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Introduction and Overview 

Many scientists are noticing the large amount of data that is becoming available for for 
analysis and the need for methods to extract useful information out of the data. The fields 
of "knowledge discovery" in Artificial Intelligence and related areas, "database mining" in 
information systems and neural networks, and of course statistics and pattern recognition 
are concerned with these issues. 

NAS,A missions produce large volumes of data that need analysis, for instance, propos­
als such as the Earth Observing System, and various deep space missions. Data analysis 
researchers at Information Sciences Division of NASA Ames Research Center and RIACS 
organized the Pattern Discove~y in Large Databases Workshop to bring into focus the data 
analysis research requirements of government institutions like NASA, and to gather together 
researchers from a wide spectrum of data analysis methodologies and applications: statistics, 
neural networks, artificial intelligence, databases, medical, biomedical, remote sensing and 
astrophysical applications, etc. 

The workshop was held at NASA Ames Research Center on 14-15 January. It addressed 
the core data analysis tasks that have traditionally required statistical or pattern recog­
nition techniques. Some of the core tasks include classification, discrimination, clustering, 
supervised and unsupervised learning, discovery and diagnosis, i.e. general pattern discovery. 

There were two panels at the workshop. The first discussed advanced research topics 
such as model-based analysis and analysis of data from multiple sources. The second panel 
was a "wrap-up" where views were aired concerning the requirements of research, issues 
to be resolved, the state of the art, etc. Issues discussed ranged from software develop­
ment, data visualization, interaction with the domain expert, methodologies for analysis, to 
interpretation, calibration, and control of heterogeneous and multiple source data, etc. 

These collected notes are a record of material presented at the workshop. A second report 
is now being prepared to give the organizers' perception of the research requirements and 
issues involved in pattern discovery of large databases, as expressed by participants at the 
workshop. 
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Workshop on Pattern Discovery in Large Data Bases 
Sponsored by NASA, Information Sciences Division, and RIACSl 

January 14-15, 1991 
NASA Ames Research Ce]J.ter 

Moffett Field, California 

NASA missions produce large volumes of data that need analysis. Recent proposals, such as the Earth 
Observing System, MTPE and the Exploration Technology Initiative bring into focus the need for more 
powerful techniques for analysing large data sets. This workshop is the first in a series planned by the 
Information Sciences Division (code FI) at NASA Ames intended to focus attention on underlying problems 
in this analysis and to establish working relations between the various NASA and other government centers 
concerned with these problems. 

This workshop will address the core data analysis tasks that have traditionally required statistical or 
pattern recognition techniques. Recent developments in statistics, artificial intelligence, and neural networks 
offer methods for this analysis. Some of the core tasks include classification, discrimination, clustering, 
supervised and unsupervised learning, discovery and diagnosis, i.e. general pattern discovery. For instance, 
unsupervised learning in a remote sensing application typically involves trying to identify groups of related 
spectral patterns that might possibly correspond to distinct vegetation types or land use. Supervised learning 
involves the additional information of ground truth that is used in conjunction with the spectral data to 
develop ways of predicting land use on future data for which ground truth is not available. These two tasks 
broadly correspond to making sense out of the existing data, and making predictions on future data. 

This workshop is intended to bring together active researchers in the data analysis area: representatives 
from agencies performing data analysis including NASA, NIH, NOAA, NCAR, etc. Representatives from 
the major methodologies such as AI, statistics and neural networks will also be represented. The aim of the 
workshop is to initiate a coordinated effort on data analysis. We hope to clarify the requirements of large 
database analysis and coordinate research in data analysis methodologies. 

Workshop Format 

The workshop is by invitation and is expected to involve 20-30 participants. Representatives are being 
invited from agencies such as NIH, NCAR (National Center for Atmospheric Research), from the astronomy 
and medical communities and NASA. Participants will be given opportunity to present their work along 
with time for group discussion. 

Arrangements 

The workshop will be held at the NASA Ames Research Center, California. Attendees will be expected to 
make their own arrangements, although information will be provided regarding local accommodation and 
services. Special arrangements will have to be made at least one month in advance for non-residents of the 
US. Local details will be provided on indication of intent to attend the workshop. 

Contacts 

Those interested in attending the workshop should contact one of the organisers below. Those interested in 
giving a talk should send a small abstract (1/2 page) with references to related work. 

Wray Buntine 

NASA Ames Research Center 
MS 244-17 
Moffett Field, CA, 94035 
(415) 604 3389 
wray@ptolemy.arc.nasa.gov 

Peter Cheeseman 

NASA Ames Research Center 
MS 244-17 
Moffett Field, CA, 94035 
(415) 604 4946 
cheeseman@pluto.arc.nasa.gov 

I Resea.rch IUlltitute for Adva.nced Computer Science 
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Chuck Jorgensen 
Center for Advanced Data Evaluation Tech. 
NASA Ames Research Center 
MS 244-4 
Moffett Field, CA, 94035 
(415) 604 6725, (FTS) 464 6725 
jorgensen@pluto.arc.nasa.gov 



Program for the Workshop on Pattern 
Discovery in Large Data Bases 

Organized by RIACS and Information Sciences Division at 
NASA Ames Research Center 

January 14-15, 1991 
Auditorium, Bldg 245, NASA Ames Research Center 

Day 1 : 

Start 8:30 Coffee and snacks 

9:00- 9: 15 Welcome/Opening Remarks 

9:15 - 9:50 On the Extraction of Information from Multispectral Image Data 
David Landgrebe, Purdue University . 

9:50 - 10:25 Bayesian Inference Applied to Large Data Bases 
Peter Cheeseman, RIACS and NASA PIA 

Break 10:25 - 10:45 Coffee and snacks 

10:45 - 11 :20 

11:20 - 11:55 

11 :55 - 12:30 

Lunch 12:30 - 2:00 

2:00 - 2:35 

2:35 - 3:10 

3:10 - 3:45 

3:45 - 5:30 

Knowledge Acquisition Planning 
Lawrence Hunter, NationalLibrary of Medicine 
Aspects of Astronomical Research Involving Large Data Bases 
Nick Weir and Stan Djorgovski, California Institute of Technology 
Interactive or Automatic? Creon Levitt, Al Globus and 
Steve Bryson, NASA NAS and Sterling Federal Systems 

On your own 

Smooth Mixture Estimation with Multichannel Image Data 
John McDonald and Finbarr O'Sullivan, University of Washington 
Automated Causal Inference from Large Data Bases 
Peter Spirtes, Richard Scheines and Clark Glymour, Carnegie Mellon University 
A Neural Network to Extract Implicit Knowledge from a Nuclear 
Database, Awatef Gacem, Aliana Maren, and Robert Uhrig, University of 
Tenessee 

Poster Session. Wrap Up (with coffee) 
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Day 2 : 

Start 8:30 Coffee and snacks 

8:55 -9:00 Day 2 Welcome 

9:00- 10:10 Model-Based Data-Analysis 
Panel 

10:10 - 10:45 A Bayesian Method for the Induction of Probabilistic 
Networks from Data Gregory F. Cooper, University of Pittsburgh and 
Edward Herskovits, Stanford University 

Break 10:45 - 11 :05 Coffee and snacks 

11:05 - 11:40 A Strategy For Large-Area Land Cover Characterization 
Thomas R. Loveland, US Geological Survey, James Merchant, UnL of 
Nebraska-Lincoln and Donald Ohlen, TGS Tech. Inc. 

11:40 - 12:15 Remote Sensing for Ecosystem Monitoring 
Chris Hlavka, NASA SGE 

12:15 - 12:50 Applications of Scale-Space Filtering and Labyrinth to Soil Analysis 
Deepak Kulkarni and Kevin Thompson, NASA FIA and Sterling Federal Systems 

Lunch 12:50 - 2:00 On your own 

2:00 - 3:00 Analysis Using Multiple Data Bases 
Panel 

3:00 Workshop Wrap Up 
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Workshop Participants 

Rakesh Agrawal 
IBM Almaden Research Center 
K54/802 
650 Harry Rd. 
San Jose CA 95120 

. Wray Buntine 
RIACS and 
Artificial Intelligence Research Branch 
MS 244-17 
NASA Ames Research Center 

Penny Chase 
The MITRE Corporation 
Mail Stop A040 
Burlington Road 
Bedford, MA 01730 

Peter Cheeseman 
RIACS and 
Artificial Intelligence Research Branch 
MS 244-17 
NASA Ames Research Center 

Stuart Crawford 
Advanced Decision Systems 
1500 Plymouth Street 
Mountain View, CA, 94043-1230 

Peter Denning 
RIACS 
625 Ellis Street, Suite 205 
Mountain View, CA, 94043 

Susan Eberlein 
Jet Propulsion Laboratory, 168-522 
Pasadena, CA 91109, USA 

Jeff Eidenshink 
TGS Technology, Inc. 
Sioux Falls, SD, 57198 

U sama Fayyad 
U ni. of Michigan 
P.O. Box 4308 
Ann Arbor, MI 48106 
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Bob Fung 
Advanced Decision Systems 
1500 Plymouth Street 
Mountain View, CA, 94043-1230 

Len Gaydos 
SGE & USGS 
MS 242-4 
NASA Ames Research Center 

Sheri Gish 
IBM Almaden Research Center 
K54/802 
650 Harry Rd. 
San Jose CA 95120 

Hayit Greenspan 
Jet Propulsion Laboratory, 168-522 
Pasadena, CA 91109, USA 

Edward Herskovits 
Knowledge Systems Lab 
Medical school Office Building X-215 
Stanford, CA, 94305-5479 

Chris Hlavka 
SGE 
MS 242-4 
NASA Ames Research Center 

Lawrence Hunter 
National Library of Medicine 
Lister Hill Center, MS~54 
Bethesda, MD 20894 

Louis Jaeckel 
RIACS 
Mail Stop: Ellis 
NASA Ames Research Center 

Charles Jorgensen 
Intelligent Systems Technology Branch 
MS 244-4 
NASA Ames Research Center 

Deepak Kulkarni 
Artificial Intelligence Research Branch 
MS 244-17 
NASA Ames Research Center 



David Landgrebe 
School of Elect. Eng. 
Purdue University 
West Lafayette, 47907 

Creon Levitt 
NAS 
MS T045-1 
NASA Ames Research Center 

Danika Lew 
Dept. of Statistics 
University of Washington 
Seattle, WA 98195 

Steve Litvintchouk 
The MITRE Corporation 
Mail Stop A150 
Burlington Road 
Bedford, MA 01730 

John MacDonald 
Dept. of Statistics 
University of Washington 
Seattle, WA 98195 

Alianna Marek 
University of Tennessee 
Knoxville, TN 37996 

Charles Miles 
Recom Technologies 
8321 Auburn Avenue, Suite 165 
Citrus Heights, CA 95610 

Finbarr O'Sullivan 
Dept. of Statistics 
University of Washington 
Seattle, WA 98195 

Dragutin Petkovic 
IBM Almaden Research Center 
K54/802 
650 Harry Rd. 
San Jose CA 95120 

Gregory Piatetsky-Shapiro 
GTE Laboratories Incorporated 
40 Sylvan Road, MS-45 
Waltham, MA 02254 

Padhraic Smyth 
Communication Systems Research 
Jet Propulsion Laboratory, 238-420 
Pasadena, CA 91109, USA 

Peter Spirtes 
Lab. for Computational Linguistics 
139 Baker Hall 
Dept. of Philosophy 
Carnegie Mellon University 
Pittsburgh, PA, 15213 

David States, M.D.-Ph.D. 
Nat. Ctr. for Biotechnology Information 
Naitonal Library of Medicine 
Building 38A, Room 8S806 
8600 Rockville Pike 
Bethesda, MD 20894 

Kevin Thompson 
Artificial Intelligence Research Branch 
MS 244-17 
NASA Ames Research Center 

Nick Weir 
California Institute of Technology 
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Real Time Multispectral Pattern Recognition 

Susan Eberlein. Gigi Yates, and Eric Majani 

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Drive. MS 168-522 
Pasadena, CA 91109 

Multispectral imagery will be used in planetary exploration mISSIons, such as a Mars 
Rover, to characterize surface geology. An imaging spectrometer collects images of the sur­
face reflectance intensity at multiple discrete wavelengths (up to several hundred bands) in 
the visible and near infrared regions of the spectrum. The resulting spectral curve for each 
point in the image is characteristic of the mineral composition. 

Due to limitations on communication bandwidth and time required to send data back to 
earth. much of the analysis and interpretation of the spectral data will be done automatically, 
on board the space craft. Analytic activities include recognizing and classifying spectra, and 
flagging those spectra which are not readily identified as known minerals. The analytic activi­
ties must be performed with limited computational power and memory, in real time. 

The current system employs a hierarchy of neural networks which places spectra into 
progressively more detailed geologic classes, based. on a selected subset of the total spectral 
bands. At the most detailed level of the hierarchy, a measure of classification accuracy is per­
formed. Those spectra for which the best match is a poor match are identified, and subject to 
alternative processing. The goals of the "unknown spectrum" analysis are to identify both 
spectral and spatial feaures of interest, and avoid overlooking unidentifiable but potentially 
important spectra. A reasonable expectation is that many unknown spectra will derive from 
mixtures of known minerals, so a first step in analysis is to attempt to decompose spectra as 
mixtures of the closest known mineral and other minerals. 

Another method of dealing with unknown spectral patterns is to cluster together all simi­
lar unknowns for transmission and human examination. Both neural network and standard 
clustering approaches have been considered. However, clustering on multiband data is slow. If 
all bands are given equal importance in a clustering procedure, unimportant bands may over­
ride the important features. Some knowledge of an area's spectral composition may be used to 
choose important bands for clustering. . 

An alternative approach attempts to limit the number of bands used for clustering, while 
incorporating infonnation on the spatial distribution of the "unknown" spectra to help deter­
mine the bands of importance. Clustering on ratios of several bandsets is followed by analysis 
of the spatial distribution of the clusters. Bandsets which cluster to produce compact spatial 
regions should be of greatest interest. Iterations of alternating spectral and spatial analysis 
may allow the system to identify new spectral patterns with interesting spatial distributions. 
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Spectral Image Classification in an Alien Environment 

Susan Eberlein, Gigi Yates, and Eric Majani 
Jet Propulsion Laboratory 

4800 Oak Grove Drive 
Pasadena, CA 91109 

Space exploration provides vast challenges in data analysis and image interpretation. 
Many interesting problems in the analysis of large complex datasets may be addressed by sys­
tems that incorporate the use of neural networks for processing. This application employs 
neural networks for pattern classification as part of a data analysis and control unit for an 
autonomous roving vehicle, such as a Mars Rover. Neural networks provide advantages 
through robustness in the face of noisy and incomplete data, and through inherently parallel 
architectures for processing high dimensional data. An additional advantage may be obtained 
if a network can learn to distinguish unknown patterns from those for which it was trained, 
and to recognize similarities among new patterns. 

The application problem 
An autonomous vehicle for lunar or planetary exploration and sample acquisition will carry an 
array of complex instruments. This application concerns itself mainly with the science instru­
ments, rather than those for navigation and vehicle control. Of particular interest is the imag­
ing spectrometer, which senses the light reflectance intensity at many discrete wavelengths. 
The resulting multispectral image may be used to identify the mineral composition of the ter­
rain (Figure 1). This information is important both for doing general survey of an alien 
environment and for selecting specific areas to collect samples and perform in situ experi­
ments. 

A roving vehicle faces severe constraints in computing power, memory size, transmission 
bandwidth and time. In most ordinary situations, a vehicle operating on Mars will need to 
analyze. and make decisions for future activity without consulting Earth, due to the long tur­
naround time for Earth-Mars communi~ation. An on-board analysis and interpretation system 
is particularly important for mUltispectral images because the images are too" large to transmit, 
comprising up to a thousand data points for each pixel. 

A system has been designed and implemented in software for automatically analyzing 
multispectral images, fusing data from spectral and spatial images, and making simple deci­
sions regarding the next appropriate system activity, including reconfiguration of the instru­
ments [1]. This system incorporates simulated neural networks at several points for pattern 
classification and feature detection. Currently efforts are underway to incorporate into the nets 
an ability to assess the accuracy of classification. In cases where a classification is poor, the 
system should be able to invoke alternative techniques for pattern recognition, and ideally to 
learn new patterns. 

The role of neural networks 
Several neural network architectures have proven to be robust pattern matchers, able to clas­
sify noisy and incomplete data correctly. This application has examined two classes of net­
works for pattern classification: standard back-propagation trained classifiers [2], and grand· 
mother cell (matched filter) classifiers which have preset memories [3]. Initially a single net­
work was trained by a back-propagation algorithm to place spectra into one of several geolo~ 
gic classes based on thirty-two input dimensions (spectral bands). The network was fully con­
nected, feed-forward, with a single hidden layer. This network was analyzed to detennine 
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,i' 

A multispectral 
image 

.5 micron 

8 spectrum for 
each pixel 

mineral A 

mineral B 

wavelength (microns) 

Figure 1. Multispectral images, collected from an imaging spectrometer. For each 

pixel, reflectance intensity values are recorded at multiple wavelengths, in narrow , 

passbands. The resulting spectral curve may be plotted as a function of wavelength, 

and used to identify the composition of the material being examined, in this case, 

the mineral content. 

which input dimensions contributed to various classification decisions, allowing a hierarchy of 

smaller classifiers to be developed. The smaller nets place mineral spectra into one of two 

broad classes based on a few spectral bands (Figure 2). The classes become progressively 

more detailed as a spectrum proceeds through the hierarchy. 

The hierarchical approach has proven particularly efficient because it allows initial rough 

classification to occur with minimal computational effort, using only a few spectral dimen­

sions. A decision making step is invoked after each level of the classification hierarchy; unin­

teresting regions of the image may be removed from further analysis, and instruments may be 

properly reconfigured for collection of further data for interesting areas. 

An alternative classification approach uses grandmother cell networks to place spectra 

into one of several geologic classes. In this case a memory spectrum is chosen to represent 

each geologic class, and all thirty-two spectral bands are used as inputs (Figure 3). These nets 

are not trained, but the connection weights are determined in advance as a function of the nor­

malized values of the memory vectors involved. Initially grandmother cell networks were used 

to place spectra into broad geological classes. They may also be employed to match a spec­

trum to the closest of several specific minerals within a class~ In fact, the most successful 

combination of neural networks for this application uses the hierarchy for finding broad 

classes followed by a set of grandmother cell networks for final mineral identification. 

Any fonn of pre trained neural network will only classify a pattern correctly if that pat­

tern belongs to one of the classes used for training. In the above approaches to pattern 

classification, the "closest" match will be found, but that match may not represent the desired 

answer. Dealing with unknown or unexpected patterns is a significant issue when exploring an 

alien environment. It may be possible to determine before launch time what the expected dis­

tribution of most normal minerals and rocks will be on the surface of Mars, and prepare 
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1 
5 spectral 
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2 class outputs 

2 

6 spectral 
band inputs 

2 class outputs 

Sorosilicates, 
Amphiboles, 
Carbonates 

,I 

,I 

3 

3 spectral 
band inputs 

Clays, micas, 
Borates, 
Phosphates 

2 class outputs 

,I 
Sorosilcates, 
Amphiboles 

Carbonates Clays, Micas Borates, 
Phosphates 

Figure 2. Hierarchy of spectral classifiers. Each classification step uses only a 
few spectral bands, the cliloice of bands depending on which geo,logical classes are to ' 
be distingurshed. Each classification step is followed by a decision on whether to 
continue classifying the region, based on the current scientific goal' of the system. 
If the decision is to continue classification" the deCision maker determines which 
spectral bands and classifier to use next. 

networks to deal, very efficiently with these expected cases. However, the most interesting 
cases win be those that are not expected, and the further a pattern is from the set of expected 
patterns, the more interesting it is likely to be. Thus an effective autonomous pattern classifier 
must recognize when a new pattern matches poorly with the expected pattern classes, and deal 
with the new pattern. This implies an additional requirement for the neural networks: the abil­
ity to monitor their own performance. 

Networks to recognize the unknown 
There are three approaches to dealing with mismatched, unknown spectral patterns. 

1. One may overlook the mismatch, and simply place patterns into the closest class. This is 
appropriate if the training patterns or memories can reasonably be assumed to span the entire 
pattern space. In this case, mismatches can be attributed to noise and overlooked. However, 
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MULTISPECTRAL INPUT DATA - THREE WAVELENGTHS 

Input Spectra: 

60 18 38 

A~. :\~+ 

.,,---.-++-~+. 

B ."~.-++. .--". . 

30 42 52 

Memory 1 

80 25 50 

Memory 2 

18 22 28 

Memory 3 

25 75 55 

Input Values: 

A 60 18 

B 30 42 

38 

52 

Normalized Input Values 

A .719 .391 .567 

B .492 .582 .648 

OUTPUT: 

using using 
regular normalized 
inputs inputs 

'" A 71.9 
,,*', L B 68.0 

.995 

.955 

.514 .569 

.402 .696 

.642 

.596 

.956 

1.00 

.899 

.989 

Figure 3. Classification of multispectral data with a grandmother cell pattern matcher. 
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Figure 3. Classification of multispectral data with a grandmother cell pattern matcher. 

The grandmother cell pattern matcher performs an inner product between an input 
vector and each of a set of memory vectors. The memories are known mineral spectra 
normalized so thst the sum of squares of all components of the vector equals one. 
Normalization guarantees that for any given input, the inner product with the highest 
output value represents the best match. The input vectors conSist of the intensity 
values at three specific wavelengths. If inputs are not normalized, the output values 
depend on both the spectrum shape and the mean reflectance value of the input spectrum. 
Mean reflectance is a function of the light shining on the scene rather than of the mineral 
content, so that changing the ambient lighting will produce vastly different output 
values for the same mineral input. When non-normalized inputs are used, the best 
match will still be selected, but the algorithm will not provide a measure of match 
accuracy or allow for comparison among several input spectra. If inputs are normalized, 
the highest output value for a perfect match is 1.00, allowing an assessment of how 
close to perfect a match is. The examples show that the numeric differences between well 
and poorly matched spectra are quite small. If a threshold is to be used for goodness of 
match (normalized inputs required), the correct choice of threshold is critical, and 
will vary depending on the memory being compared. 

there is no guarantee that this approach will work for autonomous exploration of extra­
terrestrial bodies. 

2. One may find some measure for "closeness of match" so that mismatches may be rejected, 
then invoke alternative processing for the unknown pattern. In the exploration scenario, this 
probably means transmitting unexpected spectra to earth for human processing. 

3. One may first identify the mismatches, then proceed to learn new categories of patterns, so 
that future occurrences of the same unusual patterns may be grouped together. Although this 
does not involve discovering anything about the identity of the unknown pattern, it does 
require learning the significant features of the pattern so that similar patterns may be recog­
nized. In the remote exploration scenario, learning ability will allow the collection of infor­
mation about the distribution and variation in a new spectral pattern. Then this information 
may be transmitted to Earth, rather than sending each single occurrence of an unknown. 

The third alternative is obviously the preferred approach. It places two requirements on the 
neural networks used for pattern classification: they must be able to recognize poorly 
classified patterns and they must be able to learn new patterns. Both of these requirements are 
being addressed for both the back-prop trained classifiers and the grandmother cell pattern 
matchers. 

Recognizing errors 
The grandmother cell pattern matcher is designed so that euclidean distance between the input 
and a memory may be extracted. The memories of the network are encoded in the connection 
weights as the normalized values of the memory vectors (Figure 3); the sum of squares of the 
components for each vector equals one. If the input vectors are also normalized, the inner pro­
duct between an input and a perfectly matched memory will be 1.0, while any imperfect 
match will be less. If the output value of an imperfect match is subtracted from 1.0, the 
result is a normalized version of the euclidean distance between the input vector and the 
memory. 
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In the simplistic case, one may nonnalize all the inputs and consider any cases where the 
best match is below a predetermined threshold (i.e. the distance is too great) to be incorrect. 
In practice there are two problems with this approach. First, in the interests of rapid process­
ing it is undesireable to normalize all inputs in a software simulation. Normalization is 
unnecessary to find the closest match; it is needed only to determine an absolute measure of 
match accuracy. Second, a single, preset threshold for match accuracy does not work in prac­
tice, even when all input vectors are nonnalized. For any given mineral memory there is an 
expected amount of normal variability. This variability depends on the specific mineral and 
factors such as crystal structure and grain size. Thus a grandmother cell matcher requires a 
threshold for each memory, depending on the expected behavior of normal variants of that 
mineral. 

The trained networks lend themselves to a somewhat different type of accuracy analysis. 
During training, the target state always has one output unit on (value = 1.0) and the rest off 
(value = 0.0). When training is completed and new spectra are classified, a spectrum that fits 
well into a known class will again produce only one active output unit. Poorer matches will 
cause some activity in several output units, and the amount of spurious activity is an indicator 
of match accuracy. Therefore a measure is needed to evaluate how confident one should be 
in the match provided by the highest output. Such a measure should be able to reject a match 
when there is significant activity in several output units, and to take into account all output 
units at once. 

A measure that has these properties is the entropy of a probability distribution. Assume 
that P(i) is the probability that event i has taken place (in this case, that a given mineral has 

. produced the spectrum in question), and that n is the total number of output units. Then the 
entropy: 

i=1I [ 1 ] 
H = ~ P(i) * log P(i) 

represents the overall uncertainty about the correct observance of a random event. In this 
case, although the values of the output units are not probabilities, they are a measure of how 
good a match is. Therefore if the values of the output units are normalized to add up to 1.0 
(as probabilities do), and Yj is the nonnalized activity of output unit j, the measure: 

j=1I [ 1 ] H' = L Yj * log -. 
)=1 Y, 

should be a reasonable measure of uncertainty about the correct match (Figure 4). If H: is 
low, then the uncertainty is low, so that the confidence in a correct match is high. If H is 
high, then the match obtained is not reliable. 

Learning new patterns 
It is a simple matter for a grandmother cell pattern matcher to learn a new pattern. Assuming 
there is space available for several new memories, a new memory may be encoded by placing 
the normalized values of the new vector into the connections. However, this new memory 
does not necessarily form an accurate representation of the class of spectra being examined. 
Any noise in the vector has been encoded into the memory, since it is created from a single 
occurrence of the spectrum. Later occurrences which have different noise distribution may not 
be considered close matches, even though the important features are in common. This actually 
emphasizes a problem which already exists in the grandmother cell matching paradigm: each 
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example 
1 

example 
2 . 

example 
3 

example 
4 

example 
5 

example 
6 

unit unit unit unit unit 
1 2 3 4 5 

Entropy 

0.0 

.500 

.639 

.673 

1.23 

1.61 

Output unit values, normalized so sum = 1.0 

Figure 4. Illustration of entropy measure on a five-output network. The output 
values are normalized so the sum of all outputs equals 1. Entropy calculation 
(see text) represents overall uncertainty about the accuracy of a classification. 
Entropy (and uncertainty) is lowest when a single output is active, highest 
when activity is distributed over all outputs. 

dimension in the memory is accorded equal importance, even though some of them may be 
irrelevant while others are crucial. Effective learning algorithms for the grandmother cell 
architecture must incorporate intelligent methods of refining a new memory until the. memory 
encompasses the features but not the noise. 

Learning new patterns in a network which was originally trained by backward propaga­
tion of an error term is more complex, but several approaches look promising. The approach 
under current development spawns a new output node for the network when a new class is to 
be learned. Unlike the grandmother cell configuration, the method for setting weights to the 
new output is not simple. Starting with rather arbitrary weights, unsupervised learning is 
required to find optimal weights. 

Both grandmother cell matchers and back-prop trained classifiers have been programmed 
to detect misclassified patterns and attempt to learn new classes. Initial results of the efforts 
with the grandmother cell networks are poor, although there are several areas where improve­
ment may be achieved. Results with the back-prop nets are much more encouraging. 

Experimental results: grandmother cell networks 
A grandmother cell network was designed with 10 memories, each memory consisting of a 
representative spectrum for a specific small geologic class. Both the memory spectra and the 
inputs were normalized because of the requirements for a euclidean distance accuracy assess­
ment for the match. For each memory, an accuracy threshold was determined by classifying a 



set of known spectra and monitoring the range of output distance values for those minerals 
known to fall into that class. The network was tested on a separate group of spectra, all of 
which were known to belong to one of the ten predetennined classes. In a small trial run, 
only 26 of 66 spectra tested by this method were classified accurately. Of the remaining 40 
test spectra, 27 were recognized as being incorrectly classified by exceeding the acceptable 
distance threshold. The other 13 errors went undetected. In some cases, an input spectrum fell 
within the accuracy bounds of more than one class, due to the class specific thresholds. In this 
case the highest overall value was designated the best match. 

The grandmother cell network was programmed to create new memories, up to a pre­
detennined maximum number. To allow for flexibility within the framework of limited 

. growth, a record was kept of how recently an example of a new memory had been observed. 
When the available space for new memories became full, those that had not been observed 
could be dropped to make more space. The first time an unknown spectrum was encountered, 
it was encoded as a new memory. If more spectra were observed which were close matches to 
the new memory, the memory was refined to reflect the average of these similar spectra. It 
was hoped that this approach would limit the problems due to noise in the new spectra. How­
ever, it was difficult to find a balance between grouping together spectra which differed only 
because of noise, and averaging spectra which were essentially different. 

A major problem with this use of a grandmother cell classifier arises because members 
of a class are grouped together based on all spectral dimensions (spectral bands). Within a 
given geologic class, a small subset of features will be diagnostic for class recognition while 
most dimensions may be treated as noise. The grandmother cell architecture treats all dimen., 
sions equally. A better use of a grandmother cell network is in the identification of specific 
mineral spectra when the input spectrum is already known to fall into the class of interest. In 
this case, the input dimensions may be selected to include only those of importance for that 
geologic class. 

A set of single class grandmother cell network have been used successfully to identify 
minerals after initial classification with the hierarchy of spectral classifiers (see Figure 2). 
Work is now underway to incorporate accuracy measures into these net\vorks, including 
efforts to design accuracy measures which do not require normalizing all inputs. Since these 
nets are presumed to be dealing only with members of a specific geologic class, it may be 
possible to incorporate knowledge of the important input dimensions into the learning process. 
One likely type of unknown spectrum to be encountered is a mixture of known minerals 
(spectral reflectance values mix in an additive fashion). Use of this knowledge may also 
assist in devising an effective learning method. 

Experimental re$ults: back-propagation networks 
The entropy measure applied to back-propagation trained networks has provided a better 

estimate of classification accuracy. A network was trained to place spectra into one of five 
geological classes, based on thirty-two input dimensions and using eight hidden units. The 
entropy measure was applied, with thresholds determined by the maximum entropy encoun­
tered among the correctly classified training set members. Spectra which were not part of the 
training set were used for testing the network. Of 115 spectra which were known to fall into 
one of the five output classes, 98 (85%) were correctly classified, and the remaining 17 
exceeded the entropy threshold. Of 158 spectra which were known not to fall into one of the 
existing five classes, 129 (82%) were recognized as being poorly classified, and were desig­
nated unknown. 

In an initial effort to incorporate learning, the trained network was presented with a 
variety of spectra, including some which did not fall into any training classes. When the 
entropy measure indicated a poorly classified spectrum, the net spawned a new output node. 
When a new output node was created, connections were made from the existing hidden units 
to the new output, but connections from the input to the hidden units were not altered. Values 
for the new connection weights were based on the hidden node output values. High hidden 
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node values engendered high positive connection weights, low hidden node values engendered 
negative connection weights. Initial results of this approach show that new nodes can be 
created for classifying unknown spectra, and that similar spectra encountered later may be 
placed into the same new class. However, considerably more work is needed on optimization 
of the new connection weights to guarantee that similar unknown minerals will be classified 
together without disrupting the classification of the known spectra. 

Entropy measures are being applied to the small networks in the classification hierarchy 
as well. Since these networks have only two output classes based on a very few input dimen­
sions, they may offer a simpler arena for refining the new class learning algorithms. One 
observation is that the number of new classes which may be learned is related to both the 
number of input dimensions and the number of hidden units. If a net is being designed for 
later expansion, its initial training must involve extra hidden units. 

In general, if neural networks are to learn new pattern classes, it is critical that the 
important input dimensions for distinguishing the classes be recognized. This makes a grand­
mother cell classifier a rather poor candidate for learning new patterns, since all dimensions 
are treated equally. A network which has been trained to recognize classes is a better candi­
date, since the hidden units have come to act as feature detectors for the important input 
features. However, existing hidden units will only serve to recognize new combinations of 
features which were present in the training set. Future work will consider how much learning 
can be achieved for the spectral analysis problem without requiring the training of new feature 
detectors in the hidden layer. It may be possible to improve the likelyhood of selecting the 
correct dimensions for learning new classes by first using small networks to place spectra in 
broad classes, then performing further classification and learning based on selected spectral 
bands. 

The problem of recognizing and dealing with unexpected patterns is of importance in 
many domains. In a spectral analysis system for autonomous planetary exploration, the ability 
to recognize unknown patterns and group together related new spectra will vastly improve the 
scientific return of the missions. Neural networks have good potential as tools for spectral pat­
tern classification. Certain neural network paradigms may also prove effective for recognizing 
and clustering unexpected patterns. This ability will have wide ranging applications. 
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Abstract 
This paper introduces a machine learning technique for aiding automated knowledge 

acquisition. We motivate the problem of learning classification rules from data and argue its 
necessity in certain industrial settings. After introducing the learning algorithm, we review 
some successful applications in semiconductor manufacturing. Finally we introduce two 
extensions to our algorithm to deal with problems encountered in industry data: noise and 
limited training sets. 

We argue the appropriateness and necessity of machine learning to circumvent the 
"knowledge acquisition bottleneck", and motivate and describe the learning algorithm we 
developed. The GID3 system was applied to five different projects with several Semicon­
ductor Research Corp. (SRC) industry members. We describe some of the application 
areas where acceptable levels of success were achieved by the program. The application 
areas include: identification of relationships between Reactive Ion Etching (RIB) process 
anomalies and the corresponding parameter settings, acquisition of a set of rules for RIB 
process optimization, and knowledge acquisition for an emitter piloting advisory expert 
system. The paper aims to bring attention to machine learning as a useful tool in the 
automation of the semiconductoring manufacturing process and as an aid to engineers in 
interpreting and assimilating experimental results. 

Keywords: Machine learning, automated knowledge acquisition, decision tree induction, 

process diagnosis, classification. 
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1 Introduction 

There is a steadily increasing drive towards automation in all aspects of human endeavor. Automation 
promises cost-effectiveness, reliability, predictability, and accuracy. So far, only fixed simple tasks in 
manufacturing have been automated. Automation of more complex tasks, currently requiring intelligent 
decision making or problem solving on the part of hUIDallS, is a much more difficult task. 

One of the goals of Artificial Intelligence (AI) research is to provide mechanisms for emulating human 
decision-making and problem solving capabilities, using computer programs. The first AI attempts at such 
systems appeared as part of the technology known as "expert systems". Expert systems are intended to 
provide the means of encoding human knowledge about a specific task in terms of situation-action rules. 
The idea is that if such systems are endowed with sufficient knowledge of the task at hand, they may be 
able to emulate human expert behavior in most, if not all, situations that arise during task execution. 

Even with such a constrained and narrow goal, serious difficulties arose that hindered the development 
of successful expert system applications. The first such difficulty is known as the "knowledge acquisition 
bottleneck" [Fieg81]. Human experts find it difficult to express their knowledge, or explain their actions, in 
terms of concise situation-action rules. If pressed to do so, they typically produce rules that are incorrect, 
or that have many exceptions. The articulation of specific intuitive knowledge into detenninistic rules 
is a difficult, sometimes unrealistic, problem for human experts. Interviewing domain experts to extract 
such knowledge is also an expensive process demanding time from experts and knowledge engineers. In 
addition, it is a difficult and often frustrating process for the domain experts involved. Industrial diagnostic 
expert systems typically require a long development time. 

A second problem arises in a different situation: What if a task is not well-understood, even by the 
experts in that area? An example of this situation is manifested in our experience with the automation of 
the reactive ion etching (RIE) process in semiconductor manufacturing. We discuss some of the details 
of this application later in the paper. In such domains, abundant data are available from the experiments 
conducted, or items produced. However, models that relate how output variables are affected by changes 
in the controlling variables are not available. Experts strongly rely on familiarity with the data and on 
"intuitive" knowledge of such a domain. How would one go about constructing an expert system for such 
a domain? 

1.1 The Machine Learning Approach 

The machine learning approach to circumventing the aforementioned hurdles calls for extracting classi­
fication rules from data directly. Rather than require that a domain expert provide domain knowledge, 
the learning algorithm attempts to discover, or induce, rules that emulate expert decisions in different 
circumstances by observing examples of expert tasks. 

A training example consists of a description of a situation and the action perfonned by the expert in 
that situation. The situation is described in tenns of a set of attributes. An attribute may be continuous 
(numerical) or discrete (nominal). For example, a nominal attribute may be shape with values { square, 
triangle, circle } .. An example of a continuous attribute is pressure or temperature. The action associated 
with the situation, the class to which the example belongs, is a specification of one of a fixed set of allowed 
actions. The class of each training example is typically detennined by a human expert during normal 
execution of his/her task. Example actions may be raise temperature, decrease pressure, accept batch, ... 
The goal of the learning program is to derive conditions, expressed in tenns of the attributes, that are 
predictive of the classes. Such rules may then be used by an expert system to classify future examples. Of 
course, the quality of the rules depends on the validity of the conditions chosen to predict each action. 

A training example is therefore a list of the values of all the attributes along with the class to which the 
example belongs. Assume there are m attributes AI, .. . , Am, p classes CI, ... , Cpo A training example is 
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example Selectivity Ll Uq,: Wdth class 
e-l nonnal nonual power is high 
e-2 nonnal hip power is low 
e-3 high hip power is low 
e-4 high low power is high 
e-5 low normal flow rate is low 
e-6 low higb. flow rate is low 

Table 1: A Simple Training Set of Examples. 

an m + I-tuple (b}, b2 , ... , bm ; Cj ), where each bi is one of the values of the attribute Ai: {ail, ... , air;}, 
and Cj is one of the p classes. A rule for predicting some class· Cj consists of a specification of the values 
of one or more attributes on the left hand side and that class on the right hand side. 

As an example, consider the simplified small example set shown in Table 1. This set consists of six 
examples e-l through e-6. There are two attributes: selectivity and Ll line width. The attributes can take 
the values low, normal, and high. There are three classes: flow rate is high, power is low, and power is 
high. A simple rule consistent with these examples may be: 

IF (Selectivity = low) THEN Flow rate is low 

Note that this is only an illustrative simplification. Typically, the number of examples of a meaningful 
training set is at least in the hundreds, while the number. of attributes is usually in the tens. 

1.2 Further Motivation for Machine Learning 

In addition to the motivations listed above, two other reasons exist for the need of a machine learning 
approach. The first is the growing number of large databases that store instances of diagnostic tasks. 
Such data is typically accessed by keyword or condition lookup. As the size of the database grows, such 
an approach becomes less effective. Suppose an expert needs to look up cases similar to a case being 
diagnosed. A query may easily return hundreds of matches. A method for detennining relevant conditions 
automatically would be needed in this case. 

Another motivation is the evolution of complex systems that have an error detection capability. Com­
munication networks are an example. Faults are detectable by the network hardware. Several thousand 
faults may occur during a day. To debug such a network, a human would need to sift through large amounts 
of data in search of an explanation. An automated capability of deriving conditions under which certain 
faults occur may be of great help to the engineer in uncovering underlying problems in the hardware. 

Both of the above situations indicate that machine classification leaming is a potentially powerful 
method for summarizing large amounts of data effectively. 

1.3 Industrial Applications and Problems 

There are several approaches to inducing diagnostic rules from data. In this paper we do not cover all 
the details, nor do we review the relevant machine learning literature. We restrict our discussion to briefly 
presenting the problem and its complexity, and then we focus our attention on the induction of decision 
trees as an efficient solution. We illustrate this discussion with simple examples. We then briefly motivate 
and outline our algorithm (OID3) for inducing decision trees. The second part of the paper provides some 
details of several industrial applications in semiconductor manufacturing domains for which OID3 was 
utilized and was found useful by the process and knowledge engineers. 
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Figure 1: Decision Trees Generated for the Simple Data Set of Table 1. 

We also cover two problems that we faced in our dealings with industrial data and the schemes we 
developed to overcome them. The typical assumption is that large amounts of data are available when 
machine learning is to be applied. However, there are cases when experiments may be very expensive. 
In such cases, training data are limited. We developed a system, KARSM, that uses Response Surface 
Methodology, coupled with GID3, to generate rules under such conditions. Another problem we face with 
industrial data is that in some processes the data may be noisy. Human recording errors, limited sensor 
resolution, or sensor or equipment reliability problems introduce inaccuracies in the values of the attributes. 
We developed a system, RIST, that utilizes statistically robust techniques along with GID3 to deal with the 
noise problem. Both of these systems will be briefly outlined later in the paper. 

2 Inducing Rules from Training Examples 

Assume that there are m attributes as described above. Let each attribute Ai take on one of r i values 
{ail, ... ,airJ. Assuming that on average an attribute takes on one of r values, there are p . (r + l)m 
possible rules for predicting the p classes. It is computationally infeasible for a program to explore the 
space of all possible classification rules. In general, the problem of determining the minimal set of rules 
that cover a training set is NP·hard. It is therefore likely that a heuristic solution to the problem is the only 
feasible one. A particularly efficient method for extracting rules from data is to generate a decision tree 
[Brie84. Quin86]. A decision tree consists of nodes that are tests on the attributes. The outgoing branches 
of a node correspond to all the possible outcomes of the test at the node. The examples at a node in the 
tree are thus partitioned along the branches and each child node gets its corresponding subset of examples. 
A popular algorithm for generating decision trees is Quinlan's ID3 [Quin86], now commercially available. 

ID3 starts by placing all the training examples at the root node of the tree. An attribute is then chosen 
to partition the data. For each value of the chosen attribute, a branch is created and the corresponding 
subset of examples that have the attribute value specified by the branch are moved to the newly created 
child node. The algorithm is then applied recursively to each child node until either all examples at a node 
are of one class. or all the examples at that node have the same values for all the attributes. An example 
decision tree generated by JD3 for the sample data set given in Table 1 is shown in Figure l(a). 

Every leaf in the decision tree represents a classification rule. The path from the root of the tree to a 
leaf determines the conditions of the corresponding rule. The class at the leaf represents the rule's action. 

Note that the critical decision in such a top-down decision tree generation algorithm is the choice of 
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attribute at a node. The attribute selection is based on minimizing an infonnation entropy measure applied 
to the examples at a node. The measure favors attributes that result in partitioning the data into subsets 
that have low class entropy. A subset of data has low class entropy when the majority of examples in it 
belong to a single class. The algorithm basically chooses the attribute that provides the locally maximum 
degree of discrimination between classes. 

3 Overcoming Problems with ID3 Trees 

It is beyond the scope of this paper to discuss the details of the ID3 algorithm· and the criterion used to 
select the next attribute to branch on. The criterion for choosing the attribute clearly detennines whether 
a "good" or "bad" tree is generated by the algorithm. Since making the optimal choice of attribute is 
computationally infeasible, 103 utilizes a heuristic criterion which favors the attribute that results in the 
partition having the least infonnation entropy with respect to the classes. This is generally a good criterion 
and often results in relatively good choices. However, there are weaknesses inherent in the ID3 algorithm 
that are due mainly to the fact that it creates a branch for each value of the attribute chosen for branching. 

3.1 Problems with ID3 Trees 

Let an attribute A, with possible values {at, a2, ... , ar } be chosen· for branching. 103 will partition the 
data along r branches each representing one of the values of A. However, it might be the case that only 
values at and a2 are of relevance to the. classification task while the rest of the values may not have any 
special predictive value for the classes. These extra branches are hannful in three ways: 

1. They result in rules that are overspecialized. The leaf nodes that are the descendants of the 
nodes created by the extraneous branches will be conditioned on particular irrelevant attribute values. 
Since each leaf node corresponds to a classification rule, the irrelevant conditions will appear in the 
preconditions of the corresponding rules. 

2. They unnecessarily partition the data, thus reducing the number of examples at each child node. 
The subsequent attribute choices made at such child nodes will be based on an unjustifiably reduced 
subset of data. The quality of such choices is thus unnecessarily reduced. 

3. They increase the likelihood of occurence of the missing branches problem. This problem occurs 
because not every possible combination of attribute values is present in the examples. 

The third problem can be illustrated in the 103 tree shown in Figure l(a). Consider two possible unclassified 
examples which are to be classified by the tree of Figure l(a): 

ex 1: (Selectivity = low) & (~ line width = low) 
ex2: (Selectivity = nonnal) & (~ line width = low) 

Both ex 1 and ex2 are examples that have combinations of attribute values that did not appear in the training 
set of Table 1. However, the tree readily classifies ex 1 as being the result of an etch where the flow rate was 
low, but ex2 fails to be classified by the tree. This is because the subtree under the nonnal selectivity branch 
has no branch for low ~line width. We shall shortly illustrate how the occurence of miSSing branches may 
be avoided. 

The main problem with the tree of Figure l(a) is that the nonnal and high selectivity branches should 
not be separated. Low selectivity is the only value of relevance to the occurence of a problem. It would be 
desirable if the learning algorithm could somehow take account of such situations by avoiding branching on 
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attribute values that are not individually relevant. This would reduce the occurence of the three problems 
listed above. 

3.2 The GID3 Algorithm 

To avoid some of the problems described above, we developed the GID3 algorithm 1. We generalized the 
ID3 algorithm so that it does not necessarily branch on each value of the chosen attribute. GID3 can branch 
on arbitrary individual values of an attribute and "lump" the rest of the values in a single default branch. 
Unlike the other branches of the tree which represent a single value, the default branch represents a subset 
of values of an attribute. Unnecessary subdivision of the data may thus be reduced. Figure 1(b) shows the 
tree GID3 would generate for the data set of Table 1. Note that both examples, ex1 and ex2, are classifiable 
by this tree. The missing branch problem that prevented the tree of Figure 1(a) from classifying ex2 does 
not occur in the tree of Figure 1 (b). 

We now tum our attention to the application of GIE>3 to problems in the domain of semiconductor 
manufacturing. Interested readers are referred to [Fayy91, Chen88] for detailed accounts of the ID3 and 
GID3 algorithms, the attribute selection criterion, the weaknesses of the ID3 approach, and various perfor­
mance measures to evaluate the quality of the resulting trees. Performance measures include error rate in 
classifying new examples and measures of the size complexity of the generated tree. 

4 Applications of GID3 in Semiconductor Manufacturing 

In this section we discuss several applications of the GID3 algorithm to semiconductor manufacturing 
domains. Most of these domains involve the reactive ion etching (RIB) process. The RIB process is a 
wafer etching process that promises increased precision and higher device density. It has been targeted 
for automation by the Semiconductor Research Corporation (SRC), a consortium of major U.S. companies 
in semiconductor manufacturing. One of the steps necessary for automation is the development of expert 
systems that determine process parameter settings based on given output constraints. The problem is that 
the process is not well-understood and no satisfactory methods for determining proper control settings exist. 

To illustrate the types of industrial tasks to which GID3 can be applied, we describe application tasks 
from three categories: RIB process diagnosis, RIB process optimization, and an emitter piloting application. 
The goal· of process diagnosis is to derive rules for diagnosing faults by deciding which process parameters 
are not correctly set. We describe two projects in this category. In the process optimization category, the 
project targeted deriving rules for dealing with situations where the operating point drifts away from the 
optimal operating point in the parameter space. Finally, we briefly discuss our effort on a project aimed 
at facilitating the knowledge acquisition effort for the development of an emitter piloting advisory expert 
system. 

4.1 Process Diagnosis 

The first project's goal is to acquire a set of RIB process diagnostic rules from a collection of production 
log data that contain fault inspection results by process engineers. The goal is to etch a specified pattern 
in the metal on a wafer. 

Each data log contains about 60 data entries, including machine type, device specification, material and 
resist thickness, plasma time, power, DC bias, chamber pressure, gas flow, temperature, valve position and 
number of wafers. Since this is a multi-stage (three stage) etch, each stage has its own set of measurements. 
A distinct table slot is used for visual inspection after the etch. For this project, three types of inspection 

IThe name GI03 stands for Generalized 103. 
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power 1 power2 power3 time 1 time2 time3 wafer# topology '" outcome 
1117 1134 490 8.98 7.20 5.0 18 v '" erosion 
895 1139 492 10.26 8.2 5.0 24 v '" erosion 
833 854 442 7.4 6.0 5.0 1 v ... sleeves 
835 818 491 9.7 7.76 5.0 5 v ... none 
859 835 490 9.9 7.92 5.0 2 v '" none 
867 886 466 9.9 7.9 5.0 7 v ... sleeves 
847 871 473 9.8 7.8 5.0 8 v '" sleeves 
776 833 500 8.6 6.9 5.0 8 v '" none 
771 813 490 8.7 7.0 5.0 4 v '" none 
847 825 491 9.20 7.36 5.0 13 v ... erosion 
851 843 490 17.2 4.3 5.0 6 v ... none 
806 896 493 10.5 8.40 5.0 2 v '" none 
844 822 493 9.16 7.33 5.0 14 v '" erosion 
860 809 490 9.8 7.84 5.0 2 v '" none 
867 825 452 9.7 7.76 5.0 2 v ... sleeves 
878 819 454 24.1 14.4 5.0 1 t ... none 
848 816 455 321.0 16.8 5. 9 t ... none 
806 778 484 22.5 9.0 5.0 8 t '" sleeves 
881 795 467 22.7 13.6 5.0 1 t ... none 
772 868 490 8.7 7.0 5.0 7 v ... none 
. ,. ... ... ... ... . .. . .. . .. ... . .. 
842 826 494 17.0 13.6 5.0 1 v ... none 

Table 2: A Partial list of Data Logs for a RIB Process 

results are commonplace, namely, rwrmal, PR erosion, and sleeves. A partial list of such data logs is shown 
in Table 2. 

Process fault diagnosis has been a regular demand on process engineers. Whenever a fault is detected, 
its immediate cause needs to be identified and a decision is then made to correct the problem by adjusting 
process parameters directly or indirectly. Detennining such adjustments is a nontrivial task. Abstracting 
these daily routines into rules that cover the task has been found to be difficult. Extracting general rules 
that can be transferred across different processes and be used to guide further reasoning to find physical 
laws governing the observed phenomena has been especially difficult. For this project, the difficulty in 
diagnosing the faults is due to the large number of process parameters, most of which vary greatly. These 
conditions naturally make the domain appear promising for the application of machine learning techniques. 

Once the attributes and classes are detennined, GID3 can be used to induce a decision tree from the 
available data. The decision tree is then transformed into a set of diagnostic rules because the rule format 
is more general and is easier for process engineers to comprehend. In order to get a set of rules which 
are general and reliable, and to overcome problems with noisy data, we used the RIST package described 
later. RIST runs GID3 many times. Each time, a random subset of the given data set is selected to induce 
rules. The rules are then tested against the whole data set. A set of statistical criteria are used to select a 
subset of the rules obtained from each GID3 session. We describe this method further in section 5.1. 

Each of the rules generated provides a range of operating conditions with a prediction of the process 
outcome under those conditions. The power of our machine learning approach is manifested by the fact that 
most rules can predict the process outcome correctly with only one to three tests on the attributes. Figure 
2, shows four of the rules generated for the data of Table 2. These rules exemplify pieces of compact, 
previously unknown, knowledge that are found useful by both process and knowledge engineers. 

The second project was aimed at identifying relationships between RIB process problems, such as 
reduction in yield, and corresponding process parameters including the flow rate of each gas component 
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Rul&! 1: IF erosion is observed 
THEN probably too many wafer!> we loaded; 
Redu~ numbl)r of wafers W < 11. 

Rull! 3: If sleeves lUe ob!lerved 
THEN ewbing at !Itage I may not be sufficient; 
Increa,se etch time fOJ stage I to > 8.15 minutes. 

Rule 2.: IF erosion is observed Rule 4: If sleeves are observed and stage ill powerE [451,487] 
THEN power at etch stage IT may be too high; THEN etching at stage IT may not bI) sufficient; 
Reducepower at etch stage II to < 956.5V. Increase overetch percentage for stage IT. 

Figure 2: Rules for Diagnosing Faults of a RIE Process 

and the chamber pressure for different etching steps. This data set was derived by reg~ssion analysis which 
statistically identifies the geometric pattems such as lengdJ.. comers and gaps responsible for the yield loss. 
Classes consisted of dominating defect pattems. The details of this project with Westinghouse are discussed 
in [Frie89]. The rules derived by OJD3 Were used to analyze and understand the process behavior. 

4.2 Process Optimization 

To achieve high yield. low defect density, and small geometry. RIB must o~rate at an optimal point in 
the input parameter space. The problem. known as process optimization, or process design. is the most 
important problem that a plasma engineer has to face. 

The goal of process optimization is to find a set of input parameters, usually referred to as a recipe. 
such that the outputs can be optimized. For example, one may want to minimi~e the line width change 
under the condition that selectivity is higher than a certain value and unifonnity is within a certain range. 

A popular method to solve the process optimization problem is the Response Surface Methodology 
(RSM) [Berg82]. RSM is a statistical method in which the input parameters of RIB are treated as inde­
pendent variables and the output parameters as response variables. For each response variable. multiple 
regression analysis is applied to generate a response surface to fit the data. Optimization techniques are then 
used to find a point that optimizes the response variables under the given constraint [Berg82]. However. 
RSM has its drawbacks. It is a static method in the following sense. Given a set of experimental data, a set 
of response surfaces can be generated and a fixed optimal point can be found. According to this optimal 
point, a recipe is formulated. The problem is that under a fixed recipe, the process might not be optimal 
because certain hidden variables which were not considered in the design process influence the process 
later. In other worQS, the response surface may drift so that the operating point may no longer be optimal. 
Qbvioysly. what we need is a set of rules which tell us where to move in the parameter space to achieve 
the optimal output under the given constraints. This makes for a dynamic, rather than static, solution to 
the optimization problem. 

The above analysis lead us to consider using machine leaming to process optimization problems for 
RIE. Our objective was to generate a set of rules that tell us which input parameters should be changed, and 
in Which direction, if the outputs are not optimal or do not satisfy the constraints. We discuss the general 
methodology that we applied to a particular project. Table 3 shows a partial set of experimental data we 
aquired from industry for this project. Pressure,jlow, and percentjlow are input parameters while the other 
five columns of Table 3 represent outputs, Each of the 20 items represents an experiment. To generate 
more data items. we used KARSM (described later in section 5.2) to obtain an excess of SOO examples 
from these 20. 

To apply GID3. obviously. we can regard input parameters as attributes and output parameters as 
outcomes. Since GID3 requires that each example have one class (outcome), we first discretize and 
combine the output parameters. For the constraint variables. the values can be Qiscretized as either low 
or high (based on the constraints). For the optimization variables, the values are discretized as different 
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No. press. flow % flow ACD CD unif. Oxide loss Oxide unif. 
(mTorr) (sccm) (%) (pm) (pm) (:4) (:4) 

1 300 150 25 0.05 0.05 368 216.0 
2 500 150 25 0.25 0.05 316 43.5 
3 300 300 25 0.18 0.40 407 162.0 

'" ... ... ... ... .. . ... 
20 400 225 38 0.10 0.05 220 38.0 

Table 3: ·Experimental Data for Process Optimization 

levels such as very high, high, medium, low, very low. The data is then fed into GID3 and a decision tree 
is obtained. In the decision tree, a leaf represents a class of outputs. A leaf may represent an optimal 
class, for instance, (very low, high, low, low) for "very low line width change, high selectivity, and low CD 
and Oxide unifonnity". This is an optimal class when one wants to minimize the line width change under 
the condition that selectivity is higher than a certain value and unifonnities are lower than certain values. 
Other leaves may represent faulty classes. For instance: "high line width change, low selectivity, low CD 
unifonnity, and high Oxide unifonnity". To derive the required rules, the condition-the path from tree 
root to leaf-of a faulty leaf is compared to the condition of a leaf having an optimal class. The differences 
represent the. changes needed to bring a faulty operation to an optimal one. For example, assume that the 
condition of the optimal leaf is "pressure below 300 mTorr, total flow above 180 sccm, percent flow above 
40 %" and that the condition of a faulty leaf is "pressure above 312 mTorr, total flow from 215 to 300 
sccm, percent flow below 37.5 %". We can now derive a rule 

"if selectivity is lower than normal, Oxide uniformity is higher than normal, line width change is 
high, to minimize line width change, pressure should be decreased and percent flow should be increased". 

4.3 An Emitter Piloting Expert System Application 

GID3 has also been applied successfully to acquire knowledge for minimizing steps in emitter piloting 
dispositions. Emitter piloting is a process of tuning integrated circuits printed in wafer so that device 
specification can be satisfied. This task is typically carried out by a human operator. The initial cycle time 
is detennined by experience and cycle time adjustment is then guided by the measurement of two device 
parameters. If the values of the two parameters fall in their respective desired ranges, the cycle time is 
accepted for batch tuning and is called the "shooting time". Otherwise, it is either increased or decreased 
to bring parameter values within desirable ranges. The number of steps needed before success in such a 
process is greatly affected by operator experience. Such experience is very valuable but is very difficult to 
encode in rules. The purpose of the project was to collect all sequences of trials conducted and to use the 
machine learning approach to attempt to extract the knowledge underlying the actions of human operators. 
See [Yang89] for further details of this domain. 

The raw data used in knowledge acquisition is composed of numerous experiment data logs, each of 
which consists of sequences of cycle time adjustments targeting one shooting time. For every trial in 
each sequence, the cycle time used and two parameter measurement values were recorded. GID3 was 
used to learn rules for jumping to a shooting time from an arbitrary cycle time by letting each data point 
be the condition under which certain adjustments can be made to achieve a certain shooting time. The 
difference between the current cycle time and the actual shooting time for each example was taken to 
be the predetennined class. The rules induced by GID3 were evaluated by an expert and were deemed 
satisfactory. In this project GID3 was used as a knowledge acquisition tool to gather rules for incorporation 
into an expert system developed by Harris Semiconductor. 

25 



5 Dealing with Industrial Data Problea;a.s 

In conclusion to this presentation, we focus on two special problems encountered in industrial applications 
and the solutions we devised to combat them. The problems are: 

Noisy Data: attribute values may be erroneous due to human recording errors, imperfect sensor repeatabilty, 
or defects in process equipment or sensors. 

Limited Training Data: the training data may be small in size and conducting more experiments may be 
too costly. 

5.1 Dealing with Noisy Data 

Empirical learning algorithms are typically sensitive to t.IIe presence of noise because they rely solely on 
data to discover rules. Typically, they are not intended to have access to special domain knowledge to 
guide their decisions. Noise in a training data set may cause irrelevant rule conditions to be selected. The 
solution we devised combats noise in two ways: 

1. Statistical evaluation (pruning) to identify and remove irrelevant conditions from rules. 

2. Random sampling of multiple training sets and selection of statistically significant rules from the 
trees generated for these training sets. 

After a decision tree is generated, a statistical test is applied to remove rule preconditions that are 
deemed statistically irrelevant, resulting in more general, pruned, rules. The statistical test we use is 
Fisher's Exact Test. It measures the probability that a hypotheses (in this case a condition of a rule) is 
irrelevant to the outcome. If this probability is higher than a small value, the condition is discarded. For 
details of the statistical test see [Quin87. Finn63]. 

This method of statistical pruning deals with the rules produced from one run of GID3. By randomly 
sampling subsets from a given training set, many trees can be generated. For each tree, we apply the 
statistical test and keep only the "good" rules. Finally, a subset of the surviving rules that covers the original 
training set is selected. When coupled with a method for statistical significance testing, the mUltiple random 
sampling of the training set has proven to be an effective technique for extracting a compact and reliable 
set of rules from the original training set. The method, illustrated in Figure 3, has been implemented in a 
software package named RIST (Rule Induction and Statistical Testing). 

5.2 Dealing with Limited Training Sets 

The learning algorithms we discussed do not use any special domain knowledge about the data during 
tree or rule generation. They rely on the availability of large training samples to detect the presence of 
meaningful reliable patterns or correlations. In some cases however, obtaining training examples may be 
an expensive process. In this case, only a limited training set may be available. 

In section 4.2 we mentioned that RSM is standard methodology used in process optimization. The core 
component of this methodology is to approximate the given data by a polynomial surface. Once the data 
is fitted with a surface, each point on the surface corresponds to a specification of the input and output 
variables. Since we know the target conditions that the output variable must satisfy, we can quantize the 
output value into: {Good, Bad}, or into a finer partition such as { Very Low, Low, Good, High. Very High}. 

At this point. we can randomly choose a combination of input values, and the response surface will 
give us the associated discretized output. As is shown in Table 4, 500 examples can be extracted from the 
original data of Table 3. This gives us a method of extracting an arbitrarily large training sample from an 
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original small training set. Of course, the "usefulness" of the extracted large training set depends on the 
correctness of the response surface generated to fit the original data. The generated data set is then fed into 
RIST (or GID3) to extract qualitative rules that describe the behavior of the data. 

We have implemented this procedure in a software package called KARSM (Knowledge Acquisition 
from Response Surface Methodology). It is Illustrated in Figure 4. 

The reader may wonder why we do not stop with the response surface and use it directly to describe 
the process. The answer is that the response surface does not give an easily understandable description 
of the process. By generating rules from the surface we essentially extract a qualitative description of the 
behavior of the process in terms of desirable and undesirable regions of the output space. The procedure for 
extracting, from the decision tree, the qualitative rules that specify the direction in which process parameters 
should be changed, when the operating point drifts, is described in section 4.2. 

I No. I pressure I total flow I percent Cl2 flow I class 
1 377 192 49 ab,I,I,I 
2 342 297 36 h,I,I,h 
3 491 241 34 ab,h,I,h 

'" ... '" ... ... 
499 452 211 37 m,h,h,I 
500 303 185 42 vI,h,I,I 

Table 4: Classified Random Samples 
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We have introduced the general problem of extracting rules from data for the purpose of automating the 
knowledge acquisition process. We described the GID3 algorithm for inducing decision trees and its use 
in automating knowledge acquisition in several application domains. Given a training set of data, the 
algorithm produces a decision tree for predicting the outcome of future experiments under various, more 
general conditions. The tree may. then be translated into a set of rules for use in expert systems. We also 
introduced two extensions of GID3 to deal with noise and limited training set availability. 

We have utilized GID3 to extract knowledge from data in several application domains. In each case, 
the decision trees obtained, or the English version of the generated rules, were sent to the engineer who 
supervises the experiments and provides the data. The derived rules were judged to be consistent with the 
data and confonnant with the engineers' expectations. A derived model, or a discovered pattern, that is 
consistent with a process engineer's expectation is of great value in two ways: 

1. It provides a previously unavailable mechanical means for classifying events or relating faults to 
parameters. 

2. It gives the process engineer further insight into the process by making explicit a pattern that was 
previously implicit as part of the engineer's "intuition" about the process. 

We believe that machine learning techniques have an important role to play in the automation and 
improvement of manufacturing techniques as well as many other diagnostic tasks. A machine learning 
approach avoids the ubiquitous "knowledge acquisition bottleneck" by minimizing the required interaction 
with domain experts and focussing on a resource that is much easier to obtain: experimental data. A further 
advantage of using an induction system such as GID3 is that knowledge acquisition can be fast, accurate, 
and most importantly, can be automated. 

28 



Acknowledgements 

This work was supported by the University of Michigan SltC ~esearch Program under contract #89-MC-085. We 
would also like to thank Hughes Microelectronics Center for their partial support of this work in the form of an 
unrestricted grant. 

References 

[Berg82] Bergendahl, A.S., Bergeron, S.F., and Harmon, D.L. (1982). "Optimization of plasma processing for 
silicone-gate PET manufacturing applications." IBM Journal of Res. Dev. vol. 26, no. 5. 

[Brie84] Breiman, L., Friedman, J.H., Olshen, RA., and Stone, CJ. (1984). Classification and Regression Trees. 
Monterey, CA: Wadsworth & Brooks. 

[Chen88] Cheng, J., Fayyad, U.M., Irani, K.B., and Qian, Z. (1988). "Improved decision trees: A generalized 
version of 103." Proceedings of the Fifth International Conference on Machine Learning. pp. 100-108. 
Ann Arbor, MI. 

[Fayy91] Fayyad, U.M. (1991). On the Induction o/Decision Trees/or Multiple Concept Learning. Dissertation in 
preparation, EECS Dept., The University of Michigan, Ann Arbor. 

[Fieg81] Fiegenbaum, E.A. (1981). "Expert systems in the 1980s." In Bond, A. (Ed.), State of The Art Report on 
Machine Intelligence: Maidenhead: Pergamon-Infotech. 

[Finn63] Finney, DJ., Latscha, R, Bennett, B.M., and Hsu, P. (1963). Tables for Testing Significance in a 2x2 
Contingency Table. Cambridge: Cambridge University Press. 

[Frie89] Friedhoff, C.B., Cresswell, M.W., Lowry, C.R, and Irani, K.B. (1989). "Analysis of intra-level isolation 
test structure data by multiple regression to facilitate rule identification for diagnostic expert systems." 
Proceedings of the International Conference on Microelectronic Test Structures. Edinburgh, Scotland. 

[Quin86] Quinlan, J.R (1986). "Induction of decision trees." Machine Learning 1, No.1. pp. 81-106. 

[Quin87] Quinlan, J. R (1987). "Generating Production Rules From Decision Trees." Proceedings of the Tenth 
International Joint Conference on Artificial Intelligence. Milan, Italy. 

[Yang89] Yang, Y.K. (1989). "EPAS: An emitter piloting advisory expert system for IC emitter disposition." Pro­
ceedings of Semi can West. 

29 



Inferring Causal Structure In Mixed Populations 

by Clark Glymour, Peter Splrtes, and Richard Schelnes 

1. Introduction 

In this paper we will examine the problem of reliably inferring causal relations from statistical data 

and fragmentary background knowledge. Such causal inference problems arise in many 

instances in statistics, sociology, economics, and epidemiQlogy, among others. The problem can 

also arise when building expert systems that use Bayes networks. In many cases such networks 

are constructed on the basis of some expert's background knowledge; in many other cases 

however our background knowledge is woefully inadequate for constructing a useful expert 

system. 

The causal structure among a set V of n random variables can be represented by a directed graph 

over V, where there is an edge from A to B if and only if A is a direct cause of B relative to V. (We 

will say that A is a direct cause of B relative to V if and only there is a causal chain from A to B that 

does not involve any of the other variables in V.) 

Given a joint distribution over V, the sheer number of different possible causal theories over V 

makes inferring which causal structure generated the joint distribution extremely difficult. There 

are (~) pairs of variables in V, and for each pair of variables there are four possibilities: A causes 8, 

8 causes A, neither causes the other, or both cause the other (which we interpret as a feedback 

loop). Hence, there are i~) different causal structures over V. If n= 6, there are 1073741824 

different theories; if background knowledge eliminates the possibility of cycles, there are 

approximately 3000000 theories; and if background knowledge provides the time order for each 

pair of variables, then there are approximately 32768 different theories. For 12 variables, the 

corresponding numbers are 5444517870735015415413993718908291383296, 

521939651343829405020504063, and 73786976294838206464. It is not uncommon for 

medical models or econometric models to include several hundred variables. 

We will describe an algorithm that efficiently and reliably infers causal structures from statistical data 

(under the assumption that every common cause of a pair of measured variables is itself 

measured.) In order to execute the algorithm (called PC), it is necessary to determine for certain 

pairs of variables a and b, and certain sets of variables C, whether a and b are independent 
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conditional on C (in the discrete case), or whether the partial correlation Pab.C vanishes (in the 

linear case.) (This is also true of a number of other causal inference algorithms.) 

We will then examine the extra difficulties that are posed by populations that consist of mixtures of 

sub-populations in which each sub-population has the same causal structure, but the strength of 

the causal connections differ. In these populations, conditional independence relations that hold 

in each sub-population generally do not hold in the population as a whole. Also, partial 

correlations that vanish in each sub-population generally do not vanish in the population as a 

whole. In such mixed populations, PC cannot be reliably employed. 

Finally, we will show in the special case that the variables are linearly related, each unit in the 

population has the same causal structure, but the linear coefficients are independently 

distributed, the partial correlations are the same as those in a population generated by the same 

causal structure in which the linear coefficients do not vary. In populations in which the linear 

coefficients are independently distributed, PC can be reliably employed. 

2. Pseudo-Indeterministic and Indeterministic Systems 

Consider any collection of finite structures in which there is a set of input variables whose values 

are independently and randomly distributed, a set of variables each of which is some function-­

linear, non-linear, or whatever--of some subset of the input variables, a set of variables each of 

which is some function of some subset of the union of set of input variables and the set of first­

level variables, and so on. We call such a collection of random variables, functional relations, and 

distributions over the independent variables a causal system. 

In all of these cases there is a common formal structure. The causal structure can always be 

represented by a directed graph. In circuits without feedback and in most applied statistical 

cases, the directed graph is acyclic. Henceforth we will consider only acyclic directed graphs. Fig. 

1 is an example of a graph of a causal structure. 
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a b C 

Fig. 1: Causal Structure I 

Any directed acyclic graph represents a causal structure, the values of the variables represented 

as vertices of zero indegree (the inputs or exogenous variables) take their values randomly and 

independently of each other. (We assume that for any three disjoint sets A, B, and C of 

exogenous random variables that A is independent of B conditional on C.) Assume for the 

moment that the value of each variable that is not an input variable is uniquely determined by its 

immediate causes. Then .all variables are in fact random variables, and a graph of causal relations 

also represents a system of functional relations among these random variables: e.g., 

a input 

b input 

c input 

Ed input 

Ee input 

Ef input 

d = r(a,b,Ed) 

e = s(b, C,Ee) 

f = t(d, e,Ej} 

for any three disjoint subsets X, Y, Z of {a, b, c, Ed, Ea, EI} X is independent of Y conditional on Z 

The graph specifies that the exogenous variables are independent of each other, and for each 

variable the graph determines what other variables it is a function of, but the graph does not 

32 



further specify the function. We say that the graph represents the causal structure. Many 

causal systems share the same causal structure and can be represented by the same graph. 

A causal system S generates a probability distribution P in the following way. Since each non­

exogenous (endogenous) variable is a function of the exogenous variables (or a function of 

variables that are themselves ultimately functions of the exogenous variables), once values for 

each of the exogenous variables have been specified, the values of all of the variables in the 

system have been completely determined. Similarly, specifying a probability distribution over the 

exogenous variables completely determines a joint probability distribution over all of the 

variables. We will extend this terminology to causal structures aswell as causal systems: if causal 

system S generates distribution P, and S has causal structure C, we will also say that C generated 

P. Each causal system S generates a unique probability distribution. However, since many 

different causal systems share the same causal structure, many different distributions can be . 

generated by one causal structure. 

The connection between causality, directed acyclic graphs and probability distributions described 

above is tacitly assumed in many of the usual causal modeling formalisms in applied statistics, e.g., 

in factor analysis, in linear structural equation models and in causal models with discrete variables. 

"Recursive" structural equation models, for example, specify a system of linear equations that can 

be viewed individually as regression equations with random regressors with non-zero variances. 

At least implicitly, there is a regression equation of this kind for each variable in the system. A 

system of such equations determines a directed acyclic graph, G, with its variables (omitting the 

error variables) a.s vertices in the obvious way. A joint probability distribution is imposed consistent 

with these assumptions. 

In the complete set of variables, the value of an endogenous variable is always completely 

determined by its causal parents. However, in fhe example depicted in Fig. 1, if only the subset 

of variables V = {a, b, c, d, e, f} is considered, the set of immediate causes in V of each 

endogenous variable does not uniquely determine the value of the variable. If we assume that for 

each endogenous variable X in the set V there is a unique exogenous variable of unit outdegree 

and non-zero variance (an "error" variable) not in V, that together with the causal parents of X in V 

completely determines the value of X, we call the causal structure of such a set of variables 

pseudo-indeterministic. The distribution generated by a pseudo-indeterministic causal 

system is the marginal of a .distribution generated by a deterministic causal system. A particular 

kind of pseudo-indeterministic causal system is a linear causal systems, in which all of the 
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functions relating the variables are linear. In that case we assume that all of the variances 

conditional on any set of variables not including error variables ~re non-zero, and that all partial 

correlations among non-error variables exist. 

In the case of pseudo-indeterministic causal systems, the reason that the values of the 

endogenous variables are not completely determined by their causal parents in V is that the 

"error" .terms which partially determine the values of the endogenous variables are not in V. 

Another possible reason that the values of the endogenous variables are not completely 

determined by their causal parents in V is that there is a genuinely indeterministic relation 

between the endogenous variables and the complete set of its causal parents. If that is the case, 

we say that the causal system is Indeterministic. 

3. Causal Graphs and Bayes Networks 

A Bayes network is a graph G and a distribution P that satisfies the following conditions: 

Markov Boundary Condition: In P, each variable in G is independent of all of its non­

parental non-descendants conditional on its parents, and no proper subset of its parents 

satisfies this condition. 

We will assume that any distribution P generated by a causal structure G satisfies the Markov 

Boundary Condition with respect to P. 

If every conditional independence relation that holds in P is entailed by satisfying the Markov 

Boundary Condition for G, then we say that G is a perfect representation of P. We will also 

say that P is faithful to G. We will henceforth assume that each probability distribution generated 

by a causal structure is perfectly represented by the causal graph G of that structure; justification 

for this assumption is provided in Spirtes[19901. 

Pearl[1988] shows how to determine whether an atomic conditional independence statement is 

implied by the Markov boundary conditions for a graph G, using a graph-theoretic concept named 

d-separability. 

An undirected path from v1 to vn in an acyclic graph G = <V,E> is an ordered n-tuple of 

vertices <V1,v2, ... Vn-1,vn> such that each vertex occurs only once, and for each pair of vertices vk 

and Vk+1, either the edge <vk,vk+1> is in E, or the edge <vk+1,vk> is in E. If, in an undirected path 
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U = <v1,v2, ... Vn-1,Vn> there is a vertex vkwherethe edges <vk-1,vk> is in E, and <Vk+1,Vk> is in E 

then vk contains a direction-reversal In U. 

A set of vertices X Is d-separated from a set of vertices V by a set of vertices Z in 

a graph G = <V,E> iff there is no undirected path U between a variable in X and a variable in Y such 

that 

a. for every vertex vk on U that contains a direction-reversal in U, there is a directed path 

from Vk to some variable in Z, and 

b. for every vertex vk on U that does not contain a direction-reversal in U, Vk is not in Z. 

Theorem(Pearl 1988): If G is a Bayes network of P, and X and Yare d-separated by Z in G, 

then X·and Yare independent conditional on Z in P. 

It follows that if P is faithful to G, then X and Yare independent conditional on Z in P if and only if X 

and Yare d-separated by Z in G. 

4. Inference of Causal Structure 

Let us call a set of variables V causally sufficient if every common cause of any pair of variables 

in V is also in V. In Fig. 1 the set V = {a, b, c, d, e, f} is causally sufficient, but the set V' = {a, c, d, e, 

f} is not because b, a common cause of d and e, is not in V'. 

Given a causally sufficient set of variables, and assuming that the graph of a causal structure is a 

perfect representation of any distribution generated by the causal structure, the following 

algorithm correctly constructs a set of models .that includes the true causal structure. 

PC Algorithm: 

Let Acab denote the set of vertices adjacent to a or to b in graph C, except for a and b 

themselves. Let Ucab denote the set of vertices in graph C on (acyclic) undirected paths 

between a and b, except for a and b themselves. (Since the algorithm is continually 

updating C, ACab and Ucab are constantly changing as the algorithm progresses.) 

A.) Form the complete undirected graph C on the vertex set V. 

B.) 

n= O. 
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repeat 

For each pair of variables a, b adjacent In C, if ACab n UCab has cardinality 

greater than or equal to n and a, b are independent conditional on any 

subset Sab of ACab n Ucab of cardinality n, delete a-b from C, and record 

Sab. 

n .. n+1. 

until for each pair of adjacent vertices a, b, Acab Ii Ucab is of cardinality less 

than n. 

C.) Let F be the graph resulting from step B. For each triple of vertices a, b, c such that the 

pair a, b and the pair b,c are each adjacent in F but the pair a, c are not adjacent in F,orient a 

- b - c as a -> b <- C if and only if b is not in Sac. Output all graphs consistent with these 

orientations. 

(Step C of the algorithm is an improvement upon our original algorithm suggested in Pearl and 

Verma [1990]. An algorithm that is similar in spirit but constructs undirected graphs has been 

independently suggested by Fung and Crawtord[1990).) 

The complexity of the algorithm for a graph G Is bounded by maxOA(3abl) over all pairs of vertices 

a,b, which is never more than the sum of the two largest degrees in G. Generally stage B of the 

algorithm continues testing for some steps after the correct undirected graph has been identified. 

The number of steps required before the true graph is found (but not necessarily until the 

algorithm halts) depends on the maximal number of treks 1 between a pair of variables, say a. b; 

that share no vertices adjacent to a or b. If these maximal numbers are held constant as the 

number of vertices increases, so that k. the maximal order of the conditional independence 

relations that need be tested. does not change, then the worst case computational demands of 

the algorithm increase as 

n! 2k 
2!(n-2)! 

which is bounded by n2. It should be possible to recover sparse graphs with as many as several 

nundred variables. Qf course the computational requirements increase exponentially with k. 

1 A trek is a pair of directed paths from some vertex z to a, b respectively. intersecting only at z, or 
a directed path from a to b or a directed path from b to a. . 
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In many cases it is more efficient to perform conditional independence tests on all subsets of 

AGab rather than to compute UGab. We have not yet theoretically determined the trade-off. 

The structure of the algorithm and the fact that it continues to test even after having found the 

correct graph suggest a natural heuristic for very large variable sets whose causal connections are 

expected to be sparse, namely to set a fixed bound on the order of conditional independence 

relations that will be considered. 

Theorem: If the causal graph G that generated a distribution P is causally sufficient and a perfect 

representation of P, then given a list of the conditional independence relations true of P as data, 

the PC algorithm constructs a set of graphs that includes the true graph. 

The PC algorithm has two major advantages over other algorithms that have been suggested for 

discovering causal structures. 

First, it takes advantage of the sparseness of the graph to reduce the number of conditional 

independence relations that need to be tested. 

Second, it can be reliably applied to large numbers of variables even if the sample size is only 

moderately large. If A and B are independent conditional on C, let us call the cardinality of C the 

order of the conditional independence. For discrete variables, reliable tests of high order 

conditional independence relations requires huge sample sizes. Because the PC algorithm takes 

advantage of the sparseness of the graph to reduce the order of the conditional independence 

relations that need to be tested, it can be applied to large sets of variables with only moderate 

sample sizes. 

For example, we have applied the PC algorithm to simulated data generated from the following 

causal network taken from 8einlich[1989]. 
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Fig. 2: Alarm Network 

Results were scored separately for errors concerning the existence and the directions of edges, 

and for correct choice of regressors. An edge existence error of commission (Co) occurs when 

any pair of variables are adjacent in the output but not in the pattern of graph (b) in figure 8. An 

edge direction error of commission occurs when any arrowhead not in the pattern of (b) occurs in 

the output in an edge occuring in the pattern of (b). Errors of omission (Om) are defined 

analogously in each case. The results are tabulated as the average over the trial distributions of 

the ratio of the number of actual errors to the number of possible errors of each kind. The results 

were as follows: 

Variable 

Linear 

Discrete 

3 

#trials n 

10,000 

10,000 

%Edge Existence Errors 

Co Om 

2.7 

0.3 

4.3 

6.5 

5. Partial Correlations and D-Separablllty 

%Edge Direction Errors 

Co Om 

23.7 3.7 

14.0 8.3 

The input to the PC algorithms requires determining when a given conditional independence 

relation holds in the distribution P. However, in the case of linear causal theories, rather than 

using facts about conditional independencies in P as input, we use facts about vanishing partial 

. correlations. The following theorems jus~ifies using the results of statistical tests of vanishing 

partial correlations as input to the PC algorithm. 
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For a linear causal theory with graph G, let us say that a partial correlation Pxz.Y is strongly 

Implied to vanish if and only if it vanishes for eve.ry linear distribution generated by G. We 

assume that any partial correlation that vanishes in the population is strongly implied to vanish 

because of the following theorem. 

Theorem: Let M be a linear model with n free linear coefficients a1 , ... , an. and k variances V1 , ... , 

vk. Let M(U) be the model obtained by specifying values U = <u1 , ... ,un, un+ 1 , ... ,un+k> for a1 , ... , an 

and v1, ... vk. Let P be the set of probability measures p. on the space Rn+k of values of the 

parameters of model M such that for every subset S of Rn+k having Lebesque measure zero, 

P(S) = O. Let a be the set of vectors of coefficient and variance values such that for all U in a every 

multinormal probability distribution consistent with M(U) has at least one statistical independence 

relation not represented in the directed acyclic graph of M according to d-separability. Then for P 

E p, P(Q} = o. 

We have also proved the following: 

Theorem: In a linear causal system with graph G and distribution P, if x and z are distinct 

variables, and Y is a set of variables not including x and z, then Y d-separates x and z if and only if 

Pxz. y is strongly implied to vanish. 

6. Mixed Causal Structures 

Consider a population that is a mixture of structures <g,P1 > and <g,P2> where P1 and P2 are 

distinct and, we will suppose, both faithful to graph g. Let the proportions in the mixture by n:m. 

This sort of case appears to be the simplest and easiest sort of mixing, for we know in this case 

that the two distributions have the very same conditional independence relations. The 

unfortunate fact, however, is that even in this case the mixed population does not generally have 

those same conditional independence relations, and indeed unless special constraints are 

satisfied by P1 and P2, the mixed distribution will have no non-trivial conditional independence 

relations at all. 

In 1903 G. Udny Yule2 concluded his fundamental paper on the theory of association of attributes 

in statistics with a section "On the fallacies that may be caused by the mixing of distinct records", 

(where IABI is a measure of associate between A and B that vanishes when A and Bare 

independent) : 

2G. U. Yule, "Notes on the Theory of Association of Attributes in Statistics" Biometrika, 121-133. 
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It follows from the preceding work that we cannot infer independence of a pair of 

attributes within a sub·universe from the fact of independence within the universe at 

large ... The theorem is of considerable practical importance from its inverse application; 

i.e. even if IABI have a sensible positive or negative value we cannot be sure that 

nevertheless lAB I C I and lAB I "C I are not both zero. Some given attribute might, for 

instance, be inherited neither in the male line nor the female line; yet a mixed record might 

exhibit a considerable apparent inheritance. 

The fictitious association caused by mixing records finds its counterpart in the spuriOUS 

correlation to which the same process may give rise in the case of continuous variables, a 

case to which attention was drawn and which was fully discussed by Professor Pearson in 

a recent memoir. If two separate records, for each of which the correlation is zero, be 

pooled together, a spurious correlation will necessarily be created unless the mean of 

one of the variables, at least, be the same in the two cases. 

Let P(XYZ) "" nP1 (XYZ) + mP2(XYZ), with n + m = 1. Elementary algebra shows that P(XY/Z) = 

P(x/Z)P(Y/Z) if and only if 

If in both distributions, X,Y are independent conditional on Z, that is P1 (XY/Z) == P1 (XlZ)P1 (Y/Z) and 

P2(XY/Z) ;: P2(X/Z)P2(Y/Z), then the equation above reduces to 

which is not a function of the proportions n, m. This equation can be put in .the slightly more 

perspicuous form: 

. or, since we are assuming that Kand Yare conditionally independent on Z in both P1 and P2, 
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The rather surprising conclusion is that when we mix probability distributions we should expect to 

find all possible conditional dependence relations. Hence in mixed populations, conditional 

independence and dependence will not be a reliable guide to causal structure. Applying the PC 

algorithm to such data will, for example,produce a complete undirected graph. This has a practical 

if informal moral for the significance we ought to give to inferences from non-experimental data. 

When from properly collected data sets with large sample sizes we find that the resulting 

undirected graph is not complete, we oUQht to be a little impressed. Either some constraints have 

been satisfied by chance, or over some variables almost all units in the sample have the same 

causal structure, 'and that structure does not include the missing connection.3 

In the case of linear structures with faithful probability distributions, independence is marked by 

vanishing correlations and conditional independence by vanishing partial correlations. When 

populations with two different distributions each associated with a linear structure are mixed, 

vanishing correlations in the mixed distribution will not mark independence in the mixed 

distribution, and vanishing partial correlations in the mixed distribution will not mark conditional 

independence in the mixed distribution. It is easy to verify that for any mixture of two distributions-­

based on linear structures or not--the covariance of two variables vanishes in the mixture if and 

only if 

where the proportion of population 1 to population 2 is n: m and k1 = n/(n+m), k2 = m/(n+m). 

Some of the uncertainty occasioned by mixed populations disappears when we can impose 

experimental controls, and this is one of the principal advantages of experimental procedures. 

3An interesting question is therefore whether there is any means to infer causal dependence in 
mixed populations or samples. Suppose we have prior knowledge that excludes the complete 
undirected graph; it may even forbid particular edges. If we then obtain a probability distribution in 
which no non-trivial conditional independence relations hold, can we infer anything about the 
class of mixtures (consistent with the prior knowledge) from which the population distribution may 
have come? We have no idea. 
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A population of systems sharing the same causal structure but considered with regard to a set V of 

variables that fails to include some common cause T of variables in V might be considered to have 

a mixed distribution. If, for simplicity, T is binary, the population can be viewed as a mixture of a 

subpopulation in which T = 1 and a subpopulation in which T = O. Assuming for simplicity that 

there is no other causal connection between X and Y besides a trek with T as its source I in the 

subpopulation with T = 0 the variables X and Y will be independent and in the subpopulation with 

T = 1 X and Y will be independent, but in the mixed population X and Y will of course be 

dependent. 

When we consider discrete data, the phenomena of mixtures show a fundamental limitation in our 

means of representing causal relations. Consider a simple switch. Suppose battery A has two 

states: charged and uncharged. A charge in battery A will cause bulb C to light up provided the 

switch B is on, but not otherwise. 

B 
A 

If A and B are independent random variables. then A and C are dependent conditional on Band 

on the empty set, and Band C are dependent conditional on A and the empty set. and A and B 

are dependent conditional on C. The causal structure therefore looks like the directed graph 

shown above. 

There is nothing wrong with this conclusion except that it is not fully informative. The dependence 

of A and C arises entirely through the condition B = 1. When B = 0, A and C are independent. The 
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graph does not tell us that when B = 0 manipulating A will have no effect on C. Knowledge of the 

causal graph without this further information could lead to very mistaken expectations. Consider, 

for example, cases in which "switch" variables analogous to B have off values in the vast majority of 

the population. Then manipulating causes such as A will in most cases have no effect. Since in 

discrete data the conditional independence facts, if known, identify the switch variables, a better 

representation would identify certain parents of a variable as switches. But because in variables 

that take several discrete values, A may be a switch for Band B may be a switch for A, and several 

distinct values of B may.be "on" values for A and conversely, a general representation of this sort 

would otten not be very easy to grasp.4 

7. Random Coefficient linear Structures 

In section 2, we described linear causal structures in which each unit in the population has the 

same linear coefficients (Le. they were constant random variables). Let us now call this a 

constant coefficient linear causal structure. In a random coefficient linear causal 

structure, the coefficients are non-constant random variables such that any set of coefficients is 

independent of any other disjoint set of coefficients or non-coefficient exogenous random 

variables. Note that this independence assumption is also true of constant coefficient linear 

causal structures. 

Theorem: For any two variables x and y in a random coefficient linear causal structure RC, the 

covariance ot x and y is equal to the covariance of the corresponding variables x' and y' in a 

constant coefficient linear causal structure CC with the same graph, and in' which the expected 

value of each linear coefficient in RC is equal to the constant value of the corresponding linear 

coefficient in ce. 
Proof. The covariance of x and y is equal to E(x y) - E(x) E(y). The formulas occurring in the 

following proof are correct for both models RC and CC. 

If there is an edge from non-coefficient random variable a to b in the graph, then there is a non­

zero coefficient of a in the equation for b. Label the edge from a to b by this non-zero coefficient. 

Label a directed path p by the product of the labels of the edges in the path. Let Ex be the set of 

exogenous variables, and Pab be the set of paths from a to b. 

The values of random variables x, y, and xyare respectively: 

4A better practical arrangement might be a query system that, besides inferring the causal graph 
or graphs, responds to the user's questions about the effects of the manipulation of variables. 
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X= L L L(p)e 
eE I!x Pili PIIt 

Y= L L L(q)f 
IE Ex qe f\-

xy,., L L 'S'. L L(p)L(q)ef 
eeEx pe PIIt I~ qe P~ 

The expected values of each of these variables is given below: 

E(x) .. B L L L(p)e)= 
\ee Ex pe PIIt 

L L E(L(p}e) 
ee Ex pe PIIt 

E(y) = Ei L L L (q)f) .. 
\ Ie Ex qe flfy 

L L E(L(q)f) 
Ie Ex qE p¥ 

E(XY)=E( L L L L L(p}L(q)ef)= 
eeEx PE PIIt Ie Ex qe P~ 

L L L L E{L(p)L(q)ef} 
ee Ex pe p. It:. Ex qe Pft 

Since the coefficients are independent of each other and the non-coefficient random variables, 

E(L(~ JJ..q ef) = E(L(p)) E(L(q)) E(e fl. 

The label of a path is equal to the product of the labels Of the edges 

L(FiJ .. n L( edge) 
edgeep 

Substituting into the formula for E(x y), we obtain 

E(xn= L I I I E( n L($)E( n L{edje)E(ef) 
ee Ex pe p. Ie Ei qe Pft edgu p fidgt1e q 
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By the independence of the linear coefficients, 

E( n L(~e)) = n E(L(€dge)) 
edge e p edge e p 

It follows that 

E(x}1 = L L L L n E(L($)) n E(L (ectle)) E(ef) 
ee Ex pe P8J( Ie Ex qe Pt edge e p edge e q 

Similarly, 

E(L(p) e) = E(L(p))E(e) 

and 

E(L(q) f) = E(L(q))E(f). 

Substituting these into the formula for E(x) E(y) we obtain 

E(x) E(y) = (L L E(L(~) E(~)( L L E(L(Q) E(f)) 
ee Ex pe P8J( Ie Ex qe Pit 

Again, from the independence of the linear coefficients if follows that 

In CC, since L(edge) is a constant, E(L(edge)) = L(edge). In RC, by hypothesis, E(L(edge)) = 

L(edge) in CC. Hence the expression E(x y) - E(x) E(y) is the same in both RC and CC. Q.E.D. 

Nqte that this proof depends upon the independence of the linear coefficients from each other. 

This is true of both constant coefficient and random coefficient linear causal structures, but not 

true in general of linear causal structures in which large sub-populations share the same linear 

coefficients. 
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The covariances completely determine the values of the partial correlations. Hence. we can apply 

the theorems of section 5 to justify using facts about vanishing partial correlation as input to the 

PC algorithm for random coefficient linear causal structures. 
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INTRODUCTION 

Given a large set of quantitative multivariate data, say, N data 

points in a p-dimensional space: 

X. ::: (x' 1' x· 2' . . . , x· ), i ::: 1 to N, 
1 1 1 lp 

we want to explore the structure of the data. That is, we want to find 

the shape of the underlying density function. We assume that the 

density function is more or less smooth. 

To explore the data, we need a way to look at the local structure 

of the data in a limited region. So we will examine the data in a given 

region by viewing the data through a GAUSSIAN WINDOW, whose location and 

shape are chosen by the user. By doing this we will be able to find and 

describe simple structural features in the data in any number of 

dimensions. Some examples are given on the next page. 

We will describe the local structure of the data by a method 

similar to the method of principal components. 

By taking many local views of the data, we can build up an idea of 

the structure of the data set. That is, the method is INTERACTIVE. 

With practice, we can apply our geometrical intuition to the features we 

find in the data, in any number of dimensions. 

Since the computations are relatively simple, the method can be 

implemented on a small computer. 
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EXAMPLES OF STRUCTURAL FEATURES IN TWO DIMENSIONS 

Some examples of the kinds of structures that we can find and 

describe are the following: 

.. 

I 

A peak, or cluster A valley 

~ . 
..... :, . .. .. ;.~~ ... , .. - ...... ., -., .. -. . ."" ......... ' ......... ,. . . . ,-.:: . " . .. . . 

A saddle point 

We can also find extended structures such as a "ridge" or "bar": 

• . .... . -.. : .... . . 
• ... ... .. <If 

: • • •• ... III ... 
~ .. . " .. . ... . . ...... '" . . . . 

Only a part of an extended structure would be visible in a single 

window. If part of such a structure appears in a window, we can tell 

that we are looking at a structure that extends beyond the window. We 

can then follow along it and map out its extent and shape. 

We can imagine analogous structures in higher dimensions. For 

example, a "ridge" in p dimensions is an essentially one-dimensional 

structure, consisting of data points concentrated near a "center line" 

but scattered about it in all directions. 

Similarly, we might find an essentially k-dimensional structure In 

a p-dimensional space, for any k < p. 

49 



THE GAUSSIAN WINDOW 

To focus on a limited region in the space, we use a window. 

A GAUSSIAN WINDOW is defined by choosing a center point a and a 

non-negative definite symmetric matrix Y to describe its size and 

shape. Let 
1 

w(x) = e 
-~(x - a)'Y(x - a) 

where x is a p-vector and "prime" means "transpose". 

Each data point xi is given the weight wi = w(xi)' Note that 

w(x) ~ 1 for all x, and that w(x) decreases as x moves away from 

a. Thus we have defined a window with "fuzzy" boundaries. 

We then compute a vector called the WEIGHTED SAMPLE MEAN, 

- 1 ~ x = --- ~w,x· , 
w Ew. 1 1 

1 

and a matrix called the WEIGHTED SAMPLE COVARIANCE MATR~X, 

S = --L ~w.(x. - x )(x. - xw)' . w ~ 1 1 W 1 
~w. 

1 

We also compute ~ EWi' 

These quantities are the simplest things to compute, especially in 

a high-dimensional space. They describe the overall shape of the 

weighted data in the "window region" (the region vaguely def ined as the 

region where w(x) is "not small"). The estimated shape of the density 

function in the window region will be based on these quantities. Note 

that they are overall statistics; any "fine structure" in the region is 

smeared out. 

To look for finer details, we would use smaller windows. 
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EXAMPLE: A CLUSTER 

Suppose that in the region of a window, the density function has 

approximately a multivariate Gaussian shape: 

where ~, E, and c are all unknown parameters. That is, we have a 

single peak (or cluster of data points) in the window region. 

The vector p is the center point of this part of the density. 

The symmetric matrix E is its covariance matrix. 

The constant c represents the "probability mass" of this part of 

the entire probability distribution. 

L t B E-1 d I t 1 Then e = an e a = c (2~)p72IEI172 

f(x) = a e 
-~(x - ~)/B(x - ~) 

The WINDOWED DENSITY FUNCTION, the effective density function of 

the data as viewed through the window, is w(x)f(x). That is, if we 

assign weight wi = w(xi) to each data point xi' and if we do 

computations with the weighted xi' the results will be as if we were 

working with a sample from w(x)f(x). 

Assume for simplicity that a, the window center, IS O. 

Let A = B + V. Then, by doing some algebra, we find that the 

windowed density function w(x)f(x) is 

[
a e-~ p'BA-

1
yp (2')~~~] ~1/2 e-~(x - A-1B~)/A(x - A-1B~) 

IAI ~ 
This is a multivariate Gaussian function with "windowed mean" A-1B~ 

and "windowed covariance matrix" A-1. 
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ESTIMATION OF PARAMETERS 

It follows that the weighted sample mean Xw is an estimate of 

A-1B#, and the weighted sample covariance matrix Sw is an estimate of 

A-i. The expression in the square brackets (bottom of Page 5) is the 

integral of w(x)f(x) over the entire space. We will estimate it by 

the average of the weights: 1 
N Ew i · 

We now DEGAUSS the view of the data as seen through the Gaussian 

window. That is, we remove the effect of the weights on the shape of 

the data in the window region. Since Sw is an estimate of A-1, we 

A -1 h can estimate by Sw ,and we ave 

S -1 = A = 13 + V w 

So we can estimate B by 

13 = S -1 - V w 
We can then estimate E by 

t = B-1 = (Sw-1 - V)-i , 

assuming that Sw-1 - V is positive definite. 

Since Xw is an estimate of A-1B#, we can estimate # by 

~ = B-1 A x = (S -1 - V)-l S -1 x . w w w w 

Since k EWi is an estimate of the expression in the square 

brackets, we can also estimate the constants a and c. 

These estimated parameters give us an estimate of the shape of the 

density function in the window region. Note that the computations are 

standard matrix operations. 



I. 

RELATION TO PRINCIPAL COMPONENTS ANALYSIS 

If we find a cluster in a window, we can describe its shape using 

the method of principal components. To do this we find the eigenvalues 

and corresponding eigenvectors of E. 
The estimated shape of the cluster is a p-dimensional ellipsoidal 

shape centered at ~. The principal axes of the ellipsoid are parallel 

to the eigenvectors. The estimated density function can be expressed as 

a product of p univariate Gaussian (normal) densities, each lying 

along a principal axis. The standard deviation of each of these 

densities is the square root of the corresponding eigenvalue (all of 

which are positive in this case). Thus we have a way of thinking about 

the shape of the cluster in any number of dimensions. 

Note that we could do this analysis based on the matrix B,which 

is the inverse of E. These two matrices have the same eigenvectors, 

and the eigenvalues of B are the reciprocals of those of E. When we 

deal with structures other than clusters, we will analyze their shape by 

looking at the eigenvalues and eigenvectors of B. 

For example, if the shape of the density function in the window 

region is a valley or a saddle point, then all or some of the 

eigenvalues of B will be negative. A negative eigenvalue indicates 

that, in the window region, the density function is concave upward along 

the direction of the corresponding eigenvector. 

Since the eigenvalues of B are the reciprocals of those of E, an 

eigenvalue of B near 0 indicates a structure extending beyond the 

window region, and a large positive eigenvalue indicates that the data 

points are tightly concentrated along the corresponding direction. 
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MORE GENERAL STRUCTURAL FEATURES 

An example is a "ridge", or a "bar", which is an essentially 

one-dimensional concentration of points. We will assume that the 

density function in the window region can be approximated by 

_1 x'Bx + r'x 
f(x) = h e ~ 

This is a general expression which includes the cluster example above, 

and also the other examples on Page 3. The exponent is a general 

polynomial of degree two in the coordinates of the vector x. 

The constant h is the density at the window center (assumed to be 

at 0). The symmetric matrix B mayor may not be positive definite, 

and it mayor may not be non-singular. If B is singular, there is no 

center point # for the function. 

As before, the windowed density function w(x)f(x) is a 

multivariate Gaussian function. 

We compute xw' Sw' and k ~wi as before, and we estimate the 

parameters B, r, and h based on these quantities. 

In the general case, B might be nearly singular, so we won't 

invert it. Instead, we will work directly withB. 

We use a method similar to principal components analysis: We find 

the eigenvalues and eigenvectors of B, and we use these quantities to 

describe the shape of the estimated density function in the window 

region. As in principal components analysis, we can express the 

estimated density function as a product of p functions of one variable 

each. The interpretation of the eigenvalues is the same as on the 

previous page. 
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.... " • .. • ~. .*' . 
, . . 

EXAMPLE: A RIDGE OR BAR 

___ , ..... fI ••• 

- •••• ~ ••••• " ....... - *' 
#I .. :.. ... • ... ... . . .... ., .. -.. .. . .... . . .... . .. ... .. .. . . . . . . " ... . 

We can see part of such an extended structure in a window, and we 

can tell by the existence of some eigenvalues near 0 that it extends 

beyond the window. In the case of a ridge, B will have one eigenvalue 

very near 0, and the corresponding eigenvector will be parallel to the 

center line, or crest, of the ridge. The small eigenvalue indicates 

that the data in the window region appear to have an essentially 

"infinite" variance in the corresponding direction. 

Since a structure like this does not have a center point, as a 

cluster does, we will not to try to estimate a center point here. 

Instead, we will estimate the location of the center line of the 

ridge, and we will estimate the shape of the cross-section of the ridge; 

Note that in a p-dimensional space, a ridge would have a 

(p-l)-dimensional cross-section orthogonal to the center line. 

If we find a structure like this, we can then move the window 

center to the nearest point on the center line and try another window. 

Then we can follow along the ridge by moving the window center along the 

estimated center line. By continuing in this way we can map out the 

extent and shape of the ridge. 

An essentially k-dimensional structure, or concentration of data 

points, in a p-dimensional space can be treated in a similar way. 
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PROPERTIES OF THE METHOD 

Since it is interactive, it is flexible and open-ended. 

It can be used (in principle) in any number of dimensions. 

Few assumptions are made about the data. 

We can search for structural features by trying many different 

windows, and we can describe the features we find. Then we can put 

together what we have found into an overall description of the data. 

The method can be used in conjunction with other methods, such as 

graphical methods that involve projecting the data onto a space of lower 

dimension, and automatic methods such as clustering algorithms. Note 

that with this method we can find structural features other than 

clusters. 

Since the computations are relatively simple, the method can easily 

be implemented on a small computer. Any standard algorithms for 

inverting a matrix and for finding the eigenvalues and eigenvectors of a 

symmetric matrix can be used. (I wrote a simple program in BASIC on an 

IBM PC to test the method, and I have done some experiments with a 

number of artificial data sets.) 

Most importantly, we can apply our geometric intuition to the 

features we find in the data, so that we can think about and describe 

the structure of a set of data in any number of dimensions. 
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Learning Classification Trees 

Wray Buntine 
wray~ptolerny.arc.nasa.gov 

RIACS & NASA Ames Research Center 

Mail Stop 244-17, Moffet Field, CA 94035, USA 

Abstract 

Algorithms for learning classification trees have had successes in ar­
tificial intelligence and statistics over many years. These notes outlines 
how a tree learning algorithm can be derived from Bayesian decision 
theory. This introduces Bayesian techniques for splitting, smoothing, 
and tree averaging. The splitting rule turns out to be similar to Quin­
lan's information gain splitting rule, while smoothing and averaging 
replace pruning. Comparative experiments with reimplementations 
of a minimum encoding approach, Quinlan's C4 and Breiman et al.'s 
CART show the full Bayesian algorithm is consistently as good, or 
more accurate than these other approaches though at a computational 
price. 

These notes present material from NASA Ames Artificial Intelligence Re­
search Branch Technical Report FIA-90-12-19-01, Learning Classification 
Trees, by Wray Buntine. ' 
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Bayesian Trees: 
A Theoretical and Empirical 

Comparison of Learning Theories 

Wray Buntine 

RIACS 
NASA Ames Research Center 

• acknowledgements: Ross Quinlan, Robin Hanson, Peter Cheeseman, ... 
• this is a rationalisation and extension of work in my PhD thesis 
• overview papers are available 

Outline 

• what is a tree? 

• motivation 

• background 

• theory 

• implementation 

• experimental results 

• theory comparison 

• extensions 

aims of this talk: to pass on intuitions gained 
without getting bogged down in the math 
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Figure 1: A decision tree and a class probability tree from the thyroid application 

NB. class probe tree is a class conditional probability distribution 

The Learning Problem 

from training sample (Li.d. examples), e.g. 

example class 
(TSH pregnant age on-thyroxine) 

175 yes 35 no hypo 
210 no 46 yes not 
180 yes 51 yes hypo 
230 yes 42 no not 
240 no 47 no hypo 

I construct a class probability tree that should predict 
future classifications well 

or II construct a classifier that should predict future 
classifications well 

(this ignores comprehensibility & efficiency issues) 
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Problems with Empirical Learning Research 
Through the Ages 

(statistics, AI, neural nets, numerous application areas, ... ) 

Empirical learning: learning classifiers, models or 
other forms of knowledge by analysing data such 
as historical records 

Problems with research: 

~ "feel-good" algorithms 

fir dubious theories (unclear assumptions, etc.) 

,.. soft testing, use of straw-men, etc. 

,.. poor literature review 

Research Goals 
(from hindsight) 

~ to understand how to design learning algorithms 
for different learning problems 

... to understand and compare different 
learning theories (e.g. MOL, Bayesian, 
uniform convergence) 

,.. to understand when and how approximations 
should be made 
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Why learn trees? 
(from hindsight) 

Tree algorithms are old hat, fairly mature, why 
bother developing more? Especially when 
better gains are to be made by extending the 
model space? 

... hard enough learning problem to be interesting 
(e.g. tackles problem of overfitting) 

.. great case study to compare theories and 
develop algorithms (due to existing competition) 

... good starting point for many related problems 
e.g. Bayesian networks, variable n-gram 
models, regression, etc. 

Background 

CART: "classification and regression trees", by 
Brieman, Friedman, Olshen and Stone, 
1980-1984 

ID3 & C4: developed by Quinlan, 1979-1988, 
with numerous commercial spin-ofts 

MML & MDL: minimum encoding methods by 
Quinlan and Rivest, Rissanen, and Wallace, 
1987-89 

other information theory, AI, statistics ... 
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· Notation 
Pr( X I Y) = subjective belief that 

X is true given you know just V is 
true 

Pr satisfies same properties as a 
frequency, and is measured in 
units of prc1bability 

Pr is best interpreted as a relative 
quantity 

i.e. "Pr(tree) > Pr(tree )/9?" is OK 
"Pr tree > 0.1 ?" is not 

Bayesian Theory Outline 

class probability tree 
- conditional probability distribution for class 
- T + e 
== tree structure + class probabilities (at leaves) 
= discrete compo + continuous compo 

assume sample is independently and identically distributed 
set of completely-specified classified examples 

Bayesian solution in a nutshell: wish to determine 
Pr( class I new-example, sample) 

= LT f e Pre class I new-example,T,e) Pre T,e I sample) 

= L,- Pr( class I new-example,T,sample ) Pr( T I sample) 

then combine this with appropriate loss function 
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Bayesian Tree Learning 

NB. Pr( class I new-example, sample) 

= L T Pr( class I new-example,T,sample ) Pr( T I sample) 

tree ~tructure posterior class probability 
+ tests probability for new example 

0.001 0.54 

0.025 0.87 

0.001 0.S7 

etc. 

Intuition: 
• take weighted average 

of "representative set" 
of trees 

• weights = posterior 
proBabilities, 
determined using 
weights of evidence 

1.000 0.80 = weighted average 
class probability 

Theory Comparison from Bayesian Viewpoint 

Full Bayesian 

Posterior class probability for new example = 

L T Pr( class I new-example,T,sample) Pr( T I sample) 

Minimum Encoding (e.g. MOL) 

1. Use a particular "coding" form for Pr(T) (Le. prefer simpler structures) 

2. Choose tree structure T maximising Pr( T I sample) 

Resampling (e.g. CART) 

1. Construct a sequence of trees (but not too many). 

2. Manufacture "many psuedo-independent" training/test pairs and use 

these to estimate risk for each tree, then pick the best 

Uniform Convergence (basis of most computational learning theory) 

1. Ensure sample is large enough so single tree (and its variants) dominate 

the posterior sum. 

2. Choose tree structure T minimising risk(sampleIT) 

NB. If hypothesis space is correct, this is identical to maximising 

Pr( T I sample) 



Model 
Modelling 

T = .. structure of tree including shape and tests at 
interior nodes 

0ell = proportion of class c at leaf I 

Priors 

Pr(T,O) - prior on T and 0 = Pr(T) Pr(OIT) 
................................. 

where ... a. ..... 

..... n ° 
./ a Dirichlet 

, distribution 

Pr(eIT) = n : e in classes ell 
I in leaves 

, 8eta(a,a, ... ,a) 

Pr(T) = constant ..... _________ -

, 
, . 

or - belief slightly favours smaller trees 

or - belief strongly favours smaller trees 
(e.g. as determined using "coding" of tree) 

Bayesian Analysis 

Posterior probability 

let nell = count from sample of examples at leaf I In 
class c 

Pr(Tlsample) = Pr(T) IT 8eta(n 111+a, n
211 

+U, ... , n cit a) 

I in leaves 8eta(o.,o., ... ,o.) 

Comparative heuristic 

given tree T, if we replace a leaf node by a test with 
several leaves, to get tree T + 

T= x~ T+= ~ 
x x 

the tog-odds, log (Pr(T +lsample)/Pr(Tlsample)), is 
heuristic assessment of the quality of the replacement 
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Overview of Implemented Approximations 

To be approximated: 

Posterior sum,. 2,T Pr( class I new-example,T,sample) Pr( T I sample) 

Growing: posterior probabilities of sub-structures give heuristic 
measures of sub-structure quality in units of log-odds or probability; 
they can therefore be used for: 

• significance testing of comparative quality of different 
sub-structures 

• significance testing of whether to stop growing 

• randomised growing of trees for monte-carlo approximations 

Smoothing: a subset of the posterior sum can sometimes be computed in 
closed form; this turns out to be analogous to smoothing techniques 

Averaging: represent many structures in an AND-OR form to compactly 
represent the dominant terms in the posterior sum 

Multiple Models: make a monte-carlo approximation (using 
importance sampling) of the posterior sum by generating structures 
randomly according to their posterior 

Multiple Trees 

Situation Representative set 

have lots of data + 
good tree classifier exists... single dominant tree 

less data exists.......... ..... .... several different good trees 

trees are a poor model and 
less data exists...... .......... ... lots of lousy trees 

data is "pure noise" 
(so no good tree exists}...... even more lousy trees 
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Experiments 
Tree Methods 

CART, C4 and MML: reimplementations that perform comparably with the 
originals 

Mult.: consists of building 5 trees (each built by randomly selecting tests at 
nodes according to their posterior probability), and then averaging their 
predictions 

Ave. (n-ply): Bayesian averaging and smoothing using n-ply lookahead 
(above algorithms all use 1-ply) 

Notes 
• chose data sets to get broad variety of problems, chose training sets to show 

cross section of learning curve . 

• took average of 20 random train/test pairs, tested significance using paired 
Hest 

Results 
• CART and C4 are roughly comparable in performance; MML is sometimes 

worse as it usually overprunes; all 3 approaches usually overprune with 
highly structured data 

• Ave. with 1 or 2-ply is usually as good or significantly better; Mult. is 
competitive . 
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Theory Comparison 

Bayesian Approximation 

The more averaging and smoothing that were done, the better results 
became. Method sensitive to choice of prior, but very bland prior (constant 
over structures) worked very well with full averaging. 

Minimum Encoding (e.g. MOL) 

Very sensitive to choice of prior. Experiments support view that MOL is 
first-order approximation to full Bayesian. i.e. great gains to be made 
by averaging, etc. 

Resampllng methods (e.g. CART) 

Have no clear Bayesian interpretation, but appear to overprune so have 
"implicit" belief favouring simplicity. 

Uniform Convergence (basis of most computational learning theory) 

No experiments done. (But with small samples probably would have said 
sample sizes where too small to do anything, and With large samples 
would have worked very well.) 

Extensions 

Full approach (growing, smoothing, averaging etc.) 
extends to: 

• Bayesian networks 

• variable n-gram models (e.g. mixed bi and 
trig rams) 

• regression (function finding), etc. 

Missing values (in the attribute vector) and linear 
combination cut-points of real-valued vectors 
can be handled using a modified EM-algorithm 
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Conclusion 

.... have supported the view that: 

there are other useful approximations but only 
one normative theory for empirical learning 

e.g. MOL is a first approximation to Bayesian 
methods 

.... have illustrated a generic algorithm design 
strategy for learning structure from data 

... more research required in methods (and their 
quality) of approximating the posterior sum 
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A Bayesian Method for the Induction of Probabilistic 
Networks from Data 

Edward Herskovits 
Section on Medical Informatics 

Stanford University 

Gregory Cooper 
Section of Medical Informatics 

University of Pittsburgh 
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Outline 

• Brief introduction to Bayesian belief networks 

• An example of hypothesis testing of belief-network 
structures 

• A formula for ranking belief-network structures by 
their posterior probabilities 

• K2: A heuristic procedure that searches for the most 
probable belief-network structure given a database 

• Results using K2 

• Other developments 

• Open problems 
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The Bayesian Belief-Network Representation 

Belief-network structure Bs: 

Belief-network probabilities Bp: 

P(Lung Cancer) = 0.01 

P(Smoking I Lung Cancer) = 0.75 

P(Smoking I no Lung Cancer) = 0.5 

P(Anorexia I Lung Cancer) = 0.2 

P(Anorexia I no Lung Cancer) ~ 0.01 

DATABASE 

COMPUTER 

SYSTEM 

Additional knowledge 
not in the data base. 

Applications: 

• Determining causal structure 

• Scientific discovery 

• Hypothesis testing 

• Automated construction 
of diagnostic systems 
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Belief network B == Bp + Bs: 

Anorexia (X3) 

~O.o1) 
Lung Cancer (X2) 

0.01 ~,0.5) 
Smoking (Xl) 

Properties of belief networks: 

• Formally capture the conditional independencies and 
dependencies among a set of variables. 

• Capable of representing any probabilistic distribution 
over a set of variables. 

• An intuitive, graphical model for representing and 
visualizing probabilistic relationships among variables. 

• Algorithms exist for performing probabilistic inference 
on belief networks. 

Examples of probabilistic inference tasks: 

P(Lung Cancer I Anorexia) 

P(Smoker I Anorexia) 

P(Lung Cancer I Anorexia, Smoker) 
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A database example. 
Let D denote this database. 

Variable values for each case 

case Xl X2 x3 

1 Ipresent absent absent 
2 I present present ipresent 

3 absent absent I present 

4 Ipresent 'present present 

5 absent absent absent 
6 absent I present present 

7 Ipresent I present present 
8 absent absent absent 
9 'present present ipresent 

10 absent absent absent 

where Xl denotes history of smoking 

X2 denotes lung cancer 
x3 denotes anorexia (severe prolonged loss of 

appetite) 

Two Belief-Network Structures· 
(Serving as hypotheses about the dependencies among the three variables) 

Hypothesis B51: 

Smoking (Xl)-..... ~ Lung Cancer (Xi> - ..... ~ Anorexia (X3) 

Hypothesis 8 52: 
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Question: What is the relative likelihood of the two structures! 
given the data? 

Variable values for each case 
case Xl X2 x3 

1 I present absent absent 
2 I present I present I present 
3 absent absent I present 
4 I present I present I present 
5 absent absent absent 
6 absent Ip_resent I present 
7 I present I present I present 
8 absent absent absent 
9 !present I present I present 
10 absent absent absent 

Hypothesis B51: 

Smoking (Xl)-...... ~ Lung Cancer (Xi> ---1.~ Anorexia (X3) 

Hypothesis B52: 

Hypothesis testing 

Question: What is the relative likelihood of 
the hypotheses. B 51 and B S2? 

or restated 

What is P(BSI I D) ? 
P(B52 I D) . 

P(B S1 I D) 
P(BS2 I D) 
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P(BS1! D) 
P(D) 

P(B S2! D) 

P(D) 

= P(BS1 ! D) 

P(BS2! D) (1) 



Assumption 1. Model the process that generates a 
database, as a belief network containing 
only discrete variables. 

The application of Assumption 1 yields: 

P(Bs, D) = ( P(D I Bs , Bp ) f(Bp I Bs) P(Bs ) dB p, (2) 
}Bp 

where Bs is the belief-network structure, 
Bp is the set of probabilities on Bs, 
f is a probability density function over Bp, and 
D is the database of cases. 

Additional Assumptions 

Assumption 2. Cases occur independently, given a 
belief-network model. 

Assumption 3. Cases are complete. 

Assumption 4. Probability distributions over the 
conditional probabilities in a belief 
network are marginally independent and 
uniform. 
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From Assumptions 1 through 4, we can derive a closed­
form equation for P(Bs1 D): 

n qi ri 

P(B
s 
,D) = P(Bs ) II II (ri - 1)1 II aijk1 (3) 

i = 1 j = 1 (Nij + ri - 1)1 k = 1 

Examples: 

P(B D) - 1 5151 1141 41 II O! 5! 4\ I! 
SI , - 25 (5 + 5 + 1)! (1 + 4 + I)! (4 + 1 + 1)! (0 + 5 + 1)! (4 + 1 + I)! 

= 8.91 X 10-11, 

P(BS2, D) = 8.91 x 10-12. 

P(BSI I D) 
Thus, P(BS2 I D) = 10. 

Problem: There is a very large search space of belief­
network structures. 

N umber of variables Number of possible 
structures 

2 3 
3 25 
5 29,000 
10 == 4.2 X 1018 
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K2: A heuristic search for highly probable structures 

STEP 1: • Assume an ordering on the nodes. 

• Assume that all structures are equally likely 
initially. 

STEP 2: • Apply a greedy search algorithm. 

Example: 

X2 

X2 

K2 time complexity: O(m n4 r) for m cases and n variables, 
where r is the maximum number of values of any variable. 
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The ALARM Belief-Network Structure 

ALARM contains: 37 nodes, 46 arcs, and 2 to 5 values/node. 

We generated 3000 cases using ALARM and gave these 
cases to K2, along with an ordering on the nodes. 

Result of Applying K2 
to the ALARM-Generated Database 

Did not include the arc 12 ~ 32. 
Added the extra arc 15 ~ 34. 

Search time: 5 minutes on a Macintosh II 
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Database 

LED 
Pathfinder 
Gyne-Path 

Da.tabase 

LED 
Pathfinder 
Gyne-Path 

Results of Applying K2 
to Other Databases 

K2 
# of Cases 

Training Evaluation # Correct % Correct 

200 2300 1667 72 
43 5 5 100 

130 15 15 100 

Kutat6 
# of Cases 

Training Evaluation It Correct % Correct 

200 2300 1659 72 
43 5 5 100 

130 15 15 100 

Methods also have been developed for 

• Using a belief-network structure, plus a database, to 
perform probabilistic inference, 

• Taking a weighted average over multiple belief-network 
structures to perform probabilistic inference, and 

• Handling missing data and hidden variables 
normatively. 
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Research topics include: 

• Empirical evaluation on a wide variety of databases 

• Establishing convergence proofs 

• Exploring additional heuristic search methods 

• Eliminating the need for a total ordering in K2 by 
exploring other search methods 

• Handling continuous variables 

• Developing more efficient search and inference 
algorithms 



Remote Sensing for Ecosystem Monitoring 

Chris Hlavka 
Ecosystem Science and Technology Branch 

NASA Ames Research Center 
Moffett Field, CA, 94035 

15 January, 1991 

Abstract 

The Ecosystem Science and Technology Branch at Ames Research Center has been using 
automated procedures for monitoring ecosystems and renewable resources for the last sixteen 
years. An overview of our activities and discussions of some recent trends in data analysis will 
be presented. 

Our standard methodologies have been to use both unsupervised and supervised classification 
techniques applied to imagery on a pixel by pixel basis. Frequently the data sets involve more 
than one satellite image, involving either multiple overpasses and/or geographical information 
such as elevation or road networks. Recent work has included exploration of techniques to 
measure pattern, for example by use of texture measurements on sub-areas of the imagery or 
measurement of fractal dimension, rather than being limited to per-pixel analysis. Other recent 
work emphasizes estimates of quantitative variables, the concentration of certain chemicals in 
forest canopies and unmixing, rather than the categorical determinations made by classification 
techniques. 

OUTLINE OF TALK 

• Examples of image processing in the Ecosystem Science and Technology Branch at Ames 
Research Center: 

• Categorical Analysis: Classification using both supervised and unsupervised techniques. (The 
California Cooperative Remote Sensing Project: 1985 major crops in the Central Valley of 
California. ) 

• Analysis of imagery combined with GIS data (The Biospheric Monitoring Disease Prediction 
Project (Di-Mod): mosquito production). 

• Spatial Patterns: Image texture (The Landslide Hazard Assessment Project: mapping land 
movement). 

• Fractal analysis (the Global Biodiversity pilot· study: measurement of the fractal dimension 
of forest boundaries). 

• Quantitative Analysis: Analysis of high spectral resolution data (BioGeoChemical research: 
mapping forest canopy lignin). 



Selected References for Remote Sensing For Ecosystem Monitoring 

Classification using both supervised and unsupervised techniques (The California Cooperative Re- . 
mote Sensing Project: 1985 major crops in the Central Valley of California): 

• C.A. Hlavka and E.J. Sheffner, The California Cooperative Remote Sensing Project: Final 
Report, Nasa Tech. Memo. 100073, July 1988. 

Analysis of imagery combined with GIS data (The Biospheric Monitoring Disease Prediction Project 
(Di-Mod): mosquito production): 

• Wood, B., B. Washino, L. Beck, M. Pitcairn, D. Roberts, E. Rejmankova, J. Paris, C. Hacker, 
L. Legters, J. Salute, and P. Sebesta, "Distinguishing High and Low Anopheline Fields Using 
Remote Sensing and GIS Technology", submitted to Natural History. 

SPATIAL PATTERNS: 

Image texture (The Landslide Hazard Assessment Project: mapping land movement) 

• Mckean, J. and S. Buechel; "Remote Sensing of Forested Earthflows", Proceedings of the 
1990 U.S. Forest Service Remote Sensing Conference, Arizona, 1990. 

• Hlavka, C.A.; "Land-Use Mapping Using Edge Density Texture Measures on Thematic Map­
per Simulator Data", IEEE Transactions on Geoscience and Remote Sensing, January 1987. 

Fractal analysis (the Global Biodiversity pilot study: measurement of the fractal dimension offorest 
boundaries) 

• Mandelbrot, B., The Fractal Geometry of Nature, W.H. Freeman and Co., New York, 1977. 

• Hlavka, C.A., L.L. Strong, and W.E. Westman, "Remote Sensing of Habitat Fragmentation: 
An Assessment of Landsat MSS, SPOT, and AVHRR" , presented at the Second International 
Symposium on Advanced Technology in Natural Resource Management, Washington, D.C., 
November 12 - 15, 1990 

QUANTITATIVE ANALYSIS: 

Analysis of high spectral resolution data (BioGeoChemical research: mapping forest canopy lignin): 

• Card, D.H., D.L. Peterson, P.A. Matson, and J.D. Aber, "Prediction of Leaf Chemistry by the 
Use of Visible and Near Infrared Reflectance Spectroscopy", Remote Sensing of Environment, 
pp.123-147, 1988. 

• Wessman, C.A., J.D. Aber, D.L. Peterson, and J.M. Mellilo; "Remote sensing of canopy 
chemistry and nitrogen cycling in temperate forest ecosystems", in Nature, pp. 154-156, 
September 1988 
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Applications of Scale-space Filtering and Labyrinth to 
Soil Analysis 

Deepak Kulkarni and Kevin Thompson 

Sterling Federal Systems, NASA Ames Research Center 

In this talk, we will present two programs used in the analysis of data pro­
duced by a Differential Thermal Analyzer (DTA), a programmable "oven" 
that heats soil samples at a controlled rate. First, a qualifier program uses 
scale-space filtering technique to abstract qualitative features from a contin­
uous curve. These qualitative features form a representation of the curve as 
a structured object. Given this descriptionn, an unsupervised classification 
program, Labyrinth, creates a hierarchy of classes of minerals in this domain. 
Labyrinth uses a heuristic measure (category utility) to guide its search for 
concept hierarchies that will allow prediction of missing information. We will 
discuss the bottom-up recognition scheme used in Labyrinth and evaluate its 
performance on actual DTA data. 

We shall present a Bayesian method for constructing probabilistic networks 
from a database of cases. In particular, we focus on constructing Bayesian be­
lief networks. Potential applications include hypothesis testing and automated 
scientific disco'very. We demonstrate how the Bayesian belief networks that are 
constructed can be used for inference. Applications of such inference include 
computer-based diagnosis, prediction, and planning. We also discuss the re­
sults of a preliminary evaluation of an algorithm for constructing a Bayesian 
belief network from a database of cases. 

This presentation describes material discussed in the technical report, A 
Bayesian Method for the Induction of Probabilistic Networks from Data, by 
G.F. Cooper and E. Herskovits, available as Knowledge Systems Laboratory 
Report KSL-91-02, of January 1991 from Medical Computer Science, Stanford 
University, CA, 94305-5479. 
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Soil analysis with DTA 

• Differential Thermal Analyzer (DTA) is used to heat 
a soil sample and a reference at a rate defined by a 
heating program. 

• DTA output is a dT verses T graph. 

Soil Analysis 

• Given: DTA output for a given soil sample 

• Find: 

• What minerals are present in the sample? 

Discovery of Class Hierarchies 

• Planetary soils are likely to have unexpected or new 
minerals. 

• Class hierarchies are useful in detecting new miner­
als. 

• Goal: Develop a program to identify class hierar­
chies in the data. 

Diagnostic Features 

• Endothermic Reactions 

• Exothermic Reactions 

-----~--8~6---------



Approach for soil analysis 

• Extract diagnostic features from the input curve. 

• Use a Bayes network classifier to recognize contents. 

Approach for identification of classes 

• Extract diagnostic features from the input curve. 

• Use LABYBlNTH, a program for clustering struc­
tured objects, to generate classes. 

• Evaluate the utility (or interestingness) of the classes 
by consulting an expert. 

The Qualifier 

• Smooth the curve using different gaussian filters. 

• Use the zero-crossings in the function to detect edges. 

• Use perceptual organization heuristics to detect lines 
in the scale space graph. 

• Use domain specific correlations to generate a prob­
abilistic description. 
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Edge detection 

• Inflexion point of an edge corresponds to the zero­
crossing in the second derivative. 

f 

Features at different scales . 

• Small features vanish when the curve is smoothed. 



Scale Space Graph 

• Use statistical correlations to associate probability 
with the features. (e.g. endotherm, positive deriva­
tive at first inflexion point and negative derivative 
at the second inflexion point - .9). 

Incremental Concept Formation 

We define the task of incremental concept for­

mation as 

• Given: A sequential presentation of in­

stances and their associated descriptions; 

• Find: Clusterings that group those instances 

into concepts; 

• Find~· A summary description for each con­

cept; 

• Find: A hierarchical organization for those 

concepts. 

These concepts are then used to facilitate 

• retrieval of concepts based on partial de­

scriptions 

• flexible prediction of missing information 
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Concept Formation to Learn about Soil Sampl~ 

Goal of the current research: develop a con­

cept formation algorithm that will work in the 
DTA-GC domain: 

• LABYRINTH is a model of concept forma­

tion for structured objects. 

• Extends COBWEB, can learn with objects 

having varying numbers of components, each 

with their own description. 

Structured Objects 

In our framework, a simple object is one with 

an associated set of attributes and their val­

ues. A peak extracted from a soil signature: 
(water-loss (onset-temperature 67.17) 

(peak-width 164.52) 
(peak-temperature 91.76) 
(peak-type endotherm» 

A structured object is one that has compo­

nents objects; e.g a soil sample: 
(Montmorillonite 

(water-loss 
(onset-temperature 67.17) 
(peak-width 164.52) 
(peak-temperature 91.76) 
(peak-type endotherm» 

(dehydroxylation 
(onset-temperature 654.57) 
(peak-width 62.97) 
(peak-temperature 690.53) 
(peak-type endotherm» 

(mullite-nucleation 
(onset-temperature 885.71) 
(peak-width 43.67) 
(peak-temperature 929.38) 
(peak-type endotherm») 
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A Soil Mixture 

Montmorrillonite & Glycine Mixture 

o 

Glycine Decomposition 

In 

9 
Water Loss 

200 400 600 800 t 000 t 200 

Temperature 

Concept Representation 

LABYRINTH organizes the structured objects 

it has encountered into a probabilistic concept 

hierarchy: 

• Terminal nodes correspond to either: 

o Observed instances (e.g. soil samples) 

o their components (e.g. peaks) . 

• Nonterminal nodes represent probabilistic 

concepts, containing a summary descrip­

tion of the instances (or components) stored 

below it. A probabilistic concept Ck has: 

- an associated set of attributes Ai and 

their possible values Vij 

- the conditional probability P(Ai = VijlCk) 

that a value will occur 

- the overall probability of each concept, 

P(Ck)· 
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Memory Structure 

LABYRINTH stores concepts for both struc­

tured objects and simple objects in the same 

hierarchy. 

• All concepts are indexed by is-a links from 

their parent. 

• Two different types of concepts: 

o Simple concepts are stored as in COBWEB, 

with associated lists of attributes and their 

values. 

o Structured concepts also have associated 

values, but here the "values" associated 

with an "attribute" refer to other nodes 

in the concept hierarchy. 

Memory After Training on Four Soil Samples 
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Classifymg Peaks 
• LABYRINTH uses COBWEB to classify 

each of the component blocks. 

• COBWEB returns the name of the most 

specific concept that the instance matches 

to an acceptable degree. 

• In this case, COBWEB classifies each of 

the blocks as a member of the WATER-LOSS 

class. 

• LABYRINTH replaces the component de­

scription with its label from COBWEB in 

the instance: 

(Montmorillonite 
(water-loss water-loss) 
(dehydroxylation dehYdroxylation) 
(mulli te-nucleation mullite-nucleation)) 

Note that LABYRINTH can now classify the 

sample as a simple object, with nominal values 

( "Ia bels") on each attribute. 
Extended Example 

We begin with memory as shown, after three 

instances have been seen. We demonstrate 

how LABYRINTH would incorporate a new 

instance: 
(Montmorillonite 

(water-loss 
(onset-temperature 67.17) 
(peak-width 164.52) 
(peak-temperature 91.76) 
(peak-type endotherm)) 

(dehydroxylation 
(onset-temperature 654.57) 
(peak-width 62.97) 
(peak-temperature 690.53) 
(peak-type endotherm)) 

(mullite-nucleation 
(onset-temperature 885.71) 
(peak-width 43.67) 
(peak-temperature 929.38) 
(peak-type endotherm))) 

LABYRINTH incorporates this instance by: 

1. Classifying each peak based on its four 

attributes 

2. ClaSSifying the soil, based on the "labels" 

of its component peakS& 



LABYRINTH Pseudo-Code 

Input: OBJECT is a composite object, llith sUbstructure given. 
ROOT is the root node of the concept (is-a) hierarchy. 

Side effects: Labels OBJECT and all its components llith class names. 

Procedure Labyrinth(OBJECT, ROOT) 

For each primitive component PRIM of composite object OBJECT, 
Let CONCEPT be Cobweb(PRIM, ROOT); 

Labyrinth'(OBJECT, PRIM, CONCEPT, ROOT). 

Procedure Labyrinth'(OBJECT, COMPONENT, CONCEPT, ROOT) 

Label object COMPONENT as an instance of category CONCEPT. 
If COMPONENT is not the top-level object OBJECT, 

Then let CONTAINER be the object of which 
COMPONENT is a component. 

If all components of CONTAINER are labeled, 

Then let CONTAINER-CONCEPT be Cobweb'(CONTAINER, ROOT). 

Labyrinth'(OBJECT, CONTAINER, 
CONTAINER-CONCEPT, ROOT). 

LABYRINTH 

• LABYRINTH uses an extended COBWEB 

to do its sub-tasks 

• Works in a "component-first" fashion. 

o first classifies the peaks, "labeling" each 

one in turn 

o redescribe samples using peak labels as 

"values" 

o classify these redescribed samples 

• The results of previous classifications guide 

classification of more complex sub-trees of 

the object 

• Each soil sample is stored in terms of other 

acquired concepts 
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Overview of COBWEB 

COBWEB (Fisher, 1987) incrementally forms 

concept hierarchies from simple objects. 

• represents concepts probabilistically 

• tightly integrates classification and learning 

• sorts instances from top of tree, at each 

partition choosing between four operators: 

o Placing the instance in a new, singleton 

concept 

o Incorporating the instance into an existing 

concept 

o Merging the two best candidates in parti­

tion 

o Splitting the best candidate 

COBWEB (continued) 

• Uses an evaluation function to determine 

which operator to apply. Category Utility 

(Gluck &. Corter, 1985) is based on infor­

mation theory. COBWEB maximizes: 

~f-l peCk) ~i ~j peAi = Vij1Ck)2 - ~i ~j peAi = \lij)2 

K 

thus favoring high intra-class similarity and 

high inter-class differences. 

For our purposes, COBWEB returns the con­

cept in memory determined to be the best 

predictor for the parameter object. 
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Further Potential 
for Information Extraction 

from Multispectral Image Data 

David Landgrebe 
Professor of Electrical Engineering 

Purdue University 

• Focus on high dimensional multispectral 
imaging devices 

• Thinking specifically about HIRIS, 
MODIS, and the HIRIS/MODIS 
combination. 
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- Background & History 

- Basic Axioms 

- Ultimate Potential & 
2nd order effects 

• Common information 
measures 

- Shannon theory 

- Signal dimensionality 

- # of available themes 

Eartn Surtace features 
_ ;;;;> r =::: _ 

Surtac. Ctouda Vegetation EXpaNd Artificial 

Wal., .. ~ earth /'..... ' 

~./, /"\. 

~:~~~ Ie. ~ A'd~ntl., 'ndust".' 

lkaNand Forest". Of .... Md F"'DW Cropland 

:~: ~ 
Type Condition S~.. Condition 

• Taxonomies are used whenever the 
information complexity becomes too 
great 

• For example, in classical science 
Plant or Animal species, 

• For any given Earth Science 
problem one is free to make up 
one's own taxonomy 

• Each Problem has its own 

• A historical perspective may be 
useful in aiding insight 
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• 

• 

• 

1960 - TIROS 1 

• 1966 - First MUltispectral Sensor 
1972 - MSS (Design circa ~ 1969) 

- 1982 - Thematic Mapper (Design circa = 1975) 

- 1988 - AVIRIS 

• In the early 60's one of the 
questions that motivated Earth 
observational remote sensing was 
the search for life on Mars, and thus 
what resolution is needed 

• The mUltispectral approach soon 
emerged 

• Early field and airborne sensors had 
much greater spectral resolution 
than could be built in spacecraft 

Radio Communication System 
Development 

-1895 Marconi: Wireless Telegraph 
-1900 Modulation: Voice Transmission 
- 1920 1 st Commercial Broadcast 
- 1930's The Study of Random Processes 
- 1940's Correlation Detection 

Status Today: Images of Uranus 
from a 16 watt transmitter. 

The key advancement after initial . 
establishment of the technology came 
from suitably modeling both signal 
and noise 

Information potential not apparent 
from casual look at the signal 

Next turn to some fundamentals of 
information extraction 
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Axiom 1. The availability of Information 

In remote sensing, 
Information is available at the aperture of a sensor 
based upon the electromagnetic fields 
emanating from the surface and arriving there, 
and in particular via the, 

'Spectral, 
.Spatial, and 
.Temporal 

Variations of those fields. 

• Primary emphasis has been 
placed upon spectral variations 

• Spatial resolution available and 
themes desired not well mated 

• Temporal variations difficult to 
measure 

"I' "z -"' .... "' ... __ .. $til 
__ "Wlttr • Ytg.tlUon 

• Sou 

R"pon" ot AI 

Multispectral Data in Multivariant 
Space 

• Most general representation of 
spectra 

• Can handle, for example, the 
case of identification by 
absorption bands 

• But does this approach 
adequately model nature? 
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.. .. 
I .. L. 
1 '0 

.~~~~--~------~= 
D.S 07 0' 1.1 1.5 !.Ii t.1 

Typical mutispectral data 

• High Resolution Data 
• Laboratory Data, thus many of 

the vagaries of in situ 
observation not present. 

Typical data in multivariant 
space 

• Data not a point for a 
class but a distribution 

• Must learn to deal with 
classes that are· not 
completely separable 
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.• Separability in 0.7 Ilm region not 
apparent from spectral curves. 

• Is apparent in multivariant space (more 
later) 

. Conclusions: 

• Straightforward inspection of the spectral 
response does not reveal all of the 
potential for discrimination 

• In higher dimensional cases the 
discrimination potential cannot be 
humanly observed even in multivariant 
space 

Axiom 2. Analysis Modes 

Thore are two basic modes for analysis: 

1; Stored Signature Approach 
2. Extrapolation Mod •. 

• The Stored Signature Approach uses a comparison of 
pixel yaluts to a preylously determined set 
Of spectral response characteristics. 

• The Extrapotatlon Mode re"e. upon eX1rapolalion 
• from a sma" numbor 01 example pixels pr8.mar~.d 

in tho data sel. 

• Stored Signature Approach is the most 
straightforward 

. • Extrapolation Mode requires manual 
labelling of samples within the data set. 
However, for that effort, one normalizes 
out many of the observation variables, 
such as atmospheric and goniometric 
effects. 
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NewOata> 

Data Analysis 

Prior Knowledge 

• The critical problem of the 
analysis process stems from the 
above merging of data, which is 
necessarily inherent in the 
analysis process 

New Data -............. .. ---- .... 
I \ 

~.~~~ .. :> Data Analysis 

Prior KnOwledge-----'· .. · .. ·/ 

• AdjUSI New 031. 10 conditions presenl with previous knowledge 
• Adjust Previous Knowledge to conditions present with new data 
• Adjusl bolh to • third sel of conditions, •. g. known geophysical units 

• Usual approach is to do the 
former of these· requires much 
processing 

• The second of these is inherent 
in the extrapolation mode 

• The third requires the most 
processing of all 
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Furthsr Fundamema:s 

Axiom 3. Absolute & Relative Classification 

Classification, I.a. discrimination batween cla.ses, 
on bolh an ~ and a~ basis are usalul • 

• Absolute Classification Implies 
Identification 01 • given class 01 material 
wherever It occur. In the data sat 
without regard to any othor class which may be presan!. 

• Relative Classlllcation Implies discrimination between cla.sa., 
I:e. deciding In f.vor of • glvon class . 
after having considered all possible classes In the IlCene. 

• Absolute is the most 
. natural and easiest to 
implement 

• Relative provides greater 
accuracy and greater 
penetration into the 
information tree 

Absolute Classifier 

• Easy to Implement 

Relative Classifier 

• Greater Accuracy 
& Mor. subtle classes 

• In the N-space this appears as 
above. 

• In the Absolute Case, one uses 
only information about the class 
of interest to locate the decision 
boundary 

• In the Relative Case, one uses 
information about all classes to 
locate the decision boundaries, 
even if one is only interested in 
a single class 
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Prospects 

Greater Penetration into the information TrH 
• More Oelalled Classos 
• Greater accuracy on current classes 

The Price 

Much lorger quantitiss of dota 
More comple. algorithms required 
Algorithms more sensitive to proper use 
Greater dilliculty In data vlsuaUzation and use of Intuition 

Simple algorithms still useful, but 
full value of the new data will 
require more powerful 
algorithms. 

• The more complex data 
requires more complex 
modeling and analysis 
schemes for full potential 

• The case for use of second 
order effects 

• To illustrate, Return to the 
2~c1ass example 

Samples frOm TwO CI ... es 

• Note that it is the second order 
statistical effects, i.e., the 
covariance, which enabled 
discrimination in this case 

• Had the data had the same 
mean and variance but been 
uncorrelated between these 
two bands, discrimination 
would have been poor 
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A SlRAGEDY FOR 

LARGE-AREA LAND COVER CHARACfERlZATION 

By Thomas R. Lovelandll , James W. Merchant21 ,and Donald O. Ohlena! 

ABSlRACf 

Global climate change research requires spatial information describing the distribution 
and composition of land surface phenomena over very large areas. The data and methods 
for producing the needed data bases must deal with a variety of technical issues, including 
(1) problems related to the large geographic area covered and the inherent seasonal, 
ecological, and cultural variations; (2) handling the large volumes of data involved; and (3) 
data of varying quality. In addition, the results, rather than the classification schemes, must 
provide the flexibility for descriptions of the landscape based on a range of surface 
characteristics, such as vegetation types, land cover components, surface albedo, leaf area 
index. 

An investigation is underway to test a strategy for large-area land cover characterization 
by using National Oceanic and Atmospheric Administration 1.1-kilometer Advanced Very 
High Resolution Radiometer imagery and ancillary spatial data (elevation, climate, historical 
land uselland cover, and ecological regions) for the contenninous United States. The 
prototype strategy involves unsupervised digital classification of time series vegetation index 
and brightness data spanning 1990, followed by refinement of the image classification by 
using ancillary spatial data with location-based logical rules to produce a stratification of 
land surface features. When combined with ancillary land data and satellite-derived 
geophysical parameters, the resulting land cover characteristics data base can be used to 
tailor the data to the requirements of specific application. 

11 u.s. Geological Survey 

21 University of Nebraska-Lincoln, Center for Advanced Land Management Information 
Technologies. 

'JJ TGS Technology, Inc. Work performed under U.S. Geological Survey contract 14-08-0001-22521. 
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CONTERMINOUS U.S. LAND CHARACTERIZATION 
DESIGN CONSIDERATIONS 

• Repeatable over large areas (continental, global) 

• Significant seasonal, ecological, and cultural variations 

• Large data volume 

• Varying data quality 

• Flexible results that are not application-specific 

fILE NAME: BAB 
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CONTERMINOUS U.S. LAND CHARACTERIZATION 
POTENTIAL APPLICATIONS 

• LAND COVER MAPPING 

- Land cover components 

- Vegetation components 

• ECOLOGICAL REGIONALIZATION 

· - Land use/cover components 

- Vegetation components 

- Selected· biophysical parameters 

• CLIMATE AND RESOURCE MODELING 

- Biophysical parameters 

- Land use/covercomponents 

- Vegetation components 

I'1LI!NAME, SAl 

CONTERMINOUS U.S. LAND CHARACTERIZATION 
MULTISOURCE DATA BASE 

U90S/EOC 
1-02·lt 

• TIME-SERIES ADVANCED VERY HIGH RESOWTION RADIOMETER (AVHRR) 

DATA 
_ Normalized Difference Vegetation Index (NDVI) 

- Brightness 

• TERRAIN DATA 

- Elevation 

- Slope and Aspect 

- Solar illumination 

• CLIMATE DATA 
_ Minimum/Maximum Monthly Temperature 

- Monthly Precipitation 

- Frost-Free Period 

• ECOLOGICAL REGIONS (EPA/OMERNIK) 

• MAJOR LAND RESOURCE AREAS 

• USGS LAND USE/LAND COVER 

I'1LI!NAII!, SAl 
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VEGETATION CONDITION 

• Initial g ... nup 

• Magnitude of g ... nn ... 

• Duration of gre.nn ... 

• S ••• on.' ch.ng •• 

• "-.r to ,.ar chang •• 

...... IMI 

NORMALIZED DIFFERENCE 
VEGETATION INDEX 

A ratio of near-Infrared and visible radiances 

NEAR INFRARED (CH.2) - VISIBLE (CH.1) 

NEAR INFRARED (CH.2) + VISIBLE (CH.1) 

where: possible data range Is -1.0 to 1.0 
- negative values Indicate non-vegetative surfaces (water, clouds, etc.) 
- positive values Indicate vegetative surfaces 
- high positive values Indicate high vegetation density and or vigor 

FUN_:M. 
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AVHRR MEASUREMENTS OF 
LAND SURFACE FEATURES 

Stratification of NOVI response to broad scene components 
as measured from NOAA-7 1 

COVER TYPE 
Dense green-leaf vegetation 
Medium green-leaf vegetation 
Light green-leaf vegetation 
Bare soli 
Clouds (opaque) 
Snow and Ice 
Water 

PLANETARY ALBEDO 
CHANNEL 1 CHANNEL 2 

.050 .150 

.080 .110 

.100 .120 

.269 .283 

.227 .228 

.375 .342 

.022 .013 

NDVI 
.500 
.140 
.090 
.025 
.002 

-.046 
-.257 

t Holben, B. N. "Characteristics of maximum value composite Images from 
temporal AVHRR data". International Journal of Remote Sensing, Vol 7, No. 11, 
November, 1986. 

FLI! NAill!. SAl 

CONTERM~NOUS U.S. LAND CHARACTERIZATION 
PROJECT OBJECTIVES 

• Develop methods for producing large area land cover characteristics data 
bases. 

UIIOSIEDC 
11·11·11 

• Create a "prototype" land cover ~~iiiracterlstics data base for the conterminous 
U.S. that can be evaluated and scrliUnlzed by the scientific community In order 
to understand the utility and IIm:ta~:ons of the data base for global climate 
research and other problems. 

~NAME:SA. 
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Maximum NOVI Image Compositing 

Day 1 Day 2 Day 3 

::.,' :. \:. 

'::,' 

~~~:.:.:110'-NDVI 
.L. __ -i.,....._~I-__ ~~~~I_ Ch.1 

.L._---'-l,......--+--~~~~~-- Ch.2 

"-_----'-l,......--I--.....,~~~~- Ch.3 

'---....:..,--....+--~~~~~-- Ch.4 

L.,..._ ....... ..,.... __ -I---~~~:r:~-- Ch.5 

L __ --~---oI_--_e~~~~- Satellite Zenith 

,,---I..,.--~~--~~~~~.- Satellite Azimutt 
L..,.. __ ~ ___ +-__ ~~~~~~ __ Solar Zenith. 

L..,.. __ I-,. ___ I-__ """~~~"'._ Solar Azimuth 
L ___ ~ ___ "-____ .a..;.;.;~.,;,,;,o;~~ __ Observation Datf 

Maximum NOVI Based Composite 

AVHRR TIME 
SEAlES 
COMPOSITE 
OATA eASE 

REGIONAUZATION 

PREUMINARV 
CHARACTERIZA TI 
AND 
STRATIFICATION 

FINAL 
CHARACTERIZATION 

LAND COVER 
CHARACTERISTICS 
OATA BASE 

Conterminous U.S. Land Characterization 

NOVI BRIGHTNESS 

MULTISOURCE OATA BASE 

o EUEVATION 
o SLOPE 
o ASPECT 
o SOLAR ILLUM. 

o PRECIP 
o TEMP 
o FROST.FREE 

OAYS 

o EPA 
oSCSIMl..AA 



Conterminous U.S. NOVI Classes 
Forest Land Cover 

170.-----------------~--------------------~ -.-.-..... ~ ... 
~~' ,J3--~: ~--_~ 

160 .................... _ ......... ::-..... ;:: .. ::::.:-_ ... _-.;;,-",..-- ...... -.... ----...... =--~ .. .:.-.. ~ __ 
.. ' .i!........ .... ....., 

......... " I ........................................ ~ ••••• 150 ........ ·····r·········· ....... . ...................................................................... . 
- ' " " \ > I I ' c 140 ........•. ,,~ ........•... / ............•.........•.... ~ .................•...........•..•....••....... ~~ .. -.... 
z ,,' I bJ 
j ,j',' N 130 ............. :.;?.m. ..................................•.......................................•.•........... 
~" . 

~' . 120 ............................................................................................................. . 

11 0 ......................................•........••.......•........•.................•........••......•......... 

100~~----~--~----~----~--~----~--~~ 
&11 &8 ~6 ~3 

Start of Composite Period 
3/16 4113 8/31 9/28 

1--- Conifer Forest (70) ..... Mixed Forest (69) --- S. Hardwoods (61) -9- N. Hardwoods (53) 1 

Conterminous U.S. NOVI Classes 
Agriculture/Range Land Cover 

170~--------------------------------------~ 

160 ............................................................ .tr.:::::::::::.~::.:::: ..•....................... 
... "4:' 

150 ................................................... ~ . ..::.:~...... . ....................... ~:;: .............. . 
- .. / ... > I ... 
~ 140 .................................... . ..... ..,.:............................ . .................. ~~ ..•........ 

! ... i / .... 
~ 130 ............................ ····~~:7~·············································....... . ...... ~.:; .... . 

2 
...• 1 0 ................... 1-.-:·················································· ................•.....•........ 

......... ~--.--... --.--.... --
11 0 ........ :::~.=~ ..................................... ~.::.~~.::-.:::-.~:.:::-.:::-.7Jf'.:.7.:.:'.:.~ .... . 

100~~--.~----~--~----T----T----~--~~ 
5/11 6/8 7/6 8/3 8/31 3/16 4113 9/28 

Start of Composite Period 

1-- Small Grains (30) ..... Row Crops (44) -*"". Rangeland (5) 
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CLASS 
5 

30 
44 
53 
61 
69 
70 

CLASS 
5 

30 
44 
53 
61 
69 
70 

CLASS 
5 

30 
44 
53 
61 
69 
70 

NDVI Characteristics 
3/16 413 SIll 618 76 8/3 8/31 9128 

111.72 \l5.0S \16.67 \15.92 112.65 111.77 110.97 11l.85 
1\3.34 \18.97 136.47 154.65 152.88 139.90 132.39 122.89 
115.61 \18.70 122.29 144.80 161.28 164.64 157.96 126.84 
122.24 131.08 154.68 163.28 165.16 16J.59 161.90 136.47 
131.42 157.51 165.72 167.49 161.40 157.38 160.39 156.91 
151.52 158.73 156.59 155.68 151.94 151.54 152.62 152.94 
148.80 156.12 145.91 160.16 163.13 159.91 159.21 151.72 

LAND COVERNEGETATION Characteristics 
LAND COVER ANDERSONU VEGETATION 
OPEN SHRUBLAND SHRUB AND BRUSH RANGELAND SALTBRUSH,(lREASBWOOD/SAGB 
SMALL GRAINS CROPLAND AND PASTURE SPRlNGWHBAT 
ROW CROPS CROPLAND AND PASTURE CORN/SOYBEANS 
DECIDUOUS FOREST DECIDUOUS FOREST LAND MAPLBlBIROI 
DECIDUOUS FOREST DBCIDUOUS FOREST LAND OAKJHICKORY 
MIXED FOREST MIXED FORESTLAND . OAKIHlCKORY/PlNB 
CLOSED CONIFER FOR EVERGREEN FOREST LAND SPRUCElCBDARlHEMLOCKJFIR 

ELEVATION Characteristics 
MBAN sm MAX MEDIAN 

4935 1751 13300 5296 
2043 1663 12021 1600 
1197 862 11631 1047 
1088 1011 11572 1111 
1367 830 6534 1142 

SSS 912 7970 260 
1681 1326 7419 ~9 

CONTERMINOUS U.S. LAND CHARACTERISllCS 
ELEVATION· CLASS R.ELATIONSHIPS 

.... f. .............................................................. . 
-_... . .... __ .............. __ ... _-_ ............... ---..... -................................... . 
..... - ......................... _ .................. _---............................................ .. 

.............. ~ ................................................. f. .. . 

.............. ········f·········r········t ······ .... ········ ... . .................... ............ · ...... ···· .. r······ .. ·f-:.····· .... · ....... -.......... . 
. 1000"--!5~--,30~--44---53..,.....--,.61--..,69---,7r-O...J 

a.ASS 

1- +1 OR·1 STO 

CLASS COVER MEAN STD MAX MEDIAN 
5 RANGELAND 4935 1751 13300 5296 

30 SMALL GRAINS 2043 1663 12021 1600 
44 ROW CROPS 1197 862 11631 1047 
53 N. HARDWOODS 1088 1011 11572 1111 
61 S. HARDWOODS 1367 830 6534 1142 
69 MIXED FOREST 558 912 7970 260 
70 CONIFER 1681 1326 7419 1329 
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ECOLOGICAL REGIONS/NDVI CLASS RELATIONSHIPS 

CLASS PERCENT REGION CHARACTERISTIC COVER TYPES 

5 26.7% N. BASIN & RANGE 
15.9% COLORADO PLATEAU 
14.6% SNAKE RIVER BASIN 

DESERT SHRUBLAND 
WOODLANDS, DESERT SHRUBLAND 
DESERT SHRUBLAND 

57.2% 

30 30.2% N. GLACIATED PLAINS CROPLAND 
20.7% N.W.·GLACIATED PLAINS CROPLAND, PASTURE 
19.1% RED RIVER VALLEY CROPLAND 

70.0% 

44 45.6% WESTERN CORN BELT CROPLAND 
26.6% CENTRAL CORN BELT CROPLAND 
7.2% EASTERN CORN BELT CROPLAND 

--------------
79.4% 

53 75.4% N. LAKES & FOREST HARDWOODS (MAPLE, BIRCH, FIR) 
5.2% N.C. HARDWOOD FOREST HARDWOODS (MAPLE, BASSWOOD) 
4.3% N.E. HIGHLANDS HARDWOODS/SPRUCE 

--------------
84.9% 

61 20.6% CENTRAL APPALACHIAN APP. OAK, MESOPHYTIC FOREST 
19.1% OZARK mGHLANDS OAK/HICKORY 
12.4% INTERIOR PLATEAU OAK/HICKORY 

--------------
52.1% 

69 32.4% SOUTEASTERN PLAINS MESOPHYTIC FOREST 
24.7% SOUTH CENTRAL PLAINS OAK/HICKORY /PINE 
7.0% MISS. V ALLEY PLAINS OAK/HICKORY /PINE 

--------------
64.1% 

70 33.2% COAST RANGE SPRUCE/CEDAR/HEMLOCK 
28.1% CASCADES FIR/HEMLOCK/SPRUCE 
15.7% PUGETLOWLAND CEDAR/HEMLOCKIFIR 

--------------
77.0% 
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A NEURAL-BASED APPROACH TO EXTRACTING TEMPORAL DATA FROM 
A LARGE-SCALE NUCLEAR POWER DATABASE 

Alianna J. Maren (1,2), Awatef Gacem (1), and Robert E. Uhrig (1) 

(1) Dept. of Nuclear Engineering 
The University of Tennessee 
Knoxville, TN 37996-2300 

(2) The University of Tennessee Space Institute 
Tullahoma, TN 37388-8897 

A large-scale data base, the sess, symbolically encodes sequences 
of occurences leading to reported events in nuclear power plants. 
There are several major complexities in identifying and 
extracting implicit information from such a large-scale database, 
although there would be substantial practical advantages to 
finding an automated means of extracting useful temporal 
information. This task is not amenable to the usual algorithmic 
and/or symbolic approaches. We have developed a bilayer self­
organizing topology-preserving map approach to encoding the 
relationships between symbolic representations of causes and 
effects. This mapping is useful, as one cause may lead to 
multiple types of effects, and one effect may be associated with 
more than one cause. We are exploring different means of 
embedding temporally associative relationships between different 
causes and effects. This involves modifying the basic Kohonen 
network to include temporally-persistant neural activations and 
special connectivities between neurons, both inter- and intra­
layer. We believe that this novel neural-based architecture will 
lead to the ability to extract strings of temporally associated 
occurences given minimal initial stimulus from a trained network. 
This will be useful in identifying "typical" sequences of 
occurences which are likely to lead to a reported event. 
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')\PPLIC~TION OF NEUR~L NETWORKS TO 

DAT~B~SE MINING 

')\watef Gacem 

')\Iianna Maren and Robert Uhrig 

University of Tennessee 

November 14, 1990 

115 



Neural networks have been applied to many applica­

tions in Nuclear Engineering. Examples of applica­

tions are fault diagnosis, and signal validation. Most 

of these applications are based on the Multi Layer 

Perceptron (MLP) with back propagation training. 'f}. 

new application based on another neural network, 

the Kohonen Self-Organizing neural network is the 

mining of a nuclear database: the Sequential Coding 

Search System (SCSS). Mining a database is extract­

ing information that is hidden. The SCSS is an Im­

pressive database formed by about 30000 records of 

LER's. ,An LER is a description in natural language 

of an incident. In order to be processed automat­

ically, the LER's are transformed into symbolic de-
o 

scription by the Oak Ridge National Laboratory. The 

SCSS was built to allow the Nuclear Safety tP},nalyss 

to benefit from the Knowledge gained from the past 

expenence. 

PROBLEM ST~TEMENT 

,A large amount of knowledge is stored in the SCSS 

database. The knowledge in this database is either 

explicit or impficit. 

1. The explicit knowledge is formed by the records 

of the incidents. It is exploited to provide statis­

tical information about the incidents. 

2. The implicit knowledge is formed by patterns and 

relationships or by an explicit information that is 

missing. This knowledge is Rot exploited and 

needs to be unraveled. 
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TECHNIG!\L OBJECTIVE 

The purpose of our research is to develop a technique 

to extract implicit knowledge from the data explicitly 

stored in the large Nuclear Database: the SCSS. 

DESCRIPTION OF THE SCSS 

The Sequential Coding Search System (SCSS) is a 

large temporal database developed by ORNL for the 

NRC. 

In the SCSS are stored records of all incidents since 

1980 in all nuclear plants in the US~. ,About thirty 

thousands events were recorded in the past decade. 

The purpose of the SCSS is the analysis of trends 

and patter-AS. 
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DESCRIPT'ION OF THE COOED STEP M,ATRI:K . 

The coded step matrix encodes an event which is a 

chronologically ordered sequence of occurrences. 

Each line of the encoding' matrix is a·n occurrence. 

IAn occurrence is defined as a causar relationship (cause/effect 

r~lation), and is characterized by sever'" facts (cause, 
prima ty system, (tomponent, ... ) 

Each fact is idenlified by a symbolic var;f)bfe formed 

by one to fQ~r alphabet\cal fetters .. 
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FIGURE 2. AN EXAMPLE OF A SINGLE LER DATABASE RECORD 

Header Information 

DOCIET YEAR LER NUMBER REVISION 

o 
Des NUMBER NSIC EVENT DATE 

293 005 8405080272 189610 4-4-1984 

Comments 
COMMENTS 

VALVES ~DEL 17567F. STEi 2: COMP XVZ = PILOT VALVE. 

Docket Information 

DOCKET: 
REGION: 

ARCHITECTURAL ENGINEER: 
FACILITY OPERATOR: 

SYMBOL: 

Watch-List Codes 

293 PILGRIM 1 
1 
BECH 
BOSTON EDISON CO. 
BEC 

WATCH-LIST CODES FOR THIS LER ARE: 
913 UPDATE NEEDED 

Reportability Codes 
REPORTABILITY CODES FOR THIS LER ARE: 

TYPE: BWR 
NSSS: GE 

10 10 CFR 50.73(a)(2)(i): Shutdowns or technical specification 
violations. 

Reference LERs 

REFERENCE LERS: 

1 293/81-062 

CodeQ Step Matrix 
STEP LK ~ CAUSE , 

2 
3 
4 
5 

o 
'. 2 

Abstract 

ABSTRACT 

PH 
HC 
iC 

PSYS lSYS COMP VEND 

BR VLVS 
BR XVZ T020 
BR ORVZ 1020 
n 
U 

QUAN TR CH DI T 

2 1 , M , 1 1 A 
2 1 1 A 

H 
N 

P 0 EFF 

TR I DC 
TR I KB 
TR I AL 
XX YC 
N YC 

POWER LEVEL - 000%. ON 4/4/84, DURING A REFUELING OUTAGE, THE MAINTENANCE 
DEPARTMENT WAS NOTIFIED ay WYLE LABORATORIES THAT THE PILOT VALVES ON TWO 
OF THE TARGET ROCK TWO-STAGE SAFETY RELIEF VALVES (S/RV'S) DID NOT LIFT 
WITHIN SPECIFICATION WHEN DIAGNOSTICALLY TESTED IN THE AS-FOUND CONDITION. 
THIS IS CONTRARY TO THE REQUIREMENTS OF THE INTENT OF PNPS TECH SPEC 2.2.B 
WHICH REQUIRED THE SIRV'S TO LIFT AT 1095 PSI PLUS OR MINUS 11 PSI. THE 
MOST PROBABLE CAUSE OF THE SAFETY RELIEF VALVES NOT LIFTING HAS INITIALLY 
BEEN DETERMINED TO BE STUCK PILOT VALVES. DETERMININATION OF ROOT CAUSE 
AND CORRECTIVE ACTION IS PENDING FURTHER ANALYSIS AND TESTING. 
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Table. EX~MPLES OF C~USE/EFFECT 

GENERIC CODES 

Code Generic Description 

t'A ')\ssembly adju~m'f\t 

B Leakage 

C MechaniccH 

D Mechanistic 

Q Electrical 

K Functional 

L Instrumentation 

. N Ambient conditiott 
R Resultant 
5 Human factDr 

T Human factor 

V Root cause 

W Parameter of attuation 

G Parameter of' ICtuation 

'v Inform~tive 
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CONSIDER~TJONS IN SELECTING '"A NEUR'"AL 

NETWORK 

The selection of a type of the neural network is in­

fluenced by the following requirements: 

• ability to provide an abstract representation of a 

highly multidimensional and variable data. 

• ability to process symbolic information. 

• ability to process temporal information (This fea­

ture will be used to classify sequences of cause/effect 

relations). 

This leads to the selec'tion of the Kohonen' Self­

organizing features map. 

THE KOHONEN SELF-ORGA\NIZING FE,A\TURES 

M'A\P 

The KSOFM algorithm is an iterative implementa­

tion of the K-means clustering algorithm. 

It performs a mapping of a higher dimensional input 

space into a two-dimensional grid of artificial neurons 

without supervision. 

The mapping is generated in such a way that topo­

logically close neurons are sensitive to in puts that are 

physically similar. 

This mapping preserves also the statistical properties 

of the input data. 
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USE OF lfo,.. NEUR'AL NETWORK TO E~TR'ACT 

IMPLICIT INFORM'ATJON FROM 'A U~RGE 

QrA\ Ti'A SIA\S E 

The proposed neural network-based technique used 

to extract implicit information from the SCSS is a 

two-phase technique: 

1. The first phase is to compress the explicitly stored 

data in the SCSS by establishing a mapping from 

the cause space to the effect space to encode all 

possible cause/effect relations. 

2. The second phase is to use the Causal mapping 

to generate all possible sequences of cause/effect 

relations, and identify exemplars of sequences of 

cause/effect relations that will be used in classi­

fication. 
SIMUL~Tl0NS 

• Nuclear plants built by Westinghouse. 

• fA. subset of incidents where a reactor trip was 

preceded by an electrical problem. 

• I'A cause/effect relation is represented by two facts: 

the ca use and the effect. 

• Only the first letter of the cause/effect generic 

code was used. 

• Gray coding was used as a numeric representa­

tion of the symbolic data. 122 



2-D M~PPING Of C~USe/EFFJ:CT ReL~TtoNs 

QQQQQNNNNR t.LLLLQQQQQ 
QQQQQNNNNR LLLLLQQQQQ 

QQQQQNNNNR lLLLLQQQQQ 

QQQQQQQSSS LLLLLDDTTT 

RRQQQQQSSS KKDDDDDTTT 
RRQQQQQSSS KKDDDDDTTT 
CCCVVWSSS DDDGGGGTTT 
CCCVVWRRR DDGGGGGV'~ 

CCCVVWRRR DDGGGGGV~(,W 

CCCRRRRRRR DDDI'AIA?A\W'W'W 

1=ig.a. Cause map Fjg. b, Effett map 

RESULTS 

The examination of the maps shows the following 

results: 

1. Formation of clusters based on neighborhood re­

lations. 

2. ''A mapping that preserves the probability distri­

bution of the data 
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SUMM'~R'W" OF THE RESULTS 

1. The reduction of a large amount of training data 

without loss of information. 

2. The visualization of the relationships among causes 

or among effects. 

3. The mapping between the cause space and effect 

space which solves the combinatorially explosive 

problem. 

4. I~ useful representation for processing of sequences 

of cause/effect relations. 

5. I~ proof that the KSOFM although developed for 

processing numeric data can operate with sym­

bolic data. 

FUTURE WORK 

1. Use a multilayer system to represent all the infor­

mation available about an occurrence (cause/effect 

relation). 

2. Use a cooperative learning method to train the 

whole network with sequences of occurrences. 

3. Identify all possible patterns of sequences. 

4. Define a metric to classify the incidents. 
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CONCLUSION 

fhe development of a methodology to extract im­

)Iicit knowledge not only will allow a better exploita­

:ion of the database, but it may also lead toan im­

)rovement of the reliability of the data stored. That 

5, it may allow to inferr missing data, identify un-

usual data, and possibly discover new information 

and relationships. 
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Knowledge DiscolJery Workbench 

Gregory Pfatetsky-Shapiro 
Christopher J. Matheus 

GTE Laboratories, MIS 45 
40 Sylvan Road 
Waltham, MA 02254 

E-mail: gpsO@gte.com 

(c) 1 99 1 GTE Laboratori es, Inc. 
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.............. ;. 

Sci ent i fic Di scovery vs. Database Discovery 

Sc ientific Discovery 

en 
en 
<l> 
c 
<l> 

+oJ 
<l> 
0. Medical Data 
E 
o 
u Census data 
<l> Business Data +oJ 

~ Direct Market1ng 
'''-
"­
+oJ :< Database Discovery 

Data Density 

Scientific 
Discovery 

Usually 
Quantitative, 
Precise 

Contro lover data co 11 ect 1 on. 
Relevant Attributes. 
H1gh instance density. 

Ob j ect ive, noncontroversi a I 
data. 
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Database 
Discovery 

Frequent 1y 
Qual1tat1ve, 
Imprecise 

Data co 11 ected for 
a d1fferent purpose. 
I ncomp 1 ete attr1butes. 
Low instance density. 

if data concerns p eop 1 e 
discovery may be 
unethical or illegal 



Data 
Diet 

ummarfzatlon 
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ut:ah467 
'Booltl> S.rri ••• Utob Data for DNI 461' 

I '/lulU/datalutah/U17. data' 
Simple Bevenue 

I '/lulU/datalutob/U71. di.t' 
I ·/lulU/datalutah/U17 .... dolo· 
I 250 
1'1' 
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• /hoa./data/utahlU11. aodeb· 
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lIElJ)-SUARATOR: ".pace 
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Simple E1Qvenue 
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I Selector I Plotter 

I Gunooa ry « DTREE 

I KID-J I LISP 

IInValid target concept. 

I/ii- Field! 
, CoIlpare 

1_ 

Decision Tree huh.lct:'r 

IDNI8I tlLCf tom 
l'IIDO .... enruSllll .-.no .DSIIII _ .AIICD ruSllll 

ftIII)O .un rLOST 'CVM 
'rDIUI ,&lII0I 'N:'I1 ....... o.u .0RCl 
tier: rUDD ~ 'DPUl! PaDXl 
tmP ,UIII\ PReCC tllLll1' 'AII~ 'AllII2 
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I:!!I][J I:!!!]ID 
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roEIII' .tC!. 'AIMl ,RSUB '8= 'ORAT .m 
POROD "01.2 'DSeo PRellT PPINS PDMI: POIl2 
Left: Aetlv_tel ttiCiht! De-Actlvatel 

sages • . 

(EQ '1!EY1 'J!EI'2) 
:T 
: T 
: JIIlO-OUll-1IElSUIIE 

decision tree for utah461 
I:;::~:::;:j~; doooain (or PDRGG ... done. I] doooaiti for PItI.08 ••• do .... 

doooain for preL ••• done. 
tD<oto,",1Dlna' doooain for prCL2 ... do .... 
1",u;., .. ,wwl, doooain for PRBUB ••• done. 

116) 

Rul.s for U,,,l:467: (I::Q PREVll'REVZI 

(PRIKARY CARRIER is in (0 21 75 3010 4010 4020 5001 5001 5016 5020 S022 5023 S024 5032 5033 5051 5059 5060 506& son 
(PRIKARY CARRIER is in (1040 2020 6020 6030») conceptb False (121 100.0\) 
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Summarizing 
Expected Re i m bursem ent = 1 9,74 

Found 181 instances with this condition. These 
1 nstances al so have these features: 

Primary Carrier Group= 22 (count 181) 

Hospital Length of Stay Norm = 4 ( 1 81 ) 

Primary Carri er = 2020 (1 81 ) 

Reimbursement Subroutine = DGRS556 (183) 

: Concept Dependency 
:::::':';" 

After prun1ng: 

I~-pr-i-m-a-r-y-c-a-r-rl-'e-r-=--2-02-0-·-(-1-8-1-)~ 
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Com parat 1ve 0 i scovery 

Doctors 

Gyn~~ 
16/1~ /1'\ 

120 199 .... ...... 

*** analyzing PHYSN - ATTENDING - 16 (7 records) 
has PATIENT AGE (PAGEC) s 51.57,*significantly* above (1.04 std) 
the overall average of 34.51 (overall std-16.46). 

has EXPECTED REIMB (PREV2) .. 66.43, somewhat below (-0.97 std) 
the overall average of 984.21 (overall std-921.88). . 

has OTHER PAYMENTS (PaPAY) .. -56.14, ·somewhat below (-0.92 std) 
the overall average of -16.4 (overall std=43.39). 

*** analyzing PHYSN - ATTENDING = 120 (20 records) 

*** analyzing PHYSN - ATTENDING ~ 199 (26 records) 

Data 
D1 ct 1 onary 

Field 
Interest 

Fjeld 
Relationships 

Field Value 
Taxonomy 

Field 
DependencJ es 

Value 
Dependenc i es 
(Rules) 

Example 
FIeld type, sIze, 
possIble values 

AcctNo Ignore 
WeekDay low 
Insurance hIgh 

/ 
1Jnanclal 

/~ 
Expected Charges 

Relmburs. 

Cu tomer-Type 

~ 

Use 

OptImIze search 
Type-speCifIc knowledge 

focus search 
evaluatIon 

focus search 
operator applicabilIty 

Large-~ntzatlon Res~ttal 

/ \ ~ Business / " 

BIas to better 
generalizatIon. 
Human-oriented 
presentat Ion FED GTE IX~ I Employee Reg~lar 

I J b E ~ G 

0.95 
PFCL -+-- PHLOS 

REV 1 i REV2 (usually?) 

YTD = aT 1 +OT2 + OTJ + OT4 

alwa~ DType = GYN P-sex = F 

DType = GYN ~ 

15 < P-age < 65 I/\.... 
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Prune Search 
Flag ExceptIons. 
Don't redIscover what Is 

Source 

Data Dlct. 

FIeld 

~eJ 



KDW main features 

• I ntegrat 1 on of dl fferent dl scovery tasks 

• Use of doma1n knowledge and re-use of discovered 
know ledge 

• Interactive, human-oriented tool 

• Use on large business databases 

Future Directions 

• Add i tiona 1 discovery tasks - c 1 usteri ng, forecast 1 ng, ... 

I ntegrate Database Operat ions w tth D1 scovery Methods 
• (Database Discovery Algebra ?) 

• D a t a and K now led ge Vis u ali z at ion 

• ??? 
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Knowledge Discovery in Databases - An Overview 

William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus 
GTE Laboratories Incorporated 

(C) 1991 American Association for ArtificiallntelIigence 

Computers have promised us a fountain of wisdom 
but delivered a flood of data 

A fMJ.strated MIS executive 

This chapter presents an overview of the state of the art in research on Knowledge 
Discovery in Databases. We analyze what is Knowledge Discovery, and define it 
as the· non-trivial extraction of implicit, previously unknown, and potentially useful 
information from data. We then compare and contrast database, machine learning 
and other approaches to discovery in data. We present a framework for knowledge 
discovery, and examine problems of dealing with large, noisy databases, the use of 
domain knowledge, the role of the user in the discovery process, discovery methods, 
and the form and uses of discovered knowledge. 

We also discuss application issues, including the variety of eristing applications, 
and propriety of discovery in social databases. We present criteria for selecting an 
application in a corporate environment. In conclusion, we argue that discovery in 
databases is both feasible and practical and outline directions for future research, 
which include better use of domain knowledge, efficient and incremental algorithms, 
interactive systems, and integration on multiple levels. 

It has been estimated that the amount of information in the world doubles every 
20 months. The size and number of databases probably increases even faster. In 
1989, the total number of databases in the world was estimated at five million, al­
though most of them are small dbaseIIrTM databases. The automation of business 
activities produces an ever-increasing stream of data, because even simple trans­
actions, such as a telephone call, the use of a credit card, or a medical test, are 
typically recorded in a computer. 

Scientific and government databases are also rapidly growing. The National 
Aeronautics and Space Administration already has much more data than it can 
analyze. Earth observation satellites, planned for 1990s, are expected to generate 
one terabyte (10 15 bytes) of data every day - more than all previous missions 
combined. At a rate of one picture each second, it would take a person several 
years (working nights and weekends) just to look at the pictures generated in one 
day. In biology, the federally funded Human Genome project will store thousands 
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Chapter 1. Knowledge Discovery in Databases - An Overview 

of bytes for each of the several billion genetic bases. Closer to everyday lives, the 
1990 U.S. census data of a million million bytes encode patterns that in hidden 
ways describe the lifestyles and subcultures of today's United States. 

What are we supposed to do with this flood of raw data? Clearly, little of it 
will ever be seen by human eyes. If it will be understood at all, it will have to be 
analyzed by computers. Although simple statistical techniques for data analysis 
were developed long ago, advanced techniques for intelligent data analysis are not 
yet mature. As a result, there is a growing gap between data generation and data 
understanding. At the same time, there is a growing realization and expectation 
that data, intelligently analyzed and presented, will be a valuable resource to be 
used for a competitive advantage. 

The computer science community is responding to both the scientific and prac­
tical challenges presented by the need to find the knowledge adrift in the flood of 
data. In assessing the potential of AI technologies, Donald Michie (1990), a leading 
European expert on machine learning, predicted that "the next area that is going to 
explode is the use of machine learning tools as a component oflarge-scale data anal­
ysis". A recent National Science Foundation workshop on the future of database 
research ranked "data mining" among the most promising research topics for the 
1990s (Silberschatz, Stonebraker and Ullman 1990). Some research methods are 
already well enough developed to have been made part of commercially available 
software. Several expert system shells use variations of ID3 for inducing rules from 
examples. Other systems use inductive, neural net, or genetic learning approaches 
to discover patterns in personal computer databases. 

Many forward-looking companies are using these and other tools to analyze their 
databases for interesting and useful patterns. American Airlines searches its fre­
quent fiyer database to find its better customers, targeting them for specific mar­
keting promotions. Farm Journal analyzes its subscriber database and uses ad­
vanced printing technology to custom-build hundreds of editions tailored to partic­
ular groups. Several banks, using patterns discovered in loan and credit histories, 
have derived better loan approval and bankruptcy prediction methods. General 
Motors is using a database of automobile trouble reports to derive diagnostic ex­
pert systems for various models. Packaged-goods manufacturers are searching the 
supermarket scanner data to measure the effects of their promo~ions and to look 
for shopping patterns. 

A combination of business and research interests has produced increasing de­
mands for, as well as increased activity to provide tools and techniques for dis­
covery in databases. This book is the first to bring together leading-edge research 
from around the world on this topic. It spans many different approaches to discov-
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Models and the Bayesian Classification Of Protein 
Structural Elements 

David States and Lawrence Hunter 
National Center for Biotechnology Information 

and the Lister Hill Center 

National Library of Medicine, Bethesda, MD 20894 

Abstract 

Motifs are present in protein structure, but a precise delineation of these elements 
has proven elusive, and estimates of the number and individual characteristics of such 
patterns vary widely in the literature. To place the analysis of protein structure on a 
rational basis, the technique of Bayesian classification has been applied to the catego­
rization of protein structural elements. The use of statistical mechanics as model for 
the relationship of structure and probabilities in chemical systems is presented. A data 
set of 9556 segments of peptide backbone structure, each five amino acids in length, 
derived from 53 high resolution structures from the Brookhaven PDB, was used for 
analysis. Classifications based on independent cartesian coordinates of the backbone 
atoms demonstrated the presence of 27 classes varying in both mean coordinates and 
the extent of variation about the mean coordinate. These classes correlate well with 
classically defined elements of secondary structure, but subdivisions based on hetero­
geneity in coordinate variance are apparent and, in some cases, as characteristic as are 
coordinate means. Strong biases in amino acid sequence are seen at particular sites for 
several classes, but the predictive power of these correlations is weak. The type II beta 
turn is recognized as a class and shown not to require a glycine residue at position 3. 
The formalism of Bayesian classification can also be applied to the analysis of substates . 
in molecular dynamics trajectories. Using butane as an example, the importance of 
considering cross correlation terms in the analysis of trajectyories is discussed. When 
arbitrary co-variance terms are considered in the class model of protein structure, as 
few as eight classes are required to describe the data. 
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Bayesian ClaSSl.LlCabon 0 ............. acromo ... ecu ... ar 
Structural Motifs 

Protein structure determines activity 
Proteins are chains of amino acids 

Folding of the chain is required for activity 

600 protein known structures 

Proposed classifications of protein structure range 
frome 3 to 250 classes 

Bayesian classification 
A rational basis for determining the number and types 
of structural motifs 

Data set: 9,656 fragments of protein structure derived 
from high resolution protein structures 

'Autoclass III identified 27 classes of structural motifs 

The Bayesian classes vary in both mean coordinates 
and variation about the mean 

Correlations are observed betWeen the amino acid 
sequence and the structural classes 

Applications of Bayesian Classification in 
Chemistry and Biophysics 

Data Sets 
Three-dimensional structure determination 

80,000 small molecule structures 
600 macromolecular structures 

Molecular modeling and dynamical simulations 

Molecular sequences databases 
26,000 protein sequences 
39,000 nucleic acid sequences 

human genome initiative -> 6xl09 bases 
of nucleic acid sequence 

Applications for Classification 
Identification of structural motifs 

Reduction of dynamical systems to a description based 
on sub-states and transitions 

Identification of sequence motifs and families 

___ ---'=S'""'tr'-"u"-"c=tt=lr"-!e~ft=m=c=tl=· o=n.:..;r::...::e=la:=..:t:=.;io::..;:n:.::;:s,-"-h=ip,,,-,s=----.:136 . ______________________ _ 



Statistical mechanics 
A desciprition based on the average properties of a 
system with infinitely many particles. 

Relating energy to probabilities 
Boltzmann's constant relates potential energies to 
probabilities 

Potential energies can be calculated 
ab initio methods: based on quantum mechanics 
directly 

Empirical methods 

The potential energy surfaces determines 
the dynamical properties of the system 

Normal modes 

Harmonic energy well-> Gaussian spatial distribution 

Applying the Autoclass Model to ~utane 

Butane 

The potential energy surface for butane has three 
minima separated by moderate barriers 

CZSl n .......•.... ~ 

cis+ 

Autoclass III analysis 
Structural snap shots from molecular dynamics 
analyzed with Autoclass III -> 6 classes 

None of the classes correspond to minimum energy 
configurations of the system 

Limitations of the Autoclass model 
Independence assumption: atomic positions in 
chemical systems are highly correlated 

- bonds and bond angle restrictions 
- packing forces. 137 



Bayesian Classification of Correlated Data 

Correlated data 
Normal distributions in N dimensions 

Matrix of co-variance terms 

P (r) 
del (V) 
--e 
(21t) N 

Classes may differ in: 
Mean coordinates 

Coordinate variation 
Coordinate correlations 

Costs of the extension 
N mean and N(N+l)/2 co-variance terms per class 

More free values to fit -> more data required to 
adequately determine the problem. 

Order N4 or worse computational complexity 

Optimization pitfalls 
zero or negative eigenvalues 
collapse to zero volume with insufficient data 

Is Data Classifiable? 

Data set 
10,000 snapshots from a trajectory of butane at 600K. 

Results 
1.2 

1.0 
0.30 

V'> 0.8 0 

* 0.6 0::: 
'OIi 

0.4 .sa 

0.2 

0.25 ~ 
~ 
c. 

0.20 E 
Q 
>< 

0.15 
d) 

...... 
0 

0.10 
c: 

'E 
0.05 '" <l:: 

0.0 0.0 

2 3 4 5 6 
number of classes 

In terpreta tion 
Three class case corresponds to physical intution 

Appropriate means and coordinate correlations. 

Additional classes appear to represent anharmonicities 
in the potential energy surface as sums of Gaussians. 

H"monk surface V U'Orled surface 

Probability 
distributions: 



hXp t01tIng lVlouel~ 

Derived co-variance terms 
Second derivatives of the potential energy surface-> 
normal modes -> probability distribution 

Avoid model consistence issues 

Informative prior probabilities 
Incorporating other chemical knowledge 

bond lengths and geometries 
packing constraints 
force constants 

Boltzmann's law -> relative class probabilities 

Well bredth -> entropy 

~mplications for computation 
Fewer free values to fit reduces data requirements 

Fewer free values to fit reduces computational costs 

Additional constraints -> improved behavior in 
optimization 

Summary and Conclusions 

Bayesian classification methods are useful in 
chemistry and biophysics. 

Chemical physics provides a rigorous model 
for analysis. 

Models are important: 

The wrong model -> misleading results. 

A good model extends the range and 
power of classification. 

Even approximate models may be a big win. 
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Aspects of Astronomical Research Involving Large Data Bases 
Nick Weir and Stan Djorgovski 

California Institute of Technology 

The enormous size and information content of many astronomical data sets, particu­
larly those derived from space-based missions, render traditional means of data analysis 
unfit for the task. Researchers have begun to more vigorously investigate automated, 
multivariate means of analyzing and classifying large-scale data bases, drawing heavily 
upon recent efforts in statistics and pattern recognition. Not only are such methods the 
only ones equipped to handle unfathomably large amounts of data efficiently, but, as as­
tronomers are learning, they are incomparably superior to traditional methods in their 
ability to extract important information from the data. 

We review recent work in this area of astronomy, providing examples of both supervised 
and unsupervised pattern analysis and discovery. Investigations in supervised learning in­
clude efforts to design efficient star/galaxy discriminators, specialized stellar and quasar 
identifiers, and optimal filter combinations for predicting redshifts of galaxies from their 
colors, all of which are relevant to the analysis of current large-scale imaging surveys. 
Systems for sorting other types of astronomical data into predetermined classes are dis­
cussed as well. Some ofthe most of exciting research, however, involves the application of 
unsupervised techniques to the areas of spectral and image classification, and the multi­
variate analysis of astronomical catalogs. Enthusiasm for this type of research is growing 
as astronomers discover it contributes to physical understanding in previously unexplored 
ways. 
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ASPECTS OF ASTRONOMICAL RESEARCH INVOLVING 

VERY LARGE DATA BASES 

Nichol.as Weir 
S.· Djorgovski 

Department of Astronomy 
California Institute of Technology 

Outl.ine: 
o Nature of the Data 
o Current Approaches 
o Our project: Digitized POSS II 
o Where we are headed 
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Nature of the Data 
------------------

o Primarily imaging and spectroscopy initially 

o Reduced to catalog for.m 

o Vol.uminous 

- Space-based missions 

- Ground surveys 

- General. observations (mostl.y discarded) 

Current. Approaches 

o Traditional multivariate statistical techniques 

- Factor Analysis (PCA) 
Unsupervised classification and 

correlative studies 
e.g., Elliptical and spiral galaxies 

lRAS .sources 

- Cluster Analysis 
Unsupervised classification 
Supervised classification 

e . g., MK spectral classific,ation 
Quasar searches 

- Discriminant Analysis 
Supervised classification 
e.g., Star/Gal.axy seperation 

lUE spectra 
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Principal Component Analysis of Spiral Gal's 

v 

R 
B 

"Sc.., Ii " 

Spirals (Whitmore) 

51 galaxies 

VarJ = 54.5 7-

Varz = 31.3 7-

2 . dominant dimensions 

Spirals (Whitmore) 

51 galaxies 

Varl = 61.2 % 

Varz = 25.1 % 
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Current Approaches 
-------------------

o Non-traditional methods 

AUTOCLASS 
Unsupervised classification 
e.q., lRAS spectra 
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- Artificial Neural Networks 
Supervised classification 
e.g., z(color) predictor 

Phasing mirror arrays 
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Our Project 

Digitized 2nd Palomar Observatory Sky Survey 

o Complete Northern Sky survey in three 
bands 

o > 3 Terabytes of pixels result from 
the scans 

o > 10
8 

stars and lOr galaxies will be 
detectable 

Task:· 

o Measure, classify, and analyze all 
objects detected in the scans 

o Do so in a fully objective and 
uniform manner 

Collaborative effort between JPL and Caltech 

o Usama Fayad 
Richard Doyle 

Artificial Intelligence Group 
Jet Propulsion Laboratory 

o S. Djorgovski 
Nicholas Weir 

Department of Astronomy 
Caltech 
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Image Processing 
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Sky Object 
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Q Classes 
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Where we are headed ... 
----------------------

o General.ized mul.tivariate anal.ysis of 
l.arge, heterogeneous data sets 

- Integration 
- Projection 
- Cl.assification 
- Analysis 

I Database I 
1 

Parameter Space ~ Projection 
Projection i' Rules 

1 
Cl usteri n~ / I~ Clustering 

Discrimination 
, 

Rules 
1 

Object .. Rul e Assessment 
Classification r 

Algorithm 
l ... ,.. 

Scientific 
Analysis 

o Anticipated result 

- Greater physical understanding 

~ 

~ 

~ -

e.g., IR-IRAS Tully-Fisher relation 
"Fundamental Plane" of 

elliptical galaxies 
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2 Variables 3 Variables 

24 
tTll = 0.40 

24 
crll = 0.30 

• ;l 
I 

22 • 22 
• 

20 &.;.,.' '-----L __ ..l.-_--'-_--"_~ 20 IC.-_-'-_-J.._-...l~_-'--_""" 
2.4 2.6 

log W 
2.8 20 22 24 

6.59 log W + 0.89 log Pl00 - 15.83 

Left: the H-band'!\illy-Fisher relation for the late-type spirals (T ~ 5) in the 
Aaronson LSC Best sample. Right: the IRAS-corrected '!\illy-Fisher relation. The r.m.s. 
scatter in absolute magnitudes is indicated. Much of the residual scatter is probably due to 
the distance errors (we used a very simple linear Virgo infall model). 
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Conc1usion 

o Astronomers are investigating more 
sophisticated too1s out of necessity: 
the data are too vast. 

o They are (s1ow1y) discovering the 
general desirability of these methods 
in the process. 
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