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COMPUTER MODELING OF HUMAN DECISION MAKING

William B. Gevarter

Abstract

This report reviews models of human decision making. Models
which treat just the cognitive aspects of human behavior are
included as well as models which include motivation. Both models
which have associated computer programs, and those that do not, are
considered. As flow diagrams, that assist in constructing computer
simulation of such models, were not generally available, such
diagrams have been constructed and are presented in this report.
The result provides a rich source of information, which can aid in
construction of more realistic future simulations of human decision
making.

I. Introduction

This report briefly reviews the current state of computer simulation
of human decision making. Such models can aid in the design of
intelligent machines that interact with humans. They are also useful
in the design of equipment, automation and missions compatible with
humans. In addition, such models can aid in the design of training
programs, and in understanding and preventing human errors. In
these ways, improved modeling of human behavior can be of
substantial benefit to NASA in its lead role in manned space
activities and its role in research for manned aircraft operations.

At present, there are few computer models of human decision
making. Thus, we begin by constructing flow diagrams of some
human decision paradigms. Most of these paradigms have not yet
been converted to simulations, but these flow diagrams are
suggestive of the architecture of computer programs that can be
created to implement them. We then examine some of the few
computer simulations that are now available.



II. Motivations in Decision Making

It is generally acknowledged (cf. Izard, 1984) that emotions are
involved in all human decision making. However, the nature and
mechanisms of the associated motivations are still incompletely
understood. Thus, in most paradigms of human decision making, and
in cognitive science in particular, motivations are ignored and just
the information processing aspects are considered.  Therefore, we
will start with models that do not explicitly include motivations and
then move on to those that do include them.

II1. Unimplemented Models that Ignore Motivations
PASS

Maher (1991) offers us a model that he believes is descriptive of air
crew cockpit behavior. PASS is derived from the analytical core of
the process (Problem identification, Acquisition of information,
Strategy survey, and Solution selection). A flow diagram we have
constructed reflecting PASS is given in Figure 1. The central core of
PASS consists of a straightforward sequential process of identifying a
problem, gathering information, and moving on to a strategy survey
and solution selection. After selecting a solution, the participants
decide if the problem is solved by it, if not they reenter the loop.
They may choose to re-define the problem, seek more information or
choose the next alternative.

Maher indicates that the decision problem is often complicated by
what he refers to as pilot tendencies to shortcut or short circuit the
information gathering process. These tendencies are:
chrcsentﬁaft'iﬁvjé:iié’gé'

When fa'c:‘écl:;;vit"hﬂérprbblerﬁr éxi:érienééd andﬂs'ixccessfully solved in
the past, humans tend to bypass the information gathering process in
PASS, and apply the past solution. (Note that this is also the -
paradigm for straightforward "procedure following” in the - -
accomplishment of a task).



Availability

This is a tendency to recall recent or vivid, compelling solutions and
use them, bypassing information gathering.

Anchoring

This is a tendency to fasten on to a piece of information on the first
pass through a problem and use it to support an early conclusion,
strongly resisting any change based on having to consider an
alternate piece of information.

Overconfidence

This is the tendency for humans to be overly sure of their decisions
and to resist change, even when faced with compelling evidence to
do so.

When activated, these tendencies produce alternative paths through
the decision process. These paths are also shown in Figure 1.

Mabher's paper also include observations on personality, recall,
attention, and learning, which are pertinent to air crew decision
making and error avoidance. In particular, Maher suggests that the
tendencies depicted in Figure 1 are more likely to be actuated when
attention is reduced. He indicates that attention is a function of
stress, cognitive load, degree of information saturation, and fatigue.
Suitable algorithms using these relationships could be employed in a
simulation to account for tendency actuation.

Recognition-Primed Decision Making

Klein (1989) interviewed skilled decision makers and discovered that
they usually do not have to consciously consider alternatives. They
found that based on experience, the experts can usually judge the
prototypicality of a situation and that this assessment includes a
recognition of a typical way to react. In terms of the PASS model,
this means that the representiveness and availability tendencies are
active. Figure 2 is a flow diagram of recognition-primed decision
making. Following the flow in Figure 2, the expert automatically
recognizes the task as a familiar one, and automatically retrieves the
associated goal appropriate to deal with the situation. From the
possible actions associated with that goal, a salient one is



automatically retrieved, and blending it with the available resources,
the expert acts on it, modifying the situation, and continues to loop
through this process until the situation is resolved.

In more complex cases, diagramed in Figure 3, experts do perform
some conscious evaluation of their reaction, serially evaluating each
recalled possible action as it become salient. The expert uses mental
imagery to simulate the likely result of implementing an action,
either modifying the action, seeking more information or evaluating
the next salient action until one is found that appears satisficing.
After implementing the action deemed as satisficing, the expert then
monitors the result looking for cues that will confirm or disconfirm
the expert's expectancies, continuing to loop through the process as
required.

GEMS (Generic Error Modeling System)

Reason (1990) has devised a flow diagram of human decision making
in his quest to understand human errors. Figure 4 is my version of a
GEMS flow diagram. Reason focuses on three levels of human
decision making -- Skill-based, Rule-based, and Knowledge-based,;
and on two modes of cognitive control -- attentional control
associated with working memory, ‘and schematic control derived
from long-term memory. ~KReason (p 50) indicates that the
(conscious) attentional control mode ". . . is limited, sequentlal slow,

effortful and dxfﬁcult to sustain for more than brief penods

In refemng to the schemanc control mode Reason (p.51) observes
that, "The cognitive system is extremely good at modelling and
internalizing the useful regularities of the past and then reapplying
them whenever their 'calling conditions' are supplied by intentional
activity or by the environment. . . . This schematic control mode can
process familiar information rapldly, in parallel and w1thout
conscious effort.” )

The schemas in Iong term memory, in addmon to being actxvated by
attentional activity via plans (descriptions of intended activities), are
activated by contextual cueing, recency, frequency of prior use,
features shared with other schemas, and emotional factors. When -
the calling conditions are underspecified, the cognitive system tends
to default to contextually appropriate, high frequency responses.

L DO 1 T ———— b | 1 | 1 1l



Decision Making with Planning

Bratman (1987, 1989) has proposed a model of human decision
making that incorporates planning. Because humans have limited
mental capacity, coordination capacity, time, and other resources,
humans usually do not make and enforce complete plans. Rather,
humans usually settle for plans that are partial and fill them in as
required as time goes by. Action derives from intention to act, which
in turn is predicated on what the agent desires and what the agent
believes. These intentions are reflected in plans for actions in the
future. Plans are hierarchical, with more specific plans being
imbedded in very general plans such as those reflecting life goals.

Plans are subject to constraints. Plans tend to be consistent with
beliefs and with potential means for carrying them out. Future-
directed intentions and partial plans have a characteristic stability.
Prior intentions, not up for reconsideration, constrain future
intentions.  Partial plans associated with prior intentions constrain
future options for consideration, enabling humans not to be
overwhelmed with information processing.

Personal policies are like intentions, but do not give rise to future
plans. Instead, they guide what to do in specific situations. In a
manner Similar to intentions, personal policies provide a filter on
admissible options -- including other policies, relatively limited
options, and extended plans of action (Bratman, 1989).

Bratman did not include a computer program reflecting his concepts,
but it can be observed that his theory of human decision making fits
nicely into Artificial Intelligence approaches to planning with
constraints,

Other Models of Human Decision Making

Klein and Zsambok (1991) discuss other models of skilled decision
making. One interesting approach used by humans in trying to
decide between alternative hypotheses to explain prior events is to
use their domain knowledge to decide what is consistent with their
prior experience. This is a form of explanation-based decision
making.



Another approach (Coward, 1990), not yet developed into a working
computer program, takes the neural net operation of the bram as a basis
for developing a general theory of human behavior.

IV. Computer Models that Ignore Motivations
ACT*

Act* (Anderson, 1983; Newell, 1990), illustrated in Figure 5, is a
theory of the human cognitive architecture. It focuses on the
memory and processing structures that form the base of human task
performances. It has a declarative memory in the form of a semantic

‘net. It has three basic data types (for sequences Ob_]CCtS and o
images) which are linked together by associations. Long ‘term .
procedural memory is in the form of productions. The "If" part of

the productions are to be matched with information _ in declarative

memory. The "Then" part of the productlons (whcn fired) produces h
new nodes or associations in declaratlve memory.

The nodes of the long-term declaratxve memory each have a degree

of activation. The working memory is that part of long term
memory that is highly activated. Usmg zﬂgomhms the sprcadmg
(and the rate of spreadmg) of the acnvatxon is automancaHy

determined.

Act* has a theory of learning. Declaratlve learning is implemented

by highly acuvatmg the new nodes and associations created by .. ..
productions, but giving them only a probabﬂxstlc chance of becoming .
permanent. Cognitive skill acquisition is implemented by forming
new productions by chaining together productions that fire in the
accomplishment of a task. The strengths that determine the .
likelihood that productions will fire (when there actuating “conditions
are satisfied) increase or decrease depending on their frequency of
use. o ' o '

ACT* is actlvatlon governed ACT* is specxﬁed by (1) a set of rules
about its structure and the way actions occur, (2) a set of equatxons
for the flow of activation, and (3) a set of equations governing the
fluctuations of production strengths.




Though ACT* was designed to simulate human performance, most of
its simulation is governed by the equations chosen to represent its
dynamics and its input and output functions, rather then resulting
directly from its architecture.

Soar

Soar (Laird et al., 1987; Newell, 1990) is the best known and most
advanced of the computer systems designed to be capable of general
intelligence. The architecture of Soar is predicated to be capable of
working on the entire range of cognitive tasks, from highly routine to
extremely difficult open-ended problems. As such, it is intended to
be able to employ the full range of problem solving methods and
representations required for these tasks and to be able to learn
about these tasks as part of its problem solving efforts. Soar has
been successfully demonstrated on the weak ((essentially heuristic
search) methods as well as on a number of well known knowledge-
intensive expert systems, such as R1. Soar has not thus far been
explored with affects and emotions.

Soar takes the approach that all tasks are formulated as heuristic
search. Thus, every task of attaining a goal is formulated as finding a
desired state in a problem space (a space with a set of operators that
can be applied to a current state to yield a new state). If due to
inconsistent or incomplete immediate knowledge, an impasse is
reached in selecting an operator in the current problem space, a new
goal is generated to resolve the problem. Soar then continues at
some initial state in a new problem space associated with this
subgoal. This property, to set up a subgoal to resolve any
problematic decision, is referred to as "universal subgoaling.”

To use Soar for a problem, an associated knowledge base in the form
of production rules must first be developed. This knowledge base
consists of domain-specific task-implementation knowledge of the
structure of the problem, the problem spaces that are needed, and
operators that can transform one state to the next. Though, Soar has
default search control knowledge (look-ahead), efficient search
requires that domain-specific search-control knowledge (heuristics)
also be included in the knowledge base.

In Soar, task implementation generates (or retrieves) new problem
spaces, states and operators; and then search control selects among
the alternatives generated. Other functions needed to form a



complete system -- goal generation, goal selection, goal termination,
memory management and learning ("chunking”) -- are performed by
the architecture of the system.

Soar employs a frame-like structure called a context. This consists of
four slots: the current goal, the current problem space, the current
state, and the operator to be applied to change to the next state.
These slots become bound to objects that fill them as the problem
solving proceeds.

Figure 6 presents the architectural structure of Soar. Working
memory consists of a context stack, a set of objects linked to the
context stack, and preferences that help in selecting among the
applicable operators.

Soar's problem solving approach can be depicted as a sequence of
decision cycles. At any cycle, processing begins with an elaboration
phase which consists of a single firing of all productions that are
applicable based on the contents of working memory. This =
elaboration phase adds new objects, augmentations of existing
objects, and preferences. The decision procedure is executed when
the elaboration phase reaches quiescence. It determines which slot
in the context stack should have its contents replaced and with which
object. This procedure proceeds by processing the context stack from
the oldest to the newest. Making a change to a higher order slot
makes processing of lower slots irrelevant. Figure 7 is a simplified
flow dlagram of Soar's overall problem solving actions. The actual
system is slightly more complex to promotc greater processing
efficiency. Thus, each time a decision is made to change a context
element, the entire goal stack is reexamined to see if as a result of
the change, progress can be made at a higher level. If so, all the
current work at lower levels is discarded and the system processxng

proceeds from this higher level.

Soar uses a smgle Iearmng mecha'ni'sm ‘referred to as "chunking.”

This replaces the process of finding a solution to a subgoal with a
smgle production (a chunk). This chunk is then generalized so that
given the same type of relevant conditions, the chunk can be applied
to directly obtain the subgoal solution. :

Chunking is based on a dependency analysis of traces of the

productions fired while finding the subgoal solution. Generalization

is achieved by replacing the identifiers in the working memory




elements with variables, and removing conditions from the chunk
that were not used to fire the relevant productions. The production
conditions are then ordered to make the conditions match faster.

Though Soar appears capable of being developed to cover virtually
the full range of cognitive activity, it currently lacks motivations and
has only a limited resemblance to the human problem solving
architecture and to normal human decision making.

V. Computer Models that Include Motivations

There are very few computer models that include motivations
and/or emotions. Virtually all that do include only a very specific
aspect of human behavior. Thus, we have only found that
DAYDREAMER (Mueller, 1990) includes the full range of internal
goals, motivations, emotions, control of memory, planning, and
internal and external behavior in response to the internal and
external environment. A few of the significant motivation-oriented
computer models are described below.

Hot Cognition

Thagard and Kunda (1987, p. 753) observe that "People make
motivated inferences when their conclusions are biased by their
general motives or goals." Thagard and Kunda have written a
Common Lisp computer program of motivated inference referred to
as "Hot Cognition." This computational model is designed to account
for a variety of phenomena that have been investigated empirically:

1. Motivated changes of self-conceptions.
How people see themselves may be influenced by how they
would like to see themselves.

2. Motivated changes of theories about the world.
People tend to generate those theories about the causal
determinants of events that are most likely to support their
goals.

3. Motivated changes of inferential rules.
Individuals threatened by some evidence are less likely to
believe it.



4. Motivated changes of goals.
When people realize that they are less likely to obtain their
goals, they diminish the importance of the goals to the self,
thereby maintaining positive self-evaluation (the "fox and the
grapes” phenomenon).

The model includes the following components:

1. A representation of the self.
This includes the individual's fundamental motives (such as
staying healthy) and their priority and activation, and
attributes of the self (such as smokes) together with their
importance and activation.

2. A mechanism for evaluating the relevance of a potential conclusion
to the motives of the self.

3. Mechanisms for motivated search.

4. Mechanisms for adjusting the parameters of the inference rules to
bias them to ensure that inferences favorable to the self are
more likely to be made.

The interaction of the elements in this model, in inferring whether to
accept the stated conclusion in response to a proposmon (e.g., :
"Smokers die young "), is shown in Fxgure 8.

MoCogl

MoCogl (Gevarter 1991) is the ﬁrst of a NASA series of computer
programs that include motivations in attempting to develop i
successively increasingly sophisticated models for simulating human
cognitive behavior. MoCogl (for Motivated Cognition 1) differs from
the models previously considered by not only focussing on
motivations, but by seeking to correlate human decision making with
what is known about information processing in the brain.

Most human decision-making is of an experience-based, relatively
straight-forward, largely automatic response to internal goals and
drives, utilizing cues and opportunities perceived from the current
environment. MoCogl limits itself to this type of decision making,
which can be recognized as being similar to Klein's (1989)

Recognition-Primed Decision Making, reviewed earlier. The major
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differences are 1) that motivations have been included in MoCogl,
and 2) that an attempt has been made to utilize, in the development
of the model, knowledge about information flow in the human brain.

The central ideas underlying the MoCogl model are:

1. In the brain, stored along with each experience are the emotions
that were present at the initiation of the experience and those that
resulted from the experience. The affect pattern thus associated
with the pre-conditions and post-conditions of the experience are
accessible during future interactions.

2. Affect vectors are formed by combining existing internal affect

states with those elicited by information processing of the various

levels of the situational response (from affects involving the lowest
level of implicit motivations, to affects at the highest level resulting
from cognitive involvement with the "self").

3. In the MoCogl version of decision-primed decision making,
situation assessment (and accompanying affects), and access to
applicable procedures are accomplished by automatic associative
recall of stored experience.

4. The current affect state and the expected affect states, resulting from the
automatic assessment of the current event, act as inputs to the brain's
control mechanism, which generates needs and goals to move the
anticipated resultant affect state to a more desirable condition. These needs
and the current context elicit applicable stored procedures. The predicted
results and affiliated affect patterns (associated with the various applicable
procedures) are then fed to the brain's decision making mechanism. This
mechanism then automatically seeks to select procedures that would
produce the most desirable overall satisfaction of the generated needs,
considering the weights or priorities given each affect and their current
degree of activation.

Figure 9 presents the resultant flow diagram.

The resultant computer program was employed successfully in
simulating Dweck and Leggett's (1988) findings that relate how an
individual's implicit theories orient them toward particular general
goals, with resultant cognitions, affects and behavior in response to
their environment.

11



DAYDREAMER

DAYDREAMER (Mueller, 1990) is a computer program that simulates
the emotional control of an individual's train of thought, as
exemplified in human daydreaming. Figure 10 is a simplified flow
diagram of the DAYDREAMER program.

Goals in DAYDREAMER

The DAYDREAMER individual has Personal Goals common to all
humans. These are composed of

Cyclic Goals (which require repeated satisfaction):
Food
Sex
Love-Giving
Love-Receiving
Companionship
Entertainment
Money
Possessions.

Achievement Goals (correspondmg to physwal or mental states to be
achieved or maintained): ' :
Self-Esteem
Social Esteem
Lovers
Friends (and Positive Relations)
Employment.

In addition to Personal Goals, there are Domain Goals associated with
activity currently salient. For DAYDREAMER, these are taken to be:

Emotional Daydreaming Goals (to generate daydream scenarios to
recover emotionally from a personal goal failure):
Rationalization
Roving (shifting attention away from the failure)
Revenge.

Learning Daydreaming Goals [either associated with learning from

past (or possible future) goal failures or with the the generation of

possible future scenarios for achieving an active personal goal]:
Reversal

12



Recovery
Repercussions
Rehearsal.

Emotions

Associated with each goal success or failure are specific emotions,
and more general emotions such as: pleasure and relief, and

displeasure and regret. Relief is a positive emotion resulting from an
imagined alternative past scenario in which an imagined action was

taken that resulted in a goal failure. Regret results from an imagined
past action (that could have been taken) that would have resulted in

a goal success.

Positive DAYDREAMER emotions (resulting from succeeded goals) are:

pleasure

hope

gratitude

amusement from ENTERTAINMENT goal
satiation " ROOD "
pride " SELF-ESTEEM "
poise "  SOCIAL ESTEEM "

Negative DAYDREAMER emotions (resulting from failed goals) are:

displeasure

worry

anger

shame from SELF-ESTEEM goal
embarrassment " SOCIAL ESTEEM "
humiliation " SOCIAL ESTEEM "
rejection " POSITIVE RELATION "
heartbreak " LOVERS "

Basic Information Flow

Referring to Figure 10, we can now follow the basic information flow

in DAYDREAMER. All goals have their priorities. When the

satisfaction of a personal goal falls below a critical level, a concemn is

actuated to achieve the goal. Associated with each concern is an

emotion whose activation level depends on the goal priority. Several

concerns may be active at the same time. It is predicated in

13



DAYDREAMER that the individual automatically selects the concern to
concentrate on that has the highest emotional activation level. This
selection is referred to as "Emotion Driven Control." DAYDREAMER
then develops a train of thought, or daydream, to achieve that goal.
The process by which DAYDREAMER does this is referred to as
planning. In response to the daydream's success or failure in
achieving its goal an associated response emotion results. If the
resultant emotion is negative, DAYDREAMER goals are actuated to
seek a more positive emotional state. The priority of these new goals
is related to the emotions associated with the failed goal.

Figure 11 is an expanded version of Figure 10. For the selected
concern, the planning is done one step at a time. At the end of that
planning step, the system is checked to see if the concern has
succeeded or failed. If the concluded concern has resulted in a
positive emotion, the associated plan which has been generated is
generalized and put into episode storage for future use. If another
active concern, B (not currently being worked on), has fortuitously
succeeded while working on the selected concern, A, a positive
response emotion is added to A in proportion to the Emotion
associated with B.

If, fortuitously while taking a step to achieve A, a subgoal of B
succeeds or a plan is found to achieve B, a positive response emotion
is added to B proportional to the emotional level of B.

If during the planning step, several planning rules unify with the
current subgoal, each rule is applied in its own separate world model
(planing context), giving rise to alternative states of a hypothetical
world.

At the end of the planning step, the system checks the modified
emotion levels and switches to a new concern if its emotion level
warrants. Having completed the current planning step, '
DAYDREAMER then performs the next planning step. Theoretically,
the system can run forever. :

The DAYDREAMER Planner

DAYDREAMER uses the process of planning to generate imaginary
sequences of events (daydreams) to try to satisfy its selected
concerns. Figure 12 is a simplified diagram of the DAYDREAMER
Planner. The associated planner functions of Analogical Rule

14



Application, Reminding, Serendipity, and Mutation are diagrammed
in Figures 13, 14, 15, and 16, respectively.

DAYDREAMER has been demonstrated with "constructed”
daydreaming examples, both daydreaming trains of thought and
trains of thought in response to constructed external inputs.

VI. Computer Simulations of Humans Interacting with a
Simulated World

MIDAS

MIDAS (A3 Executive Summary, 1990) is a simulation of an aircraft
pilot carrying out an assigned mission. The purpose of the simulation
is to 1) develop criteria for cockpit design, and 2) to determine the
associated pilot training requirements. Both cognitive and
spatial/temporal aspects of the pilot are simulated. This includes
physical motion responses, achieved by anthropomorphic modeling,
and perceptual responses associated with focussing attention and
sensory processing delays.

As insufficient human operator performance data is available,
initially normative, rather than descriptive, models have been
chosen. Figure 17 is a very simplified MIDAS flow diagram. The

following quote from The A3I Executive Summary (1990, p. 13)
allows us to follow through the flow diagram.

During a simulation, the model attempts to execute assigned
mission activities subject to specified constraints, state variables,
and other simulation object requirements. This model
accomplishes this action by:

1) updating the simulated operator's goal list to delete terminated
or inappropriate goals,

2) examining equipment and world state variables to determine
if event-response activities are required,

3) tracing the decomposition of mission goals to their lowest level,

finding matching equipment operation patterns or activities which
will satisfy them,

15



4) sorting these matched goal-activity patterns by priority,

5) interacting with the scheduling and task loading model
components as appropriate, and

6) executing these activities subject to physical resource (hand,
eye, etc.) requirements, Visual, Auditory, Cognitive and Motor load
values, as well as temporal/logical constraints.

MIDAS uses a constraint-based opportunistic model of operator
scheduling behavior. The modular design provides the opportunity
to try different scheduling strategies. The operator task loading
model classifies individual tasks in terms of their demands on the -
Visual, Auditory, Cognitive and Motor processing dimensions, based
on the attributes of the mission tasks, world state, operator and crew
station equ1pment : s - o

The actual mmulatlon has been chosen to be Ob_]CCt onented Each
module of the simulation is modeled as a separate object. These
modules communicate by message passmg Much of the :
communication in such a system is in the query/response (Q/R) form.
Figure 18 provides a more accurate detailed diagram of the MIDAS
simulation. Corker et al. (1990) provide a more complete description
of this type of simulation, (including simulation of short and long

term memory, and the process of forgetting).

VII. Discussion

Only a few of the models reviewed include the modeling of human
motivations, rather than just cognition. Hot Cognition, MoCogl and -
DAYDREAMER particularly strive to include motivation in their
simulation of humans. Hot Cognition focuses on motivated
inferences; MoCogl on the effects of emotions on human decision
makmg, and DAYDREAMER on developing human streams of thought
in response to emotions generated by goal needs, failures, or
successes. [Each of these three simulations employs a somewhat
different theory of the role of emotions. The response to emotions in
MoCogl is to select actions that produce the most overall favorable
response considering all the emotions. The actions generated in
DAYDREAMER function to satisfy a single selected concern and its
associated emotion. However, the DAYDREAMER focus on only

satisfying a single concern at a time, appears appropriate because,
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during conscious thought about immediate concerns, humans tend to
think about one thing at a time. Nevertheless, Mueller (1990, p. 38)
observes that "A complete system would have to have both meta-
planning for long term planning [to attempt to satisfy multiple
concerns simultaneously], and emotion-driven planning for short-
term decisions about what to do next and what to daydream about
next." In MoCogl, the decision to attempt to satisfy the total affect
vector is done subconsciously, which is consistent with the parallel
processing capabilities of the subconscious. The conditions under
which these two types of responses are appropriate needs to be
further explored. Figure 19 provides a generalization of the
DAYDREAMER'S approach to the effects of personal and domain goals
on emotions and resultant behavior. Figure 20 provides a rough
example of a view of human decision making when the emotional
control aspect of Figure 19 is combined with the GEMS Human
Decision Model given in Figure 4. This greatly simplified model
highlights the relationships between motivations, memory, external
inputs, subconscious processing, and the limited role of attention --
moving us closer to a more realistic view of human decision making.

MIDAS is an effort to simulate humans considering both cognitive
and physical aspects. If we add a motivation module to such a
model, we can begin to achieve a more holistic model of humans.
Models of this type could be very valuable for simulating human
operator behavior, including errors, such as have contributed to
aircraft mishaps and operator control problems of nuclear reactors.
Such models, coupled with the use of flight simulators at NASA
Ames, could be very valuable toward developing, testing, and
refining theories of human operator behavior. Though additional
syntheses of the findings of cognitive science and other disciplines
are needed, the models of human decision making discussed in this
report provide a start in developing such theories.
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