boolean function of
their inputs (Y/Z=11t05,9 to "D").

If multiplexer A, B, or C output is either used directly as a fault or as input to a boolean
function generator, it is necessary to select the multiplexer source. This is done by writing
to the Qbus address of the multiplexer. Data written to the multiplexer address is
interpreted as shown in Figure 2-7. Bits 3-5 select one of six boards A to F. Bits 0-2
select one of eight pins on that board as the mux output. These are shown in Table 2-3.

2-11

Y/Z

Fault Signal

MTMOOT>»POWONOOUAWON—-O

Inverted Signal
F(A,B,C)

A

B

C

F(A,B)

1

EXT

Original Signal
/ F(A,B,C)

/A

/B

/C

/ F(A,B)

0

/ EXT

Table 2-2. Fault Type Selection

15 14 13 12 11 10

9 8 7

6

5

4

3

2

1

0

Not Used

Board

Pin

Figure 2-7. Mux A, B, C Selection Word

2-12

Data Bits Board Bits Pin
3 4 5 Selected 012 Selected

1 A 0 1
2 B 1 2
3 C 2 3
4 D 3 4
5 E 4 5
6 F 5 6

6 7

7 8

Table 2-3. Mux A, B, C Source Selection
If a boolean function such as f(A,B) or f(A,B,C) is chosen as the desired fault, then one

must also define the boolean function by writing to the function select address 3E9E616.
The data written to this address is interpreted as shown in Figure 2-8.

15 14 13 12 11 10 9 8 7 6 54 3 2 1 0

Not Used F(f,c) S(f,c) f(A,B)

Figure 2-8. Boolean Function Generator Data Word

Bits 0-3 of the boolean function data word are used to select one of sixteen functions of
signals A and B. Bits 4-7 are used to select f(A,B,C), which is one of the sixteen boolean
functions of f(A,B) and C. Further, bits 8-11 are used to select S(A,B,C), which is also
one of sixteen boolean functions of f(A,B) and C. The sixteen possible boolean functions
of two variables are shown in Table 2-4.

As noted earlier, the fault direction (to device or to socket) is controlled by a 4-bit field X as
shown in Figure 2-6. X can assume one of sixteen possible values. These are interpreted
as shown in Table 2-5.

If the fault direction signal chosen by X is high, the fault is asserted on a socket pin. If it is
low, the fault is asserted on a device pin.

Data Boolean Function of A, B
0 0
1 /A* /B
2 A*/B
3 /B
4 /A*B
5 /A
6 A+B
7 /A +/B
8 A*'B
9 /(A +B)
10 A
11 A+/B
12 B
13 /A+B
14 A+B
15 1

Table 2-4. Boolean Functions of Two Variables

For X equal to 0, the fault direction signal is high and the fault is sent to the socket. For X
equal to 8, the fault is applied to the device. The fault direction in these two cases is static.
For other values of X, the fault would be dynamically applied to the socket or device pin
depending upon whether the chosen signal is high or low, respectively. The signals that
can be used for direction control are the outputs of the multiplexers A, B, C, or their
boolean functions f(A,B), S(A,B,C) and their complements. This allows one to
dynamically control fault direction on tristate pins.

As explained earlier, fields Y and Z in the fault description word determine the type of fault
to be applied to socket and device pins, respectively (see Figure 2-6). When X is equal to
0 or 8, only one of these two fields (Y when X is 0 and Z when X is 8) needs to be
defined. Nevertheless, both Y and Z must be defined when XisnotOor 8. But Y and Z
need not be the same. That is, different faults can be applied to socket and device pins. In
fact, by an appropriate choice of Y and Z, a fault can be applied in one direction while the
original signal is passed through unchanged in the other direction. One may, for example,
wish to insert a fault in a data pin of a memory chip only when data is being read but not
when data is being written into the memory. This can be done by selecting a fault direction

2-14

signal that is high during the memory read cycle. The fault selected by Y would be applied
to the socket pin during the read cycle. By choosing Z to be 8, correct data would be
written to the memory during memory write cycle since Z equal to 8 passes the original
signal to the device pin.

X Fault Direction

To Socket
/S(A,B,C)
/A

/B

/C

/F(A,B)
Not Used
Not Used
To Device
S(A,B,C)
A

B

C

F(A,B)
Not Used
Not Used

TMOOD>POONOOTHAEWN-—=-O

Table 2-5. Fault Direction Control

Multiplexer output selection and boolean function definition are static functions. Data
written to these addresses is latched in the fault injector.

It should be mentioned that the fault injector is a "write-only" device. The state of the fault
injector can not be determined by reading its address space.

It is not necessary to remember various addresses of the fault injector since the fault injector
software maintains these addresses in a database. This software provides appropriate
commands to define fault types and select mux outputs. The next section describes the
fault injector software.

2-15

2.3 Fault Injector Software

The fault injection software (FIS) resident on the VAX 3900 provides commands to
perform all functions necessary to inject faults into the AIPS Distributed Engineering Model
and record the results. The FIS is a menu driven program that permits the selection of fault
types and their subsequent insertion into one or more victim devices.

2.3.1 The FIS Main Menu

The main menu of the fault injection software is illustrated in Figure 2-9. As shown, it
permits the fault injection supervisor to edit faults, select input signals for the multiplexers,
choose one or more boolean functions, insert a set of faults, save and load fault files, and
reset the fault injection hardware. The aforementioned options are discussed in the
following sections.

Selection Fault Injector Main Menu

Edit Faults

Select Signal for Multiplexers
Choose a Boolean Function
Apply Faults to Victim

Save Fault File

Load Fault File

Reset

Quit

TIOTMMOoOO®>P

Figure 2-9. The FIS Main Menu
2.3.1.1 The FIS Edit Faults Menu

The Edit Faults menu of the fault injection software is depicted in Figure 2-10. It allows
the creation, deletion, and confirmation of a fault or a set of faults. In order to create a
fault, the selection A must be chosen. Subsequently, the FIS requests the associated
multiplexer board (A-F), the pin (1-8), the fault direction, and fault type. The multiplexer
and pin number identify the desired fault injector mux board, implant segment, and pin
through which to apply the fault (described in Section 2.2 - Fault Injector Hardware). The
fault direction indicates one of twelve options, each of which is presented in Figure 2-11.

2-16

Furthermore, one of fourteen faults can be inserted into the victim device. The fourteen
possible fault types are indicated in Figure 2-12.

Selection Edit Faults Menu

AB Create FaultDelete FaultView
cD Fault PackageReturn to Main
Menu

Figure 2-10. The FIS Edit Faults Menu

If a previously created fault is not desired, it can be removed by selecting option B in the
Edit Faults menu. In order for this extraneous fault type to be deleted, the corresponding
multiplexer and pin must be identified.

The fault set that is currently defined can be viewed by choosing option C. This capability
is incorporated into the FIS to permit the confirmation of a fault suite.

To return to the main FIS menu, option D of the Edit Faults menu must be selected.

Selection Fault Direction
1 To Socket
2 /S(A,B,C)
3 /A
4 /B
5 /IC
6 /F(A,B)

7 To Device
8 S(A,B,C)
9 A

10 B

11 C

12 F(A,B)

Figure 2-11. The Fault Direction Options

2-17

Selection Type of Fault
1 Original Signal
2 Inverted Signal
3 1
4 0
5 F(A,B,C)
6 A
7 B
8 C
9 F(A,B)
10 / F(A,B,C)
11 /A
12 /B
13 /C
14 / F(A,B)

Figure 2-12. The Fault Type Options
2.3.1.2 The FIS Multiplexer Signal Selection Menu

The input signal to the fault injector multiplexers A, B, and C can be specified by choosing
option B of the main menu. This selection displays the Multiplexer Signal Selection menu
which is illustrated in Figure 2-13. As expected, this menu has an entry for each of the
three multiplexers. After the desired multiplexer is selected, the FIS requests information
concerning the source of the multiplexer's input. That is, the corresponding multiplexer
board (A-F) and pin (1-8) that should be used as the input signal.

To determine the connectivity between the multiplexers (A, B, and C) and pins (1-8) of the
multiplexer boards (A-F), see Figure 2-2, the Fault Injector Logical Organization.

2.3.1.3 The FIS Boolean Function Selection Menu

It may be desirable to inject a signal into a victim device that is the boolean function of one
or more input signals. The Boolean Function Selection menu, shown in Figure 2-14,
which is entered by selecting option C of the main menu, permits the specification of the
fault injector functions f(A,B), f(f,C), and S(f,C). As described in the Section 2.1 and
illustrated in Figure 2-2, f(A,B) is a boolean function of the outputs of multiplexers A and

B. Alternatively, f(f,C) and S(f,C) are functions of the output of f(A,B) and multiplexer
C.

To define f(A,B), f(f,C), or S(f,C), the associated option of the Boolean Function
Selection menu must be selected. The FI software then prompts the fault injection
supervisor for the corresponding function. The function can be one of the fifteen
possibilities shown in Figure 2-15.

2.3.1.4 The FIS Fault Application Option

To apply a fault to a victim device, a fault set must be created or a previously defined fault
package must be loaded. The creation of a fault is discussed in Section 2.2.1.1, and the
method to load a fault set is described in Section 2.2.1.5. After a fault package has been
devised and downloaded to the fault injector, option D of the main menu should be
selected. This option applies the fault set to the victim device.

Selection Signal for Mux Menu
A Select Signal for Mux A
B Select Signal for Mux B
C Select Signal for Mux C
D Return to Main Menu

Figure 2-13. The FIS Mux Signals Menu

Selection Select Boolean Function Menu
A Select Function for f(A,B)
B Select Function for f(f,C)
C Select Function for S(f,C)

Figure 2-14. The FIS Boolean Function Menu

2-19

Selection Boolean Function of A, B
1 0
2 /A /B
3 A*/B
4 /B
5 /A*B
6 /A
7 A+B
8 /A +/B
9 A*B
10 /(A + B)
11 A
12 A+ /B
13 B
14 /A+B
15 A+B

Figure 2-15. The Boolean Function Options

To inject, observe, vary, and accurately record the fault injection test, the FIS requests the
following information:

1. The fault detection bucket size.

The fault detection times are grouped into "buckets”, which are collections
of times that fall in a particular range, to create a frequency histogram.
The size of the bucket is selectable by the fault injection supervisor.

2. The reconfiguration detection bucket size.
Similar to the fault detection times, the reconfiguration metrics are placed
into "buckets". The size of the reconfiguration groupings is selectable by
the fault injection supervisor.

3. Hardware or Software Fault Injection.

The Fault Injection Software can insert hardware faults via the Fault
Injector or software faults by corrupting the FTP's memory. The type of
fault application is selectable by the user. If software faults are desired,

2-20

the FIS program requests the channel and memory range to be victimized
and the numerical value of the fault.

The channel in which the fault will be inserted.

When faults are applied to the core Fault Tolerant Processor (FTP), the
FIS must know the channel through which the fault is being applied. This
information assists the FIS in re-synchronizing the FTP in preparation for
a successive test.

Whether a fixed or random time between successive faults is desired.

The FIS permits the fault injection supervisor to insert a fixed amount of
time between successive tests or to have the FIS randomly select the
interval. If a fixed time is desired, then the supervisor is prompted for the
corresponding number of seconds.

Number of times to insert the fault.

The FIS sequentially executes a series of tests by repeatedly injecting the
fault suite into the victim device. The number of times that the fault is
applied is selectable.

Number of milliseconds to apply the fault.

The length of time that a fault is inserted is selectable in quanta of 10
milliseconds. This is the least count of the Microvax 3900 clock. Since
the periodicity of the different modules of the Redundancy Management
Software varies considerably, the capability of changing the application
interval is desirable.

The "Reconfiguration Time-Out".

The "Reconfiguration Time-Out" is the maximum number of seconds to
wait for the completion of the reconfiguration phase.

It is possible that a fault is not detected (due to a software bug or a "don't
care” condition). Accordingly, it is desirable to have a facility that permits
the continuation of the series of tests albeit that one or more fault tests
were not detected. This FIS facility is the Reconfiguration Time-Out. If it
is exceeded, the FIS logs its occurrence and begins the execution of the
next test. The length of this time-out is specified by the fault injection
supervisor.

2-21

9. The "Fault Re-insertion Time-Out".

The "Fault Re-Insertion Time-Out" is the maximum number of seconds to
wait for the AIPS Engineering Model to return to a known state.

After a fault has been detected and reconfigured around, the state of the
AIPS Engineering Model must be returned to its state prior to the
application of the fault. It is possible that a fault could cause the Model to
enter an "unknown state" (due to a software bug). Accordingly, it is
desirable to have a facility that permits the abortion of the series of tests if
an inconsistent state is entered. This FIS facility is the Fault Re-Insertion
Time-Out. If it is exceeded, then the FIS program logs this occurrence
and stops. The length of this time-out is selected by the fault injection
supervisor.

10. Names of the load modules that are executing in the computational and I/O
processors of the AIPS Engineering Model.

In order to maintain configuration control over the experimental test set
up, the load modules that are involved must be noted. Accordingly, the
FIS prompts the supervisor for the names of these files.

11. Name of the Output File.

Since the AIPS Fault Injection plan involves many diverse tests and each
test will be unique, the results of each test should be stored in a file with a
name that identifies the test. Accordingly, the FIS prompts the fault
injection supervisor for the name of the output file.

2.3.1.5 The FIS Save Fault File Option

It is often desirable to save a fault suite for later use. Option E of the main menu allows the
fault injection supervisor to save a file that was created using option A (described in Section
2.2.1.1). After option E is selected, the supervisor is prompted for the name of the file in
which to store the fault set.

2.3.1.6 The FIS Load Fault File Option

In order to use a previously defined fault package, it must be downloaded to the fault
injector. Option F of the main menu allows the fault injection supervisor to load a fault file,
that was saved using option E (described in Section 2.3.1.5), into the FI. After option F is
selected, then the supervisor is prompted for the name of the file in which the associated
fault set is stored.

2-22

2.3.1.7 The FIS Reset Option

If it is desirable to reset the fault injector, it can be accomplished by selecting option G of
the main menu. This process resets Multiplexer boards A - F.

2.3.1.8 The FIS Quit Option

To exit the fault injection software, option H should be selected.

2.3.2 Fault Injection Software - Multiple Fault Application

The process of applying one fault and collecting the detection and reconfiguration times
was described earlier. Before applying another fault, the AIPS software must return to the
state that existed prior to the fault injection. In the context of the I/O Network fault
insertion, this process entails the regrowth of the previous I/O virtual path. As a result, the
configuration of the I/O nodes and ports is identical to that which existed before the
application of the fault. After the I/O network path has been restored, the AIPS software
stops executing. When the FIS recognizes that AIPS has stopped, it resumes the execution
of the AIPS software and subsequently injects the next fault.

Between the injection of faults into the core FTP, the channel that is corrupted must be
brought on-line (from a failed status). This entails realigning its volatile memory to ensure
that all channels’ internal state is identical. As with the I/O network fault injection, the
AIPS software stops after the FTP has returned to the state that existed previous to the fault
application and the next fault is inserted.

2-23

3.0 Applying Faults to the I/O Network

The 1/O Fault Insertion Plan is a set of faults to be injected into the AIPS I/O network
which is attached to the AIPS Distributed Engineering Model. The Plan was designed to
apply various types of faults that would exercise several network configurations. The
following sections describe the AIPS I/O network and the I/O Fault Insertion Plan,
respectively.

3.1 Overview of the AIPS I/0 Network

For communication between an AIPS FTP and I/O devices, damage and fault-tolerant
networks are employed. These AIPS I/O networks are designed to provide both high
throughput and high reliability. Each network consists of a number of full duplex links that
are interconnected by circuit switched nodes (shown in Figure 3-1). Sensors and actuators
are attached to these nodes. In steady-state, the circuit switched nodes route information
along a fixed communication path, or "virtual bus”, without the delays that are associated
with packet-switched networks. Once the virtual bus is set up within the network, the
protocols and operation of the network are similar to typical multiplex buses. Although the
hardware implementation of this "virtual bus" is a circuit-switched network, the FTP
communication and protocol view it as a conventional bus.

Albeit the AIPS I/O network performs exactly like a bus, it is far more reliable and damage
tolerant than a linear bus. The network architecture provides coverage for many well
known failure modes that would cause a standard linear bus to either fail completely or
provide service to a reduced set of subscribers. A single fault or limited damage (for
example, caused by weapons, electrical shorts, or overheating) can disable only a small
fraction of the virtual bus, typically a node or a link connecting two nodes. The rest of the
network, and the subscribers on it, can continue to operate normally. If the sensors and
effectors are physically dispersed for damage-tolerance and the damage event does not
affect the inherent capability of the vehicle to continue to fly, then the AIPS I/O system
would continue to function in a normal manner or in some degraded mode as determined by
sensor/effector availability.

The ability of the network to tolerate such faults comes from the design of the node. An
AIPS node has five ports, each of which can be enabled or disabled. When the ports on
either end of a link are enabled, data is routed along that link of the network. Each node in
a properly configured fault-free network receives transmissions on exactly one of its
enabled ports and simultaneously retransmits this data on all of its other enabled ports. The
nodes provide a richness of spare interconnections that can be brought into service after a
hardware fault or damage event occurs.

3-1

Figure 3-1. 15 Node I/O Network - No Fault Configuration

3.2 Specification of I/O Network Faults
3.2.1 Creating Node and Link Faults

As discussed in Section 3.1, the AIPS 1/O network is comprised of nodes and
interconnecting full duplex links. Accordingly, the /O Fault Insertion Plan involves the
application of node and link faults.

The AIPS I/O nodes are functionally divided into six sections: Node Sequencer and
Control, Port Enable Register, Message Buffer, Port Activity Register, Transmit FIFO,
and Protocol Encoder. To corrupt the operation of an I/O node, a fault is applied to one or
more of these components. Similarly, each port of the AIPS I/O node is divided into five
functional components: Receiver, Protocol Decoder, Clock Extractor, Signal Regeneration
Logic, and Transmitter. To interrupt the operation of a link, a fault is applied to a
component of the associated node port.

The 1/O Fault Insertion Plan only applied faults to some of the node and port subsections,
because it was more concerned with a general characterization of the I/O Management
process' performance rather than a comprehensive one. An extensive I/O Plan can be
‘developed and applied the AIPS I/O Networks; however, currently it is not being
performed.

3-2

Four types of node faults were applied, corrupting:

1.

The node's control microsequencer, a component of the Node Sequencer and
Control subsection that is responsible for decoding and processing the node's
microinstructions.

The Port Enable Register, a buffer that indicates which node ports are enabled.

. The /O FIFO, a component of the Transmit FIFO subsection which buffers the

data that is processed and transmitted by the node.

. The node's address decoding logic, an element of the Node Sequencer and

Control system that is responsible for uniquely identifying the node.

Three types of port faults were inserted, affecting:

1.

2.

The port's Protocol Decoder that is partly responsible for correctly receiving the
input data.

The port's input buffer, the part of the Receiver logic that regenerates the input
data.

- The port's input receiver, a component of the Receiver subsection that accepts the

input data.

These node and port faults were selected because of their accessibility, their coverage (50
percent of nodes' and 60 percent of the ports' major functional sections were affected), and
their complexity (simple, intermediate, and complex error symptoms were generated).

Tables 3-1 and 3-2 detail the node and link faults, specifying how the faults affect the
components and the location of the victim hardware elements with respect to the node
schematics. (It should be noted here that the terms "link fault” and "port fault” have been
used in this document interchangeably.)

3.2.2 Specification of Test Cases

The 1/O Fault Insertion Plan is comprised of 47 Tests. Each test applies a fault to one or
more nodes of the AIPS 15 Node I/0O Network (its topology is illustrated in Figure 3-1).
The tests were designed to apply six basic types of topological faults.

AmoOOwr

Failed Link Causing Disjoint Leaf Node
Failed Link Causing Disjoint Branch
Failed Leaf Node

Failed Node Causing Disjoint Branch
Failed Root Node

Simultaneous Node Failures

3-3

h In neric Node Faul IC Pin Logic Schematic
Location Number Level Page #

1. Corrupt the Node Sequencer 2357 3,12 H 5/6
- The node sequencer is reset.

2. Corrupt the Port Enable Register 1130 11 H 5/6
- The input enable of the Port
Enable register is corrupted
such that arbitrary data is read
into the register.

3. Corruptthe I/O FIFO 2047 4 H 5/6
- The decoder that controls the
resetting of the I/O FIFO is
corrupted.
4. Corrupt the Address Decoding Logic 1130 14 H 5/6

- The input enable of the register
that outputs the node address is
corrupted such that the node
address is not placed on the data
bus at the correct time.

Table 3-1. Victim Node Components - Schematic Location,
Pin Number, and Fault Logic Level

A comprehensive I/O fault plan would apply millions of different I/O faults, causing the
victim J/O network to reconfigure into thousands of different I/O topologies. The I/O Fault
Insertion plan performed by Draper Laboratory only utilized 47 tests, applying faults that
caused the 15 node network to reconfigure into 19 degraded topologies. As mentioned
earlier, this I/O Fault Insertion Plan was more concerned with a general characterization of
the /O Management process' performance rather than a comprehensive one.
Consequently, only some of the vast number of possible tests were performed. The tests
completed were selected because of their topological coverage and complexity.

The J/O Fault Insertion Plan is segmented into six fault categories corresponding to the six
topological fault types. Each fault category was applied to several network nodes, thereby
exercising different I/O configurations. Accordingly, each category is subdivided into
groups, each group uniquely identifying and depicting a victim link or node. Furthermore,
as previously discussed, each fault type (or fault category) may be instrumented in several
ways. Consequently, each group is further segmented into subsections, each indicating the
specific fault that was applied.

34

Methods to Insert Generic Link Faults IC Pin Logic Schematic
Location Number Level Page #

1. Corrupt the Node's Protocol Decoder

- Corruption of the input data
counter such that it does not
correctly load data.
Port 0. 1310 7 H 1/6
Port 1. 1110 7 H 1/6
Port 2. 1301 7 H 1/6
Port 3. 1101 7 H 1/6
Port 4. 0901 7 H 1/6
2. Corrupt the Node's Input Buffer
- Corruption of the input data
such that the data is stuck-at-one.
Port 0. 0301 H 1/6
Port 1. 0101 11 H 1/6
Port 2. 0101 H 1/6
Port 3. 0101 13 H 1/6
Port 4. 0101 H 1/6
3. Corrupt the Node's Input Receiver
- The input data FIFO is reset.
Port 0. 2047 11 L 5/6
Port 1. 2047 12 L 5/6
Port 2. 2047 13 L 5/6
Port 3. 2047 14 L 5/6
Port 4. 2047 15 L 5/6

Table 3-2. Victim Port Components - Schematic Location,
Pin Number, and Fault Logic Level

A test is identified by specifying the category, group, and subsection that is associated with
the fault that was applied. For example, "test B.2.a" is the test that corrupts the connection
between nodes 1 and 2 by disrupting the operation of protocol decoder of port 2 of node 2
(see test outline on the following pages). Alternatively, a test may be identified by
indicating the node, integrated circuit, and pin that was victimized. Consequently, "test
B.2.a" can also be referred to as "node 2, chip 1301, pin 7" (or simply N2_CH1301_P7).

3-5

The following paragraphs detail the I/O Fault Insertion Plan.
A. Failed Link - Disjoint Leaf Node

1. Cause Node 15 to be a Disjoint Leaf Node

a. Fail the link between nodes 13 and 15 by corrupting the protocol
decoder of port 3 of node 15.
- NI15_CHI1101_P7

b. Fail the link between nodes 13 and 15 by corrupting the input data of
port 3 of node 15.
- N15_CHO101_P13

c. Fail the link between nodes 13 and 15 by corrupting the input receiver
of port 3 of node 15.
- NI15_CH2047_P14

2. Cause Node 5 to be a Disjoint Leaf Node

a. Fail the link between nodes 3 and 5 by corrupting the protocol decoder
of port 3 of node 5.
- N5_CH1101_P7

b. Fail the link between nodes 3 and 5 by corrupting the input data of port
3 of node 5.
- N5_CHO101_P13

c. Fail the link between nodes 3 and 5 by corrupting the input receiver of
port 3 of node S.
- N5_CH2047_P14

3. Cause Node 14 to be a Disjoint Leaf Node

a. Fail the link between nodes 12 and 14 by corrupting the protocol
decoder of port 4 of node 14.
- N14_CHO0901_P7

b. Fail the link between nodes 12 and 14 by corrupting the input data of
port 4 of node 14.
- N14_CHO101_P3

c. Fail the link between nodes 12 and 14 by corrupting the input receiver
of port 4 of node 14.
- N14_CH2047_P15

B. Failed Link - Disjoint Branch
1. Cause Nodes 7 and 9 to be a Disjoint Branch

a. Fail the link between nodes 6 and 7 by corrupting the protocol decoder
of port 2 of node 7.

- N7_CH1301_P7

Fail the link between nodes 6 and 7 by corrupting the input data of port
2 of node 7.

- N7_CHO101_P5

Fail the link between nodes 6 and 7 by corrupting the input receiver of
port 2 of node 7.

- N7_CH2047_P13

2. Cause Nodes 2, 4, 8 and 10 to be a Disjoint Branch

3.

a.

Fail the link between nodes 1 and 2 by corrupting the protocol decoder
of port 2 of node 2.

- N2_CH1301_P7

Fail the link between nodes 1 and 2 by corrupting the input data of port
2 of node 2.

- N2_CHO0101_P5

Fail the link between nodes 1 and 2 by corrupting the input receiver of
port 2 of node 2.

- N2_CH2047_P13

Cause Nodes 3,5,12and 14tobe a Disjoint Branch

a.

Fail the link between nodes 1 and 3 by corrupting the protocol decoder
of port 1 of node 3.

- N3_CHI1101_P7

Fail the link between nodes 1 and 3 by corrupting the input data of port
1 of node 3.

- N3_CHO101_P11

Fail the link between nodes 1 and 3 by corrupting the input receiver of
port 1 of node 3.

- N3_CH2047_P12

4. Cause all Nodes to be a Disjoint Branch

a.

Fail the link between node 1 and channel A by corrupting the input data
of port 0 of node 1.
- N1_CHO0301_P3

C. Failed Leaf Node

1.

Fail Node 15 which is a Leaf Node

a.

b.

Fail node 15 by corrupting its control sequencer.
- N15_CH2357_P12

Fail node 15 by corrupting its port enable register.
- NI15_CH1130_P11

Fail node 15 by corrupting its 1/O FIFO.

- NI15_CH2047_P4

d.

Fail node 15 by corrupting its node address decoding logic.
- N15_CH1130_P14

2. Fail Node 4 which is a Leaf Node

a.

b.

Fail node 4 by corrupting its control sequencer.

- N4_CH2357_P3

Fail node 4 by corrupting its I/O FIFO.

- N4_CH2047_P4

Fail node 4 by corrupting its node address decoding logic.
- N4_CHI1130_P14

3. Fail Node 10 which is a Leaf Node

a.

b.

Fail node 10 by corrupting its control sequencer.
- N10_CH2357_P3

Fail node 10 by corrupting its I/O FIFO.

- N10_CH2047_P4

D. Failed Node - Disjoint Branch

1. Cause Node 9 to be a Disjoint Branch

a.

b.

Fail node 7 by corrupting its control sequencer.

- N7_CH2357_P3

Fail node 7 by corrupting its port enable register.

- N7_CH1130_P11

Fail node 7 by corrupting its I/O FIFO.

- N7_CH2047_P4

Fail node 7 by corrupting its node address decoding logic.
- N7_CH1130_P14

2. Cause Node 13 and 15 to be a Disjoint Branch

a.

b.

Fail node 11 by corrupting its control sequencer.
- NI11_CH2357_P3

Fail node 11 by corrupting its port enable register.
- NI11_CHI1130_P11

Fail node 11 by corrupting its I/O FIFO.

- N11_CH2047_P4

3. Cause Node 7 and 9 to be a Disjoint Branch

a.

b.

Fail node 6 by corrupting its control sequencer.
- N6_CH2357_P3

Fail node 6 by corrupting its /O FIFO.

- N6_CH2047_P4

4. Cause Node 4 to be a Disjoint Branch and Nodes 8 and 10 to be a Disjoint
Branch.
a. Fail node 2 by corrupting its control sequencer.
- N2_CH2357_P3
b. Fail node 2 by corrupting its I[/O FIFO.
- N2_CH2047_P4

5. Cause Node 5 to be a Disjoint Branch and Nodes 12 and 14 to be a Disjoint
Branch.
a. Fail node 3 by corrupting its control sequencer.
- N3_CH2357_P3
b. Fail node 3 by corrupting its port enable register.
- N3_CHI1130_P11
c. Fail node 3 by corrupting its I/O FIFO.
- N3_CH2047_P4
d. Fail node 3 by corrupting its node address decoding logic.
- N3_CHI1130_P14

E. Failed Root Node
1. Cause all Nodes to be Disjoint
a. Fail node 1 by corrupting its control sequencer.
- N1_CH2357_P3

F. Simultaneous Node Failures

1. Simultaneously Fail Nodes 8 and 10
a. Fail nodes 8 and 10 by corrupting their control sequencer.
- N8_10_CH2357_P3

2. Simultaneously Fail Nodes 2 and 8
a. Fail nodes 2 and 8 by corrupting their control sequencer.
- N2_10_CH2357_P3
3. Simultaneously Fail Nodes 4 and 10
a. Fail nodes 4 and 10 by corrupting their control sequencer.
- N4_10_CH2357_P3
3.3 Test Results

As discussed in Section 3.2, the 1/O Fault Insertion Plan is comprised of 47 tests. Each
test consists of 25 iterations. An iteration involves the application of a fault, its detection

3-9

by the AIPS I/O Network Redundancy Management software, and the associated network
reconfiguration. For each iteration, the fault detection and reconfiguration times were
recorded by the Fault Insertion Software (FIS). Accordingly, 25 sets of data were
recorded for each of the 47 tests (a total of 1175 data sets).

The detection and reconfiguration times recorded during the I/O Fault Insertion are not
optimal. These "non-optimal” times result because the I/O Network Redundancy
Management software logs debug information during the fault detection, identification, and
reconfiguration process. The overhead due to this logging process is less than 0.5 percent
of the detection time and less than 10 percent of the reconfiguration time. Accordingly, the
times recorded during the I/O Fault Insertion plan are upper bounds.

The I/O Fault Insertion results are segmented into four groups. Section 3.3.1 presents the
maximum and average times for each test. Section 3.3.2 details each test's time/frequency
histogram. Next, Section 3.3.3 illustrates and discusses the I/O Fault Insertion probability
and cumulative density functions. Finally, Section 3.4 provides conclusions for the I/O
Fault Insertion plan.

3.3.1 Maximum and Average Times

A fault is detected by the I/O Network Redundancy Management software by requesting
and analyzing the status of the network nodes. If all nodes correctly respond to this status
query, then the Redundancy Management software assumes that the network is fault-free.
If the status response from one or more nodes has errors, then this software presumes that
a hardware fault exists and begins the fault identification and reconfiguration stage.

To isolate and reconfigure around a hardware fault, the I/O Network Redundancy
Management software examines the status response from the nodes. By analyzing this data
and subsequently requested information, the software can determine the location of the fault
and activate spare network components to bypass it.

In the AIPS Distributed Engineering Model, the I/O Network Management software checks
for the presence of a fault every two seconds (2000 ms.). This fault detection check
requires approximately 75 ms. to execute. Consequently, the typical maximum detection
time will be about 2075 ms. plus any latency from the time the fault is applied to the time
the associated error symptom is generated. (Some exceptions were observed and they are
discussed later in this section.) As a result, the typical average detection time is expected to
be 1040 ms. plus error latency.

The time necessary to perform the fault isolation and reconfiguration process varies
considerably. Simple faults may be identified and bypassed in 100 ms. Alternatively,
more complex faults require the regrowth of the I/O network, thereby utilizing thousands of
milliseconds to reconfigure the network.

3-10

The following paragraphs provide the maximum and average detection and reconfiguration
times for each test. Further, the number of faults detected (with respect to the 25 that were

inserted) are provided.
A. Failed Link - Disjoint Leaf Node

1. Cause Node 15 to be a Disjoint Leaf Node

a. Fail the link between nodes 13 and 15 by corrupting the protocol

decoder of port 3 of node 15.
- N15_CH1101_P7

1. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

2032.4
996.1
154.2
147.7
25

b. Fail the link between nodes 13 and 15 by corrupting the input data of

port 3 of node 15.
- N15_CHO0101_P13

i. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

1942.1
843.2
154.7
147.9
25

¢. Fail the link between nodes 13 and 15 by corrupting the input receiver

of port 3 of node 15.
- N15_CH2047_P14

i. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

2. Cause Node 5 to be a Disjoint Leaf Node

2036.6
1235.5
153.9
145.8
25

a. Fail the link between nodes 3 and 5 by corrupting the protocol decoder

of port 3 of node 5.

3-11

3.

- N5_CHI1101_P7

i. Maximum Detection Time (ms.) 2031.6
ii. Average Detection Time (ms.) 1141.0
iii. Maximum Reconfiguration Time (ms.) 155.5
iv. Average Reconfiguration Time (ms.) 151.2
v. Number of Faults Detected 25

Fail the link between nodes 3 and 5 by corrupting the input data of port
3 of node 5.
- N5_CHO101_P13

i. Maximum Detection Time (ms.) 1947.1
ii. Average Detection Time (ms.) 1007.4
iii. Maximum Reconfiguration Time (ms.) 155.7
iv. Average Reconfiguration Time (ms.) 149.2
v. Number of Faults Detected 25

Fail the link between nodes 3 and 5 by corrupting the input receiver of
port 3 of node 5.
- N5_CH2047_P14

i. Maximum Detection Time (ms.) 2029.2
il. Average Detection Time (ms.) 946.3
iii. Maximum Reconfiguration Time (ms.) 155.0
iv. Average Reconfiguration Time (ms.) 151.1
v. Number of Faults Detected 25

Cause Node 14 to be a Disjoint Leaf Node

a.

Fail the link between nodes 12 and 14 by corrupting the protocol
decoder of port 4 of node 14.
- N14_CHO0901_P7

i. Maximum Detection Time (ms.) 1783.3
ii. Average Detection Time (ms.) 889.3
iii. Maximum Reconfiguration Time (ms.) 154.6
iv. Average Reconfiguration Time (ms.) 150.0
v. Number of Faults Detected 25

Fail the link between nodes 12 and 14 by corrupting the input data of
port 4 of node 14.
- NI14_CHO0101_P3

3-12

C.

i. Maximum Detection Time (ms.) 2041.5

ii. Average Detection Time (ms.) 1116.3
iii. Maximum Reconfiguration Time (ms.) 176.3
iv. Average Reconfiguration Time (ms.) 142.1
v. Number of Faults Detected 25

Fail the link between nodes 12 and 14 by corrupting the input receiver
of port 4 of node 14.
- N14_CH2047_P15

i. Maximum Detection Time (ms.) 2039.5
ii. Average Detection Time (ms.) 982.0
iii. Maximum Reconfiguration Time (ms.) 154.8
iv. Average Reconfiguration Time (ms.) 149.9
v. Number of Faults Detected 25

B. Failed Link - Disjoint Branch

1. Cause Nodes 7 and 9 to be a Disjoint Branch

a.

Fail the link between nodes 6 and 7 by corrupting the protocol decoder
of port 2 of node 7.
- N7_CHI1301_P7

i. Maximum Detection Time (ms.) 1914.4
ii. Average Detection Time (ms.) 944.7
iii. Maximum Reconfiguration Time (ms.) 130.8
iv. Average Reconfiguration Time (ms.) 126.7
v. Number of Faults Detected 25

Fail the link between nodes 6 and 7 by corrupting the input data of port
2 of node 7.
- N7_CHO101_P5

i. Maximum Detection Time (ms.) 1466.6
ii. Average Detection Time (ms.) 797.8
iii. Maximum Reconfiguration Time (ms.) 214.4
iv. Average Reconfiguration Time (ms.) 130.3
v. Number of Faults Detected 25

Fail the link between nodes 6 and 7 by corrupting the input receiver of
port 2 of node 7.
- N7_CH2047_P13

3-13

i.

ii.
iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)

V.

2. Cause Nodes 2, 4, 8 and 10 to be a Disjoint Branch

Maximum Detection Time (ms.)
Average Detection Time (ms.)

Number of Faults Detected

1326.9
741.3
186.5
183.6
25

a. Fail the link between nodes 1 and 2 by corrupting the protocol decoder
of port 2 of node 2.
- N2_CH1301_P7

i.

ii.
iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)

V.

Maximum Detection Time (ms.)

Average Detection Time (ms.)

Number of Faults Detected

2065.5
1034.5
196.3
187.8
25

b. Fail the link between nodes 1 and 2 by corrupting the input data of port
2 of node 2.
- N2_CHO101_P5

i.

ii.
iti. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)

V.

Maximum Detection Time (ms.)

Average Detection Time (ms.)

Number of Faults Detected

1641.5
811.0
293.6
218.9
25

c. Fail the link between nodes 1 and 2 by corrupting the input receiver of
port 2 of node 2.
- N2_CH2047_P13

i.

ii.
iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)

V.

3. Cause Nodes 3, 5, 12 and 14 to be a Disjoint Branch

Maximum Detection Time (ms.)

Average Detection Time (ms.)

Number of Faults Detected

3-14

1863.1
841.9
226.6
221.8
25

Fail the link between nodes 1 and 3 by corrupting the protocol decoder
of port 1 of node 3.
- N3_CHI1101_P7

i. Maximum Detection Time (ms.) 2051.5
ii. Average Detection Time (ms.) 726.2
iii. Maximum Reconfiguration Time (ms.) 145.0
iv. Average Reconfiguration Time (ms.) 137.3
v. Number of Faults Detected 25

Fail the link between nodes 1 and 3 by corrupting the input data of port
1 of node 3.
- N3_CHO0101_P11

i. Maximum Detection Time (ms.) 2044 .4
ii. Average Detection Time (ms.) 1046.6
iii. Maximum Reconfiguration Time (ms.) 298.3
iv. Average Reconfiguration Time (ms.) 220.1
v. Number of Faults Detected 25

Fail the link between nodes 1 and 3 by corrupting the input receiver of
port 1 of node 3.
- N3_CH2047_P12

i. Maximum Detection Time (ms.) 1869.4
ii. Average Detection Time (ms.) 758.3
iii. Maximum Reconfiguration Time (ms.) 230.1
iv. Average Reconfiguration Time (ms.) 2274
v. Number of Faults Detected 25

4. Cause all Nodes to be a Disjoint Branch

a.

Fail the link between node 1 and channel A by corrupting the input data
of port 0 of node 1.
- N1_CHO0301_P3

i. Maximum Detection Time (ms.) 2060.0
ii. Average Detection Time (ms.) 13394
ili. Maximum Reconfiguration Time (ms.) 1090.6
iv. Average Reconfiguration Time (ms.) 1066.8
v. Number of Faults Detected 25

C. Failed Leaf Node

3-15

1.

Fail Node 15 which is a Leaf Node

a. Fail node 15 by corrupting its control sequencer.

N15_CH2357_P12

i. Maximum Detection Time (ms.) 2272.7
ii. Average Detection Time (ms.) 1102.8
iii. Maximum Reconfiguration Time (ms.) 216.4
iv. Average Reconfiguration Time (ms.) 191.4
v. Number of Faults Detected 25

The fault that was applied to pin 12 of IC 2357 does not manifest itself
immediately because a relatively large resistor/capacitor network must
first be charged. Consequently, the maximum detection time is
exceeded by a few hundred milliseconds.

b. Fail node 15 by corrupting its port enable register.

N15_CH1130_P11

i. Maximum Detection Time (ms.) 3094.0

ii. Average Detection Time (ms.) 1142.4

iti. Maximum Reconfiguration Time (ms.) 1303.1

iv. Average Reconfiguration Time (ms.) 271.5

v. Number of Faults Detected 23 (2 Don't Cares)

The fault that was applied to pin 11 of IC 1130 causes the port enable
register to continuously read a byte from the data bus. As a result, at
any given time while the fault is injected, the ports that are enabled
(the ports through which data is transmitted) depend on the value of
the data bus. Consequently, when this port enable information is read
by the control sequencer, it may: (1) correctly depict the ports that
should be enabled, (2) falsely specify that one or more ports are
enabled when they should be disabled and thus cause the
manifestation of a fault, or (3) falsely indicate that disconnected ports
are enabled and thereby create a "don't care” condition (again the fault
does not manifest itself). If situation (1) or (3) occurs during the I/O
Redundancy Management software's initial fault detection check, the
software will not see a fault because the fault does not produce an
error. Since the fault may not cause visible symptoms, the maximum
detection time is not constrained. Furthermore, it is possible that the
applied fault is not detected at all (because the fault is only injected for
approximately 4 seconds). Conversely, if the fault does cause error
symptoms and is detected, the time required to reconfigure the I/O

3-16

network may vary considerably because the fault may produce simple,
complex, or dynamic error symptoms.

c. Fail node 15 by corrupting its transmit FIFO.
- NI15_CH2047_P4

i. Maximum Detection Time (ms.) 1159.2
ii. Average Detection Time (ms.) 638.9
iii. Maximum Reconfiguration Time (ms.) 211.5
iv. Average Reconfiguration Time (ms.) 208.0
v. Number of Faults Detected 25

d. Fail node 15 by corrupting its node address decoding logic.
- NI15_CH1130_P14

i. Maximum Detection Time (ms.) 1885.0
ii. Average Detection Time (ms.) 997.5
iti. Maximum Reconfiguration Time (ms.) 1459.6
iv. Average Reconfiguration Time (ms.) 1051.2
v. Number of Faults Detected 25

2. Fail Node 4 which is a Leaf Node

a. Fail node 4 by corrupting its control sequencer.
- N4_CH2357_P3

i. Maximum Detection Time (ms.) 1839.0
il. Average Detection Time (ms.) 576.2
iii. Maximum Reconfiguration Time (ms.) 220.0
iv. Average Reconfiguration Time (ms.) 213.2
v. Number of Faults Detected 25

b. Fail node 4 by corrupting its transmit FIFO.
- N4_CH2047_P4

i. Maximum Detection Time (ms.) 1527.3
il. Average Detection Time (ms.) 682.0
iii. Maximum Reconfiguration Time (ms.) 224.4
iv. Average Reconfiguration Time (ms.) 217.3
v. Number of Faults Detected 25

c. Fail node 4 by corrupting its node address decoding logic.
- N4_CH1130_P14

3-17

3.

i. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

Fail Node 10 which is a Leaf Node

a. Fail node 10 by corrupting its control sequencer.

b. Fail node 10 by corrupting its transmit FIFO.

N10_CH2357_P3

i. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

N10_CH2047_P4

i. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

D. Failed Node - Disjoint Branch

1.

Cause Node 9 to be a Disjoint Branch

a. Fail node 7 by corrupting its control sequencer.

b. Fail node 7 by corrupting its port enable register.

N7_CH2357_P3

i. Maximum Detection Time (ms.)

ii. Average Detection Time (ms.)

iii. Maximum Reconfiguration Time (ms.)
iv. Average Reconfiguration Time (ms.)
v. Number of Faults Detected

N7_CH1130_P11

3-18

1711.5
752.1
484.0
228.4
25

2051.9
1076.9
215.7
2143
25

1315.7
804.8
491.7
227.8
25

1928.7
718.6
255.9
252.4
25

i. Maximum Detection Time (ms.) 3372.9

ii. Average Detection Time (ms.) 1088.7

iii. Maximum Reconfiguration Time (ms.) 2869.5

iv. Average Reconfiguration Time (ms.) 478.6

v. Number of Faults Detected 22 (3 Don't Cares)

- See Test C.1.b for explanation concerning the exceptionally large
maximum detection and reconfiguration times and the "don't care”

conditions.

c. Fail node 7 by corrupting its transmit FIFO.
- N7_CH2047_P4
i Maximum Detection Time (ms.) 4009.5
ii. Average Detection Time (ms.) 1177.1
ii. Maximum Reconfiguration Time (ms.) 969.4
iv. Average Reconfiguration Time (ms.) 310.5
v. Number of Fault Detected 25

IC 2047 is a decoder that controls the resetting of the node's input receivers and the write
enable for the transmit FIFO. The insertion of the fault into pin 4 is such that the decoder
IC is not enabled and none of its outputs are selected. Therefore no new data can be
written into the transmit FIFO. Nevertheless, the transmit FIFO can still transmit data. If
the data in the transmit FIFO corresponds to a valid node status response, the 1/0
Redundancy Management software may not detect the fault during its initial faul check (a
valid response may be transmitted to the FTP). Accordingly, as was observed, the
maximum detection time may exceed the expected maximum time.

d. Fail node 7 by corrupting its node address decoding logic.
- N7_CH1130_Pi14

i. Maximum Detection Time (ms.) 1873.9
ii. Average Detection Time (ms.) 1131.8
iii. Maximum Reconfiguration Time (ms.) 1239.4
iv. Average Reconfiguration Time (ms.) 11179
v. Number of Faults Detected 25

2. Cause Node 13 and 15 to be a Disjoint Branch

a. Fail node 11 by corrupting its control sequencer.
- N11_CH2357_P3

3-19

i. Maximum Detection Time (ms.) 2054.0
ii. Average Detection Time (ms.) 983.2
iii. Maximum Reconfiguration Time (ms.) 296.1
iv. Average Reconfiguration Time (ms.) 289.0
v. Number of Faults Detected 25

b. Fail node 11 by corrupting its port enable register.
- N11_CH1130_P11

i. Maximum Detection Time (ms.) 1906.4
ii. Average Detection Time (ms.) 1171.7
iii. Maximum Reconfiguration Time (ms.) 2206.4
iv. Average Reconfiguration Time (ms.) 1037.8
v. Number of Faults Detected 25

- See Test C.1.b for explanation concerning the exceptionally large
maximum reconfiguration time.

c. Fail node 11 by corrupting its transmit FIFO.
- N11_CH2047_P4

i. Maximum Detection Time (ms.) 2053.1
ii. Average Detection Time (ms.) 1013.2
iii. Maximum Reconfiguration Time (ms.) 1070.2
iv. Average Reconfiguration Time (ms.) 528.3
v. Number of Faults Detected 25

3. Cause Node 7 and 9 to be a Disjoint Branch

a. Fail node 6 by corrupting its control sequencer.
- N6_CH2357_P3

i. Maximum Detection Time (ms.) 2051.0
ii. Average Detection Time (ms.) 721.9
iii. Maximum Reconfiguration Time (ms.) 378.6
iv. Average Reconfiguration Time (ms.) 295.6
v. Number of Faults Detected 25

b. Fail node 6 by corrupting its transmit FIFO.
- N6_CH2047_P4

3-20

i. Maximum Detection Time (ms.) 1954.4
ii. Average Detection Time (ms.) 799.3
iii. Maximum Reconfiguration Time (ms.) 381.7
iv. Average Reconfiguration Time (ms.) 377.1
v. Number of Faults Detected 25

4. Cause Node 4 to be a Disjoint Branch and Nodes 8 and 10 to be a Disjoint
Branch.

a. Fail node 2 by corrupting its control sequencer.
- N2_CH2357_P3

i. Maximum Detection Time (ms.) 1519.8
ii. Average Detection Time (ms.) 727.0
ili. Maximum Reconfiguration Time (ms.) 465.5
iv. Average Reconfiguration Time (ms.) 244 .4
v. Number of Faults Detected 25

b. Fail node 2 by corrupting its transmit FIFO.
- N2_CH2047_P4

i. Maximum Detection Time (ms.) 1959.7
ii. Average Detection Time (ms.) 674.1
iii. Maximum Reconfiguration Time (ms.) 292.3
iv. Average Reconfiguration Time (ms.) 288.9
v. Number of Faults Detected 25

5. Cause Node 5 to be a Disjoint Branch and Nodes 12 and 14 to be a Disjoint
Branch.

a. Fail node 3 by corrupting its control sequencer.
- N3_CH2357_P3

i. Maximum Detection Time (ms.) 2063.2
ii. Average Detection Time (ms.) 887.8
iii. Maximum Reconfiguration Time (ms.) 296.4
iv. Average Reconfiguration Time (ms.) 262.5
v. Number of Faults Detected 25

b. Fail node 3 by corrupting its port enable register.
- N3_CHI1130_P11

i. Maximum Detection Time (ms.) 27944

3-21

ii. Average Detection Time (ms.) 1035.3
iii. Maximum Reconfiguration Time (ms.) 2897.3
iv. Average Reconfiguration Time (ms.) 1503.6
v. Number of Faults Detected 25

- See Test C.1.b for explanation concerning the exceptionally large
maximum detection and reconfiguration times.

¢. Fail node 3 by corrupting its transmit FIFO.

- N3_CH2047_P4
i. Maximum Detection Time (ms.) 2050.2
ii. Average Detection Time (ms.) 739.8

iii. Maximum Reconfiguration Time (ms.) 324.8
iv. Average Reconfiguration Time (ms.) 288.1
v. Number of Faults Detected 25

d. Fail node 3 by corrupting its node address decoding logic.
- N3_CHI1130_P14

i. Maximum Detection Time (ms.) 2002.6
ii. Average Detection Time (ms.) 808.8
iti. Maximum Reconfiguration Time (ms.) 557.6
iv. Average Reconfiguration Time (ms.) 353.1
v. Number of Faults Detected 25

E. Failed Root Node
1. Cause all Nodes to be Disjoint

a. Fail node 1 by corrupting its control sequencer.
- N1_CH2357_P3

i. Maximum Detection Time (ms.) 2032.0
il. Average Detection Time (ms.) 928.5
iii. Maximum Reconfiguration Time (ms.) 400.4
iv. Average Reconfiguration Time (ms.) 390.1
v. Number of Faults Detected 25

F. Simultaneous Node Failures

1. Simultaneously Fail Nodes 8 and 10

3-22

a. Fail nodes 8 and 10 by corrupting their control sequencer.
- N8_10_CH2357_P3

i. Maximum Detection Time (ms.) 2046.8
ii. Average Detection Time (ms.) 822.8
iii. Maximum Reconfiguration Time (ms.) 461.2
iv. Average Reconfiguration Time (ms.) 458.8
v. Number of Faults Detected 25

2. Simultaneously Fail Nodes 2 and 8

a. Fail nodes 2 and 8 by corrupting their control sequencer.
- N2_10_CH2357_P3

i. Maximum Detection Time (ms.) 2055.3
ii. Average Detection Time (ms.) 1283.7
iii. Maximum Reconfiguration Time (ms.) 1237.2
iv. Average Reconfiguration Time (ms.) 1078.4
v. Number of Faults Detected 25

3. Simultaneously Fail Nodes 4 and 10
a. Fail nodes 4 and 10 by corrupting their control sequencer.
- N4_10_CH2357_P3

i. Maximum Detection Time (ms.) 2060.5
ii. Average Detection Time (ms.) 1523.9
iii. Maximum Reconfiguration Time (ms.) 997.4
iv. Average Reconfiguration Time (ms.) 992.5
v. Number of Faults Detected 25

3.3.2 Frequency Histograms

Ideally, for each fault insertion test, the fault detection and reconfiguration times for each
iteration of the test should be constant. That is, each inserted fault should be detected in X
ms. and reconfigured around in Y ms. Such consistency will occur only if the I/O fault
detection check is performed frequently and each fault produces invariable error symptoms.
Nonetheless, since the /O Redundancy Management software only runs every two seconds
in the Engineering Model, large variations may exist in the detection times. Further, it is
possible, and likely, that multiple insertions of a given fault cause different error
symptoms. Consequently, the time required to reconfigure around one application of the
fault may be Y ms. while the time necessary to bypass another insertion of the same fault
may be Y + Z ms. As a result, histograms of the detection and reconfiguration times are

3-23

valuable because they illustrate the repeatability of the I/O Fault Insertion and 1/O
Redundancy Management processes.

Figures 3-2 through 3-48 present the frequency histograms for each test. Each illustration
is comprised of two graphs. The upper graph represents the fault detection distribution
while the lower one shows the distribution of the reconfiguration times. The detection and
reconfiguration times were grouped into "buckets" which are collections of times that fall in
a particular range. The times associated with each bucket are indicated on the horizontal
axis of each graph. The "frequency distribution" or the number of entries in each bucket is
depicted on the vertical axis of each graph.

The I/O fault detection and reconfiguration histograms are detailed in Sections 3.3.2.1 and
3.3.2.2, respectively.

3.3.2.1 Variance of the Detection Times

As mentioned earlier, the I/O Redundancy Management software performs a fault detection
check every two seconds. The I/O Fault Insertion Software is executed such that the
interval between the successive applications of a given fault varies. Consequently, the time
at which the fault is inserted, with respect to the I/O fault detection check, differs between
successive iterations of the test. If the fault is injected into the I/O network just prior to the
check and it manifests as an error before the detection check, then it will be detected in a
few hundred milliseconds. Alternatively, if the fault is applied just after the completion of
the check and it manifests as an error before the next detection check, then approximately
two seconds will be required to detect it. Faults, for which error manifestation latency is
just over 2 seconds or larger, would be detected by subsequent detection checks.

Since the detection cycle is two seconds and the relative fault insertion times differ from
iteration to iteration, it was expected that a given test's detection times would vary
considerably. As anticipated, large time variances were observed, and they are portrayed in
the fault detection histograms which are shown in Figures 3-2 though 3-43.

3.3.2.2 Variance of the Reconfiguration Times

As discussed in Section 3.3.2, the application of a given fault may or may not produce
consistent error symptoms. This inconsistency occurs because the fault insertion times
vary relative to the execution of the detection cycle and the activity of the I/O nodes. If
repeatable error symptoms are generated by the fault, then the reconfiguration times will be
grouped into a few contiguous buckets (for example, as shown in Figure 3-2). If the error
symptoms produced vary, then the histogram may have widely differing times and
accordingly disjoint groupings (for instance, a primary cluster and an exception as depicted
in Figure 3-12). These different reconfiguration times result because the 1/0
Reconfiguration Management software traverses different code paths.

3-24

The variance in the reconfiguration times, however, may also result if one or more software
errors exist in the I/O Redundancy Management process. As a result, it was desirable to
analyze the results of the I/O fault tests with disjoint buckets in order to confirm the
correctness of the I/O Management software. This analysis was performed by modifying
the Fault Insertion Software (FIS), such that it suspends when a reconfiguration time
significantly differs from the median bucket (for instance, if this difference was greater than
50 ms.). After the FIS stops, the I/O Redundancy trace data, which indicates the path of
the reconfiguration software, of this atypical iteration is compared to that recorded after a
normal reconfiguration. By comparing the traces, the abnormal error signature and
resultant reconfiguration path were determined.

The "normal vs. abnormal” results were carefully examined and in each case, the I/O
Redundancy Management software executed correctly. The atypical reconfiguration times
resulted because of one of four causes: second attempts, inconclusive analysis, presumed
reconnection, and fault signatures of differing complexities. These situations are discussed
in the Sections 3.3.2.2.1 through 3.3.2.2.4.

3.3.2.2.1 Reconfiguration Variance - Second Reconfiguration Attempts

During the reconfiguration process, typically only one attempt is necessary to activate a
non-faulty path (enable a link between two nodes by actuating the corresponding ports).
Nevertheless, it is possible that a non-faulty path returns an erroneous response to the I/O
network management software due to the breadboard nature of the laboratory nodes.
Therefore, in the process of enabling a link, two attempts are performed. That is, if the
first attempt to enable a non-faulty link fails, then a second attempt is tried. If both attempts
are unsuccessful, then the link is deemed faulty.

Occasionally, during the reconfiguration process, second attempts were performed.
Because of these second attempts, 80 - 90 ms. variations from the median buckets were
observed. The histograms displaying such occurrences are illustrated in Figures 3-9, 3-12,
3-15, 3-18, 3-37, 3-43, and 3-47.

3.3.2.2.2 Reconfiguration Variance - Presumed Reconnection

The breadboard nature of the laboratory nodes also contributed to inconsistency in the
“effect” of the applied I/O fault. Specifically, the application of a fault that should
completely fail a node occasionally only failed its inboard port (the active port through
which the node is connected to the 1/O virtual path). In such a situation, the /O
Redundancy Management software reconnected to the node, or the associated disjoint
branch, through a spare link.

3-25

If the I/O reconfiguration process reconnects to a node rather than fail it completely
(because the application of the fault does not completed disable the node), then less code is
traversed and accordingly, the reconfiguration time is shorter. Consequently, the
associated reconfiguration histograms are signified by aberrations that are a negative offsets
from the median bucket. These histograms are depicted in Figures 3-21, 3-32, 3-34, 3-39,
3-41, 3-43, and 3-45.

3.3.2.2.3 Reconfiguration Variance - Inconclusive Analysis

The 1/O reconfiguration process can only isolate a finite number of fault signatures. If an
unidentifiable fault pattern is encountered, then the I/O reconfiguration process regrows the
I/O network using one of several I/O growth algorithms.

During the I/O Fault Insertion Analysis, it was observed that a given fault, that usually
generated a distinguishable error pattern, sometimes produced a fault signature that was
unknown to the I/O Redundancy Management software. When this indeterminate pattern
was encountered, the I/O network was regrown (using an algorithm employing minimal
diagnostics), thus adding approximately 270 - 280 ms. to the reconfiguration time. The
histograms of the tests in which such a regrowth occurred are shown in Figures 3-27, 3-
29, 3-39, and 3-44.

3.3.2.2.4 Reconfiguration Variance - Simple and Complex Error
Symptoms

The error symptoms that are produced by a fault may have simple or complex signatures.
Further, the fault pattern may be time-varying (for example, the corruption of the port
enable register). If simple error symptoms occur, then the fault can be isolated and
bypassed quickly. Alternatively, if complex symptoms are produced by the fault, then the
regrowth of the I/O network may be required. In addition, if the symptoms vary with time,
then the I/O redundancy management process may perform multiple regrowth attempts
(because the error signature changes during the growth process).

The histograms of tests in which simple, complex, and time-varying fault signatures occur
are shown in Figures 3-20, 3-22, 3-24, 3-31, 3-32, 3-35, 3-36, and 3-42.

3-26

"n15_ch1101_p7.det"

Frequency
Time (ms)
"nl5_ch1101_p7.rec"
20 7
15 1
Frequency
10

— e emt e e e e

Time (ms)

Figure 3-2. Test A.l.a

3-27

"n15_ch0101_p13.det"

Frequency

“EBg8gREEE8888838¢8¢88¢8

Time (ms)

"nl15_ch0101_p13.rec"
20 7

15 -

Frequency
10 1

g

Q.S.S.g.g.%.s.g.g.g.g.g = s

140
150
160

Time (ms)

Figure 3-3. Test A.1.b

3-28

"n15_ch2047_p1l4.det"

Frequency

CEERSREESREE8E8EEEEEEE

Time (ms)

"nl5_ch2047_pld.rec"
30 1

25 1
20 4
Frequency

15 1

10 7

Time (ms)

Figure 3-4. Test A.l.c

3-29

"nS_ch1101_p7.det"

Frequency

S888§8g8E5 EE585E888¢8

= e v pme e et e e e

Time (ms)

"n5_ch1101_p7.rec"
30 1

251
20 4
Frequency

15 1

10

et e et e e e

Time (ms)

Figure 3-5. Test A.2.a

3-30

"nS_ch0101_pl3.det"

>

Frequency

Time (ms)

"nS_ch0101_pl3.rec"
20 1

15

Frequency
10 -

e e e)

Time (ms)

Figure 3-6. Test A.2.b

3-31

"n5_ch2047_pl4.det"

Frequency

Time (ms)

"n5_ch2047_pl4.rec"
30 7

25 1
20
Frequency

15 1

10 1

Time (ms)

Figure 3-7. Test A.2.c

3-32

“nl14_ch0901_p7.det"

8-
6-
Frequency
4-
2-
0-
SEREEEEEESEERBEREEE
Time (ms)
"nl4_ch0901_p7.rec"
20 1
15 1
Frequency
10 1
5-
o +———— - v+
©S2 8888 82888238888

Time (ms)

Figure 3-8. Test A.3.a

3-33

"n14_ch0101_p3.det"

Frequency
SEEESEEEETEE885885 882
Time (ms)
"nl4_ch0101_p3.rec"
201
15 4
Frequency
10
5 -y
0 T vy v L

e Pt et e ot et e

Time (ms)

Figure 3-9. Test A.3.b

3-34

"nl4_ch2047_p15.det"

Frequency

et e v et et e e et et

Time (ms)

"n14_ch2047_pl5.rec"
20 1

15

Frequency
10

Time (ms)

Figure 3-10. Test A.3.c

3-35

"n7_ch1301_p7.det"

Frequency

Time (ms)

"n7_ch1301_p7.rec"
30 1

25 1
20
Frequency

15 1

10 1

T

- 8'8'8.8'8'2'8'8'§

110
120
130
140

Time (ms)

Figure 3-11. Test B.l.a

3-36

"n7_ch0101_pS.det”

8 -
6 -
Frequency
4 -
2 -
0 -
°888888888888888
Time (ms)
"'n7_ch0101_p5.rec"
30 1
25 1
20 1
Frequency
15 1
10
5 e
0 T T T T T v ¥ .-—n
©S2RReRER2RZ2RBSBERES8S N

Time (ms)

Figure 3-12. Test B.1.b

3-37

"n7_ch2047_pl3.det"

Frequency

8888358888888 §%

—
-—

Time (ms)

"n7_ch2047_pl3.rec"
30 1

251
20 1
Frequency

15 1

10 1

e e e g e v e em e

Time (ms)

Figure 3-13. Test B.l.c

3-38

"n2_ch1301_p7.det"

Frequency

Time (ms)

"n2_ch1301_p7.rec"
30 1

25 1
20 -
Frequency

15 1

10

Time (ms)

Figure 3-14. Test B.2.a

3-39

"n2 _ch0101_pS.det”

Frequency

0-

58888885888 8E888¢

— et e em v

Time (ms)

"n2 _ch0101_pS5.rec”
20 7

15 1

Frequency
10 1

Time (ms)

Figure 3-15. Test B.2.b

3-40

"n2_ch2047_p13.det"

Frequency

Time (ms)

"n2_ch2047_pl3.rec"
30 1

251
20 4
Frequency

15 1

10 1

Time (ms)

Figure 3-16. Test B.2.c

3-41

"n3_ch1101_p7.det"

Frequency

O e et et gt et g o gww

Time (ms)

"n3_chl1101_p7.rec”
30 7

25 1
20
Frequency

15 1

10 7

0 T

S 2 R8R2 eI IRIIEERA TR
gz a2 22

Time {(ms)

Figure 3-17. Test B.3.a

3-42

"n3_ch0101_p11.det"

Frequency

Time (ms)

"n3_ch0101_pll.rec"
30 1

25 1
20 -
Frequency

15 1

10

Time (ms)

Figure 3-18. Test B.3.b

3-43

"n3_ch2047_p12.det"

Frequency

0

v

°888888888585885888¢888

— ot e e . pe et v et e

Time (ms)

"n3_ch2047_pl2.rec”
30 1

25 1
20 1
Frequency

15 1

10

e et e eme g g et e

Time (ms)

Figure 3-19. Test B.3.c

3-44

"n1_ch0301_p3.det"

Frequency

e gt gt e e o gt

Time (ms)

"nl_ch0301_p3.rec"
20 1

15 1

Frequency
10 1

(=T = N =] 'O O'O' 'O (=]
22 EEE8E888¢EE
Time (ms)

Figure 3-20. Test B.4.a

3-45

1080

1100

"n15_ch2357_pl2.det"

Frequency
Time (ms)
"nl5_ch2357_pl12.rec"
20 1
15 1
Frequency
10 1

v et e e et g e et

Time (ms)

Figure 3-21. Test C.l.a

3-46

"n15_ch1130_p11.det"

Frequency

888 83eRE sEEazTs segasnsnsnnnes

W gyt et g gt i ot g o
Time (ms)

"nl15_ch1130_pll.rec"
10 7

Frequency

1300
1310

Time (ms)

Figure 3-22, Test C.1.b

"n15_ch2047_p4.det”

Frequency
4-1
2-
0-
° 8888888886888
Time (ms)
"nl15_ch2047_p4.rec"
20 1
15
Frequency
10
5-
0 —r—r———r—r—rrrr-r-r-r-r-rr-rr--r
2 RR9R8R3RZ 2R RIRBRBRE SN

Time (ms)

Figure 3-23. Test C.1.c

3-48

Frequency

Frequency

"n15_ch1130_pl4.det"

A

ge§

._.

Time (ms)

"nl15_ch1130_pl4.rec"

Figure 3-24. Test C.1.d

3-49

"nd_ch2357_p3.det”

Frequency
TERESREREREEREEEEEER
Time (ms)
"nd4_ch2357_p3.rec"”
20 7
15 4
Frequency
10
5 -

CESRIAIABRIIEER]SEIRBRER

T et vt et v gl gt e gt v

200
210
220

Time (ms)

Figure 3-25. Test C.2.a

3-50

"nd4_ch2047_p4.det"”

Frequency

"8§8§EEgBE88888888

Time (ms)

"n4_ch2047_pd.rec"
20 1

15 1

Frequency
10 -

T e et et e et et g

Figure 3-26. Test C.2.b

3-51

"nd_ch1130_pl4.det”

Frequency
2 -
1 -
0
Time (ms)
"nd4_ch1130_pl4.rec"
20
15
Frequency
10 1

- rrrTrvTvT I Ty r T I T T T YT T I rIryrrryv yYYryrryr v ryr TP TVNYT YV TV ™

v
(= e Y e) OO SO0 OOOOS 80000 oo OOOOSOOO
—Nmm@msem*tn Moxsgmv\n Egg ot CNICNYTE W m%wggvm

Time (ms)

Figure 3-27. Test C.2.c

Frequency

Frequency

301

25 1

20

15 1

10

"n10_ch2357_p3.det"

Time (ms)

"n10_ch2357_p3.rec"

210

T e e et et et et ot

Time (ms)

Figure 3-28. Test C.3.a

3-53

Frequency

Frequency

307

25 1

20 1

15 1

10 1

"nl10_ch2047_p4.det"

“g883888888§888§

Time (ms)

1400

"nl0_ch2047_p4.rec"

| 5

0
SRR R SR e PR R R BoRRY SR SR Sa e AR EaRan ARy

(o 2 2] COOTXN CO0N LN T g

Time (ms)

Figure 3-29. Test C.3.b

3-54

TIERE

Frequency

Frequency

30 1

25 1

20

15 1

10 1

"n7_ch2357_p3.det"

Time (ms)

"n7_ch2357_p3.rec"

et gt pt o g - o

Time (ms)

Figure 3-30. Test D.l.a

3-55

=

pll.det”

"n7_ch1130

6
5
4

Frequency

Frequency

%mm 0L8T
oose 0987
001€ 0582
0062 06
008 %
00LT
009T 088
00ST 058
wm o8
€7 [
002z .ww
0012 - s
%008 3, I 05.
0061 & [OLL
-
ool o — O
0081 m o L
(1172 RN «o [OVC
00El o - o£e
o B S, PR — 0
ooot P oo
006 = 4
008 061
% oLl
005 091
Pt ost
002 vl
001 otl
0 0
¥ L § L L§ L]
o w <t o (o] -— o

Time (ms)

Test D.1.b

Figure 3-31.

3-56

pd.det"

"n7_ch2047

Frequency

pd.rec"

"n7_ch2047

207
15 1
10 1
5 -
0 -

Frequency

Time (ms)

Test D.1.c

Figure 3-32.

3-57

"n7_ch1130_pl4.det"

Frequency

°8§8885855888888888¢8

Time (ms)

"n7_ch2047_pl3.rec"
30 -

25 1
20 4
Frequency

15 1

10

Ll e R T R V=)

Time (ms)

Figure 3-33. Test D.1.d

3-58

Frequency

Frequency

307

25 1

20 +

15 1

10 1

"n11_ch2357_p3.det"

Time (ms)

"nll_ch2357_p3.rec"

Tt o it et et g ot ot

Time (ms)

Figure 3-34. Test D.2.a

3-59

"n11_ch1130_p11.det"

Frequency

0~

Time (ms)

"nl1l_ch1130_pll.rec”
10 1

Frequency

S T

SROICN O CRO VWA

Time (ms)

Figure 3-35. Test D.2.b

"n11_ch2047_pd.det"

Frequency

Time (ms)

"n11_ch2047_p4.rec"

12 7

10 1

8-

Frequency

6-

4-

2-

0-0000802 oog OOOOOOOOS 08
RERERRSIERESEEEE8SREEEE

Time (ms)

Figure 3-36. Test D.2.c

"n6_ch2357_p3.det"

Frequency
Time (ms)
"n6_ch2357_p3.rec"
20 1
15 4
Frequency
10
5 -

R R BRI B AR RB R RS SR SR eeseosooee s

CRCIC CNCN £AeNeD) N

Time (ms)

Figure 3-37. Test D.3.a

3-62

p4.det”

"n6_ch2047

Frequency

0002
0061
0081
0oLl
0091
00S1
00v1
00¢1
00Z1
00I1

Time (ms)

pd.rec"

"n6_ch2047

301

25 9

20

Frequency

15 1

10 1

Time (ms)

Test D.3.b

Figure 3-38.

3-63

"n2_ch2357_p3.det"

Frequency
c8gggegge
Time (ms)
"n2_ch2357_p3.rec"
10
8-
6-
Frequency
4-
2-

0
o] 2eR B2 SR BRI RB SRR RReeRRosagoRoeRR0 9

Y
(3 19 o3 NN OV OV N T <<

Time (ms)

Figure 3-39. Test D.4.a

3-64

"n2_ch2047_pd.det"

6-4

Frequency

Time (ms)

"n2_ch2047_pd.rec"
30 1

251
20 1
Frequency

15 1

10

Time (ms)

Figure 3-40. Test D.4.b

3-65

"n3_ch2357_p3.det"

Frequency
Time (ms)
"*n3_ch2357_p3l.rec"
20 1
15 1
Frequency
10 1
5 -
0 T T T T T R T T T Ty
SoRRFRBRER 2R SRBRERESRITRBRERE

Time (ms)

Figure 3-41. Test D.S.a

3-66

0082
00LT

00ST
00$T
00¢t<

pll.det"

"n3_ch1130
88
=8

Frequency

Time (ms)

pll.rec”

Frequency

31

"n3_ch1130

0 -

Time (ms)

Test D.5.b

Figure 3-42.

3-67

"n3_ch2047_p4.det"

Frequency

Time (ms)

"n3_ch2047_pd.rec"
20 1

15 1

Frequency
10

0'-"—H-I-FW-F"-'-'W_'-'-'-'J -----------

Qoo [=] OO0 RSO OOQROCO OPOOO
2RRVRBRBRGZRR ERIRE FRTRT ITINR]SS

Time (ms)

Figure 3-43. Test D.5.c

3-68

"n3_ch1130_p14.det"

Frequency
TERRSREREREEEEEREEEEE
Time (ms)
"n3_ch1130_pl4.rec"
30 1
Frequency
25 1
20 1
15 1
10 1
5 -l
.. -
R R R R R B F R R R R R R S R P e S R R N
Time (ms)

Figure 3-44. Test D.5.d

3-69

"nl_ch2357_p3.det"

4 4
Frequency ‘|

Time (ms)

"nl_ch2357_pl.rec"
20 1

Frequency
10 1
5 -
0 -

oooocosggogo_g asr?mﬁﬁ%&? IERTIIRLR

Lo o s lal o lag aenalos aaloging halng o)

3?8

Time (ms)

Figure 3-45. Test E.l.a

3-70

"n8_10_ch2357_p3.det"

8 -
6 -
Frequency
4 -
2 -t
O -
TEREERERBREEEECEEEERES
Time (ms)
"n8_10_ch2357_p3.rec”
20 1

15 1
Frequency

10 A

5-

Time (ms)

Figure 3-46. Test F.l.a

3-71

"n2_10_ch2357_p3.det"
10

Frequency

Time (ms)

"n2_10_ch2357_p3.rec"
307

25 1
20 4
Frequency

15 1

10 1

T et vl et e e e g e
T e o e e e v e v e e Pt et e gl e et et et e gt

Time (ms)

Figure 3-47. Test F.2.a

3-72

"n4_10_ch2357_p3.det"

Frequency
Time (ms)
"n4_10_ch2357_p3.rec"
301
25 1
20 4
Frequency
15
10
5-
0 (=] (=3 (=]) [=] ” (=] (=] < (=]
§ 8 § 8 ¥ § 8 § §
Time (ms)

Figure 3-48. Test F.3.a

3-73

Percentage

=
3
4]

ms)

Figure 3-49. The Probability Density Function for the Detection Times

3.3.3 Probability and Cumulative Density Functions

The I/O Fault Insertion Plan is comprised of 47 tests. Each test consists of 25 iterations.
For each iteration, the fault detection and reconfiguration times were recorded by the Fault
Insertion Software. Accordingly, a total of 1175 (47 times 25) data sets were anticipated.
As described in Section 3.3.1, however, five of the 1175 fault applications generated
“don't care” error symptoms. As a result, 1170 sets of data, or 99.6 percent of the applied
faults, were recorded.

Probability and cumulative density functions for these data sets were generated to complete
the I/O Network Fault Insertion Analysis; these functions are illustrated in Figures 3-49
through 3-52. The probability density function for the I/O fault detection times depicts the
wide variance in the observed times (discussed in Section 3.3.2.1). In the 0 to 2000 ms.
range, which is the detection cycle for the AIPS Distributed Engineering Model, the
percentage of events in each bucket is relatively consistent, ranging from 2.5 to 8.5
percent. In the 2000 ms. and over range, this percentage decreases to less than one-half
percent. As a result, as shown by the cumulative density function for the detection times,
approximately 97 percent of all faults were detected in 2000 ms. or less.

3-74

100
a5

75
70

55
50
45
40
35
30

Percentage

15
10

)
3
4

\ B EARARIRE RS LA RS RIS S NIARASELEARRE R RS A A BA LA
0000000000 00000000000 COCO 00O
CO0O0QO0O000O0O0COO0O0O0O0QOO0OOOO0 OO O
TN OTVDUONDDPO-NNTVONTDOO ~NOT W
—_— T 0N ONNNNN

Time (ms)

Figure 3-50. The Cumulative Density Function for the Detection Times

The probability density function for the 1/O fault reconfiguration times indicate that a
significant percentage of the faults were bypassed in 100 to 500 ms. while a substantial but
smaller percentage were reconfigured around in 900 to 1100 ms. This latter range
represents the percentage of times that the reconfiguration process employed the network
regrowth algorithm that uses "low-level diagnostics" (several types of growth algorithms
were designed for the AIPS 1/O network). Furthermore, as depicted by the cumulative
density function in Figure 3-52, approximately 85 percent of all faults were isolated and
bypassed in 500 ms. or less.

3.4 I/0 Network Fault Insertion: Conclusions

To conclude the discussion of the I/O Fault Insertion Plan, the Fault Insertion results are
presented with respect to the goals of the Fault Injection Study. In brief, the objectives of
the I/O analysis were:

1. to test the design specification for fault tolerance,

2. to obtain feedback for fault removal from the design implementation,

3. to obtain statistical data regarding fault detection, isolation, and reconfiguration
(FDIR) responses, and

4. toobtain data regarding the effects of faults on system performance.

3-75

P P G Oy
©C = N @ &~ O
Moo b s b o 0 a0 s 1 s 0 2 0 2 0 a2tk s 12l

9
8
Percentage
7
6
5
4
3
2
1
0 L] ¥ 1 L T ¥
o o (= (=] o (= (= o (= (= (=4 [~ L= (=] (=] (=
(=] (=1 o (=] (=2 [= (=] (=4 (=] o o o o (=4 (=]
- o~ [} ~ w © ~ -~} n o - o~ [y b I't_')
Time (ms)

Figure 3-51. The Probability Density Function for the
Reconfiguration Times

ER8RS

Percentage 50

0
100
2004
300 4
400+
$00 1
600
7001
800 4
900 +

10004

11004

12004

13004

14004

1500~

Figure 3-52. The Cumulative Density Function for the
Reconfiguration Times

3-76

The process of validating the fault tolerant specifications and obtaining fault removal
feedback is concerned with the presence of design flaws and the fault coverage. As
detailed in Section 3.3, the limited I/O Fault Insertion process that was performed did not
find any design errors. This does not necessarily prove that the design of the network is
completely error free; however, the level of confidence in the design is greater now than it
was before the fault injection experiments. The fault detection coverage was 99.6%; 0.4%
of the faults did not produce any detectable error symptoms. The reconfiguration coverage
for detected faults was 100%.

To confirm the coverage of the I/O faults, several devices were utilized. The detection of
the fault was verified using the Fault Insertion Software (FIS) and light emitting diodes
(LEDs). The FIS program records whether or not a fault was detected. Additionally, the
manifestation of a fault is indicated by the I/O network LEDs, which are diodes that depict
the configuration of the I/O network. The FIS logs and the network LEDs were examined
by the J/O fault insertion supervisor to verify that each fault was detected.

The reconfiguration of the network was also validated using the FIS program and the I/O
network LEDs. In addition, the I/O Network Redundancy Management logs were
employed. Similar to the fault detection process, the FIS program was analyzed to
determine if the applied fault was bypassed. Further, since the LEDs indicate the
configuration of the network and the /O reconfiguration strategy is deterministic, the
expected reconfiguration was calculated by the fault injection supervisor and verified by
examining the LEDs. Moreover, the /O Redundancy Management logs, which identify the
fault and summarize the reconfiguration process, were periodically examined by the fault
injection supervisor to confirm the correctness of the I/O Network Management algorithm.

The third and fourth objectives of the I/O Fault Insertion study are concerned with
recording data to measure the performance of the FDIR process and quantifying how the
I/O faults affect system performance. As presented in Sections 3.3.1 through 3.3.3, the
I/O Fault Insertion process recorded 1170 sets of data. The maximum and average
detection and reconfiguration times, the corresponding frequency histograms, and the
probability and cumulative distribution functions were calculated. This information
accurately characterizes the performance of the I/O FDIR process on the AIPS Distributed
Engineering Model. Furthermore, the data illustrates the effect that various 1/O faults have
on the overall performance of the Model.

As illustrated in Section 3.3.1, the I/O Fault Insertion results typically conformed to the
expected maximum and average times. The anticipated maximum detection time was about
2075 ms. plus the error latency. Accordingly, the expected average time was
approximately 1040 ms. plus the error latency. Due to the number of faults and the
complexity of their error symptoms, the maximum and average reconfiguration times were
not explicitly calculated for each fault (calculations would be numerous and gross
approximations). The worst case reconfiguration time, however, was determined to be

3-77

approximately 3500 ms. - fault diagnostics plus the worst case regrowth scenario. As
estimated, all reconfiguration times were less than the worst case. Since only the worst
case reconfiguration time was calculated, the I/O reconfiguration times were primarily used
to characterize the performance of the 1/O FDIR process rather than to compare the
measured data to their corresponding expectations.

The performance of the FDIR process significantly improves if the AIPS/ALS technology
projections are considered. The throughput performance of the projected AIPS/ALS Fault
Tolerant Processor is approximately 50 times the current capabilities of the AIPS
Distributed Engineering Model, with respect to the I/O Redundancy Management code.
Consequently, the maximum I/O fault detection time will be reduced from 2075 ms. to
approximately 42 ms., and the corresponding average time will be about 21 ms. (plus error
latency). The reconfiguration times will also be reduced by a factor of 50. For example, a
failed link that causes a disjoint node, which is typically bypassed in about 150 ms. by the
AIPS Engineering Model, can be reconfigured around in 3 ms. with the AIPS/ALS system.
Since the AIPS/ALS Fault Tolerant Processor will significantly decrease the fault detection
and reconfiguration times (with respect to the Engineering Model), the effect that I/O faults
have on the system performance will also be greatly reduced.

3-78

4.0 APPLYING FAULTS TO THE CORE FTP

This chapter discusses the Core FTP Fault Injection Plan, which is a set of faults that were
injected into the core of an AIPS Fault Tolerant Processor. Section 4.1 describes the AIPS
Fault Tolerant Processor while Section 4.2 summarizes the Fault Detection, Identification
and Reconfiguration algorithm. The test cases comprising the Core FTP Fault Injection
Plan are specified in Section 4.3, and the results of the test cases are presented in Section
4.4. Section 4.5 contains conclusions and summary remarks about the test cases.

4.1 Overview of the AIPS Fault Tolerant Processor

The Fault Tolerant Processor (FTP) consists of a variable number of redundant processing
channels depending on the reliability requirements of the application. The AIPS
Engineering Model FTP is intended to be operated primarily as a triplex, but it provides
fail-stop capability when operated as a duplex. A single channel can also be used for non-
critical operations as a simplex computer.

Each channel of an FTP consists of three sections: a computational section, an input/output
section, and shared resources. The first section contains a Computational Processor (CP),
memory, timers and clocks. The second section contains an Input/Output Processor (IOP),
memory, timers, and clocks. The shared resources include shared memory, data exchange
hardware, timers, and external interface hardware. The redundant processors are tightly
synchronized using a fault-tolerant clock. Data is exchanged among redundant channels on
point-to-point links. The data exchange hardware also performs the bit-for-bit voting, fault
detection and masking functions in a manner that satisfies all the requirements to protect the
FTP from Byzantine failures. Apart from redundancy, there are other features that provide
hardware and software fault tolerance. These include watchdog timers, processor
interlocks, a privileged operating mode, handlers for hardware and software exceptions,
and self tests.

A functional view of one channel of an AIPS FTP is shown in Figure 4-1. The CP and IOP
are identical, conventional processor architectures, and each processor refers to the other as
its companion. Interval timers are used for scheduling tasks and maintaining time-out
limits on applications tasks (task watchdog timers). A hardware watchdog timer is
provided to increase fault coverage and to cause a processor to fail-safe in case of hardware
or software malfunctions. This timer resets the processor and disables all of its outputs, if
itis not reset periodically. The watchdog timer is implemented independently of the basic
processor timing circuitry. A monitor and interlock circuit in each channel provides the
capability to disable the outputs of faulty processors. Any two correctly operating
processors in a triplex FTP can disable the outputs of the third failed processor through this
interlock mechanism. A processor that is failed active is thus prevented from transmitting
erroneous data or commands on I/O networks, IC networks, and local 1/0 devices.

4-1

The CP and IOP share resources through.a bus that can be accessed by either processor.
These shared resources include memory; a system timer; the interchannel circuitry for the
data exchange, fault-tolerant clock and monitor interlock; and interfaces to one or more I/O
networks, memory mapped I/O devices, and the IC network.

Computational Processor

Processor Memory Interval Dedicated
Timers 1/0
A1 1/0 Néﬂ I/O Ner2
Inter
—P
Shared 1/0 Vo GPC L Inter-Computer
Memory Comm | |Comm Comm [M ihok
Shared a0s) J0S) acls) |[4— N
Resources
Interchannel: System
- Data Exchange Timer
- Fault Tolerant Clock
- Monitor Interlock
| I |
Processor Memory Interval Dedicated
Timers I/O
Input/Output Processor
Figure 4-1. Fault Tolerant Processor: Functional View (One Channel)

One very important aspect of the FTP architecture is the interconnection hardware between
redundant channels. The interchannel data exchange and voting hardware serves three
purposes: it provides a path for distributing data in one channel to all other channels; it
provides a mechanism for comparing results of the redundant channels; and it provides a
path for distributing and comparing timing and control signals such as the fault tolerant
clock and external interrupts.

4-2

The same software executes on a redundant FTP as on a simplex channel and application
code is written as if it were to operate on a simplex computer. All redundant processors
have identical software and execute identical instructions at exactly the same time. This
feature of the architecture is carried out in the data exchange hardware and software as well.
The data exchange hardware is designed such that all redundant processors execute
identical instructions when exchanging data whether it is redundant data to be voted or
simplex data being transmitted from one channel to others. Thus, for example, if a simplex
exchange is to be made from channel A, all three channels write to their FROM_A register.
While the contents of the FROM_A register are transmitted from A, voted, and deposited in
the receive registers of all three processors, the contents of the FROM_A registers in
channels B and C, which are meaningless, are ignored.

On a routine basis, the internally produced data that needs to be exchinged consists of error
information and cross channel comparisons of results for fault detection. These operations
can be easily confined to the program responsible for Fault Detection, Identification, and
Reconfiguration (FDIR). Therefore, the remaining pieces of the Operating System software
and the applications programs need not be aware of the existence of the data exchange
registers.

4.2 FTP Fault Detection, Identification and Reconfiguration

The AIPS FTP uses hardware redundancy with fault detection and masking capabilities to
provide fault tolerance. The fault tolerance provided by the hardware is greatly enhanced by
the Fault Detection, Identification and Reconfiguration (FDIR) functions which are part of
the FTP local operating system. While the hardware alone in a triplex FTP could sustain
one fault, the FDIR software allows it to sustain multiple successive faults and identifies the
fault(s) for an operator, thus making the FTP much more robust and serviceable.

The FDIR software in AIPS has two main functions:

* identifying a failed channel, i.e., detecting a fault, isolating it to a single
channel, masking the faulty channel's inputs, and disabling its outputs.

* recovering a failed channel, i.e., determining that the fault no longer exists,
bringing the channel into line with the two synchronized channels, accepting the
channel's inputs, and enabling its outputs.

These functions are described in more detail below.
4.2.1 Fault Detection and Identification

Fault detection mechanisms are implemented in both hardware and software, while the
identification mechanisms are implemented solely in software. Instruction-level synch-

4-3

ronization together with bit-for-bit comparison of redundant data makes it possible to isolate
a fault to a single channel.

There are four main processes which detect and identify faults:

Fast FDIR. A periodic, high-priority task which checks for failure of a
companion, an unsynchronized channel, a fault in the data exchange hardware,
and a fault in the fault-tolerant clock;

Watchdog Timer Reset. A periodic, high-priority task which taps the watchdog
timer within the given time bounds so that the timer does not overrun and cause a
hardware reset;

Background Selftests. A low-priority task which does tests to uncover latent
faults in memory, voting circuitry and error latches, and the real-time clock; and

Hardware Exception Handler. A procedure for handling M68010 hardware
exceptions such as an illegal instruction or addressing error.

After a channel is identified as being faulty, the FTP is reconfigured so that the faulty
channel does not affect FTP operation. The errors generated by the channel are masked,
and its outputs are stopped. This is done by a procedure, Reconfigure, that sets a software
variable identifying the channel as failed, disengages the monitor interlock so that outputs
from the faulty channel are disabled, and logs the fault and the reconfiguration for later
examination by an operator.

4.2.1.1 Fast FDIR

Fast FDIR is one of four tasks which detect and isolate errors. It is a high-priority task
which runs every 40 ms on both the CP and IOP. It checks for:

L]

a fault reported by its companion processor

an unsynchronized channel

a fault detected but not reconfigured around by the selftests

a data exchange fault, i.e., either a faulty in the interstage or in any link in the
data exchange hardware

a fault in the fault-tolerant clock

a missing companion processor (i.e., a companion that is not executing FDIR at
the prescribed rate).

Error detection is done in the order given above. If any particular test uncovers a fault, the
remaining tests are not done during that iteration of Fast FDIR. When an error is detected,

the error is logged, the FTP is reconfigured to exclude the faulty channel, and the
reconfiguration is logged.

4.2.1.2 Watchdog Timer Reset

The second fault detection process is the Watchdog Timer Reset process. This process does
not perform fault detection functions in quite the same way, however, as other processes in
this category, i.e., by responding to a specific fault. Rather, the failure of this task to
execute at its scheduled period would indicate a critical fault in either hardware or software
and would cause a hardware reset.

The watchdog timer is a hardware component whose purpose is to prevent infinite software
loops or hardware faults from hanging up the system. After it has been started, the
watchdog must be cleared periodically within a set time window: if it is not cleared within
this window (i.e., either too early or too late) a hardware reset occurs. On the AIPS FTP
this window is 60-120 milliseconds plus or minus 10%. The Watchdog Timer Reset
process performs the function of clearing the watchdog timer.

4.2.1.3 Background Self Test

The third fault detection process is the Selftest task, a task of the lowest priority that runs
when there are no higher priority tasks to be executed. Its job is to uncover latent faults,
that is, faults which exist but which have not yet caused data exchange errors or desynchro-
nization of a channel. This task tests memory, the voting circuitry and error latches, and the
real-time clock.

The following memory tests are performed:

* PROM sum check. This test verifies that all channels have identical values in
ROM by doing a sum check.

* RAM scrub. This test checks each memory location to ensure that the values are
identical among the three channels.

* RAM pattern test. This test checks the functionality of each location. It tests
each bit's ability to hold both a 1 and a 0 by writing specific patterns to each
word.

* Shared memory scrub. This test checks each memory location in shared
memory to ensure that the values are identical among the three channels.

The voter circuitry and error latches are tested by writing normal and faulty patterns of data
to the voters. After these votes, both the resulting values and the error latches are checked
to confirm that all errors were properly latched and corrected.

4-5

The real-time clock is tested by reading the current value and ensuring that it is identical
among the three channels.

4.2.1.4 Hardware Exception Handler

The exception handler is the fourth fault detection process. It is invoked when there is a
hardware exception such as an illegal instruction or an address error. A presence test is
done to determine if the exception was caused by a hardware error or a generic software
error. If the results of the presence test show that the processor is alone, this implies a
hardware error. If the presence test shows that the processor is with others, this implies a
generic software error. In either case, the exception and the results of the presence tests are
logged in the non-congruent log, and the processor(s) are restarted.

4.2.2 Channel Recovery

The reliability of the FTP is greatly enhanced if channels previously diagnosed as faulty but
currently operating without faults can be brought back into the FTP configuration. How a
channel is recovered depends on the type of failure, i.e., whether or not the fault has
caused the channel to fall out of sync. A failure in the data exchange hardware does not
desynchronize a channel, while other kinds of failures do. An FTP has recovered from a
fault, therefore, when

. the failed channel can be resynchronized, or
. the failed channel no longer shows errors in the data exchange hardware.

When a channel has been recovered, the FTP must be reconfigured so that the recovered
channel participates in the FTP operation and another fault can be tolerated.

There are three main processes involved in channel recovery. Transient FDIR
distinguishes between transient and hard faults when a channel recovery is being attempted
in order to balance competing system needs. Lost Soul Sync is responsible for
resynchronizing an unsynchronized channel, i.e., synchronizing it to the instruction level
and making its internal state the same as the duplex processors. Finally, the Restart
process is invoked when a second fault or a common-mode failure occurs. These faults
result in a fail-safe condition, which the AIPS FTP responds to with a system restart.

4.2.2.1 Transient FDIR
When recovering a failed channel, system resources are used most efficiently if a
distinction is made between transient faults and hard faults. Transient faults are assumed to

be caused by some temporary environmental condition (e.g., a power surge). By

4-6

definition, they are expected to disappear with time. Hard faults, on the other hand, are
caused by breakdowns of the FTP hardware that must be physically repaired.

The attempt to recover a failed channel could be made automatically (i.e., the software
periodically tests the channel to determine its current state) or it could be made solely under
operator direction (i.e., the operator enters a command indicating the channel has been
repaired). The first method satisfies the need to recover the channel as quickly as possible
while the second method satisfies the need to not waste system resources by repeatedly
testing a channel with a hard fault. Transient FDIR strikes a balance between these two
needs by initially assuming that any particular fault is transient (it has been observed that 50
to 80 percent of all faults in computer systems are transient) and automatically attempting a
recovery. As time passes without the channel being recovered, it becomes more likely that
the fault is a hard fault rather than a transient, and Transient FDIR makes the recovery
attempt less often. After a certain period it can reasonably be assumed that the fault is a
hard fault. Then Transient FDIR either waits for an operator signal or, in the case where
there is no operator, tests the channel only at some infrequent interval such as its mean time
to repair.

Additionally, it has been noted that hard faults tend to manifest themselves sporadically. A
channel may be recovered according to the above criteria, but may immediately fail again.
Transient FDIR attempts to prevent this situation by regarding a recovered channel as
recovered only on a trial basis. If the channel passes its trial period without further errors,
it is regarded as fully recovered and can be added back into the FTP configuration.
Intermittent faults which occur at infrequent intervals (i.e., after the trial period has passed)
will not be handled by this scheme, however, but will be regarded as new faults.

This distinction between transient and hard faults thus defines the two functions of
Transient FDIR:

. It decides when it is appropriate to attempt to recover a failed channel.
. Once a channel is seen as fault-free, it monitors its health for a brief probation
period before declaring it fully recovered.

Attempting Channe¢l Recovery

The initial response to all detected faults is to mask the fault and disable all outputs from the
faulty channel. Thereafter, the status of the failed channel is periodically "sampled” to
determine if the fault is transient. Immediately after a failure, a recovery attempt is made
and a sampling of the channel's health is taken. If the attempt fails (i.e., the
unsynchronized channel cannot be found or the data exchange latches still show errors), the

4-7

time between successive attempts is doubled, until Mean Time To Repair (MTTR) is
reached. This time delay between successive recovery tries and the samplings of the status
of a failed channel is a function of state variables representing the "health” of the channel.
The "health” variable, in turn, is a function of the error history of the particular channel
with many recent fault observations for the channel indicating "poor” health and declining
fault observations representing “"good" health. The time between recovery attempts is
doubled following each status sampling which indicates the fault is still present. This
sampling sequence is repeated until either the fault status changes to indicated the fault is no
longer present or an upper threshold on the retry time is crossed at which point the fault is
deemed "hard". From this point on recovery will be attempted only when an operator has
signaled that the channel has been repaired or, in the case where there is no operator, when
another MTTR period has passed.

Probation Monitoring

After a channel has been recovered, it must undergo a trial period before being declared
fully recovered and functional. The length of this period is a function of the "health" of the
channel and depends on the number and type of faults. A channel with multiple faults in
quick succession (i.e., the channel fails before it has passed its trial period) will have a
longer trial period than if it only had a single fault. Faults that desynchronize a channel
require a longer trial period than data exchange errors.

4.2.2.2 Lost Soul Sync

Lost Soul Sync is the process of attempting to resynchronize a previously failed channel (a
“lost soul") and, if successful, bringing it to the same state as the two good channels. This
process has two main steps:

* resynchronizing the channel, i.e., synchronizing it to the instruction level with
the other two channels, and

* aligning the channel, i.e., making its volatile memory and registers the same as
those of the other two channels. This ensures that after the code execution is
synchronized, only a fault could cause a channel to lose synchronization, rather
than, for example, a memory location that contained an incorrect value.

This task is described in detail in [4], for the reader who is unfamiliar with the operation of
Lost Soul Sync.

4.2.2.3 System Restart

Certain faults which are detected may be of such a magnitude that they are unsustainable
and may be recovered from only by restarting the system. Examples of such faults are a
second fault detected by Fast FDIR and common-mode faults. The restart process
accomplishes the system restart without requiring operator intervention.

4.2.3 Reconfiguration

The reconfiguration process is invoked by the fault detection and identification tasks when
a fault has been identified and by the recovery tasks when a channel has been repaired.
During a reconfiguration a channel is either removed from the configuration because it was
found to be faulty, or added in because the fault no longer exists.

When a channel is identified as being faulty, the errors generated by that channel must be
masked and its outputs must be stopped. This is done by (1) setting a software variable
which identifies the channel as having failed, and (2) disengaging the monitor interlock so
the channel's outputs are disabled.

When a channel has recovered from a failure, its inputs must be accepted and its outputs
enabled. This is done by the reverse process, i.e., (1) setting the software variable to say
that the channel is now functional, and (2) engaging the monitor interlock so the channel's
outputs are enabled.

When a channel has recovered from a failure, it is considered part of the configuration only
by FDIR until its probation period has expired. This is done by setting a software variable
to say that the channel is enabled on a trial basis.

4.3 Specification of Core FTP Faults

Two methods were used to apply faults to the core FTP. The first method used the Fault
Injector Software described in Chapter 2 and simulated memory faults by altering selected
portions of one channel's memory. It is referred to in the following sections as Software
Fault Injection.The second method used both the Fault Injector Hardware and Software
described in Chapter 2. This method, referred to in the following sections as Hardware
Fault Injection, created faults by altering the signals provided to a selected pin.

4.3.1 The Software Fault Injection Plan

The Software Fault Injection Plan inserts defects into a triplex FTP. A simulated memory
fault is inserted by corrupting the memory of one channel of the FTP. The faults applied are

49

divided into three categories: data, constants, and code. This classification is based on the
type of memory that is altered.

* Dara. The data section used by a software module is corrupted. The data
section has three segments: initialized, uninitialized, and debug. Initialized data
are objects that are assigned values when they are declared. In contrast,
uninitialized data are objects that are declared but not assigned; they are initialized
by the program at a later time. Last, debug data is information used by the AIPS
system for debugging.

* Constants. The constants section of a software module is corrupted.
* Code. The instructions in a particular software module are corrupted.

These simulated memory faults will typically cause one or more of the following symptoms:
* Unsynchronized Channel. The corrupted memory causes the channel to go out
of synchronization (because data utilized by the program or the program itself is
altered by the applied defect). This condition is identified by a Presence Test.
The presence test detects an unsynchronized channel by sending a unique pattern
from each channel through the data exchange. If the result read from the data
exchange receiver is not the expected pattern, the channel originating the
exchange is judged not present and therefore out of sync.

* Inconsistent RAM. The corrupted memory differs from its analogous values in
the other channels (the data should be the same). This condition is identified by
the RAM Scrub process. This test checks each memory location to ensure that
the values are identical among the three channels.

* Incorrect PROM sum. The altered memory changes program instructions. This
error symptom is determined by the PROM Sum Check. This test verifies that
all channels have identical values in ROM by doing a sum check. (In the AIPS
Engineering model, code actually resided in RAM but was treated as if it was in
PROM.)

* Unknown DX. The faulty channel temporarily goes out of sync (in particular,
during a data exchange) but is forced back into sync prior to the subsequent
presence tests. This sequence of events is detected when the faulty channel's
data exchange (DX) latches are compared to other channels (to determine if the
DX latches agree).

The Software Fault Injection Plan is comprised of 178 tests; 117 tests involve the CP while
61 affect the IOP. Each test was deterministically selected; that is, the software module to
be corrupted was chosen by the fault injector supervisor and an address range that would
disrupt the module's execution was determined. (If random fault selection was performed,
the address range would be arbitrarily selected.)

4-10

The Core FTP Software Fault Injection Plan is detailed in the following table. The table
presents five sets of information.

o Test Numbers. The tests are divided into two sections: CP and IOP. Each
section is segmented into three subcategories: data, constants, and code. The
tests are identified by the section and subcategory.

- CP_11t0 CP_99 affect the CP's data memory;

- CP_100to CP_199 involve the CP's constant sections;

- CP_200 to CP_299 corrupt the CP's program space;

- IOP_1 to IOP_99 affect the IOP's data memory;

- IOP_100 to IOP_199 involve the IOP's constant sections; and
- IOP_200 to IOP_299 corrupt the IOP's program space;

e Module Name. The name of the software module that is affected by the
application of the defect. The modules selected were chosen from the entire
range of AIPS system software components, including the Ada Run-Time
System, FDIR, the CRT Display tasks, Inter-Computer Communication
Services, and application tasks.

* Data Type. The type of information that is corrupted by the fault: BSS
(uninitialized data), DEBUG (debug log), DATA (initialized data), CONST
(constants region), and CODE (program section).

* Addresses Corrupted. This is the address range that is altered by the Fault
Injection Software.

» Faulty Data. The value of the faulty data written into the address range. This is
typically O or FFFF. »

The Software Fault Injection Plan only applied faults to a subset of the AIPS FTP software,
because it was more concerned with a general characterization of the FTP Redundancy
Management process' performance rather than a comprehensive one. Given enough
resources, an extensive Core FTP Fault Injection Plan could be developed and applied to the
AIPS Engineering Model, but this was not done for the present project.

4-11

Test Module Data Addresses Faulty
No. Name Type Corrupted Data
CP_1 CALENDAR_B_K BSS 1E4F14 - 1E4F22 | FFFF
CP_2 CALENDAR_K BSS 1E4058 - 1E4062 | FFFF
CP_3 CONFIG_B BSS 1E8F74 - 1E8F76 | FFFF
CP_4 DEBUG_TRACE_B DEBUG | 7100 - 7D00 FFFF
CP_5 LSS_CONFIG BSS 1E42AC - 1E42F2 | FFFF
CP_6 LSS_CONFIG_B BSS 1E5070 - 1ES082 | FFFF
CP_7 LSS_CLOCK_ERR BSS 1E4E84 - 1E4EB6 | FFFF
CP_8 LSS_CLOCK_ERR_B BSS 1E4EBS - 1E4EE2 | FFFF
CP_9 LSS_DX_ERR BSS 1E4ADS - 1E4B26 | FFFF
CP_10 LSS_DX ERR_B DATA 1DE280 - IDE2CE | FFFF
CP_11 LSS_EVENT _CNTL DATA 1DEO10 - IDEOIE | FFFF
CP_12 LSS_EVENT_CNTL_B_K BSS 1E4DB8 - 1E4DCA | FFFF
CP_13 LSS_FFDI_B BSS 1ESADS - 1E8B22 | FFFF
CP_14 LSS_FFDI BSS 1E41D4 - 1IE41EA | FFFF
CP_15 LSS_FDIR_GLOBALS BSS 1E4D60 - 1E4D82 | FFFF
CP_16 LSS_GLBOAL_MEM DATA 1IDE31C - 1DE362 | FFFF
CP_17 LSS_MEMORY BSS 1E4138 - 1E416E | FFFF
CP_18 LSS_NON_CONGRUENT_DATA BSS 1E42F4 - 1E43F2 | FFFF
CP_19 STATUS_DATABASE_MGR_K BSS 1E43F4 - 1E4426 | FFFF
CP_20 STATUS_DATABASE_MSG_B K BSS 1E4428 - 1IE4AAE | FFFF
CP_21 LSS_SYNC BSS 1E4D84 - 1E4D9E | FFFF
CP_22 LSS_SYNC_B BSS 1E8AQS - 1IE8A16 | FFFF
CP_23 LSS_TEST BSS 1E5084 - 1IESOC2 | FFFF
CP_24 LSS_TEST_B BSS 1EBA90 - 1IESAD2 | FFFF
CP_25 LSS_TEST2 BSS 1E51C8 - 1E51FE | FFFF
CP_26 LSS_TEST2 B DATA 1DE6BC - 1DESSA | FFFF
CP_27 LINK_BLOCK BSS 1E41A4 - 1IE41AE | FFFF
CP_28 LINK_BLOCK_B BSS 1E4238 - 1E425E | FFFF
CP_28A |OS_B DATA 1DEESS - 1DEF3E | FFFF
CP_29 TIMER_SUP BSS 1E914C - 1E915E | FFFF
CP_30 TIMER_SUP_B DATA 1DF134 - 1DF146 |FFFF

4-12

Test Module Data Addresses Faulty
No. Name Type Corrupted Data
CP_31 TS_MD BSS 1E91B0 - 1E91C6 | FFFF
CP_32 ICCS_CP_IOP_COMMON DATA 1DE364 - IDE63E | FFFF
CP_33 TS_SIGNAL_B DATA 1DECSS8 - 1DEC86 | FFFF
CP_34 TS_MD_CLK DATA 1DF168 - 1DF172 | FFFF
CP_35 SYS_TABLE DATA 1DF1EC - 1DF252 | FFFF
CP_36 LSS_TIME_MGR BSS 1E4EFS - 1E4F12 | FFFF
CP_37 ICSS_USER_SERVICES BSS 1E5200 - 1E5216 | FFFF
CP_38 ICCS_CP_IOP_COMMON BSS 1E5218 - 1IE5500 | FFFF
CP_39 LSS_TIME_MGR _B BSS 1E8A18 - IEBA3A | FFFF
CP_40 ICDEMO_STATUS_INFO BSS 1E50C4 - 1IES1C6 | FFFF
CP_41 ICCS_USER_SERVICES_B BSS 1E8ADA4 - 1IESAD6 | FFFF
CP_42 ICDEMO_ST_BRCAST BSS 1E8B54 - 1IE8B6A | FFFF
CP_43 ICDEMO_ST_BRCAST BSS 1E8C04 - 1IESCIE | FFFF
CP_44 ICCS_DISP_MAIN_CP_B BSS 1ESD34 - 1ESD3A | FFFF
CP_45 ICCS_TFDI_CP_B BSS 1ESA3C - 1ES8A7A | FFFF
CP_46 ICCS_FDIR_TIME_CP_B BSS 1E8B44 - 1E8B46 | FFFF
CP_47 TS_MD_CLK_B BSS 1E9184 - 1E9192 | FFFF
CP_100 |DEBUG_TRACE B CONST | 1B2B80 - 1B2BB2 | FFFF
CP_101 |ICCS_ICIO_MAIN_PROG_CP CONST | 1C0458 - 1C047A | FFFF
CP_102 | CALENDAR_K CONST |1B1574- 1B15A2 | FFFF
CP_103 | MACHINE_CODE CONST |1B1610-1B1632 | FFFF
CP_104 | MACHINE_CODE CONST | 1BIFI1C - 1B1F3E | FFFF
CP_105 | SYSTEM CONST]1B1634 - 1B1672 | FFFF
CP_106 |TEXT IO _K CONST | 1B1674 - 1B16A6 | FFFF
CP_107 |SYSTEM B CONST | 1B1F40 - 1B1FE2 | FFFF
CP_108 |LSS_TASK_IDS CONST | 1B202C- 1B106E | FFFF
CP_109 | LSS_MEMORY CONST | 1B1628 - 1B270E | FFFF
CP_110 |LSS_TASK IDS_B_K CONST |1B1734 - 1B2866 | FFFF
CP_111 |[ICCS_FDIR_TIME_CP CONST | 1B28EQO - 1B290A | FFFF
CP_112 |LSS_EXCHANGE CONST | 1B2A18 - 1B2A66 | FFFF
CP_113 |LSS_EVENT_CNTL CONST | 1B2AE4 - 1B2B36 | FFFF

4-13

Test Module Data Addresses Faulty
No. Name T_ype Corrupted Data
CP_114 |LSS_SCHEDULER CONST | 1B35A8 - 1B370E | FFFF
CP_115 |LSS_SCHEDULER_B_K CONST | 1B3710- 1B37E2 |FFFF
CP_116 |LSS_CONFIG CONST | 1B3AF4 - 1B3D76 | FFFF
CP_117 |LSS_NON_CONGRUENT_DATA CONST | 1B3D78 - 1B3FB2 | FFFF
CP_118 |STATUS DATABASE MGR..._ K CONST | 1B3FDS - 1B41DA | FFFF
CP_119 |STATUS_DATABASE _MGR... B_K | CONST | 1B44DC - 1B45DE | FFFF
CP_120 |LSS_FDIR_GLOBALS CONST | 1B679C - 1B6846 | FFFF
CP_121 |LSS_GLOBAL MEM_UTIL CONST | 1B6B7C - 1B6BBE | FFFF
CP_122 |LSS_EVENT CNTL_B_K CONST | 1B6BCO - 1B6D12 | FFFF
CP_123 |LSS_GLOBAL_MEM_UTIL_B K CONST | 1B6D5C - 1B6D9YE | FFFF
CP_124 | CALENDAR_B_K CONST | 1B7B54 - 1B7F26 | FFFF
CP_125 [LSS_SYNC CONST | 1B6A44 - 1B6B56 | FFFF
CP_126 |LSS_TIME_UTIL_B CONST | 1B7F80 - 1B8366 | FFFF
CP_127 |[LSS_GLOBAL_MEM CONST | 1B8728 - 1B874A | FFFF
CP_128 |LSS_CONFIG_B - CONST | 1B8924 - 1BS8AGE | FFFF
| CP_129 |LSS_TIME_MGR_B CONST | 1BB634 - 1BB802 | FFFF
CP_130 |LSS_EXCHANGE_B CONST | 1BBE14 - 1BBED6 | FFFF
CP_131 |LSS_DX_ERR CONST | 1B4ADC - 1B4B12 | FFFF
CP_132 |[LSS_DX_ERR_B CONST | 1B6848 - 1B6AIE " | FFFF
CP_133 |LSS_CLOCK_ERR CONST | 1B7740 - 1B77D6 | FFFF
CP_134 |LSS_CLOCK_ERR_B CONST | 1B77D8 - 1B788A | FFFF
CP_135 |LSS_SYNC_B CONST | 1BB29C - 1BB60E | FFFF
CP_136 [ICCS_TFDI_CP_B CONST | 1BBCCC - 1BBD76 FFFF
CP_137 |LSS_FFDI_B CONST | 1BCA4B - 1BCD32| FFFF
CP_138 |TS_MD_INT B CONST | 1C16F8 - 1C184E | FFFF
CP_139 | CONFIG_B CONST |1C1850- 1C18D6 | FFFF
CP_140 [OS_SUP_B CONST | 1C1D60 - 1C1E46 | FFFF
CP_141 |OS_B CONST | 1CI1E48 - 1C21BA | FFFF
CP_142 | TIMER_SUP CONST |1C2334 - 1C239E | FFFF
CP_143 | TIMER_SUP_B CONST | 1C24A0 - 1C265E | FFFF

4-14

Test Module Data Addresses Faulty
No. Name Type Corrupted Data
CP_200 |CALENDAR B K CODE 10D800 - 10DCFA | FFFF
CP_201 | CONFIG_B CODE 14191C - 141B08 | FFFF
CP_202 |DEBUG_TRACE_B CODE 101330 - 1013E2 | FFFF
CP_203 |LSS_CONFIG_B CODE 110326 - 110700 | FFFF
CP_204 |LSS_CLOCK _ERR_B CODE 10CA00 - 10CAAA | FFFF
CP_205 |LSS_DX_ERR_B CODE 108EF4 - 109200 | FFFF
CP_206 |LSS_EVENT_CNTL_B_K CODE 109COC - 109F00 | FFFF
CP_207 |[LSS_FFDI_B CODE 122524 - 122724 | FFFF
CP_208 | STATUS_DATABASE_MGR_B_K CODE 1045C4 - 104A00 | FFFF
CP_209 |LSS_SYNC_B CODE 1189EC - 118AEC | FFFF
CP_210 |[LSS_TEST_B CODE 11E800 - 11F000 | FFFF
CP_211 |{LSS_TEST2_B CODE 11FE10 - 120318 | FFFF
CP_212 |LINK_BLOCK_B CODE 10126C - 1012F0 | FFFF
CP_213 | TIMER_SUP_B CODE 146E64 - 14711A | FFFF
CP_214 |ICCS_FDIR_TIME_CP_B CODE 124754 - 124A84 | FFFF
CP_215 |SYSTEM_B CODE 1003DC - 100534 | FFFF
CP_216 |TS_SIGNAL_B CODE 141F64 - 142230 | FFFF
CP_217 |TS_ MD_CLK_B CODE 1476F0 - 1478B2 | FFFF
CP_218 |LSS_TIME_MGR_B CODE 11AD96 - 11B152 | FFFF
CP_219 |LSS_USER_SERVICES_B CODE 121972 - 121C72 | FFFF
CP_220 |ICDEMO_ST BRCAST CODE 12679C - 126DB0 | FFFF
CP_221 ICCS_DISP_MAIN;B CODE 134EF4 - 1351F4 | FFFF
CP_222 |ICCS_TFDI_CP_B CODE 11CEFE - 11CFFE | FFFF
CP_223 | ICDEMO_CCP_APPLIC CODE 126E98 - 127100 | FFFF
CP_224 |LSS_WATCHDOG_TIMER_B CODE 101510 - 1015E8 | FFFF
CP_225 |LSS_SERIAL_IO B_K CODE 105E34 - 106100 | FFFF
CP_226 |TEXT IO_B_K CODE 106C76 - 106DCE | FFFF
CP_227 |LSS_DISP_ROUT B CODE 111BAO - 111D0OA | FFFF

4-15

Test Module Data Addresses Faulty
No. Name _ Type Corrupted Data
IOP_1 DEBUG_TRACE B DEBUG | 7100 - 7D00 FFFF
IOP_2 ICCS_CP_IOP_COMMON DATA 1DE318 - IDESF2 | FFFF
IOP_3 LSS_TEST2_B DATA 1DE708 - IDE8Dé6 | FFFF
IOP_4 ICCS_MSG_SEND_RCV_B (OT) DATA 1DFOE4 - 1DF13A | FFFF
IOP_5 TS_EVENT_CONTROL_B DATA 1DF348 - 1DF35A | FFFF
IOP_6 SYS_TABLE DATA 1DF868 - 1DF8CE | FFFF
IOP_7 ICCS_DATA_TYPES BSS 1E42B0 - 1E42BA | FFFF
IOP_8 STATUS_DB_MGR_B_K BSS 1E44E4 - 1E4B6A | FFFF
IOP_9 LSS_FDIR_GLOBALS BSS 1E4E1C - 1E4E3E | FFFF
IOP_10 |ICCS_MSG_SEND_RCV BSS 1E4EAC - 1ESFF2 | FFFF
IOP_11 ICCS_ERROR_LOG_B BSS 1E60BS8 - 1E61B2 | FFFF
IOP_12 [LSS_TEST BSS 1E620C - 1E624A | FFFF
IOP_13 |LSS_TEST2 BSS 1E6350 - 1E6386 | FFFF
I0P_14 |ICCS_CP_IOP_COMMON BSS 1E63B8 - 1E884E | FFFF
IOP_15 |LSS_TIME_MGR_B BSS 1E9E20 - 1E9E42 | FFFF
IOP_16 |LSS_TEST B BSS 1E9E6C - 1IE9EAE | FFFF
IOP_17 |LSS_FFDI_B BSS 1E9EB4 - 1E9EFE | FFFF
IOP_18 |ICCS_MSG_SEND_RCV_B (OT) BSS 1EA908 - 1IEABSE | FFFF
IOP_19 |TS KRN_B_ BSS 1EBO8C - 1EB14A | FFFF
IOP_ 20 |TS MD _CLK B BSS 1EB184 - 1IEB192 | FFFF
IOP_101 | DEBUG_TRACE_B CONST | 1B35A0 - 1B35D2 | FFFF
IOP_102 | STATUS_DB_MGR_B_K CONST | 1B4FD4 - 1B51D6 | FFFF
IOP_103 |LSS_SERIAL_IO_B_K CONST | 1B578C - 1B583E | FFFF
IOP_104 LSS_EVENT_CNTL_B_K CONST | 1B777C - 1B78CE | FFFF
IOP_105 |ICCS_MSG_SEND_RCV CONST | 1B795C - 1B79EA | FFFF
IOP_106 | CALENDAR_B_K CONST | 1B853C - 1B890E | FFFF
IOP_107 | ICDEMO_STATUS_INFO CONST | 1BA344 - 1BA386 | FFFF
IOP_108 |[LSS_TEST2 CONST | 1B94C4 - 1B94E6 | FFFF
IOP_109 | ICCS_CP_IOP_COMMON CONST | 1B9554 - 1B96AE | FFFF
I0P_110 |LSS_TIME_MGR_B CONST | 1BE918 - 1BEAEG6 | FFFF
IOP_111 {LSS_EXCHANGE CONST | 1BF080 - 1BF142 | FFFF

4-16

Test Module Data Addresses Faulty
No. Name Type | Corrupted Data
IOP_112 |LSS_TEST B CONST | 1BF7AQ - 1BFA3A | FFFF
IOP_113 |LSS_TEST2_B CONST | 1BFA3C - 1BFEC6| FFFF
I0P_114 |ICCS_USER_SERVICES_B CONST | 1BFECS - 1BFF5A | FFFF
IOP_115 |LSS_FFDI_B CONST | 1BFF5C - 1C0246 | FFFF
IOP_116 | ICDEMO_ST BRCAST_IOP CONST | 1C19B0 - 1C1AS2 | FFFF
10P_117 |ICCS_MESSAGE_SEND_RCV_B (OT) | CONST | 1C71CO - 1C738A | FFFF
IOP_118 | ICCS_DISP_MAIN_IOP_B CONST |1C8188 - 1C82F2 |FFFF
IOP_119 | TIMER_SUP_B CONST | 1CF444 - 1CF602 | FFFF
IOP_201 |SYSTEM_B CODE 100418 - 10057A | 0000
I0P_202 {LSS_WATCHDOG_TIMER_B CODE 1016B8 - 10180A | 0000
IOP_203 |LSS_SERIAL IO _B_K CODE 106180 - 1061EA | FFFF
I0P_204 |[ICCS_ERROR_LOG CODE 10E034 - 10EOD2 | FFFF
I0P_205 | LSS_TIME_MGR_B CODE 123B50 - 123BFE | FFFF
10P_206 | ICCS_CP_IOP_COMMON_B CODE 125688 - 1256CE | FFFF
1I0P_207 |LSS_EXCHANGE_B CODE 125FEQ - 1260C6 | FFFF
I0OP_208 |LSS_TEST_ B QODE 1270CC - 1270E2 | 0000
I0P_209 |LSS_TEST2_B CODE 1286E4 - 128792 | 0000
IOP_210 |ICCS_USER_SERVICES_B CODE 12A294 - 12A59A | 0000
IOP_211 | ICDEMO_ST_BRCAST_IOP CODE 12E230 - 12E2D2 | 0000
10P_212 | ICCS_MSG_SEND_RCV_B (OT) CODE 156708 - 156906 | 0000
10P_213 | ICCS_MSG_SEND_RCV_S3 CODE 173874 - 173B94 | 0000
IOP_214 |ICCS_MSG_SEND_RCV_S2 CODE 173DBO0 - 173FAC | 0000
I0P_215 [ICCS_MSG_SEND_RCV_S2 CODE 173FAC - 17429C | 0000
IOP_216 |ICCS_MSG_SEND_RCV_S1 CODE 18BC40 - 18BD70 | 0000
IOP_217 |ICCS_MSG_SEND_RCV_S1 CODE 18D180 - 18D46C | 0000
IOP_218 | IOSS_NET _MGR_CONFIG_B CODE 188714 - 188914 | 0000
IOP_219 |10SS_NET MGR_COLLECT_B CODE 192898 - 192A98 | 0000
I0P_220 |I1OSS_UTLS_B CODE 100FA4 - 101043 | 0000
I0P_221 |IOSS_GPC_DATA_B CODE 101300-10138B 0000
I0P_222 |IOSS_NET _STATUS_B CODE 11F534 - 11F734 | 0000
Table 4-1. Software Fault Injection Plan

4-17

4.3.2 The Hardware Fault Injection Plan

The Hardware Fault Injection Plan involved applying faults to links in the data exchange
network and the fault-tolerant clock network. Overviews of these two networks are shown
in Figures 4-2 and 4-3, respectively. Details about the data exchange and fault-tolerant
clock may be obtained from [4] and [5] by the reader who is unfamiliar with their
operation. The fault-tolerance specific hardware of the AIPS FTP was chosen as the target
of hardware fault injection since that is the unique part of the FTP.

COMMUNICATOR
RECEIVE

INTERSTAGE

|

I
=
-;_

I

DATA EXCHANGE OVERVIEW

COMMUNICATOR
TRANSMIT

<
-l
w
<
<
g
XI
O

CHANNEL B
CHANNEL C

Figure 4-2. Data Exchange Network

4-18

CLOCK
RECEIVER

INTERSTAGE

FAULT-TOLERANT CLOCK OVERVIEW

CLOCK
ELEMENT

CHANNEL A
CHANNEL B
CHANNEL C

Figure 4.3. Fault Tolerant Clock Network

The Hardware Fault Injection Plan consisted of twelve tests, which were deterministically
selected; that is, the particular pins whose signals were altered were chosen by the fault
injector supervisor to produce a desired fault. Details of these tests are given in Table 4-2.

4-19

Test ID Component To Be IC Pin #|Logic | Schematic

Faulted Location Level |Page
COM2_1356_6 |DX: 1356 6 o COM,

C-to-A transmitter link Pg. 4
COM_1356_11 |DX: 1356 11 0 oM

C-to-B transmitter link Pg. 4
COM_1756_6 |DX: 1756 6 0 COM,

B to C's Receiver Pg. 5, 1&2
COM_0748_8_0 | DX: 0748 8 0 COM

C's Bypass Receiver Pg. 4, 1&2
COM_0748_8_1 | DX: 0748 8 1 oM

C's Bypass Receiver Pg. 4, 1&2
COM_0510_2_0 | FTC: C's clock element 0510 2 0 oM

to A's interstage Pg. 6
COM_0510_2_1 | FTC: C's clock element 0510 2 1 COM

to A's interstage Pg. 6
COM_0510_4_0 | FTC: C's clock element to | 0510 4 0 oM

B's interstage Pg. 6
COM_0510_6_0 | FTC:C's clock element 0510 6 0 oM

to C's interstage Pg. 6
COM_0510_6_1 | FTC: C's clock element 0510 6 1 oM

to C's interstage Pg. 6
COM_0510_7_0 | FTC: C's clock element 0510 7 0 oOM

to C's interstage Pg. 6
COM_0510_7_1 | FTC: C's clock element 0510 7 1 oM

to C's interstage Pg. 6

Table 4-2. Hardware Fault Injection Plan

4-20

4.4 Core FTP Fault Injection Test Results

4.4.1 Software Fault Injection Test Results

As discussed in Section 4.3.1, the Core FTP Software Fault Injection Plan is comprised of
178 tests. Each test is repeated 5 times. Each iteration of a test involves the application of
a fault, its detection by the FDIR software, the appropriate FTP reconfiguration, and finally
recovery of the faulty channel by the Lost Soul Sync process. For each iteration, the Fault
Injector Software recorded the fault detection and reconfiguration times. It also verified
that the channel had been recovered before injecting the fault again.

The FTP Software Fault Injection results are presented in two sections. First, Section
4.4.1.1 presents the maximum and average times for each test. Next, Section 4.4.1.2
illustrates and discusses the Software Fault Injection probability and cumulative density
functions.

4.4.1.1 Maximum and Average Times

Table 4-3 provides the maximum and average detection and reconfiguration times for each
test. As explained in Section 2.1, detection time is defined as the time elapsed between
insertion of the fault and detection of the fault by the FDIR process and reconfiguration
time is defined as the time elapsed between detection of the fault and removal of the failed
channel from the active configuration. The identifiers in the "Test Numbers" column in
Table 4-3 correspond to those given in Table 4-1. The "Test Results” column indicates
whether or not a fault was detected. If the fault was detected, the process by which it was
found is given. In some cases the fault was detected, but the faulty channel could not be
recovered, i.e., it could not be resynchronized. These cases are so noted and are explained
in following sections. In these cases, however, the FTP as a whole did properly sustain
the fault and continue to operate as a duplex.

4-21

Test Test Max Max Average | Average
No. Results Detect Reconfig| Detect Reconfig
(ms) (ms) (ms) (ms)

| CP_1 Fault Detected;Chan Not Recovered 191.2 1.7
CP_2 Detected: RAM Scrub 95536.5 31.8] 90936.7 19.3
CP_3 Detected: RAM Scrub 95273.0 39.4| 81129.8 24.0
CP_4 Detected: Presence Test 29.8 1.9 16.7 1.8
CP_5 Detected: Presence Test 19.9 1.8 12.2 1.8
CP_6 Detected: RAM Scrub 96927.8 27.0} 90608.0 22.8
CP_7 Detected: RAM Scrub 95594.2 35.4]1 93376.7 24.8
CP_8 Detected: Presence Test 58.7 1.8 39.7 1.8
CP_9 Detected: RAM Scrub 96584.0 34.5] 89280.0 18.4
CP_10 | Detected: RAM Scrub 96250.3 126.4| 85340.9 47.8
CP_11 |Detected: RAM Scrub 106816.6 38.4] 95036.5 33.1
CP_12 | Detected: RAM Scrub 146641.1 127.1] 119054.9 43.6
CP_13 | Detected: Presence Test 510.2 1.7 185.7 1.7
CP_14 | Detected: Presence Test 28.7 1.7 17.2 1.7
CP_15 |Detected: RAM Scrub 96583.7 27.9] 77436.6 20.3
CP_16 | Fault Detected;Chan Not Recovered 12.8 1.8
CP_17 | Fault Detected;Chan Not Recovered 58130.1 28.4
CP_18 | Fault Detected;Chan Not Recovered 8.7 1.7
CP_19 | Detected: Presence Test 358.2 1.8 201.6 1.8
CP_20 | Detected: RAM Scrub 146297.6 35.9] 118256.2 22.9
CP_21 |Detected: RAM Scrub 96081.5 447 81916.6 30.7
CP_22 | Fault Detected;Chan Not Recovered 98451.3 35.6
| CP_23 | Detected: RAM Scrub 96156.9 12.0] 53652.6 3.8
CP_24 |Detected: Presence Test 61.1 1.8 32.0 1.8
CP_25 [Detected: RAM Scrub 96855.2 87.5| 83947.3 38.6
CP_26 | Detected: Presence Test 53.8 1.9 28.1 1.8
CP_27 |Detected: RAM Scrub 96084.1 37.0] 90501.5 22.3
CP_28 |Detected: RAM Scrub 97651.6 88.01 93740.5 32.4

4-22

Test Test Max Max Average | Average
No. Results Detect Reconfig| Detect Reconfig
(ms) (ms) (ms) (ms)
CP_29 | Detected: Presence Test 32.6 1.8 24.4 1.8
CP_30 |Detected: RAM Scrub 147435.0 124.4§ 140214.0 37.8
CP_31 |Detected: RAM Scrub 146690.3 349| 124763.0 23.1
CP_32 |Detected: Presence Test 181.2 1.8 120.9 1.8
CP_33 | Detected: RAM Scrub 145787.1 124.2| 141029.4 53.3
CP_34 | Detected: RAM Scrub 145449.8 171.3] 141481.8 56.5
CP_35 | Detected: Presence Test 2559.1 1.8 2154.2 1.8
CP_36 |Detected: Unknown DX, (2) RAM | 93983.9 16.3| 26167.1 6.7
Scrub, (2) Presence Test
CP_37 | Detected: RAM Scrub 96451.0 32.6] 95110.9 23.5
CP_38 |Detected: Presence Test 419.6 1.8 257.3 1.8
CP_39 | Detected: RAM Scrub 145522.8 31.3] 131949.5 18.8
CP_40 | Detected: Unknown DX, 866.8 1.8 462.2 1.8
(4) Presence Test »
CP_41 | Detected: RAM Scrub 96339.4 36.6| 87893.3 22.6
CP_42 | Detected: RAM Scrub 96473.5 31.6] 93824.6 20.3
CP_43 | Detected: RAM Scrub 153216.9 34.0| 146463.7 22.8
CP_44 | Detected: Presence Test 226.2 1.9 101.2 1.8
CP_45 | Detected: RAM Scrub 96657.1 38.7] 89099.0 27.7
CP_46 | Detected: Presence Test 207.5 1.8 121.9 1.8
CP_47 |Detected: (4) RAM Scrub, 98961.1 86.6| 66234.2 31.7
Presence Test
CP_100 | Detected: PROM Sum 149025.6 34.2| 126143.8 23.1
CP_101 | Detected: PROM Sum 146475.7 126.0| 139417.8 59.2
CP_102 | Detected: PROM Sum 96552.2 86.5] 79653.5 32.6
CP_103 | Detected: PROM Sum 95355.4 39.8| 88859.0 22.4
CP_104 | Detected: PROM Sum 105570.4 85.8] 94836.4 36.6
CP_105 | Detected: PROM Sum 147230.7 126.3 | 128520.9 56.4
CP_106 | Detected: PROM Sum 146347.9 165.6] 138544.8 49.0
CP_107 | Detected: PROM Sum 145507.7 36.7 | 140070.1 25.4

4-23

Test Test Max Max Average | Average
No. Results Detect |Reconfig|Detect Reconfig
(ms) (ms) (ms) (ms)
CP_108 | Detected: PROM Sum 146181.2 87.0] 138558.3 33.7
CP_109 | Detected: Presence Test 37.4 1.7 24.0 1.7
CP_110 | Detected: PROM Sum 144039.0 207.1} 119955.2 65.2
| CP_111 | Detected: PROM Sum 146472.8 127.0§ 139991.4 44.6
CP_112 | Detected: PROM Sum 95114.8 86.4| 78788.5 36.2
CP_113 | Detected: PROM Sum 95282.8 126.7| 88119.7 57.8
CP_114 | Detected: PROM Sum 91444.8 34.7| 81038.1 23.0
CP_115 | Detected: PROM Sum 103959.8 29.0] 93040.1 20.5
CP_116 | Detected: PROM Sum 149127.6 47.3| 140330.2 28.9
CP_117 | Detected: PROM Sum 112119.6 47.6| 94477.6 25.1
CP_118 | Detected: PROM Sum 95999.6 39.6| 79645.4 24.2
CP_119 | Detected: PROM Sum 96148.4 33.9] 86219.3 22.8
CP_120 | Detected: PROM Sum 146386.3 32.6] 130109.0 27.0
CP_121 | Detected: PROM Sum 95199.9 33.7] 92444.6 22.1
CP_122 | Detected: PROM Sum 91539.1 32.3] 84941.6 28.9
CP_123 | Detected: PROM Sum 101278.8 90.1| 93879.4 36.5
CP_124 | Detected: PROM Sum 214498.1 34.5] 136828.9 28.1
CP_125 | Detected: PROM Sum 148181.3 85.6] 143241.3 33.3
CP_126 | Detected: PROM Sum 150162.1 126.2] 144700.0 38.9
CP_127 | Detected: PROM Sum 95944.0 34.1f 93968.3 27.2
CP_128 | Fault Detected;Chan Not Recovered 44058.4 12.8
CP_129 | Detected: PROM Sum 111365.6 29.3] 96410.6 23.4
CP_130 | Detected: PROM Sum 95094.7 39.1] 89605.8 33.6
CP_131 | Detected: PROM Sum 92340.8 38.8] 86177.6 29.7
CP_132 | Detected: PROM Sum 95953.4 33.2] 88120.0 18.6
CP_133 | Detected: PROM Sum 146889.4 33.6| 134713.3 26.2
CP_134 | Detected: PROM Sum 144691.0 89.1| 142409.8 30.9
CP_135 | Detected: PROM Sum 146346.8 26.9| 143411.4 19.6
CP_136 | Detected: PROM Sum 147351.0 89.5| 142848.3 39.4

4-24

Test Test Max Max Average | Average
No. Results Detect Reconfig| Detect Reconfig
(ms) (ms) (ms) (ms)

CP_137 | Detected: PROM Sum 148606.3 38.9| 96564.1 28.3
CP_138 | Detected: PROM Sum 96890.8 37.2] 93503.4 24.0
CP_139 | Detected: PROM Sum 96786.7 48.2| 93405.1 27.5
CP_140 | Detected: PROM Sum 145792.4 31.6] 107682.4 21.6
CP_141 | Detected: PROM Sum 94577.3 89.3| 88625.5 39.9
CP_142 | Detected: Presence Test 644.0 1.8 437.0 1.8
CP_143 | Detected: PROM Sum 96056.9 20.0| 82852.3 16.9
CP_200 | Detected: Presence Test 168677.5 86.5| 106666.7 42.9
CP_201 | Detected: Presence Test 28.1 1.7 21.5 1.7
CP_202 | Fault Detected;Chan Not Recovered 36.1 1.7
CP_203 | Detected: PROM Sum 95505.6 34.0| 80481.9 30.6
CP_204 | Detected: Presence Test 51.5 1.8 34.8 1.8
CP_205 | Detected: Presence Test 23.9 1.7 14.0 1.7
CP_206 | Detected: Presence Test 477.6 1.8 265.4 1.8
CP_207 | Detected: Presence 37.9 1.8 26.5 1.8
CP_208 | Detected: PROM Sum 155942.4 85.2| 95294.7 31.6
CP_209 | Fault Detected;Chan Not Recovered 60.1 1.8
CP_210 | Detected: Presence Test 87.7 1.8 46.6 1.8
CP_211 | Detected: Presence Test 61.5 1.8 36.3 1.8
CP_212 | Detected: PROM Sum 191510.9 127.6 | 145278.9 43.8
CP_213 | Fault Detected;Chan Not Recovered 46.6 1.8
CP_214 | Detected: Presence Test 40.0 1.8 31.2 1.8
CP_215 | Detected: PROM Sum 195341.8 126.7 | 178607.7 46.7
CP_216 | Detected: PROM Sum 192959.1 38.61 189657.3 20.6
CP_217 | Detected: Presence Test 25.1 1.7 15.2 1.7
CP_218 | Detected: Presence Test 211.7 1.8 113.3 1.8
CP_219 | Detected: Presence Test 446.5 1.8 244 .4 1.8

4-25

Test Test Max Max Average | Average
No. Results Detect |Reconfig|Detect Reconfig
_ (ms) (ms) (ms) (ms)

CP_220 | Detected: Presence Test 431.7 1.8 275.2 1.8
CP_221 | Detected: Presence Test 178.7 1.8 134.6 1.8
CP_222 | Detected: Presence Test 198.3 1.8 129.2 1.8
CP_223 | Detected: Presence Test 203.5 1.8 127.7 1.8
CP_224 | Detected: Presence Test 54.5 1.8 39.7 1.8
CP_225 | Detected: Presence Test 70.3 1.8 53.7 1.8
CP_226 | Detected: PROM Sum 81303.0 71.7] 65041.4 33.4
CP_227 | Detected: PROM Sum 95554.4 36.2| 76895.2 26.6

Table 4-3. Software Fault Injection Results (continued)

4-26

Test Test Max Max Average | Average
No. Results Detect Reconfig| Detect Reconfig
(ms) (ms) [(ms) [(ms)
]
IOP_1 |Detected: Presence Test 51.7 1.8 17.3 1.8
IOP_2 | Detected: Presence Test 213.5 1.8 73.8 1.8
IOP_3 | Detected: Presence Test 82.4 1.8 44.1 1.8
IOP_4 | Detected: RAM Scrub 8§1359.2 28.61 72260.6 22.3
IOP_5 | Detected: RAM Scrub 123713.3 207.0] 111310.0 59.4
IOP_6 | Detected: Presence Test 4351.0 1.8 2915.1 1.8
IOP_7 | Detected: Presence Test 453.9 1.8 210.7 1.8
IOP_8 | Detected: RAM Scrub 124721.8 30.8| 107873.3 22.8
IOP_9 | Detected: RAM Scrub 125274.2 126.3| 107683.2 38.2
IOP_10 | Detected: RAM Scrub 122840.8 344 114341.6 24.4
IOP_11 | Detected: RAM Scrub 123551.2 34.1] 119467.1 23.7
IOP_12 | Detected: (2) RAM Scrub, (3) 103016.8 206.0| 621194 47.3
Presence Test
IOP_13 | Detected: RAM Scrub 97933.4 35.6] 60132.0 22.9
I0P_14 | Detected: RAM Scrub 124456.5 37.5| 112652.0 26.3
IOP_15 | Detected: Presence Test 81504.3 86.4| 77742.9 33.0
IOP_16 | Detected: RAM Scrub 43.8 1.8 24.6 1.8
IOP_17 |Detected: (4) Presence Test, RAM 34048.2 27.8] 14011.5 7.0
Scrub

IOP_18 | Detected: Presence Test 451.4 1.9 260.3 1.8
IOP_19 | Detected: RAM Scrub 80649.0 30.4| 64473.7 21.5
I0OP_20 | Detected: RAM Scrub 82006.5 21.1] 78393.8 16.5
I0P_101| Detected: PROM Sum 112417.8 126.9| 84467.5 42.6
IOP_102| Detected: PROM Sum 81264.9 86.61 70073.0 34.9
I0P_103] Detected: PROM Sum 81583.4 28.9] 67491.2 22.3
IOP_104]| Detected: PROM Sum 124832.0 30.1] 99660.3 22.3
IOP_105| Detected: PROM Sum 124163.1 38.2| 90309.8 33.8
I0P_106] Detected: PROM Sum 81008.4 2591 66098.0 20.4
I0P_107| Detected: PROM Sum 81412.8 347 77279.2 25.5
I0P_108| Detected: PROM Sum 81336.4 47.81 79185.6 29.3

4-27

Test Test Max Max Average | Average
No. Results Detect Reconfig| Detect Reconfig
(ms) (ms) (ms) (ms)
I0P_109]| Detected: PROM Sum 81871.0 126.2| 77719.7 39.8
IOP_110] Detected: PROM Sum 81761.3 39.6| 78144.3 20.4
IOP_111] Detected: PROM Sum 125472.4 129.0] 101481.2 48.7
IOP_112] Detected: PROM Sum 123597.6 32.2] 120999.4 18.8
I0P_113} Detected: PROM Sum 76507.7 40.1] 52846.2 30.8
IOP_114{ Detected: PROM Sum 87151.9 35.0] 58393.2 20.8
I0OP_115] Detected: PROM Sum 79690.6 88.8] 51821.7 41.8
IOP_116] Detected: PROM Sum 71076.4 35.9] 48508.4 26.8
I0P_117} Detected: PROM Sum 81476.4 3741 77877.6 23.0
IOP_118| Detected: PROM Sum 124452.0 3221 86398.3 23.2
IOP_119] Detected: PROM Sum 94316.9 126.0] 71361.5 40.2
IOP_201] Detected: PROM Sum 80541.2 37.1| 60870.8 18.3
IOP_202| Fault Detected;Chan Not Recovered 34.7 1.7
IOP_203| Detected: (4) PROM Sum, 81364.0 35.21 67697.8 19.0
Presence Test
10P_204] Detected: PROM Sum 122004.9 20.3| 114485.8 14.4
1I0P_205] Detected: PROM Sum 81567.6 28.1| 72695.6 16.9
I0OP_206| Detected: PROM Sum 821279 39.0] 81483.0 21.0
IOP_207] Fault Detected;Chan Not Recovered 20.3 1.8
IOP_208| Detected: Presence Test 47.7 1.8 31.0 1.8
IOP_209| Detected: Presence Test 146.6 1.8 63.0 1.8
IOP_210] Detected: PROM Sum 125624.5 26.7) 122849.6 19.3
I0OP_211| Detected: PROM Sum 138244.3 127.2| 123907.0 48.1
I0P_212| Detected: PROM Sum 124774.5 32.4] 120438.3 21.2
I0OP_213] Detected: PROM Sum 124400.9 32.0] 105208.4 23.9
IOP_214] Detected: PROM Sum 81767.7 29.7| 78645.9 21.1
IOP_215| Detected: Presence Test 419.6 1.8 269.9 1.8
IOP_216| Detected: Presence Test 377.6 1.8 144.6 1.8
I0P_217| Detected: PROM Sum 84940.3 38.8] 82048.9 35.0

4-28

Test Test Max Max Average | Average
No. Results Detect Reconfig| Detect Reconfig
(ms) (ms) (ms) (ms)
IOP_218] Detected: PROM Sum 124793.0 35.01 100550.4 23.0
I0OP_219| Detected: PROM Sum 126107.3 38.5] 121129.2 25.5
I0P_220| Detected: PROM Sum 123171.1 88.41 116307.4 39.7
IOP_221| Detected: PROM Sum 123045.8 20.9| 107199.0 16.6
10P_222| Detected; PROM Sum 122310.4 33.2] 106561.6 23.1

Table 4-3.

4-29

Software Fault Injection Results (concluded)

ion Tim

Detection times vary because for each test the corrupted area of memory is referenced with
a different frequency. If the corrupted area is commonly used, the fault will most likely be
manifested by the next iteration of Fast FDIR. If the corrupted area is infrequently
referenced, it may not cause a problem until several iterations of Fast have occurred. If the
area is never referenced, the fault will only be detected by the Prom Sum or Ram Scrub
tests in the Background Selftest task, which could take several minutes.

None of the detection times were unexpected. All faults detected by Fast FDIR (Presence
Test) were detected within 40 ms after being injected. Faults detected by the Background
Selftests (RAM Scrub, PROM Sum) took a maximum of 214 seconds (approximately 3-1/2
minutes). This is consistent with the amount of time it takes to do a complete iteration of
the Background Selftests, which is about 4 minutes. The wide range of detection times for
faults detected by the Background Selftests is a result of the position of the tests at the time
when the memory was corrupted. If the corrupted locations had just been examined by the
selftests, the fault would take much longer to detect than if the corrupted locations were just
about to be examined.

Reconfiguration Times

Reconfiguration times vary depending on the process that detected the fault. When a fault
is detected by Fast FDIR, the reconfiguration takes place immediately (less than 2 ms).
Faults detected by the Background Selftests (RAM Scrub, PROM Sum) can be expected to
have a wide range of reconfiguration times, which is explained by the fact that the
Background Selftests does not do the reconfiguration itself, but passes the information to
Fast FDIR to act upon. If Fast FDIR has just finished prior to the Selftests detecting a
fault, the reconfiguration will not take place for at least 40 ms. Additional delays can occur
because the Selftests may be interrupted by a higher priority task between the time that it
detects the fault and the time that it has finished creating the reconfiguration information for
Fast and is ready for Fast to act upon it.

None of the reconfiguration times were unexpected. All faults detected by Fast FDIR
(Presence Test) were reconfigured immediately (less than 2 ms) after being detected. The
highest reconfiguration times for Selftest-detected faults were 160-170 ms (only 2 cases),
which indicates that the Selftests were suspended for four iterations of Fast. This is not
unreasonable, considering the number of tasks operating in the system.

4-30

Faults Detect ut Channel Not Recovered

In several cases, the fault was detected but the channel was not recovered, i.e., it could not
be resynchronized. These situations are discussed below.

e CP_I: The corrupted memory in this case caused the faulty processor to get
into an infinite loop with interrupts off. The other channels saw the faulty
channel as failing the presence test and disengaged its Monitor Interlock. This
prevented the faulty processor's Watchdog Timers from going off and getting
the processor out of its infinite loop.

» (CP_16: This test wipes out a section of memory used in doing the CP-IOP
handshake before a lone channel attempts to be picked up. The CP is in an
infinite loop because it has written the handshake word into the wrong location
and is now waiting for the IOP to respond in that location. The fault has
crippled the channel to such an extent that it cannot even attempt to be picked

up.

e CP_17: This test wipes out a section of memory used by the Lost Soul Sync
task when a lone channel attempts to be picked up by good channels. The lone
channel cannot function well enough to even attempt to be picked up.

» CP_18: This test wipes out a section of memory used in doing the CP-IOP
handshake before a lone channel attempts to be picked up. The CP is in an
infinite loop attempting to complete the handshake. The fault has crippled the
channel to such an extent that it cannot even attempt to be picked up.

* CP_128: This test wipes out a section of memory used in doing the CP-IOP
handshake before a lone channel attempts to be picked up. The CP is in an
infinite loop attempting to complete the handshake. The fault has crippled the
channel to such an extent that it cannot even attempt to be picked up.

» CP_202: This test wipes out a section of code used by the Lost Soul Sync task
when a lone channel attempts to be picked up by good channels. The CP in the
lone channel is getting repeated hardware exceptions. The fault has crippled the
channel to such an extent that it cannot even attempt to be picked up.

e CP_209: This test wipes out a section of memory used in doing the CP-IOP
handshake before a lone channel attempts to be picked up. The CP is in an

4-31

infinite loop attempting to complete the handshake. The fault has crippled the
channel to such an extent that it cannot even attempt to be picked up.

« CP_213: This test wipes out a section of memory used in doing the CP-IOP
handshake before a lone channel attempts to be picked up. The CP is in an
infinite loop attempting to complete the handshake. The fault has crippled the
channel to such an extent that it cannot even attempt to be picked up.

« IOP_207: This test wipes out a section of memory used in doing the CP-IOP
handshake before a lone channel attempts to be picked up. The CP is in an
infinite loop attempting to complete the handshake. The fault has crippled the
channel to such an extent that it cannot even attempt to be picked up.

4.4.1.2 Probability and Cumulative Density Functions

The Core FTP Fault Insertion Plan is comprised of 178 tests. Each test consists of five
iterations. For each iteration, the fault detection and reconfiguration times are recorded by
the Fault Insertion Software. Accordingly, a total of 890 data sets were anticipated.
However, as described in Section 4.4.1.1.4, in ten tests the fault was detected but the
faulty channel could not be recovered (implying that only one data set was recorded per test
rather than five). As a result, 850 sets of data, or 95.5 percent of the applied faults, were
posted.

Probability and cumulative density functions for these data sets were generated to complete
the Core FTP Fault Insertion Analysis; these functions are illustrated in Figures 4-4
through 4-9.

The probability density function for the FTP fault detection times, shown in Figure 4-4,
depicts the wide variance in the observed times. As discussed in Section 4.4.2.1, this
variance occurred because some faults were detected by the high priority Fast FDIR task
while other faults were detected by the low priority background Selftest process.

Several distinguishable peaks can be observed (illustrated in Figures 4-4 and 4-5):

* 0-40ms. Approximately 25 percent of the faults were detected in this range.

* 78,000 - 82,000 ms. Ranges from a minimum of 0 to a maximum of 2 percent
of the faults.

* 92,000 - 97,000 ms. Ranges from a minimum of O to a maximum of 2 percent
of the faults.

* 120,000 - 125,000 ms. Ranges from a minimum of 0 to a maximum of 1
percent of the faults.

4-32

« 140,000 - 147,000 ms. Ranges from a minimum of 0 to a maximum of 1
percent of the faults.

As shown by the cumulative density function for the detection times (Figure 4-6),
approximately 25 percent of the software injected faults were detected in 40 milliseconds or
less, 50 percent in 80 seconds or less, and 75 percent in 100 seconds or less.

The probability density function for the Core FTP fault reconfiguration times (Figures 4-7
and 4-8) indicates that a significant percentage of the faults were bypassed in 0 to 220 ms.
while a substantial but smaller percentage were reconfigured around in 220 to 1950 ms.
This variance occurred because some faults were detected by the high priority Fast FDIR
task and therefore reconfigured immediately, while other faults that were detected by the
low priority Selftest task took longer to reconfigure.

As depicted by the cumulative density function in Figure 4-9, approximately 94 percent of
all the simulated memory faults were isolated and bypassed in 2000 ms. or less.

20

15 49

Percentage

10 1

EEEEEE G

Time (ms)

110000
120000
130000
140000
150000

1

Figure 4-4. The Probability Density Function for the Detection Times

4-33

25 =
20
15
Percentage
10
5
B R Y

Time (ms)

Figure 4-5. The Probability Density Function for the Detection Times:
Expansion of the 0 to 10,000 ms. Region

100 4
90 4
80

70 4

Percentage

D T R R

Time (ms)

Figure 4-6. The Cumulative Density Function for the Detection Times

4-34

30 1
?j-
20-
Percentage
15
10 A
5+
1
0 L L AL 'IATl'A'I L] l'lll\'l 1
(=
g EEEEEEEEE B8
Time (ms)

Figure 4-7. The Probability Density Function for the Reconfiguration Times

Percentage

0
200+
4007
600
800"

1000

588 E 3

Time (ms)

2200
2400~

Figure 4-8. The Probability Density Function for the Reconfiguration Times:
Expansion of Range 0 to 2400 ms.

4-35

100 7
90 -
80 4
70
60
Percentage
50
40
30 1

20 1

EENRRRRRWNN

Time (ms)

M |

12000

Figure 4-9. The Cumulative Density Function for the Reconfiguration Times
4.4.2 Hardware Fault Injection Test Results

As discussed in Section 4.3.2, the Hardware Fault Injection Plan consists of 12 tests.
Each test is repeated 10 times. Each iteration of a test involves the application of a fault, its
detection by the FDIR software, the associated FTP reconfiguration, and finally recovery
of the faulty channel. For each iteration, the Fault Insertion Software recorded the fault
detection and reconfiguration times. It also verified that the channel had been recovered
before injecting the fault again.

The test results are shown in Table 4-4. In the first three tests, the fault was detected and
correctly identified and the system was reconfigured. In the next two tests, the fault was
detected and identified, but the channel could not be recovered. This is hypothesized to be
due to the fact that the injected fault prevented the faulty channel from being able to be
resynchronized. In the final seven tests, the fault was not detected. This was found to be
due to a bug in the FDIR software, which only looks at a voted value of the FTC error
latches rather than looking at each channel's latch individually. Looking at the voted value
recognizes faults in the entire clock element or entire interstage, but ignores individual link
faults. The particular fault created in all seven test cases was the failure of a link between a
clock element and an interstage. There was no opportunity to rerun the tests with a
corrected version of the software. Since the number of test cases was small, no statistical
analysis was done.

4-36

Test ID

Test Results

Max
Detect
(ms)

Max
Reconf
(ms)

Average
Detect
(ms)

Average
Reconf
(ms)

COM2_1356_6

Detected: A-to-C
transmitter link failure

39.9

34

26.3

3.4

COM_1356_11

Detected: B-to-C
transmitter link failure

39.9

3.5

28.4

3.5

COM_1756_6

Detected: A-to-C
transmitter link failure

41.1

3.5

24.1

3.4

COM_0748_8_0

Detected: Presence;
Channel Not Recovered

13.6

1.8

COM_0748.9_0

Detected: Presence;
Channel Not Recovered

14.8

1.8

COM_0510_2_0

Not Detected

COM_0510_2_1

Not Detected

COM_0510_4_0

Not Detected

COM_0510_6_0

Not Detected

COM_0510_6_1

Not Detected

COM_0510_7_0

Not Detected

COM_0510_7_1

Not Detected

Table 4-4. Hardware Fault Injection Results

4.4.3 Design Flaws Uncovered by the Fault Injection Tests

During execution of both the Hardware Fault Injection Plan and the Software Fault
Injection Plan, several design flaws were uncovered. These design flaws included both
hardware and software. All software design faults were corrected.

Hardware Design Flaws

1. Disengaging a channel's Monitor Interlock should not disable its Watchdog
Timers. Test CP_1 showed that this can prevent a channel from being

4-37

recovered if the fault resulted in a processor being in an infinite loop with
interrupts off.

Software Design Flaws

1. If the faulty channel went out of sync between the presence test and the data
exchange latch analysis in Fast FDIR (refer to Section 4.2.1), a data exchange
fault would be identified and possibly the wrong channel identified as faulty.
This was corrected by exchanging data exchange latches and FTC latches before
the presence test.

2. Occasionally the faulty channel would behave in such a way that it was out of
sync only temporarily (e.g., during a data exchange) but was somehow forced
back into sync and passed subsequent Program Counter checks and presence
tests. However, the data exchange latches had been set by the other two
channels, but not by the faulty channel. As in (1), this led to an erroneous
diagnosis. The solution here was to verify that any reported DX fault was
reported by all channels (except for a faulty interstage-to-receiver link, which is
normally reported by only one channel).

3. A failed link in the FTC network (as opposed to an entire clock element or
interstage) would not be detected by Fast FDIR because it looked only at a
voted value of the FTC error latches, rather than looking at each channel's
latches individually. This was corrected by examining each individual
channel's latches.

4.5 Core FTP Fault Injection: Conclusions

To conclude the discussion of the Core FTP Fault Injection Plan, the Fault Injection
Results are considered with respect to the goals of the Fault Injection Study. In brief, the
objectives were:

1. totest the design specification for fault tolerance,

2. to obtain feedback for fault removal from the design implementation,

3. to obtain statistical data regarding fault detection, isolation, and reconfig-
uration responses, and

4. to obtain data regarding the effects of faults on system performance.

To test the system design specification for fault tolerance (Goal 1), we relied solely on

visual observation of the CRT display to determine that the system functioned correctly
during and after the fault. Since the display tasks execute at the lowest priority, this

4-38

ensured that no higher priority task was monopolizing the system as a result of the fault. In
all test cases, the system functioned correctly.

To determine the correctness and completeness of the fault detection and identification
(Goal 2) for each test case, two methods were used. One was visual inspection of the error
log that is maintained by the core FTP FDIR process. This log indicated whether a
particular fault was detected and isolated correctly The second method involved
verification by the FIS that the fault was detected and that reconfiguration took place. As
shown in Table 4-3, all of the test cases in the Software Fault Injection Plan were correctly
detected and isolated. In a small percentage of the cases, the faulty channel could not be
recovered because the memory that was corrupted was memory used by the recovery
process, so that the fault appeared as a hard fault rather than a transient. In one case, the
faulty channe! could not be recovered because of a hardware design flaw that prevented the
faulty channel from detecting that it was faulty. In addition, during the initial iterations of
the Software Fault Injection Plan, errors in the FDIR software were detected which were
corrected for subsequent iterations; only the final iteration was presented in this report.

As shown in Table 4-4, about half of the test cases in the Hardware Fault Injection Plan
were correctly detected and isolated; the other half were not detected. The undetected faults
were similar in that they all consisted of the failure of a link in the fault tolerant clock
network. The FDIR software was determined to contain an error that prevented it from
recognizing this type of fault. There was no opportunity to rerun the tests with corrected
software.

Statistical data about the fault detection and identification (Goal 3) was obtained by having
the FDIR software log the detection time in the Testport Interface and by having the Fault
Injector Software note the time at which fault isolation occurred. As presented in Sections
4.4.1 and 4.4.2, the Core FTP Fault Injection Plan recorded 853 sets of data. The
maximum and average times and the probability and cumulative distribution functions were
calculated. The results of the Core FTP Fault Injection test cases conformed to the
expected maximum and average times.

The effects of faults on system performance (Goal 4) include both (1) the additional time
required by the particular FDIR process when it is dealing with a fault and the subsequent
scheduling delays incurred by other tasks, and (2) the effects on users of the faulty
component. The additional time required by the FDIR processes has been measured at
other times during the life of the AIPS project and documented in a previous report [].
Measurement of the scheduling delays incurred by non-FDIR tasks and the effects of a fault
on users of the faulty components require additional instrumentation for obtaining a record
of system performance and was not in place at the time of this study.

4-39

4-40

5.0 CONCLUSIONS

This report has described a plan for systematically injecting large numbers of faults into the
AIPS building blocks and collecting data about the resulting actions of the redundancy
management processes. The goals of this fault injection plan were fourfold:

1. To test the system design specification for fault tolerance.

2. To obtain feedback for fault removal from the design implementation.

3. To obtain statistical data regarding fault detection, isolation, and reconfiguration
Tesponses.

4. To obtain data regarding the effects of faults on system performance.

A comprehensive set of possible fault injection tests was developed; from this a subset of
actual test cases was selected. Both pin-level hardware faults using a hardware fault
injector and software-injected memory mutations were used to test the system. A Fault
Injection Software program was used to facilitate automatic fault injection and collect timing
information.

Two of the AIPS building blocks, the I/O Network and the Core FTP, were chosen as
candidates for extensive fault injection. The I/O Network Fault Injection Plan consisted of
47 different pin-level faults, inserted using the hardware fault injector. Each of these faults
was applied 25 times. The detection coverage for these faults was 99.6%; the other 0.4%
of the faults did not produce any detachable error symptoms. The reconfiguration coverage
for detected faults was 100%. No design errors were found by these tests. This does not
necessarily prove that the design of the network is completely error free, but it does
increase the level of confidence in the design.

The anticipated maximum detection time for faults injected in the I/O Network was about
2075 ms. plus the error latency, and the expected average time was approximately 1040
ms. plus the error latency. The I/O Fault Injection results typically conformed to these
expected maximum and average times. For the reconfiguration time, the worst case time,
i.e., one including fault diagnostics plus the worst case regrowth scenario, was determined
to be 3500 ms. All of the actual reconfiguration times were less than the worst case.

One problem was encountered when using the hardware fault injector to apply faults to the
I/O Network. Sometimes when a fault injector probe was attached to an I/O node, the
probe caused the node to fail. The fault injector supervisors speculated that this problem
was caused by impedance differences that occurred when the probe was attached. Because
of this problem, some of the originally proposed 1/O Network faults were not injected.

5-1

PRECEDING PAGE BLANK NOT FILMED md; jo INJENTIONALLY. BLANK

The Core FTP Fault Injection Plan consisted of 178 simulated memory faults, inserted
using the Fault Injection Software program, and 12 pin-level faults, inserted using the
hardware fault injector. The memory faults were each applied 5 times; the pin-level faults
were applied 10 times. Four design flaws were uncovered by the Core FTP Fault Injection
Plan. Three of these were software design flaws; one was a hardware design flaw. As
time permitted, the software design flaws were corrected and the test cases rerun. The
hardware design flaw was not corrected.

The detection coverage for the simulated memory faults was 100%; the reconfiguration
coverage was also 100%. The detection and reconfiguration times from each test typically
conformed to the expected maximum and average times. However, in a number of the
simulated memory fault test cases, the fault prevented the channel from being recovered.
Therefore multiple instances of these particular faults could not be injected without
restarting the system. The detection coverage for the pin-level fault test cases was 42%; the
reconfiguration coverage was also 42%. The undetected faults were all of the same type
and were the result of a software error. In two of the cases where the fault was detected,
the faulty channel could not be recovered. The fault injection supervisors speculate that
although the hardware fault injector stopped corrupting the pin after a certain time, the
effect remained, thereby creating a permanent fault rather than a transient one.

A second problem encountered when using the hardware fault injector was that simply
attaching the fault injector probe to a pin caused the channel to fail. The fault injector
supervisors speculate that this was caused by the added distance between the chip and the
card, which could result in either changed timing, added capacitance, or added noise.
Because of this problem, many of the originally proposed Core FTP faults were not
injected.

This study has demonstrated the importance of fault injection in the overall validation of a
system. In addition to providing data for reliability parameter estimation, it can also
provide feedback for fault removal from the design implementation. This does not mean
that fault injection is a substitute for the design-for-validation methodology, but it is a
component of the methodology just as specifications, design reviews, analytical models
and formal methods are. If the fault injection process does not uncover a single flaw in the
system under test, this does not imply that the system is perfect, only that the system is
correct with respect to the fault set to which it was subjected. And if some design flaws are
uncovered, the fault injection process provides a deeper understanding of the fault tolerance
design and a more fundamental appreciation of the cascade of events triggered by a fault,
including complex interactions between hardware and software elements. The Fault
Injection tests performed as part of this study successfully met three of the four originally
stated goals. They helped validate the system design specification for fault tolerance; they

5-2

detected faults in the design implementation; and they provided statistical data regarding
fault detection, isolation, and reconfiguration responses.

Recommendations for future work in this area include gathering data on the effects
of faults on system performance, in particular, any delays in execution of time-critical
tasks. The envelope of test cases could also be extended to cover a fuller spectrum of the
fault injection plan that has been described in this report. Another research area is to
understand why certain transient faults behave as permanent faults, i.e., how the errors

produced by a transient fault permanently disable a channel preventing its reintegration in
the FTP.

5-4

6.0 REFERENCES .)
Harper, R.E., Alger, L.S,, and Lala, J.H,, "Advanced Information Processing System:

[1] Design and Validation Knowledgebase”, NASA Contractor Report 187544, September
1991.

[2] Johnson, S.C., and Butler, R.W., "Design for Validation,” 10th AIAA/IEEE Digital
Avionics Systems Conference, Los Angeles, CA, October 1991, PPs. 487-492.

[3] Lala, J.H., and Smith, T.B., III, "Development and Evaluation of a Fault Tolerant
Multiprocessor (FTMP) Computer, Volume III, FTMP Test and Evaluation", NASA
Contractor Report 166073, May 1983.

[4] Burkhardt, L.F., L. Alger, R. Whiuredge, P. Stasiowski, "Advanced Information
Processing System: Local System Services,” NASA Contractor Report 181767, March
1989.

[5] Gauthier, R.J., "The Airlab Fault-Tolerant Processor: Physical Implementation,”
Charles Stark Draper Laboratory Report, CSDL-R-1928, December 1986.

[6] Lala, J.H., Harper, R.E., and Alger, L.S., "A Design Approach for Ultrareliable Real-
Time Systems," IEEE Computer Special Issue on Real-Time Systems, May 1991.

6-1

PRECEDING PAGE w1 aAr NOT FILMED L/
waMEnrscnuu Bt

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public ing burden for this collection of inf ion is

searching existing data sou

P d to average 1 hour per response, including the time for revi
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect o
collection of information, inciuding suggestions for reducing this burden, to Washington Headquarters Services, Directorats for Information Operations and Reports, 1215 Jetierson [
Highway, Suite 1204, Arfington, VA 222024302, and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington; DC 20503.

g instructi

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Contractor Report

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Study and Results

Advanced Information Processing System:

Fault Injection

6. AUTHOR(S) Laura F. Burkhardt, Thomas K. Masotto, and Jaynarayan H. Lala

5. FUNDING NUMBERS
WU 506-59-61-03

C NAS1-18565

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Charles Stark Draper Laboratory, Inc.
Cambridge, MA 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-189590

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Felix L. Pitts
Final Report - Task 12

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

2. To obtain feedback for fault removal from the design implementation

4. To obtain data regarding the effects of faults on system performance

The objective of the Advanced Information Processing (AIPS) program is to achieve :
validated fault-tolerant distributed computer system. The goals of the AIPS fault injection study were:

1. To present the fault injection study components addressing the AIPS validation objective

3. To obtain statistical data regarding fault detection, isolation, and reconfiguration responses

The organization of this report is as follows. Section 1 describes the parameters that must be varied to create a

comprehensive set of fault injection tests, tha subset of test cases selected for this study, the test case measurements
the test case execution. Both pin-level hardware faults using a hardware fault injector and software-injected memory
mutations were used to test the system. Section 2 provides an overview of the hardware fault injector and the associa
software used to carry out the experiments. Sections 3 and 4 give detailed specifications of faults and test results for ¢
Network and the AIPS Fault Tolerant Processor, respectively. Section 5 summarizes the results and gives conclusion
the study.

15. NUMBER OF PAGES
168

16. PRICE CODE

14. SUBJECTTERMS Fauit-tolerant computing, fault injection, distributed fault-tolerant computers
empirical validation

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABST

OF ABSTRACT

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-
Prescribed by ANS! Std. 239-18
298-102

