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COMPUTER MODELING OF HUMAN DECISION MAKING

William B. Gevarter

Abstract

This report reviews models of human decision making. Models

which treat just the cognitive aspects of human behavior are

included as well as models which include motivation. Both models

which have associated computer programs, and those that do not, are

considered. As flow diagrams, that assist in constructing computer

simulation of such models, were not generally available, such

diagrams have been constructed and are presented in this report.

The result provides a rich source of information, which can aid in

construction of more realistic future simulations of human decision

making.

I. Introduction

This report briefly reviews the current state of computer simulation

of human decision making. Such models can aid in the design of

intelligent machines that interact with humans. They are also useful

in the design of equipment, automation and missions compatible with

humans. In addition, such models can aid in the design of training

programs, and in understanding and preventing human errors. In

these ways, improved modeling of human behavior can be of

substantial benefit to NASA in its lead role in manned space

activities and its role in research for manned aircraft operations.

At present, there are few computer models of human decision

making. Thus, we begin by constructing flow diagrams of some

human decision paradigms. Most of these paradigms have not yet

been converted to simulations, but these flow diagrams are

suggestive of the architecture of computer programs that can be

created to implement them. We then examine some of the few

computer simulations that are now available.



II. Motivations in Decision Making

It is generally acknowledged (cf. Izard, 1984) that emotions are

involved in all human decision making. However, the nature and

mechanisms of the associated motivations are still incompletely

understood. Thus, in most paradigms of human decision making, and

in cognitive science in particular, motivations are ignored and just

the information processing aspects are considered. Therefore, we

will start with models that do not explicitly include motivations and

then move on to those that do include them.

III. Unimplemented Models that Ignore Motivations

PASS

Maher (1991) offers us a model that he believes is descriptive of air

crew cockpit behavior. PASS is derived from the analytical core of

the process (Problem identification, Acquisition of information,

Strategy survey, and Solution selection). A flow diagram we have

constructed reflecting PASS is given in Figure 1. The central core of

PASS consists of a straightforward sequential process of identifying a

problem, gathering information; and moving on to a strategy survey

and solution selection. After selecting a solution, the participants

decide if the problem is solved by it, if not they reenter the loop.

They may choose to re-define the problem, seek more information or

choose the next alternative.

Maher indicates that the decision problem is often complicated by

what he refers to as pilot tendencies to shortcut or short circuit the

information gathering process. These tendencies axe:
_.. =_S G _ .

Representativeness

When faced with a problem experienced and successfully solved in

the past, humans tend to bypass the information gatherlng process in

PASS, and apply the past solution. (Note that this is also thee=

paradigm for Straightforward "procedure following" in the

accomplishment of a task).
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Availability

This is a tendency to recall recent or vivid, compelling solutions and

use them, bypassing information gathering.

Anchoring

This is a tendency to fasten on to a piece of information on the first

pass through a problem and use it to support an early conclusion,

strongly resisting any change based on having to consider an

alternate piece of information.

Overconfidence

This is the tendency for humans to be overly sure of their decisions

and to resist change, even when faced with compelling evidence to
do so.

When activated, these tendencies produce alternative paths through

the decision process. These paths are also shown in Figure 1.

Maher's paper also include observations on personality, recall,

attention, and learning, which a,,-e pertinent to air crew decision

making and error avoidance. In particular, Maher suggests that the

tendencies depicted in Figure 1 are more likely to be actuated when
attention is reduced. He indicates that attention is a function of

stress, cognitive load, degree of information saturation, and fatigue.

Suitable algorithms using these relationships could be employed in a

simulation to account for tendency actuation.

Recognition-Primed Decision Making

Klein (1989) interviewed skilled decision makers and discovered that

they usually do not have to consciously consider alternatives. They

found that based on experience, the experts can usually judge the

prototypicality of a situation and that this assessment includes a

recognition of a typical way to react. In terms of the PASS model,

this means that the representiveness and availability tendencies are

active. Figure 2 is a flow diagram of recognition-primed decision

making. Following the flow in Figure 2, the expert automatically

recognizes the task as a familiar one, and automatically retrieves the

associated goal appropriate to deal with the situation. From the

possible actions associated with that goal, a salient one is
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automatically retrieved, and blending it with the available resources,
the expert acts on it, modifying the situation, and continues to loop
through this process until the situation is resolved.

In more complex cases, diagramed in Figure 3, experts do perform
some conscious evaluation of their reaction, serially evaluating each
recalled possible action as it become salient. The expert uses mental
imagery to simulate the likely result of implementing an action,
either modifying the action, seeking more information or evaluating
the next salient action until one is found that appears satisficing.
After implementing the action deemed as satisficing, the expert then
monitors the result looking for cues that will confirm or disconfirm
the expert's expectancies, continuing to loop through the process as
required.

GEMS (Generic Error Modeling System)

Reason (1990) has devised a flow diagram of human decision making

in his quest to understand human errors. Figure 4 is my version of a
GEMS flow diagram. Reason focuses on three levels of human

decision making -- Skill-based, Rule-based, and Knowledge-based;
and on two modes of cognitive control -- attentional control

associated with working :memoryi: :and SchematicS:control derived _:
from long-tern memory. Reas0n (p. 50) indicates: that the :

(conscious) attenti0nal controi mode " . . is limited, sequential, slow,

effortful and difficult to sustain for more than brief periods."

In referring to the schematic control mode, Reason (p.51) observes

that, "The cognitive system is extremely good at modelling and

internalizing the useful regularities of the past and then reapplying

them whenever their 'calling conditions' are supplied by intentional
activity or by the environment .... This schematic control mode can

process familiar information rapidly, in parallel and without
conscious effort, n

_7

The schemas in long term memory, in addition to being activated by

attentional activity via°piafis (descriptions of: intended activities), are

activated by contextual Cueing. recency, fr6qUency of prior Use,= _:

features Shared=_h-Sther Schemas,:and emoiionai_:factors. When ::::
the calling _` condltions are underspecified,:the cognitive system tends :

to default to contextually appropriate, high frequency responses.
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Decision Making with Planning

Bratman (1987, 1989) has proposed a model of human decision

making that incorporates planning. Because humans have limited

mental capacity, coordination capacity, time, and other resources,

humans usually do not make and enforce complete plans. Rather,

humans usually settle for plans that are partial and fill them in as

required as time goes by. Action derives from intention to act, which

in turn is predicated on what the agent desires and what the agent

believes. These intentions are reflected in plans for actions in the

future. Plans are hierarchical, with more specific plans being

imbedded in very general plans such as those reflecting life goals.

Plans are subject to constraints. Plans tend to be consistent with

beliefs and with potential means for carrying them out. Future-

directed intentions and partial plans have a characteristic stability.

Prior intentions, not up for reconsideration, constrain future

intentions. Partial plans associated with prior intentions constrain

future options for consideration, enabling humans not to be

overwhelmed with information processing.

Personal policies are like intenti°ns,but do not give rise to future

plans. Instead, they guide what to do in specific situations. In a

manner similar to intentions, personal policies provide a filter on

admissible options -- including other policies, relatively limited

options, and extended plans of action (Bratman, 1989).

Bratman did not include a computer program reflecting his concepts,

but it can be observed that his theory of human decision making fits

nicely into Artificial Intelligence approaches to planning with

constraints.

Other Models of Huma n :Decision Making

Klein and Zsambok (1991) discuss other models of skilled decision

making. One interesting approach used by humans in trying to

decide between alternative hypotheses to explain prior events is to

use their domain knowledge to decide what is consistent with their

prior experience. This is a form of explanation-based decision

making.
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Another approach (Coward, 1990), not yet developed into a working

computer program, takes the neural net operation of the brain as a basis
for developing a general theory of human behavior.

IV. Computer Models that Ignore Motivations

ACT*

Act* (Anderson, 1983; Newell, 1990), lqlustraied in-Figure 5, is a

theory of the human cognitive architecture. It focuses on the

memory and processing structures that form the base of human task

performances. It has a declarative memory in the fort[?_ of a semantic_

net. It has three basic-data types (for sequences, objects, and

images) which are linked togethe_lSy associations. Long term ....

procedural memory is in the form of productions. The "If" part of
the productions are to be matched with information in d6clarat[ve

memory, he Then part of the productions (when fired) produces

new nodes or associations in declarative memory.

The nodes of the long-term declarative memory each have a degree =

of activation. The working memoryis that part of Ion-g-term
memory that is highly a6iivated. Using'_al_otqtiams, the Spreading

(and the rate of spreading) of the activation is au_toiiiatlcalIy
determined. -

Act* has a theory of learning. Declarative learning is implemented

by highly activating the new nodes and associations created by

productions, but giving them oAiy==a p ro[iabii_stlc chaiice'o]' becoming

permanent. Cognitive skill ac-qtiishion is implemented by forming
new productions by chaining together productions that fire in the

accomplishment of a task. The strengths that determine the

likelihood that productions will-fire (wiaen_there actuating conditions

are satisfied) increase or decrease depending on their frequency of
use.

ACT* is activation governed. ACT* is specified by (1) a set of rules

about its structure and the way-actions occur, (2) a set of equations

for the flow of act|ration, and (3)a set Of equations governing the
fluctuations of production strengths
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Though ACT* was designed to simulate human performance, most of
its simulation is governed by the equations chosen to represent its
dynamics and its input and output functions, rather then resulting
directly from its architecture.

Soar

Soar (Laird et al., 1987; Newell, 1990) is the best known and most

advanced of the computer systems designed to be capable of general

intelligence. The architecture of Soar is predicated to be capable of

working on the entire range of cognitive tasks, from highly routine to

extremely difficult open-ended problems. As such, it is intended to

be able to employ the full range of problem solving methods and

representations required for these tasks and to be able to learn

about these tasks as part of its problem solving efforts. Soar has

been successfully demonstrated on the weak ((essentially heuristic

search) methods as well as on a number of well known knowledge-

intensive expert systems, such as RI. Soar has not thus far been

explored with affects and emotions.

Soar takes the approach that all tasks are formulated as heuristic

search. Thus, every task of attaining a goal is formulated as finding a

desired state in a problem space (a space with a set of operators that
can be applied to a current state to yield a new state). If due to

inconsistent or incomplete immediate knowledge, an impasse is

reached in selecting an operator in the current problem space, a new

goal is generated to resolve the problem. Soar then continues at

some initial state in a new problem space associated with this

subgoal. This property, to set up a subgoal to resolve any
problematic decision, is referred to as "universal subgoaling."

To use Soar for a problem, an associated knowledge base in the form

of production rules must first be developed. This knowledge base

consists of domain-specific task-implementation knowledge of the

structure of the problem, the problem spaces that are needed, and

operators that can transform one state to the next. Though, Soar has

default search control knowledge (look-ahead), efficient search

requires that domain-specific search-control knowledge (heuristics)

also be included in the knowledge base.

In Soar, task implementation generates (or retrieves) new problem

spaces, states and operators; and then search control selects among

the alternatives generated. Other functions needed to form a
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complete system -- goal generation, goal selection, goal termination,
memory management and learning (_chunking') -- are performed by

the architecture of the system.

Soar employs a frame-like structure called a context. This consists of

four slots: the current goal, the current problem space, the current

state, and the operator to be applied to change to the next state.

These slots become bound to objects that fill them as the problem

solving proceeds.

Figure 6 presents the architectural structure of Soar. Working

memory consists of a context stack, a set of objects linked to the

context stack, and preferences that help in selecting among the

applicable operators.

Soar's problem solving approach can be depicted as a sequence of

decision cycles. At any cycle, processing begins with an elaboration

phase which consists of a single firing of all productions that are

applicable based on the contents of working memory. This --

elaboration phase adds new objects, augmentations of existing

objects, and preferences. The decision procedure is executed when

the elaboration phase reaches quiescence. It determines which slot

in the context stack should have its contents replaced and with which

object. This procedure proceeds by processing the context stack from

the oldest to the newest. Making a change to a higher order slot

makes processing of lower slots irrelevant. Figure 7 is a simplified

flow diagram of Soar's overall problem solving actions. The actual

system is slightly more complex to promote greater processing

efficiency. Thus, each time a decision is made to change a context

element, the entire goal stack is reexamined to see if as a result of

the change, progress can be made at a higher level. If so, all the

current work at lower levels is discarded and the system processing

proceeds from this higher level.

Soar uses a single learning mechanism, referred to as "chunking.

This replaces the process of finding a solution to a subgoal with a

single production (a chunk). This chunk is then generalized so that

given the same type of relevant conditions, the chunk can be applied

to directly obtain the subgoal solution.

Chunking is based on a dependency analysis of traces of the

productions fired while finding the subgoal solution. Generalization

is achieved by replacing the identifiers in the working memory



elements with variables, and removing conditions from the chunk

that were not used to fire the relevant productions. The production

conditions are then ordered to make the conditions match faster.

Though Soar appears capable of being developed to cover virtually

the full range of cognitive activity, it currently lacks motivations and

has only a limited resemblance to the human problem solving

architecture and to normal human decision making.

V. Computer Models that Include Motivations

There are very few computer models that include motivations

and/or emotions. Virtually all that do include only a very specific

aspect of human behavior. Thus, we have only found that
DAYDREAMER (Mueller, 1990) includes the full range of internal

goals, motivations, emotions, control of memory, planning, and
internal and external behavior in response to the internal and

external environment. A few of the significant motivation-oriented

computer models are described below.

Hot Cognition

Thagard and Kunda (1987, p. "753) observe that "People make
motivated inferences when their conclusions are biased by their

general motives or goals." Thagard and Kunda have written a

Common Lisp computer program of motivated inference referred to

as "Hot Cognition." This computational model is designed to account

for a variety of phenomena that have been investigated empirically:

1. Motivated changes of self-conceptions.

How people see themselves may be influenced by how they
would like to see themselves.

2. Motivated changes of theories about the world.

People tend to generate those theories about the causal
determinants of events that are most likely to support their

goals.

3. Motivated changes of inferential rules.
Individuals threatened by some evidence are less likely to

believe it.

9



4. Motivated changes of goals.
When people realize that they are less likely to obtain their
goals, they diminish the importance of the goals to the self,
thereby maintaining positive self-evaluation (the "fox and the
grapes" phenomenon).

The model includes the following components:

1. A representation of the self.

This includes the individual's fundamental motives (such as

staying healthy) and their priority and activation, and

attributes of the self (such as smokes) together with their

importance and activation.

2. A mechanism for evaluating the relevance of a potential conclusion
to the motives of the self.

3. Mechanisms for motivated search.

4. Mechanisms for adjusting the parameters of the inference rules to
bias them to ensure that inferences favorable to the self are

more likely to be made.

The interaction of the elements in this model, in inferring whether to

accept the stated conclusion in response to a proposition (e,g,,

"Smokers die young.'), is shown in Figure 8.

MoCogl _ _

MoCogl (Gevarter, 1991) is the In'st of a NASA series of computer

programs that include motivations in attempting to develop

successively increasingly sophistiCated models for simulating human

cognitive behavior. MoCogl (for Motivated Cognition i) differs from

the models previously considered by not only focussing on

motivations, but by seeking to Correlate human decision making with

what is known about information processing in the brain.

Most human decision-making is of an experience-based, relatively

straight-forward, largely automatic response to internal goals and

drives, utilizing cues and opportunities perceived from the current

environment. MoCogl limits itself to this type of decision making,

which can be recognized as being similar to Klein's (1989)

Recognition-Primed Decision Making, reviewed earlier. The major
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differences are 1) that motivations have been included in MoCogl,

and 2) that an attempt has been made to utilize, in the development

of the model, knowledge about information flow in the human brain.

The central ideas underlying the MoCogl model are:

1. In the brain, stored along with each experience are the emotions

that were present at the initiation of the experience and those that

resulted from the experience. The affect pattern thus associated

with the pre-conditions and post-conditions of the experience are

accessible during future interactions.

2. Affect vectors are formed by combining existing internal affect

states with those elicited by information processing of the various

levels of the situational response (from affects involving the lowest

level of implicit motivations, to affects at the highest level resulting

from cognitive involvement with the "self').

3. In the MoCogl version of decision-primed decision making,

situation assessment (and accompanying affects), and access to

applicable procedures are accomplished by automatic associative

recall of stored experience.

4. The current affect state and the expected affect states, resulting from the

automatic assessment of the current event, act as inputs to the brain's

control mechanism, which generates needs and goals to move the

anticipated resultant affect state to a more desirable condition. These needs

and the current context elicit applicable stored procedures. The predicted

results and affiliated affect patterns (associated with the various applicable

procedures) are then fed to the brain's decision making mechanism. This

mechanism then automatically seeks to select procedures that would

produce the most desirable overall satisfaction of the generated needs,

considering the weights or priorities given each affect and their current

degree of activation.

Figure 9 presents the resultant flow diagram.

The resultant computer program was employed successfully in

simulating Dweck and Leggett's (1988) findings that relate how an

individual's implicit theories orient them toward particular general

goals, with resultant cognitions, affects and behavior in response to
their environment.
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DAYDREAMER

DAYDREAMER (Mueller, 1990) is a computer program that simulates

the emotional control of an individual's train of thought, as

exemplified in human daydreaming. Figure 10 is a simplified flow

diagram of the DAYDREAMER program.

Goals in DAYDREAMER

The DAYDREAMER individual has Personal Goals common to all

humans. These are composed of

Cyclic Goals (which require repeated satisfaction):
Food

Sex

Love-Giving

Love-Receiving

Companionship
Entertainment

Money
Possessions.

Achievement Goals (corresponding to physical or mental states to be

achieved or maintained):
Self-Esteem

Social Esteem

Lovers

Friends (and Positive Relations)

Employment.

In addition to Personal Goals, there are Domain Goals associated with

activity currently salient. For DAYDREAMER, these are taken to be:

Emotional Daydreaming Goals (to generate daydream scenarios to

recover emotionally from a personal goal failure):
Rationalization

Roving (shifting attention away from the failure)

Revenge.

Learning Daydreaming Goals [either associated with learning from

past (or possible future) goal failures or with the the generation of

possible future scenarios for achieving an active personal goal]:
Reversal

12



Recovery
Repercussions
Rehearsal.

Emotions

Associated with each goal success or failure are specific emotions,

and more general emotions such as: pleasure and relief, and

displeasure and regret. Relief is a positive emotion resulting from an

imagined alternative past scenario in which an imagined action was

taken that resulted in a goal failure. Regret results from an imagined

past action (that could have been taken) that would have resulted in
a goal success.

Positive DAYDREAMER emotions (resulting from succeeded goals) are:

pleasure

hope

gratitude
amusement

satiation

pride

poise

from ENTERTAINMENT goal

" SELF-F.SIT.EM "

" SOCIAL ESTEEM "

Negative DAYDREAMER emotions (resulting from failed goals) are:

displeasure

worry

anger
shame

embarrassment

humiliation

rejection
heartbreak

from SELF-ESTEEM goal
" SOCIAL ESTEEM "

" SOCIAL ESTEEM "

" POSITIVE RELATION "

" LOVERS

Basic Information Flow

Referring to Figure 10, we can now follow the basic information flow

in DAYDREAMER. All goals have their priorities. When the

satisfaction of a personal goal falls below a critical level, a concern is

actuated to achieve the goal. Associated with each concern is an

emotion whose activation level depends on the goal priority. Several

concerns may be active at the same time. It is predicated in

13



DAYDREAMER that the individual automatically selects the concern to
concentrate on that has the highest emotional activation level. This
selection is referred to as "Emotion Driven Control." DAYDREAMER
then develops a train of thought, or daydream, to achieve that goal.
The process by which DAYDREAMER does this is referred to as
planning. In response to the daydream's success or failure in
achieving its goal an associated response emotion results. If the
resultant emotion is negative, DAYDREAMER go_s are actuated to
seek a more positive emotional state. The priority of these new goals
is related to the emotions associated with the failed goal.

Figure 11 is an expanded version of Figure 10. For the selected
concern, the planning is done one step at a time. At the end of that

planning step, the system is checked to see if the concern has

succeeded or failed. If the concluded concern has resulted in a

positive emotion, the associated plan which has been generated is

generalized and put into episode storage for future use. If another

active concern, B (not currently being worked on), has fortuitously

succeeded while working on the selected concern, A, a positive

response emotion is added to A in proportion to the Emotion
associated with B.

If, fortuitously while taking a step to achieve A, a subgoal of B

succeeds or a plan is found to achieve B, a positive response emotion

is added to B proportional to the emotional level of B.

If during the planning step, several planning rules unify with the

current subgoal, each rule is applied in its own separate world model

(planing context), giving rise to alternative states of a hypothetical
world.

At the end of the planning step, the system checks the modified
emotion levels and switches to a new concern if its emotion level

warrants. Having completed the current planning step,

DAYDREAMER then performs the next planning step. Theoretically,

the system can run forever.

The DAYDREAMER Planner

DAYDREAMER uses the process of planning to generate imaginary

sequences of events (daydreams) to try to satisfy its selected

concerns. Figure 12is a simplified diagram of the DAYDREAMER

Planner. The associated planner functions of Analogical Rule

14



Application, Reminding, Serendipity, and Mutation are diagrammed
in Figures 13, 14, 15, and 16, respectively.

DAYDREAMER has been demonstrated with "constructed"
daydreaming examples, both daydreaming trains of thought and
trains of thought in response to constructed external inputs.

VI. Computer Simulations of Humans Interacting with a
Simulated World

MIDAS

MIDAS (A3I Executive Summary, 1990) is a simulation of an aircraft

pilot carrying out an assigned mission. The purpose of the simulation

is to 1) develop criteria for cockpit design, and 2) to determine the

associated pilot training requirements. Both cognitive and

spatial/temporal aspects of the pilot are simulated. This includes

physical motion responses, achieved by anthropomorphic modeling,

and perceptual responses associated with focussing attention and

sensory processing delays.

As insufficient human operator performance data is available,

initially normative, rather than descriptive, models have been

chosen. Figure 17 is a very simplified MIDAS flow diagram. The

following quote from The A3I Executive Summary (1990, p. 13)

allows us to follow through the flow diagram.

During a simulation, the model attempts to execute assigned

mission activities subject to specified constraints, state variables,

and other simulation object requirements. This model

accomplishes this action by:

1) updating the simulated operator's goal list to delete terminated

or inappropriate goals,

2) examining equipment and world state variables to determine

if event-response activities are required,

3) tracing the decomposition of mission goals to their lowest level,

finding matching equipment operation patterns or activities which

will satisfy them,

15



4) sorting these matched goal-activity patterns by priority,

5) interacting with the scheduling and task loading model

components as appropriate, and

6) executing these activities subject to physical resource (hand,

eye, etc.) requirements, Visual, Auditory, Cognitive and Motor load

values, as well as temporal/logical constraints.

MIDAS uses a constraint-based opportunistic model of operator

scheduling behavior. The modular design provides the opportunity

to try different scheduling strategies. The operator task loading
model classifies individual tasks in terms of their demands on the

Visual, Auditory, Cognitive and Motor processing dimensions, based

on the attributes of the mission tasks, world state, operator and crew

station equipment. ........ _ :

The aciuaI simulation has been-chosen to be object-oriented. Each

module of the simulation is modeled as a separate object. These

modules communicate by message passing. Much_gf the ....

communication in such a system is in the query/response (Q/R) form.

Figure 18 provides a more acc_/tte-detailed diagram of the MIDAS

simulation. Corker et al. (I990) provide a more-complete description

of this type of simulation, (including simulation of short and long

term memory, and the process of forgetting).

VII. Discussion

Only a few of the models reviewed include the modeling of human

motivations, rather than justcognition. Hot Cognition, MoCogl, and

DAYDREAMER particu_arly stn_ve to include motivation in their

simulation of humans. Hot Cognition focuses on motivated

inferences; MoCogl on the effects of emotions onhuman decision

making; and DAYDREAMER on developing human streams of thought

in response to emotions generated by goal needs, failures, or

successes. Each of these three simulations employs a_ somewhat

different theory of the role of emotions. The respons_e to emotions in

MoCogl is to select actions that produce the most overall favorable

response considering all the emotions. The actions generated in

DAYDREAMER function to satisfy a single selected concern and its

associated emotion. However, the DAYDREAMER-focus on only

satisfying a single concern at a time, appears appropriate because,

16



during conscious thought about immediate concerns, humans tend to

think about one thing at a time. Nevertheless, Mueller (1990, p. 38)

observes that "A complete system would have to have both meta-

planning for long term planning [to attempt to satisfy multiple

concerns simultaneously], and emotion-driven planning for short-

term decisions about what to do next and what to daydream about

next." In MoCogl, the decision to attempt to satisfy the total affect

vector is done subconsciously, which is consistent with the parallel

processing capabilities of the subconscious. The conditions under

which these two types of responses are appropriate needs to be

further explored. Figure 19 provides a generalization of the

DAYDREAMER'S approach to the effects of personal and domain goals

on emotions and resultant behavior. Figure 20 provides a rough

example of a view of human decision making when the emotional

control aspect of Figure 19 is combined with the GEMS Human

Decision Model given in Figure 4. This greatly simplified model

highlights the relationships between motivations, memory, external

inputs, subconscious processing, and the limited role of attention --

moving us closer to a more realistic view of human decision making.

MIDAS is an effort to simulate humans considering both cognitive
and physical aspects. If we add a motivation module to such a

model, we can begin to achieve a more holistic model of humans.

Models of this type could be very valuable for simulating human

operator behavior, including errors, such as have contributed to

aircraft mishaps and operator control problems of nuclear reactors.

Such models, coupled with the use of flight simulators at NASA

Ames, could be very valuable toward developing, testing, and

refining theories of human operator behavior. Though additional

syntheses of the findings of cognitive science and other disciplines

are needed, the models of human decision making discussed in this

report provide a start in developing such theories.
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