MANAGEMENT

(NASA-SP-7500(26)) MANAGEMENT: A
BIBLIOGRAPHY FOR NASA MANAGERS (NASA)
168 p

A BIBLIOGRAPHY FOR NASA MANAGERS
MANAGEMENT

A BIBLIOGRAPHY FOR NASA MANAGERS
As *Management* gathers together references to pertinent documents — reports, journal articles, books — that will assist the NASA manager to be more productive. Items are selected and grouped according to their usefulness to the manager as *manager*. A methodology or approach applied to one technical area may be worthwhile for a manager in a different technical field.

Individual sections can be quickly browsed. Indexes will lead quickly to specific subjects or items.
<table>
<thead>
<tr>
<th>Category 01</th>
<th>Human Factors and Personnel Issues</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes organizational behavior, employee relations, employee attitudes and morale, personnel management, personnel development, personnel selection, performance appraisal, training and education, computer literacy, human factors engineering, ergonomics, human-machine interactions.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 02</th>
<th>Management Theory and Techniques</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes management overviews and methods, decision theory and decision making, leadership, organizational structure and analysis, systems approaches, operations research, mathematical/statistical techniques, modeling, problem solving, management planning.</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 03</th>
<th>Industrial Management and Manufacturing</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes industrial management, engineering management, design engineering, production management, construction, aerospace/aircraft industries, manufacturing.</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 04</th>
<th>Robotics and Expert Systems</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes artificial intelligence, robots and robotics, automatic control and cybernetics, expert systems, automation applications, computer-aided design (CAD), computer-aided manufacturing.</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 05</th>
<th>Computers and Information Management</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes information systems and theory, information dissemination and retrieval, management information systems, database management systems and databases, data processing, data management, communications and communication theory, documentation and information presentation, software, software acquisition, software engineering and management, computer systems design and performance, configuration management (computers), networking, office automation, information security.</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 06</th>
<th>Research and Development</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes contracts and contract management, project management, program management, research projects and research facilities, scientific research, innovations and inventions, technology transfer and utilization, R&D resources, agency, national and international R&D.</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category 07</th>
<th>Economics, Costs and Markets</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Includes costs and cost analysis, cost control and cost effectiveness, productivity and efficiency, economics and trade, financial management and finance, investments, value and risk (monetary), budgets and budgeting, marketing and market research, consumerism, purchasing, sales, commercialization, competition, accounting.</td>
<td>71</td>
</tr>
</tbody>
</table>
Category 08 Logistics and Operations Management
Includes inventory management and spare parts, materials management and handling, resources management, resource allocation, procurement management, leasing, contracting and subcontracting, maintenance and repair, transportation, air traffic control, fuel conservation, operations, operational programs.

Category 09 Reliability and Quality Control
Includes fault tolerance, failure and error analysis, reliability engineering, quality assurance, wear, safety management and safety, standards and measurement, tests and testing inspections, specifications, performance tests, certification.

Category 10 Legality, Legislation, and Policy
Includes laws and legality, insurance and liability, patents and licensing, legislation and government, regulation, appropriations and federal budgets, local, national, and international policy.

Subject Index ... A-1
Personal Author Index ... B-1
Corporate Source Index .. C-1
Foreign Technology Index ... D-1
Contract Number Index ... E-1
Report Number Index .. F-1
Accession Number Index ... G-1
Appendix ... APP-1
A component acquisition plan contains the information needed to evaluate, select, and acquire software and hardware components necessary for successful completion of the AdaNET Dynamic Software Inventory (DSI) Management System Prototype. This plan will evolve and be applicable to all phases of the DSI prototype development. Resources, budgets, schedules, and organizations related to component acquisition activities are provided. A purpose and description of a software or hardware component which is to be acquired are presented. Since this is a plan for acquisition of all components, this section is not applicable. The procurement activities and events conducted by the acquirer are described and who is responsible is identified, where the activity will be performed, and when the activities will occur for each planned procurement. Acquisition requirements describe the specific requirements and standards to be followed during component acquisition. The activities which will take place during component acquisition are described. A list of abbreviations and acronyms, and a glossary are contained.
HUMAN FACTORS AND PERSONNEL ISSUES

A91-10167*# National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.
THE JOVE INITIATIVE - A NASA/UNIVERSITY JOINT VENTURE IN SPACE SCIENCE

The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

L.K.S.

A91-14151*# National Aeronautics and Space Administration, Washington, DC.
COSMOS, AN INTERNATIONAL CENTER FOR ADVANCED STUDIES
IURIY RYZHOV, OLEG ALIFANOV (Moskovskii Aviatsionnyi Institut; International Center for Advanced Studies COSMOS, Moscow, USSR), STANLEY SADIN (NASA, Office of Aeronautics, Exploration and Technology, Washington, DC), and PAUL COLEMAN (California, University, Los Angeles) IAF, International Astronautical Congress, 41st, Dresden, Federal Republic of Germany, Oct. 6-12, 1990. 7 p. (IAF PAPER 90-507)

Copyright

The concept of Cosmos, a Soviet operating center for aerospace activities, is presented. The main Cosmos participants are the Institute for Aerospace Education, the Institute for Research and Commercial Development, and the Department of Space Policy and Socio-Economic Studies. Cosmos sponsors a number of educational programs, basic research, and studies of the social impact of space-related technologies.

B.P.

A91-16899 DEMOGRAPHICS OF PRINCIPAL INVESTIGATORS INVOLVED IN NASA-FUNDED RESEARCH

S. ALAN STERN, RONALD KONKEL, and RADFORD BYERLY, JR. (Colorado, University, Boulder) Space Policy (ISSN 0265-9546), vol. 6, Nov. 1990, p. 350-353. Copyright

This report presents the findings of a study of 2875 principal investigators identified through a database maintained by NASA's Office of Space Science and Applications. It was found that there will be a major 'retirement wave' involving the loss of approximately 1200 of these experienced scientists within the next 15 years. A manpower crisis can apparently only be averted by reversing the exodus from space science that occurred after the end of the Apollo program.

Author

A91-17001 DYNAMICS OF CONTROL SYSTEMS [DINAMIKA SISTEM UPRAVLYENIIA]

Copyright

Papers are presented on mathematical methods for the analysis of control systems for technical plants and manufacturing processes. Particular attention is given to the mechanics of controlled space flight, the design of automatic control systems, flexible automated complexes, control applications in biomedical research, and chemical technology for the production of new types of materials.

B.J.

A91-17645# V-22 GOVERNMENT TEST PILOT TRAINER PROGRAM OVERVIEW

The V-22 Government Test Pilot Trainer (GTPT) was developed to train government developmental and operational test pilots in as realistic an environment as possible. The GTPT is the first simulator to use the generic hardware and software of the Naval Air Test Center's manned flight simulator (MFS). The MFS uses a modular simulation design which allows various simulator cockpits to be switched in and out of any one or two engineering work stations, a 40 foot diameter fixed base dome, or a six degree of freedom motion base. The GTPT was developed to use those assets for V-22 government pilot training. This report presents an overview of the MFS facility, the V-22 GTPT simulator, and the training accomplished using the simulator.

Author

A91-19109# THE MIT SPACE GRANT PROGRAM

A review is presented of the joint NASA, MIT and aerospace industry Space Grant Program. The national Space Grant Programs have been established with the following objectives: (1) to establish a national network of universities with capabilities and interests in space and related fields, (2) to encourage cooperative programs among universities, government and aerospace industry, (3) to encourage interdisciplinary training, research and public service
programs related to aerospace, (4) to recruit and train professionals for careers in aerospace, and (5) to promote a strong science mathematics and technology education base from elementary through university levels. The status of this program at MIT and how these objectives are being met are discussed. R.E.P.

A91-22305
THE WEIGHT IMPROVEMENT PROCESS AS AN ELEMENT OF WEIGHT CONTROL

The Weight Improvement Process presently proposed as an organizational basis for the dynamic encouragement of weight control efforts in the course of aircraft design phases emphasizes the emergence of numerous weight-reduction ideas from employees through clear recognition by management personnel of such contributions. Such recognition is enforced through the issuance of award plaques and cash certificates graded in accordance with the magnitude of the weight-reduction contribution made by the employee. Estimates are presented for the cost of a representative employee recognition system. O.C.

A91-31023
CONCURRENT ENGINEERING - THE CHALLENGE FOR THE 90S

Copyright

A conceptual framework is presented that aids the generation of system requirements sufficient to support the concurrent design activities of avionic engineers, software engineers, knowledge engineers, human factors engineers, and instructional system designers. The recommended design approach for concurrent engineering is given. First, structure the problem comprehensively, independently of technology, and in such a way as to be understandable to the design team members. Second, formulate solution concepts that clearly map to the problem structure. The problems being encountered in avionics design are discussed. It is shown that a multifunctional design team the members of which all work from a common requirements source document could be a major step in implementing an effective solution. I.E.

A91-34911* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA. HUMAN FACTORS AND INFORMATION TRANSFER

Key problem areas in the management and transfer of information in the National Airspace System, contributing to human errors are identified. Information-management aspects supporting the ability to assess prevailing situations accurately with adequate time to make an informed decision are considered. The relationship between judgment biases and requirements for managing weather information is illustrated by examining such hazardous weather phenomena as microbursts and windshears. The system of air-ground communication relying almost exclusively on voice transmissions is discussed, and recommendations in the areas of communications procedures and technology development are provided. V.T.

A91-34913
AMERICAN AIRLINES' PILOT HIRING CRITERIA

An approach aimed at enhancements of individual's performance as pilot-in-command as his career progresses to the captain position is outlined, and characteristics desirable for future captains, including strong career motivation toward the field of aviation, ability to solve problems by logical reasoning, mature personality free from neurotic symptoms, and ability to perform well under stress are listed. A centralized pilot-selection process consisting of four phases is described. In phase one, the personnel department screens applications for basic qualifications; in phase two, the selected applicants are given a personal interview; in phase three, a test battery designed for screening candidates for the desirable characteristics is administered; and in phase four, the applicants are rank ordered based on a composite score derived from the various elements of the process. V.T.

A91-49858
IMPLEMENTATION OF NEW TECHNOLOGY - A BOEING PERSPECTIVE

The last decade has seen the introduction of many high-technology airplanes into the air transportation system. These high-tech airplanes have typically brought flight decks with highly integrated Flight Management Systems and a host of challenges in terms of effectively utilizing the new technologies. Training is the area that offers the greatest potential for improvement in how the high-tech flight deck is operated. A system for definition of knowledge/skill development levels, training medium allocation, cognitive task definition, and knowledge/skill maintenance interval analysis, are some of the enhancements proposed in this paper. Author

A91-49859
IMPLEMENTATION OF NEW TECHNOLOGY - A UNITED AIRLINE'S PERSPECTIVE

The FAA's Special Federal Aviation Regulation 58, promulgated on September 26, 1990, allows air carriers to develop unique pilot-qualification programs independently of prior regulations and artificial constraints, following a rigorous instructional system-design process. It is hoped that this emphasis by the new Advanced Qualification Programs (AQP's) on airline creativity will lead to superior crew member training. AQP's will be mission-oriented, proficiency-based, analytically developed, and empirically validated. AQP's must include cockpit resource management training and evaluation, line operational simulations, and specialized training for instructors. O.C.

A91-50999
HUMAN FACTORS FOR PILOTS
ROGER G. GREEN, MELANIE JAMES, DAVID GRADWELL (RAF, Institute of Aviation Medicine, Farnborough, England), HELEN MUIR (Cranfield Institute of Technology, England), and ROGER L. GREEN Research supported by Cranfield Institute of Technology and RAF. Aldershot, England and Brookfield, VT, Avebury Technical, 1991, 146 p. refs

Copyright

This handbook attempts to provide a reasonably comprehensive but concise outline of the available human factors knowledge about flying in the hope that it will prove useful and interesting to the practicing pilot. Particular attention is given to the following topics:
basic aviation physiology and health maintenance; basic aviation psychology, stress, fatigue, and their management; and the social psychology and ergonomics of the flight deck.

A91-51025
THE DEVELOPMENT OF TECHNOLOGY FOR COLLECTIVE TRAINING - SIMNET, A CASE HISTORY
EARL A. ALLUISI (Institute for Defense Analyses, Alexandria, VA)

Copyright
The technical history of simulator networking (SIMNET) development is summarized, and lessons learned that could contribute to the success of future efforts to develop training technologies and systems, particularly for collective training, are identified. The implications and challenges of SIMNET for the human factors and training technology communities are discussed.

R.E.P.

N91-12202# Naval Postgraduate School, Monterey, CA.
AN ANALYSIS OF THE EFFECT OF FREQUENCY OF TASK PERFORMANCE ON JOB PERFORMANCE MEASUREMENT
M.S. Thesis
RICK L. REECE Mar. 1990 69 p
(AD-A225304) Avail: NTIS HC/IM A04 CSCL 05/9

The effect is explored of frequency of performance on the Congressionally mandated Job Performance Measurement, specifically the Marine Corps' portion of the study. The initial portion of the project involved the hands-on performance testing of the infantry specialties. The use is validated of the general technical (GT) composite of the Armed Services Vocational Aptitude Battery (ASVAB) test as a predictor of performance in the infantry specialty and to provide recommendations to revise training priorities. The approach in analyzing the problem included the following: (1) computing the correlation between aptitude and performance, then investigating any degrading or moderating effect that frequency might have on this relationship; (2) an investigation into the performance of high aptitude personnel versus low aptitude personnel across frequency categories; and (3) the relative effect of frequency on the maintenance of proficiency in each task. The use was validated of the GT composite as an effective predictor for hands on performance by performing analysis of variance. An interesting result was the determination that frequency is the major predictor for performance based tasks requiring continual practice for the maintenance of skill levels, while recency is the major factor in predicting tasks that are more knowledge based and require the recall of detailed procedures.

N91-12208# Dynamics Research Corp., Wilmington, MA.
DAVID HERLIHY, JANE BONDARUK, GUY NICHOLAS, ROBERT GUPTILL, and JOHN PARK Mar. 1990 163 p
(Contract MDA903-86-C-0298; DA PROJ. 2Q2-63007-A-793) Avail: NTIS HC/IM A08 CSCL 05/9

The Army Hardware vs. Manpower (HARDMAN) Comparability Methodology (HCM) is a six-step process for determining a weapon system's manpower, personnel, and training (MPT) requirements. It provides a structured approach for early MPT estimation based on comparability analysis, an analytic system that uses knowledge about similar existing systems and technological growth trends to project the MPT requirements of proposed new systems. The HCM's six interrelated steps are Systems Analysis, Manpower Requirements Analysis, Personnel Pipeline Analysis, Training Resource Requirements Analysis, Impact Analysis, and Tradeoff Analysis. The HCM has been successfully applied to a range of weapons systems, including air, armor, artillery, infantry, air defense, command and control, and intelligence systems. The Product Improvement Program for HCM made major revisions to the existing HCM Guide. The scope has been expanded to include several new areas; existing procedures have been revised, refined, and clarified; and the entire Guide has been rewritten to achieve greater clarity, consistency, and completeness. This volume addresses the planning and conducting of an HCM analysis. Procedures are provided for determining the analysis scope and estimating the resources required for the analysis. Preparation of the quality assurance plan and establishment of the consolidated database are explained. The relationship between HCM results and various Army MPT documents is also discussed.

GRA

N91-12567# Wichita State Univ., KS. Inst. for Aviation Research.
THE ENHANCEMENT OF AIR TRAFFIC CONTROL SAFETY THROUGH PRE-HIRE UNIVERSITY BASED TRAINING PROGRAMS
Avail: NTIS HC/IM A17

A potential means to enhance air traffic control safety through increased human performance capabilities of the nation's Air Traffic Controller Work Force is proposed. Research data was gathered from colleges and universities participating in the Federal Aviation Administration's (FAA) Airway Science Program. The Federal Aviation Administration initiated the Airway Science Program in 1983 to facilitate the development of collegiate education programs as a means of meeting future FAA manpower needs, primarily in the area of air traffic control. The FAA realized that it must update the skill level of its work force to adapt to an increasingly technical and automated environment. This is a major undertaking in that the upgrading of this work force will require the attrition of over 45,000 individuals. Currently, 32 institutions of higher education participate in the Airway Science Program. These institutions represent many established colleges and universities which offer aviation educational programs developed by the FAA. Research data gathered through this study should allow the Federal Aviation Administration to better understand the potential of the Airway Science Program to enhance air traffic safety. This program allows the availability of a means of pre-hire training through a baccalaureate degree program which stresses technical and managerial capabilities. This will provide an air traffic control work force with the increased human performance capabilities which are required to staff the increasingly difficult systems of our rapidly developing National Airspace System.

Author

N91-13880# Idaho National Engineering Lab., Idaho Falls. Human Factors Research Unit.
THE HUMAN FACTORS OF QUALITY AND QA IN R AND D ENVIRONMENTS
SUSAN G. HILL 1990 9 p Presented at the 17th Annual Conference of the American Society for Quality Control, Tucson, AZ, 9-12 Sep. 1990
(Contract DE-AC07-76ID01570)
(Contract DE91-001913; EGG-M-90048; CONF-9009153-3) Avail: NTIS HC/IM A02

Achieving quality is a human activity. It is therefore important to consider the human in the design, development and evaluation of work processes and environments in an effort to enhance human performance and minimize error. It is also important to allow for individual differences when considering human factors issues. Human Factors is the field of study which can provide information on integrating the human into the system. Human factors and quality are related for the customer of R and D work, R and D personnel who perform the work, and the quality professional who oversees the process of quality in the work.

DOE

N91-17546# Idaho National Engineering Lab., Idaho Falls.
EXAMINING HUMAN-SYSTEM INTERACTIONS: THE HSYS (HUMAN SYSTEM) METHODOLOGY
SUSAN G. HILL, JERRY L. HARBOUR, CHRISTOPHER SULLIVAN, and BRUCE P. HALLBERT 1990 5 p Presented at the 34th Human Factors Society Conference, Orlando, FL, 8-12 Oct. 1990
(Contract DE-AC07-76ID01570)
The human-system methodology (HSYS) is a model-based methodology developed to examine the many factors which influence human-system interactions. HSYS is built around a linear model of human performance, called the Input-Action model, which describes five sequential steps: Input Detection, Input Understanding, Action Selection, Action Planning, and Action Execution. HSYS is structured in an hierarchical tree which presents a logical structure for examining potential areas where human performance, hardware or other system components are less than adequate. The HSYS tree consists of five major branches which correspond to the five major components of the Input-Action model. Initial validation was begun by studying accident reports via HSYS and identifying sources of error. The validation process has continued with accident investigations in operational settings.

N91-18099# Human Factors Solutions, Rockville, MD.

FUTURE NORTH AMERICAN AIR TRAFFIC CONTROL SYNERGY HUMAN FACTORS SOLUTION

Final Technical Report

PAMELA MYERS Dec. 1989 17 p

(Contract F19628-89-C-0099)

This innovative research effort was proposed in response to the challenge of integrating the lessons learned in developing the American and Canadian airspace systems into the planning process for an interoperable, trans-century, North American airspace system. The intent was to identify opportunities for increasing efficiencies, reciprocal benefits, and cooperation between the U.S. and Canada which would result in a proposed functional organizational matrix. This strawman organization would provide DoD with a framework for mutual airspace management gains between the U.S. and Canada.

N91-20997# Air Force Inst. of Tech., Wright-Patterson AFB, OH.

AIR FORCE INFORMATION MANAGEMENT (IM): A 1990 SNAPSHOT AND 1995 FUTURE LOOK AT AIR FORCE IM NEEDS AND PREFERRED EDUCATION/TRAINING APPROACHES M.S. Thesis

RICHARD T. MCGHEE Dec. 1990 192 p

(AD-A229695; AFIT/GIR/90D-6) Avail: NTIS HC/MF A09 CSCL 05/1

The U.S. Department of Defense (DoD) and the Air Force are interested in the development of methodologies that will support, in a timely manner, the development of effective, achievable guidelines and early progress for a better and more productive interaction between JPL and the historically black colleges and universities (HBCU's) with the Air Force and the U.S. government.

JPL INITIATIVE ON HISTORICALLY BLACK COLLEGES AND UNIVERSITIES

Executive order number 12320 of September 15, 1981, established a program designed to significantly increase the participation of historically black colleges and universities (HBCU's) in Federal programs. Because of its geographical remoteness and position as a contractor operated center, JPL had not participated in grant and training programs with the HBCU's. In recognition of JPL's responsibility to the national commitment on behalf of the historically black colleges and universities, an initiative with effective, achievable guidelines and early progress for a better and more productive interaction between JPL and the HBCU's is described. Numerous areas of interaction with the historically black colleges and universities have been identified and are being implemented. They have two broad objectives: research interactions and faculty/student interactions. Plans and progress to date for each specific area are summarized.

N91-28257# Vitro Corp., Washington, DC.

LAUNCH OPERATIONS MANPOWER YESTERDAY, TODAY AND TOMORROW

The manpower to accomplish spacecraft launch operations was analyzed. It seems that the ratio of personnel to launches was much higher in the beginning of the space program than in later years. The analysis was performed to see why the operational efficiency was better then than now and how that efficiency can be reattained.

N91-29066# Virginia Polytechnic Inst. and State Univ., Blacksburg.

MANAGEMENT SYSTEMS LABS

J. F. KEELING, III, H. A. KURSTEDT, JR., and J. E. HUGHES 1990 3 p

(Contract DE-FG02-88DP-48058)

The primary purpose is to provide managers and group facilitators with a tool for selecting the best technique(s) to help a group solve a problem. The selection tool was created by matching...
available techniques to problem component examples using a contour map. The secondary purpose is to: (1) describe (by example) three components of a problem that requires a group to solve, and (2) describe available techniques for group problem solving.

DEOE

N81-29068# Edgerton, Gormeshausen and Grier, Inc., Idaho Falls, ID.

THE HUMAN SIDE OF VALUE ENGINEERING

This paper addresses people, pride and performance and their interrelationship with the Value Engineering (VE) technique. It explores the importance of people for the successful application of the technique. It discusses leadership skills, verbal and non-verbal communication, team member recognition and participation, knowledge of right and left brain characteristics and the part each play in the job plan leading to the successful integration of philosophy and techniques to create change and improve performance.

DOE

N81-29070# Virginia Polytechnic Inst. and State Univ., Blacksburg, Management Systems Labs.

HOW TO INCREASE MEETING EFFECTIVENESS AND EFFICIENCY

A model is presented which was adapted from control theory to gain insight into the dynamics of meetings. The system controller and feedback sensor in the model are related to the role of the facilitator in meetings. By drawing parallels between the control theory model and the adapted model for meetings, I came up with an operational definition of a group facilitator and derived the following hypothesis: Providing facilitators with information about group members prior to the meeting will improve their effectiveness and efficiency in facilitating the meeting. Such information, for example, could include the group members' personality types measured with the Myers-Briggs Type Indicator or their conflict modes measured through the Thomas-Kilmann Conflict Mode Instrument.

DOE

N81-29071# Virginia Polytechnic Inst. and State Univ., Blacksburg.

WHY ENGINEERS MUST KNOW AND MANAGE ORGANIZATIONAL CULTURE

The engineering manager's success is being judged more and more on qualitative measures concerning the human elements of their work. These new measures require engineers to become as skilled and as at ease with the tools, methods, and techniques for qualitative issues as they are with more traditional quantitative tools, methods, and techniques. To achieve success toward these qualitative measures demands nothing short of a new way of thinking, indeed a new culture embodying new values and traditions. Engineering managers must use culture change mechanisms along with their other management tools so they can better understand and manage culture. They must view concepts such as just-in-time, total quality management, and continuous performance improvement as integral to culture change efforts; these concepts and other management programs require an underlying culture to create an environment for change. Engineers who want to manage and change culture and communicate these changes must become comfortable with hoopla and symbolism to add drama and life to their words and plans. Engineers must understand the elements of culture, become effective communicators, and master the tools, methods, and techniques of culture change.

DOE

N91-30042# Wichita State Univ., KS. National Inst. for Aviation Research.

MARKETING FOR COLLEGIATE AVIATION EDUCATION

The increased reliance on marketing and its ability to solve pressing concerns has allowed it to overcome its opposition and become an integral part of higher education. Educational marketing is a competitive tool which must now be utilized for mere survival in today's dynamic world. An educational institution must present its specialty niche in the marketplace much the same as business. Marketing offers many advantages other than student recruitment. Its principles can be applied to the selection of faculty, positioning within the marketplace (academic rankings) and in the resource allocation process. Marketing has been successfully applied to higher education as evidenced by increasing enrollments in a period of decreasing supply of traditional college age students. Forecasting student enrollment in a new academic program at a university is similar to forecasting the demand for a new product or service in a business environment. Marketing has legitimized its necessity and purpose in the academic arena. The application of basic marketing principles will only enhance the success of collegiate aviation education programs.

Author

SCIENCE PROJECTS IN RENEWABLE ENERGY AND ENERGY EFFICIENCY

First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources - both nationally and locally - we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as 'one-liners' following each group of projects.

DOE

N91-31988# Sandia Labs., Albuquerque, NM.

IMPROVING MANAGERS' EFFECTIVENESS

Upward Feedback is a program that gives employees and opportunity to anonymously provide their manager with feedback concerning the manager's job performance. It is an opportunity for managers to receive confidential feedback evaluating their implementation of corporate values and management behaviors as perceived by those who work for them. This feedback can come from employees who report directly to the manager, that is, one level below them (referred to as direct reports), or from those two reporting levels below them (referred to as skip-level reports).
Managers then share information with their employees in feedback meetings and develop action plans to address areas of concern. Sandia National Laboratories has developed and implemented an Upward Feedback Pilot Program and follow up survey. This paper discussed the program and the lessons learned.

02 MANAGEMENT THEORY AND TECHNIQUES

The development of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.

An overview of various approaches, methods, and management processes associated with the risks of both traditional and extreme nature is presented. The risk identification and risk analysis steps of risk management are emphasized. Risk assessment methods such as probabilistic risk assessment (PRA) and qualitative rating methods are seen in perspective. The critical importance of the risk awareness of the program on the part of the team leadership and its individual members is emphasized.

The National Archives and Records Administration sponsored a study of the effects of electronic recordkeeping on the historic record of the Federal government in 1987-1988. The possible erasing/loss of documents is studied based on an input from representatives of state governments, professional and trade associations, business, industry, and academia, solicited for that purpose and compared with the literature on electronic records. It is concluded that the use of technology remains decentralized/haphazard and that most users of the electronic records are not aware of their responsibilities. In order to improve the existing practices, further research is recommended.

A91-18092 THE FREEDOM OF INFORMATION ACT NEEDS NO AMENDMENT TO ENSURE ACCESS TO ELECTRONIC RECORDS PATTI A. GOLDMAN (Public Citizen Litigation Group, Washington, DC) Government Information Quarterly (ISSN 0740-624X), vol. 7, no. 4, 1990, p. 389-402. refs Copyright

The contents and significance of the Freedom of Information Act (FOIA) are discussed as they apply to access to electronic information (EI). It is pointed out that most disputes that have arisen over the application of the Act to EI concern four FOIA standards including the definition of 'agency records'; the agency's search responsibilities; the agency's duty to segregate and release nonexempt portions of a record; and the agency's obligation to produce information in a particular form. It is pointed out that the FOIA establishes principles that aim to minimize burdens upon agencies while assuring access to information and suggested that these principles can and should be regularly applied to requests for EI. It is argued that additional legislation to ensure access to EI may prove to be not only redundant but impeditive and that Congressional energy would be better spent overseeing agency practices to ensure that access to EI is provided to the public in accordance with the FOIA.

I.E.

A91-19869 THE CAUSES OF PROJECT FAILURE JEFFREY K. PINTO (Maine, University, Orono) and SAMUEL J. MANTEL, JR. (Cincinnati, University, OH) IEEE Transactions on Engineering Management (ISSN 0018-9391), vol. 37, Nov. 1990, p. 269-276. Research supported by the University of Cincinnati. refs Copyright

A study was conducted of 97 projects identified as failures by the projects’ managers or parent organizations. Using the project implementation profile, a set of managerially controllable factors are identified as associated with project failure. The factors differed according to three contingency variables: (1) the precise way in which failure was defined; (2) the type of project, and (3) the stage of the project in its life cycle. Implications for project management and for future research on failed projects are discussed. The results demonstrated empirical justification for a multidimensional construct of project failure, encompassing both internal efficiency and external effectiveness aspects. The fact that the critical factors associated with failure depended on the way in which failure is defined suggests that it is necessary to know considerably more about how project managers define failure (and success) and, indeed, how the parent organization makes judgments on the matter.

B.P.

The management approaches used in an effort to reduce waste during the testing phase of an aerospace manufacturing program (for the Navstar GPS satellite) are briefly discussed and illustrated with diagrams and flow charts. Particular attention is given to the
A91-29693#
DEVELOPMENT OPERATIONS - A TQM PROCESS

The application of Total Quality Management (TQM) methods in an aerospace development program is briefly characterized. The approach involves the formation of 8-12-member Product Development Teams; the members have different areas of expertise but all receive extensive training in such TQM skills as quality awareness and improvement, process management, statistical process control, Taguchi methods, team leadership, and departmental task analysis. The teams are organized before proposals are submitted, when possible, and are responsible for requirements development, design, fabrication, test, delivery and postdelivery support of the specified product.
T.K.

A91-29684#
TOTAL QUALITY MANAGEMENT - WHAT DOES IT MEAN TO AEROSPACE ENGINEERS?
refs

This paper outlines the origins and basic principles of the Total Quality Management (TQM) concept and its significance to engineers engaged in aerospace design, development and testing. Drawing on results of a recent AIAA survey, current U.S. engineering perceptions of TQM and 'quality of engineering design' are summarized and apparent weaknesses in the process of product development are identified. Changes in customer quality expectations and solicitations are also discussed, together with some recommendations for improving product reliability, producibility, and value through integrated design, development and testing activities.
Author

A91-30959
PREPARING THE ENTERPRISE FOR TOTAL QUALITY MANAGEMENT - DEFINING, PLANNING, AND EMPOWERING

Copyright

The authors discuss the need for an enterprise to begin the development of a TQM (total quality management) process by better understanding its structures, functions, and performance in the context of a total/integrated operation. From this knowledge-base the enterprise can set objectives, define strategies, and plan an effective application of the TQM process and the use of resources that match an enterprise's strengths and weaknesses. The methodology, techniques, and tools for analyzing, planning, and changing management that empower an enterprise to effectively apply TQM are presented and discussed. It is noted that when planning and developing a new enterprise special care should be taken to design-in TQM.
I.E.

A91-31036*
National Aeronautics and Space Administration, Washington, DC
THE NASA TREND ANALYSIS PROGRAM
Copyright

The four main areas of the NASA trend analysis program (problem/reliability, performance, supportability, and programmatic trending) are defined and illustrated with examples from Space Shuttle applications. Emphasis is on the programmatic-trending component of the program and several of the statistical techniques used. Also described is the NASA safety, reliability, maintainability, and quality assurance management information center, used to focus management attention on key near-term launch concerns and long-range mission trend issues.
I.E.

A91-31046#
BARRIERS TO TOTAL QUALITY MANAGEMENT IN THE DEPARTMENT OF DEFENSE

Reliability and maintainability are discussed as subsets of the assurance sciences. Total Quality Management (TQM) covers all of the assurance sciences, with significant emphasis on the human and organizational systems underlying all production processes. When the Air Force Logistics Command initiated TQM, a number of challenges had to be overcome to achieve the full potential of the program. These barriers included a lack of worker motivation, opposition of existing management, and lack of effective communication.
I.E.

A91-31047#
R&M 2000 PROCESS - A CORNERSTONE TO THE TOTAL QUALITY MOVEMENT

The U.S. DOD Total Quality Management (TQM) campaign to support continuous process improvement is discussed. Reliability, maintainability, and producibility (RM&P) are discussed as key building blocks of TQM and the continuous quality improvement of weapon systems. This relationship supports the strategic importance of R&M 2000 in the TQM movement and clearly supports the R&M 2000 goals. The strategic relationship of the R&M 2000 process is reviewed. To demonstrate the conceptual relationships defined by the R&M 2000 process and TQM, the R&M quality team concept is used. The R&M quality team concept is the first TQM initiative to support the R&M 2000 process. The concept has been successfully used in the design of the C-17A airlifter.
I.E.

A91-39723#
SOME CONSIDERATIONS ON ORGANISING REQUIREMENTS FOR SYSTEMS MANAGEMENT
R. J. STEVENS (ESA, European Space Research Institute, Frascati, Italy) ESA Journal (ISSN 0379-2285), vol. 15, no. 1, 1991, p. 35-48. refs

Copyright

Project management demands a stable, abstract view of the complete system from beginning to end - for planning, monitoring, and verification. The methodology should allow management-by-exception, providing a clear view of potential problems is retained. Such a system can only be based on system requirements, and the management information system must therefore also be based on requirements. However, requirements must be thoroughly structured for this approach to be at all possible. While requirements are most familiar during the early creation and the last verification stages, their status can be a measure of progress throughout the whole life cycle of the project. The theory and practice of using such systems on space-related projects is...

The management strategy of NASA-Marshall's CFD branch in support of space hardware development and code validation implements various elements of total quality management. The strategy encompasses (1) a teaming strategy which focuses on the most pertinent problem, (2) quick-turnaround analysis, (3) the evaluation of retrofittable design options through sensitivity analysis, and (4) coordination between the chief engineer and the hardware contractors. Advanced-technology concepts are being addressed using the definition of technology-development projects whose products are transferable to hardware programs and the integration of research activities with industry, government agencies, and universities, on the basis of the 'consortium' concept. O.C.

A91-41692/
THE PROCESS TEAM CONCEPT

The organizational responsibilities and operational aspects of the Process Team concept are presented. The overall objective of the Process Team is to reduce the time to complete an operation in or to reduce the span time of a product by utilizing cost-effective total quality management principles and practices while meeting customer requirements. Organizations that have properly implemented this process team concept have achieved improved quality, safety, cost, and schedule performance while experiencing improved morale.

R.E.P.

A91-42458
AUDITING R&D PLANNING
GEORGE J. TITUS (Temple University, Philadelphia, PA) and MATTHEW J. LIBERATORE (Villanova University, PA) IEEE Transactions on Engineering Management (ISSN 0018-9391), vol. 38, May 1991, p. 171-177. refs Copyright

A five-step procedure for auditing R&D planning and budgeting processes is presented. A major difference between this and standard approaches is the use of a follow-up mail questionnaire to validate the findings and identify major differences of opinion which can be addressed during implementation. The method itself was developed during the completion of nine case studies and nearly 100 personal interviews of R&D and business executives. A series of R&D planning norms are used to direct attention toward issues which should be addressed during the audit. An example of a successful audit which used this five-step procedure is also presented. The method and ideas presented have and can be successfully applied to a wide range of industrial research and engineering organizations.

I.E.

A91-47775
IMPLEMENTING A CORPORATE SOFTWARE DEVELOPMENT METHODOLOGY

The formation of a European software firm and the software development methodology that was selected are described, and specific examples of how this methodology has influenced the firm's operations are presented. Consideration is given to the life-cycle approach, comprehensive system engineering, inspection and certification, integrated management controls, and structured software build cycle. Two software development methodologies are compared.

L.M.

A91-48616
THE TRAINING ENTERPRISE - A VIEW FROM THE TOP

The Air Force is developing methodology for the development of 'total' training systems/enterprises. The methodology is based on the concepts of the systems approach and adaptive evolutionary systems. This paper discusses these concepts, the methodology, and their application to the planning, design, and evaluation of training systems. Areas emphasized include the application of the Total Quality Management, needs/requirements analysis, and the Instructional Systems Development (ISD) process.

A91-54149
RISK MANAGEMENT AT ESA

The paper describes the systematic assessment of the risks within ESA programs as well as possible remedies and consequences. Policy applications are described as they relate to site and infrastructure protection, computer security, liability, and contractual arrangements, and different types of insurance. Recommendations from the risk-management arena include safety measures and compliance studies, protections against industrial espionage, impact assessments related to exposures, and the protection afforded by insurance. Compliance with the recommendations can increase confidence in ESA activities and protect member countries from unexpected losses and unforeseen financial requirements. The risk-management organization at the ESA is a part of the management system and can positively affect the budget and production of the organization.

C.C.S.

The Industry Liaison Section is a new function of the Army/NASA Aircrew-Aircraft Integration (AAAI) Program that is intended to bridge an existing gap between Government developers (including contractors) and outside organizations who are potential users of products and services developed by the AAAI Program. Currently in its sixth year, the Program is experiencing considerable pull from industry and other government organizations to disseminate products. Since the AAAI Program's charter is exploratory and research in nature, and satisfying proper dissemination requirements is in conflict with the rapid prototyping approach utilized by the design team, the AAAI Program has elected to create an Industry Liaison Section (ILS) to serve as the Program's technology transfer focal point. The process by which the ILS may be established, organized and managed is described, including the baseline organizational structure, duties, functions, authority, responsibilities, relations and policies and procedures relevant to the conduct of the ILS.

Author
THE INTEGRATED SCHEDULING SYSTEM: A CASE STUDY IN PROJECT MANAGEMENT

PETER C. BISHOP, DAVID B. LEARNED, and CISSY A. YOES

Objective was to assist office managers in communicating their established and review scheduled milestones and activities. The objective was to assist office managers in communicating their objectives, milestones, schedules, and other project information more effectively and efficiently. Consideration of sophisticated project management systems was included, but each of the systems had limitations in meeting the stated objectives. Author

APPLIED TECHNOLOGY CENTER BUSINESS PLAN AND MARKET SURVEY

ROBERT F. HODGIN and ROBERTO MARCHESINI 1990 68 p

Business plan and market survey for the Applied Technology Center (ATC), computer technology transfer and development non-profit corporation, is presented. The mission of the ATC is to stimulate innovation in state-of-the-art and leading edge computer based technology. The ATC encourages the practical utilization of late-breaking computer technologies by firms of all variety. Author

DEFENSE LOGISTICS AGENCY INFORMATION RESOURCES MANAGEMENT (IRM) NEAR-TERM PLANNING DOCUMENT FY 1990-1992

May 1990 226 p

The document was prepared to provide Information Resources Management (IRM) program direction and to serve as a baseline for development of the Defense Logistics Agency (DLA) IRM Five Year Plan. It is a decision document which reflects the objectives and strategies of the IRM program and is the cornerstone on which all other IRM planning, resourcing and acquisition documents are based. The document is organized into chapters dealing with the major segments of DLA IRM activities such as automated information systems (AISs) and technology. Taken together they represent both the IRM program vision of the future and near-term projects that are the building blocks that will make that future vision a reality. Author

STRATEGIC UTILIZATION OF INFORMATION RESOURCES: A CONTINGENCY APPROACH Ph.D. Thesis

RAJIV SABHERWAL 1989 249 p

The strategic utilization of information resources, an important but little researched area, is investigated using an information system application as the unit of analysis. The research model includes three levels of the environment (industry, organizational, and information system), the application's characteristics, the decision-making process preceding the application, and the application's success. Hypotheses were proposed and tested to examine the relationships among these dimensions, using three reference disciplines-strategic decision-making, organizational buying behavior, and innovation adoption. Questionnaire data from 85 senior executives (19.02 percent response rate) of Fortune 1000 companies were analyzed. The analysis supports most research hypotheses as well as the overall model, except the hypotheses concerning the relationship between the environment and the application's characteristics. Hierarchical cluster analysis used to develop an empirical taxonomy of the decision-making processes, produced five clusters-planned, IS influenced, user-influenced, fluid, and incremental. Discriminant analysis showed that the environmental characteristics discriminate between these decision-making process clusters-the environment correctly classified the decision-making process in 49.38 percent cases. The cluster means for the environmental characteristics, and the application's characteristics and success, were compared to examine the differences among the five clusters. Having leadership at various levels of the organization in bringing about effective organizational response to the new competitive challenge. It describes changes in policies, in organizational structure, in the management of relationships with customers and suppliers, and in the management of relationships within organizations that will help them to create and sustain competitive advantage. Author
02 MANAGEMENT THEORY AND TECHNIQUES

systematically utilized knowledge from several reference disciplines, this empirical research on strategic utilization of information resources should help practice and provide a useful foundation for future research. Dissert. Abstr.

The Spacecraft Integration and Test Building (SITE) was built by the National Space Development Agency of Japan (NASA) in 1989, and is designed to perform developmental tests on future use large scale test objects such as large satellites which would be launched by H-2 rockets, space stations, space planes and so on. Many kinds of facilities are confined to one building with a fully sufficient test area which results in high test performance and parallel test plans availability. The operation and management of the SITE building and facilities are collectively controlled from an operation and control room. Test operations are carried out by contractors and supervised by NASA to ensure safety and reliability. The management and operation of SITE are described.

This document describes a study of various models of Total Quality Management Resource Centers that have been established, and is intended to assist in the development of a design for a Department of Defense (DoD) TQM Resource Center. The Institute for Defense Analyses (IDA) surveyed eight organizations with TQM Resource Centers for their designs and operations. While a precise set of organizations models did not emerge from the data collected, three critical design issues did: the level of activity, the degree of centralization, and the philosophy of operation. Moreover, the data from the study did not argue for or against the establishment of a DoD TQM Resource Center, nor was IDA asked to make this determination. Although the organizations surveyed have successfully used TQM Resource Centers to improve quality, at least two organizations who were winners of the prestigious Baldrige Award for Quality did not invest in TQM Resource Centers. Further study is required by the DoD to determine whether a DoD TQM Resource Center is needed and who its customers would be.

The government's introduction of a financial management initiative has affected the way all government departments do business. The Ministry of Defence for its part is introducing a new management strategy to meet the objectives of the aforementioned initiative. A study which examines how this strategy will be implemented within the Royal Air Force Strike Command group structure is presented. A methodological approach is adopted to analyze how the groups currently operate. Some consideration is given as to how the groups will need to operate when the new management strategy is implemented in April 1992. A number of alternative options for changing the organizational structure of the Command under the strategy are offered. They are considered from both a theoretical and practical viewpoint before an option is proposed. The implementation of the proposed option is discussed.

This is the Federal Aviation Administration's (FAA) first annual aviation system capital investment plan (CIP). The CIP describes the policies and strategies that the FAA will pursue in addressing key concerns of the National Airspace System (NAS). The plan addresses safety, efficiency, traffic demands, aging equipment and facilities, and airspace use. It creates a foundation for evolution of the existing NAS through use of new technologies and development of new products obtained from continuing research. The following topics are covered: (1) a summary of the overall plan; (2) remaining original NAS plan projects; (3) requirements that expand, relocate, or consolidate existing facilities/equipment; (4) projects that refurbish structures, replace obsolete equipment, or relocate facilities to maintain service, improve effectiveness, or reduce cost; (5) projects that support logistics, provide for personnel training, and manage the information and human resource aspects of NAS modernization; and (6) new projects which, if implemented, are expected to add significant new capabilities to the NAS.

Author

The Defense Logistics Agency (DLA) currently employs the Standard Automated Material Management System (SAMMS) under a mode which forecasts demand for all quarterly forecast demand (QFD) items through the use of a single forecasting technique. This approach for these QFD items has been shown in previous analysis to result in long term forecasting errors. The result of these errors in forecasts is that DLA has consistently maintained higher safety levels which has contributed to the presence of excess on-hand stocks. Consequently, the overall thrust of this analysis has been to enhance the forecasting methodology of SAMMS by exploring alternative forecasting techniques which would have the potential to enhance the accuracy of long term forecasts. The project has succeeded in the development of a multiple forecasting methodology which has the capability to select the most appropriate forecasting technique for each QFD item.

N91-22195# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

FLIGHT MISSION CONTROL FOR MULTIPLE SPACECRAFT ROBERT E. RYAN In ESA, Ground Data Systems for Spacecraft Control p 37-41 Oct. 1990 Sponsored by NASA, Washington Copyright Avail: NTIS HC/MA A99 CSCL 09/6

A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control function. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

ESR
OPERATIONS ENGINEERING: TIME FOR A NEW PARADIGM
ESKER K. DAVIS and WILLIAM N. JENSEN in ESA, Ground Data Systems for Spacecraft Control p 489-492 Oct. 1990
Sponsored by NASA, Washington
Copyright: Avail: NTIS HC/MF A99 CSCL 12/2
Operations engineering, a new approach to operational effectiveness and efficiency, is described. It is engineering for operations excellence, a bona fide engineering effort focused on the operations phase, but functioning throughout the entire system life cycle. The main objective of operations engineering is productivity: built in productivity, not just the 'make it more productive' type of enhancement that usually occurs after complex systems become operational. Operations engineering designs and integrates people, processes, procedures, hardware, software, and facilities to perform in the most effective and efficient manner, continually improving the technology of operations and enhancing desirable operational attributes. Like systems engineering, operations engineering has its own domain, with characteristics, attributes, functions, and responsibilities. Some of the characteristics of this field of research are summarized.

Author

N91-24463*# Center for Space and Advanced Technology, Fairfax, VA.
MICROGRAVITY STRATEGIC PLANNING EXERCISE Final Report
RICHARD HALPERN, JIM DOWNEY, and HAROLD HARVEY Apr. 1991 109 p
(Contract NAS8-388669) (NASA-CR-184167; NAS 1.26:184167) Avail: NTIS HC/MF A06 CSCL 22/1
The Center for Space and Advanced Technology supported a planning exercise for the Microgravity Program management at the Marshall Space Flight Center. The effort focused on the status of microgravity work at MSFC and elsewhere with the objective of preparing a goal-oriented strategic planning document which could be used for informational/brochure purposes. The effort entailed numerous interactions and presentations with Field Center programmatic components and Headquarters personnel. Appropriate material was consolidated in a draft format for a MSFC Strategic Plan.

Author

N91-24599*# National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, AL.
An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

Author

N91-24639# Rolls-Royce Ltd., Derby (England).
A ROLE MODEL FOR QUALITY MANAGEMENT IN FINITE ELEMENT ANALYSIS
JOHN BARLOW in AGARD, Analytical Qualification of Aircraft Structures 12 p Apr. 1991
Copyright: Avail: NTIS HC/MF A06; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive
Many engineering companies use a quality management system to ISO 9001 as a means of controlling quality and standards in their products and operations. The National Agency for Finite Element Methods and Standards has recently issued a quality systems supplement on the application of ISO 9001 to the use of finite element analysis in the design and validation of engineering products. A role model is presented for a quality system designed to fulfill the requirements of that document. Quality aspects of the following topics are covered: management of the analysis operation; acquisition; development and verification of software; qualification and documentation of analysis methods; project analysis; and education and training of personnel. Comments are included, based on experience of implementing finite element quality procedures.

Author

N91-25900# Technische Univ., Delft (Netherlands).
PROFILES IN MANAGEMENT: RELATIONS IN THE MARKET AND BUSINESS PLACE Ph.D. Thesis
WILLEM GERRIT MONHEMIUS 1990 305 p
(ETN-91-99436) Avail: NTIS HC/MF A14
The control of business systems is addressed. This is seen against a background of a society in continual flux. The aspects that play a role in this respect are investigated, not as independent, unconnected elements, but in their mutual relation. No common tenet was found and reasons for this are given. The aim is to unfold the problems and indicate the passage from entrepreneurship to running a company on full stream. It is found that on the basis of experience, the heads of small companies, who have had practice at their schools, often have a more businesslike attitude and frame of mind than those who have followed an appropriate training.

ESA

N91-26993# Air Force Systems Command, Griffiss AFB, NY.
A ROME LABORATORY GUIDE TO BASIC TRAINING IN TQM ANALYSIS TECHNIQUES
ANTHONY COPPOLA Mar. 1991 57 p
(Contract AF PROJ. 9993) (AD-A233855; RL-TR-91-29) Avail: NTIS HC/MF A04 CSCL 05/1
Total Quality Management (TQM) is a DoD initiative for continuously improving performance at every level, in every area of DoD responsibility. Implementing this philosophy will require a cultured change in the defense community. It will also require the intelligent use of appropriate analysis techniques. This report describes the basic analytical tools used in TQM: Process flow charts, Ishikawa charts, Statistical process control, Histograms, Pareto diagrams, Scattergrams and the Shewhart cycle. For easier comprehension, a mythical scenario is used in which the tools are introduced to a willing, but untrained, manager (and to the reader) by a TQM specialist.

GRA

N91-27188# Joint Publications Research Service, Arlington, VA.
US EXPERIENCE CITED TO URGE CHANGE IN SPACE PROGRAM MANAGEMENT
Avail: NTIS HC/MF A05
The following subject areas are covered: comparison of Soviet and American space programs; NASA programs; cost estimates; space communication systems; budgeting of scientific programs; space program and national defense; and space policies in the U.S.S.R.

Author

N91-28024# Institute for Defense Analyses, Alexandria, VA.
CONCURRENT ENGINEERING TEAMS. VOLUME 1: MAIN TEXT
KAREN J. RICHTER and DAVID A. DIEROLF Nov. 1990 56 p
(Contract MDA903-89-G-0003) (AD-A236003; IDA-P-2516-VOL-1; IDA/HQ-90-36607; AD-E05183) Avail: NTIS HC/MF A04 CSCL 05/1
Specific concurrent engineering practices vary among organizations. There are, however, various management practices
that appear to work well for most organizations. This paper presents the reader with specific, useful examples from several defense contractors illustrating how multifunctional concurrent engineering teams are being organized and managed and how concurrent engineering team meetings are conducted and supported. The types of computer support that could be used to enhance the efficiency and effectiveness of concurrent engineering team meetings are identified. The general findings are that there exists a direct relationship between total quality management (TQM) and concurrent engineering, and that many applications of computer-aided group problem solving are possible and practical today for the concurrent engineering team meetings. Areas identified for additional research are the documentation of the decision process and rationale during the product and process definition, the capturing of lessons learned during the implementation of concurrent engineering, and the performance evaluation and training of team members.

ISSUES IN NASA PROGRAM AND PROJECT MANAGEMENT

FRANCIS T. HOBAN, ed. 1991 62 p
(NASA SP-8101(04); NAS 1:2.1:6101(04)) Avail: NTIS HC/MF A04 CSCL 05/1

This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.

INFORMATION RESOURCES MANAGEMENT ENVIRONMENT VISION AND PRESCRIPTION, VERSION 1.1

ROBERT J. KNEZ Apr. 1991 83 p
(AD-A236846) Avail: NTIS HC/MF A05 CSCL 12/7

This paper outlines a vision for DLA's IRM environment in the mid-1990s and beyond. It prescribes a re-engineered data, process, technology, and organizational environment intended to facilitate sharing of data, manufacturing of information systems components and the assembly of applications to a customer's order. Its goals are achieved through a single image corporate data model of subject data bases, business process foundation modules, design to the State-of-the-Contract technology policy, extensive use of information engineering and repository methodology, central development and maintenance of application components, distributed application assembly, open systems, and cooperative processing. It recognizes the need to make several paradigm shifts and prescribes alternative migration strategies including fresh start and cross model resolution evolutionary approaches.

LESSONS LEARNED AND THEIR APPLICATION TO PROGRAM DEVELOPMENT AND CULTURAL ISSUES

Avail: NTIS HC/MF A09 CSCL 22/2

The knowledge used today is contained in an untold number of technical and managerial handbooks. This knowledge is derived from the known strengths and weaknesses experienced during the execution of programs and projects that are being used today. The purpose is to stir up thought, not on specific experiences, but on implementation of lessons learned from these experiences.

B.G.

MAJOR SYSTEM ACQUISITIONS PROCESS (A-109)

WASHINGTON, DC.

The purpose is to stir up thought, not on specific experiences, the execution of programs and projects that are being used today. The major system examination is a combination of elements (hardware, software, facilities, and services) that function together to produce capabilities required to fulfill a mission need. The acquisition process is a sequence of activities beginning with the identification of mission need and ending with introduction of major system into operational use or otherwise successful achievement of program objectives. It is concluded that the A-109 process makes sense and provides a systematic, integrated management approach along with appropriate management level involvement and innovative and 'best ideas' from private sector in satisfying mission needs.

EXPERIENCE IN DESIGNING AND USING A FLAT STRUCTURE IN A MULTI-PROJECT RESEARCH ORGANIZATION

H. A. KURSTEDT, JR., E. J. GARDNER, and T. B. HINDMAN, JR. 1990 5 p
(Contract DE-FG02-88DP-48059) Avail: NTIS HC/MF A01

In early 1986, the organization of the Management Systems Laboratories (MSL) was changed from a standard matrix to a flat organization. The flat organization contributed more negative influences on the organization and its goals than positive ones. One year later, the flat organization was changed to a standard hierarchy and most negative influences were overcome. Before, during, and after the flat organization, MSL saw significant growth in funding and in its resource needs. This paper is an account of an experience with a type of flat organization, why the change to that organization, what worked and what didn’t, why a change away from that organization, what was learned from the experience, and what would be recommended for research organizations considering flat organizations.

EMERGENCY MANAGEMENT ISSUES PRACTITIONERS REALLY WANT TO SEE ADDRESSED

(Contract DE-FG02-88DP-48058; DE-FC06-87CH-10343) Avail: NTIS HC/MF A02

Emergency Management (EM) researchers need a proactive and systematic approach for obtaining research topics practitioners really want to see addressed. Because of the inter-disciplinary nature of EM, traditional research hasn't provided practitioners with the information and management tools they can readily use. Furthermore, because historically EM practitioners haven't been academically oriented, they haven't been inclined to make use of the research provided. It is felt that this is changing as evidenced by such activities as an increased emphasis on professional standards and training; one example is the National Coordinating Council on Emergency Management's project to develop professional standards for emergency managers. The method adds another link to the connection between research and practice to better meet the needs of emergency managers. Three structured meeting techniques are introduced that can be used to determine EM issues practitioners really want to see addressed. The benefits of using these techniques are listed and recommendations are provided for research based on these applications of the techniques.

VARIATION HAS BEEN STUDIED BY STATISTICIANS AND SCIENTISTS FOR DECADES. ALTHOUGH VARIATION IS NOT A NEW CONCEPT, WHAT IS NEW IS

WILLIAM E. HUGHES, JR. Jul. 1991 35 p
(AD-A238399) Avail: NTIS HC/MF A03 CSCL 12/3

Variation has been studied by statisticians and scientists for decades. Although variation is not a new concept, what is new is...
the awareness that variation affects everyday activities in the workplace. Modern man is plagued with variation problems ranging from raw materials to finished products and services. No matter how precise our methods of producing products and providing services become, there will always be some degree of variation. Today's thrust toward the Total Quality Management (TQM) concept will include the understanding of variation. In fact, the concept of variation may be analyzed in each of Deming's 14 points. Future variation issues will include the understanding and management of people.

SUMMARY OF INTERIM REPORTS SUBMITTED BY GRANTEE ORGANIZATIONS PARTICIPATING IN THE FEDERAL DEMONSTRATION PROJECT

A. SCANLEY and W. SELLERS 1 Oct. 1990 22 p

(Contract DE-FG05-9ER-75498)

Avail: NTIS HC/MF A03

The Federal Demonstration Project (FDP) is a cooperative effort among 28 academic institutions, a private research institute, and 11 federal agencies to increase research productivity by streamlining and standardizing needed controls. The Government-University-Industry Research Roundtable serves as a logistical center, a central forum for discussion of issues affecting the FDP, and as a catalyst for the implementation of procedures successfully demonstrated in the FDP. The FDP is an outgrowth of the earlier Florida Demonstration Project. The most successful of the procedures demonstrated in Florida (carry-forward, rebudgeting, pre-award costs, and no-cost extension) have been approved for use nationwide by all research sponsoring federal agencies. These "expanded authorities" are also the core of the terms and conditions that apply to grants issued under the current FDP. As new demonstrations are developed under the FDP, they are added to the core terms and conditions. Four-demonstrations have been implemented under the Federal Demonstration Project: Non-Competing Renewals in July 1988; Equipment Screening in April 1990; Documentation and Allocation Standard in July 1990; and Rights-in-Data in July 1990. A fifth demonstration, dealing with representations and certifications, was announced in July 1989 but withdrawn that September. Others are in the development stage. As required by the letter of agreement that formalizes participation in the FDP, each of the participating grantee organizations has submitted in interim report that describes the steps taken to implement the FDP and the impact of the FDP on the organization.

TEACHING ENGINEERS TO BE TECHNICAL LEADERS

(Contract DE-AC04-76DP-00789) Avail: NTIS HC/CF A02

Engineers invest several years becoming skilled in the many disciplines necessary to effectively carry out analysis, design and development. This typically includes math, physics, computer science, and special study in their core area of expertise. However, once promoted into management, engineers use less and less of these hard-earned technical skills and find themselves operating in nontechnical arenas in which they have little or no formal training. (The formal training that they do get is often through company-sponsored courses, lacking both the rigor and cohesiveness that they have grown accustomed to in their engineering curriculum.) Often, what they are exposed to are continually varying management doctrines that resemble the flavor of the month, each laying claim to the true secrets of motivation, productivity, and organizational competitiveness. Under such circumstances, it is difficult for the neophyte manager to sort out fact from fancy, and help from hype. It therefore would be helpful to put such theories in perspective and present them in a form most easily digested by technical managers, i.e., from an analytical point of view. This paper attempts to do just that. There are many factors that influence a manager's career progression. One of the most rational factors is how the manager's actions affect the productivity of his or her group. This paper focuses on principles and techniques that a manager can, and should, employ to improve group productivity and enhance his or her opportunities for further advancement.

FORM-BASED APPROACH TO DISTRIBUTED COOPERATIVE WORK PHD. Thesis

HEIKKI HAMMAEINEN 1989 294 p Helsinki, Finland Finnish Academy of Technology

(Contract DE-AC04-76DP-00793) Avail: NTIS HC/CF A02

An object oriented form based multilang model to facilitate the rapid construction of integrated systems for distributed cooperative work is developed. The model consists of autonomous asynchronous event driven user agents managing private formbases and interacting with each other through form interchange. A high degree of abstraction is achieved by unifying the visual appearance, storage, processing, and communication behavior of forms through a generalized form metaclass. As a central contribution, the integration of form classes among cooperating agents is solved locally by means of a special inheritance scheme which allows flexible management of both the private and shared form classes. The conceptual model is implemented as a generic user agent called the Programmable Agents for Group Interaction System (PAGES). The PAGES is used to construct a system called a change management in distributed environment (CHAMADE) which supports the integrated coordination of the formal and informal collaboration on order amendments between salesmen, designers, and engineers along the supply chain in distributed manufacture of one of a kind elevators. The CHAMADE shows that the underlying object-oriented form abstraction facilitates rapid construction of applications which are impossible, or at least impractical, to implement with more conventional tools. In addition, it shows that the throughput time of group tasks, e.g., change negotiations, can be significantly reduced when using these applications. The expected gross impact of faster group tasks is a shorter overall throughput time of elevators along the supply chain.
DEFENSE LOGISTIC AGENCY (DLA) LONG-RANGE INFORMATION RESOURCES MANAGEMENT (IRM) PLAN, FY 1991 - FY 1997. VOLUME 1: AGENCY-WIDE PLAN IRM SUMMARY INFORMATION: AGENCY
1991 139 p
(PB91-204529) Avail: NTIS HC/MF A07; also available in set of 4 reports as HC/MF E99 CSCL 05/2

The results of executing the newly created DLA IRM Plan processes are presented. The scope of the DLA Long-range IRM plan FY 1991 to 1997 encompasses the management of information itself and its related resources, such as personnel, equipment, funds, and technology.

1991 266 p
(PB91-204537) Avail: NTIS HC/MF A12; also available in set of 4 reports as HC/MF E99 CSCL 05/2

The DLA IRM plan for FY 1991 to 1997 was prepared to provide the beginnings of an IRM framework and strategic direction needed in the development of future requirements. The goal of the planning process is to ensure that DLA improves customer support and program management, increases productivity and quality, reduces inefficiencies, and uses limited resources more effectively.

1991 235 p
(PB91-204545) Avail: NTIS HC/MF A11; also available in set of 4 reports as HC/MF E99 CSCL 05/2

The DLA IRM plan for FY 1991 to 1997 was prepared to provide the beginnings of an IRM framework and strategic direction needed in the development of future requirements. The goal of the planning process is to ensure that DLA improves customer support and program management, increases productivity and quality, reduces inefficiencies, and uses limited resources more effectively. The necessary information systems, project plans, and acquisition catalog is presented.

1991 233 p
(PB91-204552) Avail: NTIS HC/MF A11; also available in set of 4 reports as HC/MF E99 CSCL 05/2

Volume 4 of the IRM plan presents reference information and supplements volumes 1 to 3. Data included are definitions, regulations, defense management review decisions, source information, table of contents, IRM requirements’ line item numbers index, and the index.
A91-17421
STRIVING TO ACHIEVE C-17 GOALS
WILLIAM B. SCOTT (Aviation Week and Space Technology (ISSN 0005-2175), vol. 133, Dec. 3, 1990, p. 46-49. Copyright
The C-17 program is beginning to realize payoff from new manufacturing techniques. After accumulating several months of actual cost and man-hour data, it is seen that manufacturing improvements between the first test and production aircraft have reduced workmanship discrepancies by 44 percent, manhours by 22 percent and the number of unfinished items by 36 percent. Automated precision drilling, countersinking and fastener installation are anticipated to cut labor costs significantly and reduce the amount of rework. A multilevel process is used to integrate all C-17 avionics and flight control software and hardware. A flight hardware simulator is configured with actual flight software and hardware that emulate the complete system to be installed on a test aircraft. The C-17 will utilize propulsive or powered lift to shorten runway length required for takeoffs and landings. This powered-lift effect is produced by engine exhaust gases blowing over large flaps that are almost the size of a DC-9 wing. R.E.P.

A91-19891
MULTIAATTRIBUTE UTILITY ANALYSIS IN DESIGN MANAGEMENT
DEBORAH L. THURSTON (Illinois University, Urbana) IEEE Transactions on Engineering Management (ISSN 0018-9391), vol. 37, Nov. 1990, p. 296-301. refs (Contract NSF DMC-89-09829; NSF DDM-89-57420) Copyright
A methodology is presented by which engineering design managers can consider technical aspects of a design concurrently with economic aspects of the manufacturing system in selecting among alternatives and directing the design effort. The concept of design flexibility as an attribute which captures both technical and economic considerations in one quantifiable performance measure is developed and incorporated into deterministic multiatribute utility analysis. The alternative of greatest overall utility to the decision-maker is identified, and sensitivity analysis is performed to identify and quantify desirable trades-offs between attributes. The problem of materials selection and design in the automotive industry is presented as a case study. The methodology was applied to five automotive companies in the United States and Europe, and results from two companies are used to illustrate the insights gained.

A91-21219
DYNAMIC SYSTEMS-ENGINEERING PROCESS - THE APPLICATION OF CONCURRENT ENGINEERING
MICHAEL J. WISKERCHEN (Stanford University, CA) and R. BRUCE PITTMAN (Dyse Corp., San Jose, CA) Engineering Management Journal (ISSN 1042-9247), vol. 1, June 1989, p. 27-34. (Contract NCC10-0001) Copyright
A system engineering methodology is described which enables users, particularly NASA and DOD, to accommodate changing needs; incorporate emerging technologies; identify, quantify, and manage system risks; manage evolving functional requirements; track the changing environment; and reduce system life-cycle costs. The approach is a concurrent, dynamic one which starts by constructing a performance model defining the required system functions and the interrelationships. A detailed probabilistic risk assessment of the system elements and their interrelationships is performed, and quantitative analysis of the reliability and maintainability of an engineering system allows its different technical and process failure modes to be identified and their probabilities to be computed. Decision makers can choose technical solutions that maximize an objective function and minimize the probability of failure under resource constraints.

A91-26836
NEW DESIGN STRATEGIES AND TECHNOLOGIES FOR OPERATOR-MACHINE INTERFACE FOR SPACE PLATFORM DESIGN, OPERATIONS, AND PLANNING
It is proposed that considerable gains in efficiency can be achieved in the areas of space platform design and construction as well as in the planning and execution of space operations by the application of recent advances in manufacturing technology. The advances which are considered applicable include the concurrent design or engineering strategy and new sensor capabilities which will perform wrist force sensing and target location determination. It is pointed out that these devices can augment the capabilities of conventional manipulator devices.

A91-26847
SAYING IS ONE THING, DOING IS ANOTHER
This paper briefly reviews the origins of the DOD templates and their relationship to the industrial processes associated with material acquisition. The principal features of the TQM initiative are then summarized, with emphasis on the DOD and Navy interpretations currently being implemented. Focusing on the Navy material acquisition function, the templates and TQM are shown to represent an integrated approach which offers maximum benefit to both the government and industry. Some 'traps' in the DOD implementation of TQM are identified, along with some thoughts on how to escape.

A91-26937
PROJECT RISK ASSESSMENT USING THE ANALYTIC HIERARCHY PROCESS
Construction projects often fail to achieve their time, budget, and quality goals. This is frequently due to the failure of the contractor to analyze and assess all risk factors. The analytic hierarchy process (AHP) is an approach that can be used to analyze and assess project risks during the bidding stage of a construction project and to overcome the limitations of the approaches currently used by contractors. The AHP provides a flexible, easily understood way to assist the decision-maker in formulating a problem in a logical and rational manner. A review of the AHP and a description of its application in the assessment of the riskiness of constructing the Jamuna multipurpose bridge in Bangladesh are included.

A91-27433
UTILIZATION OF SMALL COMMERCIAL GRADE NICKEL CADMIUM (NICD) CELLS IN LOW EARTH ORBIT (LEO) APPLICATIONS
A review is presented of the procedure that was developed to screen, select, and match commercial-grade nickel-cadmium cells for application as flight batteries aboard DARPA's initial LightSats. The batteries constructed for the first mission were made up of 15 cells wired in series, having redundant stacks in each of the two satellites. Screening and matching techniques described are
specifically tailored for mission and environmental conditions, including an orbit altitude of 400 nm, an orbit inclination of 90 deg, temperature limits of -10 to +40 C, and a design maximum depth of discharge of 10 percent. An acceptance test plan for screening and matching cells is also presented. It is shown that the use of commercial-grade cells may save eight to ten months in a program where emphasis is placed on rapid design and development.

R.E.P.

A91-35448
THE ATLAS E/F LAUNCH VEHICLE - AN UNSUNG WORKHORSE
Copyright
Over the 22 years ending in April 1990, the USAF and NASA used the 'E/F' version of the venerable Atlas ICBM for 39 launches, using 11 different upper-stage combinations. Beginning in 1983, a number of the Atlas E/F payloads were assigned to the Atlas H launch vehicle derived from the SLV-3D version of the NASA Atlas-Centaur. A complete Atlas E/F and H chronology is presented, in conjunction with a historical account of some of the most significant satellite payloads lofted by these launch vehicles.

O.C.

A91-35450
EUROPEAN COMMISSION'S PROPOSALS ON CIVIL AVIATION PERSONNEL LICENSING: PROCEEDINGS OF THE CONFERENCE, LONDON, ENGLAND, OCT. 24, 1990
London, Royal Aeronautical Society, 1990, 53 p. No individual items are abstracted in this volume.
Copyright
Topics presented include the EEC principles for mutual recognition of licenses in civil aviation, the U.K. role of the national aviation authorities, and personnel licensing for engineers. Also contributed are the viewpoint of engineer employees, general considerations of air traffic controllers, and using harmonization to standardize European ATC licenses.

R.E.P.

A91-38954*# National Aeronautics and Space Administration, Washington, DC.
USER ACCOMMODATIONS ON SPACE STATION FREEDOM
Copyright
• The historical background of the SSF is overviewed, and current developments in methodology used to accomodate specific user requirements and physically integrate payloads on the station are discussed. Particular attention is given to the science and technology opportunities provided to commercial and government-sponsored users. Evolution of the SSF design and utilization impacts on design philosophy are also considered.

O.G.

A91-38956*# SPACE STATION APPLICATION OF LESSONS LEARNED FROM SPACE SHUTTLE INTEGRATED OPERATIONAL PROTOTYPES
Copyright
The system engineering methodology based on the concurrent engineering approach for the development of a long-term, inexpensive and efficient space operation capability is described.

It is recommended to maintain an iterative engineering process throughout the full life cycle of a project for incorporating dynamically changing requirements and technology. The process is driven by information obtained from risk assessment analysis and rapid prototyping test beds that are carried out by technology-user-design engineering teams.

O.G.

A91-40368
JAPAN - A MAJOR FORCE IN ADVANCED CERAMICS
American Ceramic Society Bulletin (ISSN 0002-7812), vol. 70, June 1991, p. 948-959.
Copyright
A comprehensive evaluation is made of the Japanese advanced ceramics industry, based on patent-grant trend indicators, the commercialization of new work of the Japan Fine Ceramics Center (JFCC, operating in Nagoya since 1987), the JFCC's Fine Ceramics Fair (in which 250 companies participated in March, 1991), and the ease with which U.S. companies can penetrate the Japanese advanced ceramics market. Attention is given to such foci of intensive Japanese ceramics research as automated testing, ceramic-component substitution for conventional materials, sol-gel and molecular powder processing, fine-particle spray pyrolysis, hydrothermal processing, and CVD and colloidal processing. University research practices on behalf of industries are discussed.

O.C.

A91-43347#
DYNAMIC DEVELOPMENT OF SPACE BUSINESS - A STUDY OF GERMAN SPACE INDUSTRY
Copyright
A review is presented of an empirical study of the German space industry that is based on data and databases collected from government and industry sources. It is seen that in addition to the generation of more private demand for space systems, the increase in the level of technological expertise within industry can itself contribute to additional market development. Attention is given to the total public-authority expenditure on space activities between 1976 and 1985 and the allocation of funds to space industry in 1985.

R.E.P.

A91-48672
COMPOSITE SUPPORTABILITY
E. A. WESTERMAN (Boeing Military Airplanes, Seattle, WA) Society of Manufacturing Engineers, Conference on Composites in Manufacturing, 10th, Anaheim, CA, Jan. 7-10, 1991. 9 p. (SME PAPER EM91-114) Copyright
The roles of composite materials in aircraft support and associated problems are discussed. The skills and training required of personnel who handle composites are summarized, and current practices in the repair of composites are examined. Improvements that need to be made in these practices are addressed.

C.D.

A91-48768
SYNCHRONIZED MANUFACTURE OF COMPOSITES KNOWLEDGE STUDY (SMACKS)
B. STRICKLAND (Marine Training Association, England) and M. OLIVER Composites Manufacturing (ISSN 0956-7143), vol. 1, June 1990, p. 103-108. refs
Copyright
The need for a competitive manufacturing knowledge base for the composites industry, encompasses a change from a 'functionally' organized factory to a product-based organization, and has led to major reductions in inventories, manufacturing costs and cycle times. The net effect was that products became more price- and delivery-competitive. It is believed that composite manufacturers have an equal need to improve their competitive edge, particularly as the demand for composite products grows and more manufacturers enter the marketplace. 'SMACKS' has begun to establish these needs and market trends, with a view to
TRANSITIONING TO A CONCURRENT ENGINEERING ENVIRONMENT

This paper addresses the specific steps to integrate the product development process and the transition to a concurrent engineering environment at General Dynamics Space Systems Division. A survey of industry and government trends, corporate plans and division goals relating to concurrent engineering was conducted. An integrated product development process was developed and implemented on a pilot project. Performance metrics were taken to evaluate the effectiveness of these new processes. Substantial cost, schedule and quality benefits were achieved. Based on this success, twelve follow-on pathfinder concurrent engineering teams have since been implemented on three separate programs. A concurrent engineering training course has been developed. A management level implementation team has been formed to institutionalize concurrent engineering methods and ease the transition phase to an integrated concurrent engineering environment.

Author

A91-54067#

COST-CONSCIOUS CONCURRENT ENGINEERING

Concurrent engineering (CE) is described and examples of its implementation are presented to evaluate practical applications of CE. Management and quality requirements for CE are listed with considerations both internal and external to the engineering enterprise. A CE benchmarking matrix is presented for characteristics such as training, performance measurement, and budgets. The development of strategic and tactical plans is described, and attention is given to the implementation approach and other key issues. Also identified are the most important aspects of the CE process which include management commitment, formal training programs, multidisciplinary teamwork, integrated schedules, and supplier partnerships. CE is considered to be an effective managerial philosophy for improving productivity and quality.

C.C.S.

Author

A91-54068#

CONCURRENT ENGINEERING - ELECTRONIC PACKAGING METHODOLOGY YIELDS QUALITY IMPROVEMENTS

This paper presents a concurrent engineering methodology described as structured design. The design methodology is characterized by early interaction of all product responsible disciplines, comprehensive definition of product requirements, in-process design and development validation check points, and a closed-loop quality measurement and corrective action process. The effective interaction of engineering, manufacturing, and other product supporting disciplines has significantly improved the quality of design and has reduced overall product development cycle time. This paper will discuss the application of the methodology for designing electronic structures that yielded an 85-percent reduction of design engineering changes.

Author

A91-54069#

MEASURING IMPLEMENTATION PROGRESS IN CONCURRENT ENGINEERING

An aerospace company is implementing concurrent engineering teams on all programs. This paper describes a system and tools to continuously measure implementation progress and the impact

Author
of concurrent engineering. Two major measuring approaches were developed: (1) benchmarking matrices used by teams, programs, support divisions, and a concurrent engineering advisory team to measure the transition to a concurrent engineering environment, and (2) an array of effectiveness measures for each team and program in cycle time, quality, productivity, cost, and schedule. Many existing measures must be supplemented or modified in a new concurrent engineering team environment to account for changes such as cycle time increases in early product development phases.

Author

In the highly competitive aerospace industry, innovative approaches to quality improvement such as Total Quality Management (TQM) and one of its key elements, concurrent engineering (CE), are critical for survival. An effective training and education program is essential for a smooth transition to a concurrent engineering environment. The methodology and approach to instructional design used at McDonnell Douglas Space Systems Company (MDSSC) led to a concurrent engineering training program that stimulates interest in using concurrent engineering principles and tools. Other aerospace companies can adapt this training program to fit their specific needs. Author

The problem of makespan reduction is examined with reference to the manufacturing experience of British Aerospace Warton Unit. In particular, three production facilities are described which use three different approaches to achieve significant makespan reductions: automation between processes, organizational change, and 'automation of the shell' where conventional techniques are replaced by automated logistics. V.L.

A91-54845 THE US AND JAPANESE SPACE PROGRAMMES DANIEL E. HASTINGS (MIT, Cambridge, MA) and DAMON R. WELLS Space Policy (ISSN 0265-9646), vol. 7, Aug. 1991, p. 233-256. refs Copyright

This report begins with a brief historical overview of the U.S. and Japanese space programs before turning to an evaluation of the programs' philosophy and structure. The study then analyses relative trends in spending, size and efficiency, and compares the relative technical capabilities of the two programs in selected technology areas. Conclusions based on these analyses and data are provided, with particular emphasis given to an assessment of the objectives and potential of the Japanese program. Author

An overview is presented of the management concepts and evolutionary design and development improvements that are being implemented for production of the F-22 air superiority fighter. The ATF competition judged the F-22 to have significant strengths including well-balanced design and the F119 engines' superior margin for growth. Equally important were the F-22 team's program to mature the design and its plans to integrate development of airframe, engine, avionics, and support and training systems. Iterative design of the internal structure is an integral part of the development concept, which promises to eliminate design changes almost completely once fabrication begins, thus avoiding cost increases and schedule slips. Consideration is given to the integration of parts and production provided by 26 major subcontractors and 650 suppliers. R.E.P.

The driving parameters for aero engine design were reassessed to account for the stabilization of fuel price in the vicinity of 50 cents per gallon. A program embracing studies in the fields of operating cost analysis, reliability research and engine specific thrust effects established principles reflecting the importance of engine direct operating cost. The same factors influence the aircraft life cycle cost, and as legislative compliance, operator acceptance and passenger appeal. The effect of applying these principles to a new powerplant and the ongoing development of current powerplants is evaluated.

ESA

The background to the development of Glass Matrix Composites (GMC's) including the basic fabrication methods is presented. Some of the key problems involved in manufacturing production quantities of GMC gas turbine components are described. The need for highly repeatable, and hence largely automated, processing methods are highlighted. Glass/glass-ceramic matrix composites have mechanical properties suitable for use in gas turbines. The requirement for reliable production process is the repeatability to ensure high quality and the minimum post-fabrication inspection.

ESA

An evaluation of a small manufacturing unit, Carello Cell 1, a light leads assembly area at RISTS, Telford, is performed. The objectives are the following: to examine the organization and tasking structure to evaluate the effectiveness of the manufacturing control procedures; to review the quality procedures and to comment their effectiveness; to assess machine utilization to identify potential problem areas; to investigate and to comment on machine serviceability, reliability, and maintainability; to identify factors to reduce machine down time and any other factors affecting production. Conclusions and recommendations are given, particularly concerning the needs of infrastructure of the factory, taking into account that it is in the process of major expansion.

ESA
The Third Technological Days for the Basic Research in Industrial Technologies in Europe/European Research in Advanced Materials was held in Brussels, Belgium, May 21-22, 1990. The BRITE portion of the program concentrated on integrating several enabling technologies and disciplines, such as mechanics, optics, acoustics, and fluid dynamics in design and manufacturing. The EURAM deals with the development of new industrial materials and improvements of the materials life cycle of production, transformation, and recovery.

Author

EXPLOITING LOCAL FLEXIBILITY DURING EXECUTION OF PRE-COMPUTED SCHEDULES

STEPHEN F. SMITH, NAIRING KENG, and KARL KEMPF

June 1990 16 p Prepared in cooperation with Intel Corp., Santa Clara, CA

AD-A230114; CMU-TR-90-13 Avail: NTIS HC/MF A03 CSCL 13/8

This paper addresses the problem of realizing the benefits of pre-computed schedules in the face of partially unpredictable execution environment. We focus specifically on the problem of manufacturing production scheduling, where advance planning is crucial to overall factory performance but is, at the same time, confounded by the unpredictability of factory operations. We present a scheduling framework where decision-making responsibility is shared between a global scheduler, responsible for establishing and maintaining execution constraints in accordance with overall performance objectives, and a local dispatcher, responsible for containing execution within globally imposed constraints and notifying the scheduler when containment is no longer possible. We identify the sources of local executional flexibility that can be expected in a pre-computed schedule, and describe an execution-time scheduler (the dispatcher) capable of exploiting this flexibility.

GRA

N91-23396# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands). Product Assurance and Safety Dept.

CHECKLIST FOR THICK-FILM HYBRID MICROCIRCUITS MANUFACTURER AND LINE SURVEY

Nov. 1990 56 p

ESA

A checklist intended for use in the capability survey of a thick film hybrid microcircuit manufacturer's management, production activities, tests facilities, and technical skills is presented. It provides the procuring activity with an evaluation of the manufacturer's ability to execute a contract successfully and of his capability to supply high reliability space hardware.

N91-23397# European Space Agency. European Space Research and Technology Center, ESTEC, Noordwijk (Netherlands). Product Assurance and Safety Dept.

CHECKLIST FOR THIN-FILM HYBRID MICROCIRCUITS MANUFACTURER AND LINE SURVEY

Nov. 1990 61 p

ESA

A checklist intended for use in the capability survey of a thin film hybrid microcircuit manufacturer's management, production activities, tests facilities and technical skills is presented. It provides the procuring activity with an evaluation of the manufacturer's ability to execute a contract successfully and of his capability to supply high reliability space hardware.

ENGINEERING MANAGEMENT OF LARGE SCALE SYSTEMS

SERITA SANDERS, TEPPER L. GILL, and ARTHUR S. PAUL

Avail: NTIS HC/MF A23 CSCL 05/1

The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

N91-28244*# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

MANUFACTURING PROCESSES

Avail: NTIS HC/MF A99 CSCL 21/8

The following issues are covered: process development frequently lags behind material development, high fabrication costs, flex joints (bellows) - a continuing program, SRM fabrication-induced defects, and in-space assembly will require simplified design.

N91-28247*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

CONCURRENT ENGINEERING

Avail: NTIS HC/MF A99 CSCL 21/8

The following subject areas are covered: issues (liquid rocket propulsion - current development approach, current certification process, and costs of engineering changes); state of the art (DICE information management system, key government participants, project development strategy, quality management, and numerical propulsion system simulation); needs identified; and proposed program.

ROBOTICS AND EXPERT SYSTEMS

A91-10103#

AUTOMATION AND ROBOTIC ACTIVITIES IN WP-2

(AIAA PAPER 90-3704) Copyright

The status of the automation and robotics activities in the Space Station Freedom program's Work Package Two (WP-2) is briefly reviewed. The discussion covers the development of the EVA-Robotic Design Standards document and the Robotic ORU Assembly and Maintenance methodology, robotic simulation efforts, testing and verification of the robot compatibility of hardware, flight Telerobotic Service integration with Space Station hardware, and the Robot Friendly Working Group.

V.L.
A91-13748/#
HOW ARTIFICIAL INTELLIGENCE CAN IMPROVE MAN-MACHINE INTERFACE - PRACTICAL EXAMPLE WITH EXTRAVEHICULAR ACTIVITIES

A91-24524/
COMPUTERAIDED CONCEPTUAL AIRCRAFT CONFIGURATION DEVELOPMENT BY AN INTEGRATED OPTIMIZATION APPROACH

A91-24874/#
Old Dominion Univ., Norfolk, VA.
ANALYSIS OF QUALITY COSTS - A CRITICAL ELEMENT IN CIM
RESIT UNAL (Old Dominion University, Norfolk, VA) and EDWIN B. DEAN (NASA, Langley Research Center, Hampton, VA) International Conference on CAD/CAM, 5th, Norfolk, VA, Dec. 2-5, 1990, Paper. 8 p. refs

A91-27722
COLUMBUS GENERIC ELEMENT MANAGEMENT CONCEPT

04 ROBOTICS AND EXPERT SYSTEMS

The concept for largely autonomous onboard management of the ESA Columbus project relies on the automation of operational procedures. Reconfigurable items are commanded in sequence during execution of automated procedures that ensure failure management during indeterminate system states. At other times a new form of generalized decision tables will deal with incomplete failure symptoms. Unacceptable operations are avoided by the management of execution of a planned timeline of predefined actions. The concept supports both unmanned and manned systems.

A91-30989
KNOWLEDGE BASE DOCUMENTATION - A PRODUCTIVITY TOOL FOR LARGE KNOWLEDGE BASES

KBDoc is a report-generating facility that makes use of information found in a knowledge base and information from an external database to produce a document that describes the knowledge base. The database is useful for tracking the progress of the knowledge acquisition effort as the knowledge base is being built. The document produced by the system is useful for maintenance, validation, and verification of the knowledge base, as well as for meeting customer documentation requirements. KBDoc was developed for the FRESH program, a DARPA-sponsored command and control program used to assist the Navy in managing its fleet resources. KBDoc is a custom LISP program that goes through the knowledge base and assembles the documentation for each piece of knowledge. It is a simple program that is built around the structure of the FRESH knowledge base. The KBDoc system is described. The use of this tool in large expert system development is discussed.

A91-31027
IMPROVED FLIGHTLINE DIAGNOSTICS USING AN EXPERT MAINTENANCE TOOL (XMAN II)

SCT has developed an expert maintenance tool (XMAN II) to assist the technician in evaluating engine monitoring system (EMS) data. The design and function of the XMAN II system are described, and a sample troubleshooting session to demonstrate the diagnostic and user interface features resident in the XMAN II program are discussed. XMAN II implements a comprehensive information analysis technology using a knowledge-based algorithmic approach. Information analysis in this context means the application of structured and unstructured methods to data recorded from remote sensors and manual tests for the purpose of deducing facts about the physical system, including actual condition, imbedded faults, and health prognosis. The information resides in databases. Methods are stored in knowledge bases. XMAN II implements a seamless integration of data, knowledge, and control.

A91-33877
UNCERTAINTY, INFORMATION AND ESTIMATION

Copyright
This paper aims to explore the role played by uncertainty in control system design with emphasis on estimation and adaptation. It is argued that a key issue in design is the fidelity of the model. If the model is known to be a perfect description of the system, then optimal performance can be achieved. However, model uncertainty, disturbances and noise place fundamental limits on the achievable performance. Estimation can be viewed as a mechanism for reducing model uncertainty and thus as a way of improving performance. However, a crucial factor in this context is that the estimator should not only yield a nominal model, but also give a measure of confidence in that model. It is shown how such a measure might be obtained and how this allows adaptation and robust design to be integrated into a unified design philosophy.

A91-34957#
A MONITORING AND CONTROL SYSTEM FOR COMPLEX MAN-MACHINE SYSTEMS - PRELIMINARY DESIGN

A project intended to establish proof-of-concept for a real-time Intelligent Monitoring and Control Software System is discussed. The software design uses artificial intelligence and probabilistic techniques for monitoring and control of complex systems. The design supports real-time response, knowledge-based reasoning, modeling of uncertainty, and an intelligent user interface. The main functional modules of the system include a monitoring and control planner, a sensor data analyzer, a system status assessment module, a diagnosis module, a control action planner, and an updating reporting module. - O.G.

A91-37969* Martin Marietta Corp., Denver, CO.
MANAGING AUTONOMY LEVELS IN THE SSM/PMAD TESTBED

It is pointed out that when autonomous operations are mixed with those of a manual nature, concepts concerning the boundary of operations and responsibility become clouded. The space station module power management and distribution (SSM/PMAD) automation testbed has the need for such mixed-mode capabilities. The concept of managing the SSM/PMAD testbed in the presence of changing levels of autonomy is examined. A knowledge-based approach to implementing autonomy management in the distributed SSM/PMAD utilizing a centralized planning system is presented. Its knowledge relations and system-wide interactions are discussed, along with the operational nature of the currently functioning SSM/PMAD knowledge-based systems. - I.E.

A91-37970* National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH.
AUTOMATED ELECTRIC POWER MANAGEMENT AND CONTROL FOR SPACE STATION FREEDOM

A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

A91-37981 KNOWLEDGE-BASED QUALITATIVE MODELLING AND ADAPTIVE DISTRIBUTION OF POWER

A sudden surge in power demand or a reduction in power supply aboard a vehicle typically requires the removal of the less critical loads to maintain the operation of the more critical ones. A method that automates the distribution of partial power to maximize overall vehicle functionality has been developed. In addition to the use of priority values, fuzzy sets are used to represent the relationships between the fully functional state of a load and its input power. Using this description, power is iteratively distributed to the loads using fuzzy logic decision rules, taking into account the priority of each load and its power requirement relative to the remaining loads in the set. This algorithm represents an initial alternative to the conventional all-or-none power distribution method. The algorithm is efficient and practical for real-time power redistribution during contingencies. Simulation results that demonstrate the effectiveness of the proposed approach are presented. - I.E.

A91-37995* Jet Propulsion Lab., California Inst. of Tech., Pasadena.
GALILEO SPACECRAFT POWER MANAGEMENT AND DISTRIBUTION SYSTEM

The Galileo PMAD (power management and distribution system) is described, and the design drivers that established the final as-built hardware are discussed. The spacecraft is powered by two general-purpose heat-source-radioisotope thermoelectric generators. Power bus regulation is provided by a shunt regulator. Galileo PMAD distributes a 570-W beginning of mission (BOM) power source to a user complement of some 137 load elements. Extensive use of pyrotechnics requires two pyro switching subassemblies. They initiate 148 squibs which operate the 47 pyro devices on the spacecraft. Detection and correction of faults in the Galileo PMAD is an autonomous feature dictated by requirements for long life and reliability in the absence of ground-based support. Volatile computer memories in the spacecraft command and data system and attitude control system require a continuous source of backup power during all anticipated power bus fault scenarios. Power for the Jupiter Probe is conditioned, isolated, and controlled by a Probe interface subassembly. Flight performance of the spacecraft and the PMAD has been successful to date, with no major anomalies. - I.E.

A91-38000* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.
DEVELOPMENT OF AN AUTOMATED ELECTRICAL POWER SUBSYSTEM TESTBED FOR LARGE SPACECRAFT
DAVID K. HALL and LOUIS F. LOLLAR (NASA, Marshall Space Flight Center, Huntsville, AL) IN: IEC-90; Proceedings of the 25th Intersociety Energy Conversion Engineering Conference,
A91-38160
BPE - A REAL-TIME EXPERT SYSTEM FOR AUTONOMOUS POWER MANAGEMENT
Copyright
The most recent developments in the Boeing Aerospace Autonomous Power System (APS) testbed are presented. The APS testbed is a dc system with 3-kW capability that was assembled for use in developing improved control techniques for aerospace electrical power systems. The emphasis is on a new expert system shell developed by Boeing specifically for the real-time control of electrical power systems (EPS). The capabilities of this shell, called the Blackboard Programming Environment (BPE), were shown through a series of demonstrations. The advantages of this programming environment for autonomous control and the results of the demonstrations are discussed.
I.E.

A91-47789
THE ELECTRONIC COPILOT - A FRUITFUL EXPERIENCE TOWARD COMPLEX PROJECT MANAGEMENT USING ARTIFICIAL INTELLIGENCE IN THE SPACE DOMAIN
Copyright
Current experience is presented of how knowledge engineering methods should be employed for expertise initial design and then supplemented by extensive knowledge evaluation and refinement in a simulator, and in some cases by automatic knowledge generation tools. It is shown that the concept described of an electronic copilot, could be usefully applied to space projects. Three examples of potential applications have been identified and developed: an electronic assistant for the astronaut in IVA, for combined EVA/robotics activities during in-orbit servicing operations, an electronic assistant flight controller for real-time telemetry data evaluation during manned space flights, and an electronic assistant for the 'smart evaluation' of the crew during intensive operations training.
R.E.P.

A91-51213
SOLVING SCHEDULING PROBLEM IN OPERATIONS MANAGEMENT USING A TEMPORAL CONSTRAINT REASONING SYSTEM
Copyright
This paper discusses the use of temporal constraint satisfaction in solving scheduling problems in the operation management domain. The Logos constraint reasoning system implements the constraint propagation paradigm to solve the temporal constraint satisfaction problem. It is shown that temporal relationships provide a richer model to express the scheduling constraints than the precedence relationship. Furthermore, the temporal constraint system can model the dynamic perturbation of the events and their impact on the schedule. This paper presents examples that illustrate how Logos can model scheduling problems and how Logos can use this model to suggest rescheduling actions in response to schedule degradations.
Author
computer in the design process is examined. Computation should be applied throughout all design phases, but practicing designers today rarely use computers beyond simple word processing and drafting tasks. While many design tasks are poorly matched to the computer, other pragmatic and productive avenues remain unexplored. We discuss the need to recognize which elements of the design process are most suited to computer assistance. The role of the computer is designed as an objective assistant to the designer, and practical approaches are discussed in two application areas for computers in design: design simulation and resource information management.

DOE

XSHHELL: A GENERAL PURPOSE EXPERT SYSTEM SHELL
ALLAN J. MACK May 1990 31 p (AD-A228454; ERL-0509-RE; DODA-AR-005-997) Avail: NTIS HC/MF A03 CSCL 12/7

An expert system shell is a computer program which is ideally independent of the domain (subject) of application. A problem is represented by facts and rules which the shell processes as data. Although it may be large, the shell is a conventional procedural program. The shell described is the result of a study of existing shells and of the needs of the Intelligent Frequency Management System. The outcome is a comprehensive tool for the development, execution and maintenance of rule-based expert systems. Several union features can ensure a high level of completeness, reliability and maintainability in the application. The degree of detail which follows is provided not only as a guide to users but also as a reference for the assessment of specification of other shells. This issue refers to XSHHELL version 2.11. Expert systems usually divide the rules and facts into the domain, which describes the general case, and the context, which is the part that can vary from one problem to another. In XSHHELL, facts and rules describe the problem domain. The assignment of certainties and values to the facts describes the context. The solution of problems is goal driven using a combination of backward and forward chaining. Each fact is described by a text. Associated with each fact is either a set of descriptive states each having a probability (certainty), or a numeric value (or array of values). The descriptive facts are referred to as being qualified and the numeric facts as quantified.

GRA

TECHNOLOGY MODERNIZATION ASSESSMENT FLEXIBLE AUTOMATION

(AD91-005620; PNL-7329) Avail: NTIS HC/MF A04

The objectives of this report are to present technology assessment guidelines to be considered in conjunction with defense regulations before an automation project is developed, to give examples showing how assessment guidelines may be applied to a current project, and to present several potential areas where automation might be applied successfully in the depot system. Depots perform primarily repair and remanufacturing operations, with limited small batch manufacturing runs. While certain activities (such as Management Information Systems and warehousing) are directly applicable to other environments, the majority of applications will require combining existing and emerging technologies in different ways, with the special needs of depot remanufacturing environment. Industry generally enjoys the ability to make revisions to its product lines seasonally, followed by batch runs of thousands or more. Depot batch runs are in the tens, at best the hundreds, of parts with a potential for large variation in product mix; reconfiguration may be required on a week-to-week basis. This need for a higher degree of flexibility suggests a higher level of operator interaction, and, in turn, control systems that go beyond the state of the art for less flexible automation and industry in general. This report investigates the benefits and barriers to automation and concludes that, while significant benefits do exist for automation, depots must be prepared to carefully investigate the technical feasibility of each opportunity and the life-cycle costs associated with implementation. Implementation is suggested in two ways: (1) develop an implementation plan for automation technologies based on results of small demonstration automation projects; (2) use phased implementation for both these and later stage automation projects to allow major technical and administrative risk issues to be addressed.

DOE

EXPERT SYSTEM DECISION SUPPORT LOW-COST LAUNCH VEHICLE OPERATIONS

Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential applications areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation.

Author

N91-20684* # Mitre Corp., Houston, TX.

A FAILURE MANAGEMENT PROTOTYPE: DR/RX

Avail: NTIS HC/MF A21 CSCL 14/4

This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this failure are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.

Author

N91-20689* # National Aeronautics and Space Administration.

AUTONOMOUS POWER EXPERT SYSTEM ADVANCED DEVELOPMENT
TODD M. QUINN (Sverdup Technology, Inc., Brook Park, OH.)
navigation geometry and possible sensor failures. The systematic development is described of a Navigation Sensor Management (NSM) Expert System from Kalman Filter covariance data. The method invokes two statistical techniques: Analysis of Variance (ANOVA) and the ID3 Algorithm. The ANOVA technique indicates whether variations of problem parameters give statistically different covariance results, and the ID3 algorithms identifies the relationships between the problem parameters using probabilistic knowledge extracted from a simulation example set. Both are detailed.

Author

SHERMAN W. TYLER Nov. 1990 29 p
(Contract F30602-87-D-0087) Avail: NTIS HC/MF A03 CSCL 23/2

The purpose of this research and development endeavor was to design and implement an adaptive intelligent interface for a command-and-control style domain. The primary functionality of the system was to be able to adapt its presentation of information to the individual user, based upon the current task and the user's personal preferences and experiences as captured in an explicit user model. The CHORIS (Computer Human Oriented Reasoning Interface System) software system is a knowledge based intelligent interface architecture which supports mixed modality input and output, high-level plan management, adaptation to individual users and user roles, and tailoring of system response information to the currently executing high-level task and the user's preferences. CHORIS has been extended to support users with different roles within the command-and-control-style domain of emergency management. The interface demonstrates the powerful effects that the functionality captured within CHORIS can have in enhancing user performance in-responding to complex situations in a timely manner.

N91-20980# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Systems and Logistics.

AN EMPIRICAL EVALUATION OF THREE KNOWLEDGE ACQUISITION TECHNIQUES FOR DEVELOPING A PROJECT MANAGEMENT RELATED EXPERT SYSTEM M.S. Thesis TODD T. VIKAN Sep. 1990 102 p
(AD-A230472; AFIT/GSM/LSR/90S-32) Avail: NTIS HC/MF A06 CSCL 05/1

The acquisition of expert knowledge is recognized as one of the major hurdles facing the expert system programmer or knowledge engineer. Unfortunately, knowledge acquisition is seldom addressed in any detail in expert system literature, even though there exist a number of different techniques that a knowledge engineer can use to capture expert knowledge. The purpose of this study was to identify and evaluate the relative effectiveness of three knowledge acquisition techniques that may be used when developing expert systems for project management related tasks. The three techniques were interview, concept mapping, and interruption analysis. An experiment was conducted and quantitative measures of effectiveness were derived.

N91-20993# Knowledge Based Systems, Inc. College Station, TX.

RICHARD J. MAYER Dec. 1990 143 p
(Contract F41622-86-C-0018) Avail: NTIS HC/MF A07 CSCL 12/7

This document describes the design knowledge management system (DKMS), which provides a software environment for both the development and the delivery of intelligent assistants. These intelligent assistants can be used for computer-aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing (CAM) applications in product design, engineering, manufacturing, and logistics planning. The DKMS can be thought
of as an integrated concurrent engineering system whose environment includes facilities for: (1) design knowledge representation including definitions are being created. Backing up this geometry engine, a container object management system will be produced that extends the proven composite object capabilities by integrating geometry concepting and manipulation primitives into the basic object definition and inheritance lattice operators. As an initial manufacturability, reliability, and maintainability capability, the baseline system will include a manufacturability checker, an associated generative process planning system, and an engineering performance model development environment.

N91-21941
National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

EXPERIMENT DOCUMENT INFORMATION SYSTEM (EDIS) EVOLUTION
Avail: NTIS HC/MF A08 CSCL 05/2

The EDIS is the second generation of a system designed to produce and control documents containing large amounts of text in combination with tables and graphs of mathematical/scientific data. The first generation system proved the concept, but the slow, unfriendly user interface resulted in an effort to find an off-the-shelf product to improve the interface capability while maintaining the system requirements. The basic design of that first system was combined with the hypertext concepts inherent in HyperCard to generate the most usable EDIS. Currently in the latter stages of design, the EDIS promises to be the first step in the automation of the process required for defining complete packages of Life Sciences experiments for the Shuttle missions.

N91-22249
MATRA Espace, Toulouse (France)

KNOWLEDGE BASED FRAMEWORK FOR MAN-SYSTEM INTERACTION IN SPACE CONTROL CENTRES
FRANCOISE CARRE, PASCAL RICHARD, NATHALIE CARN, and NATHALIE AUSSENAC (Centre National de la Recherche Scientifique, Toulouse, France) in ESA, Ground Data Systems for Spacecraft Control p 373-378 Oct. 1990
Copyright Avail: NTIS HC/MF A99

An object oriented approach used in developing a model of controlled systems, both in spacecraft and in ground segments is discussed. This model is to be used as a kernel for a variety of applications based on artificial intelligence techniques. Operations within a space control center that can be improved by artificial intelligence techniques are outlined. A model based approach for artificial intelligence presupposes emphasis being placed on the knowledge acquisition step. The integration of artificial intelligence techniques in the operational environment is discussed.

N91-22294
National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

TRANSPORTABLE PAYLOAD OPERATIONS CONTROL CENTER
Copyright Avail: NTIS HC/MF A99

The Transportable Payload Operations Control Center (TPOCC), an architecture for control centers which makes use of new mission operations and reduces development costs, is described. The TPOCC architecture takes an open networking approach based on widely accepted industry standards. Small inexpensive computers are networked together, performing the functions of a mini or mainframe computer. This approach, along with TPOCC's reusable components, provides versatile ground support systems for Mission Operations Division's (MOD) customers.

N91-23341
National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

COMPUTATIONAL NEEDS SURVEY OF NASA AUTOMATION AND ROBOTICS MISSIONS. VOLUME 1: SURVEY AND RESULTS

NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.

Author

N91-23371

Alpha is an operating system for the mission critical integration and operation of large, complex, distributed, real time systems. Such systems are becoming increasingly common in both military (e.g., BM/C3, combat platform management) and industrial factory and plant automation (e.g., automobile manufacturing) contexts. They differ substantially from the better-known timesharing systems, numerically-oriented supercomputers, and networks of personal workstations. More surprisingly, they also depart significantly from traditional real time systems, which are predominantly for low-level periodic sampled data monitoring and control.

N91-25139
National Aeronautics and Space Administration. Hughes Research Laboratory, Malibu, CA.

A KNOWLEDGE-BASED SYSTEM DESIGN/INFORMATION TOOL FOR AIRCRAFT FLIGHT CONTROL SYSTEMS
DALE A. MACKALL and JAMES G. ALLEN (Draper, Charles Stark Lab., Inc., Cambridge, MA) in AGARD, Knowledge Based System Applications for Guidance and Control p 40 p Apr. 1991

Research aircraft have become increasingly dependent on
advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

Author

ROBERT A. MEYER and SUSAN E. CONRY Dec. 1990 161 p

AAD-AC-TR-90-404-VOL-4

Avail: NTIS HC/MT 403 CSCL 12/7

The North East Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technological research tasks undertaken at the member universities. The topics covered in general are: (1) versatile expert system for equipment maintenance; (2) distributed AI for communications system control; (3) automatic photointerpretation; (4) time-oriented problem solving; (5) speech understanding systems; (6) knowledge base maintenance; (7) hardware architectures for very large systems; (8) knowledge based reasoning and planning; (9) a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the use of knowledge based systems for communications network management and control via an architecture for a diversified distributed multi-agent system.

GRA

NORTH EAST ARTIFICIAL INTELLIGENCE CONSORTIUM (NAIC), VOLUME 5: DISTRIBUTED ARTIFICIAL INTELLIGENCE FOR SPACE STATION FREEDOM TECHNOLOGY

Incrementally increasing the uncertainty-tolerance of robotic manipulation plans

SCOTT BENNETT and GERALD DEJONG Apr. 1991 23 p

N91-26844*# National Aeronautics and Space Administration.

Oak Ridge National Lab., TN.

PROPOSAL FOR CONTINUED BASIC RESEARCH IN INTELLIGENT MACHINES AT THE CENTER FOR ENGINEERING SYSTEMS ADVANCED RESEARCH: FISCAL YEARS 1992-1996

Contract DE-AC05-84OR21400.

DE91-012997; ORNL/ TM-11810; CESAR-91/07 Avail: NTIS HC/MT A06 403 CSCL 12/9

This proposal describes the context and technical direction during the next five years for the DOE/ER/BES-sponsored basic research program in intelligent machines at the Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL). Research will address issues related to autonomous systems in unstructured dynamic work environments. Specifically, the work will focus on multiple cooperating robotic systems, combined mobility and manipulation, intelligent sensor systems, machine learning, and embedded high performance computing. Focus for proof-of-principle experiments demonstrating innovative development will be delivered from a number of application areas related to DOE missions.

DOE

N91-27773*# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, CA.

HANK LUM, JR. May 1991 44 p

NASA-TM-103651; 911105; NAS 1.15:103651 Avail: NTIS HC/MT A03 CSCL 22/2

In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to the Congress semiannually. The report describes the progress made by Levels 1, 2 and 3 of the Office Space Station in developing and applying advanced automation and robotics technology. Emphasis has been placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 11, the status of the Flight Telerobotic Servicer, and the status of the Advanced Development Program. In addition, an assessment is provided of the automation and robotics status of the Canadian Space Station Program.

Author

INCREASINGLY THE UNCERTAINTY-TOLERANCE OF ROBOTIC MANIPULATION PLANS

SCOTT BENNETT and GERALD DEJONG Apr. 1991 23 p

N91-30713*# National Aeronautics and Space Administration.

Lyndon B. Johnson Space Center, Houston, TX.

MAKING INTELLIGENT SYSTEMS TEAM PLAYERS: CASE STUDIES AND DESIGN ISSUES. VOLUME 1: HUMAN-COMPUTER INTERACTION DESIGN

JANE T. MALIN, DEBRA L. SCHRECKENGHOST, DAVID D. WOODS, SCOTT S. POTTER, LEILA JOHANNESEN, MATTHEW HOLLOWAY, and KENNETH D. FORBUS (Northwestern Univ.,
04 ROBOTICS AND EXPERT SYSTEMS

Evanston, IL) Sep. 1991 263 p
(NASA-TM-104738-VOL-1; S-643; NAS 1.15:104738) Avail: NTIS HC/ MF A12 CSCL 12/1

Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

Author

DEVELOPMENT METHODOLOGIES FOR KNOWLEDGE BASED SYSTEMS: A COMPARATIVE REVIEW
M. R. BATEMAN 6 Dec. 1990 47 p
(BAE-WIT-REP-GEN-SWE-1996; ETN-91-98837) Copyright Avail: British Aerospace (Military Aircraft) Ltd., Warton Aerodrome, Preston, Lancashire, PR4 1 AX, England

A number of Knowledge Based Systems (KBS) development methodologies are described and evaluated. The majority of methodologies reviewed are somewhat superficial and as a consequence do not receive extensive consideration. Three methodologies, namely KADS, Syntel and Alpha/DS are given a more comprehensive discussion. KADS is given particular attention. It is recommended that KADS be further evaluated to determine its suitability for real time and closely coupled conventional and KBS applications.

Author

N91-30992 Softech, Inc., Waltham, MA.

ACTIVITY AND INFORMATION MODELING METHODOLOGY ASSESSMENT Final Report, May - Nov. 1990
CLARENCE G. FELDMAN, RICHARD R. PRESTON, and PAUL S. THOMPSON (Control Data Corp., Dayton, OH.) Apr. 1991 80 p
(Contract F33615-89-C-5708) (AD-A236234; WL-TR-91-8012) Avail: NTIS HC/ MF A05 CSCL 12/7

The objective of this program was to conduct a top-level assessment of activity (IDEF-O) and information (IDEF-1x) modeling methods needed to support overarching enterprise framework applications. The results provide a preliminary strategic platform, tailored to the needs related USAF and industry requirements for integrated information modeling capabilities. The plan is a systematic and incremental approach for strategic improvements relative to enterprise framework applications.

Author

THE PROBLEM OF NETWORK MANAGEMENT: AN APPROACH USING AI TECHNIQUES
L. PAVALLI 1990 23 p
(REPT-90-072; ETN-91-99927) Avail: Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

The number of problems that may occur in communication networks is growing with their size and complexity. Many of these problems have also special characteristics which make them hard to detect. It may happen that symptoms of an upcoming problem are hidden by other factors or by the overwhelming amount of information going around. The use of expert systems in support of a network manager is seen as a promising approach to troubleshooting, and several prototypes are being developed by different research labs and companies. A system called DIXIE which uses artificial intelligence techniques to monitor and intelligently report to the status of a DECNET environment is introduced.

Author

N91-32135 National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
HUMAN-CENTERED AIRCRAFT AUTOMATION: A CONCEPT AND GUIDELINES
CHARLES E. BILLINGS Aug. 1991 119 p
(NASA-TM-103885; A-91192; NAS 1.15:103885) Avail: NTIS HC/ MF A06 CSCL 01/4

Aircraft automation is examined and its effects on flight crews. Generic guidelines are proposed for the design and use of automation in transport aircraft, in the hope of stimulating increased and more effective dialogue among designers of automated cockpits, purchasers of automated aircraft, and the pilots who must fly those aircraft in line operations. The goal is to explore the means whereby automation may be a maximally effective tool or resource for pilots without compromising human authority and with an increase in system safety. After definition of the domain of the aircraft pilot and brief discussion of the history of aircraft automation, a concept of human centered automation is presented and discussed. Automated devices are categorized as a control automation, information automation, and management automation. The environment and context of aircraft automation are then considered, followed by thoughts on the likely future of automation of that category.

Author

A NASA/RAE COOPERATION IN THE DEVELOPMENT OF A REAL-TIME KNOWLEDGE-BASED AUTOPILOT

As part of a US/UK cooperative aeronautical research program, a joint activity between the NASA Dryden Flight Research Facility and the Royal Aerospace Establishment on knowledge-based systems was established. This joint activity is concerned with tools and techniques for the implementation and validation of real-time knowledge-based systems. The proposed next stage of this research is described, in which some of the problems of implementing and validating a knowledge-based autopilot for a generic high-performance aircraft are investigated.

Author

N91-32851 National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Center, Moffett Field, CA.
FROM AN AUTOMATED FLIGHT-TEST MANAGEMENT SYSTEM TO A FLIGHT-TEST ENGINEER'S WORKSTATION

The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

Author
05 COMPUTERS AND INFORMATION MANAGEMENT

A91-10092#
USING TASK ANALYSIS TO GUIDE INFORMATION-TECHNOLOGY DEVELOPMENT FOR FUTURE SPACE MISSIONS
LEO GUGERTY and PURNA MURTHY (Lockheed Engineering and Sciences Co., Houston, TX) AIAA, Space Programs and Technologies Conference, Huntsville, AL, Sept. 25-27, 1990. 6 p. refs
(AIAA PAPER 90-3683) Copyright

This paper describes a project with the goal of enhancing information technology for future, long duration space missions, such as a Mars mission. The approach being taken involves predicting both trends in information technology and likely crew tasks on long duration missions. A computer database containing information about future information technologies and crew tasks is being developed. Based on these data, certain tasks that will require information technology have been selected. The technique of cognitive task analysis is being used to determine the optimal use of information technologies for these tasks. The paper describes the benefits of cognitive task analysis and how this technique is being used in an in-depth analysis of the task of selecting outpost sites and exploration routes.

A91-10139#
RISK MANAGEMENT INTEGRATION WITH SYSTEM ENGINEERING AND PROGRAM MANAGEMENT
(AIAA PAPER 90-3773) Copyright

The integration of computerized risk management into a system engineering and program management processes is discussed. Program management using Total Quality Management (TQM) is reviewed, and the ways that such management can be improved by computerized risk management are shown using the BDM Risk Analysis and Management System (BRAMS). The application of BRAMS to assess the risk of achieving launch on schedule of a hypothetical satellite system is examined. The role of TQM in system engineering management is discussed.

A91-10908*
NASA Space Station Program Office, Reston, VA. SPACE STATION FREEDOM - CONFIGURATION MANAGEMENT APPROACH TO SUPPORTING CONCURRENT ENGINEERING AND TOTAL QUALITY MANAGEMENT
Copyright

Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

A91-10930#
CALS AND LOGISTICS MANAGEMENT - HOW LOGISTICS CAN IMPLEMENT THE CALS CONCEPT ON THE SPACE STATION

The new computer-aided acquisition and logistics support (CALS) developments, intended to lead to weapons systems improvements, and how these developments will benefit the Space Station are presented. Methods by which logistics management, employing CALS focal points, can creatively implement logistics functions in the building and support of the Space Station are discussed. Costs are more likely to continue to decrease as factors in CALS implementation equations continue to change. As a driver, life cycle costs should be applied to CALS implementation. Logistics management at all levels should implement these processes in the Space Station development phases, with resulting savings in space, weight, documentation, and supply costs.

A91-13822#
DATA PROCESSING, STORAGE, INTEGRATION, AND ANALYSIS IN THE MID TO LATE 1990'S

Based on data from remote sensing satellites such as LANDSAT, SPOT, SEASAT, and MOS-1, an information management system is proposed which will be able to process, store, and retrieve the information obtained using satellites and/or in situ measurements, and put it to an effective use. Reliable, large-scale geophysical and biological measurements, obtained using Radarsat, ERS-1, JERS-1, and the Earth Observing System (EOS), will be integrated. Some of the innovations in the processing of satellite data are of Canadian origin. These include quick-look output products; World Reference System for cataloguing satellite imagery; geocoded satellite image products; and digital processing of SAR satellite data. The scientific objectives of the Canadian global change program to be achieved in 1996 include: (1) development of procedures, models, and data handling systems for detecting global changes over Canada; (2) integration of image analysis, geographic information systems, and digital telecommunication networks; and (3) development/implementation of satellite observation programs for global change studies.

A91-14951#
TRIALS FOR DEVELOPING INFORMATION SYSTEM IN NASA (SPACE OPERATION INFORMATION SYSTEM FOR JEM ERA)
(AIAA PAPER 90-5016) Copyright

NASA is currently conceptually designing, experimenting and developing Data Information Systems, which are still in cradle, phase, toward JEM era. Some of outline of the studies will be introduced and type 1 SODS and ETS-VI intersatellite communications experiment system, which are under construction as parts of Space Operation and Data System (SODS) will be described.

Author
A91-14982# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.
A DESCRIPTION OF THE GLOBAL RESOURCES INFORMATION DATABASE

The paper describes the Global Resources Information Database (GRID), which is part of the Global Environmental Monitoring (GEM) Program. The following four objectives were established for GRID: (1) to collect and disseminate geographical information; (2) to construct within developing countries a geographical information system (GIS); (3) to demonstrate the ability of GIS to fuse global and national data sets for resource and environment management and planning at the national level; and (4) to train individuals from developing countries in remote sensing technology. The activities of GRID are coordinated at the GEM center at Nairobi (Kenya).

I.S.

A91-14997# INTELLIGENT INFORMATION SYSTEMS AND INTERDISCIPLINARY USER ACCESS

An intelligent information system architecture that considers two issues, i.e., integration interdisciplinary user access and automated information extraction and updates is presented. The system design criterion that information be continuously kept up to date without interruption of user service necessitates that an extraction process must be independent from the mechanism utilized to store and manage the resulting information. A demonstrable prototype intelligent information management system is in place and is being enhanced to include more sophisticated browse and query capabilities. Requirements analyses are progressing to better explain the levels and information types to be inferred from update messages.

R.E.P.

A91-15001# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.
DISTRIBUTED PLANNING AND SCHEDULING FOR INSTRUMENT AND PLATFORM OPERATIONS

Distributed planning and scheduling for instruments and platform operations in resource constrained environments are discussed. NASA has repeatedly faced the situation of multiple users having differing goals, objectives, and requirements interacting with a planning and scheduling system. Current examples include the Hubble Space Telescope and Space Station Freedom. The paper provides a brief description of the instrument and platform operations domain, discusses both traditional and distributed planning and scheduling in the context of this domain, and looks at examples of NASA environments in which planning and scheduling is or will be performed in a distributed system.

Author

A91-15523 USER ACCESS AND PRODUCTION CONTROL OF CANADA'S OPERATIONAL SAR DATA PROCESSING FACILITY

A91-17959 THE EVOLUTION SUPPORT ENVIRONMENT SYSTEM
C. V. RAMAMOORTHY (California, University, Berkeley), YUTAKA USUDA (Hitachi Software Engineering, Ltd., Yokohama, Japan), ATUL PRAKASH (Michigan, University, Ann Arbor), and W.-T. TSAI (Minnesota, University, Minneapolis) IEEE Transactions on Software Engineering (ISSN 0099-5589), vol. 16, Nov. 1990, p. 1225-1234. refs Copyright

The Evolution Support Environment (ESE) system, which provides a framework for capturing and making available semantic information about software components of an evolving software system, is described. The goal in the design of the ESE system was to provide integrated support for management of software architecture configuration, life-cycle configuration, and version control. Software architecture configuration management allows tracking of interconnections among software components that make up a system. Life-cycle management allows traceability among specifications, design, code, and test cases during software development. Adding version control allows specific versions of software objects and their associated objects, such as specifications and test cases, to be retrieved. The authors' experience with the use of the system is discussed.

I.E.

A91-19890 TOWARD SUCCESSFUL IMPLEMENTATION OF KNOWLEDGE-BASED SYSTEMS - EXPERT SYSTEMS VS. KNOWLEDGE SHARING SYSTEMS
KIYOSHI NIWA (Hitachi, Ltd., Advanced Research Laboratory, Hatoyama, Japan) IEEE Transactions on Engineering Management (ISSN 0018-9391), vol. 37, Nov. 1990, p. 277-283. refs Copyright

Strategies are presented for successful implementation of knowledge-based systems in management fields where expertise is decentralized. The crucial role of the knowledge flow from knowledge suppliers through knowledge-based systems to system users in successful implementation of knowledge-based systems is discussed. This leads to a presentation of two paradigms, namely, consulting paradigms and knowledge-sharing paradigms for knowledge-based systems, followed by identification of major implementation requirements for those two paradigms. Strategies for implementation of knowledge-based systems are then presented for expert systems that use the knowledge-sharing paradigm.

I.E.

A91-25610 COMPUTER-AIDED PLANNING OF SS/TDMA NETWORK OPERATION
TAKESHI MIZUIKE, LAN N. NGUYEN (INTELSAT, Washington, DC), YASUHIKO ITO (Kokusai Denshin Denwa Co., Ltd., Research and Development Laboratories, Tokyo, Japan), and EJIRO MAEDA (Nihon Unisys, Tokyo, Japan) IEEE Journal on Selected Areas in Communications (ISSN 0733-8716), vol. 9, Jan. 1991, p. 37-47. refs Copyright

A computer-aided approach to the planning of SS/TDMA network operation is proposed. SS/TDMA is a sophisticated satellite communication network based on an onboard switch matrix, whose operation planning is formulated as a large-scale scheduling problem. An overall planning and scheduling model is presented to deal with practical SS/TDMA systems, such as a two-frequency channel network and nondisjoint beam coverage. For systematic planning suitable for a computer-aided approach, the entire scheduling process is divided into several steps, for each of which an efficient mathematical model is proposed. A linear programming model is used for distribution of traffic on a beam-to-beam basis and the generated switching sequence is
AN ARCHITECTURE FOR HIGH PERFORMANCE ENGINEERING INFORMATION SYSTEMS

NICK ROUSSOPOULOS, LEO MARK, TIMOS SELLIS, and CHRISTOS FALOUTSOS (Maryland, University, College Park)

Copyright

Commercially available database systems do not meet the information and processing needs of design and manufacturing environments. A new generation of systems-engineering information systems must be built to meet these needs. The architectural and computational aspects of such systems are addressed, and solutions are proposed. The authors argue that a mainframe-workstation architecture is needed to provide distributed functionality while ensuring high availability and low communication overhead. Explicit control of metaknowledge is needed to support extensibility and evolution, that large rule bases are needed to make the knowledge of the systems accessible, and that incremental computation models are needed to achieve the required performance of such engineering information systems.

THE INTEGRATED COMMUNICATION NAVIGATION IDENTIFICATION AVIONICS (ICNIA) PROGRAM SUMMARY

An attempt is made to provide both technical and managerial insight into the development of advanced avionic architectures and integrated subsystems based upon the work performed under the Integrated Communication, Navigation, Identification Avionics (ICNIA) Advanced Development Model (ADM) Program. ICNIA was one of the first systems to implement an integrated, modular architecture and support built-in-test (BIT), system reconfiguration, and signal simultaneity. The following issues are addressed: (1) identification of design problems and concerns; (2) system supportability and testability; and (3) recommended managerial tactics and control strategies.

EVALUATING TOOLS AND ENVIROMENTS CONCEPT

KEVIN J. BERK and ROBERT P. HANRAHAN (USAF, Software Technology Support Center, Hill AFB, UT) IN: NAECON 90; Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, May 21-25, 1990. Vol. 2. New York, Institute of Electrical and Electronics Engineers, Inc., 1990, p. 658-663. The Software Technology Support Center (STSC) is the single USAF center and focal point for advocating, sustaining, and disseminating software engineering tools and environments. The STSC test and evaluation concept and specifics about the process and criteria for evaluating the tools and environments are discussed. The criteria and metrics are structured to form the software tool evaluation model (STEM) which specifies a model of the software engineering environment that the tool is evaluated with. The STEM is used as a measurement device (to measure tools and environments), as an open-ended framework for evaluation criteria, as a dynamic target for tool developers to meet, and as a basis for written tool purchase specifications. The goal of the evaluation process using STEM is to produce an unbiased tool evaluation. Users are assisted in selecting the right tools by weighting their selection criteria and metrics, and the evaluation results are determined to which tools best meet their application and requirements.

THE JIAWG INPUT/OUTPUT SYSTEM (JIOS)

JOHN NEWPORT (U.S. Navy, Naval Avionics Center, Indianapolis, IN) and CHUCK ROARK (Texas Instruments, Inc., Defense Systems and Electronics Group, Plano) IN: NAECON 90; Proceedings of the IEEE National Aerospace and Electronics Conference, Dayton, OH, May 21-25, 1990. Vol. 3. New York, Institute of Electrical and Electronics Engineers, Inc., 1990, p. 1071-1076. The Joint Integrated Avionics working group (JIAWG) input/output system (JIOS) provides the software/hardware interface for built-in-test (BIT) and I/O provided via the PI-Bus and TM-Bus for the JIAWG 16-bit common modules. The need for JIOS, the functionality of the JIOS, concerns related to the use of the JIOS, and a planned JIOS demonstration are presented. The JIOS is intended to be a generic software interface for BIT.
The Work Unit Information System (WUIS) is a database that contains a complete definition of the user interface, including functions provided, calling sequences, parameter type definitions, and special user requirements. These definitions are provided as an Ada package specification with no package body, for each functional area.

A91-31231
SYSTEM ENGINEERING MANAGEMENT
Copyright
The objectives and methods of systems engineering for industrial and high-technology development projects are discussed in an introductory textbook. Chapters are devoted to basic principles, the system engineering process, system design requirements, engineering design methods and tools, design review and evaluation, system engineering planning, organization for system engineering, and contracting and supplier management. Diagrams, tables, graphs, flow charts, and a glossary of terms are included, and questions and problems are provided for each chapter.

A91-35438
THE AIR FORCE SCIENTIFIC AND TECHNICAL INFORMATION PROGRAM - THE STINFO PROGRAM
Copyright
The U.S. Air Force STINFO (Scientific and Technical Information) program has as its main goal the proper use of all available scientific and technical information in the development of programs. The organization of STINFO databases, the use of STINFO in the development and advancement of aerospace science and technology and the acquisition of superior systems at lowest cost, and the application to public and private sectors of technologies developed for military uses are examined. STINFO user training is addressed. A project for aerospace knowledge diffusion is discussed.

A91-35439
THE AIR FORCE TECHNICAL PUBLICATIONS PROGRAM - A PERSONAL REFLECTION ON YESTERDAY, TODAY, AND TOMORROW
NANCY ALLIN (USAF, Human Resources Laboratory, Brooks AFB, TX) Government Information Quarterly (ISSN 0740-624X), vol. 8, no. 2, 1991, p. 155-165. refs
The development of the Air Force Scientific and Technical Information Program is reviewed. The management of the program is described, including planning, tracking, preparation, marking, reviewing, processing, printing, and distribution of reports. The processes involved in each of these steps are described in detail.

A91-35440
THE WORK UNIT INFORMATION SYSTEM - A DATABASE FOR RESEARCH IN PROGRESS
The Work Unit Information System (WUIS) is a database that facilitates the rapid exchange of technical and management data describing research, engineering, and study efforts within the DOD. The WUIS subsystems are described. Methods of searching the WUIS database are briefly addressed, and future uses of WUIS are considered.

A91-39815
COMPOSITE PROGRAMS - HIERARCHICAL CONSTRUCTION, CIRCULARITY, AND DEADLOCKS
WALEED A. MUHANNA (Ohio State University, Columbus) IEEE Transactions on Software Engineering (ISSN 0098-5589), vol. 17, April 1991, p. 320-333. refs
Copyright
A graph-oriented, nonprocedural development environment in which composite programs are constructed by coupling a collection of existing component programs, the interfaces of which are defined by a fixed number of input ports and output ports, is discussed. It is shown that when the coupling graph is cyclic there is the possibility of a deadlock. A system that permits hierarchical construction of programs while testing, using a simple algebraic procedure, the resulting composite programs for communication deadlocks is presented. A decomposition-based approach to cycle enumeration is described. A formal graph-theoretic, model of communication behavior for a class of atomic programs is presented. The model is then used to derive necessary and sufficient conditions for a deadlock to arise in a cycle. Techniques for dealing with deadly cycles (once identified) and improving the efficiency of their execution, once the cycles have been resolved, are described.

A91-40948
STANDARDS FOR EVALUATING EXPERT SYSTEM TOOLS
SHARON S. BEACH (Beach Associates, Inc., Santa Cruz, CA) and WILLIAM GEVARTER (NASA, Ames Research Center, Moffett Field, CA) Expert Systems with Applications (ISSN 0957-4174), vol. 2, no. 4, 1991, p. 259-267. refs
Copyright
A brief survey of the literature and proposal for a standard methodology for evaluating expert system building tools are described. Criteria for expert systems environmental factors and expert systems tool features are also discussed.

A91-41538
GROUND SUPPORT EQUIPMENT MAINTENANCE DATA ANALYSIS
Copyright
The Ground Support Equipment Maintenance Analysis Center (GMAC) is proposed to improve the analysis of ground support equipment (GSE) by means of computerized records and assessment. GSE is divided into two categories, standard or special-to-type, and called Major GSE or Minor GSE when requiring preventive maintenance or periodic safety checks, respectively. The GMAC data system collates and processes stored representative statistics of fleet- or type-based items, with three reporting categories for Major GSE indicating the depth of analysis required to control data output. Tables and graphs describe statistics relating to failure rates, the time to repair failures, maintenance man-hours versus time, and trends in rectification. Station management computers can provide important data for fleet-wide performance assessments and analyses related to the replacement of equipment, thereby ensuring the GSE reliability and cost reductions.

A91-42869
MANAGEMENT OF A LARGE SCALE DATA-PROCESSING PROJECT FOR SPACECRAFT OPERATIONS
Copyright
The development of the ERS-1 Mission Management and Control Center (MMCC) software is reviewed. The three key management strategies which have contributed to the success of the ERS-1 MMCC software development include incremental implementation of the system, prototyping of many system features.
prior to detailed design and implementation, and establishment of an independent test and integration team. It is concluded that the partitioning of the system functionality into a series of incremental deliveries of increasing complexity resulted in benefits to management, the development team, and the end-users. O.G.

A91-43349#
RECENT DEVELOPMENTS IN ESA'S INFORMATION AND DATA POLICY
As the Agency’s role developed over the last two decades, it became apparent that the detailed provisions of its original information and data policy would require a combination of modernization and expansion. A major step forward in this respect was made with the Council’s approval of a new ESA document entitled ‘Rules Concerning Information and Data’. Author

A91-43350#
HYPERLINE - THE INFORMATION BROWSER
State of the art information is vital to managers and engineers involved in complex projects. The already large and ever-growing volume of that information and the complexity of the computer query languages has made the accessing and retrieval process a cumbersome task. One of the natural ways in which humans acquire information is by ‘browsing’. ‘Hyperline’ is a new information-retrieval tool that allows both ‘concept’ and ‘reference’ browsing, as well as providing an all-important semantic association between the users’ concepts and those contained in the information-retrieval system itself. Author

A91-45847
RAPID PROTOTYPING OF LARGE COMMAND, CONTROL, COMMUNICATIONS AND INTELLIGENCE C3I SYSTEMS
Copyright
Rapid prototyping is examined from three points of view: management, rapid analysis, and design. A rapid prototyping approach is presented for end-user requirements of large, data-intensive, command and control (C2); command, control, communications and intelligence (C3I); and command and control information systems (CCIS). It is noted that participatory management, highly motivated personnel, thorough knowledge of the targeted system’s operations, sound prototyping methodology, appropriate tools, and innovative techniques used by an integrated team allow for severe schedule constraints and provide the edge for fast implementation. Modified structured methods and further innovations allow a rapid prototype cycle. Experience gained and examples are cited to illustrate the ideas and methods used in successful C3I and CCIS prototypes. The authors discuss the compressed usage of known methods and introduce an innovative design method for rapid development of operational threads as an integrating design technique to quickly assemble knowledge of disparate design views and disciplines under severe prototyping schedule constraints. I.E.

A91-47757
ON EXPERIENCE IN MODELLING OF SYSTEM’S OPERATIONAL BEHAVIOUR
A description is given to a software system modeling or prototyping approach, by which a very early prediction of what a system’s behavior will be can be obtained. Prototyping is considered from a management point of view, with attention given to conceptualization, the implementation approach, and optimization. An implementation of operational modeling/prototyping is described which is intended to be used in the Columbus project. L.M.

A91-47762
DEVELOPMENT OF A CONFIGURABLE INFRASTRUCTURE FOR THE CONTROL OF A LARGE VARIETY OF SPACECRAFT - THE SCOS
The paper analyzes several aspects specific to the development of infrastructure software systems and proposes several guidelines and recommendations in connection with the SCOS (Spacecraft Control and Operation System). It is pointed out that the SCOS example demonstrates that the initial cost overhead implied by the increased project complexity is largely compensated by the advantage of reusing and maintaining a single large system kernel for three or more missions. L.M.

A91-47766
THE ESA SOFTWARE ENGINEERING STANDARDS - THEIR APPLICATION TO ESA SOFTWARE PROJECTS AND THEIR EVOLUTION
Copyright
The essential aspects of the ESA standards and of the foreseen modifications are outlined. The practical application of the standards to ESA software projects is examined. Consideration is given to the benefits achieved and the problems encountered inside ESA and in the industry involved in ESA projects. P.D.

A91-47769
IMPROVEMENTS NEEDED FOR SOFTWARE DEVELOPMENT IN THE LARGE
Copyright
Consideration is given to the aspects that have to be considered in managing a software project, especially a large one, namely, project management in terms of allocated manpower, costs and time schedule; management of contractors with respect to the proper determination and distribution of work packages; and software engineering aspects in terms of proper implementation, verification, and validation of the software system. Presented conditions that are necessary for keeping software development in an acceptable range include: consideration for all life-cycle phases, loose coupling of the system, availability of sufficient design resources, consideration of experience gained from previous projects, careful selection of tools, and design standardization. P.D.

A91-47772
SOFTWARE MANAGEMENT STRATEGIES AND PRACTICES FOR SPACE SYSTEMS DEVELOPMENT
LORENZO SARLIO (Aeritalia S.p.A., Turin, Italy) IN: The

Work breakdown and software industrial structures are defined and the relationships between the software and the other system disciplines are evaluated. Emphasis is placed on the experience gained from the Columbus Attached Laboratory Flight and Ground Infrastructures programs and studies. Examples of scenarios are presented for: prime software management organization; software management, development planning, and maintenance; and software versioning and incremental development/integration.

P.D.

A91-47773
STANDARDS AND S/W DEVELOPMENT ENVIRONMENTS - THE POINT OF VIEW OF A S/W ENGINEERING COMPANY INVOLVED IN SEVERAL SPACE PROGRAMS

An overview is presented of an Italian company's main capabilities, which cover integrated logistic support, software engineering, and system engineering services. A systematic solution is offered for the standardization problem, with emphasis on a methodological and organizational approach to attaining a reasonable level of commonality when different projects and several customers are involved.

P.D.

A91-47774
MANAGEMENT IN SDE-BASED ORGANISATIONS

Several issues which are expected to be substantially influenced by the use of comprehensive engineering environments such as the Software Development Environments are addressed. They include: increased specialization in other engineering activities caused by the introduction of computer-based tools, modification of the financial structure of software engineering projects due to project planning and tool investment, and a refocussing on the software validation problem as one further consequence of increased tool support.

P.D.

A91-47776
SOFTWARE LIFECYCLE FROM AN OPERATIONS VIEWPOINT

It is shown that the software life cycle for large space programs can be approached from an operations viewpoint, where the breakdown of software functions is related to the operations tasks required to support the mission. This leads to partitioning and prioritization of software and the concepts of reusability, where the effective management and coordination of reusability can encourage a more cost-effective and controlled approach to the complete software system.

R.E.P.

A91-47778
A REAL-TIME ADA ENVIRONMENT THAT SIMPLIFIES MANAGEMENT AND REDUCES COST

A software environment, toolset and methodology that simplifies management and can reduce the cost of large real-time Ada software programs is presented. Consideration is given to problem areas, the structural model, the software development environment, and software configuration management.

R.E.P.

A91-47779* National Aeronautics and Space Administration. Marshall Space Flight Center, Huntsville, AL.
LESSONS LEARNED IN THE DEVELOPMENT OF THE HUBBLE SPACE TELESCOPE SOFTWARE
MICHAEL HARRINGTON (NASA, Marshall Space Flight Center, Huntsville, AL), FRANK VANLANDINGHAM (Computer Sciences Corp., Silver Spring, MD), and WILLIAM C. SCHNEIDER (Space Software Italia, Italy) IN: The management of large software projects in the space industry; Colloquium, Toulouse, France, Oct. 16-18, 1990, Proceedings. Toulouse, France, Cepadues-Éditions, 1991, p. 335-343. Copyright

An effort is made to document what was successful in the HST software development, and to present a retrospective analysis indicating what could have been done more efficiently. Consideration is given to systems engineering and design definition, standards and tools, system architecture and design, operational considerations, and reuse and adaptation of existing resources.

R.E.P.

A91-50932
MANAGING WIDE AREA NETWORKS WITH OSI NETWORK MANAGEMENT

An implementation of an Open Systems Interconnection (OSI) Network Management Prototype (NMP) is discussed. The project's objective is to accelerate the availability of systems that manage modern networks through the use of the OSI Network Management standards. This report describes the NMP architecture and the OSI Management concepts mastered and proven in the process. It finds that it is feasible to retrofit a subset of OSI Management onto the ADNS I environment, and that OSI Management will be even more applicable to ADNS II. The NMP research project demonstrates the feasibility of implementing the fault management aspects of OSI Network Management standards within the ARINC environment by integrating the NMP into the ADNS I wide area network. The successful completion of the prototype enables the transfer of ADNS alarm data to the NMP.

Author

A91-52427*// Hughes Aircraft Co., El Segundo, CA.
DEVELOPMENT OF TECHNOLOGY NEEDS FOR THE SEI TNIM NETWORK
M. R. WACHS (Hughes Aircraft Co., El Segundo, CA) and J. E. ZUZEK (NASA, Lewis Research Center, Cleveland, OH) AIAA, NASA, and OAI, Conference on Advanced SEI Technologies, Cleveland, OH, Sept. 4-6, 1991, 10 p. (AIAA PAPER 91-3536) Copyright

A comparison of the salient features of the SEI with previous space exploration programs shows the need for a telecommunications, navigation and information management (TNIM) system level reoptimization. An approach is developed that takes the various candidate mission plans and decomposes them into architectural building blocks, many of which are common to several of the plans. Once identified, each of these blocks can then be parametrically examined with respect to performance benefit, cost, technology, and schedule risk tradeoffs. As the Space Exploration Initiative plan is established, these TNIM building blocks may be fused into an optimized system architecture.

R.E.P.
AIAA PAPER 91-3097) Copyright

Research into the application of knowledge-based software to
to vehicle systems design is reported. The aircraft configuration
design code is a software package to independently generate a
preliminary configuration layout and loft based upon the vehicle mission role and other top-level parameters. The system architecture, design methodology, and operational crewstation design routine are described. A time and resource analysis of a typical initial design study shows a substantial decrease in project duration with the introduction of an automated design capability.

R.E.P.

A91-54654

TAILORING CONFIGURATION MANAGEMENT TOOLS FOR
DEVELOPMENT OF AVIONICS SOFTWARE
JOHN UCZEKAZ and BANNI HUGHES (Honeywell, Inc.,
Commercial Flight Systems Group, Phoenix, AZ) IN:
IEEE/AIAA/NASA Digital Avionics Systems Conference, 9th,
Virginia Beach, VA, Oct. 15-18, 1990, Proceedings. New York,
Institute of Electrical and Electronics Engineers, Inc., 1990, p.
493-498.

Copyright

The automated configuration management system (ACM), a
library system for software development and maintenance on
VAX/VMS systems, is described. ACM maintains its library of information through the basic file management services of VMS
and through two purchased DEC tools: a relational database (DEC
Rdb/VMS) and a code management system (DEC/CMS). ACM
stores, controls access to, and tracks changes to project files in
order to coordinate software development and maintenance activities for large projects. The automated documentation system
is considered, and future extensions to ACM are discussed. The
use of ACM is then examined, with attention given to traceability testing and change tracking.

I.E.

A91-10961# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.

INFORMATION MANAGEMENT
WENDELL RICKS and KEVIN CORKER (BBN Systems and
Technologies Corp., Cambridge, MA) IN: In its Aviation
Avail: NTIS HC/MF A12 CSCL 01C

Primary Flight Display (PFD) information management and
cockpit display of information management research is presented
in viewgraph form. The information management problem in the
cockpit, information management burdens, the key characteristics of an information manager, the interface management system
handling the flow of information and the dialogs between the system and the pilot, and overall system architecture are covered.

Author

A91-11390# National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, MD.

ADA AND SOFTWARE MANAGEMENT IN NASA:
SYMPOSIUM/FORUM
Jun. 1989 182 p Symposium held in Greenbelt, MD, 31 May
CSCL 09B

The promises of Ada to improve software productivity and
quality, and the claims that a transition to Ada would require
significant changes in NASA's training programs and ways of doing business were investigated. The study assesses the agency's ongoing and planned Ada activities. A series of industry representatives (Computer Sciences Corporation, General Electric Aerospace, McDonnell Douglas Space Systems Company, TRW, Lockheed, and Boeing) reviewed the recommendations and assessed their impact from the Company's perspective. The potential effects on NASA programs were then discussed.

B.G.

A91-13078# Naval Underwater Systems Center, Newport, RI.
AFTER-ACTION REPORT FOR THE NEXT-GENERATION
COMPUTER RESOURCES (NGCR) OPERATING SYSTEMS
INTERFACE STANDARD BASELINE SELECTION PROCESS
Final Report
J. T. ODLINGER, comp. 1 Jun. 1990 29 p Sponsored by
Space and Naval Warfare Systems Command, Washington, DC
(AD-A225833; NUSC-TD-6904) Avail: NTIS HC/MF A03 CSCL
12/7

The Next-Generation Computer Resources (NGR) Operating
Systems Standards Working Group (OSSWG) conducted a survey
of existing operating systems and operating systems interface standards to establish a baseline for the NGCR operating system interface standard (OISF). The first section of this report describes the purpose and scope of this study, which covered the timeframe from March 1989 (a briefing made to industry) to April 1990 (when the OISF baseline was selected). The second section discusses issues regarding the OSSWG evaluation process. Issues presented include the benefits OSSWG gained by active industry participation, the need for a standardized common electronic mail system for providing communications between meetings, the compressed schedule, and a discussion about the difficulty in interpreting the evaluation scores. The third section addresses the technical issues that caused difficulties for OSSWG in achieving its objectives. Some of these include (1) how to define distributed

five of the nine major NASA centers and the Space Station
Freedom Program Office. Projects discussed included - Space
Station Freedom Program Office: the implications of Ada on training,
reuse, management and the software support environment;
Johnson Space Center (JSC): early experience with the use of
Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university
research with Ada and the application of Ada to Space Station
Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight
Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space
Station Power Management and Distribution System; Jet Propulsion
Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time
Weather Processor for the FAA; and Goddard Space Flight Center
(GSFC): experiences with Ada in the Flight Dynamics Division and
the Extreme Ultraviolet Explorer (EUVE) project and the implications
gsford experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the
program: Methodology - NASA experience in general indicates
that the effective use of Ada requires modern software engineering
methodologies; Training - It is the software engineering principles
and methods that surround Ada, rather than Ada itself, which
requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially decrease productivity as was clearly found at GSFC; and real-time applications at
LeRC, JPL and GSFC shows that it is possible to use Ada for
real-time applications.

Author
technology within an operating system interface; (2) how to specify security; (3) how security impacts the technology of real-time capabilities, distribution, and fault-tolerance; and (4) to what extent OSIF issues impact the performance of OS implementations. The technology topics in this section are presented as technology shortfall areas where there is need for additional research. GRA

ADANET DYNAMIC SOFTWARE INVENTORY (DSI) PROTOTYPE COMPONENT ACQUISITION PLAN

LIONEL HANLEY

A component acquisition plan contains the information needed to evaluate, select, and acquire software and hardware components necessary for successful completion of the AdaNET Dynamic Software Inventory (DSI) Management System Prototype. This plan will evolve and be applicable to all phases of the DSI prototype development. Resources, budgets, schedules, and organizations related to component acquisition activities are provided. A purpose and description of a software or hardware component which is to be acquired are presented. Since this is a plan for acquisition of all components, this section is not applicable. The procurement activities and events conducted by the acquirer are described and who is responsible is identified, where the activity will be performed, and when the activities will occur for each planned procurement. Acquisition requirements describe the specific requirements and standards to be followed during component acquisition. The activities which will take place during component acquisition are described. A list of abbreviations and acronyms, and a glossary are contained.

PC TOOLS FOR PROJECT MANAGEMENT: PROGRAMS AND THE STATE-OF-THE-PRACTICE

PETER C. BISHOP, GLENN B. FREEDMAN, CHRISTOPHER J. DEDE, WILLIAM LIDWELL, and DAVID LEARNED

Aug. 1990 128 p

The use of microcomputer tools for NASA project management; which features are the most useful; the impact of these tools on job performance and individual style; and the prospects for new features. The project management tools and related tools are addressed. High, mid, and low end PM tools are examined. The pros and cons of the tools are assessed relative to various tasks. The strengths and weaknesses of the tools are presented through cases and demonstrations.

ADANET RESEARCH PLAN

JOHN G. MCBRIDE (Softech, Inc., Houston, TX.) 1 May 1990 66 p (Contract NCC9-16) (NASA-CR-187262; NAS 1.26:187262) Avail: NTIS HC/MF A04 CSCL 09/2

The mission of the AdaNET research effort is to determine how to increase the availability of reusable Ada components and associated software engineering technology to both private and Federal sectors. The effort is structured to define the requirements for transfer of Federally developed software technology, study feasible approaches to meeting the requirements, and to gain experience in applying various technologies and practices. The overall approach to the development of the AdaNET System Specification is presented. A work breakdown structure is presented with each research activity described in detail. The deliverables for each work area are summarized. The overall organization and responsibilities for each research area are described. The schedule and necessary resources are presented for each research activity. The estimated cost is summarized for each activity. The project plan is fully described in the Super Project Expert data file contained on the floppy disk attached to the back cover of this plan.

THE JOHNSON SPACE CENTER MANAGEMENT INFORMATION SYSTEMS (JSCMIS): AN INTERFACE FOR ORGANIZATIONAL DATABASES

The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

FACTORS SHAPING THE EVOLUTION OF ELECTRONIC DOCUMENTATION SYSTEMS

The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments.
Guidance is given for writing and controlling the use of computer programs and processing data for automated measuring systems.

The integration of preexisting systems into a single, heterogeneous, distributed non-standard application system in domains like office automation or computer-integrated manufacturing are regarded as cooperating systems. They are characterized through teamwork, distribution and the handling of complex data structures (e.g., multimedia data). Object-oriented database systems, providing for complex object management, represent one approach in support of such applications. They concentrate, however, on data modeling aspects and use more or less conventional transaction concepts, based on a global execution control. Hence, they only partially fulfill application requirements as they do not adequately cope with the autonomy that is often inherent to the system's components. As a consequence, we suggest S-transactions as an appropriate means for describing the cooperation of system components in terms of transactions and beyond. In this paper we outline the modeling of conventional transactions (flat or nested as well as distributed design transactions) in terms of STDL, the S-transaction definition language. Beyond that we point out how to specify SAGA concepts. Finally we discuss the specification of non-linear but maybe cyclic cooperation structures.

Terminological requirements in information management was but one of the principal themes of the 2nd Congress on Terminology and Knowledge Engineering. The traveler represented the American Society for Testing and Materials' Committee on Terminology, of which he is the Chair. The traveler's invited workshop emphasized terminology standardization requirements in databases of material properties as well as practical terminology standardizing methods. The congress included six workshops in addition to approximately 82 lectures and papers from terminologists, artificial intelligence practitioners, and subject specialists from 18 countries. There were approximately 292 registrants from 33 countries who participated in the congress. The congress topics were broad. Examples were the increasing use of International Standards Organization (ISO) Standards in legislated systems such as the USSR Automated Data Bank of Standardized Terminology, the enhanced Physics Training Program based on terminology standardization in Physics in the Chinese province of Inner Mongolia, and the technical control dictionary being developed at the Japan Electronic Dictionary Research Institute, which is considered to be the key to advanced artificial intelligence applications. The more usual roles of terminology work in the areas of machine translation, indexing protocols, knowledge theory, and data transfer in several subject specialties were also addressed, along with numerous special language terminology areas.

The congress included six workshops in addition to approximately 292 registrants from 33 countries who participated in the congress. The congress topics were broad. Examples were the increasing use of International Standards Organization (ISO) Standards in legislated systems such as the USSR Automated Data Bank of Standardized Terminology, the enhanced Physics Training Program based on terminology standardization in Physics in the Chinese province of Inner Mongolia, and the technical control dictionary being developed at the Japan Electronic Dictionary Research Institute, which is considered to be the key to advanced artificial intelligence applications. The more usual roles of terminology work in the areas of machine translation, indexing

THE Nasa/DoD AEROSPACE KNOWLEDGE DIFFUSION RESEARCH PROJECT: A RESEARCH AGENDA

THE Nasa/DoD AEROSPACE KNOWLEDGE DIFFUSION RESEARCH PROJECT: A RESEARCH AGENDA
N91-15737*# National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, MD.
MANAGER'S HANDBOOK FOR SOFTWARE DEVELOPMENT,
REVISION 1
Nov. 1990 90 p Revised
(NASA-TM-103417; SEL-84-101-REV-1) Avail: NTIS HC/MF A05 CSCL 09/2
Methods and aids for the management of software development projects are presented. The recommendations are based on analyses and experiences of the Software Engineering Laboratory (SEL) with flight dynamics software development. The management aspects of the following subjects are described: organizing the project, producing a development plan, estimating costs, scheduling, staffing, preparing deliverable documents, using management tools, monitoring the project, conducting reviews, auditing, testing, and certifying.
Author

N91-16619*# IBM Federal Systems Div., Gaithersburg, MD.
DTD CREATION FOR THE SOFTWARE TECHNOLOGY FOR
ADAPTABLE, RELIABLE SYSTEMS (STARS) PROGRAM Final
Technical Report
S. KUTRLOFF 23 Jun. 1990 18 p
(Contract F19628-88-D-0032) Avail: NTIS HC/MF A03 CSCL 12/5
Within the Software Technology for Adaptable Reliable Systems (STARS) there exists a need to exchange source code and documents between the prime contractors. Even within this program there are multiple hardware vendors, operating systems, and applications software. The problems experienced by the DoD in exchanging reusable documents are apparent within STARS. Part of the problem was addressed by the selection of the Standard Generalized Markup Language as the standard for document exchange. SGML defines a standard means to specify the organization and relationships between the elements of structured documents. SGML is intended to be used in the preparation of documents using descriptive markup to denote document elements. The Document Type Definition (DTD) defines the elements of a document and specifies the relationship of each element to other elements. The section on the history of electronic document production explains some of the reasons why descriptive markup is important and why SGML is the appropriate tool for use in the STARS program for document interchange. The DTDs as used in the STARS program as well as those used in other DoD programs are introduced. The features and rationale for the DTDs are discussed and the foundation for a STARS DTD is presented.
Author

N91-16639*# Air Force Inst. of Tech., Wright-Patterson AFB, OH.
MANAGING EMERGING TECHNOLOGY: CASE STUDIES IN DOCUMENT IMAGING SYSTEMS M.S. Thesis
RICHARD K. BROWN 1990 152 p
(AD-A227888; AFIT/CI/CIA-90-068) Avail: NTIS HC/MF A08 CSCL 09/2
A document imaging system (DIS) digitizes paper-based information, such as graphics and text, into images for storage, maintenance and retrieval. This technology promises and, in many cases of actual DIS implementation, has delivered many benefits to organizations. Document imaging technology is enabling organizations to handle their information more efficiently than in the past. However, organizations face many issues while implementing this technology. Six case studies of organizations which appraised Document Imaging Systems (DIS) are presented and detailed. The research had two thrusts. The first aimed to identify critical management issues relating to the successful assimilation of DIS. Actions identified included ensuring integration into the existing technical architecture, designing adequate image distribution channels, preparing for future technology changes, choosing the right applications to implement, selecting appropriate indexes, overhauling the work process, alleviating the concerns of the users, securing adequate management support, and justifying the technology. The second goal sought to examine how organizations implementing document imaging technology progress through six stages of technology assimilation: Awareness/Obervation, Evaluation/Justification, Acquisition/Installation/Modification, Pilot Test/Experiment, Limited Production, and Full Production.
Author

N91-17583*# National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, MD.
DATABASE ACCESS MANAGER FOR THE SOFTWARE
ENGINEERING LABORATORY (DAMSEL) USER'S GUIDE
Mar. 1990 334 p
(NASA-TM-103392; SEL-90-001; NAS 1.15:103392) Avail: NTIS HC/MF A15 CSCL 09/2
Operating instructions for the Database Access Manager for the Software Engineering Laboratory (DAMSEL) system are presented. Step-by-step instructions for performing various data entry and report generation activities are included. Sample sessions showing the user interface display screens are also included. Instructions for generating reports are accompanied by sample outputs for each of the reports. The document groups the available software functions by the classes of users that may access them.
Author

N91-17597*# IBM Federal Systems Center, Gaithersburg, MD.
STARS STRUCTURE.(DOD AAS IOM DOCUMENT VERSION 1.3) FOR THE SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS (STARS) PROGRAM Final Report
WILLIAM H. ETT 11 May 1990 284 p
(Contract F19628-88-D-0032) Avail: NTIS HC/MF A13 CSCL 12/7
Information Object Modeling is a technique for developing specification models for systems. The techniques for building Information Object Models were adapted from techniques of real-time structured analysis and the Foxboro company's experience in specifying and developing real-time process control systems. An information object Model (IOM) is organized to provide level of detail for different audiences, so that one document can meet the needs of different people. A mission statement is appraised which describes the scope of the system. An overview of the system describes the major functional objects. Finally, each functional object is discussed in detail. The modeling techniques for an IOM use the graphical techniques real-time structured
analysis, including transformation diagrams (data flow plus control flow), state transition diagrams, and entity relationship diagrams. Transformation diagrams, however, are applied in a different manner, representing the communication of objects organized hierarchically rather than a functional decomposition of processes. This document describes a specification model for an air traffic control system prepared using Real Time Structured Analysis. It shows Foxboro's concept of specification packaging and can serve as an alternative to MIL-STD-2167A.

G.R.

N91-17820 United States-Japan Task Force on Scientific and Technical Information. US-JAPAN TASK FORCE ON SCIENCE AND TECHNICAL INFORMATION 1990 25 p (PB90-237561) Copyright. Avail: Issuing Activity CSCL 05/2 Progress made at the joint meeting of the U.S.-Japan Task Force on Scientific and Technical Information is discussed. The meetings were guided in their agendas by the following objectives: (1) improve the awareness and understanding of organizations and systems established to improve the use of scientific and technical information; (2) increase the quantity and quality of scientific and technical information; (3) reduce impediments, if any, to the flow of scientific and technical information; and (4) increase the translation of scientific and technical information. Y.S.

N91-17825 National Inst. of Standards and Technology, Gaithersburg, MD. AUTOMATED INFORMATION SYSTEM SECURITY ACCREDITATION GUIDELINES Aug. 1990 49 p Sponsored by FAA, Washington, DC (PB90-264102; NISTIR-4378) Avail: NTIS HC/RF A03 CSCL 05/2 This Federal Aviation Administration's publication provides procedures for the preparation of documentation required for security accreditation of automated information systems. It was designed to make the accreditation process as straightforward as possible for any system, whatever its purpose or level of complexity. The accreditation process requires the identification of the data processing activities in the data processing installation and the completion of the forms in this guideline to develop a security profile of the system, conduct a risk assessment, and document contingency plans. A designated approving authority then signs the accreditation statements that formally accept the risks to each data processing activity. GRA

N91-17828 Transportation Research Board, Washington, DC. GEOGRAPHIC INFORMATION SYSTEMS, 1990 N. C. KASSABIAN, G. TOBIAS, L. CARYTON, K. SOLOMON, and N. SOLOMON 1990 77 p (PB91-108423; TRB/TRR-1261; ISBN-0-309-05015-4; LC-90-13240; ISSN-0361-9181) Avail: NTIS HC/RF A05 CSCL 05/2 The following subject areas are covered: potential for geographic information systems (GIS) in transportation planning and highway infrastructure management; using GIS technology to enhance the pavement management process; pavement management applications of GIS; automated conversion of milepoint data to intersection/link network structure; an application of GIS in transportation; use of GIS in managing hazardous materials shipments; hydrologic GIS; evaluation of GIS workstation performance within a distributed network environment; and emergent roles for optical media in transport engineering. Author

Y.S.

N91-18617 National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX. THE RICIS CONCEPT ROBERT B. MACDONALD In Houston Univ., RICIS 1987 Symposium. Executive Summary 35 p 1987 Avail: NTIS HC/RF A15 CSCL 09/2 A cooperative program was initiated by JSC with the University of Houston - Clear Lake to support research in computing and information systems. The objective of this program is to provide continuing long-term research in support of the numerous mission and mission-related endeavors of NASA/JSC. The Research Institute for Computing and Information Systems (RICIS) concept is presented in form of viewgraphs. History of RICIS, its organization, and research status are discussed. Y.S.

N91-18620 Houston Univ., Clear Lake, TX. SPACE BUSINESS INFORMATION CENTER.

AN OVERVIEW OF THE INFORMATION MANAGEMENT COMPONENT OF RICIS Abstract Only PETER C. BISHOP In its RICIS 1987 Symposium. Executive Summary 2 p 1987 Avail: NTIS HC/RF A15 CSCL 12/1 Information management is the RICIS (Research Institute for Computing and Information Systems) research area which covers four types of tasks initiated during the first year of research: (1) surveys - a description of the existing state of some area in computing and information systems; (2) forecasts - a description of the alternative future states of some area; (3) plans - an approach to accomplishing some objective in the future; and (4) demonstrations - working prototypes and field trials to study the feasibility and the benefits of a particular information system. The activity in these research areas is described. Y.S.

N91-18750 Technische Univ., Delft (Netherlands). Faculty of Technical Mathematics and Informatics. THEORETICAL CONSIDERATIONS ON ERROR MANAGEMENT JUREN STIGTER 1990 52 p Sponsored by Netherlands National Spin/FLAIR (REPT-90-75; ISSN-0922-5641; ETN-91-98752) Copyright Avail: NTIS HC/RF A04 A definition of system reliability and failure of a system is presented. Erroneous states, errors and faults are discussed. Reliability requirements and types of faults are reviewed. Techniques for error management: error detection, damage assessment and confinement, error recovery, error diagnosis, fault treatment and continued reliable service, fault error documentation, and fault/error analysis (learning) and maintenance are described. An illustration of the theoretical considerations, an example of a system, and the problems in designing and operating it are given. Starting with a problem description, a system is designed and built (on paper). Error management considerations, and the difficulties of specifying a system are demonstrated. Problems of specification in relation to error management are discussed. ESA

N91-18905 Oak Ridge National Lab., TN. ESTABLISHING FUNCTIONAL REQUIREMENTS FOR EMERGENCY MANAGEMENT INFORMATION SYSTEMS J. H. REED, G. O. ROGERS, and J. H. SORENSEN 1991 9 p Presented at the Society for Computer Simulation Western Multiconference, Anaheim, 23-25 Jan. 1991 (Contract DE-AC05-84OR-21400) (DE91-006340; CONF-910128-3) Avail: NTIS HC/RF A02 The advancement of computer technologies has led to the development of a number of emergency management information systems (e.g., EIS, CAMEO, IEMIS). The design of these systems has tended to be technologically driven rather than oriented to meeting information management needs during an emergency. Of course, emergency management needs vary depending on the characteristics of the emergency. For example, in hurricanes, onset is typically slow enough to allow emergency managers to simulate evacuations dynamically while in chemical disasters onset may be sufficiently rapid to preclude such simulation(s). This paper describes a system design process in which the analysis of widely recognized emergency management functions was used to identify information requirements and the requisite software and hardware capabilities to deal with rapid onset, low probability, high consequence events. These requirements were then implemented as a prototype emergency management system using existing hardware and software to assure feasibility. Data, hardware, and software requirements were further developed, refined, and made more concrete through an iterative prototyping effort. This approach
Publications referenced in the text:

- The national launch strategy vehicle data management system
- The role of software engineering in the space station program
- SPACECRAFT SOFTWARE TRAINING NEEDS ASSESSMENT RESEARCH Final Report
- SPACECRAFT SOFTWARE TRAINING NEEDS ASSESSMENT RESEARCH, APPENDICES
- A PERFORMANCE ANALYSIS OF THE USAF WORK INFORMATION MANAGEMENT SYSTEM M.S. Thesis
- Information on system performance analysis and tuning is presented information on NASA's efforts to improve shuttle software activities and to establish independent oversight of critical shuttle software processes. GAO identifies NASA's procedures for developing, validating, verifying, and reconfiguring shuttle software. GAO also notes recommendations made by the independent contractor hired by NASA to verify and validate shuttle software problems hindering NASA's progress in implementing the recommendations; actions taken by NASA to specifically resolve concerns raised by the National Research Council (NRC) and the shuttle program's software steering group formed to recommend changes in the verification and validation processes; and GAO's recommendations. Included as an appendix are NASA's comments on GAO's findings.
The data are analyzed to provide a description of current performance conditions, to establish a baseline for future comparisons, and to determine or confirm relationships between performance-related variables. Relationships between system performance and other variables are emphasized. Information is collected in fifteen areas of performance from forty-two bases. The research shows larger system memory and unfixed Sharer buffers are strongly related to better system performance. A list of suggested parameter settings is provided. Recommendations for future research in this area are presented.

N91-21748# Argonne National Lab., IL.

AUTOMATED COMPUTER SOFTWARE DEVELOPMENT STANDARDS ENFORCEMENT

The Uniform Development Environment (UDE) is being investigated as a means of enforcing software engineering standards. For the programmer, it provides an environment containing the tools and utilities necessary for orderly and controlled development and maintenance of code according to requirements. In addition, it provides DoD management and developer management the tools needed for all phases of software life cycle management and control, from project planning and management, to code development, configuration management, version control, and change control. This paper reports the status of UDE development and field testing.

GRA

N91-21762# Army Engineer Waterways Experiment Station, Vicksburg, MS. Information Technology Lab.

SOFTWARE DEVELOPMENT STANDARDS FOR PROJECT COST MANAGEMENT INFORMATION SYSTEM Final Report

The U.S. Army Engineer Waterways Experiment Station (WES) Corporate Data Base Project (CDB) is using software engineering methods and a structured approach for development of management information systems. These software engineering methods are implemented on the Project Cost Management Information System (PCMIS) as part of the WES CDB. The standards used are based not only on the structured approach but also on Department of Defense and Military standards. Modifications were made to typical life cycle standards so they apply to a fourth generation language (4GL) based information system being developed in a prototyping environment. Project standards encompass quality assurance, design analysis, development, documentation, testing, screen/report standards, and security. Configuration management (CM) standards are developed, but implementation has proven very difficult in a prototyping environment. CM implementation is planned after successful system testing. The use of standards provides consistency in reporting and is a valuable tool for the assurance of a quality product.

GRA

N91-21964# Sandia National Labs., Albuquerque, NM.

ADMINISTRATIVE INFORMATION SYSTEMS PLAN, FY 1991 - FY 1995

In FY90 important milestones from past Administrative Information Systems (AIS) plans were realized. The first phase of the Payroll migration was implemented early in the year. This event signified the completion of a major migration milestone and the transition of the Laboratory Information Systems (LIS) machine to a production environment. The Access and Clearance System (A and CS) system and several early deliverables from other migration projects were also implemented during the year. FY91 promises to be another challenging year for those involved with administrative information systems. Aggressive schedules are in effect for the migration projects, the Financial Migration, Human Resources (HR) Migration, and Integrated Procurement System Replacement (IPS/R) efforts will deliver major system components this year. The administrative computing consolidation is underway and will be completed early in FY91. Consolidating computing hardware resources will provide adequate resources and better systems support for the entire AIS community.

DOE

COLUMBUS GENERIC ELEMENT MANAGEMENT AND PLANNING CONCEPT

J. SVED and H. LUTTMANN In ESA, Ground Data Systems for Spacecraft Control p 337-342 Oct. 1990 Previously announced as N91-12742 Prepared in cooperation with Erno Raumfahrttechnik G.m.b.H.

Copyright Avail: NTIS HC/MF A99

The status of development of the Columbus onboard automation control function concept known as the System and Mission Management (SMM) is outlined. The complementary execution timeline planning methodology, that uses Columbus era computer tools is described. The possibility of condensing the documentation tree for payload integration with respect to the operation planning and execution support information is discussed. The use of the Columbus generic element manager command mechanism and data structure to this end is analyzed.

ESA

N91-22265# Jet Propulsion Lab., California Inst. of Tech., Pasadena.

WORKSTATION TECHNOLOGY FOR ENGINEERING MISSION OPERATIONS AT THE JET PROPELLSION LABORATORY

Copyright Avail: NTIS HC/MF A99

The Operations Engineering Laboratory (OEL) at the Jet Propulsion Laboratory has been developing graphics tools to automate document preparation in support of space flight mission operations. One such tool, which generates a daily Space Flight Operations Schedule (SFOS), a timeline display of the schedule of spacecraft activities for the Voyager mission is described. The tool consists of two parts: a series of programs that preprocess various command files and a graphics editor. The code of the graphics editor was developed with reusability as a primary objective and has since served as the basis for the generation of other automation tools.

ESA

N91-22274# National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

GENERIC MESSAGE MANAGEMENT

CURTIS RAY WELBORN In ESA, Ground Data Systems for Spacecraft Control p 533-538 Oct. 1990

Copyright Avail: NTIS HC/MF A99

Monitoring the health and status of any dynamic system by a user always presented the problem of information overload if multiple events occur. This overload is often in the form of too many advisory messages sent to a display. To reduce information overload, only those messages which abstract the occurrence of an event may be printed. This solution has a problem in that there is no explanation given for why a high level message was generated. Generic Message Management (GMM), which is being developed to assist with information overload, message explanation, and historical logging for trend analysis, is discussed.

ESA
NASA has several initiatives underway to handle the processing and storage of future space and earth science data that will be generated at unprecedented rates and volumes. NASA believes that current initiatives in advanced storage media and in programs such as Customer Data and Operations Systems (CDOS) and Earth Observing System Data Information System (EOSDIS), combined with other initiatives, will meet future demands to process and store the expected deluge of data. CDOS and EOSDIS are information technology initiatives critical to NASA’s ability to

- **N91-22777#** Jet Propulsion Lab., California Inst. of Tech., Pasadena.

 INFORMATION VISUALIZATION TECHNIQUES IN A MULTI-MISSION OPERATIONS ENVIRONMENT

 EDMUND C. BAROTH, GREGORY E. CHIN, and PATRICK S. CURRAN
 In ESA, Ground Data Systems for Spacecraft Control
 Copyright Avail: NTIS HC/MF A99 CSCL 09/6

 In the near future, the number of major missions flying simultaneously will increase. This increase in data will place a heavier burden on the operations staff to verify the health and status of a spacecraft or intrument platform. The problem of verification becomes particularly acute when multiple flight projects are being supported by the same personnel. Operations must be made more efficient and automated to remain successful. A prototype concept for achieving that goal is described. The prototype shows how the concepts of information visualization and information retrieval can be applied in developing a user oriented interface for a multimission operations environment. The proposed user interface integrates existing prototypes and includes two dimensional and three dimensional color graphics, animation, and simulation. Techniques of data realization are included. ESA

- **N91-22352#** Research Inst. for Advanced Computer Science, Moffett Field, CA.

 EVALUATION PLAN FOR SPACE STATION NETWORK INTERFACE UNITS

 ALFRED C. WEAVER
 Mar. 1990 80 p
 (Contract NCC9-16)
 (NASA-CR-18088; NAS 1.26:188088) Avail: NTIS HC/MF A05 CSCL 22/2

 Outlined here is a procedure for evaluating network interface units (NIUs) produced for the Space Station program. The procedures should be equally applicable to the data management system (DMS) tested NIUs produced by Honeywell and IBM. The evaluation procedures are divided into four areas. Performance measurement tools are hardware and software that must be developed in order to achieve NIU performance. The tests are a series of tests, each of which documents some specific characteristic of NIU and/or network performance. In general, these performance tests quantify the speed, capacity, latency, and reliability of message transmission under a wide variety of conditions. Functionally tests are a series of tests and code inspections that demonstrate the functionality of the particular subset of ISO protocols which have been implemented in a given NIU. Conformance tests are a series of tests which would expose whether or not selected features within the ISO protocols are present and interoperable.

- **N91-22730#** IBM Federal Systems Div., Owego, NY.

 A CONCEPTUAL MODEL FOR MEGAPROGRAMMING

 WILL TRACZ In Houston Univ., RICIS Software Engineering 90 Symposium: Aerospace Applications and Research Directions Proceedings Appendices 12 p 1990
 Avail: NTIS HC/MF A07 CSCL 09/2

 Megaprogramming is component-based software engineering and life-cycle management. Magaprogramming and its relationship to other research initiatives (common prototyping system/common prototyping language, domain specific software architectures, and software understanding) are analyzed. The desirable attributes of megaprogramming software components are identified and a software development model and resulting prototype megaprogramming system (library interconnection language extended by annotated Ada) are described.

- **N91-22788#** National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH.

 TECHNIQUES AND IMPLEMENTATION OF THE EMBEDDED RULE-BASED EXPERT SYSTEM USING ADA

 EUGENE M. LIBERMAN (Sverdrup Technology, Inc., Brook Park, OH) and ROBERT E. JONES
 Avail: NTIS HC/MF A07 CSCL 09/2

 Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with its portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assured a growing role in providing human-like reasoning capability and expertise for computer systems. The integration of expert system technology with Ada programming language, specifically a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell is discussed. The NASA Lewis Research Center was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power Expert System (APEX), a Lisp-based expert system, in ART-Ada. Three components, the rule-based expert system, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

- **N91-22932 Stanford Univ., CA.

 VIEW OBJECTS FOR RELATIONAL DATABASES Ph.D. Thesis
 THEIRRY BAROSALOU 1990 332 p
 Avail: Univ. Microfilms Order No. DA91012225

 Many application domains require database techniques for modeling and managing entities of arbitrary structure the so-called complex objects. At the same time, a major incentive to exploit database management systems is the ability to support sharing of data among applications. In practice, however, these two objectives tend to conflict. Storing information in the form of complex objects can seriously inhibit sharing, since persistent objects bind application-dependent knowledge to the data. On the other hand, the relational model provides information sharing through, for example, the definition of views, but it lacks the expressive power to represent complex entities. The view-object model is presented as a first step toward reconciling the opposing objectives of object-oriented access to shared information. By combining the relational-language concept of view and the programming-language concept of object, the view-object model supports simultaneously abstract complex units of information and sharing of those units. Base information remains stored in a fully normalized relational database; this regular representation facilitates sharing. View objects are defined by complex, arbitrary structures that map cleanly to the underlying database through the use of a semantic data model, the structural model. Hence, multiple view objects, specified over various parts of the database, offer different views of the data. Dynamic instantiation and update operations on view objects further support object-oriented manipulation of the information. In effect, the view-object model provides a unifying framework for merging database and knowledge-based techniques into an architecture for expert database systems. This methodology is implemented in a prototype system called PENGUIN, which defines an object layer on top of a relational database system.

Dissert. Abstr.

- **N91-22933#** General Accounting Office, Washington, DC.

 SPACE DATA: NASA'S FUTURE DATA VOLUMES CREATE FORMIDABLE CHALLENGES

 Apr. 1991 29 p
 (GAO/IMTEC-91-24; REPT-B-240617) Avail: NTIS HC/MF A03

 NASA has several initiatives underway to handle the processing and storage of future space and earth science data that will be generated at unprecedented rates and volumes. NASA believes that current initiatives in advanced storage media and in programs such as Customer Data and Operations Systems (CDOS) and Earth Observing System Data Information System (EOSDIS), combined with other initiatives, will meet these challenges, processes and store the expected deluge of data. CDOS and EOSDIS are information technology initiatives critical to NASA's ability to
efficiently and economically process, analyze, and store the massive amounts of earth and space science data. However, NASA will face many formidable development challenges before all future processing and storage demands can be met. Author

N91-22937# National Inst. of Standards and Technology, Gaithersburg, MD. Inst. for Computer Sciences and Technology. GUIDE TO IRDS APPLICATIONS: GENERAL CONCEPTS AND STRATEGIC SYSTEMS PLANNING MARGARET H. LAW In its Proceedings of the Federal Information Processing Standards (FIPS) Workshop on Information Resource Dictionary System (IRDS) Applications p 8-14 Dec. 1988 Avail: NTIS HC/MF A09 CSCL 05/2 An information resource dictionary system (IRDS) is a data dictionary system used to design, monitor, protect, and control information systems. The IRDS standard represents federal and national efforts to provide quality data dictionary support for information engineering and management. The extensible schema capabilities of the IRDS permit the representation of a wide variety of CASE, data administration, and other system life cycle information in an Information Resource Dictionary (IRD), an application of the IRDS. Some of the topics covered include: (1) features of the IRDS; (2) predefined schema structures; (3) command language and panel interfaces; (4) extensible life cycle phase facility; (5) security facilities; and (6) strategic systems planning. K.S.

N91-22938# Mitre Corp., Houston, TX. NASA-JOHNSON SPACE CENTER SANDRA ANDERSON In NIST, Proceedings of the Federal Information Processing Standards (FIPS) Workshop on Information Resource Dictionary System (IRDS) Applications p 133-141 Dec. 1988 Avail: NTIS HC/MF A09 The Information Resource Dictionary System (IRDS) is becoming more and more recognized as an integral part of the management of data at Johnson Space Center (JSC). The initial impetus for using a global IRDS came from the Space Station Program (SSP). The IRDS standard was specified in the Technical and Management Information System (TMIS) Request for Proposal (RFP). The TMIS is an SSP-wide information system supporting the technical and administrative needs of the NASA centers, the international partners, and the customers. The focus of this talk is the general use of the IRDS at the JSC. Author

N91-22939# Booz-Allen and Hamilton, Inc., Reston, VA. NASA-SPACE STATION PROGRAM STEPHEN J. RITZMAN In NIST, Proceedings of the Federal Information Processing Standards (FIPS) Workshop on Information Resource Dictionary System (IRDS) Applications p 142-152 Dec. 1988 Avail: NTIS HC/MF A09 This talk concerns the Technical and Management Information System (TMIS) project and issues related to other systems within the Space Station Program (SSP) as well as the impact of the Information Resource Dictionary System (IRDS) on them. Some of the topics discussed include: (1) information management; (2) program management; (3) software development; (4) the Space Station Information System; (5) the TMIS; (6) information transfer systems; (7) the three characteristics of the information resources that are going to exist in the different system domains; and (8) interoperability, data transportability, and commonality. K.S.

N91-22940# Assistant Secretary of the Air Force, Washington, DC. Deputy Director for Scientific and Technical Information. DOCUMENT MARKING WALTER R. BLADOS, ALLAN D. KUHN, and CHARLIE MAIORANA Apr. 1990 24 p Prepared in cooperation with INFO/tek, Washington, DC (AD-A231150; USAF-STINFO-MANAGEMENT-90/4; SAF/AOT-SR-90-004) Avail: NTIS HC/MF A03 CSCL 05/2 This document describes the DoD document marking system. The two basic purposes are discussed: (1) to identify documents that contain export-controlled information (the dissemination of which is set by statute); and (2) to facilitate dissemination by explicitly indicating the extent of secondary distribution permissible without further authorization by the originator. This document provides summary information about the Technical Document Distribution Program and the Export-Control Program which are two separate and distinct programs. This document may be used in conjunction with its companion video, or separately. G.R.A.

N91-23347# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH. AN ASSESSMENT OF TECHNOLOGY ALTERNATIVES FOR TELECOMMUNICATIONS AND INFORMATION MANAGEMENT FOR THE SPACE EXPLORATION INITIATIVE DENISE S. PONCHAK and JOHN E. ZUZEK Apr. 1991. 25 p (NASA-TM-103783; E-6058; NAS 1.15:103783) Avail: NTIS HC/MF A03 CSCL 17/2 On the 20th anniversary of the Apollo 11 lunar landing, President Bush set forth ambitious goals for expanding human presence in the solar system. The Space Exploration Initiative (SEI) addresses these goals beginning with Space Station Freedom, followed by a permanent return to the Moon, and a manned mission to Mars. A well designed, adaptive Telecommunications, Navigation, and Information Management (TNIM) infrastructure is vital to the success of these missions. Utilizing initial projections of user requirements, a team under the direction of NASA's Office of Space Operations developed overall architectures and point designs to implement the TNIM functions for the Lunar and Mars mission scenarios. Based on these designs, an assessment of technology alternatives for the telecommunications and information management functions was performed. This technology assessment identifies technology developments necessary to meet the telecommunications and information management system requirements for SEI. Technology requirements, technology needs and alternatives, the present level of technology readiness in each area, and a schedule for development are presented. Author

N91-23937 Stevens Inst. of Tech., Hoboken, NJ. NONEQUILIBRIUM GREEN'S FUNCTIONS AND QUANTUM TRANSPORT THEORY FOR SEMICONDUCTOR MICROSTRUCTURES Ph.D. Thesis HUM CHI TSO 1990 233 p Avail: Univ. Microfilms Order No. DA9103501 Nonlinear quantum transport theory and its linear limit are examined for semiconductor microstructures, including quantum wells and superlattices. The problem of linear cyclotron resonance is treated using a memory function approach for a type I semiconductor superlattice with interacting quantum wells subject to impurity and phonon scatterings. Furthermore, a fully microscopic quantum field theoretical description of transport is developed in terms of nonequilibrium generating Green's functions, culminating in the analysis of the transient time development of negative absolute minority electron mobility at low temperature in an electron-hole plasma in a quantum well. In this connection, the microscopic dynamics for a coupled electron-hole-phonon system with electron-electron and hole-hole interactions are set forth, as well as the electron-hole attraction responsible for drag phenomena. The coupled fields equations for the one-electron and one-hole Green's functions, and for the electron-hole Green's functions, and for the two-electron and two-hole Green's functions, which involve the mixed Green's functions for the one electron or one hole and phonon state variable are derived. The effective interactions are also derived on this basis as well as the dressed phonon propagator. A generalized shielded potential approximation is propounded and an exact variational differential counterpart of the GKB ansatz is developed after separating of the gauge dependence of the physical Green's function in the presence of interactions. Linearized time-dependent coupled electron and hole Wigner function transport equations are analyzed numerically to study the transient time development of negative electron mobility, including both electron and hole overshoot phenomena, and the approach to steady state subject to dynamic nonlocal electron and hole screening effects. Dissert. Abstr.
of the STI Program in the context of the R and D process. STI management must become part of the accepted culture of the R and D community, but it cannot become so unless adopted and accepted by it. A start should be made now to integrate the NASA STI Program into the R and D infrastructure, including funding and operational control. Within this infrastructure, we must obtain management commitment, review and produce policy reflecting the organizational status, allocate responsibilities, and set to work on implementing the true requirements of the R and D community.

Author

N91-25450*# Sterling Software, Moffett Field, CA. THE PILOT LAND DATA SYSTEM (PLDS) AT THE AMES RESEARCH CENTER MANAGES AIRCRAFT DATA IN COLLABORATION WITH AN ECOSYSTEM RESEARCH PROJECT GARY ANGELICI, LIDIA POPOVICI, and JAY SKILES In NASA, Washington, 4th Airborne Geoscience Workshop p 93-95 1991 Avail: NTIS HC/MF A13 CSCL 05/2 The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardcopy, machine readable, and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers atNASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project. Author

N91-25947 University of Technology, Loughborough (England). PERSONAL INFORMATION SYSTEMS: THE IMPLICATIONS OF JOB AND INDIVIDUAL DIFFERENCES FOR DESIGN Ph.D. Thesis SUSAN COLES 1990 369 p Avail: Univ. Microfilms Order No. BRDX91840 In an age where information has become a crucial commodity, accessing appropriate information quickly is essential to economic success. Developing ways of improving information retrieval is therefore of central concern to human factors and technologists alike. One aspect of information access relates to the ability of individual office workers to manage and retrieve their own information effectively, and this is what the present research addresses. Previous work in the area has been dominated by designing computer interfaces for the average user. This research investigates how people’s needs might differ according to circumstance and examines a wider range of design possibilities. Specifically, it sets out to relate retrieval problems (specific information retrieval rather than e.g., browsing or reminding) to job and individual (personality) differences within the general context of personal information management in offices using traditional technologies of paper, filing cabinets and desks. This is achieved by both extensive fieldwork and the use of simulated filing-retrieval systems in a controlled context. The work thus specifies conditions under which retrieval difficulties occur and suggests how they might be causally operative. The findings permit the generation of hypotheses concerning situations where retrieval problems are likely to be critical and novel avenues for improving performance, covering job design, changes to information management techniques (training and equipment design), and
personnel selection. Techniques for predicting situations where poor retrieval could occur are put forward, and how methods of improving performance might be applied in offices explored.

Dissert. Abstr.

N91-25958* # Old Dominion Univ., Norfolk, VA. Dept. of Computer Science.

AN INTEGRATED DECISION SUPPORT SYSTEM FOR TRAC: A PROPOSAL
Avail: NTIS HC/MF A04 CSCL 05/2

Optimal allocation and usage of resources is a key to effective management. Resources of concern to TRAC are: Manpower (PSY), Money (Travel, contracts), Computing, Data, Models, etc. Management activities of TRAC include: Planning, Programming, Tasking, Monitoring, Updating, and Coordinating. Existing systems are insufficient, not completely automated, manpower intensive, and has the potential for data inconsistency exists. A system is proposed which suggests a means to integrate all project management activities of TRAC through the development of a sophisticated software and by utilizing the existing computing systems and network resources. The systems integration proposal is examined in detail.

Author

N91-25962* # Los Alamos National Lab., NM.

REPORT ON SECURITY ISSUES IN DATABASE SYSTEMS
L. M. HARRIS Apr. 1991 65 p
(Contract W-7405-ENG-36)
(DE91-011101; LA-11938-MS) Avail: NTIS HC/MF A04

This report reviews the procedures and methodology associated with the security evaluation of the Nuclear Weapons Complex Network (NWNet) WBCN Gateway software. NWNet, built by the DOE Albuquerque Operations Office and the Computer Integrated Manufacturing (CIM) Program Office, was an early attempt by the DOE to build a complex-wide network for classified data processing. The development of NWNet broke new ground in DOE computer security management and identified several complex security issues for which new security design and planning techniques were developed. The requirement for a comprehensive security evaluation of each NWNet service component was established by the CIM Program Office in conjunction with the DOE Office of Safeguards and Security. The goals of the requirement were to establish the network's overall security and to provide a technical basis on which to certify and accredit the network. The DOE Center for Computer Security served as the focal point for this activity, functioned as a liaison between the NWNet project development team and the security examination teams, and was responsible for coordinating, planning, and conducting the software reviews. In the process of designing and evaluating the WBCN Gateway software, significant knowledge was gained regarding the function of the software and the security evaluation process. Not only did the evaluators learn how to test software in the face of continual change, but they also began to understand how to evaluate the security of the network. This report documents the lessons learned from the evaluation activities and communicates this knowledge. The report focuses on the problems (and solutions) encountered in testing a long-term project undergoing continual, major change.

DOE

N91-25965* # Sandia National Labs., Albuquerque, NM.

PROGRESS IN INFORMAL INFORMATION MANAGEMENT: THE CENTRAL TECHNICAL FILE
(Contract DE-AC04-76DP-00789)
(DE91-010863; SAND-91-0270C; CONF-9105153-1) Avail: NTIS HC/MF A02

One objective of the Sandia Technical Library is to improve the management of unpublished, informal information to respond to (or ellipsis) information needs and requirements. The Central Technical File (CTF) is an archive of informal documents in Sandia National Laboratories technical programs which has been maintained by the Technical Library since 1952. CTF serves as a corporate memory for the Laboratories. The progress made in the last year to help CTF better meet Library objectives is described.

DOE

N91-26787* # Bell Communications Research, Inc., Morristown, NJ.

COORDINATION IN LARGE SCALE SOFTWARE DEVELOPMENT
ROBERT E. KRAUT and LYNN A. STREETER 1990 23 p (AD-A234988) Avail: NTIS HC/MF A03 CSCL 12/5

Successful software development requires tight coordination among subsystems involved in the development process. Coordination is difficult because of the division of labor, interdependence and uncertainty inherent in large software projects. A survey in 65 software development projects reveals that informal communication is necessary for coordination under these circumstances. Results show that software professionals got much of their information from other people. They perceived that interpersonal techniques for getting information from beyond their immediate work group were underused, while more formal procedures for tracking routine information were overused compared to their value. Technically uncertain projects and highly independent ones had staffs who were poorly informed and were poorly coordinated. When project members had a large network of personal contacts outside the project, information flow improved, especially when the project was uncertain. The paper concludes with organizational and technological suggestions for increasing the flow of relevant information across functional boundaries in projects.

N91-27004* # Naval Ocean Systems Center, San Diego, CA.

ON-LINE MAGNETIC TAPE LIBRARY INVENTORY TRACKING AND REPORTING (LITAR) SYSTEM Final Report, FY 1990 - FY 1991
(AD-A234934; NOSC/TD-2057) Avail: NTIS HC/MF A03 CSCL 12/7

The design and operation of the On Line Magnetic Tape Library Inventory Tracking and Reporting (LITAR) System is summarized. The system was developed by NOSC personnel to access efficiently administrative and content information about the magnetic tapes used for supporting database development in the NOSC Information Management Engineering (IME) Laboratory. This user interface was originally developed for tapes classified Secret or below, using ORACLE Relational Database Management System's SQL*FORMS on a VAX 8550. However, the interface has more general applications outside of this environment. Examples of user-input screens are also presented.

GRA

N91-27027* # Sterling Software, Moffett Field, CA.

REQUIREMENTS MANAGEMENT: A CSR'S PERSPECTIVE
Avail: NTIS HC/MF A19 CSCL 05/2

The following subject areas are covered: customer service overview of network service request processing; Customer Service Representative (CSR) responsibility matrix; extract from a sample Memorandum of Understanding; Network Service Request Form and its instructions sample notification of receipt; and requirements management in the NASA Science Internet.

Author

N91-27031* # Sterling Software, Moffett Field, CA.

NSI CONFERENCE SUPPORT
Avail: NTIS HC/MF A19 CSCL 05/2

One of the many services NSI provides as an extension of customer/user support is to attend major scientific conferences. The conference effort provides NASA/OSSA scientists with many
Software configuration management (SCM) is a key element of the software development process. A number of new configuration management techniques in commercial SCM tools and environments with SCM capabilities have been observed. This report illustrates some of the advances in SCM concepts by example of a particular commercial system, the Sun Network Software Environment (NSE). NSE embodies a transaction model of configuration management. In order to demonstrate the capabilities and limitations of the transaction model, NSE is applied to three problem areas for configurations management: adaption for parallel development and team support, development and maintenance in software families and development in a distributed and heterogeneous network.

SOFTWARE CONFIGURATION MANAGEMENT: A CASE STUDY

PETER H. FEILER and GRACE F. DOWNEY

Nov. 1990 35 p

SUSAN DART

Dec. 1990 43 p

SUSAN DART
APSE INTERACTIVE MONITOR: A SOFTWARE ARTIFACT FOR SOFTWARE ENGINEERING EDUCATION

The APSE Interactive Monitor (AIM) was determined to be appropriate for this purpose. This system acts as an interface between a user of an Ada programming support environment (APSE) and the programs that the user executes in the APSE. It provides facilities to support the concurrent execution of multiple interactive programs, each of which has access to a virtual terminal. Educational uses of the system and described, including use as a case study and as the basis for exercises. Software engineering topics that can be taught with the system include software maintenance, configuration management, software documentation, cost estimation, and object-oriented design.

The models are analyzed with respect to their potential impact on the software development process, resulting in several observations. Some of the models exist in a number of variations, each impacting the software process differently. CM capabilities can be found not only in CM tools and environment frameworks, but also in development tools. Integration of such tools into environments raises the need for different CM models to interoperate. Therefore, it is desirable to evolve to a unified CM model that encompasses the full range of CM concepts and can be adapted to different process needs.

GRA
organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

Acquisition, publishing, and maintenance of technical information is vital to support weapon systems over their life cycles. The Military Departments use technical information to make tradeoff decisions during the weapon system acquisition process and to meet fielded system requirements for training, operation, and maintenance (preventive, corrective, rework, reprocurement, etc.). Technical information can cost as much as 20 percent of acquisition and support costs of new weapon systems. Technological changes occurring in the publishing industry enable a new approach for acquiring, publishing, and managing technical information. These changes include: advances in computers, improved information management, and the adoption by DoD and many of its suppliers of new international digital information exchange standards. In aggregate, we will refer to these changes and the new approach they mandate as digital Technical Information Publishing (TIP) - the dynamic organization, retrieval, and presentation of information in different media on demand. Adoption of TIP will facilitate greatly acquisition, distribution, and maintenance of DoD’s technical information. This report addresses these problems. It discusses the state of publishing technology, describes a conceptual framework based on a technical information database that supports TIP, and concludes with recommendations for implementing TIP.

System access control directs, regulates, and coordinates the logical, physical, and administrative protection capabilities pertaining to interactions with an information system (IS). System access control, a subset of information technology (IT) and general business controls, are IS security's critical first line of defense. It has traditionally progressed by increasing the speed and memory, and decreasing the size of centralized IS. However, recent movements toward distributed IS and the accompanying architectural changes present new management challenges, especially in the area of controlling system access. Distributed IS magnifies potential control problems because it relies upon inherently less secure hardware and software, and increases potential system access points through local and telecommunication interconnection. However, the biggest threat to system access control is found within the organization's own workforce. These issues motivated the development of an Access Control Management Model.

N91-28043# National Inst. of Standards and Technology, Gaithersburg, MD. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION'S (NASA) AUTOMATED INFORMATION SECURITY HANDBOOK E. ROBACK Mar. 1991 107 p (NASA-CR-188682; NAS 1.26:188682; PB91-187781; NISTIR-4518; NHB-2410.9) Avail: NTIS HC/MF A06 CSCL 05/2

The NASA Automated Information Security Handbook provides NASA's overall approach to automated information systems security including discussions of such aspects as: program goals and objectives, assignment of responsibilities, risk assessment, foreign national access, contingency planning and disaster recovery, awareness training, procurement, certification, planning, and special considerations for microcomputers. Author

In the last ten years, a significant change has been seen in the role of the central computing facility. This has been brought about by the new technology and the evolving needs of the research community. The current efforts are discussed of the central computing facility's UNIX Group at Lawrence Berkeley Laboratory to address these changes in technology and the needs of its research groups. There are three general areas of discussion. In the first, management, the costs are discussed of system management in a distributed computing environment; current computing issues, including the impact of workstation technology on the laboratory infrastructure, the advantages and disadvantages of diskless workstations in the laboratory environment as well as the need for high reliability file services it implies. In the second, mass storage, the need for and an implementation of mass storage service to the laboratory community is discussed. Issues are also discussed such as network access and integration strategies. In the third, other types of service provided by the central facility are also discussed, including common software export via high availability Network File Services servers, distributed high quality output devices and the role of the central facility in providing computer security.

The primary purpose was to determine what relationship existed between the reported average percentage of research hours involving microcomputer use during the years 1987 to 1989 and 10 measures of researcher productivity. The measures of researcher productivity used included: (1) total number of research achievements; (2) total number of academic journal publications; (3) total number of top-tier journal publications; (4) total number of meetings presentations; and (5) total number of proceedings publications during the 3-year period as well as counterpart variables adjusted for average weekly hours of research effort. Dissert. Abstr.

This module consists of a comprehensive examination of the technical review process in the software development and maintenance life cycle. Formal review methodologies are analyzed.
in detail from the perspective of the review participants, project management and software quality assurance. Sample review agendas are also presented for common types of reviews. The objective of the module is to provide the student with the information necessary to plan and execute highly efficient and cost effective technical reviews.

GRA

A LOGIC MODEL FOR MODEL MANAGEMENT: AN EMBEDDED LANGUAGES APPROACH Ph.D. Thesis
HEMANT KUMAR BHARGAVA 1990 177 p
Avail: Univ. Microfilms Order No. DA9112534

The executable modeling language (EML) is extended. It is argued that existing modeling systems lack adequate means for representing, and usefully extracting, much information about models and modeling elements other than that required to just solve models. It aims to provide a formal, general means to represent and usefully extract such information, by developing the embedded languages technique and applying it to model management. In the embedded languages technique (as applied to model management), an EML, which partially formalizes the target language that is used to represent, describe, and reason about models, is embedded within a formal embedding language for model management. The technique creates dual interpretation for the symbols and expressions in the embedded language through rules of formation, such that terms and formulas in the embedded language can be treated as terms in the embedding language. This strategy enables the embedded language to: (1) represent rigorously, flexibly, and with generality, a rich variety of qualitative knowledge about models that could normally not be stated in the modeling language itself; (2) use this knowledge in defining inferences that are useful in the modeling process; (3) represent rules of formation for expressions in the modeling language, and use them to examine validity of model declarations; and (4) embed and integrate multiple languages. The technique was applied to develop a prototype modeling system, now in use at the U.S. Coast Guard, for the rapid development, documentation, and use of a wide class of models.

Dissert. Abstr.

N91-28770# North Carolina Univ., Chapel Hill. Dept. of Computer Science
PROVIDING COMMON ACCESS MECHANISMS FOR DISSIMILAR NETWORK INTERCONNECTION NODES M.S.
Thesis
JOHN MENGES Feb. 1991 105 p
(Contract N00014-86-K-0680)
(AD-A236830; TR91-013) Avail: NTIS HC/MF A06 CSCL 12/7

Over the past several years, thousands of Local Area Networks (LANs) around the world have been interconnected to form huge computer networks. These interconnections between LANs have been made using a variety of different classes of Interconnection Nodes (INs) made by many different vendors. Management of these essentially similar INs has been more difficult than necessary because of the dissimilar methods required to manage the various IN types. The design and implementation is described of access mechanisms that make it possible to manage the similar aspects of the various IN types in a common manner, without sacrificing the type-specific functions of the various proprietary management systems.

GRA

GENERALIZED HYPERTEXT IN A KNOWLEDGE-BASED DECISION SUPPORT SHELL ENVIRONMENT Ph.D. Thesis
MICHAEL PAUL BIEBER 1990 183 p
Avail: Univ. Microfilms Order No. DA9112535

A decision support system (DSS) shell was developed serving DSS applications in a broad range of fields, such as finance, engineering and manufacturing. The shell uses a hypertext-style, direct manipulation interface for structuring and presenting information. To overcome the manual, static nature traditionally associated with hypertext, generalized hypertext was developed (an extension of standard hypertext to a dynamic, knowledge-based environment). Hypertext was viewed as system-level functionality, and available to all shell applications. In developing generalized hypertext, three of the outstanding hypertext research issues had to be solved: managing virtual hypertext entities, performing computation over a hypertext network during link traversal, and tailoring the hypertext network.

Dissert. Abstr.

N91-29083 Cleveland State Univ., OH.
THE DESIGN OF A CLINICAL LABORATORY INFORMATION SYSTEM Ph.D. Thesis
JOSEPH CHUNGWAN SU 1990 354 p
Avail: Univ. Microfilms Order No. DA9113974

The design of a truly distributed clinical laboratory information system based on the use of personal computers in a bus-type local area network is presented. The system-wide file management system will allow the efficient access of data stored in one computer by any other computer on the network. Functions of this system such as test requests, accession number generation, instrument loading list generation and draft list generation will be very versatile.

Dissert. Abstr.

N91-29084 Glasgow Univ. (Scotland).
INFORMATION MANAGEMENT: A UNIFORM CONCEPTUAL MODEL AND ITS USER INTERFACE Ph.D. Thesis
SUNDAY OLUSEGUN OJO 1985 272 p
Avail: Univ. Microfilms Order No. BRDX91907

Some existing approaches to conceptual data modeling are reviewed. A conceptual modeling framework is developed which is based on the idea of conceptual model semantics in linguistics theory. This consists of a Conceptual Schema model, the syntactic embodiment of which is a Conceptual Schema specification language. This approach adopts the principle of Schema unification which enables the orthogonal treatment of various aspects of information management. This principle was used as a means to achieving the goal of Schema reliability, evolvability, usability, and reliability.

Dissert. Abstr.

N91-29391# National Inst. of Standards and Technology, Gaithersburg, MD.
CONFIGURATION MANAGEMENT CONCEPTS DOCUMENT.
NATIONAL PDES TESTBED REPORT SERIES
S. B. KATZ Apr. 1991 33 p
(PB91-194480; NISTIR-4538) Avail: NTIS HC/MF A03 CSCL 13/2

The purpose is to establish Configuration Management (CM) concepts to be applied in support of the development of the Standard for the Exchange of Product Model Data (STEP). Configuration management is the management of change. It is a
formal discipline which provides methods and tools to: identify components, versions and baselines of selected items; and control changes to those items. CM provides a method for logically grouping related components throughout the various stages of product development; it also provides visibility and traceability for the evolving status of each item. An effective CM system thus identifies, controls, records, and reports on any functional, physical or status changes to the controlled items.

Author

This report describes the research and development of PC Dugout, a transparent software application for the distribution and control of applications on the Programming, Administration, and Execution (PAX) system. PC Dugout is designed to aid in the running automatically parallelized numerical programs. As the basis for this work, we analyze the needs for synchronization support for automatically parallelized numerical programs. As the basis for this work, we analyze the needs for synchronization support for automatically parallelized numerical programs. The needs are due to task management, loop scheduling, barriers, and data dependency handling. We present synchronization algorithms for efficient execution of programs with nested parallel loops. Next, we identify how existing parallel hardware synchronization primitives can be used to satisfy these software synchronization needs. The synchronization primitives studied are test and set, fetch and add, exchange-byte and synchronization bus implementation of lock/unlock operations. Lastly, we ran experiments to quantify the impact of various architectural support on the performance of a bus-based shared memory multiprocessor running automatically parallelized numerical programs. We found that supporting an atomic fetch and add primitive in shared memory is as effective as supporting lock/unlock operations with a synchronization bus. Both achieve substantial performance improvement over the cases where atomic test and set and exchange-byte operations are supported in shared memory.

Author

This paper studies the performance implications of architectural synchronization support for automatically parallelized numerical programs. As the basis for this work, we analyze the needs for synchronization in automatically parallelized numerical programs. The needs are due to task management, loop scheduling, barriers, and data dependency handling. We present synchronization algorithms for efficient execution of programs with nested parallel loops. Next, we identify how existing parallel hardware synchronization primitives can be used to satisfy these software synchronization needs. The synchronization primitives studied are test and set, fetch and add, exchange-byte and synchronization bus implementation of lock/unlock operations. Lastly, we ran experiments to quantify the impact of various architectural support on the performance of a bus-based shared memory multiprocessor running automatically parallelized numerical programs. We found that supporting an atomic fetch and add primitive in shared memory is as effective as supporting lock/unlock operations with a synchronization bus. Both achieve substantial performance improvement over the cases where atomic test and set and exchange-byte operations are supported in shared memory.

Author

This paper studies the performance implications of architectural synchronization support for automatically parallelized numerical programs. As the basis for this work, we analyze the needs for synchronization in automatically parallelized numerical programs. The needs are due to task management, loop scheduling, barriers, and data dependency handling. We present synchronization algorithms for efficient execution of programs with nested parallel loops. Next, we identify how existing parallel hardware synchronization primitives can be used to satisfy these software synchronization needs. The synchronization primitives studied are test and set, fetch and add, exchange-byte and synchronization bus implementation of lock/unlock operations. Lastly, we ran experiments to quantify the impact of various architectural support on the performance of a bus-based shared memory multiprocessor running automatically parallelized numerical programs. We found that supporting an atomic fetch and add primitive in shared memory is as effective as supporting lock/unlock operations with a synchronization bus. Both achieve substantial performance improvement over the cases where atomic test and set and exchange-byte operations are supported in shared memory.

Author

A hardcopy version of the EPA Information Systems Inventory (ISI) data base is presented. The ISI data base is maintained on an IBM PC and an Apple Macintosh and currently holds roughly 500 records. The ISI was developed to enhance the Agency's ability to track major information systems, facilitate the sharing of information across media and program boundaries and improve the Agency's oversight of information systems development. For each system in the Inventory, the following information is included: system identification, descriptors of data base content, and administrative data about access and legal authorities.

Author

Sandia National Laboratories is a large multi-program DOE laboratory. The Recorded Information Management Division (RIDM) has an expanding mission to meet Sandia's needs for cost-effective management of information from creation to final disposition in accordance with applicable regulations and requirements. An analysis based on the need to meet requirements and to improve business practice was successful in convincing management to allocate increased resources to the RIDM Compliance Project.

DOE

This report presents the results of a study performed by Gartner Group, Inc. for the U.S. Department of Energy (DOE), through a contract with the Los Alamos National Laboratory (LANL). The purpose of the study is to estimate the economic impact of the Federal High Performance Computing and Communications (HPCC) Program which was proposed by the Office of Science and Technology Policy (OSTP), Executive Office of the President, on September 8, 1989. That Program is an implementation of the
Research and Development Strategy for High Performance Computing, which was transmitted to Congress by OSTP on November 20, 1988. The objective of this Gartner Group study to provide an assessment of the likely economic impact and benefits of the Federal HPCC Program and the risks of non-support of this program. The goals of the HPCC Program are to: support computational advances through R and D effort; Reduce uncertainties to industry through increased cooperation and continued use of government as a market for High Performance Computing (HPC) prototypes; Support underlying research, network, and computational infrastructures; and support the U.S. human resource base.

An explosion of information has created a crisis for today's information age. It has to be determined how to use the best available information sources, tools, and technology. To do this it is necessary to have leadership at the interagency level to promote a coherent information policy. It is also important to find ways to educate the users of information regarding the tools available to them. Advances in technology resulted in efforts to shift from Disciplinary and Mission-oriented Systems to Decision Support Systems and Personalized Information Systems. One such effort is being made by the Interagency Working Group on Data Management for Global Change (IAGDMG). Five federal agencies - the Department of Commerce (DOC), Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Library of Medicine (NLM), and Department of Defense (DOD) - have an ongoing cooperative information management group, CENDI (Commerce, Energy, NASA, NLM, and Defense Information), that is meeting the challenge of coordinating and integrating their information management systems. Although it is beginning to be technically feasible to have a system with text, bibliographic, and numeric data online for the user to manipulate at the user's own workstation, it will require national recognition that the resource investment in such a system is worthwhile, in order to promote its full development. It also requires close cooperation between the producers and users of the information - that is, the research and policy community, and the information community. National resources need to be mobilized in a coordinated manner to move people into the next generation of information support systems.

A guide is provided to system security with emphasis on requirements and guidelines that are necessary to maintain an acceptable level of security on the network. To have security for the network, each node on the network must be secure. Therefore, each system manager, must strictly adhere to the requirements and must consider implementing the guidelines discussed. There are areas of vulnerability within the operating system that may not be addressed. However, when a requirement or guideline is discussed, implementation techniques are included. Information related to computer and data security is discussed to provide information on implementation options. The information is presented as it relates to a VAX computer environment. Author
The following subject areas are covered: GMD's research program and commitment to international IT research cooperation and transfer; the promotion of information technology research by the German government; European R and D in information technology.

Author

CHRISTINE DELCOURT (GIP Altair, France) and ROBERTO (ICC) FOR AN OBJECT ORIENTED DATABASE SYSTEM

THE DESIGN OF AN INTEGRITY CONSISTENCY CHECKER

The information is distributed in space and time and is subject to uncertainty and incompleteness. The process of combining multi-sensor data into a model of the domain of interest is known as data fusion. Initial insight into the ground that has to be covered by a system that will support data fusion is outlined. Tasks associated with intelligence processing are reviewed. Several views on data fusion are discussed. Various methods and techniques from the areas of databases, artificial intelligence and probability theory that may provide solutions for dealing with some of the problems pertaining to multi-sensor data fusion are presented.

Author

DATA FUSION: A PRELIMINARY STUDY Final Report

A. P. KEENE and M. PERRE Dec. 1990 58 p

(FEL-90-B356; TD-90-4515; ETN-91-99817) Copyright: Avail: Physics and Electronics Lab. TNO, P.O. Box 96864, 2509 JG The Hague, Netherlands

Military intelligence processing is an increasingly complex domain, due to the incorporation of data from multiple sensors. The information is distributed in space and time and is subject to uncertainty and incompleteness. The process of combining multi-sensor data into a model of the domain of interest is known as data fusion. Initial insight into the ground that has to be covered by a system that will support data fusion is outlined. Tasks associated with intelligence processing are reviewed. Several views on data fusion are discussed. Various methods and techniques from the areas of databases, artificial intelligence and probability theory that may provide solutions for dealing with some of the problems pertaining to multi-sensor data fusion are presented.

Author

N91-31762# Manchester Univ. (England). School of Management.

DEVELOPMENTS IN MEDICAL AUDIT IN HOSPITALS IN THE NATIONAL HEALTH SERVICE M.S. Thesis

M. DJUMIC 1990 214 p

(ETN-91-99884) Copyright: Avail: NTIS HC/MF A10

The current work on establishing comprehensive medical audit, focusing in particular on the role of information systems in the development of medical audit, the problems with outcome measurement, the perceived implications of medical audit for clinical freedom and the relationship of the activity to other reforms affecting the NHS (National Health Service, United Kingdom), is reviewed. In addition to a comprehensive review of the literature on medical audit, the study involved interviews with clinicians and management staffs.

Author

ZICARI 29 Nov. 1990 28 p

(REPT-91-021; ETN-91-99767) Avail: Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Schema evolution is an important facility in object oriented databases. Updates should not result in inconsistencies either in the schema or in the database. A tool called ICC, which ensures the structural consistency when updating an object oriented database system is presented. The tool is implemented to evaluate the correctness of schema updates for the O2 object oriented database system.

Author

N91-31995 Politecnico di Milano (Italy). Dipartimento di Elettronica.

HYPERTEXT DEVELOPMENT USING A MODEL-BASED APPROACH

ANDREA CALOINI, FRANCA GARZOTTO, PAOLO PAOLINI, and DANIEL SCHWABE (Pontificia Univ Catolica, Rio de Janeiro Brazil) 1990 42 p Sponsored in part by Instituto de Pesquisas Espaciais

(REPT-90-074; ETN-91-99515) Avail: Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Hyertext development is still for the most part at the handcrafting level, where each hypertext document must be hand designed. A compiler which takes hyperdocuments designed using a model based approach and generates stacks executable in HyperCard is presented. This compiler is implemented in standard SQL over a relational database representation of a hyperdocument designed using the Hypermedia Design Model (HDM). The compiling approach, even though illustrated with HDM, can be used with any structures design methodology.

Author

N91-32377# Tecnologica S.A., La Laguna (Spain).

SPACE FLIGHT COMPONENTS DATABASE [BASE DE DONNEES POUR COMPOSANTS HAUTE FIABILITE]

JOSE M. GALDO and JOSE A. IZQUIERDO In ESA, ESA Electronic Components Conference p 545-547 Mar. 1991 In SPANISH

Copyright: Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

A space flight components data base is described. The data base included information on high fidelity components not found in manufacturers' data books. Technological data, component description, specifications and radiation tolerance of high fidelity components are included in the data base. Qualification status, flight histories, evaluation results, failure analysis and other quality related data are included. Commercial aspects such as delivery time and manufacturer information are presented.

Author

N91-32665# Alabama Univ., Huntsville.

ADVANCED VISUALIZATION TECHNIQUES

Avail: NTIS HC/MF A05 CSCL 09/2

The scientific computing needs of the Earth Science and Application Division (ESAD) were evaluated, and it was determined whether the existing visualization environment provides the proper tools for meeting those needs. Some of the deficiencies were corrected using off-the-shelf software. The following subject areas are covered: (1) evaluation of visualization environment at ESAD; (2) definition of science needs; (3) evaluation of available software/hardware; and (4) definition of software development environment.

Author

N91-32817# Research Inst. for Advanced Computer Science, Moffett Field, CA.

SAVING ALL THE BITS

PETER J. DENNING 15 Oct. 1990 15 p Submitted for publication

(Contract NCC2-387)

(NASA-CR-188879; NAS 1.26:188879; RIACS-TR-90-44) Avail: NTIS HC/MF A03 CSCL 09/2

The scientific tradition of saving all the data from experiments...
This includes providing suggestions for the contents of Operating tasks that should be required of the contractor. GRA principles within the program office, and of Statement of Work to describe the specific applications of configuration management processes for the program in full-scale development are discussed.

identification, configuration audits, change management, and processes that comprise configuration management: configuration the systems engineering process. The handbook then proceeds system that complements the technical actions undertaken during the development and design of the product. Configuration a program is developed and the role of systems engineering in discussing the system acquisition life cycle as the domain in which development. The handbook can be used as a training document for in-coming personnel to a program office. It begins by briefly principles of configuration management to a product under offices and configuration management personnel apply the Manager's Handbook that is intended to assist Air Force program (Contract NCC2-387) (NASA-CR-188886; NAS 1.26:188886; RIACS-TR-91-04) Avail: NTIS HC/MF A03 CSCL 09/2

The ongoing debate over the role of formalism and formal specifications in software features many speakers with diverse positions. Yet, in the end, they share the conviction that the requirements of a software system can be unambiguously specified, that acceptable software is a product demonstrably meeting the specifications, and that the design process can be carried out with little interaction between designers and users once the specification has been agreed to. This conviction is part of a larger paradigm prevalent in American management thinking, which holds that organizations are systems that can be precisely specified and optimized. This paradigm, which traces historically to the works of Frederick Taylor in the early 1900s, is no longer sufficient for organizations and software systems today. In the domain of software, a new paradigm, called user-centered design, overcomes the limitations of pure formalism. Pioneered in Scandinavia, user-centered design is spreading through Europe and is beginning to make its way into the U.S. Author

The history and current status of space R&D work at an Italian aerospace electronics firm are reviewed and illustrated with extensive photographs. Projects discussed include the data-processing systems for ESA scientific satellites (ESRO IV, COS-B, and Exosat), satellite communication systems (Italisat, Olympus, Sarit and SAT 2), the ESA Data Relay Satellite, and the ALOS satellite-based civil-defense and disaster-relief network. Consideration is given to the military programs SICRAL and Helios, the Meteosat and ERS-1 remote-sensing satellites, the functional electronics and crew-escape-module electrical system for Hermes, and the data-management and telecommunications system for Columbus.

The factors that led Battelle to establish its Center for High Speed Commercial Flight, the international inquiry phase, and the conclusions reached are presented. The characteristics and purposes of an international collaboration program that was defined and marketed, and how well this was received, are discussed. U.S. manufacturers, financial institutions, operators, and government institutions were provided with a joint forum as they pursued the possibilities of developing a commercially viable, environmentally acceptable high speed commercial transport. The Center’s program and its outcome are described, along with the prospects for international collaboration.

A CASE STUDY IN FOSTERING INTERNATIONAL HSCT COLLABORATION

JAMES P. LOOMIS and ROBERT F. BESTGEN (Battelle Memorial Institute, Columbus, OH) IN: European Symposium on the Future of High Speed Air Transport, Strasbourg, France, Nov. 6-8, 1989, Proceedings. Toulouse, France, Cepadues-Editions, 1990, p. 231-236. Copyright

The ongoing debate over the role of formalism and formal specifications in software features many speakers with diverse positions. Yet, in the end, they share the conviction that the requirements of a software system can be unambiguously specified, that acceptable software is a product demonstrably meeting the specifications, and that the design process can be carried out with little interaction between designers and users once the specification has been agreed to. This conviction is part of a larger paradigm prevalent in American management thinking, which holds that organizations are systems that can be precisely specified and optimized. This paradigm, which traces historically to the works of Frederick Taylor in the early 1900s, is no longer sufficient for organizations and software systems today. In the domain of software, a new paradigm, called user-centered design, overcomes the limitations of pure formalism. Pioneered in Scandinavia, user-centered design is spreading through Europe and is beginning to make its way into the U.S. Author

A CASE STUDY IN FOSTERING INTERNATIONAL HSCT COLLABORATION

JAMES P. LOOMIS and ROBERT F. BESTGEN (Battelle Memorial Institute, Columbus, OH) IN: European Symposium on the Future of High Speed Air Transport, Strasbourg, France, Nov. 6-8, 1989, Proceedings. Toulouse, France, Cepadues-Editions, 1990, p. 231-236. Copyright

The factors that led Battelle to establish its Center for High Speed Commercial Flight, the international inquiry phase, and the conclusions reached are presented. The characteristics and purposes of an international collaboration program that was defined and marketed, and how well this was received, are discussed. U.S. manufacturers, financial institutions, operators, and government institutions were provided with a joint forum as they pursued the possibilities of developing a commercially viable, environmentally acceptable high speed commercial transport. The Center’s program and its outcome are described, along with the prospects for international collaboration.

R.E.P.
A TECHNOLOGY ASSESSMENT OF ALTERNATIVE COMMUNICATIONS SYSTEMS FOR THE SPACE EXPLORATION INITIATIVE

Telemcommunications, Navigation, and Information Management (TNIM) services are vital to accomplish the ambitious goals of the Space Exploration Initiative (SEI). A technology assessment is provided for four alternative lunar and Mars operational TNIM systems based on detailed communications link analyses. The four alternative systems range from a minimum to a fully enhanced capability and use frequencies from S-band, through Ka-band, and up to optical wavelengths. Included are technology development schedules as they relate to present SEI mission architecture time frames. Author

NACP 144324# NACP MATERIALS AND STRUCTURES AUGMENTATION PROGRAM (NIMASP) OVERVIEW

A status evaluation and organizational advantages assessment is conducted for the NACP Materials and Structures Augmentation Program (NIMASP), which endeavors to coordinate the structural materials R&D efforts of all five NACP contractors in order to accelerate to development of the proof-of-concept X-30 research vehicle. Attention is given to the guiding principles of NIMASP program management and its achievements to date in the development of SiC fiber-reinforced Ti-alloy matrix composites and monolithic titanium aluminide alloys, as well as in expediting technology transfer throughout the five primary contractors and their subcontractors. O.C.

A91-16712# IMPLEMENTATION OF A SECURE MULTI-PROJECT LABORATORY FACILITY

A secure, multiproject facility named the Integrated Technology Development Laboratories (ITDL) has been built. This paper gives some background information on how the ITDL came into existence, along with methods developed to provide for security and laboratory operations. Some details are discussed on the types of resources that are shared between projects, the software design, the hardware design, the power and ground, the communication system, and the configuration management needed to support secure, rapid configuration changes. The facility organization and logistics are also outlined. Author

A91-16900# NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Lewis Research Center, Cleveland, OH.

SPECLATING ON SPACE FUTURES

MARC G. MILLIS (NASA, Lewis Research Center, Cleveland, OH) Space Policy (ISSN 0265-9649), vol. 6, Nov. 1990, p. 353-356. Copyright

A volunteer group of engineers and scientists at NASA's Lewis Research Center is trying to push the frontiers of aerospace science and technology beyond the realm of conventional methods and concepts. The first step is to provide a supportive environment for ideas that are too speculative or high risk to warrant formal organizational responsibility. This report describes the motivation, birth and experiences of this group. Author

U.S. SPACE RESEARCH PROGRAMS - FUTURE PROSPECTS

LOUIS J. LANZEROTTI (AT&T Bell Laboratories, Murray Hill, NJ) Aviation, Space, and Environmental Medicine (ISSN 0095-6562), vol. 61, Nov. 1990, p. 1052-1057. Copyright

In this paper, some of the major space research activities which are planned to occur over the next few years are described together with an analysis of the stresses affecting portions of the space research program. The causes of the stress include the trend toward large facilities (meaning that resources must, of necessity, be targeted into certain research directions), the fact that the perceived scientific possibilities exceed available resources, the effects of program delays and stretch-outs, and fewer opportunities for spaceflight experiments. Special attention is given to the procedures by which the aerospace research community decides to investigate the issues of biological and medical relevance in space and to the ways in which these research agenda mesh with those from other space research disciplines. I.S.
and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

L.K.S.

The flow of U.S. government-funded and foreign scientific and technical information (STI) through libraries and related facilities to users in government and industry is examined, summarizing preliminary results of Phase 2 of the NASA/DOD Aerospace Knowledge Diffusion Research Project (NAKDPRP). The design and objectives of NAKDPRP are reviewed; the NAKDPRP model of STI transfer among producers, STI intermediaries, surrogates (technical report repositories or clearinghouses), and users is explained and illustrated with diagrams; and particular attention is given to the organization and operation of aerospace libraries. In a survey of North American libraries it was found that 25-30 percent of libraries regularly receive technical reports from ESA and the UK; the corresponding figures for Germany and for France, Sweden, and Japan are 18 and 5 percent, respectively. Also included is a series of bar graphs showing the librarians' assessments of the quality and use of NASA Technical Reports.

T.K.

The paper concentrates on the commercial development of space programs through cooperative research with the U.S. universities and industry. The origins of the programs are discussed, beginning with the Communication Satellite Act of 1963. The National Space Policy is outlined, and the creation of NASA's Office of Commercial Programs is emphasized, along with its Centers for the Commercial Development of Space. It is noted that the centers are consortia of university, industry, and government involved in commercial-space-technology database development and research and testing of potentially valuable products and services. The center titles, locations, and brief descriptions for such areas of research as remote sensing, life sciences, materials processing, space power, space propulsion, materials and space structures, and automation and robotics centers are listed, along with some results of the programs. V.T.

A91-26060 ON INNOVATION, ERROR AND SPACE EXPLORATION JESKO A. VON WINDHEIM (Guelph, University, Canada) Space Power - Resources, Manufacturing and Development (ISSN 0893-6272), vol. 9, no. 4, 1990, p. 323, 324. Copyright

Exploration of space will pose one of the largest technological and scientific challenges for mankind in the 21st century. The success of space programs will largely depend on meeting these challenges as well as developing broadly based popular support for the objectives of these programs. In order to do this, a new approach must be taken to involve business, academia, industry, and the public more directly in the space program. Emphasis must be placed on improving access to space, reducing the bureaucracy involved with space research, and focusing on technology development that will have applications in space as well as on earth.

Author

A91-26935 TECHNOLOGY TRANSFER IN MULTI-ORGANIZATIONAL ENVIRONMENTS - THE CASE OF R&D CONSORTIA RAYMOND W. SMILOR and DAVID V. GIBSON (Texas, University, Austin) IEEE Transactions on Engineering Management (ISSN 0018-9391), vol. 38, Feb. 1991, p. 3-13. refs Copyright

Research consortia represent a new organizational form which clarifies and highlights barriers and solutions to efficient and timely technology transfer. Using interview, archival, and survey data, it is suggested that four variables-communication, distance, equivocality, and motivation-are central to technology transfer processes within and between organizations. Managerial implications are presented in terms of a technology transfer grid which depicts different combinations of these variables. I.E.

A91-29087 RESEARCH MANAGEMENT TODAY JOHN J. GILMAN (California, University, Berkeley) Physics Today (ISSN 0031-9228), vol. 44, March 1991, p. 42-48. refs Copyright

While there are strong tendencies to homogenize organizations for administrative convenience, it is presently suggested that large, homogeneous research laboratories are as hampered in efforts to invent efficiently as large instrumental ensembles are in improvising music; in both cases, special internal structuring in the direction of smaller ensembles can markedly improve productivity. Small, informal groupings are noted to have persistently yielded research-innovation productivities well above those of their parent organization. The present meditation on research management gives attention to managing directors, who must function in ways analogous to those of orchestral conductors. O.C.

A91-29698 RISK ASSESSMENT AND PROGRAM MANAGEMENT JEROLD M. HABER IN: Aerospace Testing Seminar, 12th, Manhattan Beach, CA, Mar. 13-15, 1990. Proceedings. Mount Prospect, IL, Institute of Environmental Sciences, 1990, p. 31-38. The application of risk-assessment (RA) methods to aerospace development programs is described and illustrated with extensive diagrams. The basic RA concepts are defined (hazard, exposure, vulnerability, and risk acceptability criteria); the analysis of a product development program in terms of the general environment and the contractor's work force, assets, and deliverables is explained; the construction of a risk estimation model is outlined; and different RA techniques are compared. A typical RA application involving a government procurement program with an artificially large number of risk sources is discussed in detail, with an emphasis on the value of RA for Total Quality Management. T.K.

A91-29723 THE SPACE SHUTTLE'S FAMILY TREE RICHARD P. HALLION (USAF, Wright-Patterson AFB, OH) Air and Space (ISSN 0886-2257), vol. 6, Apr.-May 1991, p. 44-46. Copyright

An overview is presented of the origin and development of the Space Shuttle and the significant part played by NASA, DOD and the U.S. aerospace industry in its evolution. NASA's civil space applications were aimed toward designs with low lift-to-drag ratios such as lifting bodies and capsules, while the USAF missions were looking toward flyable spacecraft with greater lift capability. Phase A of the Shuttle's development began in 1968 when the Manned Spacecraft Center issued a joint request for proposal to study an Integral Launch and Reentry Vehicle System that could launch 50,000 lb payloads into orbits of at least 115 miles altitude. A model O4OC called for new high-pressure engines to meet higher payload weights requested by the military; this model defined what eventually became the Shuttle. Phase B brought forth the concept of using a hydrogen fuel in external tanks. A solid-fuel booster with a 13 ft diameter was developed as the candidate for the solid-fuel portion of the booster. Production of the Space Shuttle was begun in 1974 and OV-101, a test vehicle named Enterprise, was completed in September 1976.

R.E.P.
companies in the United States and Canada have announced that they have succeeded in signing contracts for joint procurement of two domestic mobile-service satellites. The aim is to provide travelers in North America with cellular-quality digital voice communications via public switched telephone networks no matter how remote their location. Various aspects of this project are discussed, including the number of subscribers, the procurement process, the satellite specification, and the launch arrangements.

B.J.

A91-34024
PREPARATORY PROGRAMS FOR THE INTERNATIONAL SPACE STATION UTILIZATION - EMPHASIS ON THE FRENCH PROGRAM

Copyright
Preparatory programs for the utilization of the International Space Station (ISS) and the Columbus laboratory are discussed, with special attention given to the differences between the parameters of the current project design and those of the presently available space systems including the Soviet systems. These differences are both quantitative (i.e., more diverse and ambitious objectives of the ISS) and qualitative (many new elements will be developed in parallel with the flight segment of the ISS).

I.S.

A91-34113* National Technical Information Service, Springfield, VA.

CENDI - A STRATEGIC INTERAGENCY ALLIANCE IN THE 1990S

Copyright
The goals, functions, and accomplishments of the CENDI Group, a government interagency cooperative organization formed to improve federal research and development productivity and R&D information management systems through information exchange, are briefly reviewed. The five member agencies are the Departments of Commerce, Energy, Defense, and Health and Human Services, and NASA. CENDI provides a means for its members to share technologies, resources, ideas, information, management activities, and standards. The top priorities of CENDI are: work with R&D managers to improve productivity; provide technical data and information to all users; improve the effectiveness and efficiency of all CENDI agency operations; and familiarize R&D managers and policy makers with the value of STI.

V.L.

A91-36351# WRIGHT LABORATORY
ALAN S. BROWN (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) Aerospace America (ISSN 0740-722X), vol. 29, May 1991, p. 8-10.

Copyright
A review is presented of past and present aerospace research conducted at Wright Laboratory. Some of the advanced projects under study include turbines with twice the thrust/weight ratio of today's aircraft engines, flight helmets that reconstitute reality as a computer-enhanced simulation on their darkened inner walls, and hypersonic aircraft that fly from New York to Philadelphia in 90 seconds. The two major research programs being investigated are the National Aerospace Plane and the Integrated High-Performance Turbine Engine Technology effort, whose principal goal is to develop a flow of new technologies that can
be integrated into turbine design. Attention is given to the research and development of composite materials and the important role they play in all of these advanced projects. R.E.P.

A91-37930 National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

POWER SYSTEM REQUIREMENTS AND DEFINITION FOR LUNAR AND MARS OUTPOSTS

Candidate power systems being considered for outpost facilities (stationary power systems) and vehicles (mobile systems) are discussed, including solar, chemical, isotopic, and reactor. The current power strategy was an initial outpost power system composed of photovoltaic arrays for daytime energy needs and regenerative fuel cells for power during the long lunar night. As day and night power demands grow, the outpost transitions to nuclear-based power generation, using thermoelectric conversion initially and evolving to a dynamic conversion system. With this concept as a guideline, a set of requirements has been established, and a reference definition of candidate power systems meeting these requirements has been identified. I.E.

A91-38088 National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH.

NASA AEROSPACE FLIGHT BATTERY SYSTEMS PROGRAM

The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance and reliability of batteries for space power systems. The program plan has been modified in the past year to reflect changes in the agency’s approach to battery related problems that are affecting flight programs. Primary attention in the Battery Program is being devoted to the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs. As part of a unified Battery Program, the development of a nickel-hydrogen standard cell and primary cell issues are also being pursued to provide high-performance NASA Standards and space qualified state-of-the-art primary cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

Author

A91-41643

TRENDS IN AIRCRAFT ENGINE MATERIALS

The consequences of changing aircraft engine material requirements are discussed as well as various approaches taken to address these changes. A list of engine programs through 2005 is presented. It is suggested that a balanced allocation of resources between evolutionary, improved value, and revolutionary materials is necessary to retain the competitiveness of the airline industry.

K.K.

A91-43036

A SERIES ON THE EUROPEAN COMMUNICATION SATELLITE PROGRAM: I - HISTORICAL BACKGROUND AND START OF THE TELECOM PROGRAMME

JOACHIM MUELLER (UN, Financial Services, Vienna, Austria) Space Communications (ISSN 0924-8625), vol. 8, May 1991, p. 105-140. refs Copyright

The evolution of the European Communication Satellite Program is examined for the period of 1964-1971 in the context of national activities focusing, on collaborative ventures as an alternative to national projects and government funding of communication satellite technology as compared with private initiatives. Topics discussed include policy-making at government level, project management by ESRO/ESA, and industrial implementation and system utilization. O.G.

A91-52246

AIAA TECHNICAL COMMITTEE ON MULTIDISCIPLINARY DESIGN OPTIMIZATION (MDO) - WHITE PAPER ON CURRENT STATE OF THE ART

Washington, DC, American Institute of Aeronautics and Astronautics, Jan. 15, 1991, 51 p. refs Copyright

Multidisciplinary design optimization (MDO) is reviewed in terms of the need for technological integration, recent advances in the mathematically based MDO systems and methodologies, and directions for research and development. The use of MDO in the aerospace industry is first considered historically, and the multidisciplinary character of the design process is emphasized. Design considerations related to human interface and computing are set forth to underscore the essential nature of these aspects. In addressing the issues of aerospace design, the MDO approach relies primarily on sensitivity analyses and optimization methods. A list of ten characteristics of the concurrent engineering process is given, and each item is addressed in terms of the corresponding MDO contribution. MDO is essentially an environment in which human, mathematics, and computer factors can be effectively combined to make sound design decisions. C.C.S.

A91-55817

TOWN PLANNING FOR THE PACIFIC SPACE PORT

A Pacific spaceport (PS) concept is presented, focusing on function planning of the city. The city structure of the PS comprises research and business park structures, a PS management structure, and a world network structure. An international spaceport is viewed as a city which is constructed as the means of implementing various space projects. O.G.

A91-56215

AN INTERNATIONAL STUDENT COMPETITION IN AIR BREATHING ENGINE DESIGN AND DEVELOPMENT

The pressure for increasing the performance of air-breathing engines and ever widening the operational envelopes has placed a premium on innovation and originality in problem solution. To this end the engineering educational systems in all countries of the world are charged with developing graduates who are not constrained by conventional or traditional approaches but rather seek a better, more efficient, less costly way to solve problems facing the propulsion engineer. The objective of the current paper is formulation of a proposal for a method of encouraging among teachers and students; education, involvement and purposeful effort in creative activity in air-breathing engine technology through a competitive undertaking on a progressively structured institutional, national and international level. There are
a number of paper competition programs involving the participation of students at both the undergraduate and graduate level in place. These are sponsored by educational institutions, industry, and engineering societies. These will be reviewed to evaluate their strong points and weaknesses. Many of these programs stress 'inventive application' to the solution system design problems. The competition should be expanded to address development problems including cycle analysis not necessarily related to a specific design.

Author

A91-56372
A SERIES ON THE EUROPEAN COMMUNICATION SATELLITE PROGRAM. II - THE TELECOM PROJECT OTS. III - THE TELECOM PROGRAMME AND BEYOND

JOACHIM MUELLER (UN, Vienna, Austria) Space Communications (ISSN 0924-8625), vol. 8, July 1991, p. 221-294.

refs

Copyright

Starting from the early activities in 1964, details are given on policy making at government level, project management by ESRO/ESA, industrial implementation, and system utilization. Particular attention is given here to the implementation of the Telecom project OTS up to 1975. Consideration is then given to the completion of the Telecom project ECS and the split in the joint European effort in 1979. A number of recent projects are also reviewed.

O.G.

N91-10865
PUTTING TECHNOLOGY TO WORK, 1990. EXAMPLES OF INDUSTRY-LABORATORY COOPERATION CONTRIBUTING TO OUR NATION'S ECONOMIC STRENGTH

Apr. 1990 94 p

The report was compiled and produced by the Federal Laboratory Consortium, which works to improve and promote technology transfer by assisting businesses and others to identify the 'right' federal laboratory contacts in their fields of infrastructure for cooperation. The document is also a collection of examples from 14 laboratories representing 6 government agencies. A similar document was issued in 1988 and is available through the National Technical Information Service. Both sets of examples are indicative of the full potential for industry-laboratory cooperation to contribute to the nation's economic strength.

N91-11132
INDUSTRY PERSPECTIVE ON MAGLEV Final Report

The report was compiled and produced by the Federal Railroad Administration of the U.S. Department of Transportation. This report presents the results of the study of Maglev technology and potential applications conducted by Little (Arthur D.), Inc., Cambridge, MA. The study was funded by the Federal Railroad Administration of the U.S. Department of Transportation.

I. J. SHELLARD, C. BAXTER, and A. T. JONES

N91-12580
THE PROSPECTS OF AERONAUTICS

J. M. SWIHART

In AGARD, Seminar on the Structure of Aeronautical R/D 24 p May 1990

The 20th century saw the development of sustained effort of many years and so major contributions are useful to begin by reviewing the prospects of aeronautics for the next decades. As is clear from the other papers, the program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

DOE

138
there will be tremendous challenges and opportunities in the coming decades. The essence of the 50th Wright Brothers Lecture, first given in St. Louis, Missouri, USA on 14 September 1987 is contained. The lecture concentrated on civil aeronautics, but of course many identical technical developments apply equally to military and civil aviation. In fact the history of aeronautical development shows that there is an intimate relationship between civil and military aeronautical developments. The developments since 1987, when the paper was written, suggest that the outlook for technical aeronautical developments has not become less and, in fact, the developments may far exceed the expectations of a few years ago.

Author

N91-12582# Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine (France)

AERONAUTICAL R AND D IN SMALLER COUNTRIES
JAN A. VANDERBLIEK In its Seminar on the Structure of Aeronautical R and D 15 p May 1990
Copyright Avail: NTIS HC/ MF A06; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Aeronautics fulfills an important function in education (engineering sciences), industry, traffic and trade. It is quite often considered as a major factor in the economic future of a country, together with electronic computers, atomic energy (recently with more emphasis). This, combined with the necessity to maintain an effective air defense, makes it mandatory for industrially developing countries to evaluate carefully to what extent they want to invest in aeronautics and, more generally, in aerospace. The planning and organization of aeronautical research and development and its role in aeronautics in general are discussed. Special attention is given to the situation of smaller countries. The paper is to a large extent based on experiences gained in Canada, the USA and especially in the Netherlands. Although this experience may be only of limited direct use to industrially developing countries, it may assist in charting the course of those countries.

Author

N91-12585# Office National d'Etudes et de Recherches Aerospatiales, Paris (France)

PLANNING APPLIED RESEARCH IN FRANCE
A. AURIOL In AGARD, Seminar on the Structure of Aeronautical R/D 16 p May 1990
Copyright Avail: NTIS HC/MF A06; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The development of a new weapon system is a very expensive operation. The development process consists of fundamental research, prototype design; and operational testing of the prototype. The organization of the Ministry of Defense; features of armament and aeronautical research; structure of aeronautical industry and transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics, thermoplastics receive more attention because of their increased impact resistance, easy formability, and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods of manufacturing products constructed of MC's. Five target technologies have been identified that could benefit from increased use of MCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

B.G.

N91-12586# Messerschmitt-Boelkow-Blohm G.m.b.H., Brussels (Belgium).

INTERNATIONAL COOPERATION IN AERONAUTICAL RESEARCH AND DEVELOPMENT CARRIED OUT BY INTERNATIONAL ORGANISATIONS
JUERGEN H. WILD In AGARD, Seminar on the Structure of Aeronautical R/D 27 p May 1990
Copyright Avail: NTIS HC/MF A06; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The following subjects are addressed: objectives and structures of cooperative programs; review of cooperative schemes in research and development; description of programs and projects; funding systems schemes for research and technology cooperation; and the specific situation concerning research technology and development in Portugal, Greece, and Turkey.

B.G.

N91-12722# Office of Technology Assessment, Washington, DC

ACCESS TO SPACE: THE FUTURE OF US SPACE TRANSPORTATION SYSTEMS

May 1990 95 p
(PB90-253154; OTA-ISC-415) Avail: NTIS HC/MF A05; also available SOD HC $4.75 as 052-003-01177-8 CSCL 22/1

The Nation's ability to explore space and use the opportunities it offers depends on having a fleet of versatile and reliable launch vehicles. This report, which summarizes the Office of Technological Assessments (OTA's) assessment of space transportation technologies, examines a wide range of potential improvements in safety, reliability, and performance for the Space Shuttle and our fleet of expendable launch vehicles. Decisions taken now will affect the future of spaceflight in the 21st century, when the Nation will need replacements for current launch systems. The report also explores the potential for advanced systems such as an advanced manned launch system, or a national aerospace plane, which could revolutionize access to space.

G.R.A.

N91-12824# Walcoff and Associates, Inc., Alexandria, VA.

POLYMER MATRIX COMPOSITES RESEARCH: A SURVEY OF FEDERALLY SPONSORED PROGRAMS
Jun. 1990 168 p
(Contract DE-AC01-89ER-30152) Avail: NTIS HC/MF A06

This report identifies research conducted by agencies of the Federal Government other than the Department of Energy (DOE) in the area of advanced polymer matrix composites (PMCs). DOE commissioned the report to avoid duplicating other agencies' efforts in planning its own research program for PMCs. PMC materials consist of high-strength, short or continuous fibers fused together by an organic matrix. Compared to traditional structural metals, PMCs provide greater strength and stiffness, reduced weight, and increased heat resistance. The key contributors to PMC research identified by the survey are the Department of Defense (DOD), the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the Department of Transportation (DOT). The survey identified a total of 778 projects. More than half of the total projects identified emphasize materials research with a goal toward developing materials with improved performance. Although an almost equal number of identified materials projects focus on thermosets and thermoplastics, thermoplastics receive more attention because of their increased impact resistance, easy formability, and re-formability. Slightly more than one third of projects identified target structures research. Only 15 percent of the projects identified focus on manufacturing techniques, despite the need for efficient, economical methods of manufacturing products constructed of PMC's. Five target technologies have been identified that could benefit from increased use of MCs: aircraft fuselages, automobile frames, high-speed machinery, electronic packaging, and construction.

DOE
space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

Y.S.

N91-15193/# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Oberpfaffenhofen (Germany, F.R.).

ORGANIZATION AND ACTIVITIES OF THE DLR

HOLF DICK In ESA, Some Papers from the Seminar Mirando al Espacio p 5-10 Jun. 1990

Copyright: Avail: NTIS HC/ MF A05; EPD, ESTEC, Noordwijk, Netherlands, HC 30 Dutch guilders

The activities of the German aerospace research organization are described, including history, location of research centers, short discussion of the main tasks, aeronautics and energy technology. The space activities include space vehicles, space applications, space missions, and space project management. Examples are given.

N91-15202/# Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico).

THE SATEX PROJECT

FRANCISCO JAVIERMENDITAJIMENEZ In ESA, Some Papers from the Seminar Mirando al Espacio p 51-52 Jun. 1990

Copyright: Avail: NTIS HC/ MF A05; EPD, ESTEC, Noordwijk, Netherlands, HC 30 Dutch guilders

A Mexican project on design and development of a low orbit satellite for telecommunications and scientific application is described. The preliminary activities concerning initial design and project planning are presented. The benefits of this project in terms of technology innovation and dissemination is stated. ESA

1989. Each chapter of the Progress Report contains both a statement of research objectives and a summary of research efforts for research projects listed. There are three appendices at the end of the report: Appendix A is a bibliography of RLE publications and papers presented by RLE staff during 1989; Appendix B is a roster of current RLE staff; and Appendix C is an index of RLE sponsors.

G. R.

N91-13051/# Research Inst. for Advanced Computer Science, Moffett Field, CA.

SPACE AND BIOTECHNOLOGY: AN INDUSTRY PROFILE

RICHARD S. JOHNSTON, DAVID J. NORTON, and BALDWIN H. TOM Nov. 1988 93 p

(Contract NCC9-16)

(NASA-CR-187034; NAS 1.26:187034) Avail: NTIS HC/ MF A05

CSCL 06/3

The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry.

Author

N91-13347/# National Aeronautics and Space Administration, Washington, DC.

ISSUES IN NASA PROGRAM AND PROJECT MANAGEMENT

FRANCIS T. HOBSAN, ed. Jul. 1990 57 p

(NASA-SP-6101(03); NAS 1.21:6101(03)) Avail: NTIS HC/ MF A04

CSCL 05/1

This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.

Author

N91-13575/# National Aeronautics and Space Administration, Washington, DC.

MICROGRAVITY STRATEGIC PLAN, 1990

1990 26 p

(NASA-TM-103448; NAS 1.15:103448) Avail: NTIS HC/ MF A03

CSCL 22/1

The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of
field tests and have emerged in Japan in production quantities. These first market entry products use near conventional small I.C. engines and are sized for residential and small commercial building applications. Sales are already in the ten thousands annually, and are increasing. Four major companies are already manufacturing and marketing such units (Yamaha, Yanmar, Asin Seiki, and Sanyo). The Japanese companies and research organizations were much more open and frank about their research activities and progress than anticipated. The new Heat Pump Technology Center of Japan (HPTCJ) was an excellent host and established a positive atmosphere for international dialogue and cooperation. DOE

N91-17050*# National Aeronautics and Space Administration, Washington, DC.

AVIONICS ADVANCED DEVELOPMENT STRATEGY
Avail: NTIS HC/MF A99 CSCL 01/4

Discussed here is the problem of how to put together an integrated, phased, and affordable avionics advanced development program that links and applies to operational, evolving, and developing programs/vehicles, as well as those in the planning phases. Collecting technology needs from programs/vehicles and proposed technology items from individual developers usually results in a mismatch and something that is unaffordable. A strategy to address this problem is outlined with task definitions which will lead to avionics advanced development items that will fit within an overall framework, prioritized to support budgeting, and support the scope of NASA space transportations needs.

N91-17058*# National Aeronautics and Space Administration, Washington, DC.

SYSTEMS ENGINEERING AND INTEGRATION (SE AND I)
Avail: NTIS HC/MF A99 CSCL 02/2

Systems engineering and integration topics are presented in viewgraph form. Requirements, risk, redundancy, standards, costs, tests beds, and operations are covered.

N91-17120 Tennessee Univ., Knoxville.

DESIGN AND DEVELOPMENT OF A SPACE STATION HAZARDOUS MATERIALS INFORMATION SYSTEM FOR ASSESSING CHEMICAL Compatibility Ph.D. Thesis RICHARD THOMAS CONGO 1990 293 p
Avail: Univ. Microfilms Order No. DA9030696

The need for and development of a modeling process which will perform chemical and material compatibility analyses for the Space Station Microgravity and Material Processing Facility (MMFP) is addressed. The modeling process includes development of a data base containing physical, chemical, toxicological, reactive, corrosive, and incompatibility properties for materials to be used in construction of the Space Station Freedom or in experiments to be conducted onboard. The underlying hypothesis of the modeling process is that by knowing the number of chemical incompatibilities, hazards, and corrosivities for any given facility or mission, one can modify or substitute chemicals for a facility or facility in use to reduce the number of chemical incompatibilities, hazards, and corrosivities thus reducing the number of potential safety problems aboard the Space Station MMFP. The proposed process was developed into a computerized system with the aid of a relational data base and the development of application programs. An experiment was performed to validate the proposed model. This experiment consisted of utilizing the computerized system to identify the number of chemical incompatibilities, hazards, and corrosivities for a given facility and a mission. The chemical requirements for the facility were modified utilizing substitute chemicals where appropriate, and the mission set was modified by replacing facilities with substitute facilities. The model was utilized to identify any reduction in the number of chemical incompatibilities, hazards, and corrosivities resulting from the substitutions. The results of the study and the experiments establish both the process and the hypothesis to be accurate.

Dissert. Abstr.

The handbook covers test planning, diagnostic methods, data analysis techniques, and report writing. The handbook begins with sections on test planning issues including work plans, test plans, variable identification, sensitivity analysis, quality assurance, and figures of merit. This is followed by a discussion of diagnostic techniques including temperature, pressure, flow measurement, flow visualization, and emissions monitoring. The handbook also addresses data gathering and reduction techniques. Gathering of transient data is addressed, as is error analysis and data manipulation. Definitions of key variables and figures of merit that can be used to evaluate systems and experimental data are also provided.

N91-17811# National Science Foundation, Washington, DC. Div. of Science Resources Studies.

The subject areas covered are: general notes to the reader; highlights; trends in national R and D support; measures and comparisons of national resources for R and D; national R and D performance patterns - by sector; national R and D performance patterns - by state; character of work; R and D scientists and engineers; and appendices.

Author

N91-17883*# National Aeronautics and Space Administration, Washington, DC.

Three broad themes characterize the goals of the Astrophysics Division at NASA. These are obtaining an understanding of the origin and evolution of the universe, the fundamental laws of physics, and the origin and evolution of the universe, the fundamental laws of physics, and the origin and evolution of planets and stars. These goals are pursued through contemporaneous observations across the electromagnetic spectrum with high sensitivity and resolution. The strategy to accomplish these goals is fourfold: the establishment of long term space based observatories implemented through the Great Observatories program; attainment of crucial bridging and supporting measurements via missions of intermediate and small scope conducted within the Explorer, Spacelab, and Space Station Attached Payload Programs; enhancement of scientific access to results of space based research activities through an integrated data system; and development and maintenance of the scientific/technical base for space astrophysics programs through the research and analysis and suborbital programs. The near term activities supporting the first two objectives are discussed. ESA

N91-18169*# Purdue Univ., West Lafayette, IN

Avail: NTIS HC/MF A14 CSCL 01/3
The design of a High Speed Business Transport (HSBT) was considered by the Aeronautical Design Class during the academic year 1989 to 1990. The project was chosen to offer an opportunity to develop user friendliness for some computer codes such as WAVE DRAG, supplied by NASA/Langley, and to experiment with several design lessons developed by Dr. John McMasters and his colleagues at Boeing. Central to these design lessons was an appeal to marketing and feasibility considerations. There was an emphasis upon simplified analytical techniques to study trades and to stimulate creative thinking before committing to extensive analytical activity. Two designs stood out among all the rest because of the depth of thought and consideration of alternatives. One design, the Aurora, used a fixed wing design to satisfy the design mission; the Viero used a swept wing configuration to overcome problems related to supersonic flight. A summary of each of these two designs is given.

Author

N91-18206# European Space Agency, Paris (France).

SOME COMMENTS ON MULTILATERAL COOPERATION
In its Manned Space Stations: Their Construction, Operation and Potential Applications p 117-119 Nov. 1990
Copyright Avail: NTIS HC/MF A06; EPD, ESTEC, Noordwijk, Netherlands, HC 40 Dutch guilders

The financing of manned space stations and the pros and cons of multinational cooperation are discussed. Launching and operating these manned space stations is essentially a totally government-funded venture, since no private company is prepared to invest in them until adequate revenues can be expected in the short term. However the government funded nature and very high costs involved means delays and budgetary cuts can seriously hinder and delay proceedings. When international cooperation is involved, for example the Space Station Freedom, one country’s cut can seriously affect another country’s budget. Naturally there are advantages to international cooperation from the scientific point of view since combining intellectual, technological, and economic resources allows advances to be made faster and more efficiently. It is stated that the need for every partner to receive ‘reciprocal benefits’ is the best formula for cooperation.

Author

N91-19319# National Aeronautics and Space Administration, Washington, DC.

MICROGRAVITY STRATEGIC PLAN, 1988
CSCL 22/1

The NASA agency-wide microgravity strategic plan is presented, and its research, applications, and commercialization for the 1990’s is addressed. The plan presents an analysis of the current situation, identifies critical factors, and defines goals, objectives, and strategies, which are intended to: (1) provide a context for decision making; (2) assure realism in long-range planning and direction for hardware development; and (3) establish a framework for developing a national microgravity research plan. Author

N91-19506# Oak Ridge National Lab., TN.

A SUMMARY OF THE STATUS OF BIOMASS CONVERSION TECHNOLOGIES AND OPPORTUNITIES FOR THEIR USE IN DEVELOPING COUNTRIES
(Contract DE-AC05-84OR-21400) (DE91-006341; CONF-901269-1) Avail: NTIS HC/MF A03

Biomass plays a significant role in energy use in developing countries; however, these resources are often used very inefficiently. Recent technology developments have made possible improved conversion efficiencies for utility scale technologies. These developments may be of interest in the wake of recent policy changes occurring in several developing countries, with respect to independent power production. Efforts are also being directed at developing biomass conversion technologies that can interface and/or compete with internal combustion engines for small, isolated loads. The technological status is reviewed of biomass conversion technologies appropriate for commercial, industrial, and small utility applications in developing countries. Market opportunities, constraints, and technology developments are also discussed.

Author

DOE

MATERIALS SCIENCES PROGRAMS Report, FY 1990
Jan. 1991 164 p (DE91-007601; DOE/ER-0483P) Avail: NTIS HC/MF A08

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate efforts. The report is divided into seven sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes.

Author

DOE

N91-20119# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

MULTIDISCIPLINARY RESEARCH OVERVIEW (IHPTET/NPSS)
LESTER D. NICHOLS and SUSAN M. JOHNSON In its Aeropropulsion 1991 20 p Mar. 1991
Avail: NTIS HC/MF A24 CSCL 21/5

The Integrated High Performance Turbine Engine Technology (IHPTET) Program and the Numerical Propulsion System Simulation (NPSS) Program are two aeropropulsion multidisciplinary efforts at NASA Lewis that complement each other. The IHPTET initiative is an experimental program to advance engine development and double propulsion system capability by the turn of the century. NASA Lewis is contributing, with the Department of Defense and seven major aerospace contractors, to the development of these advanced, military, high-performance engines in the areas of compressors, combustors, turbines, nozzles, controls, mechanical systems, instrumentation, materials, structures, and computational fluid dynamics. The NPSS effort is a computational, long-range program with the goal of reducing the cost and time of development for advanced-technology propulsion systems. This goal will be achieved through a cooperative effort of NASA, industry, universities, and other government agencies to develop the necessary technologies for integrating disciplines, components, and high-performance computing into a user-friendly simulation environment. This simulation allows for comprehensive evaluation of new concepts early in the design phase, before a commitment to hardware is made. It also allows for rapid assessment of field-related problems, particularly where operational problems are encountered during conditions that are difficult to simulate experimentally. Data generated from the IHPTET engines will be used to help validate NPSS computations.

Author

N91-20166# Joint Publications Research Service, Arlington, VA.

ISSUES IN SPACE POLICY, BUDGETING
VSEVOLOD SERGEYEVICH ABDUYEVSKY and LEONID VASYL’YICH LESKOV In its JPRS Report: Science and Technology. USSR: Space p 54-72 26 Nov. 1990 Transl. into ENGLISH from Novoye v Zhizni, Nauke, Tekhnike: Seriya Kosmonavtika, Astronomiya (Moscow, USSR), no. 4, Apr. 1990 p 3-49
Avail: NTIS HC/MF A06

The book discusses the prospects for the development of the Soviet space program and analyzes the possible ways and means for increasing its return to the national economy.

Author

ULTRA-WIDEBAND RADAR: RESEARCH AND DEVELOPMENT CONSIDERATIONS
5 Jun. 1969 141 p Sponsored by Naval Ocean Systems
between the two countries. The first workshop was on the culture of academic research, large university research laboratories, university-industry relations, and the experiences of foreign researchers in the United States and Japan. The major insights garnered from the two-day meeting are highlighted. GRA

From the NASA/DOD survey data, there can be no way of inferring what strategy for knowledge transfer is best; indeed, given the fact that the respondents were all presumably well qualified professionals, the data tend to call into serious question the idea that any one model might meet the needs of more than a distinct minority of possible users. The evidence to date appears to reinforce the concept that different information environments take many different shapes, and interact with each other and with formal data transmission sources in many different and equally valuable ways. Any overall strategy for improving the effectiveness and efficiency of scientific and technical information sharing must take this divergence into account, and work toward the creation of systems that reinforce true interactive knowledge utilization rather than simply disseminating data.

Author

Twenty-two technologies deemed critical to the national economic prosperity and to national security have been identified. The selection of national critical technologies was carried out by a panel appointed by the Director, Office of Science and Technology Policy, Executive Office of the President. The study was authorized by the Fiscal Year 1990 Defense Authorization Act and will be updated biennially through the year 2000. This panel report discusses each technology separately with respect to scope, basis for selection, and international trends. The technologies fall into six broad areas: materials, manufacturing, information and communications, biotechnology and life sciences, aeronautics and surface transportation, and energy and environment. A major conclusion of the study is that technology alone cannot ensure economic prosperity and national security. Technology can make an important contribution to the future of U.S. national interests, but only if we learn to use it more effectively.

Author

Described here are the Division’s research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation...
Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered.

Author

N91-22934* National Aeronautics and Space Administration, Washington, DC.

NASA LIBRARY PROJECT MANAGEMENT COLLECTION
Apr. 1991 53 p
(NASA-TM-103326; NAS 1.15:103326) Avail: Issuing Activity CSCL 05/2

A selection of annotated references to unclassified reports, journal articles, and conference proceedings papers introduced into the NASA scientific and technical information system in Scientific and Technical Aerospace Reports (STAR) and International Aerospace Reports (IAR) are given. Subject areas covered include cost analysis, contract management, engineering management, government procurement, life cycle costs, logistics management, maintainability, management methods, management planning, manpower, mission planning, operations research, personnel management, reliability engineering, scheduling, system effectiveness, systems engineering, and systems management.

Author

N91-23201# Synthesis Group, Arlington, VA.

AMERICA AT THE THRESHOLD
1991 191 p Prepared for the Executive Office of the President, Washington, DC. Original contains color illustrations Poster as supplement
Avail: NTIS HC/MF A09; also available SOD HC $13.00 as 033-000-01097-4

The Space Exploration Initiative is a challenge issued by President Bush that will return America to the moon to stay and onward to mars by 2019. In doing this, six visions' guidance and direct the space efforts. These efforts are: Knowledge of the universe; Advancement in science and engineering; U.S. leadership; Technologies for Earth; Commercialization of space; and Strengthened U.S. economy. Why the Moon and Mars were chosen as the objects of exploration is examined. Ten recommendations are provided for the effective implementation of the SPI, along with a detailed examination of each.

Author

N91-23501# National Aeronautics and Space Administration.

GOVERNMENT/INDUSTRY RESPONSE TO QUESTIONNAIRE ON SPACE MECHANISMS/TRIBOLOGY TECHNOLOGY NEEDS
ROBERT L. FUSARO May 1991 76 p
(NASA-TM-104358; E-6148; NAS 1.15:104358) Avail: NTIS HC/MF A05; CSCL 13/9

President Bush has proposed that the U.S. undertake an ambitious mission of manned and robotic exploration of the solar system. This mission will require advanced mechanical moving components, such as bearings, gears, seals, lubricants, etc. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of such a mission. To attempt to answer this, NASA-Lewis has sent out a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Missions needs and goals. If they deemed that the technology base inadequate, they were asked to specify the areas of greatest need. The unedited remarks of those who responded to the survey are presented.

Author

N91-23998# Office of Technology Assessment, Washington, DC.

FEDERALLY FUNDED RESEARCH: DECISIONS FOR A DECADE
GPO May 1991 297 p
(OTA-SET-490) Avail: NTIS HC/MF A13; also available SOD HC $12.00 as 052-003-01241-3

Given the exceptional history, strength, and character of U.S. research, there will always be more opportunities than can be funded, more deserving researchers competing than can be sustained, and more institutions seeking to expand than the prime sponsor (the Federal Government) can fund. The objective for government, then, is to ensure continued funding for a full portfolio of first-rate research and a high caliber of research workforce to assure long-term scientific progress. Analyzed herein is what the Office of Technology Assessment identifies as four pressing challenges for the research system in the 1990s: setting priorities in funding, understanding trends in research expenditures; preparing human resources for the future research force; and supplying appropriate data for ongoing research decision making. Managing the Federal research system requires more than funding; it means devising ways to retain the diversity and creativity that have distinguished U.S. contribution to scientific knowledge.

Author

N91-24339#/ Prat and Whitney Aircraft, West Palm Beach, FL.

ADVANCED LAUNCH SYSTEM ADVANCED DEVELOPMENT OXIDIZER TURBOPUMP PROGRAM: TECHNICAL IMPLEMENTATION PLAN
F. FERLITA 23 Jun. 1989 86 p
(Contract NAS9-37565)
(NASA-CR-183729; NAS 1.26:183729; PWA-FR-20865) Avail: NTIS HC/MF A05 CSCL 21/8

The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

Author

N91-24441# Rutgers - The State Univ., New Brunswick, NJ.

FRENCH-AMERICAN STRUCTURAL CERAMICS ROUNDTABLE Final Report
(Contract AF-AFOSR-0319-90)
(AE-233146; AFOSR-91-0213TR) Avail: NTIS HC/MF A03 CSCL 11/2

Rutgers University hosted a one-day French-American technical meeting on advanced structural ceramics. Participants included seven French researchers and eight U.S. researchers from government, academia, and industry. Each participant discussed his home research institution from several view points: research themes, research capabilities, and technology transfer.

GRACEN

PROCEDURES FOR PEER REVIEW ASSESSMENTS
Apr. 1991 35 p
(DE91-010902; DOE/ER-0491P) Avail: NTIS HC/MF A03

These assessment procedures provide the basis for implementing the methodology developed by the Office of Program Analysis (OPA) for assessing the quality of research and development within the Department of Energy (DOE). The reviews are performed by examining individual projects which comprise a program and by assessing the quality of the research, quality of the research team, productivity, probability of success, and mission relevance for each project reviewed. OPA's methodology entails assembling panels of scientific and technical experts to evaluate individual projects. Inferences about the quality of the overlying program emerge from analysis of the ratings given all of the program's individual projects or, in the case of a large program,
The U.S. Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as U.S. industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology ‘90, is the latest in a series that is intended to communicate some of the many opportunities available for U.S. industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology ‘90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program data offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

The basic mission sequence to achieve the President’s goal is clear: begin with Space Station Freedom in the 1990’s, return to the Moon to stay early in the next century, and then journey to Mars. Five reference approaches are modeled building on past and recent studies to reflect wide-ranging strategies that incorporate varied program objectives, schedules, technologies, and resource availabilities. The reference approaches are (1) balance and speed; (2) the earliest possible landing on Mars; (3) reduce logistics from Earth; (4) schedule adapted to Space Station Freedom; and (5) reduced scales. The study and programmatic assessment have shown that the Human Exploration Initiative is indeed a feasible approach to achieving the President’s goals. Several reasonable alternatives exist, but a long-range commitment and significant resources will be required. However, the value of the program and the benefits to the Nation are immeasurable.
contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.

Author

The applied research effort required to develop new nonintrusive measurement techniques capable of obtaining the data required by aerospace propulsion researchers and of operating in the harsh environments encountered in research and test facilities is discussed and illustrated through several ongoing projects at NASA's Lewis Research Center. Factors including length of development time, funding levels, and collaborative support from fluid-thermal researchers are cited. Progress in developing new instrumentation via a multi-path approach, including NASA research, grant, and government-sponsored research through mechanisms like the Small Business Innovative Research program, is also described.

Author

N91-28023# Department of Defense, Washington, DC. Directorate for Information Operations and Reports. THE 500 CONTRACTORS RECEIVING THE LARGEST DOLLAR VOLUME OF PRIME CONTRACT AWARDS FOR RDT AND E, FISCAL YEAR 1990 1990 37 p (AD-A235444; D/0R/P02-90; P02) Avail: NTIS HC/MF A03 CSCL 05/9

Summary data is presented on the 500 prime contractors receiving the largest dollar volume in Department of Defense (DOD) awards over $25,000 for research, development, test and evaluation (RDT and E) work during Fiscal Year (FY) 1990. RDT and E work can include research, exploratory development, advanced development, engineering development, operational systems development, or management and support services. Table 1 lists the 500 contractors in alphabetical order, shows the ranking for each, and shows how each has been categorized for reporting purposes. The categories are business firm (B), foreign contractor (F), and nonprofit institution (N). Table 2 shows the net value of awards to U.S. business firms by rank. Those firms which qualify as small businesses are further identified by an S. The net value of awards to each of the firm's reported locations is also provided. Tables 3, 4, and 5 provide the net value of awards to U.S. educational and other nonprofit institutions, foreign contractors, and U.S. government agencies. While awards to U.S government agencies are listed separately in Table 5, these agencies are categorized as nonprofit institutions in Table 1.) As in Table 2, contractors in Tables 3 through 5 are shown by rank, with their total awards indicated by an asterisk. The next value of awards to each of the contractor's reported locations are also shown for these tables.

GRA

A research agenda is outlined for industry, universities, the National Science Foundation, and the National Research Council, that addresses the need to increase rapidly the effectiveness of technological factors such as research, development, implementation, engineering, and manufacturing. It is crucial for these factors to be managed skillfully to maximize competitive advantage from both a business and a technological perspective. This is the domain of management of technology (MoT) a critical factor for assuring success in today's business world. Progress since 1987 has been mixed. The university/theoretical side of the field has grown slowly, while academia and industry have not specifically addressed many of the topics that were suggested in 1987, the communication gap between cadre and industry remains large; and the limited results of research on MoT have not had a significant impact on improving America's Competitive situation. No substantive support has appeared among the federal agencies for MoT research, and support of MoT research by industry is sparse.

G R A

This report, submitted by the House Committee on Science, Space, and Technology, reviews the bill (H.R. 1988) to authorize appropriations to NASA for fiscal years 1992, 1993, and 1994, and to the Department of Transportation Office of Commercial Space Transportation, the Department of Commerce Office of Space Commerce, and the National Space Council within the Executive Office of the President. The bill authorizes appropriations to NASA for research and development; space flight, control, and data communications; construction of facilities; research and program management; and for other purposes. The bill also sets forth special policy provisions and authorities in order to carry out the activities of the civil space program. The report reflects favorably upon the bill with an amendment and recommends the bill as amended to pass.

Author

A program to develop the technology for reusable airbreathing hypersonic/transatmospheric vehicles is addressed. Information on the following topics is presented in viewgraph form: (1) the National Aerospace Plane (NASP) program schedule; (2) the NASP program organization; (3) competitive strategy; (4) propulsion options; (5) wind tunnel data available for NASP; (6) ground track of envelope expansion; and (7) altitude vs. Mach number. A NASP/Space Shuttle comparison, NASP configuration matrix, and the propulsion concept of a high speed scramjet are also briefly addressed.

K.S.

N91-28283# Oak Ridge National Lab., TN. TECHNOLOGIES AVAILABLE FROM MARTIN MARIETTA ENERGY SYSTEMS, INC. 1991 29 p (Contract DE-AC05-84OR-21400) (DE91-013027; ORNL/M-1312) Avail: NTIS HC/MF A03

This document summarizes some of the specific technologies available from Oak Ridge National Laboratory (ORNL) and the other Oak Ridge plants managed and operated by Martin Marietta Energy Systems, Inc. (Energy Systems) for the Department of Energy (DOE). From the beginning, we have concentrated our efforts on those areas of technology development for which we have become known as a center of excellence. Our most notable area of success is in advanced materials. From superalloys to ceramics to electronic materials, Oak Ridge is internationally...
recognized as a leader in advanced materials. Other areas where we have unique technical expertise include: analytical instruments, waste management, intelligent systems, and chemical processing.

DOE

N91-28404# National Inst. of Standards and Technology. Gaithersburg, MD.

US ASSESSMENT OF THE NEW DIAMOND TECHNOLOGY IN JAPAN Final Report

The purpose is to assess the level of scientific activity, areas of intended commercialization, progress in commercialization, the role of the Japanese Government in assisting industry to exploit the new diamond technology, and the relative positions of Japan and the U.S. in all aspects of synthesized diamond technology. Japanese efforts were chosen for assessment because Japan is the apparent world leader in the drive for commercialization of the technology. The principle focus is on diamond produced by chemical vapor deposition, with a peripheral investigation of cubic boron nitride and diamond-like carbon. Based on the assessment, a set of conclusions and recommendations is presented. The assessment is based on site visits in Japan between 29 May to Jun. 5 1990.

GRA

ASSESSMENT TEAM REPORT ON FLIGHT-CRITICAL SYSTEMS RESEARCH AT NASA LANGLEY RESEARCH CENTER

The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development. Author

N91-29296# Oak Ridge National Lab., TN.

This report provides a brief overview of the activities and accomplishments of the Metals and Ceramics (M and C) Division during fiscal year (FY) 1990. The division is organized to provide technical support, primarily in the area of structural materials, for the various technologies being developed by the U.S. Department of Energy (DOE). Activities span the range from basic research (through applied research and engineering development) to industrial research (through cooperative research and a strong technology transfer program). The division is organized in functional groups that encompass nearly all of the disciplines needed to develop and to apply materials in structural applications. Sections 1 through 4 describe the different functional groups; Section 5 provides an alternative view of the division in terms of the major programs, most of which cross group lines; and Section 6 summarizes external interactions including cooperative research programs and technology transfer activities. Appendices describe the organizational structure, note personnel changes, present honors and awards received by division members, and contain listings of publications completed and presentations made at technical meetings. DOE

N91-29549# Midwest Research Inst., Golden, CO.

THE DEPARTMENT OF ENERGY'S SOLAR INDUSTRIAL PROGRAM: NEW IDEAS FOR AMERICAN INDUSTRY

As society becomes more and more sensitive to the environment, and energy supplies become scarcer, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other Federal agencies, private industry, and universities. DOE

N91-30174# Joint Publications Research Service, Arlington, VA.

GALEYEV DISCUSSES HISTORY, PROSPECTS OF INSTITUTE OF SPACE RESEARCH

The research activities at the USSR Academy of Sciences, Space Research Institute are discussed. It became the head organization in the field of scientific research involving space, the solar system's planets, and astrophysical objects. It was entrusted with preparing and supporting programs for space research, developing, testing, and using scientific equipment for that research, and ensuring international cooperation in the performance of experiments in space. Author

N91-30974# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Systems and Logistics.

DEFINING ACQUISITION AND CONTRACTING TERMS ASSOCIATED WITH CONTRACT ADMINISTRATION M.S. Thesis

LAURELI M. MOYLE Sep. 1990 147 p (AD-A229462; AFIT/GCM/LSY/90S-10) Avail: NTIS HC/MF A07 CSCL 05/1

The purpose of this study was to synthesize definitions for 20 terms associated with contract administration. To accomplish this objective, research on dictionary and definition development was conducted. Also, literature was comparatively analyzed to synthesize definitions for the terms. To validate the definitions a survey was administered to the NCMA Fellows. Respondents evaluated each definition using a Likert scale and provided written comments. Likert scale results were presented in bar chart form along with an arithmetic mean. Plus, if warranted, the respondents' suggestions were incorporated into the final definitions. As a result, finalized proposed definitions were developed and recommended for inclusion in any future dictionary of contract terminology. In conclusion, the need for further research will continue until all unique and arbitrary words in the contract management arena have been thoroughly researched and their definitions documented.

GRA

N91-30975# Air Force Inst. of Tech., Wright-Patterson AFB, OH.

THE EFFECT OF THE COMMERCIAL SPACE LAUNCH ACT ON DEPARTMENT OF DEFENSE CONTRACT ADMINISTRATION M.S. Thesis

67
06 RESEARCH AND DEVELOPMENT

MICHAEL E. HALE Sep. 1990 114 p
(AD-229497; AFIT/GCM/LSP/905-3) Avail: NTIS HC/MF A06
CSCL 05/1

This study analyzes the Commercial Space Launch Act and
the effect of the Act on Department of Defense contract
administration. The Act is commercial space launch industry.
The literature review provides a comprehensive overview of the Act,
the current environment of space commercialization, and the future
of the space launch industry. The method of acquiring the
necessary data used in the study was the telephone interview.
Commanders of Department of Defense contract administration
units were surveyed to determine their knowledge and awareness
of the Act. The study found that the Act was being administered
adequately at those locations which reported involvement; however,
there were serious problems in the administrative guidance on
the Act and the process of reimbursement for government provided
contract administrative services. The study makes numerous
recommendations for improvement to include: rewriting the current
Act guidance and forming a focal point for commercial space
within the newly formed Defense Contract Management
Command.

GRA

N91-30980# Government-Univ.-Industry Research Roundtable, Washington, DC.
INDUSTRIAL PERSPECTIVES ON INNOVATION AND
INTERACTIONS WITH UNIVERSITIES: SUMMARY OF
INTERVIEWS WITH SENIOR INDUSTRIAL OFFICIALS
Feb. 1991 29 p Prepared in cooperation with Industrial Research
Inst., Inc., New York, NY
(Contract DE-FG05-89ER-75498)
(DE91-013939; DOE/ER-75498/9) Avail: NTIS HC/MF A03

As a natural extension of earlier Government-University-Industry
Research Roundtable efforts that mapped the diversity of
university-industry research alliances, the Roundtable, in
conjunction with the Industrial Research Institute, has examined
industrial perspectives on how innovation occurs and on how
alliances with universities are expected to contribute to technical
change and competitiveness within individual companies. This
examination was carried out initially through individual discussions
with seventeen senior research managers representing a range of
fields of research as well as a variety of sizes and types of
companies. The results of the individual interviews were
summarized and reviewed by the industry interviewees, a few
members of the Roundtable Council, and senior federal R and D
officials at a meeting in October 1990. Comments from that meeting
have been incorporated into the summary of the interviews
presented here.

DOE

Sowerby Research Center.
THE SOWERBY RESEARCH CENTRE AND UNIVERSITY
liaison
J. ACKROYD In its Bae University Round Table on Gravitational
Research 3 p Nov. 1990
Copyright Avail: British Aerospace (Military Aircraft) Ltd., Warton
Aerodrome, Preston, Lancashire PR4 1AX, England

An introduction to the Sowerby Research Centre and its links
with universities is presented. Although in some cases universities
are an alternative resource to BAEs (British Aerospace) facilities
there are others where they are clearly the most appropriate choice:
fundamental studies to elicit basic understanding is one such case
and speculative studies may be another less obvious one. ESA

N91-31986# Government-Univ.-Industry Research Roundtable, Washington, DC.
SURVEY TO ASSESS THE USEFULNESS OF TWO MODEL
AGREEMENTS FOR UNIVERSITY-INDUSTRY COOPERATIVE
RESEARCH
Aug. 1990 17 p Prepared in cooperation with Industrial Research
Inst., Inc., New York, NY
(Contract DE-FG05-89ER-75498)
(DE91-013937; DOE/ER-75498/6) Avail: NTIS HC/MF A03
In 1988, the Government-University-Industry Research
Roundtable together with the Industrial Research Institute (IRI)
published Simplified and Standardized Model Agreements for
University-Industry Cooperative Research. Designed to serve as
starting points for negotiating the details of research agreements
between universities and industry sponsors, the publication includes
two model national cooperative research grant and a research agreement.
Their purpose was to decrease the time and effort required for
such negotiations and to provide companies and universities new
to research alliances a sense of what is reasonable to consider
in establishing an agreement. Over 14,000 copies of the Model
Agreements document have been distributed. To assess the extent
to which the two models have fulfilled their intended purpose,
and to determine what additional steps, if any, the roundtable can
take to clarify operating procedures and minimize administrative
burdens and requirements for university-industry research partnerships,
the roundtable staff conducted a telephone survey in the fall of 1989 of about 70 university
and industry users of the model agreements document. In addition to assessing
the usefulness of the model agreements, survey participants suggested
potential follow-on activities for the roundtable on issues of
intellectual property and licensing. This document summarizes the
results of the survey.

DOE

Advanced Systems Div.
FRENCH SATCOM PROGRAM AND RELATED
INTERNATIONAL ACTIVITIES
PASCAL SENARD and PATRICE GAUTHIER In FAA, The First
Annual International Satellite Surveillance and Communication
Symposium p 119-124 1991
Avail: NTIS HC/MF A19

The work is described that the French Administration wishes
to undertake, or is currently performing, in the field of satellite
communications used for ATC purposes. The aim of this work
program is to prepare the possible integration of a future
Satcom-based ATC system, in consistency with the needs specific
to the French Civil Aviation and in harmony with the approach
adopted at an international level. The context is presented in which
French ATC authorities have to deal with the emerging concept
of satellite communications. A general presentation of the intended work program and of its successive steps is also included.

Author

N91-32108# Ministry of Transportation, Tokyo (Japan). Radio Engineering Div.

SATELLITE DATA LINK RESEARCH AND DEVELOPMENT PROGRAM IN JAPAN

In parallel with the Automatic Dependent Surveillance (ADS) Pacific Engineering Trail (PET) program which was initiated by Australia, U.S., and Japan, the research and development (R&D) program Satellite Data Link was promoted in Japan. Apart from ADS PET program, the Aircraft Earth Station (AES) and the Ground Earth Station (GES) to be used in this satellite data link R&D program are designed to be fully compatible with the ICAO AMSS Draft SARPs and INMARSAT SDM (System Definition Manual). The main purpose of this R&D program is to validate the bit oriented AMSS system based on the OSI (Open Systems Interconnection) model which is now under development in ICAO AMSSP (Aeronautical Mobile Satellite Service Panel).

Author

N91-32394# Siemens A.G., Munich (Germany, F.R.).

PROGRESS IN SUBMICRON TECHNOLOGIES

K. Merthen and J. Winnehl In ESA, ESA Electronic Components Conference p 635-638 Mar. 1991 Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 96 Dutch guilders

Every three years a fourfold increase in the number of functions per unit area on chip is experienced. Today logic integrated circuits with more than a million transistors are available. Logic chips in the 64 M generation are expected to provide more than 10 million components on a chip. Severe changes in the design and fabrication of integrated circuits are discussed. The main trends and characteristics of the technological and requirements for new and more efficient design methodologies are discussed. Typical innovations in various fields of applications are considered.

ESA

N91-32472# Research Inst. for Advanced Computer Science, Moffett Field, CA.

SMART INSTRUMENTS AND THE NATIONAL COLLABORATORY

BARRY M. LEINER, ed. Nov. 1989 16 p (Contract NCC2-387)

Here, we explore the process of scientific experimental investigation and ask what capabilities are required of the collaborative to support such investigations. We first look at a number of examples of scientific research being conducted using remote instruments. We then examine the process of such research, asking at each stage what are the required capabilities. We finally integrate these results into a statement of the required set of capabilities needed to support scientific research in the future.

Author

N91-32487# Lawrence Livermore National Lab., CA.

FUTURE DIRECTIONS OF LABORATORY X RAY LASER RESEARCH

[DE91-017086; UCRL-JC-105739; CONF-9104164-6] Avail: NTIS HC/MF A03

We explore ways to make laboratory x-ray lasers and their applications more accessible to a wider community of users. This includes optical pump facilities that are affordable due to progress in optical laser technologies, from nsec 1KJ sources, to 100 fs.

Author

N91-32996# Krupp (Fred.) G.m.b.H., Essen (Germany, F.R.).

THE ROLE OF KRUPP FORSCHUNGSINSTITUT IN INTERNATIONAL R AND D COOPERATION

International competition begins in the industrial development laboratory. With the aim of making better use of funds expended on research and development the European Community has set up numerous programs designed to encourage a joint approach by industrial partners at the precompetitive stage, particularly in the form of linkups between product developers and users, to ensure optimum application of resources. As a participant in numerous projects, Krupp Forschungsinstitut is a highly regarded partner in this form of European cooperation.

ESA

N91-32997# Krupp Atlas-Elektronik, Bremen (Germany, F.R.).

KNOW-HOW FOR EUROPE

Hans-Peter Leppin and THIES WITTIG In Krupp (Fred.) G.m.b.H., Krupp Technical Reports, Number 2, December 1990 (English Version) p 91-102 Dec. 1990 Avail: NTIS HC/MF A04

Lively project activity is evolving under the financial and organizational umbrella of the European Community. Now, in the second framework program of ESPRIT, more than 500 companies and scientific establishments have joined together in targeted collaboration in more than 200 projects. The focal area is information technology, a key indicator of social and economic development. The total number of EUREKA projects, which unlike those in ESPRIT are not centrally controlled and financed from Brussels, has risen to more than 400. The research and development projects which Krupp Atlas Elektronik are undertaking with partners from other European countries are discussed.

ESA

THE DECADE OF DISCOVERY IN ASTRONOMY AND ASTROPHYSICS

1991 217 p Previously announced in IAA as A91-36824 Sponsored by NASA, Washington Original contains color illustrations

[Contract DE-FG05-89ER-40421; N00173-90-M-9744; NSF AST-89-01685]

A survey of astronomy and astrophysics in the 1990s is presented and a prioritized agenda is offered for space- and ground-based research into the 21st century. In addition to proposing new telescopes for ground and space, the research infrastructure is discussed. The urgent need is emphasized for increased support of individual investigators, for appropriate maintenance and refurbishment of existing facilities, and for a balanced program of space astronomy. The scientific and the technical opportunities of the 1990s are summarized and the technological development is described needed for instruments to be built in the first years of the next century. Also addressed is the suitability of the Moon as an observation site.

Author

N91-33018# National Radio Astronomy Observatory, Charlottesville, VA.

RADIO ASTROLOGY

The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter-wavelength submillimeter astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (6) social, political, and organizational considerations.

OPTICAL/IR FROM GROUND

N91-33020

Massachusetts Inst. of Tech., Cambridge.

Title: OPTICAL/IR FROM GROUND

Authors: STEPHEN STROM, WALLACE L. W. SARGENT, SIDNEY WOLFF, MICHAEL F. AHEARN, J. ROGER ANGEL, STEVEN V. W. BECKWITH, BRUCE W. CARNEY, PETER S. CONTI, SUZAN EDWARDS, GARY GRASDALEN (Wyoming Univ., Laramie), et al.

Optical/infrared (O/IR) astronomy in the 1990's is reviewed. The following subject areas are included: research environment; science opportunities; technical development of the 1980's and opportunities for the 1990's; and ground-based O/IR astronomy outside the U.S. Recommendations are presented for: (1) large scale programs (Priority 1: a coordinated program for large O/IR telescopes); (2) medium scale programs (Priority 1: a coordinated program for high angular resolution; Priority 2: a new generation of 4-m class telescopes); (3) small scale programs (Priority 1: near-IR and optical all-sky surveys; Priority 2: a National Astrometric Facility); and (4) infrastructure issues (develop, purchase, and distribute optical CCDs and infrared arrays; a program to support large optics technology; a new generation of large filled aperture telescopes; a program to archive and disseminate astronomical databases; and a program for training new instrumentalists).

OPTICAL/IR FROM SPACE

N91-33021

California Univ., Santa Cruz.

Title: UV-OPTICAL FROM SPACE

Authors: GARTH ILLINGWORTH, BLAIR SAVAGE, J. ROGER ANGEL, ROGER D. BLANDFORD, ALBERT BOGGESS, C. STUART BOWYER, GEORGE R. CARRUTHERS, LENNOX L. COWIE, GEORGE A. DOSCHEK, ANDREA K. DUPREE (Harvard Smithsonian Center for Astrophysics, Cambridge, MA), et al.

Optical/ultraviolet (O/UV) astronomy in the 1990's is reviewed. The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST, LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments.

THEORY AND LABORATORY ASTROPHYSICS

N91-33025

Chicago Univ., IL.

Title: THEORY AND LABORATORY ASTROPHYSICS

Authors: DAVID N. SCHRAMM, CHRISTOPHER F. MCKEE, CHARLES ALCOCK, LOU ALLAMANDOLA, ROGER A. CHEVALIER, DAVID BORDEAUX, GEORGE R. CARRUTHERS, LENNOX L. COWIE, WALTER W. CRANE, Jr., DAVID N. SCHRAMM, CHRISTOPHER F. MCKEE, CHARLES ALCOCK, LOU ALLAMANDOLA, ROGER A. CHEVALIER, DAVID BORDEAUX, GEORGE R. CARRUTHERS, LENNOX L. COWIE, WALTER W. CRANE, Jr., et al.

Astronomy and Astrophysics Panel Reports 23 p 1991

Avail: NTIS HC/MF A15 CSCL 03/2

The following scientific areas are reviewed: (1) cosmology and particle physics (particle physics and the early universe, dark matter, and other relics); (2) stellar physics and particles (solar neutrinos, supernovae, and unconventional particle physics); (3) high energy gamma ray and neutrino astronomy; (4) cosmic rays (space and ground observations). Essential scientific priorities for the next decade include implementation of the current program, new initiatives, and longer-term programs. Essential technological developments, such as cryogenic detectors of particles, new solar neutrino techniques, and new extensive air shower detectors, are discussed. Also a certain number of institutional issues (the funding of particle astrophysics, recommended funding mechanisms, recommended facilities, international collaborations, and education and technology) which will become critical in the coming decade are presented.
07 ECONOMICS, COSTS AND MARKETS

Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given. Author

N91-33026* Chicago Univ., IL

SOLAR ASTRONOMY

An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research. Author

N91-33027* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

PLANETARY ASTRONOMY

The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990's are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of Io, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed. Author

N91-33029* Colorado Univ., Boulder.

POLICY OPPORTUNITIES

Recommendations are given regarding National Science Foundation (NSF) astronomy programs and the NASA Space Astrophysics program. The role of ground based astronomy is reviewed. The role of National Optical Astronomy Observatories (NOAO) in ground-based night-time astronomical research is discussed. An enhanced Exploratory Program, costs and management of small and moderate space programs, the role of astrophysics within NASA's space exploration initiative, suborbital and airborne astronomical research, the problems of the Hubble Space Telescope, and astronomy education are discussed. Also covered are policy issues related to the role of science advisory committees, international cooperation and competition, archiving and distribution of astronomical data, and multi-wavelength observations of variable sources. Author

STATUS OF THE PROFESSION

The number of astronomers has grown by about 40 percent over the past decade. The number of astronomers with jobs in industry, or with long-term, non-tenured, jobs has increased dramatically compared with traditional faculty positions. The increase in the number of astronomers and the declining share of the NSF budget going to astronomy has led to extreme difficulties in the NSF grant program and in support of the National Observatories. In 1989, direct NASA support of astronomers through the grants program exceeds that of NSF, although the total of the NSF grants program over decade far exceeds that of NASA. Access to major new telescopes will be an important issue for the 1990's. US astronomers, who once had a monopoly on telescopes larger than 3 meters, will, by the year 2000, have access to just half of the world's optical telescope area. Author

07 ECONOMICS, COSTS AND MARKETS

Includes Costs and Cost Analysis, Cost Control and Cost Effectiveness, Productivity and Efficiency, Economics and Trade, Financial Management and Finance, Investments, Value and Risk (Monetary), Budgets and Budgeting, Marketing and Market Research, Consumerism, Purchasing, Sales, Commercialization, Competition, Accounting.

A91-10131* National Aeronautics and Space Administration, Washington, DC.

SPACE STATION FREEDOM COMMERCIAL INFRASTRUCTURE

Several approaches to initiating the provision of the Space Station Freedom (SSF) commercial infrastructure are discussed, including proposals from the private sector, the commercial development of infrastructure, and the commercial operation of infrastructure. Specific options for SSF commercial infrastructure which are currently being studied by NASA are described. One candidate for commercial service is the supplemental power for SSF beyond the Assembly Complete phase. The methods which a company could use in providing supplemental power are discussed, with special attention given to the use of solar dynamic power elements attached to the SSF evolution structure. Another option under evaluation is commercial provision of SSF logistics services using ELVs. 1.S.
In the 1980s, the world space industry has reached a new level of space commercialization, from which self-supporting mechanisms of the free market economy could be activated and human activities in space could be accelerated. From this point of view, it seems very important to investigate the possible contribution of Japanese industry, which has shown unique technological characteristics in the world economy. An effort is made to find a possible role for Japanese industries in the future expansion of world space commercialization. By looking into varied activities of the Japanese space industry, promising possibilities were found for Japanese companies to formulate new design and development philosophies for space technology by drawing on their unique expertise in civil technology.

Author
slightly over the last decade. According to the European Commission, Europe has approximately one-third of the world market for business and light aircraft, two-thirds of the commuter aircraft market, and almost one-third of the helicopter market. In addition, while the U.S. industry loses ground in the civil sector, government defense spending is decreasing. The principal asset of the U.S. aerospace industry is its technological superiority, but the gap between the U.S. industry and its rivals is not as wide as it was at one time. The U.S. Aerospace Industries Association established the National Center of Advanced Technologies, a nonprofit foundation responsible for integrating and coordinating the program concerning key technologies for the 1990s and assisting in its implementation.

A91-27579* National Aeronautics and Space Administration. Lyndon B. Johnson Space Center, Houston, TX.

A PROPOSAL FOR RISK SHARING IN THE DEVELOPMENT OF A LUNAR OXYGEN PLANT

MICHAEL B. DUKE (NASA, Johnson Space Center, Houston, TX) and MEAD TREADWELL IN: Engineering, construction, and operations in space II; Proceedings of Space 90, the Second International Conference, Albuquerque, NM, Apr. 22-26, 1990. Vol. 1. New York, American Society of Civil Engineers, 1990, p. 41-49. Copyright

The production of lunar oxygen for use in a NASA lunar outpost program could provide a profitable investment for nongovernment development, savings for government, and an initiation of a new resource of capital financing for space industrialization. A joint endeavor to share development risks between government and nongovernment investment is proposed, based on some early assessments of technical and financial feasibility for the project. Successful initial negotiations between government and nongovernment investors can establish the requirements for financing the project with private funds.

A91-29029

THE PEACE DIVIDEND - NEW OPTIONS FOR FUNDING SPACE EXPLORATION, RESEARCH, AND DEVELOPMENT

J. M. SCHELL Journal of Practical Applications in Space (ISSN 1046-8757), vol. 2, Fall 1990, p. 19-32. refs Copyright

It is pointed out that the dramatic transformations taking place in the societies and economies of the countries of the Eastern Bloc have a great impact on the U.S. policy of defense budgeting. It is projected that, as there is no more need to maintain current defense levels, the estimated savings in 1991-1993 period are expected to reach $94 billion, $16 billion resulting in a peace dividend. These funds might be used for research and development in space. The real benefits of space exploration and actual applications of space technologies such as computer enhanced imaging of alien landscapes, the mapping and plotting of celestial trajectories as well as communication, navigation, earth remote sensing and the use of the microgravity environment are discussed. A manned Mars mission is mentioned as the largest and the most interesting future project.

O.G.

A91-29696#

TEST COST SAVINGS THROUGH RISK ANALYSIS

This paper addresses test program cost savings through application of program risk management procedures. Over the past few years, program risk analysis has become a requirement for most DoD acquisition programs. Although the technique has significantly contributed to reduction of cost/schedule/technical risks, relatively little attention has been given to another attainable benefit: direct reduction of test program costs. This paper includes a discussion of test planning, scheduling and resourcing. It presents examples to illustrate how expenditures for test resources (labor, equipment, facilities and test articles) can be minimized through use of probabilistic plan analysis.

A91-41691#

VALUE ANALYSIS APPLICATION AND RESULTS

The value analysis methodology developed by L.D. Miles during World War II enhances a product's value, while reducing its production costs, through the study of its intended functions. Attention is presently given to a value-management program case study at a major rocket-propulsion systems manufacturer, which demonstrates the use of a centrally located program office supported by personnel from other departments. The relationship of value analysis to total quality management techniques is explored.

O.C.

A91-43273

SUB-CONTRACTORS PLAY NEW STRATEGIC ROLES

An overview is presented of the manner in which U.S. aircraft manufacturers have approached their outside suppliers, though sharply different from each other, reflecting the recognition they have given to the changing nature of international manufacturing and marketing. A breakdown of major civilian transport aircraft by component parts and subcontracting manufacturers is provided. The relationship between the major civil airline airframe manufacturers and their suppliers is evolving into growing complex structures, with suppliers themselves making intricate arrangements with their own subcontractors. Specific examples of contractual arrangements are described for European, Asian, and other international manufacturers as well as those in the U.S.A.

R.E.P.

A91-43348#

SPEEDING PAYMENTS TO INDUSTRY - THE ESA SOLUTION

ESA payment conditions for prime contracts are designed to provide a reasonable and contractually justified cash flow to industry. Nevertheless, payments to lower-tier contractors have often been very much delayed due to the many levels of invoice approval required within the Industrial Consortia. Investigation of complaints concerning these delays has shown that the Agency almost invariably has paid within the due period, i.e. 30 days after receipt of the invoice from industry. By the time the invoice has reached the Agency, however, a long period has generally elapsed since it was originally raised by the lower-tier contractor.

Author

A91-45317#

FUNDING - A UNIFIED APPROACH

ESA payment conditions for prime contracts are designed to provide a reasonable and contractually justified cash flow to industry. Nevertheless, payments to lower-tier contractors have often been very much delayed due to the many levels of invoice approval required within the Industrial Consortia. Investigation of complaints concerning these delays has shown that the Agency almost invariably has paid within the due period, i.e. 30 days after receipt of the invoice from industry. By the time the invoice has reached the Agency, however, a long period has generally elapsed since it was originally raised by the lower-tier contractor.

Author

A91-45375#

HELCOPTER CONFIGURATION SELECTION - A PROCUREMENT POINT OF VIEW

The present study addresses the balancing of cost effectiveness, against available resources as the prime consideration in choosing the composition of a helicopter fleet and the configuration of its element. Costs are considered in relation to the present tendency to overdesign in terms of complexity, redundancy, and sophistication. It is suggested that appropriate operational, technical and economic evaluations be iterated from the outset in order to
verify and assess a system's technical feasibility, the optical cost-effectiveness trade-off, the overall life-cycle-costs affordability of possible solutions, and flexibility. It is concluded that the optimal decision process leading to the selection of new advanced complex systems should be based on accurate quantitative analysis of all relevant aspects. If integrated with cost-analysis algorithms, system "test-beds", scenario simulators, and the like could potentially constitute a first step toward a 'standard' evaluation and selection methodology.

P.D.

A91-48168

ASSESSING STRATEGIES FOR OBTAINING ADVANCED ENGINEERING TECHNOLOGIES WITH HIGHLY UNCERTAIN BENEFITS

Copyright

Comprehensive financial methods are presented which can evaluate alternative strategies for obtaining advanced engineering technologies, such as CAD/CAE, when the values of the benefits are highly uncertain or even unknown. The methods integrate traditional financial discounting procedures for known cost data with expert opinions for estimating benefit values and incorporate engineering performance improvement, project volumes ranging from one to infinity, various time horizons, and a comprehensive sensitivity analysis. Realistic strategies and actual case data are used to illustrate the procedures. Impacts from project volume, project benefit values, and the selection of the financial evaluation criterion are discussed. I.E.

A91-50177

CURRENT ISSUES IN AIRCRAFT FINANCE

Copyright

A detailed discussion of aircraft finance is presented. The topics addressed include: debt financing, lease financing, cross-border leasing, registration and recordation, the effect of recordation, leasing, registration and recordation, and validation and verification of SCEAT. The data that forms the 'test-beds', scenario simulators, and the like could potentially constitute a first step toward a 'standard' evaluation and selection methodology.

C.D.

A91-54396

QUALITY COSTING AT BRITISH AEROSPACE DYNAMICS - A CASE STUDY

Copyright

An approach to the development of a quality costing model based on the BS 6143 standard is examined, and the difficulties associated with the development of the model are summarized. These include the necessary tradeoff between accuracy and utility, determining the cost of engineering changes, obtaining quality cost data from the accounting system, and quality cost definitions. Some actual results demonstrate the utility of the model are included.

V.L.

N91-10138#

ROLLS-ROYCE LTD., DERBY (ENGLAND).

INDUSTRIAL APPLICATIONS AND MARKETS FOR CERAMIC MATRIX COMPOSITES

An assessment of the ceramic matrix composites market is presented. The aim is focused on the use of particulate and fiber reinforced ceramics for cutting tools, space structures and heat engines. The types of materials in use and the reasons for their selection are discussed. An assessment of what industry must now do to realize the full potential of ceramic matrix composites materials in a wide range of market roles is presented. ESA

N91-10197# Rolls-Royce Ltd., Derby (England).

ENGINEERING DESIGN: A POWERFUL INFLUENCE ON THE BUSINESS SUCCESS ON MANUFACTURING INDUSTRY

Engineering design, one of the most powerful forces in producing a package which matches market need, is discussed. It is essentially a detailed planning process backed by analysis and demonstration. The need for innovation to achieve competitive edge and profitability is considered. Innovation contains risk which must be controlled before substantial investment is made. The high rate of change of technology gives rise to the need for good training and retraining. Benefits which offsets costs at the time of occurring that cost are reached.

ESA

N91-10611#

INTERNATIONAL BUSINESS MACHINES CORP., HOUSTON, TX.

KNOWLEDGE-BASED ASSISTANCE IN COSTING THE SPACE STATION DMS

TROY HENSON and KYLE RONE In NASA, Goddard Space Flight Center, Proceedings of the Thirteenth Annual Software Engineering Workshop 18 p Nov. 1988

An ongoing project to capture this methodology, which is built on a foundation of experiences and lessons learned, has resulted in the development of an internal-use-only, PC-based prototype that integrates algorithmic tools with knowledge-based decision support assistants. This prototype Software Cost Engineering Automation Tool (SCEAT) is being employed to assist in the DMS costing exercises. At the same time, DMS costing serves as a forcing function and provides a platform for the continuing, iterative development, calibration, and validation and verification of SCEAT. The data that forms the cost engineering database is derived from more than 15 years of development of NASA Space Shuttle software, ranging from low criticality, low complexity support tools to highly complex and highly critical onboard software.

Author

N91-10795# Research Inst. for Advanced Computer Science, Moffett Field, CA.

SPACE MARKET MODEL SPACE INDUSTRY INPUT-OUTPUT MODEL

ROBERT F. HODGIN and ROBERTO MARCHESINI Mar. 1987 39 p (Contract NCC9-16)
07 ECONOMICS, COSTS AND MARKETS

(NASA-CR-187252; NAS 1.26:187252) Avail: NTIS HC/MF A03 CSCL 05A

The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which is capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.

Author

N91-12385*# Research Inst. for Advanced Computer Science, Moffett Field, CA.

SPACE MARKET MODEL DEVELOPMENT PROJECT

PETER C. BISHOP Jun. 1987 78 p

Contract NCC9-16

(NASA-CR-187249; NAS 1.26:187249) Avail: NTIS HC/MF A05 CSCL 05/1

The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

Author

JAMES D. MCCULLOUGH and STEPHEN J. BALUT Aug. 1990

23 p

(AD-A225663; AD-ES01258; IDA-D-764; IDA/HQ-90-35426)

Avail: NTIS HC/MF A03 CSCL 05/3

This paper contains information on historical trends in direct and indirect costs for four defense aircraft contractors: General Dynamics-Fort Worth Division, Grumman Aerospace Corporation, McDonnell Aircraft Company, and Northrop Aircraft Company. The trends are presented for those four contractors in aggregate rather than individually. The paper concludes with a look at what these trends may mean in terms of future costs.

N91-12588# Institute for Defense Analyses, Alexandria, VA.

WILLIAM J. E. SHAFER, BARBARA J. JUNGHANS, NEANG I. OM, PAUL R. PALMER, JR., and JOSEPH W. STAHL Apr. 1990

60 p

(Contract MDA903-89-C-0003)

(AD-A226109; AD-ES01264; IDA-P-2385; IDA/HQ-90-35400)

Avail: NTIS HC/MF A04 CSCL 01/3

The purpose of this study was to assess the potential cost savings of using a coproduction versus a competition acquisition strategy for the U.S. Army’s Light Helicopter (LH) program (formerly LHX). The Army’s Baseline Cost Estimate (BCE) is examined and reproduced before adjustments are made based on changes in the methodology used by the Army. The analysis of costs covers all production costs and considers the time value of money, the production schedule, and sustainment costs. Based on their analysis, the authors conclude that coproduction would be the least-cost acquisition strategy.

B.G.
The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

Author

The Department of Energy's (DOE) Small Business Program is currently a broad-based, comprehensive program and continuing support to small business is essential in the DOE Small Business Program's successful operation. The program's structure and operational procedures are described in detail. The program's success is due to the many factors that contribute to its overall goals and objectives. These factors include the program's emphasis on small businesses, the program's focus on providing resources and assistance to small businesses, and the program's emphasis on promoting the use of small businesses by DOE agencies.

Author

The extraction of marketable information from ERS-1 data is a complex task that requires a combination of technical and business expertise. The data are acquired at a variety of spatial resolutions, with some products being acquired at 250 m and others at 1 km. The data are also acquired at different times, with some products being acquired at 15-day intervals and others at 1-day intervals. The data are also acquired at different locations, with some products being acquired in the United States and others in Europe.

Author

The Department of Energy's (DOE) Small Business Program is characterized by its diligent involvement in the procurement process to enhance participation by small businesses. Small disadvantaged businesses are thus ideal tools for use when global scale and analysis over time is required. Data from satellites comes in digital form which means that it is ideally suited for incorporation in digital data bases and that it can be evaluated using automated techniques. The development of a global multi-source data set which integrates digital information is proposed regarding some 15,000 major industrial sites worldwide with remotely sensed images of the sites. The resulting data set would provide the basis for a wide variety of studies of the global economy. The preliminary results give promise of a new class of global policy model which is far more detailed and helpful to local policy makers than its predecessors. The central thesis of this proposal is that major industrial sites can be identified and their utilization can be tracked with the aid of satellite images.

Author
businesses, labor surplus area firms, and women-owned businesses. The DOE’s primary means of securing an equitable proportion of transactions for these businesses are total set-asides, partial set-asides, 8(a) sole source procurements, and 8(a) competitive procurements. Throughout the DOE’s infrastructure, all DOE organizational elements are committed to successfully implement the Small Business Program. The Department’s commitment includes developing substantial opportunities in both prime contracting and subcontracting and encompasses special preference programs to enhance awards to such businesses. DOE

N91-18894* # National Aeronautics and Space Administration, Washington, DC.

N91-18895* # National Aeronautics and Space Administration, Washington, DC.

SELLING TO NASA

1990 58 p Original contains color illustrations (NASA-NP-123; NAS 1.83:123) Avail: NTIS HC/MF A04; 39 functional color pages CSCL 05/1

This handbook is designed to promote a better understanding of NASA’s interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart. K.S.

A Direct Broadcast Satellite-Radio (DBS-R) System offers the prospect of delivering high quality audio broadcasts to large audiences at costs lower than or comparable to those incurred using the current means of broadcasting. The maturation of mobile communications technologies, and advances in microelectronics and digital signal processing now make it possible to bring this technology to the marketplace. Heightened consumer interest in improved audio quality coupled with the technological and economic feasibility of meeting this demand via DBS-R make it opportune to start planning for implementation of DBS-R Systems. NASA-Lewis and the Voice of America as part of their on-going efforts to improve the quality of international audio broadcasts, have undertaken a number of tasks to more clearly define the technical, marketing, organizational, legal, and regulatory issues underlying implementation of DBS-R Systems. The results and an assessment is presented of the business considerations underlying the construction, launch, and operation of DBS-R Systems.

Author
The United States' civil space program was rather hurriedly formulated some three decades ago on the heels of the successful launch of the Soviet Sputnik. A dozen humans have been placed in space, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem too costly and dangerous, with all of their thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.

Author

The U.S. Army Corps of Engineers (USACE) has undertaken a systems modernization program that will govern its information management for the next decade. One of the major systems being developed under this plan is the Life-Cycle Project Management (LCPM) system. It was found that the current LCPM prototypes not only differ significantly in design and configuration but also in the functions they perform and their flexibility for further modification and enhancement. The costs associated with the options for Corps-wide implementation of LCPM at multiple sites vary widely (ranging from $12 million for a centralized system to $49 million for a totally decentralized system). Under current plans, a relatively expensive decentralized system will likely be implemented. Implementation options are identified that can meet LCPM needs at significantly lower cost. It is also recommended that USACE minimize the number of prototypes to be continued, recommend selection of an LCPM system that is built around existing commercial project management software, and centralized systems management and maintenance.

Author
The total estimated ITR cost for the entire Federal Government is
adequate support is available for cost-effective accomplishment
support the diverse programmatic missions, in the Department of

Information Resources Management (IRM) activities which support the diverse programmatic missions in the Department of Energy are complex. IRM requirements are continually changing to reflect changes in technology, policy, and program mission. Long-range planning for IRM has been developed to assure that adequate support is available for cost-effective accomplishment of mission objectives. IRM is vital to the successful accomplishment of the programmatic missions in the Department. This is evidenced by the fact that the estimated information technology resources (ITR) cost for FY 1991, approximately $1.58 billion, is about 9 percent of the total Departmental FY 1991 budget request, while the total estimated ITR cost for the entire Federal Government is less than 1.7 percent of the total Federal budget request for the same time period. Recognizing the ever-increasing importance of IRM to the Department, activities in this area were reorganized this year. This reorganization centralized IRM within DOE and created a clear division of responsibility between policy and operations. Management of the information technology resources within IRM (e.g., information systems, computing resources, and telecommunications) were consolidated into computing and publishing activities, records management, IRM standards, and telecommunications and unclassified computer security. The Office of Scientific and Technical Information continues to have the responsibility for information management support and direction for DOE's scientific and technical information. This Plan reflects this transition and, therefore, incorporates information on other areas of IRM, where information is available. The management plan and status of Information Systems, Computing Resources and Telecommunication Systems is provided with charts and graphs.

Federal Aviation Administration, Washington, DC.

AVIATION SYSTEM CAPITAL INVESTMENT PLAN Annual Report
Dec. 1990 355 p

The plan describes the policies and strategies that the FAA will pursue in addressing key concerns of the National Airspace System (NAS). The plan addresses safety, efficiency, traffic demands, aging equipment and facilities, and airspace use. The Capital Investment Plan (CIP) was developed to prepare the NAS for new developments. The plan makes the approach to air traffic modernization more precise, flexible, understandable, and dynamic. It distinguishes among near-term (1991-1995), mid-term (1996-2000), and far-term (2001-2005) planning.

Profile Information, Sunbury-on-Thames (England)

THE ECONOMIC ASPECTS OF DEVELOPING AND MARKETING FULL TEXT DATABASES
MARK HEWORTH In AGARD, Bridging the Communication
Gap 3 p Feb. 1991

A brief overview is given of PROFILE information, the process involved in getting and delivering a full text source of information online and the primarily economic issues involved. The process is broken down into collecting the data, designing and developing the database, delivering and selling the database.

Thiokol Corp., Brigham City, UT. Space Operations.

POSSIBLE FUNDING STRATEGIES

Funding strategies are examined for the AIA rocket propulsion strategic plan. Either the government, industry, or universities can fund the project alone, or it was concluded, it works best if it is a combination of these sources.

Sandia National Labs., Albuquerque, NM.

Nuclear Material Management (INMM) Annual Meeting, New
Orleans, 28-31 Jul. 1991

(Contract DE-AC04-76DP-00789) Avail: NTIS HC/MF A01

Sandia National Laboratories and the University of New Mexico's Anderson School of Management are developing a program which enables M.B.A. students to assist in commercializing Sandia developed technologies. Thus far, students have prepared detailed business plans (which include market analyses, design and development sections, and pro forma financials) for a wide range of technologies. Potential applications include waste management, cancer treatment, oil and gas transportation, coating of plastics, manufacturing and assembly, and parts inspections. By having graduate students conduct the research necessary to identify positive net-present-value projects, Sandia is able to interest private sector firms in its technologies.

Government-Univ.-Industry Research Roundtable,
Washington, DC.

RESEARCH FACILITY FINANCING: NEAR-TERM OPTIONS
Feb. 1991 21 p

(Contract DE-FG05-89ER75496) Avail: NTIS HC/MF A03

To address the financing of research facilities at universities, colleges, and independent nonprofit research institutions, this paper outlines options for policy changes on which agreement and initial action may be possible in the near future. As used in this discussion, the term research facilities refers to the buildings, building systems (such as power and ventilation), and fixed equipment (for example, benches and hoists) that constitute the physical plant for research. The Research Roundtable is concerned with the vitality of the nation's science and engineering research enterprise. It was established to deepen the understanding of issues that divide the partners in the research enterprise and to provide a setting for seeking common ground. By setting forth the overview of options contained herein, the Roundtable aims to facilitate the development, by the stakeholders in the research enterprise, of specific proposals for new research facility financing policies. To the extent that consensus on appropriate changes emerges from dialogue furthered by this paper, a basis for action will have been laid.

Air Force Inst. of Tech., Wright-Patterson AFB, OH.

AN INVESTIGATION OF THE STABILITY OF THE COST PERFORMANCE INDEX M.S. Thesis
KIRK I. PAYNE Sep. 1990 86 p

(AD-A229498; AFIT/GCA/LSY/90S-6) Avail: NTIS HC/MF A05

This study examines the stability of the Cost Performance Index (CPI). The CPI is an indicator of the cost performance efficiency achieved on a contract and is used to analyze cost performance on defense contracts. It has long been asserted that the index does not change by more than 10 percent after a contract is 50 percent complete, but an exhaustive literature search did not locate any empirical work that supports this assertion. Knowing that the CPI is stable is important because it indicates that a contractor has a healthy management system, it increases the reliability placed in the contractor's planning process, it gives confidence in our Estimate at Completion computations, and if a contractor is overrunning his budget, it gives confidence when declaring the contractor in trouble. After defining CPI stability two methods to test for stability were developed. The two methods
chosen were first, to measure the range of the CPIs that occurred at greater than 50 percent complete and second, to calculate a percentage interval and verify that the CPI is stable after a contract is 50 percent complete.

GRA

N91-32387# Royal Aerospace Establishment, Farnborough (England).

COST EFFECTIVE ELECTRONIC COMPONENTS FOR SHORT LIFE SPACE MISSIONS

A study performed to assess the possibility of reducing short life spacecraft costs by significantly reducing the financial impact of the procurement of Electrical, Electronic and Electromechanical (EEE) components, is described. Strategies for cost reduction which do not compromise the probability of mission success are sought. It is concluded that an overall component cost saving in the area of 90 percent is possible through the procurement of parts screened in accordance with a minimum quality method which is previously defined. An analysis of screening data from final production tests, burn in electrical measurements and lot acceptance tests is suggested as the basis of a procurement cost reduction exercise within space programs.

ESA

08

LOGISTICS AND OPERATIONS MANAGEMENT

Includes Inventory Management and Spare Parts, Materials Management and Handling, Resources Management, Resource Allocation, Procurement Management, Leasing, Contracting and Subcontracting, Maintenance and Repair, Transportation, Air Traffic Control, Fuel Conservation, Operations, Operational Programs:

A91-10021*# National Aeronautics and Space Administration. John F. Kennedy Space Center, Cocoa Beach, FL.

LAUNCH SITE INTEGRATION FOR MIXED FLEET OPERATIONS

Launch site impacts and integration planning issues are presented to support launch operations for a mixed vehicle fleet (manned and cargo). Proposed ground systems and launch site configurations are described. Prelaunch processing scenarios and schedules are developed for candidate launch vehicles. Earth-to-orbit (ETO) vehicle architectures are presented to meet future launch requirements, including the Space Exploration Initiative (SEI). Flight vehicle design recommendations to enhance launch processing are discussed. The significance of operational designs for future launch vehicles is shown to be a critical factor in planning for mixed fleet launch site operations.

Author

A91-10902#

INTEGRATED LOGISTICS SUPPORT - SUGGESTED APPROACH FOR COLUMBUS

An overview is provided of how the Columbus logistics support is to be designed, focusing particularly on the engineering support centers, where major Columbus logistics tasks are to be undertaken. The functions necessary to ensure an effective logistics ground support, in compliance with the available set of requirements, are discussed. The necessary facilities and tools that take into account the previously foreseen and/or existing infrastructures are described. Interfaces with the other main functions in the Columbus ground segment are identified with the goal of achieving a logistics system properly integrated in the overall Columbus ground infrastructures. It is shown that the functions of the engineering support center are strictly correlated and it is not easy to define the boundaries comprising one function with the exclusion of the others.

R.E.P.

A91-17242

MATERIAL SUPPORT ISSUES FOR AGING ROTARY WING AIRCRAFT

Copyright

This paper will deal with some of the main problems concerning material support of older models of rotary wing aircraft and some of the decisions which need to be made in order to keep the support adequate to maintain readiness goals which have been established. The paper will examine material support issues such as the management of consumables, management of repairables, proper implementation of engineering changes, and replacement of components which have reached their service lives. These issues will be examined from two different viewpoints: first, whether they are generic issues with specific issues, and second, whether the trend in managing these issues is becoming more positive or degenerating. The paper reflects the views of the senior logistics manager for 341 fielded H-46 aircraft and emphasizes the day-to-day realities of that task rather than the theoretical aspects involved in logistics planning tasks.

Author

A91-19399#

IMPROVING FACILITY EFFECTIVENESS TO REDUCE TESTING COST

The operational objectives of an engine test facility, including the improvement of equipment and facility availability, the optimization of tasks and activities, and the reduction of energy costs are identified. Ways of improving the equipment and facility availability through failure prevention and equipment history analysis are discussed, and focus is placed on preventive, predictive, and reliability-centered maintenance. Statistical process control principles applied to maintenance in order to control cost or failures are outlined. Maintenance-optimization models, culture-dependent techniques and tools, and works standards including planning and scheduling are considered. A measurement system evaluating the effectiveness of the proposed tools and methods is specified.

V.T.

A91-27723

NORMAL ACCIDENTS AND LOGISTICS IN SPACE OPERATIONS

Copyright

Unpredictable systemic accidents, called normal accidents, will occur in highly complex large-scale space systems. To mitigate the catastrophic consequences of normal accidents, containment engineering will need to rely upon adequate logistics infrastructures provided by transform logistics channels to minimize consequential risk to target systems. The resource requirements of such an in situ logistics infrastructure to support the primary logistics channels
The logic and the schedule for a rule-based optimization technique useful for energy management onboard the space station are presented. A diverse array of experiments is scheduled within the constraints of limited solar energy and battery storage availability, taking into account the uneven energy supply between the sunshine and eclipse periods and the occasional need to serve a peak load and the full battery charging load simultaneously. In addition, the noninterruptible and nonrestartable nature of many experiments has to be accounted for in the schedule. These factors have been accounted for by using various time intervals and priority weighting factors. Supply/demand windows of various durations are tested for the typical load profile. This shows under what circumstances fewer scheduling tasks are needed and how a closer match between the supply and demand can be obtained. The optimal supply/demand is expressed in terms of the excess and shortage of electricity, the peak load, and the time displacement of the individual payment. This technique is implemented using PROLOG and FORTRAN.

MAINTENANCE OF GROUND SUPPORT EQUIPMENT

A methodology is outlined which encompasses the acquisition, maintenance, and disposal of ground-support equipment and is intended to promote safe, serviceable equipment. Maintenance during the acquisition process includes setting specifications, standardizing equipment, evaluating available equipment, and training and provisioning during purchasing phases. The maintenance period is found to require the establishment of maintenance practices such as inspection, quality audits, and defined equipment categories. Other important considerations for maintenance are unscheduled maintenance, human resources, facilities, equipment and special tools, cost controls, and management-information systems. Important factors related to equipment disposal are set forth with respect to the replacement decision and equipment rebuild.

COORDINATED PARTS PROCUREMENT FOR ISO - A CONTRIBUTION TO COST-EFFECTIVENESS

The parts-procurement process for the Infrared Space Observatory (ISO) is described and evaluated in order to identify strategies for efficiently obtaining reliable electronic components for similar programs. The procurement approach included central coordination by a 'prime contractor,' a coordinating advisory board, direct ordering from a procurement agent, for all users, and a cost-assessment mechanism. Important features of the procurement approach are identified including procurement organization, phase scheduling, component engineering issues, and cost considerations. The approach emphasizes drastic reductions in required part types and a significant standardization process. The procedural efforts are helpful for the ISO program and can be applied to other programs to reduce procurement costs, increase system reliability, and reduce the risks of multiple part types and lot failures.

POTENTIAL EQUATORIAL LAUNCH SITES

Attention is given to a new commercial launch site capable of serving the market for launch to geostationary orbit. The study represents an attempt to understand how a small, simple spaceport, similar in nature to a small seaport which might be built, owned, and operated by a construction or oil company, might be justified and constructed. Results of the study indicate that the concept of launching existing vehicles from simple equatorial sites has both technical and economic merits. An attempt is made to develop a knowledge base for vehicle performance calculations, site data, market projections, and contacts in the international industry.
The acquisition process at the National Institutes of Health (NIH) provides a wide variety of supplies and services to the on-campus research and administrative staff. Management of the process must balance responsiveness with frugal procedures that meet all statutory and regulatory requirements. Achieving the appropriate balance is a challenge, particularly since NIH has no objective, quantifiable, acquisition performance standards. It is recommended that it develop such standards and use them to measure how well the acquisition process is meeting its goals. In addition, NIH is not managing its information resources to best support its organizational goals and objectives. We recommend that it do so in a systematic process that we term a management information system (MIS). The MIS should be defined by a MIS team - a partnership of acquisition information specialists and functional managers who work together to define the data and system needed to make good decisions. We believe that NIH can improve its automated resources to better support the MIS.

GRA

N91-16989# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Systems and Logistics

PRODUCTIVITY MEASUREMENT AIRCRAFT MAINTENANCE ORGANIZATIONS M.S. Thesis

BILLY J. GILLIAND Sep. 1990 224 p

(AIR-229239; AFIT/GLM/LSM/90-20) Avail: NTIS HC/MF A10 CSCL 15/5

This research was undertaken to explore productivity measurement in aircraft maintenance units and to examine the relationships of the measures used to evaluate a unit's productivity. Review of current literature and regulatory guidance concerning productivity measurement provided the basis for the development of an interview questionnaire. A questionnaire was administered to Deputy Commanders for Maintenance (DCMs) and chiefs of analysis at ten Military Airlift Command (MAC) wings. Additionally, managers in the maintenance management, cost and manpower divisions at Headquarters MAC were interviewed. From these interviews, information concerning current productivity measurement methodology was gathered and thirteen measures were identified for analysis. Of the thirteen measures evaluated, eight produced the strongest explainable model reflecting maintenance productivity. Manhours per flying hour was the predominant output when viewed as a result of the influence of mission capable rates and maintenance scheduling effectiveness. Cannibalization rates, delayed discrepancies (both awaiting parts and awaiting maintenance) and the average number of aircraft possessed were the inputs which appeared to contribute most significantly to mission capable rates and maintenance scheduling effectiveness.

GRA

Sep. 1990 312 p

(Contract DTF01A09-Y-10407)

(AIR-229863) Avail: NTIS HC/MF A14 CSCL 01/3

This is a comprehensive review of the Federal Aviation Administration's program to improve the capability of the National Air Transportation System. The Plan identifies the causes and extent of capacity and delay problems currently associated with air travel in the U.S., and outlines various planned and ongoing FAA projects that will reduce the severity of the problem in the future. The major areas of discussion are: (1) Airport Development; (2) Airport and Airspace Capacity Improvement; (3) Technological Improvements; and (4) Marketplace Solutions.

GRA

N91-22137# Air Force Inst. of Tech., Wright-Patterson AFB, OH. STATUS OF PAVER IMPLEMENTATION WITHIN THE US AIR FORCE M.S. Thesis

C. L. EADDY Dec. 1990 164 p

(AIR-231138; AFT/EC/G/CA-90-126) Avail: NTIS HC/MF A08 CSCL 13/2

Regardless of how well conceived a pavement management
requirements of actual installation facilities, for prediction periods of 1 to 10 years. This User's Manual provides improved maintenance resource prediction data for use in facility planning, design, and maintenance activities. This manual explains the application of the MRPM computer system to installation facility data base information, to help Army planners in preparing DD Form 1391 documentation, designers in life cycle cost component selection, and maintainers in resource planning. This data base and computer system is presently used by U.S. Army Corps of Engineers (USACE) designers at district and installation levels, and by resource programmers at the USACE Headquarters, Army Major Command, and installation levels. These products may also prove useful to other Government agencies and to the private sector.

GRA

N91-30972# Army Construction Engineering Research Lab., Champaign, IL.

BOON GOH, EDGAR S. NEELY, and ROBERT NEATHAMMER

Oct. 1990 246 p

(AD-A229297) Avail: NTIS HC/MF A11 CSCL 15/5

Maintenance Resource Prediction Models (MRPMs) are a set of models that run on various computer systems to assist Army managers in planning and programming maintenance resources, based on the anticipated resource requirements of actual installation facilities, for prediction periods of 1 to 10 years. These models include the Maintenance Resource Prediction Models (MRPMs) are a set of models that run on various computer systems to assist Army managers in planning and programming maintenance resources, based on the anticipated resource requirements of actual installation facilities, for prediction periods of 1 to 10 years. These products may also prove useful to other Government agencies and to the private sector.

GRA

N91-31494# Federal Aviation Administration, Atlantic City, NJ.

SOLID-STATE RADAR BEACON DECODER (SSRBD) MASTER TEST PLAN (MTP)

LEONARD H. BAKER and THOMAS D. BRATTON

Sep. 1991 37 p

(DOT/FAA/CT-TN91/33) Avail: NTIS HC/MF A03
The Master Test plan (MTP) establishes the basic framework to guide and direct the Solid-State Radar Beacon Decoder (SSRBD) test program. The MTP explains the relationship between all test phases and also concerns the SSRBD system's readiness to be integrated into the National Airspace System (NAS). Sufficient detail is provided to define and direct the development of the next lower level of documentation. The MTP addresses the responsibilities of the SSRBD contractor and the Federal Aviation Administration (FAA).

N91-31495 Federal Aviation Administration, Atlantic City, NJ. AERONAUTICAL MOBILE SATELLITE SERVICE (AMSS) TEST PLAN

SEAN M. SANDLIN (Computerized Technologies, Inc., Columbus, OH.) May 1991 49 p

(Contract NASA ORDER T-0704-F) (DOT/FAA/CT-TN91/20) Avail: NTIS HC/ MF A03

A test program is described which will be conducted by the Federal Aviation Administration to support the validation of Standards and Recommended Practices being developed for the Aeronautical Mobile Satellite Service by the International Civil Aviation Organization. A description of the Communication Test Facility is also presented which will be used to perform the tests. A brief description is also included of each test to be performed along with setup and data to be recorded. Author

The extent to which logistics integration has been achieved in a medium sized, sales oriented chemical company which is committed to technical excellence and customer service as its principal competitive strategic tools is examined. Particular reference is made to the need to develop interdepartmental communications and to rationalize the way in which IT (Information Technology) is used within the firm. The relationships with outside third party service providers is examined and commented upon. The research finds that internal linkages within the company are not well developed, that an unusual line management organization leads to warehouse inefficiencies, that the computer system in use is hampered by an overdependence on manual interfacing and that a review of the transport/firm interface is necessary to release economies of scale and to prepare for the SEM. The lack of IT in one department is shown to be exacerbating an organizational anomaly, especially where the dispatch of samples is concerned. Suggestions for remedies are given and areas of related future research made.

DOD has made several of the changes to its acquisition system that were recommended by the Packard Commission. DOD, for example, has streamlined the acquisition management structure, established the position of Under Secretary of Defense for Acquisition, and limited formal reporting requirements. The Packard Commission concluded that DOD’s acquisition system had become an increasingly bureaucratic and overregulated process in which acquisition policy making and program management responsibility were fragmented and diluted. The Commission painted, in its words, a ‘stark’ picture of a highly competitive acquisition system in which program managers, buffeted by numerous internal and external pressures, become ‘spplicants’ for, rather than managers of, major new defense systems. These competitive pressures resulted in a huckster psychology that leads program managers to optimistically interpret information about a system’s cost, schedule, and performance.

E. PURR In ESA, ESA Electronic Components Conference p 491-498 Mar. 1991

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

High reliability Electric, Electronic, and Electromechanical (EEE) parts procurement data from six telecommunication satellite projects are statistically evaluated. For comparison purposes, data from a scientific satellite project are included. Problems relating to procurement cost and timescale reduction and the continuing necessity to procure 50 percent (by cost) of all parts from U.S. manufacturers are identified. A number of actions are proposed to solve these problems.

N91-32369 National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD. AN OVERVIEW OF THE NASA ELECTRONIC COMPONENTS INFORMATION MANAGEMENT SYSTEM

Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

The NASA Parts Project Office (NPPO) comprehensive data system to support all NASA Electric, Electronic, and Electromechanical (EEE) parts management and technical data requirements is described. A phase delivery approach is adopted, comprising four principal phases. Phases 1 and 2 support Space Station Freedom (SSF) and use a centralized architecture with all data and processing kept on a mainframe computer. Phases 3 and 4 support all NASA centers and projects and implement a distributed system architecture, in which data and processing are shared among networked database servers. The Phase 1 system, which became operational in February of 1990, implements a core set of functions. Phase 2, scheduled for release in 1991, adds functions to the Phase 1 system. Phase 3, to be prototyped beginning in 1991 and delivered in 1992, introduces a distributed system, separate from the Phase 1 and 2 system, with a refined semantic data model. Phase 4 extends the data model and functions of the Phase 3 system to provide support for the NASA design community, including integration with Computer Aided Design (CAD) environments. Phase 4 is scheduled for prototyping in 1992 to 93 and delivery in 1994.

N91-32370 Components Technology Inst., Inc., Huntsville, AL. THE HISTORY OF SPACE QUALITY EEE PARTS IN THE UNITED STATES

LEON HAMITER In ESA, ESA Electronic Components Conference p 503-506 Mar. 1991

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

Major and subtle characteristics which make space quality parts different than military, commercial or automotive parts are discussed. Very few Electrical, Electronic and Electromechanical (EEE) parts are specifically designed for space applications due to the low volume and sporadic purchasing/manufacturing requirements. The difficulty and apparent high cost of obtaining true space quality parts have caused many space programs to pursue short cuts such as upgrading lower quality parts through testing and taking risks on using lower quality parts as they are. Historical milestones in the development of space quality parts in the U.S., some cost examples when space quality parts were not used and some good practices for reliable space quality EEE parts are reviewed.
08 LOGISTICS AND OPERATIONS MANAGEMENT

ES A

RATIONALS FOR THE SELECTION OF A PARTS PROCUREMENT SYSTEM (COORDINATED VERSUS CENTRALIZED) FROM A PRIME CONTRACTOR POINT OF VIEW

G. STAMERJOHANNS In ESA, ESA Electronic Components Conference p 509-513 Mar. 1991 Prepared in cooperation with Erno Raumfahrtechnik G.m.b.H.

Electrical, Electronic and Electromechanical (EEE) parts procurement related problems experienced during the majority of past programs have led to program delays and excessive, underestimated program cost. In order to minimize such program impacts, experience gained and lessons learnt are used to trade off different EEE parts procurement approaches. Centralized procurement is compared to coordinated procurement. The results of this trade off approach are used to plan, structure and implement the centralized procurement approach selected for the Columbus program. ESA

EEC COMPONENT PROCUREMENT: A LOOK AHEAD

M. SNOWDON In ESA, ESA Electronic Components Conference p 515-517 Mar. 1991

It is demonstrated that a properly managed Electrical, Electronic and Electromechanical (EEE) component procurement program not only provides components of a quality and reliability standard which meet or exceed project requirements, but surpasses project aims in a cost and schedule effective manner. A number of key areas associated with an EEE parts procurement program are discussed. The ESA/SCC specification system, various types of procurement approaches and the role of the procurement agents are reviewed. A number of recommendations are made which, if implemented, will further improve upon the successes achieved to date. ESA

ESA'S COMPONENT PROGRAMME PLAN

U. ERNSBERGER In its ESA Electronic Components Conference p 519-522 Mar. 1991

A critical review of the actual methods, procedures and concepts applied to the procurement, assurance and control of components for space application is presented. The result of this review is reflected in the ESA components program plan which aims at enhancing the availability of advanced component technology for forthcoming space programs and providing a solid technology platform in Europe. The main elements of the plan including ESA component policy and long term objectives are described. Efforts in research, technology, standardization and related infrastructure are outlined. ESA

NASA'S CHALLENGE FOR TOMORROW

DANIEL L. BARNEY In ESA, ESA Electronic Components Conference p 523-529 Mar. 1991

The early space probes provided our first detailed look at the planets, and demonstrated the critical role played by parts technology. The advanced orbital platform under development, the Space Station Freedom (which represents a pivotal step in the space program) contains about 5 million Electrical, Electronic and Electromechanical (EEE) parts. Thus, EEE parts continue to be crucial to mission success. The NASA EEE parts program establishes and directs policy and integration throughout the Agency. The EEE program structure, issues and solutions are described. The challenge presented by advanced electronic devices is discussed. ESA

PARTS MANAGEMENT FOR THE 1990'S

S. JENNINGS and M. SCOTT In ESA, ESA Electronic Components Conference p 531-534 Mar. 1991

Programs of the 1990's are predicted to present demands upon parts management more difficult than in time past. There will be increased management pressure to lower the cost of space systems. Cost effective solutions must be found. Changes that influence the 1990's environment are discussed. Some examples that can be effective in dealing with these issues are presented. ESA

UPSCREENING OF COMPONENTS FOR SPACE APPLICATIONS

R. FIDLER In ESA, ESA Electronic Components Conference p 537-544 Mar. 1991

The term upscreening is used to describe additional testing performed on military or similar components to obtain a level of confidence and to justify acceptance for space usage. Upscreening is carried out when a space program cannot obtain components through usual procurement methods due for example to component lot failure, or to the reluctance of a single source manufacturer to accept a high reliability order. Most space programs are obliged to use a small percentage of upscreened components. For a recent satellite project, upscreening was performed on some 130 different part types. The part types upscreened, the testing performed and a summary of the results obtained are presented. Some of the results which are different than those expected are examined in detail. Conclusions are drawn which prove the validity of upscreening for use in extreme circumstances. ESA

CPFS: THE TOTAL INFORMATION SYSTEM TOOL FOR EEE-PARTS PROCUREMENT

F. GARRIDO In ESA, ESA Electronic Components Conference p 555-560 Mar. 1991

The philosophy used in the development and design of the CPFS system and the advantages that a system of this nature presents are discussed. The high number of EEE (Electrical, Electronic and Electromechanics) parts which are needed for a given project along with the detailed technical and administrative definition, demands perfect management of the information that is generated for each single item of a project's part list. CPFS is a rationalized computing system which takes into account that a medium size project handles hundreds of different items each of which has its own identity. The handling of the technical, cost and schedule information, requires a computerized process which guarantees the quality of the information managed in two different and fundamental aspects: information reliability and traceability. ESA
RELIABILITY AND QUALITY CONTROL

A91-10137#

SAFETY RISK ASSESSMENT ON THE SPACE STATION FREEDOM

The discipline of probabilistic risk assessment (PRA), viewed as both a part of the design process and a conceptual framework for all the laboratories and contractors, is discussed with respect to the Space Station Freedom. The basic premise is that risk is a property of an engineered system just like weight, thrust, and payload capacity. A quantitative definition of risk is given; sets of scenarios are identified and structured into categories which constitute the basis of a risk model. B.P.

A91-13076

AUTONOMY, INTERDEPENDENCE, AND SOCIAL CONTROL - NASA AND THE SPACE SHUTTLE CHALLENGER

DIANE VAUGHAN (Boston College, MA) Administrative Science Quarterly (ISSN 0001-8392), vol. 35, June 1990, p. 225-257. Research supported by the University of Oxford and American Bar Foundation. refs

Copyright

This paper shows that the organizations responsible for regulating safety at the National Aeronautics and Space Administration (NASA) failed to identify flaws in management procedures and technical design that, if corrected, might have prevented the Challenger tragedy. Analysis of the processes of discovery, monitoring, investigation, and sanctioning in the Space Shuttle Program indicates that regulatory effectiveness was inhibited by the autonomy and interdependence of NASA and its regulators. This discovery suggests that autonomy and interdependence, concepts developed from research on the external control of organizations, are applicable to the study of intraorganizational regulatory relationships. Moreover, by articulating the organizational contribution to technical failure, this research challenges existing assumptions about the social control of risky technologies.
implemented, verified, recorded, and incorporated into the facility's documentation. Three principal areas are discussed that will realize significant efficiencies and enhanced effectiveness, change assessment, change avoidance, and requirements management.

R.E.P.

A91-29054
CO-OPERATION IS CRUCIAL TO SUCCESS OF AGING AIRCRAFT REVIEW PROGRAMMES
COLIN TORKINGTON (Australia's Civil Aviation Authority, Canberra) ICAO Journal (ISSN 0018-8778), vol. 45, Nov. 1990, p. 15-20.
Copyright

An outline is presented of structural design concepts involved in the continuing programs associated with aging commercial aircraft inspections. The safe life concept requires that those parts of the structure whose failure could result in loss of the aircraft must be able to remain safely in use up to a predetermined retirement life. Although safe life components are now rarely utilized in the primary flight structure of commercial aircraft, many older safe life designs are still operating. Other design concepts described include the fail-safe concept, damage tolerance evaluation, the supplemental inspection document (SID) that was introduced to bring the aircraft up to a safety level equivalent to the new damage tolerance rules, and the Boeing approach to the SID audit approach. Additional concepts and recommendations are discussed, including research work, tear-down inspections of old aircraft, fatigue testing, nondestructive testing techniques, communication, human factors, and maintenance.

R.E.P.

A91-30936
CONTROL DATA CORPORATION'S GOVERNMENT SYSTEMS GROUP STANDARD SOFTWARE QUALITY PROGRAM
Copyright

The authors describe the necessity of developing the Government Systems Group standard Software Quality Program (SQP), the background in developing the SQP, the advantages of the SQP, the components of the SQP, and the highlights of the SQP. The goal of the standard SQP was to develop common and reusable quality processes. The SQP will produce quality products, while the plan offers the advantages of compliance, reusability, efficiency, effectiveness, consistency, cost savings, and portability. The components of the SQP include the policy, organization, plan, and handbook. The main elements of the SQP, which currently reflects government standards DOD-STD-2167A and DOD-STD-2168 for software development projects, are discussed. This standard SQP was developed using the total quality management process methodologies. The influence that the Software Engineering Institute's Capability Assessment had on developing and implementing this standard SQP is also discussed.

I.E.

A91-31019
TOTAL QUALITY IN THE DESIGN PROCESS
Copyright

The advantages to be gained from the use of technology in the quest for quality improvement are considered. The scope includes not only the traditional manufacturing and automation efforts, but also the large opportunity in the design process. Considered gains in manufacturing have been achieved through the judicious use of automation, computer-integrated manufacturing, and statistical process control. In the quest for continuous quality improvement, the next major step function improvement will come from changes in the design methodology. The ways in which artificial intelligence design of experiments, and engineering workstations can be used to truly change design methodology, and not just automate the present methods, are studied.

I.E.

A91-31020
HARDWARE QUALITY AUDITS - A BETTER APPROACH
Copyright

The Air Force has recently released regulations that require that full-scale engineering development or production contracts implement a procedure for the teardown and inspection of selected components, major subsystems, and/or contract end items. An improved approach to compliance is presented. A structured approach to hardware quality audits (HQAs) is described which consists of five steps, as follows: (1) Precisely define HQA requirements in the full-scale engineering development statement of work (SOW); (2) Establish an HQA plan, including analysis items and schedule; (3) Objectively define the elements of the HQA evaluation process; (4) Analyze, report, and track HQA assessments using the hardware audit paperless system (HAPS) model; and (5) Reward contractor HQA achievements.

I.E.

A91-31021
QUALITY ECONOMICS AND PRODUCTIVITY
Copyright

The quality economics principle establishes the relationship between the value of quality and the cost of quality. The manager of the quality function in an organization is guided by this principle in the task of insuring that the quality value of the outputs of the organization is higher than the investment made (cost of quality) to achieve that quality, and thereby contributes to the maximization of the return on investment and profit in the organization. A review is presented to show that the responsibility of the manager of the quality function in the organization has increased in scope to include productivity, associated with quality-related activities in particular, and production work in general.

I.E.

A91-33640
FAILURE MANAGEMENT IN SPATIO-TEMPORAL REDUNDANT, INTEGRATED NAVIGATION AND FLIGHT CONTROL REFERENCE-SYSTEMS
Copyright

Failure management techniques for highly reliable, fault-tolerant inertial reference systems are described. Cost, weight, and power considerations imply the use of a minimum number of inertial sensors in a skewed geometry. Fault-tolerant hardware performance is obtained by spatially separated channels with a preceiver-type information flow. Data diversity in temporally separated software channels yields software fault tolerance. Advanced vector space procedures for fault detection, localization, masking, and dynamic system reconfiguration permit self and quick response, yielding minimal data and recovery latency.

I.E.

A91-36939
IMPLEMENTING SPC IN COMPOSITES MANUFACTURING
LEIGH REID (LTV Aircraft Products Group, Dallas, TX) Society
09 RELIABILITY AND QUALITY CONTROL

of Manufacturing Engineers, Conference on Fabricating Composites '90, Arlington, TX, Oct. 8-11, 1990. 12 p. (SME PAPER EM90-656) Copyright

Composite materials are extremely sensitive to variability in the manufacturing process. Statistical process control (SPC) methods provide a way to continuously monitor processes and detect excessive or unnatural variability before problems can compromise product quality. LTV Aircraft Products Group (LTVAPG) is implementing SPC and other variability reduction methods in the composites manufacturing areas at its Jefferson Avenue facility in Dallas. As part of group-wide efforts in SPC and continuous process improvement, multi-functional SPC application teams analyze each step in the manufacturing process, install appropriate process monitoring mechanisms, improve the capability of the process, and develop process control plans. Special implementation issues deriving from the nature of composites manufacturing are discussed, and guidelines for implementing SPC in composites manufacturing are provided.

Author

A91-40553

SYSTEMS SAFETY INCLUDING DOD STANDARDS

The stated purpose of MIL STD 882B (1984), which is currently the basis of all U.S. DOD criteria in the field of systems safety design and analysis, is "To provide uniform requirements for developing and implementing a system safety program of sufficient comprehensiveness to identify the hazards of a system, and to impose design requirements and management controls to prevent mishaps by eliminating hazards or reducing the associated risk to a level acceptable to the managing activity." Attention is presently given to safety-related issues in material acquisition activities, as well as over the course of a system's life cycle, together with accounts of current hazard-analysis techniques, risk management and system-safety control methods, human factors, and the role of interfaces.

O.C.

A91-41439

THE EUROPEAN ATC SYSTEM - CONSTRAINTS AND TRAFFIC MANAGEMENT

Current problems of the air traffic control system in Europe are examined. Ideas and measures that will yield benefits in the short and medium term by the mid-1990s are explored. These include ATC sector capacity estimation, area navigation, computer-based data processing interfacing between states and Eurocontrol, more accurate short-term traffic flow rate projections, more airport capacity and airport routings, complete restructuring of the airspace to simplify air traffic control, use of airborne collision avoidance systems, ACAS, and computer simulation system modelling.

V.I.

A91-41440

THE PROGRESSIVE IMPROVEMENT OF EUROPEAN FLOW-MANAGEMENT

Developments in European air traffic flow management, technology being used, present organization, and existing problems are defined. The question of how air traffic control system capacity is currently assessed is answered, covering topics such as the availability of new capacity, the optimization of the use of the existing route structure, and alternatives. The paper discusses the present European flow organization and its problems and central flow-management unit development as the ultimate solution. The Eurocontrol Data Bank and its functions are also discussed, and interim development phases are described.

V.I.

A91-41441

THE AIRLINE'S PERCEPTION OF AIR TRAFFIC MANAGEMENT

The very frustrating present situation of air traffic flow-management (ATFM) is described. Problems such as the ability to use published ATS routes and the limitations set by the European traffic orientation system, and significant improvements made within the last 18 months, such as the introduction of the Central Executive Unit, are covered. Qualified as important for the future of air traffic management are the development of a central flow-management unit under Eurocontrol, the creation of a central executive unit, internationally staffed, acting as the decision maker and executive for European traffic flows, and the establishment of a program targeted to harmonize ATC and ATFM into a single, integrated service.

V.I.

A91-44612

AN ANALYTICAL APPROACH TO RELIABILITY, FAILURE FORECASTING AND PRODUCT QUALITY

The subject of product quality and service in the forefront of the efforts of the U.S. Government and its contractors as well as producers of ordinary commercial problems is addressed on the basis of military experience. The present study examines a typical problem of failures impacting quality and the resulting warranty difficulty and shows how it can be solved by quantifying the failure frequency or by failure forecasting. Once this is done it is possible to simply quantify the degree of improvement needed and to control the costs in making the needed repairs. Since the failure forecasting solution can be done it is possible to simply quantify the degree of improvement needed and to control the costs in making the needed repairs. Almost any conceivable product can be treated in this manner using the software available once a simple procedure is learned.

P.D.
The Dempster-Shafer (D-S) theory has been gaining popularity in fields where incomplete knowledge is a factor. The author explores the application of the D-S theory in system reliability and safety. Inappropriate application of the D-S theory to safety-control policies can degrade plant safety. This is proven in two phases: (1) a unified combination rule for fusing information on plant states given by independent knowledge sources such as sensors or human operators is developed; and (2) combination rules cannot be chosen in an arbitrary manner; i.e., the best choice of combination rules depends on whether the safety-control policy is fault-warning or safety-preservation.

I.E.

Toshiyuki Inagaki (Tsukuba, University, Japan) IEEE Transactions on Reliability (ISSN 0018-9529), vol. 40, June 1991, p. 182-188. refs

A91-48193

INTRODUCTION: NEEDS AND APPROACHES TO RELIABILITY AND QUALITY ASSURANCE IN DESIGN AND MANUFACTURE

In the damage tolerance approach, for improving the integrity of aero engines, reliability, and quality assurance issues are discussed. The implication of these assurance methods and the company's damage tolerance concept are investigated: component material specifications and standards, controls on manufacturing processes, design systems and quality assurance. The subjects reviewed in the workshop on reliability and quality assurance are given. - ESA

A91-10297# Rolls-Royce Ltd., Derby (England).

INTRODUCTION: NEEDS AND APPROACHES TO RELIABILITY AND QUALITY ASSURANCE IN DESIGN AND MANUFACTURE

In the damage tolerance approach, for improving the integrity of aero engines, reliability, and quality assurance issues are discussed. The implication of these assurance methods and the company's damage tolerance concept are investigated: component material specifications and standards, controls on manufacturing processes, design systems and quality assurance. The subjects reviewed in the workshop on reliability and quality assurance are given. - ESA

A91-10298# Rolls-Royce Ltd., Derby (England).

TOTAL QUALITY MANAGEMENT AT ROLLS-ROYCE PLC

R. H. Wedge 15 Sep. 1990 10 p Submitted for publication (P-90-90759; ETN-90-97961) Copyright Avail: NTIS HC/MF A02

The Rolls-Royce concept concerning quality and quality management is reviewed. The work is focused on the business associated with aircraft gas turbine manufacture. The reasons for the adoption of quality assurance methods and the company's targets are justified. The distribution of responsibilities and tasks in the quality assurance chain is explained. Resulting from the management plans, more effort is accorded to elimination and prevention, so that less time is spent on detection and correction. - ESA

A91-15393# Pacific Northwest Lab., Richland, WA.

PROCEDURES FOR QUALITY ASSURANCE PROGRAM

These administrative procedures were developed to implement the quality assurance program described in PNL-MA-70, Quality Assurance Manual. The manual and procedures establish requirements, responsibilities, and methods for execution of the program consistent with U.S. Department of Energy (DOE) policies and requirements. When specified by a QA Plan, a Statement of Work or other governing document, PNL activities affecting quality shall be performed in accordance with the administrative procedures. The procedures are controlled documents assigned to the person named on the cover sheet. The assignee is responsible for maintaining the procedures in an up-to-date condition consistent with Controlled Document Lists, by incorporating subsequent changes or new procedures promptly as they are issued. These procedures shall be available and used at the location where the prescribed activity is performed. A Controlled Document List (CDL) for each type of administrative procedure is included for use as a table of contents. The CDL lists procedure numbers, titles, revisions and/or amendments and the effective date. Work shall be performed in accordance with the latest effective procedure revision and/or amendment identified in the CDL unless a Controlled Document Transmittal Record (CDT/R), a QA Plan, or a Statement of Work allows or requires otherwise. This document is Volume 1 of a two volume set. - DOE

A91-17623

SOFTWARE SAFETY

Nancy Levenson Jul. 1987 110 p (Contract NCC9-16)

(NASA-CR-187920; NAS 1.26:187920) Copyright Avail: NTIS HC/MF A06 CSCL 09/2

Software safety and its relationship to other qualities are discussed. It is shown that standard reliability and fault tolerance techniques will not solve the safety problem for the present. A new attitude requires: looking at what you do NOT want software to do along with what you want it to do; and assuming things will go wrong. New procedures and changes to entire software development process are necessary; special software safety analysis techniques are needed; and design techniques, especially eliminating complexity, can be very helpful. - Y.S.

A91-18608# L and S Computer Technology, Inc., Austin, TX.

PERFORMANCE ENGINEERING FOR MISSION CRITICAL EMBEDDED COMPUTER SYSTEMS

Background information is provided on performance engineering and the POD performance modeling tool, and an overview is given of the project activities. Finally, the project summary section reviews the results, lessons learned, and suggests future direction. Naval mission critical, embedded computer systems (MC-ECS) must respond to external events within their allotted time, otherwise they fail. Failures may have life or death consequences. Lifecycle performance management, or performance engineering (PE), calls for building performance into systems beginning in the requirements definition phase, and continuing the performance management through the design, implementation, testing, and post-deployment phases. Experience with PE shows that it can detect and avoid project threatening performance failures in sufficient time to correct them and enable timely delivery of a quality product. Furthermore, performance is orders of magnitude better with this approach than with a fix-it later approach in which performance considerations are deferred to the testing phase and, when necessary, tuning attempts to correct performance failures. Better performance means both people and computer resources can be used to enhance the functionality of the system rather than to correct performance deficiencies. - GRA

A91-19974# Committee on Commerce, Science, and Transportation (U.S. Senate).

HUBBLE SPACE TELESCOPE AND THE SPACE SHUTTLE PROBLEMS

Washington, GPO 1990 59 p Hearing before the Committee on Commerce, Science, and Transportation, 101st Congress, 2d Session, 10 Jul. 1990 (S-HRG-101-1087; GPO-36-688) Avail: Subcommittee on Science, Technology, and Space, Senate, Washington, DC 20510 HC free; also available SOD HC $2.00 as 552-070-09632-9

Hearings before the Subcommittee on Science, Technology, and Space of the Senate Committee on Commerce, Science, and Transportation are presented on oversight on recent problems with the Hubble space telescope and the space shuttle. The question of testing versus a test's costs, risks, and information yield are discussed as well as, lessons learned in management. The Subcommittee reviewed NASA's quality control procedures, the adequacy of Congressional and Office of Management and
09 RELIABILITY AND QUALITY CONTROL

Budget support, and government’s verification responsibilities. Oral and written testimony from NASA management and pertinent contractors is included. J.P.S.

N91-21717# Aerospace Corp., El Segundo, CA.
QUALITY FUNCTION DEPLOYMENT IN LAUNCH OPERATIONS
P. L. PORTANOVA and E. J. TOMEL, JR. 23 Nov. 1990 84 p
(Contract F04701-88-C-0089)
(AD-A230983; TOR-0091(6561-04)-1) Avail: NTIS HC/MF A05
CSCL 05/1

The goal of the Advanced Launch System (ALS) is a more efficient launch capability that provides a highly reliable and operable system at substantially lower cost than current launch systems. Total Quality Management (TQM) principles are being emphasized throughout the ALS program. A continuous improvement philosophy is directed toward satisfying users’ and customer’s requirements in terms of quality, performance, schedule, and cost. Quality Function Deployment (QFD) is interpreted as the voice of the customer (or user), and it is an important planning tool in translating these requirements throughout the whole process of design, development, manufacture, and operations. This report explores the application of QFD methodology to launch operations, including the modification and addition of events (operations planning) in the engineering development cycle, and presents an informal status of study results to date. QFD is a technique for systematically analyzing the customer’s (Space Command) perceptions of what constitutes a highly reliable and operable system and functionally breaking down those attributes to identify the critical characteristics that determine an efficient launch system capability. In applying the principle of QFD, a series of matrices or charts are developed with emphasis on the one commonly known as the House of Quality (because of its roof-like format), which identifies and translates the most critical information. GRA

N91-21552# Air War Coll, Maxwell AFB, AL.
TOP QUALITY MANAGEMENT, RELIABILITY, AND
MAINTAINABILITY: INSTITUTIONAL GOALS WITH BUILT IN
BARRIERS
PHILIP B. AITKEN-CADE 1990 71 p
(AD-A230134) Avail: NTIS HC/MF A04
CSCL 05/1

Total quality management (TQM) has been heralded as the process that will finally cause a cultural change throughout government and industry to usher in a new era of continuously increasing quality. Since the system appears to be slow to react to the change in culture, there may be institutional impediments that are preventing the Air Force from achieving all that it can in reliability and maintainability (R and M) and TQM. However, the study concludes that there are no concrete institutional barriers preventing the Air Force from reaching the goal of TQM. There are only opportunities for senior leaders to demonstrate their commitment to the TQM program. All members of the Air Force and industry must work toward continuous improvement in all facets of the system and the senior leaders must set the pace. Industry has instituted various forms of TQM (after all, TQM is defined in many different ways) and does not need the Government to dictate implementation plans. The success of the Air Force TQM program will depend on the extent to which its senior leaders are prepared to apply the concept of KAIZEN - gradual, unending improvement, doing little things better; setting and achieving ever-higher standards. GRA

N91-22778# Mitre Corp., Houston, TX.
A FAILURE RECOVERY PLANNING PROTOTYPE FOR SPACE
STATION FREEDOM
DAVID G. HAMMEN and CHRISTINE M. KELLY In NASA.
(Contract NAS9-18057)
Avail: NTIS HC/MF A16
CSCL 09/2

NASA is investigating the use of advanced automation to enhance crew productivity for Space Station Freedom in numerous areas, including failure management. A prototype is described that uses various advanced automation techniques to generate courses of action whose intents are to recover from a diagnosed failure, and to do so within the constraints levied by the failure and by Freedom’s configuration and operating conditions. Author

N91-26555# Pacific Northwest Lab., Richland, WA.
QUALITY ASSURANCE MANUAL
(Contract DE-AC06-76RL-01830)
(DES9-012618; PNL-MA-70) Avail: NTIS HC/MF A04

In order to provide clients with quality products and services, Pacific Northwest Laboratory (PNL) has established and implemented a formal quality assurance program. These management controls are documented in this manual (PNL-MA-70) and its accompanying standards and procedures. The QA Program meets the basic requirements and supplements of ANSI/ASME NQA-1-1986 Edition, Quality Assurance Program Requirements for Nuclear Facilities, except as noted in specific sections of this manual. This manual provides topical requirements and an overview of the administrative procedures that apply to Impact Level 1 and 2 projects and activities. DOE

N91-26994# Rome Air Development Center, Griffiss AFB, NY.
MEASURING THE QUALITY OF KNOWLEDGE WORK
ANTHONY COPPOLA Apr. 1991 25 p
(Contract AF PROJ. 2338)
(AD-A235354; RL-TR-91-48) Avail: NTIS HC/MF A03
CSCL 05/1

There are a variety of ways in which the quality of knowledge work can be measured, depending on the definition of quality and the intended use of the measure. This report summarizes these for the guidance of the managers of knowledge workers, such as the engineers and scientists of Government laboratories. GRA

N91-27757# National Inst. of Standards and Technology, Gaithersburg, MD. Office Systems Engineering Group.
GOVERNMENT DOCUMENT PROCESSING REQUIREMENTS
REPORT
R. F. SIES Apr. 1991 16 p
(PB91-187773; NISTIR-4560) Avail: NTIS HC/MF A03
CSCL 05/2

Several activities are described of the Office Systems Engineering Group in the area of electronic publishing standards. An account is given of the July 30, 1990 workshop on Electronic Information Exchange Standards Used in Document Processing Applications and the list of User Requirements that came out of that workshop. Other efforts are reported which were made to help bring about the harmonization of electronic publishing standards. Author

N91-30198# European Space Agency, European Space
Research and Technology Center, ESTEC, Noordwijk (Netherlands). Materials and Processes Div.
THE CONTROL OF LIMITED-LIFE MATERIALS
Dec. 1990 14 p
(ESA-PPS-01-722-_ISSUE-2; ISSN-0379-4059; ETN-91-99828)
Copyright Avail: NTIS HC/MF A03

The procedure to be used for the control of limited life materials employed in the fabrication of ESA spacecraft and associated equipment is specified. The areas covered are hazards and safety precautions, material control, procurement documents, identification, storage and handling. Control of material life includes assessment of shelf life, extension of shelf life and disposal of non certifiable materials. Acceptance criteria and recertification testing are outlined. Quality control criteria concerning data nonconformance, calibration and traceability are discussed. ESA

N91-30544# Wichita State Univ., KS. National Inst. for Aviation Research.
KQIN: KANSAS QUALITY IMPROVEMENT NETWORK, A
REPORT OUTLINING A STATEWIDE QUALITY IMPROVEMENT
PLAN

A plan is described for the implementation of the Kansas Quality Improvement Network (KQIN). Objectives include providing a support system for business organizations initiating Total Quality Management (TQM) programs, raising the awareness of TQM and working with Kansas educational institutions to both update their curricula in the TQM area and to implement TQM techniques in their operations. The KQIN plan would allow Kansas to become more competitive with other Midwestern states that have already implemented quality improvement networks.

N91-30987#
General Accounting Office, Washington, DC.
National Security and International Affairs Div.
SPACE PROJECT TESTING: UNIFORM POLICIES AND ADDDED CONTROLS WOULD STRENGTHEN TESTING ACTIVITIES
Sep. 1991 42 p
(GAO/NSIAD-91-248; B-245141) Avail: NTIS HC/MF A03
The General Accounting Office (GAO) reviewed the National Aeronautics and Space Administration's (NASA) testing activities to assess the adequacy of NASA's testing policies and practices. NASA's oversight of contractor testing, and the adequacy of resources available for testing. Because space missions are inherently risky, systems cannot be easily repaired while in orbit, and failures are widely publicized, it is especially important that system performance be thoroughly tested before launch. These complex systems are usually acquired in very limited quantities, and test programs are specifically tailored for each project. In this report, GAO recommends that the NASA Administrator: (1) define and issue testing policies regarding testing goals, minimum requirements, and organizational roles and responsibilities for ensuring that tests are properly planned, conducted, and reported; (2) establish agencywide test standards, and (3) make specific improvements in contractor testing oversight such as increasing the level of civil servants' knowledge and skills to enable them to better critique technical contractor designs, tests, and operations.

J.P.S.

N91-31013#
Universiteit Twente, Enschede (Netherlands). Dept. of Information Systems.
QUALITY ASSURANCE IN THE MANAGEMENT OF INFORMATION SYSTEMS
L. J. B. ESSINK Dec. 1990 29 p
(MEMO-INF-90-90; ISSN-0923-1714; ETN-91-99681) Avail: NTIS HC/MF A03
Quality assurance in relation to the planning development, introduction and maintenance of automated information systems is addressed. Quality is threatened by inadequate organization of the process, the lack of operational quality criteria and misinterpretation of needs. Quality problems are emerging from a number of well known pitfalls of IS (Information Systems) development in practice. These pitfalls give a good indication of 'why information systems fail'. The implementation of a quality system in the organization to monitor organizational structures, the quality of specifications, procedures and processes is a necessity. The needs and structure of such a quality assurance system are outlined. A framework that enables a clear distinction of the different aspects of the management of IS is presented. In the framework different models for analyzing quality requirements and management structures of IS development are treated. The critical success factors of IS development are outlined. The term 'critical success factor' stands for a condition, a control variable or circumstance that has to be managed properly in order to achieve an 'optimal' organizational setting contributing to the success of a development process.

N91-32366#
Arge-Detecon, Bonn (Germany, F.R.).
EXPERIENCES WITH COMPONENTS IN THE DFS-PROJECT: SEEN FROM A CUSTOMER'S POINT OF VIEW
Experiences with components in the German telecommunications satellites project DFS are addressed. The nature of most problems related to product assurance is that they occur late in the programs. Sometimes they occur so late, that corrective measures have a considerable risk impact on the customer and a considerable financial impact on the contractor. It is recommended that the activities in the field of product assurance be intensified and accelerated at the source, the component manufacturer, in order to avoid these problems in the future and benefit both contractor and customer.

N91-32367#
Centre National d'Etudes Spatiales, Toulouse (France). Components Div.
SUMMARY OF EEE COMPONENT ANOMALIES ENCOUNTERED IN THE SPOT LINE OF EARTH OBSERVATION SATELLITES AND LESSONS DERIVED THEREFROM FOR FUTURE GENERATIONS
Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders
The results of Electric, Electronic, and Electromechanical (EEE) component activities applied to French Earth observation satellites of the SPOT family are discussed. The SPOT program and the different satellites in the family are described. Emphasis is given to the components used. The component selection policy is described and results are given in terms of number of types, manufacturers, and quantities used. Details concerning the procurement of SPOT components in terms of screening, quality and, vendor, and procurement aspects are reviewed. Component incidents and problems encountered during the development of SPOT satellites are discussed. The details and analysis of all incidents are given. Actions taken for the next generation of satellites are presented.

N91-32378#
IGG Component Technology Ltd., Portsmouth (England).
THE MERITS OF AN INDEPENDENT PRE-CAP INSPECTION
Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders
Results of routine destructive physical analysis carried out on monolithic integrated circuits are presented. Circuits meant to meet MIL-STD-883 level B screening flow show consistent failure under destructive physical analysis tests. Potential reliability hazards associated with this failure are discussed. It is concluded that little reliance can be placed on manufacturers to perform pre-cap inspection and wafer-Scanning Electron Microscope (SEM) acceptance if there is no independent monitoring. SEM photographs are shown of representative manufacturing defects in the circuits tested.

N91-32381#
National Space Development Agency, Tokyo (Japan), Reliability Assurance Dept.
A PLAN OF NASDA'S PARTS DATABASE IN THE RELIABILITY INFORMATION SYSTEM
Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders
The National Space Development Agency of Japan (NASDA) is developing a reliability information system. Present and future NASDA reliability analysis software and parts databases for parts development, parts management, reliability design, etc. are described. A computer database including information on the NASDA's Qualified Products List (NASDA QPL) and Standard Parts List (NASDA SPL) is available on NASDA's computer network. NASDA is applying a System Reliability Optimization Program (SYROP) based on the parts database to tradeoff parameters.
related to system reliability. NASA plans for comprehensive parts databases of NASA standard parts specification. Application data sheet, parts reliability information and device summary sheet are outlined.

N91-32382# Aerospatiale, Cannes (France).

PREPARING ELECTRONICS QUALITY FOR THE NEXT CENTURY

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

Total Quality Management (TQM) concepts adapted to the development of quality electronic components are discussed. TQM as applied in the U.S. is contrasted with possible TQM approaches in Europe. The need for the U.S. and Europe to rise to the challenge of Japan's lead in electronic component manufacturing is stressed. Ways in which TQM policies will affect cooperation between the U.S. and Europe are discussed. A TQM approach is predicted to be widespread in Europe four years after it is established in the U.S.

N91-32383# Thomson-CSF, Orsay (France).

EQML: A CHANCE FOR EUROPE

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

The European qualification, approval or capability approval system is found to be poorly adapted to Very Large Scale Integration (VLSI) and Application Specific Integrated Circuits (ASICs). EQML, a European qualification system based on the QML system developed by the U.S. Department of Defense, is described. EQML content in terms of qualification and task definition in integrated circuit manufacturing is discussed. The procedure allows qualifications to be carried out by tradeoffs provided that the interfaces are controlled.

N91-32384# Texas Instruments France, Villeneuve-Loubet, Quality Dept.

SPACE MANUFACTURING QUALITY THROUGH STATISTICAL PROCESS CONTROL: AN APPLICATION AT TEXAS INSTRUMENTS FRANCE, A SPACE SEMICONDUCTORS PRODUCTION LINE

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

Ways in which Statistical Process Control (SPC) can ensure continuous quality improvements, minimize the cost of ownership and generate a total quality environment for all manufacturing and quality control employees are outlined. Cpk and ppm defect rate dependency are discussed. A review of specific examples of SPC technique implementation in space semiconductors production shows how continuous quality improvements support specific space market needs. Two major applications are analyzed: (1) the enhancement of internal wire bonding process quality via SPC driven process improvement, and (2) how wafer manufacturing process control data can be used as a substitute for MIL STD 883 method 2010 internal visual inspections procedures.

N91-32385# Thomson-CSF, Sainte Egreve (France).

TOTAL QUALITY MANAGEMENT: WHAT ARE THE FACTS BEHIND THE CONCEPTS?

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

The MIL-1-38535 Total Quality Management (TQM) system is discussed. It is concluded to be the most pragmatic TQM system for the manufacturing of military and space Very Large Scale Integration (VLSI). Changes in manufacturers responsibility due to the system are discussed. The effect of the TQM system on quality improvement programs is discussed. A normalized reliability philosophy based on the TQM system is discussed. Shortcomings of the MIL-1-38535 system in certain TQM areas are identified and ways in which manufacturers can get around these shortcomings are described.

N91-32386# Thomson-CSF, Orsay (France).

WHICH POSITION FOR MIL-SPACE INDUSTRY FACING QML CONCEPT

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

Use of the European Quality Management system EQML by part manufacturers, equipment manufacturers and system users is discussed. Evolution of normalized qualification standards enabling better confidence and cost efficiency in new product generation is discussed. Ways of improving development cycles, yields and product performances using the EQML system are outlined. The main phases involved in the qualification concept are identified.

N91-32389# GEC-Plessey Semiconductors, Lincoln (England).

TECHNOLOGY APPROVAL USING CAPABILITY INDICES

Copyright Avail: NTIS HC/MF A25; EPD, ESTEC, Noordwijk, Netherlands, HC 90 Dutch guilders

Technology approval is offered as an alternative to conventional component approval procedures. Statistical Process Control (SPC) and capability indices are used to demonstrate manufacturing capability. Applied to mandated systematic performance improvement, the procedure is intended to meet and exceed the requirements of current systems. Successful implementation of this standard should result in the products of a demonstrably higher quality and reduced cost in comparison to existing approval systems. Technology approval may be granted only to a manufacturer who has been granted manufacturers approval in accordance with the requirements of a recognized national system.

N91-32582# Los Alamos National Lab., NM

QUALITY ASSURANCE OF FIELD SCREENING

Copyright Avail: NTIS HC/MF A01

As the costs of collecting, shipping, and analyzing samples for environmental compliance have increased, ways of reducing those costs have been pursued, including field screening methods. Field personnel have long wanted methods that are portable, easy to use, sensitive for all regulated compounds and elements, and approved for use by all regulators. However, field methods do not currently meet these needs, and thus data quality for these methods must be established. The proper amount of quality assurance on field screening methods cannot be easily standardized or prescribed for all field screening. Many field methods have not been documented sufficiently. To ensure that data of known quality is produced from field methods, the significant aspects of the operation of that method, including performance, must be determined and documented. The DOE's Laboratory Management Branch (EM-532) has initiated a program to assess the numbers and types of field methods both in the literature and available commercially.
10

10 LEGALITY, LEGISLATION, AND POLICY

A91-10010#

Gamma Ray Observatory - The Productivity Program

(AIAA PAPER 90-3542) Copyright

The Gamma Ray Observatory (GRO), one of NASA's 'Great Observatories', is scheduled for shuttle launch in late 1990. In 1983, early in the program, NASA and TRW selected GRO as a model for productivity, and agreed to run the program from the beginning with that commitment in mind. Their approach focused on communications, performance measurement, a productivity incentive clause, relationships with subcontractors, and an individual reward system. This paper describes the success of these efforts and of the Gamma Ray Observatory Program.

Author

A91-10204#

The Government's Response to the Interagency Report on Orbital Debris

(AIAA PAPER 90-3861)

This paper discusses the report on the implementation of the national policy regarding the creation of space debris, provided by the Interagency Group (Space), together with the results of the review of this report by the Orbital Debris Subcommittee of the AIAA's Space Operations and Support Technical Committee of the draft research plan. As a result of the review, 20 tasks were ear-marked for inclusion as orbital debris research objectives. The paper describes these objectives and the ultimate Orbital Debris Research Plan, which was submitted to the National Space Council Staff in May 1990, and approved in July the same year.

I.S.

A91-10979#

The Role of Government Property in the Commercial Space Launch Program

A comparative analysis is presented of the current government policy on the use, provision, insurance and liability, disposition/sale of government property, and policy and procedure set forth in current law. By Public Law 98-575 the government is now obligated to promote economic growth by encouraging the private sector to provide launch services and utilize space for peaceful purposes. The government must also encourage a U.S. expendable launch vehicle industry by simplifying and expediting the issuance of commercial launch licenses and by facilitating the commercial use of government-developed expendable technology for launch vehicles. Details of the policy on providing government property and liability for the damage or destruction of government property under the commercial space launch act are discussed.

R.E.P.

A91-14335

The Two Faces of Section 105 - Airline Shield or Airport Sword

CALVIN DAVISON and LORRAINE B. HALLOWAY (Crowell and Moring, Washington, DC) Journal of Air Law and Commerce

(Copyright)

10 LEGALITY, LEGISLATION, AND POLICY

ISSN 0021-8642), vol. 56, Fall 1990, p. 93-123. refs

Section 105 of the Federal Aviation Act, part of the Airline Deregulation Act of 1978, contains wording which has led to conflicting court interpretations concerning the extent of the airport proprietor's authority. The proprietary powers and rights of airports recognized prior to the adoption of Section 105 are reviewed; the legislative history of Section 105 is examined in an attempt to determine Congress' rationale for promulgating this section; and the case law interpreting Section 105 is analyzed. It is concluded that, while considerable confusion still exists with respect to Section 105, the contours of permissible proprietor actions are beginning to emerge and that proprietors should encounter the least legal resistance in exercising their powers in the areas of ground congestion, terminal access, leasing, reasonable landing fees, and noise and environmental concerns. Proprietors may have more limited powers in such areas as access to airspace, air safety rules, and exclusion of new entrants.

L.K.S.

A91-14337

Airline's Response to the DTPA Section 1305 Preemption

DANIEL PETROSKI (Houston Law Review, TX) Journal of Air Law and Commerce (ISSN 0021-8642), vol. 56, Fall 1990, p. 125-153. refs

Section 1305 of the USC 49, enacted by Congress in 1978, preempts state laws that regulate the rates, routes, and services of interstate air carriers. It is noted that, despite this, the majority of states have enacted unfair trade practice statutes (UTPS) that may directly affect the air carrier's rates, routes, and manner in which they perform their services. These UTPS allow plaintiffs to collect not only their actual damage, but also to receive attorney's fees and two or three times the actual damages as a penalty and, if not preempted by section 1305, would subject title IV air carriers to greater liability than previously encountered under general common law theories of liability. The legislative history of section 1305; the definition of rates, routes, and services; and controversies and questions that surround section 1305 are discussed and courses of action that are available if section 1305 preempts state law actions are investigated.

L.K.S.

A91-18094

STI and Government Information in the Federal Republic of Germany

HANS G. KLAUS (Gesellschaft fuer Mathematik und Datenverarbeitung mbH, Sankt Augustin, Federal Republic of Germany) Government Information Quarterly (ISSN 0740-624X), vol. 7, no. 4, 1990, p. 441-449. refs

Copyright

About 37 percent of the funds spent in 1987 for research in the Federal Republic of Germany result from government sources. The Federal government's overall annual budget alone totals $291 billion per year (1989). This makes the government sector an important generator, distributor, and consumer of scientific, technical, and government specific information. This article describes the role of the government in this context and discusses important government policy issues.}

Author

A91-20775

New Leadership for Space Exploration

JAMES J. FRELK (George C. Marshall Institute, Washington, DC), WALTER HAWKINS, ROBERT JASTROW, WILLIAM A. NIERENBERG, and FREDERICK SEITZ Issues in Science and Technology (ISSN 0748-5492), vol. 7, Winter 1991, p. 82-86. refs

Copyright

In March, 1990, the Bush administration released guidelines for the Space Exploration Initiative (SEI), which will stress novel approaches to the development of innovative technologies with a view to major cost, schedule, and performance improvements. It is presently suggested that overall responsibility for SEI efforts be vested in a national commission composed of leaders from the
aerospace industry, universities, and former managers of large technical programs; its leader would report to the President, or to the chairman of the National Space Council, but to no lower level of authority. In this way, proposals originating within NASA would compete on an equal footing with all others, rather than possessing unfair advantage. The more recent management practices of NASA are contrasted with the paradigmatic success of the U.S. Navy's Polaris development program and the early phases of the USAF ICBM development program.

A91-27566

CAN SPACE EXPLORATION SURVIVE THE END OF THE COLD WAR?

BRUCE MURRAY (California Institute of Technology, Pasadena) Space Policy (ISSN 0265-9846), vol. 7, Feb. 1991, p. 23-34. Copyright

The achievements in space exploration since 1986 are reviewed. It is argued that the first age of space exploration was driven by competition between the U.S. and the USSR. With the apparent close of the Cold War, it is possible that a necessary shift of attention to domestic issues in most nations will cause a hiatus in space exploration. It is thus suggested that a future space exploration program of proper proportion will only be achieved if international cooperation is achieved on a large scale and backed by the necessary political will. It is also suggested that a Mars mission can provide a focus for space exploration well into the next century.

A91-27828

AIRCRAFT DEREGULATION AND LAISSEZ-FAIRE MYTHOLOGY - ECONOMIC THEORY IN TURBULENCE

PAUL STEPHEN DEMPSEY (Denver, University, CO) Journal of Air Law and Commerce (ISSN 0021-8642), vol. 56, Winter 1990, p. 305-412. refs Copyright

The effect of airline deregulation on the airline industry, its customers, and on the U.S. air transportation system is examined. The actual experience of the last decade is compared with the promises that were made by those who successfully promoted the Airline Deregulation Act of 1978. It is shown that, after a decade of airline deregulation, concentration of national and regional market power is greater, routes are more circuitous, service is poorer, labor-management relations have deteriorated, and air travel is less safe. A legislative agenda for reform is proposed which attempts to steer a middle course between heavy-handed regulation and laissez-faire. The agenda includes the establishment of an independent Federal Transportation Commission, the prohibition of a single airline maintaining a dominant position at more than a single airport, price regulation to prevent price gouging and predatory pricing, and laws aimed at eliminating price discrimination.

A91-38935#

LEGAL PROBLEMS OF DEVELOPING COUNTRIES' ACCESS TO SPACE LAUNCH VEHICLES

Launch vehicles are available from multiple sources on a commercial, cost-reimbursable basis. Entities in developing countries seeking launch services for space applications or space science missions will discover a morass of complex legal issues involved in arranging a launch. The single best method to ease the difficulty of arranging a launch contract is to obtain the services of qualified, informed, and experienced legal counsel, capable of functioning in the legal system(s) involved in the particular launching arrangements. Establishing a detailed checklist in advance of contract negotiations can be an enormous help to the first-time entrant into launch contract arrangements.

A91-45448

TAXATION IN THE FIELD OF INTERNATIONAL AIR TRANSPORT - LEGAL ASPECTS

The taxation policies of ICAO in the field of civil international air transport are reviewed. Attention is given to ICAO's legal role, academic views and judicial decisions, and legal measures to be taken. Two fundamental postulates that result from these discussions are that taxation is principally used to pay for public services and that there are coherent guidelines as introduced by ICAO Resolutions of November 14, 1966 relating to the taxation of international air transport. Consideration is given to certain legal aspects of IATA, the London Convention of 1939, and the Chicago Convention of 1944.

A91-45449

BERMUDA BIAS - SUBSTANTIAL OWNERSHIP AND EFFECTIVE CONTROL 45 YEARS ON

MARC L. J. DIERIKX (Catholic University, Nijmegen, Netherlands) Air Law (ISSN 0165-2079), vol. 16, June 1991, p. 118-124. refs Copyright

This review serves to illustrate that restrictions on ownership and control, both on an international (bilateral) and on a national level, originated as protective instruments with the primary objective of safeguarding national security. When compared to the granting of air transport rights by sovereign governments, the joint questions of ownership and control seem to hold real possibilities of being separated from the public law framework they are now tied in with. It is suggested that, if present civil air transport is accepted to be an ordinary economic activity offering services to the general public, there appears to be little reason for keeping international air transport in a singular position of governmental patronage.

A91-45450

TWO RECENT GERMAN CASES OF PRIVATIZATION - AIR TRAFFIC CONTROL AND THE SPACE AGENCY

STEFAN A. KAISER Air Law (ISSN 0165-2079), vol. 16, June 1991, p. 125-132. refs Copyright

A comparison is presented that illustrates two approaches to privatization and obstacles to it associated with the German space agency (DARA) and Germany's air traffic services. Consideration is given to the reasons for privatization, the legislative procedure, and the position of the German federal President. The establishment of DARA under private law and the Act on the Transfer of Administrative Competences in the Field of Space Activities are also considered.

A91-47575

THE EXPLOITATION OF SPACE AND DEVELOPING COUNTRIES (INTERNATIONAL-LAW PROBLEMS) [OSVOENIE KOSMOSA I RAZVIVAIUSHCHIESIA STRANY /MEZHDUNARODNO-PRAVOVYE PROBLEMY/)

VLADIMIR M. POSTYSHEV Moscow, Izdatel'stvo Nauka, 1990, 192 p. in Russian. refs Copyright

The contribution of developing countries to the creation of an international legal order in the domain of space activities is discussed. Particular attention is given to the organization of international collaboration in the interests of the peaceful exploration and exploitation of space. The following areas of such exploitation are considered: the remote sensing of earth resources, direct TV broadcasting, the utilization of the geostationary orbit, and the exploitation of lunar resources.

A91-48028

SELLING THE SPACE TELESCOPE - THE INTERPENETRATION OF SCIENCE, TECHNOLOGY, AND POLITICS

ROBERT W. SMITH (National Air and Space Museum, Washington,
that while a politically feasible Space Telescope did result, in the was a case study in the influence of government patronage on a history and policy. Washington, DC, Smithsonian Institution Press,

THE 1986 CHALLENGER DISASTER - LEGAL RAMIFICATIONS

Copyright

Attention is given to the politics of initiating the Space Telescope program and to the manner in which the coalition, or working consensus, for the Telescope was assembled, in particular, the role played by astronomers. It is contended that what ensued was a case study in the influence of government patronage on a large-scale scientific and technological program. It is concluded that while a politically feasible Space Telescope did result, in the selling process the Telescope had been both oversold and underfunded. P.D.

A91-48445
THE 1986 CHALLENGER DISASTER - LEGAL RAMIFICATIONS
Copyright

Analysis and comment on the distinct legal ramifications of the 1986 Challenger disaster are presented. Special attention is given to the role this tragedy might have played in the continuing evolution of two theories, the Feres Doctrine and the Government Contractor Defense, regarding the extent of the liability imposed on the Federal Government and the private concerns which work under its contract.

V.I.

A91-48446
THE COMMERCIAL DEVELOPMENT OF SPACE - THE NEED FOR NEW TREATIES
BIN CHENG (Detroit, University, MI) Journal of Space Law, vol. 19, no. 1, 1991, p. 17-44. refs

Copyright

In view of present and future commercial developments in outer space, the need for further treaties now required - or urgently required - is examined. Some aspects reviewed here include: the relevance of international law for commercial space activities, the need to delimit airspace, the need to regularize the status of space objects in foreign airspace, peaceful purposes, the status of space objects, space objects and jurisdiction, the extension of national laws to space, dispute settlement, international civil space organization and an international regime for the moon, and conditions governing international rule-making.

V.I.

A91-52225* American Univ., Washington, DC.
THE SPACE STATION DECISION - INCREMENTAL POLITICS AND TECHNOLOGICAL CHOICE
HOWARD E. MCCURDY (American University, Washington, DC) Research supported by NASA. Baltimore, MD, Johns Hopkins University Press, 1990, 298 p. refs

Copyright

Using primary documents and interviews with participants, this book describes the events that led up to the 1984 decision that NASA should build a permanently occupied, international space station in low earth orbit. The role that civil servants in NASA played in initiating the program is highlighted. The trail of the Space Station proposal as its advocates devised strategies to push it through the White House policy review process is followed. The critical analysis focuses on the way in which 'incrementalism' (the tendency of policy makers to introduce incremental changes once projects are under way) operated in connection with the Space Station program. The book calls for a commitment to a long-range space policy.

B.J.

A91-52755
ANTITRUST IRRELEVANCE IN AIR TRANSPORTATION AND THE RE-DEFINING OF PRICE DISCRIMINATION
LAURENCE E. GESELL and MARTIN T. FARRIS (Arizona State University, Tempe) Journal of Air Law and Commerce (ISSN 0021-8642), vol. 57, Fall 1991, p. 173-197. refs

Copyright

It is argued that the consolidation of the airline industry into an oligopoly has not enhanced the need for effective antitrust enforcement. Oligopolistic companies tend not to engage in predatory pricing because they know that their competitors will meet the price, lowering profits for all. Instead of more antitrust enforcement, what is needed is a new adaptive law to protect the consumer from unfair price discrimination.

C.D.

N91-13366# Commerce Dept., Washington, DC. Office of the Secretary.

Legislation passed in 1988 authorized the National Technical Information Service (NTIS) to 'modernize' its operations, make use of cooperative agreements with the private sector, and provided for stronger representation in technology issues both in the United States and abroad. The 1989 Annual Report details NTIS progress. The major areas covered include: modernization; increasing and expanding the collection; foreign technology; audit results; the private sector; and technology transfer.

Y.S.

N91-13376# Committee on Commerce, Science, and Transportation (U.S. Senate).
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION AUTHORIZATION ACT, FISCAL YEAR 1991

The Senate committee on Commerce, Science, and Transportation presents the NASA Authorization Act for fiscal 1991. This act authorizes appropriations to NASA for research and development, space flight, control and data communications, construction of facilities, research and program management, and many aspects of the Space Transportation System.

M.G.

N91-13377# Committee on Science, Space and Technology (U.S. House).
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MULTYEAR AUTHORIZATION ACT OF 1989

The House of Representatives' Committee on Science, Space, and Technology presents the NASA Multyear Authorization Act of 1990. The act authorizes appropriations for research and development, space flight, control and data communications, construction of facilities, research and program management, and many aspects of the Space Transportation System.

M.G.

SOLAR COLLECTOR MANUFACTURING ACTIVITY, 1988
30 Nov. 1989 47 p (DE90-003539; DOE/EIA-0174(88)) Avail: NTIS HC/MF A03

This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in

95
the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public. DOE

Publications of the Executive Office of the President during the Reagan Administration are compiled. Reports from Council of Economic Advisers, Council on Environmental Quality, Office of Administration, Office of Management and Budget, Office of Science and Technology Policy, Office of the United States Trade Representative, Office of the Vice President, and White House Office are presented.

Publications of the Executive Office of the President during the Bush Administration are compiled. The reports from Council of Economic Advisers, Council on Environmental Quality, Office of Administration; Office of Management and Budget, Office of National Drug Control Policy, Office of Science and Technology Policy, Office of the United States Trade Representative, and White House Office are presented.

N91-19970# Office of Science and Technology, Washington, DC. US TECHNOLOGY POLICY: EXECUTIVE OFFICE OF THE PRESIDENT 26 Sep. 1990 17 p (PB91-119677) Avail: NTIS HC/MF A03 CSCL 05/1
A statement of the Administration’s technology policy is presented. Many facets of technology policy are brought together, and it is shown how they fit into a comprehensive framework. The goals and strategies of this policy are discussed. The program implementation proposed in the Administration’s Fiscal Year 1991 budget submission to Congress is presented. Areas associated with classified national security technologies are not included. A nation’s technology policy is based on the broad principles that govern the allocation of its technological resources. Competitive market forces determine, for the most part, an optimal allocation of U.S. technological resources. Government can nonetheless play an important role by supplementing and complimenting those forces.

Text is presented of the public law authorizing appropriations to the National Aeronautics and Space Administration for research and development; space flight, control, and data communications; construction of facilities; research and program management; and for other purposes.

This case study of public policy debate was undertaken to learn more about how information policy is made in the United States. The question of how guiding philosophies of government shape Federal information resources management policy (FIRMP) is addressed. By the mid-1980’s, there was an apparent shift in the direction of FIRMP away from ideas of access and toward the idea of efficiency. The attempted privatization of the National Technical Information Service (NTIS) case study was used to try to learn how important the ideas of efficiency and access were to the policy makers as they determined whether to model Federal information policy according to a library or warehouse metaphor. After several attempts on the part of the Reagan Administration to privatize NTIS, the Office of Management and Budget in early 1987 instructed the Department of Commerce to formulate a process whereby NTIS would be privatized. DoD assembled a task-force comprised of Commerce, NTIS, and Office of Management and Budget personnel. The role that policy makers see the Federal Government playing in matters of acquiring and disseminating information in the late 1980’s is addressed. In addition, the process of policy-making at the Federal level, and the impact that the process can have on policy decisions are examined. Of particular interest is the ability or inability of policy makers to engage in discourse relative to the central issues in the policy debate. It is demonstrated that a view in progress approach can reveal: (1) much about the policy-making process that might otherwise be hidden from historians or researchers who rely on printed documents; (2) that guiding philosophies about government and information do not solely determine the outcome of such policy debates; and (3) that policy can be shaped by staff-level government workers in the legislative and executive branches of government.

In September 1990, the President’s Office of Science and Technology Policy released a document that bears on the future of our nation’s technological vigor and economic performance. Entitled, U.S. Technology Policy, it is a statement of a set of broad principles that will constitute the Federal government’s technology policy for the 1990s. One of the leading principles of this policy is the imperative for cooperation and teamwork among government, industry, and academia, including an active, partnership role for the national laboratories in the mainstream U.S. technology community. Until now, the nation’s technology policy has never been explicit, although a tacit technology policy of one sort or another has at all times been in effect. The Federal government has consistently been willing to create and fund institutions and programs to promote important national technology goals. Historical examples of such sponsorship include atomic energy, aeronautics and space, energy, and medicine. The recognition in U.S. Technology Policy that government has an active role to play in fostering technology development is a particularly significant admission. The vision of a partnership between the Federal government and the private sector, as the policy outlines, provides a foundation upon which the national laboratories of the Department of Energy (DOE) can build to play a stronger role in enhancing U.S. economic competitiveness.
Propulsion Strategic Plan. Developing such a plan required a broad spectrum of experience and disciplines. The Strategic Plan team needed the participation of industry, government, and academia. The plan provides, if followed, a means for the U.S. to maintain technical excellence and world leadership in rocket propulsion. To implement the National Rocket Propulsion Strategic Plan is to invest in the social, economic, and technological futures of America. The plan lays the basis for upgrading existing propulsion systems and a firm base for future full scale development, production, and operation of rocket propulsion systems for space, defense, and commercial applications.
COMPUTER PROGRAM INTEGRITY
The role of software engineering in NASA's Information Processing System Program p 21 N91-21635

COMPUTER PROGRAMMING INTEGRITY
The role of the Standard for the National Institute of Standards and Technology p 21 N91-21484

COMPUTER STORAGE DEVICES
A performance analysis of the USAF work information management system p 23 N91-21278

COMPUTER SYSTEMS PERFORMANCE
A study of Adapta, a computer-aided design program p 24 N91-22075

COMPUTER TECHNIQUES
A guide to NASA's Pilot Land Data System (PLDS) p 20 N91-20093

COMPUTER TECHNIQUES
A study of the effectiveness of computer-based instruction systems p 21 N91-21484

COMPUTER TECHNIQUES
A performance analysis of the USAF work information management system p 23 N91-21278

COMPUTER TECHNIQUES
A study of Adapta, a computer-aided design program p 24 N91-22075

COMPUTER TECHNIQUES
A guide to NASA's Pilot Land Data System (PLDS) p 20 N91-20093

COMPUTER TECHNIQUES
A study of the effectiveness of computer-based instruction systems p 21 N91-21484

COMPUTER TECHNIQUES
A performance analysis of the USAF work information management system p 23 N91-21278

COMPUTER TECHNIQUES
A study of Adapta, a computer-aided design program p 24 N91-22075

COMPUTER TECHNIQUES
A guide to NASA's Pilot Land Data System (PLDS) p 20 N91-20093

COMPUTER TECHNIQUES
A study of the effectiveness of computer-based instruction systems p 21 N91-21484
ENERGY CONVERSION EFFICIENCY

ENERGY CONVERSION EFFICIENCY

Meetings to share advancements in heat pump technologies

[DE90-010008] p 60 N91-16257

A review of the status of biomass conversion technologies and their applications for use in developing countries

[DE90-005341] p 62 N91-19506

ENERGY DISTRIBUTION

Knowledge-based qualitative modelling and adaptive distribution of power

[DE90-005359] p 95 N91-13797

Report to Congress on the Small Business Program

[DE90-004622] p 76 N91-16831

ENERGY STORAGE

Advanced secondary batteries: Their applications, technological status, market and opportunity

[DE90-796146] p 58 N91-11146

ENERGY TECHNOLOGY

Commercial activities of the DLR

Meetings to share advancements in heat pump technologies

[DE90-010008] p 60 N91-16257

Report to Congress on the Small Business Program

[DE90-004622] p 76 N91-16831

ENGINE DESIGN

An industrial student competition in air breathing engine design and development

[PNR-905641] p 18 N91-10096

Introduction: Needs and approaches to reliability and quality assurance in design and manufacture

[PNR-905653] p 69 N91-10297

JANNAF liquid rocket combustion instability panel recommendations

Multidisciplinary research overview (HPHTEP/NPSS)

[DE90-009595] p 77 N91-19551

[DE90-007601] p 62 N91-19953

ENGINE MONITORING INSTRUMENTS

Improved flightline diagnostics using an Expert Maintenance Tool (XMAN II)

[DE90-001004] p 21 A91-31027

ENGINE PARTS

Ceramic technology for advanced heat engines project

[DE90-002123] p 19 N91-12893

ENGINEERING DRAWINGS

Engineer designers: A powerful influence on the business success on manufacturing industry

[PNR-906723] p 74 N91-10197

ENGINEERING MANAGEMENT

Engineers as managers

[AIAA PAPER 90-3734] p 14 A91-10119

Integrated logistics support - Suggested approach for Columbus

Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management --- for NASA Space Station Freedom Program

[DE90-10903] p 29 A91-10908

Selection of parameters for statistical experimental design

[AIAA PAPER 90-4046] p 14 A91-14749

Multivariate utility analysis in design management

[DE90-10119] p 15 A91-9951

Dynamic systems-engineering process: The application of computer-aided design software to the 90s

[DE90-10119] p 15 A91-9951

New design strategies and technologies for operator-machine interface for space platform design, operations, and planning

[AAS PAPER 90-006] p 15 A91-26836

Saying is one thing, doing is another. - DoD critical path templates and Total Quality Management in relation to industrial processes associated with material acquisition

[DE90-10108] p 15 A91-26847

Columbus generic element management concept

[DE90-296960] p 21 A91-27222

Systems management of testing as an integral effort of Total Quality Management

[DE90-296962] p 6 A91-29692

Eliminating waste in the test processes

[DE90-296962] p 6 A91-29692

Total quality management - What does it mean to aerospace engineers?

[DE90-29694] p 7 A91-29694

Total quality in the design process

[DE90-31019] p 87 A91-31019

 Concurrent engineering - The challenge for the 90s

[DE90-31023] p 2 A91-31023

EXOBILOGY

U.S. space research programs - Future prospects

[DE90-12472] p 54 A91-17699

EXPERIMENT DESIGN

Selection of parameters for statistical experimental design

[AIAA PAPER 90-4046] p 14 A91-14749

Combustion experimentation handbook

[DE90-10119] p 61 N91-17175

Smart instruments and the national collaboratory

EXPERIMENTATION

Combustion experimentation handbook

[DE90-10119] p 61 N91-17175

Smart instruments and the national collaboratory

EXPERT SYSTEMS

Intelligent information systems and interdisciplinary user access

[AIAA PAPER 90-5086] p 30 A91-14997

Toward successful implementation of knowledge-based systems - Expert systems vs. knowledge sharing systems

[DE90-10119] p 30 A91-19890

Knowledge base documentation - A productivity tool for large knowledge bases

[DE90-10119] p 21 A91-20896

Automated electric power management and control for Space Station Freedom

[DE90-10119] p 22 A91-37970

BPE - A real-time expert system for autonomous power management

[DE90-10119] p 24 A91-38160

Standards for evaluating expert system tools

[DE90-10119] p 24 A91-40898

Solving scheduling problem in operations management using a temporal constraint reasoning system

[DE90-10119] p 24 A91-51713

Information management

[DE90-10119] p 25 A91-10961

The practical computer in design

[DE90-10055] p 25 A91-12232

WYELL: A general purpose expert system shell

[AIAA PAPER 91-3152] p 17 A91-54067

Autonomous power expert system advanced development

[DE90-10119] p 24 A91-20896

A knowledge-based approach to configuration layout, justification, and documentation

[DE90-10119] p 25 A91-20896

Quantitative knowledge acquisition for expert systems

[DE90-10119] p 25 A91-20896

An empirical evaluation of three knowledge acquisition techniques for developing a project management related expert system

[AIAA PAPER 90-36147] p 25 A91-20896

Design Knowledge Management System (DKMS)

[AIAA PAPER 90-3626] p 25 A91-20896

Experiment Document Information System (EDIS) evolution

[DE90-10119] p 26 A91-22249

Techniques and implementation of the embedded rule-based expert system using Ada

[DE90-10119] p 42 A91-22788

View objects for relational databases

[DE90-10119] p 42 A91-22932

A knowledge-based design system/information tool for aircraft flight control systems

[DE90-10119] p 26 A91-25139

Northwest Artificial Intelligence Consortium (NAI C), Volume 4: Distributed artificial intelligence for communications network management

[AIAA PAPER 90-36486] p 27 A91-26818

[DE90-10119] p 27 A91-28784

Generalized hypertext in a knowledge-based decision support shell environment

[AIAA PAPER 90-2066] p 49 A91-29086

Extraction of an empirical model of the 1st Workshop on General Graphics and Virtual Environments

[AIAA PAPER 90-25720] p 50 A91-29618

Development methodologies for knowledge based systems: A comparative review

The problem of network management: An approach using AI techniques

[REPT-90-75] p 23 A91-34349

A NASA/RAE cooperation in the development of a real-time knowledge-based autopilot

From an automated flight-test management system to a flight-test engineer's workstation

[DE90-10119] p 28 A91-32651

Know-how for Europe

[DE90-10119] p 26 A91-29907

EXPLORER SATELLITES

The Explorer program planning system: An application of a resource reasoning planning shell

[DE90-10119] p 23 A91-22222
A NASA/RAE cooperation in the development of a real-time knowledge-based autopilot

KNOWLEDGE REPRESENTATION
Factors shaping the evolution of electronic documentation systems
Generalized hypertext in a knowledge-based decision support shell environment
g 49 N91-25086

LEADERSHIP

L-SAT
A series on the European communication satellite program. II. The Telecom project OTS. III. The Telecom programme and beyond
p 58 A91-56732

LABORATORIES
Putting technology to work, 1990. Examples of industry-laboratory cooperation contributing to our nation's economic strength
[PB90-215187] p 58 N91-10805
Database Access Manager for the Software Engineering Laboratory (DAMSIL) users's guide
[NASA-TM-103392] p 38 N91-17583
Technology teamwork: The role of the national laboratories in implementing US technology policy
[DE91-010017] p 96 N91-24565
Measuring the quality of knowledge work
[A-2D35254] p 90 N91-36594
Technologies available from Martin Marietta Energy Systems, Inc.
[DE91-013027] p 66 N91-28283
Experience in designing and using a flat structure in a multi-project research organization
[DE91-012427] p 12 N91-29067
The design of a clinical laboratory information system
[DE91-016405] p 5 N91-31988
Quality assurance of field screening
[DE91-016303] p 92 N91-32582

LABORATORY EQUIPMENT
Implementation of a secure multi-project laboratory facility
[AIAA PAPER 90-3163] p 54 A91-16712

LAND MANAGEMENT
The Pilot Land Data System (PLDS) at the Ames Research Center manages aircraft data in collaboration with an ecosystem research project
[p 44 N91-34540
A guide to NASA's Pilot Land Data System (PLDS)
[PB90-215187] p 58 N91-10805

LAND MOBILE SATELLITE SERVICE
Work starts on North American mobiles
[DE91-013027] p 66 N91-28283

LARGE SPACE STRUCTURES
Management and operation of test facility complex
p 10 N91-15225

LASER PUMPING
Future directions of laboratory x ray laser research
[DE91-017088] p 69 N91-32487

LAUNCH VEHICLE CONGRUENTIONS
National launch strategy vehicle data management systems
p 40 N91-18976

LAUNCH VEHICLES
Access to space: The future of US Space Transportation Systems
[PB90-253154] p 59 N91-12722
National launch strategy vehicle data management system
[DE91-016303] p 92 N91-32582
Experimental system design support for low-cost launch vehicle operations
p 24 N91-20679

LAUNCHING BASES
Launch site integration for mixed fleet operations
[AIAA PAPER 90-3559] p 80 A91-10021
Town planning for the Pacific spaceport
[AAS PAPER 89-619] p 57 N91-55817
Potential equatorial launch sites
[AAS PAPER 89-620] p 81 N91-55818
Pacific international commercial spaceport prospects
[AAS PAPER 89-622] p 81 N91-55819

READERSHIP
Readings on managing organizational quality
[AD-224888] p 9 N91-12386
Readings in management: Relations in the market and business place
[ETN-91-95436] p 11 N91-25000
ONBOARD EQUIPMENT

Design Knowledge Management System (DKMS)

[AD-A225392] p 78 N91-25993

The economic aspects of developing and marketing full text databases

p 78 N91-25911

On-line magnetic tape Library Inventory Tracking and Reporting (LITAR) system

[AD-A224934] p 45 N91-27004

Data integrity and availability supporting space system change, research, development, and decision-making: An information perspective

Space physics analysis network node directory (The Yellow Pages): Fourth edition

ONBOARD EQUIPMENT

Columbus generic element management concept

[AD-A271222] p 21 A91-27272

OPERATING SYSTEMS (COMPUTERS)

After-action report for the Next-Generation Computer Resources (NGCR) operating systems interface standard baseline selection process

[AD-A225832] p 35 N91-13078

Decentralized computing technology for fault-tolerant, survivable C3I systems, Volume 3: System/subsystem specification

[AD-A223291] p 26 N91-23371

Transportable Applications Environment (TAE): Plus A NASA user interface development and management system

p 44 A91-24048

OPERATIONS RESEARCH

Flight mission control for multiple spacecraft

[AD-A225392] p 78 N91-25993

Ground data system resource allocation planning to support mission management

p 83 N91-22223

Columbus generic element management and planning concept

p 41 A91-22244

Workstation technology for engineering mission operations at the Jet Propulsion Laboratory

p 41 N91-22265

Operations engineering: Time for a new paradigm

p 21 A91-22267

Information visualization techniques in a multi-mission operations environment

p 42 N91-22277

Transportable payload operations control center

p 26 N91-22294

OPTICAL COMMUNICATION

Geographic information systems, 1990

[PB91-108423] p 39 N91-17828

OPTICAL EQUIPMENT

Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective

[AD-A214614] p 66 N91-27511

OPTICAL MEASUREMENT

Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective

[AD-A214614] p 66 N91-27511

OPTICAL MEMORY (DATA STORAGE)

Converting information from paper to optical media

[TABES PAPER 90-1701] p 31 A91-20664

OPTICAL RADAR

Definition and preliminary design of the Laser Atmospheric Wind Sounder (LAWS) phase I, Volume 3: Program cost estimates

OPTIMIZATION

Using task analysis to guide information-technology development for future space missions

[AD-A225392] p 78 N91-25993

How artificial intelligence can improve man-machine interface - Practical example with extravehicular activities

[AD-A225392] p 40 N91-11199

Computer aided conceptual aircraft configuration development by an integrated optimization approach

[AD-A225392] p 21 A91-13748

Fully automatic analysis in an industrial environment

[PRN-90722] p 23 N91-10647

Generic message management

p 41 A91-22274

ORBITAL ASSEMBLY

Proposal for a remotely manned space station

p 78 N91-22142

ORGANIZATIONS

International cooperation in aeronautical research and development carried out by international organisations

NASA Mars projects

59 N91-13741

Information systems supported end-user interaction: Impacts on inter- and intra-organizational connectivity and cooperative behavior

p 9 N91-14075

Experience in designing and using a flat structure in a multi-project research organization

[DE91-012427] p 12 N91-29087

The trajectory of value engineering

[DE91-012817] p 5 N91-29068

Summary of interim reports submitted by grantees of organizations participating in the Federal Demonstration Project

[DE91-013938] p 13 N91-23979

ORGANIZATION

Some considerations on organizing requirements for systems management

p 7 A91-39723

OSA (ESA)

A series on the European communication satellite program. II - The Telecom project OOS. III - The Telecom programme and beyond

p 58 A91-56372

OXIDIZERS

Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

[NASA-CR-183729] p 64 N91-24309

OXYGEN PRODUCTION

A proposal for risk sharing in the development of a lunar oxygen plant

p 73 A91-27579

PACIFIC OCEAN

Town planning for the Pacific spaceport

[AD-A225392] p 57 A91-55817

Pacific international commercial spaceport prospects

[AD-A225392] p 81 A91-55819

PACKET SWITCHING

Managing wide area networks with OSI network management

Papers

p 34 A91-50932

[PB90-199563] p 96 N91-17626

[PB91-21504] p 96 N91-17627

PARALLEL PROCESSING (COMPUTERS)

Performance implications of synchronization support for parallel FORTRAN programs

p 50 A91-29719

PARAMETER IDENTIFICATION

Selection of parameters for statistical experimental design

[AD-A225392] p 14 A91-14749

PARTICLE THEORY

Why particle physics

p 70 N91-33024

PATTERN RECOGNITION

Saving all the bits

p 32 N91-33070

P a vements

Geographic information systems, 1990

[PB91-108423] p 39 N91-17628

Status of PAVER implementation within the US Air Force

[AD-A231158] p 82 N91-22137

P A YLOAD INTEGRATION

Transportable payload operations control center

p 25 N91-22294

P A YLOADS

Optimal selection of orbital replacement unit spaces: A space station system availability model

p 82 N91-11787

PERFORMANCE TESTS

Performance engineering for mission critical embedded computer systems

[AD-A225392] p 89 N91-18608

Test analysis program evaluation: Item statistics as feedback to test developers

[AD-A225392] p 40 N91-19713

Evaluation plan for space station network interface units

Space testing project: Uniform policies and added value

[AD-A225392] p 51 N91-30987

Aeronautical Satellite Mobile Service (AMS) test plan

DOT/FAA/CTT-91/120

p 84 N91-31495

Upsweeping of components for space applications

p 85 N91-33276

PERSONAL COMPUTERS

PC tools for project management: Programs and the state-of-the-practice

PERSONALITY

Personal information systems: The implications of job and individual differences for design

p 44 N91-25947

How to increase meeting effectiveness and efficiency

[DE91-012420] p 5 N91-29070

PERSONALITY TESTS

American Airlines' pilot hiring criteria

[SAE PAPER 892609] p 2 N91-34913

PILOT TRAINING

American Airlines pilot criteria

[IEEE PAPER 91-24972] p 2 A91-34913

V-22 Government Test Pilot Trainer program overview

[SAE PAPER 892609] p 2 A91-34913

The training enterprise - A view from the top

[SAE PAPER 901943] p 8 A91-48616

Implementation of new technology - A United Airline's perspective

[SAE PAPER 902324] p 2 A91-49859

PLANETARY ATMOSPHERES

Planetary atmosphere

p 71 N91-33051

PLANETARY BASES

Power system requirements and definition for lunar and Mars outposts

p 57 A91-37930

PLANNING

Report to Congress on the Small Business Program

[DE-A225392] p 16 N91-16383

A failure recovery planning prototype for Space Station Freedom

[DE-A225392] p 90 N91-22787

PLATES (STRUCTURAL MEMBERS)

Composite fuselage technology

[NASA-CR-186756] p 19 N91-13446
PROCESS CONTROl (INDUSTRY)
Eliminating waste in the test processes p 8
Implementing SPC in composites manufacturing
[SME PAPER EM90-656] p 87 A91-39393
Introduction: Needs and approaches to reliability and quality assurance in design and manufacturing
[PNN-90663] p 89 A91-10297
Procedures for Quality Assurance Program
[DE90-2001] p 89 A91-16393
Checklist for thick-film hybrid microcircuits manufacturer and line survey
[ESA-PS-107-526] p 20 A91-32841
Management of variation and TQM
[A2-205-2] p 12 A91-29471
Space circuit performing quality through statistical process control: An application at Texas Instruments France, a space semiconductors production line
[ESA-PSS-01-501-ISSUE-1] p 92 A91-32846
Technology approval using capability indices
[ESA-PSS-01-501-ISSUE-1] p 92 A91-32849

PROGRESS HEAT
The Department of Energy’s solar industrial program: New ideas for American industry
[DE91-00107] p 67 A91-29649

PROCUREMENT
Coordinated parts procurement for ISO - A contribution to cost-effectiveness
[ESA-PSS-01-501-ISSUE-1] p 81 A91-51440
Major system acquisitions process (A-109)
[ESA-PSS-01-501-ISSUE-1] p 12 A91-29607
Defining acquisition and contracting terms associated with contract administration
[A2-205-2] p 67 A91-30974

PROCUREMENT MANAGEMENT
A statistical approach to vendor certification
[AIAA PAPER 90-4047] p 85 A91-14750
Current issue in aircraft finance p 78 A91-50177
Coordinated parts procurement for ISO - A contribution to cost-effectiveness
[ESA-PSS-01-501-ISSUE-1] p 81 A91-51440
Summary data on all NASA procurement actions
Acquisition reform: Implementing defense management review initiatives. Report to the Chairman and Ranking Minority Member, Subcommittee on Defense Industry and Technology, Senate Committee on Armed Services
[A2-205-2] p 84 A91-31999
An overview of the NASA electronic components information management system. Rationalization for the selection of a parts procurement system (coordinated versus centralized) from a prime contractor point of view
[ESA-PSS-01-501-ISSUE-1] p 85 A91-32771
EEE component procurement: A look ahead
[ESA-PSS-01-501-ISSUE-1] p 85 A91-32772
NASA’s challenge for tomorrow
[ESA-PSS-01-501-ISSUE-1] p 85 A91-32774
Parts management for the 1990’s
[ESA-PSS-01-501-ISSUE-1] p 85 A91-32779
CPFS: The total information system tool for EEE-parts procurement
[ESA-PSS-01-501-ISSUE-1] p 85 A91-32789
Cost effective electronic components for short life space missions
[ESA-PSS-01-501-ISSUE-1] p 80 A91-32387
Evaluation of advanced microelectronics for inclusion in MIL-STD-975
[ESA-PSS-01-501-ISSUE-1] p 85 A91-32390

PROCUREMENT POLICY
The Space Station decision - Incremental politics and policy
[ESA-PSS-01-501-ISSUE-1] p 89 A91-29649

PRODUCTIVITY
Systems management of testing as an integral effort of Total Quality Management
[DE91-00107] p 6 A91-29650
Development operations - A TQM process
[DE91-00107] p 7 A91-29662

Sub-contractors play new strategic roles
[DE91-00107] p 73 A91-43273
Funding - A unified approach --- cost allocation and reduction analysis
[DE91-00107] p 73 A91-45183
Concurrent engineering - Electronic packaging methodology yields quality improvements
[AIAA PAPER 91-3153] p 17 A91-54068
Measuring implementation progress in concurrent engineering
[AIAA PAPER 91-3154] p 17 A91-54069
Engineering design: A powerful influence on the business success on manufacturing industry
[PNN-90663] p 74 A91-10197
The development of SCORPIO as a commercial product
[PNN-90745] p 58 A91-12096
Quality function deployment in launch operations
[A2-205-2] p 90 A91-21176
A brief overview of the activities and accomplishments of the Metals and Ceramics Division
[DE91-014555] p 67 A91-29262
Configuration management concepts document
[DE91-014555] p 67 A91-29262

PRODUCTION COSTS
Analysis of acquisition and results
[AIAA PAPER 91-2063] p 73 A91-41893
Synchronized manufacturing of composite know how (SMACKS)
[DE91-00107] p 18 A91-48768

PRODUCTION ENGINEERING
Some experiences of advanced manufacturing cells at British Aerospace Space Workon
[DE91-00107] p 18 A91-54387
Need for research in electronics assembly technology
[DE91-00107] p 19 A91-12878
Quality function deployment in launch operations
[DE91-00107] p 90 A91-21176
Expenditures with components in the DDFS-project: Seen from a customer’s point of view
[DE91-00107] p 91 A91-32386

PRODUCTION MANAGEMENT
Striving to achieve C-7 goals
[DE91-00107] p 15 A91-17421
Analysis of quality costs - A critical element in OEM
[DE91-00107] p 21 A91-24874
Barriers to Total Quality Management in the Department of Defense
[DE91-00107] p 7 A91-31048
Value analysis application and results
[AIAA PAPER 91-2063] p 73 A91-41893
Synchronized manufacturing of composite know how (SMACKS)
[DE91-00107] p 18 A91-48768

Some experiences of advanced manufacturing cells at British Aerospace Space Workon
[DE91-00107] p 18 A91-54387
An evaluation of the production processes and methods associated with Careo Cell at RISTT, Telford
[ETN-D-00755] p 18 A91-10228
Total quality management at Rolls-Royce PLC
[DE91-00107] p 89 A91-10295
Technology modernization assessment flexible automation
[DE91-00502] p 24 A91-19751
Exploring local flexibility during execution of pre-computed schedules
[DE91-00107] p 20 A91-20978
Checklist for thick-film hybrid microcircuits manufacturer and line survey
[ESA-PSS-01-501-ISSUE-1] p 20 A91-23996
Checklist for the thin-film hybrid microcircuits manufacturer and line survey
[ESA-PSS-01-501-ISSUE-1] p 20 A91-23997
Preparing electronics quality for the next century
[DE91-00107] p 92 A91-33282
Total quality management: What are the facts behind the concepts?
[DE91-00107] p 92 A91-33285
Which position for MIL-space industry facing QML concept?
[DE91-00107] p 92 A91-33286
Technology evaluation approval using capability indices
[DE91-00107] p 92 A91-33289

PRODUCTION PLANNING
Cost savings through risk analysis
[DE91-00107] p 73 A91-29662
Europe 1993: Challenge and opportunity for distribution logistics
[DE91-00107] p 86 A91-32989

PRODUCTIVITY
Quality economics and productivity
[DE91-00107] p 87 A91-31021
Radio astronomy p 69 N91-33018 Optical/IR from ground p 70 N91-33020 UV-optical from space p 70 N91-33021 High energy from space p 70 N91-33023 Particle astrophysics p 70 N91-33024

RESIDENTIAL ENERGY
Meetings to share advancements in heat pump technologies p 60 N91-16257

RESOURCES ALLOCATION
Automated electric power management and control for Space Station Freedom p 22 A91-37970 The temporal logic of the tower chief system p 40 N91-19025 Ground data system resource allocation planning to support mission management p 83 N91-22223

RESOURCES MANAGEMENT

RETOFITTING
The Atlas E/F launch vehicle - An unsung workhorse p 16 A91-35448

REVENUE
Space market model development project, phase 3 [NASA-CR-187251] p 76 N91-13348

RISK

ROBOT ARMS
Incrementally increasing the uncertainty-tolerance of robotic manipulation plans [AD-A208528] p 27 N91-27557

ROBOT CONTROL
Incrementally increasing the uncertainty-tolerance of robotic manipulation plans [AD-A208652] p 27 N91-27557

ROBOT DYNAMICS
Incrementally increasing the uncertainty-tolerance of robotic manipulation plans [AD-A208652] p 27 N91-27557

ROBOTICS

SAFETY

SAFETY FACTORS

SAFETY MANAGEMENT

SAMPLED DATA SYSTEMS

SATellite COMMUNICATION

SATellite CONTROL
Management of a large scale data-processing project for spacecraft operations p 32 A91-24569
Systems Management

STARS structure (DoD AAS ICOM document section 1.3) for the Software Technology for Adaptable, Reliable Systems (STARS) program p 38 N91-17597

NASA Accounting and Financial Information System (NAIF) comprehensive assessment of the systems development methodology p 77 N91-19893

Engineering management of large scale systems p 28 N91-21822

Assessment team report on flight-critical systems research at NASA Langley Research Center (NASA-CR-181850) p 67 N91-21767

Making intelligent systems team players: Case studies and design issues. Volume I: Human-computer interaction design (NASA-TM-104738-VOL-1) p 27 N91-30713

Human-centered aircraft automation: A concept and guidelines (NASA-TM-102885) p 28 N91-32135

Development of a handbook for configuration managers with applications for the program/system in full-scale development p 53 N91-32993

SYSTEMS INTEGRATION

DAMES program update - Methodology, test results, and impact p 31 A91-30984

Failure management in spatio-temporal redundant, integrated navigation and flight control reference-systems p 87 N91-30940

Space Station operation of lessons learned from Space Shuttle integrated operational prototypes p 16 A91-38956

Implementing a corporate software development methodology p 8 A91-47775

Knowledge-based assistance in costing the space station (NASA-CR-181850) p 87 N91-29176

Organisational aspects of assembly, integration and verification for Columbus p 19 N91-15217

Systems Engineering and integration (SE and) p 81 N91-17058

A knowledge-based approach to configuration layout, justification, and documentation p 25 N91-20690

An integrated decision support system for TRAC. A proposal p 45 N91-25958

Assessment team report on flight-critical systems research at NASA Langley Research Center (NASA-CR-181850) p 87 N91-29176

HQ-IFS Maintenance Resource Prediction Model (MIPM) user’s manual p 83 N91-30972

Advanced visualization techniques p 52 N91-32669

SYSTEMS MANAGEMENT

Engineers as managers (AIAA PAPER 90-3754) p 14 A91-10119

User access and production control of Canada’s operational SAR data processing facility p 50 N91-32669

Systems management of testing as an integral effort of Total Quality Management p 6 A91-29690

Failure management in spatio-temporal redundant, integrated navigation and flight control reference-systems p 67 N91-30940

The Air Force Technical Publications Program - A personal reflection on yesterday, today, and tomorrow p 52 A91-35499

Managing autonomy levels in the SSM/PMAD testbed – Space Station Power Management and Distribution p 22 A91-37969

Galileo spacecraft power management and distribution system development p 22 A91-37969

Development of an automated electrical power subsystem testbed for large spacecraft p 22 A91-38000

Some considerations on organising requirements for systems management p 7 A91-39723

Experiences of an Integrated Product Development Team at MCAE: (AIAA PAPER 91-3149) p 17 A91-54064

Transitioning to a concurrent engineering environment (AIAA PAPER 91-3151) p 55 N91-54066

Techniques and implementation of the embedded rule-based expert system using Ada p 42 N91-22798

The role of the UNI(m) central computing facility in a multi-purpose national laboratory (DE91-01261) p 48 N91-28737

The PC Dugout micro-mainframe integration system: PAX implementation (AD-4237498) p 50 N91-23758

Quality assurance in the management of information systems (EMRO-INF-90-90) p 91 N91-31013
TIME LAUG
Fully automatic analysis in an industrial environment
[PNR-90-722] p 23 N91-10847
TIME SHARING
Toward successful implementation of knowledge-based
systems - Expert systems vs. knowledge sharing
systems
[SAE-PAPER 90-919] p 30 A91-10890
Performance implications of synchronization support for
parallel FORTRAN programs
[AD-A283493] p 50 N91-29790
TOLERANCES (MECHANICS)
Introduction: Needs and approaches to reliability and
quality assurance in design and manufacture
[PNR-909865] p 69 N91-10297
TRAINING ANALYSIS
The training enterprise - A view from the top
[SAE-PAPER 90-919] p 8 A91-48616
Development and implementation of a formal training
program for concurrent engineers in an aerospace
environment
[AIAA PAPER 91-3155] p 18 A91-54070
Hardware versus manpower compatibility methodology.
Volume 1: Overview and manager's guide
[AD-A229122] p 3 N91-22086
A Rome Laboratory guide to basic training in TQM
analysis techniques
[AD-A238385] p 11 N91-26990
TRAINING DEVICES
Science projects in renewable energy and energy
efficiency
[DE91-001819] p 5 N91-30605
TRAINING EVALUATION
The training enterprise - A view from the top
[SAE PAPER 901943] p 8 A91-48616
Implementation of new technology - A United Airline's
perspective
[SAE PAPER 902342] p 2 A91-49589
A survey of Total Quality Management (TQM) resource
centers
[AD-A229218] p 10 N91-17831
A Rome Laboratory guide to basic training in TQM
analysis techniques
[AD-A238385] p 11 N91-26990
TRANSATMOSPHERIC VEHICLES
• National Aero-Space Plane (NASP) program
[SAE PAPER 901943] p 66 N91-29214
TRANSFER OF TRAINING
The training enterprise - A view from the top
[SAE PAPER 901943] p 8 A91-48616
TRANSPORT AIRCRAFT
Taxation in the field of international air transport - Legal
aspects
[PB91-45446] p 94 A91-45446
Bermuda bias - Substantial ownership and effective
control 45 years on
[SAE PAPER 902342] p 49 A91-45449
Implementation of new technology - A Boeing
perspective
[SAE PAPER 902341] p 2 A91-49589
Design of a turbofan powered regional transport
aircraft
[AIAA PAPER 91-3080] p 11 N91-26993
TRANSPORTATION NETWORKS
Geographic information systems, 1990
[PB91-108423] p 39 N91-17828
TRANSPORTATION NETWORKS
Geographic information systems, 1990
[PB91-108423] p 39 N91-17828
TREND ANALYSIS
The NASA trend analysis program
[PB91-108423] p 39 N91-17828
Funding - A unified approach - cost allocation and
reduction analysis
[PB91-258923] p 73 N91-45317
National patterns of R and D resources: 1990
[PB91-258923] p 61 N91-17811
TRENDS
Trends in and software management in NASA:
Symposium/forum
The prospects of aeronautics
[NASA-103297] p 58 N91-12580
TRIBOLOGY
Government/industry response to questionnaire on
space mechanisms/tribology technique needs
[NASA-TM-103458] p 64 N91-23501
TURBINE BLADES
Advanced Launch System advanced development
oxidizer turbopump program: Technical implementation
plan
[NASA-CR-138729] p 64 N91-24339
TURBINE ENGINES
Multidisciplinary research overview (HPET/TPPS)
[SAE-PAPER 901943] p 62 N91-20119
TURBINE PUMPS
Advanced Launch System advanced development
oxidizer turbopump program: Technical implementation
plan
[NASA-CR-183729] p 64 N91-24339
TURBOFAN ENGINES
Design of a turbofan powered regional transport
aircraft
[AIAA PAPER 91-3080] p 17 A91-54012
TURKEY
International cooperation in aeroastronautical research
and development carried out by international organisations
[SAE-PAPER 902342] p 59 N91-12296
U
U.S.S.R. SPACE PROGRAM
Issues in space policy, budgeting
[NASA-CP-10073-PT-1] p 6 N91-20076
Galey presents history, prospects of Institute of
Space Research
[NASA-CP-10073-PT-1] p 67 N91-30174
UNITED STATES
Publications of the Executive Office of the President,
January 20, 1981 - January 20, 1989
[PB90-195953] p 96 N91-17826
Publications of the Executive Office of the President,
January 20, 1989 - June 30, 1990
[PB90-215861] p 96 N91-17827
Learning the R and D system: University research in
Japan and the United States
[AIAA-PAPER 91-30343] p 63 N91-20976
Access and efficiency in Reagan-era information policy:
A case study of the attempt to privatize the National
Technical Information Service
UNIVERSE
Particle astrophysics
[AIAA PAPER 91-30343] p 70 N91-33024
UNIVERSITIES
NASA's Space Grant program
[AIAA PAPER 90-3838] p 72 A91-10185
The JOVE initiative - A NASA-university Joint Venture
in space science
[AIAA PAPER 90-3840] p 1 A91-10187
Cosmos, an international center for advanced studies
[AIAA PAPER 91-507] p 1 A91-11416
The MIT Space Grant Program
[AIAA PAPER 91-0033] p 1 A91-10190
Industry-university cooperation/research
[AIAA PAPER 91-0136] p 55 A91-21275
The enhancement of air traffic control safety through
pre-hire university based training programs
[PB91-108423] p 3 N91-12567
JPL initiative on historically black colleges and
universities
[PB91-108423] p 4 A91-28096
Marketing for collegiate education
[NAR-91-16] p 5 A91-30042
Industrial perspectives on innovation and interactions
with universities: Summary of interviews with senior
industrial officials
[DE91-013938] p 68 A91-30980
Research facility financing: Near-term options
[DE91-013938] p 79 A91-30981
Survey to assess the usefulness of two model
agreements for university-industry cooperative
research
[DE91-013937] p 68 A91-31985
UNIVERSITY PROGRAM
Japan - A major force in advanced ceramics
[AIAA PAPER 90-3468] p 16 A91-40368
The enhancement of air traffic control safety through
pre-hire university based training programs
[AD-A239693] p 3 N91-12567
Learning the R and D system: University research in
Japan and the United States
[PB91-108423] p 63 N91-20976
Technologies for the Future: In-Space Technology
Experiments Program, Part 1
[NASA-CP-10073-FT-1] p 11 A91-27177
Technologies for the Future: In-Space Technology
Experiments Program, Part 2
JPL initiative on historically black colleges and
universities
[PB91-108423] p 4 A91-28096
What is the Federal Demonstration Project?
[DE91-013936] p 68 A91-31986
UNIX (OPERATING SYSTEM)
The role of the UNIX(tm) central computing facility in a
multi-purpose national laboratory
[DE91-023611] p 48 A91-28737
UNMANNED SPACECRAFT
Proposal for a remotely manned space station
[NASA-TM-103362] p 78 A91-22142
USER MANUALS (COMPUTER PROGRAMS)
Database Access Manager for the Software Engineering
Laboratory (DAMSEL) user’s guide
X
X RAY ASTRONOMY
High energy from space
[NASA-CR-188886] p 70 N91-33023
X RAY DIFFRACTION

X RAY DIFFRACTION
The development of SCORPIO as a commercial product
[PNR-90746] p 58 N91-12098

X RAY INSPECTION
The development of SCORPIO as a commercial product
[PNR-90746] p 58 N91-12098

X RAY LASERS
Future directions of laboratory x ray laser research
[DE91-07089] p 69 N91-32467
PERSONAL AUTHOR INDEX

MANAGEMENT / A Bibliography for NASA Managers

MARCH 1992

Typical Personal Author Index Listing

<table>
<thead>
<tr>
<th>PERSONAL AUTHOR</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITKEN-CADE, PHILIP B.</td>
<td>AHEARN, MICHAEL F.</td>
<td>ABT, HELMUT A.</td>
<td>ABEYRATNE, R. I. R.</td>
<td>AARON, SUSAN</td>
</tr>
<tr>
<td>AHEARN, MICHAEL F.</td>
<td>ABT, HELMUT A.</td>
<td>ABEYRATNE, R. I. R.</td>
<td>AARON, SUSAN</td>
<td>AITKEN-CADE, PHILIP B.</td>
</tr>
<tr>
<td>The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>PERSONAL AUTHOR</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARON, SUSAN</td>
<td>Ns conference support</td>
<td>45</td>
<td>N91-27031</td>
<td></td>
</tr>
<tr>
<td>ABETVATNE, R. I. R.</td>
<td>Taxation in the field of international air transport - Legal aspects</td>
<td>94</td>
<td>A91-45448</td>
<td></td>
</tr>
<tr>
<td>ABT, HELMUT A.</td>
<td>Status of the profession</td>
<td>71</td>
<td>N91-33001</td>
<td></td>
</tr>
<tr>
<td>ACKROYD, J.</td>
<td>The Sowerby Research Centre and university liaison</td>
<td>68</td>
<td>N91-31730</td>
<td></td>
</tr>
<tr>
<td>ACTON, LOREN W.</td>
<td>Policy opportunities</td>
<td>71</td>
<td>N91-33029</td>
<td></td>
</tr>
<tr>
<td>AHEARN, MICHAEL F.</td>
<td>Optical/IR from ground</td>
<td>70</td>
<td>N91-33000</td>
<td></td>
</tr>
<tr>
<td>AHERN, JAMES P.</td>
<td>The government’s response to the interagency report on orbital debris</td>
<td>93</td>
<td>A91-10204</td>
<td></td>
</tr>
<tr>
<td>AHN, N.</td>
<td>A real-time Ada environment that simplifies management and reduces cost</td>
<td>34</td>
<td>A91-47778</td>
<td></td>
</tr>
<tr>
<td>AITKEN-CADE, PHILIP B.</td>
<td>Top quality management, reliability, and maintainability: Institutional goals with built in barriers</td>
<td>60</td>
<td>N91-21552</td>
<td></td>
</tr>
<tr>
<td>AKBAY, ISMAIL</td>
<td>NASA technology - A national payoff</td>
<td>56</td>
<td>A91-30665</td>
<td></td>
</tr>
<tr>
<td>AL-BAHAR, JAMAL F.</td>
<td>Project risk assessment using the analytic hierarchy process</td>
<td>15</td>
<td>A91-26937</td>
<td></td>
</tr>
<tr>
<td>ALCOCK, CHARLES</td>
<td>Theory and laboratory astrophysics</td>
<td>70</td>
<td>N91-33025</td>
<td></td>
</tr>
<tr>
<td>ALIFANOY, OLEG</td>
<td>Cosmos, an international center for advanced studies ([IAP PAPER 90-507])</td>
<td>1</td>
<td>A91-14161</td>
<td></td>
</tr>
<tr>
<td>ALLAMANDOLA, LOU</td>
<td>Theory and laboratory astrophysics</td>
<td>70</td>
<td>N91-33025</td>
<td></td>
</tr>
</tbody>
</table>

HARRAR, FRANK W. Proceedings of the 1st Workshop on Proximity Graphs [AD-A237250] p 50 N91-29681

HARBOUR, JERRY L. Examining human-system interactions: The HSYS (human system) methodology [DE91-006150] p 3 N91-17546

HARRINGTON, MICHAEL Lessons learned in the development of the Hubble Space Telescope software p 34 A91-47779

HARRIS, HUGH Status of the profession p 71 N91-33031

HARRIS, STEPHEN The role of Kopp Forschungsinstitut in international R and D cooperation p 69 N91-32996

HARRIS, T. J. Aero engine design factors for a low fuel price scenario (PUM-00611) p 18 N91-10066

HASTINGS, DANIEL E. The MIT Space Grant Program [AIAA PAPER 91-0023] p 1 A91-19109

HAUSNER, AL M. The US and Japanese space programmes p 18 A91-54845

HAYES, JAMES E. The concept of commonality for spacecraft operations p 32 A91-24524

HAYES, R. A. Microcomputer systems in space [AIAA PAPER 91-0031] p 2 A91-19110

HAYES, ROBERT A. Hardware versus manpower compatibility methodology Volume 1: Overview and manager's guide p 3 A91-12208

HAYES, SHANNON L. Methodology p 8 A91-47775

HAYES, WILLIAM M. A statistical approach to vendor certification [NASA-PAPER 90-0047] p 86 A91-14750

HAYWARD, A. M. The Space Shuttle's family tree p 55 A91-29698

HAYWARD, H. T. Quality costing at British Aerospace Dynamics - A case study p 74 A91-54654

HAYWARD, V. G. Space market model space industry input-output design and design issues Volume 1: Human-computer interaction and D cooperation p 69 N91-32996

HEDLEY, K. J. Foundation for the implementation of the CALS concept on the Space Station p 37 A91-19753

HEIDEN, TRAVIS High energy from space p 70 N91-33023

HEINZ, K. A. Software management guidelines for automated spacecraft operations p 30 A91-14982

HEINRICH, GEORGE KQIN: Kansas Quality Improvement Network. A report outlining a statewide quality improvement plan p 50 N91-30544

HENDALL, DAVID J. High energy from space p 70 N91-30023

HENDLER, J. A knowledge-based system for outlining a stressful work environment p 8 A91-41692

HENGST, WILLIAM New leadership for space exploration p 90 A91-20775

HERBERT, G. E. From an automated flight-test management system to the Space Station p 29 N91-10930

HERMAN, N. A. Technology modernization assessment flexible automation [DE91-005620] p 24 N91-19751

HICKMAN, L. M. High energy from space p 71 N91-33031

HIGGINS, MORRIS Software management guidelines for automated spacecraft operations p 30 A91-14982

HIMMER, WATTS S. A proposal to extend our understanding of the global economy p 76 N91-15627

HINCOX, LARRY B. The role of assessment in software process development for avionics software p 55 A91-14336

HINSON, TROY Knowledge-based assistance in costing the space station DM p 74 A91-10611

HIPWORTH, MARK The economic aspects of developing and marketing full text databases p 79 N91-25911

HILL, SUSAN G. The human factors of quality and QA in R and D environments p 79 N91-25911

HINNIGAN, MIKE A. Software management guidelines for automated spacecraft operations p 30 A91-14982

HINMAN, L. M. High energy from space p 71 N91-33031

HINSMAN, MICHAEL A. Software management guidelines for automated spacecraft operations p 30 A91-14982

HINTON, DONALD Planetary astronomy p 71 N91-33027

HODGETTS, T. E. Software management guidelines for automated spacecraft operations p 30 A91-14982

HOGAN, MICHAEL A. Space market model space industry input-output model [NASA-CR-187252] p 74 N91-10795

HOLLINGS, ERNEST F. National Aeronautics and Space Administration Authorization Act, fiscal year 1991 p 95 N91-13376

HOLLOWAY, MATTHEW Making intelligent systems team players: Case studies and design issues Volume 1: Human-computer interaction design [NASA-TM-104738-001-01] p 27 N91-30713

HOLT, STEPHEN S. High energy from space p 70 N91-33023

HOLTTRAM, BERNHARD Flexible cooperation in non-standard application environments [AD-A225684] p 37 N91-13940

HORIKAWA, YASUSHI Development of an EEC Experiment Module (JEM) [IAP PAPER 90-068] p 14 A91-13777

HORNER, R. A statistical approach to vendor certification [NASA-PAPER 90-0047] p 86 A91-14750

HORST, D. A. High energy from space p 71 N91-33031

HORST, MARVIN A. Managing for improvement in a multi-project research organization Volume 1: Overview and manager's guide p 3 A91-12208

HOSACK, GLEN Implementing a corporate software development methodology p 8 A91-47775

HOUGH, ROBIN R. A proposal to extend our understanding of the global economy p 76 N91-15627

HOWARD, E. M. Why engineers must know and manage organizational culture [DE91-012425] p 5 N91-29071

HUGHES, BANNI Tailoring configuration management tools for development of avionics software p 35 A91-54654

HUGHES, J. E. A selection criterion for choosing the best participative problem-solving technique [DE91-012421] p 4 N91-29066

HUGHES, WILLIAM E. JR. Management of variation and TOM [AD-A238399] p 12 N91-20843

HULL, LARRY G. Software planning and scheduling for instrument and platform operations [AIAA PAPER 90-5090] p 30 A91-15001

HUMPHREY, WATTS S. The role of assessment in software process development for avionics software p 55 A91-14336

HUNTER, DONALD Planetary astronomy p 71 N91-33027

HUNTER, D. A. Concurrent engineering p 20 N91-28247

HUTCHEON, ROBERT A. The cost of information systems modernization: A comparison of options for life-cycle project management systems [AD-A230675] p 78 N91-21001

HWU, WEN-MEI W. Performance implications of synchronization support for parallel FORTRAN programs [AD-A238493] p 50 N91-27990

HYERS, W. R. Cost effective electronic components for short life space missions p 80 N91-32387

IDE, J. P. Software management guidelines for automated spacecraft operations p 30 A91-14982
LEESCO, DANIEL J. Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective [NASA TM-104118] p 66 N91-27511

LESTER, JAMES A survey of Total Quality Management (TQM) resource centers [AD-A239218] p 10 N91-17851

LEVESON, NANCY Software safety [NASA CR-167920] p 89 N91-17653

LEVIN, BARRY E. Expert system design support for low-cost launch vehicle operations [NASA CR-179074] p 24 N91-20579

LIBERTO, MATTHEW J. Auditing R&D planning p 8 A91-42458

LIBERMAN, EUGENE M. Techniques and implementation of the embedded rule-based expert system used by Ada p 9 A91-22788

LIBLON, BRENN A man-machine system control for complex man-machine systems - Preliminary design p 22 A91-24957

LIDWELL, WILLIAM PC tools for project management: Programs and the user's role [NASA CR-167920] p 36 N91-12904

LIFTIRING, MARK E. BPE: A real-time expert system for autonomous power management p 23 A91-36160

LINDEB, TENNY A. Summary of EEE component anomalies encountered in the field of Earth observation satellites and lessons derived therefrom for future generations p 91 N91-32637

LINDHOLM, TERRY A. The training enterprise - A view from the top [AAS PAPER 91-068] p 81 A91-55818

LIPPOLD, REYNOLDS T. A performance analysis of the USAF work information management system p 40 A91-20979

OLLAR, LOUIS F. Development of an automated electrical power subsystem testbed for large spacecraft [NASA CR-179074] p 22 A91-38000

Loomis, James P. A case study in fostering international HSCS collaboration p 53 A91-10797

LOREN, STEPHEN D. Potential equatorial launch sites [AIAA PAPER 91-55892] p 81 A91-55818

LOWRY, W. RUSTY V-22 Government Test Pilot Trainer program overview p 1 A91-77645

LUTTMANN, H. Columbus generic element management and planning concept p 41 A91-22244

LYNCH, DONALD D. The training enterprise - A view from the top [AAS PAPER 91-068] p 81 A91-55818

MACDONALD, ROBERT B. The RIG concept p 39 N91-18617

MACK, ALLAN J. A general purpose expert system shell [AD-A2288454] p 24 N91-16816

MACKALL, DALE A. A knowledge-based system design/information tool for aircraft flight control systems p 26 N91-21539

MAEDA, EUIRO Computer-aided planning of SS/TDMA network operation p 30 A91-28610

MAHMOOD, RONALD Transportable payload operations control center p 26 N91-22294

MAJUS, J. Philosophy of the German space technology programme for space demonstrations and the TUBSAT A example [IAF PAPER 90-002] p 72 A91-13727

MALLAK, L. A. Why engineers must know and manage organizational culture [DE-2010245] p 5 N91-29071

MANDL, DANIEL Transportable payload operations control center p 26 N91-22294

MANTLE, SAMUEL J., JR. The causes of project failure p 6 A91-19889

MANZO, MICHELLE A. NASA Aerospace Flight Battery Systems Program p 57 A91-38008

MARCHESEI, ROBERTO Applied technology center business plan and market survey [NASA CR-179259] p 9 N91-10794

Space market model space industry input-output model [NASA CR-179259] p 74 N91-10795

MARCHETT, P. G. Hyperlink - The information browser p 33 A91-43350

MARGON, BRUCE High energy from space p 70 N91-33023

MARK, LEO An architecture for high performance engineering information systems p 31 A91-29345

MARLIN, CAROL A. Concurrent engineering - The challenge for the 90s p 2 A91-31023

MARSH, CHRISTOPHER A. A failure management prototype: DR/Rx p 24 N91-20684

MASLOU, S. Integrated logistics support - Suggested approach for Columbus p 60 A91-10902

MATSUMOTO, KAZUO Development of Japanese Experiment Module (JEM) [AIAA PAPER 90-006] p 14 A91-13777

MATSUMOTO, SHINJI Town planning for the Pacific space port [AAS PAPER 89-619] p 57 A91-55817

MAYER, RICHARD J. Design Knowledge Management System (DKMS) [AD-A230266] p 25 N91-20993

MAYNE, D. O. Uncertainty, information and estimation p 21 A91-33677

MAZZA, C. The ESA software engineering standards - Their application to ESA software projects and their evolution p 33 A91-47766

MCCONNAGHY, K. V. Management of a CFD organization in support of space hardware development [AIAA PAPER 91-1529] p 8 A91-40704

MCCONNAGHY, K. P. Management of a CFD organization in support of space hardware development [AIAA PAPER 91-1529] p 8 A91-40704

MCGRAY, RICHARD Policy options p 71 N91-33029

MACULLOUGH, JAMES D. Trends in a sample of defense aircraft contractors' cockpit software [AD-A225645] p 75 N91-12587
MCCURDY, HOWARD E. The Space Station decision - Incremental politics and technological choices. p 95 A91-52225

MCGILLIS, JOHN D. V-22 Government Test Pilot Trainer program overview p 1 A91-17645

MCHALE, J. The impact of the new management strategy on senior operational commanders at group level within Royal Air Force Strike Command [RPT-985D/CMCHALE/03-MDA] p 10 N91-19955

MCKEE, CHRISTOPHER F. Theory and laboratory astrophysics p 70 N91-33025

MCLEAN, DAVID R. The Explorer platform planning system: An application of a resource reasoning planning shell p 83 A91-22222

MEELKER, J. H. Method management for the benefit of large software packages for analyses in CAE [NLR TP 89027-U] p 51 N91-30786

MELLOR, PAMELA A. Automated electric power management and control for Space Station Freedom p 22 A91-37970

MENG, ALEX C. Solving scheduling problem in operations management using a temporal constraint reasoning system p 23 N91-51213

MENGES, JOHN Organizing common access mechanisms for dissimilar network interconnection nodes [AD-A236360] p 49 N91-26770

MERTEL, K. Progress in submicron technologies p 69 N91-32394

METZINGER, R. W. New design strategies and technologies for operator-machine interface for space platform design, operations, and planning [AAS PAPER 90-006] p 15 A91-26386

MEYER, ROBERT A. Nortel's Artificial Intelligence Consortium (NAIC), Volume 4: Distributed artificial intelligence for communications network management [AD-A249483] p 27 N91-25818

MILLER, JAY Pacific international commercial spacecraft prospects [AAS PAPER 90-622] p 81 A91-55519

MILLER, KEVIN J. Workstation technology for engineering mission operations at the Jet Propulsion Laboratory p 41 N91-22265

MILLER, PHILIP E. Barriers to Total Quality Management in the Department of Defense p 7 A91-31045

MILLIS, MARC G. Speculating on space futures p 54 A91-19600

MINNIE, J. Coordinated parts procurement for ISO - A contribution to cost-effectiveness p 81 A91-54140

MINSKY, MARVIN Proposal for a remotely manned space station p 78 N91-21412

MIZUKE, TAKESHI Computer-aided planning of SS/TDMA network operations [AD-A240252] p 30 N91-26910

MOHLHOF, KURT CENDI: A strategic interagency alliance in the 1990s p 56 A91-34113

MONHEMUS, WILLEM GERRIT Protils in management: Relations in the market and business space [ETN-91-99438] p 11 N91-25900

MOORE, HARRY H. Management information: A key to better acquisition at NIH [AD-A229667] p 82 N91-16830

MOOREHEAD, JANE Expert System Document Information System (EDIS) evolution p 26 N91-21941

MORINO, YOSHII Analysis on space commercialization in Japan [IAF PAPER 90-614] p 72 A91-14115

MORRISON, DAVID Planetary astronomy p 71 N91-33027

MOSARD, GIL R. Development and implementation of a formal training program for concurrent engineering in an aerospace environment [AIAA PAPER 91-3155] p 18 A91-54070

MOSSER, THOMAS L. User accommodations on Space Station Freedom p 16 A91-38954

MOSES, STEVEN E. Development and implementation of a formal training program for concurrent engineering in an aerospace environment [AIAA PAPER 91-3155] p 18 A91-54070

MOYLE, LAUREL M. Defining acquisition and contracting terms associated with contract administration [AD-A229462] p 67 N91-30974

MUEHLHAUSER, G. Hypertime - The information browser p 33 A91-43350

MUELLER, JOACHIM A. A series on the European Communication Satellite Program - I: Historical background and start of the TELECOM programme p 57 A91-43036

MУHANNA, WALEED A. Compositional programs - Hierarchical construction, circularly, and deadlocks p 32 A91-39815

MUIR, HELEN Human factors for pilots p 2 A91-50999

MUKKAMALA, RAVI An integrated decision support system for TRAC: A proposal p 45 N91-25555

MULET, B. Development of a configurable infrastructure for the control of a large variety of spacecraft - The SCOS p 33 A91-47762

MURPHY, J. R. The PC Dugout micro-mainframe integration system: PAX implementation [AD-A237480] p 50 A91-29758

MURPHY, SUSAN C. Workstation technology for engineering mission operations at the Jet Propulsion Laboratory p 41 N91-22265

MURRAY, BRUCE Can space exploration survive the end of the Cold War? p 94 A91-27566

MURPHY, PURNA Using task analysis to guide information-technology development for future space missions p 29 A91-10092

MULTAF, MOHAMMAD A. Project risk assessment using the analytic hierarchy process p 15 A91-26367

MYERS, KAY Quality assurance planning for lunar Mars exploration p 66 A91-24875

N

NARATH, A. Technology teamwork: The role of the national laboratories in implementing US technology policy [DE91-010017] p 96 A91-24556

NEATHAMMER, ROBERT HQ-IFS Maintenance Resource Prediction Model (MRPM) user's manual [AD-A229297] p 63 N91-30972

NELLY, EDGAR S. Maintenance Resource Prediction Model (MRPM) user's manual [AD-A232019] p 83 A91-23762

NEWELL, J. Concurrent engineering p 20 N91-28247

NEWMAN, DANIEL L. Aircraft configuration design code proof-of-concept - Design of the crewestimation subsystem [AIAA PAPER 91-3097] p 35 A91-54022

NEWMAN, NED NASP Materials and Structures Augmentation Program (MMASP) overview [AIAA PAPER 91-30926] p 54 A91-14432

NEWPORT, JOHN The JIANG input/output system (JIOG) p 31 A91-30986

NGUYEN, LAN N. Computer-aided planning of SS/TDMA network operation p 30 A91-26910

NICHOLAS, GUY Hardware versus manpower compatibility methodology. Volume 1: Overview and manager's guide [AD-A225122] p 3 N91-12208

NICHOLS, LESTER D. Multidisciplinary research overview [IPTET/NPSS] p 62 N91-20119

NIERENBERG, WILLIAM A. New leadership for space exploration p 93 A91-20775

NIMO, H. Organizational aspects of assembly, integration and verification for Columbus p 19 N91-15217

NIWA, KIYOSHI Toward successful implementation of knowledge-based systems - Expert systems vs. knowledge sharing systems p 30 A91-18980

NORDHOLM, G.R. Automation and robotic activities in WP-2 [AIAA PAPER 90-3704] p 20 A91-10103

NOTLEY, P. How artificial intelligence can improve man-machine interface - Practical example with extravehicular activities [IAP PAPER 90-025] p 21 A91-13748

NOYES, ROBERT Solar astronomy p 71 N91-33026

NOZAWA, K. Management and operation of environmental test facility complex p 10 N91-15225

O

O'DONNELL, PATRICIA M. HQ-IFS Maintenance Resource Prediction Model (MRPM) user's manual [AD-A229297] p 63 N91-30972

OAKLEY, S. A study of the logistics function within a medium sized, sales oriented chemical company [ETN-91-99838] p 84 N91-31987

OBLINGER, J. T. After-action report for the Next-Generation Computer Resources (NGCR) operating systems interface standard baseline selection process [AD-A229633] p 35 N91-13078

ODERMAN, MARK R. Global commercialization of launch services - Shortcomings in current policies and prospects for the future [IAF PAPER 90-615] p 72 A91-14116

OJALEHTO, GEORGE Launch operations manpower yesterday, today and tomorrow p 4 N91-29267
Typical Corporate Source Index Listing

<table>
<thead>
<tr>
<th>CORPORATE SOURCE</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Corp., El Segundo, CA</td>
<td>Quality function deployment in launch operations</td>
<td>[AD-A230985]</td>
<td>p 90 N91-21178</td>
<td></td>
</tr>
<tr>
<td>Aeronautics, Cannes (France)</td>
<td>Preparing electronics quality for the next century</td>
<td>[AD-A230985]</td>
<td>p 90 N91-21178</td>
<td></td>
</tr>
<tr>
<td>Air Force Eastern Test Range, Cape Kennedy, FL</td>
<td>Particle astrophysics</td>
<td>[AD-A230985]</td>
<td>p 90 N91-21178</td>
<td></td>
</tr>
<tr>
<td>Air Force Inst. of Tech., Wright-Patterson AFB, OH</td>
<td>Managing emerging technology: Case studies in document imaging systems</td>
<td>[AD-A227688]</td>
<td>p 38 N91-16839</td>
<td></td>
</tr>
<tr>
<td>Air War Coll., Maxwell AFB, AL</td>
<td>Tool version management technology: A case study</td>
<td>[AD-A229798]</td>
<td>p 40 N91-20979</td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the subject index. If applicable, a report number is also included as an aid in identifying the document.

A

Acurex Corp., Mountain View, CA

Aerospace Information Handbook

Air War Coll., Maxwell AFB, AL

Top quality management, reliability, and maintainability: Institutional goals with built in barriers

Aerospace Corp., El Segundo, CA

Quality function deployment in launch operations

Aerospace Industries Association of America, Inc., Washington, DC

Aeronautics, Cannes (France)

Preparing electronics quality for the next century

Air Force Eastern Test Range, Cape Kennedy, FL

A test manager’s perspective of a test concept for a heavy lift vehicle

Air Force Inst. of Tech., Wright-Patterson AFB, OH

Managing emerging technology: Case studies in document imaging systems

Management of NASA managers

Typical Corporate Source Index Listing

CORPORATE SOURCE INDEX

MANAGEMENT / A Bibliography for NASA Managers

MARCH 1992

An empirical evaluation of three knowledge acquisition techniques for developing a project management related expert system

Status of PAVER implementation within the US Air Force

Defining acquisition and contracting terms associated with contract administration

The effect of the Commercial Space Launch Act on Department of Defense contract administration

An investigation of the stability of the cost performance index

Development of a handbook for configuration managers with applications for the program/system in full-scale development

Air Force Systems Command, Griffiss AFB, NY

A Rome Laboratory guide to basic training in TOM analysis techniques

Air Navigation Technical Service, Paris (France)

Advanced visualization techniques

Air War Coll., Maxwell AFB, AL

Top quality management, reliability, and maintainability: Institutional goals with built in barriers

Alabama Univ., Huntsville

National launch system vehicle data management system

American Astronomical Society, Washington, DC

Status of the profession

American Public Power Association, Washington, DC

COMPLEAT (community-oriented model for planning least-cost energy alternatives and technologies): A planning tool for publicly owned electric utilities

American University, Washington, DC

The Space Station decision - Incremental politics and survival

Arizona State Univ., Tempe

The software technical review process

Army Construction Engineering Research Lab., Champaign, IL

Maintenance Resource Prediction Model (MRPM) user’s manual

Army Engineer Waterways Experiment Station, Vicksburg, MS

Software development standards for project cost management information system

Army Research Inst. for the Behavioral and Social Sciences, Alexandria, VA

Test analysis program evaluation: Item statistics as feedback to test developers

Army Strategic Defense Command, Huntsville, AL

Management of variation and TQM

Assistant Secretary of the Air Force, Washington, DC

Document marking

Barrios Technology, Inc., Houston, TX

Quality assurance planning for lunar Mars exploration

Beech Aircraft Corp., Wichita, KS

Aging aircraft: Issues and partial answers

Beleidscommisie Remote Sensing, Delft (Netherlands)

An evaluation of the production processes and methods associated with Carello Cell at RISTS, Telford

Bell Communications Research, Inc., Morristown, NJ

Coordination in large scale software development

Birmingham University, England

An evaluation of the production processes and methods associated with Carello Cell at RISTS, Telford

Boeing Computer Services Co., Huntsville, AL

A knowledge-based approach to configuration layout, justification, and documentation

Booz-Allen and Hamilton, Inc., Reston, VA

A Rome Laboratory guide to basic training in TOM analysis techniques

British Aerospace Public Ltd. Co., Bristol (England)

A 1990 snapshot and 1995 future look at Air Force IM needs and preferred education/training approaches

British Aerospace Ltd. Co., Preston (England)

Development methodologies for knowledge based systems: A comparative review

Bureau of Naval Personnel Management (MRPM) user’s manual

California Univ., Berkeley

Particle astrophysics

California Univ., Berkeley, Lawrence Berkeley Lab.

The practical computer in design

California Univ., Santa Cruz

UV-optical from space

Cambridge-Melton Univ., Pittsburgh, PA.

The role of assessment in software process improvement

The role of the UNIX(M) central computing facility in a multi-purpose national laboratory

California Univ., Irvine

Software safety

California Univ., Los Angeles

Cosmos, an international center for advanced studies

California Univ., Santa Cruz

Transaction-oriented configuration management: A case study

Decentralized computing technology for fault-tolerant, survivable C3I systems

Transaction-oriented configuration management: A case study

Tool version management technology: A case study

FOREIGN TECHNOLOGY INDEX

MANAGEMENT / A Bibliography for NASA Managers

MARCH 1992

Typical Foreign Technology Index Listing

<table>
<thead>
<tr>
<th>COUNTRY OF INTELLECTUAL ORIGIN</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUSTRALIA</td>
<td>Co-operation is crucial to success of aging aircraft review programmes</td>
<td>p87 A91-29054</td>
<td></td>
</tr>
<tr>
<td>BELGIUM</td>
<td>Software lifecycle from an operations viewpoint</td>
<td>p24 N91-16616</td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td>Data processing, storage, integration, and analysis in the mid to late 1990’s</td>
<td>p34 A91-47776</td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

A

AUSTRALIA

Co-operation is crucial to success of aging aircraft review programmes

Uncertainty, information and estimation

XSHELL: A general purpose expert system shell

BELGIUM

Software lifecycle from an operations viewpoint

International cooperation in aeronautical research and development carried out by international organisations

CANADA

Data processing, storage, integration, and analysis in the mid to late 1990’s

Radarsat International Inc. - Commercial distribution of Radarsat products

User access and production control of Canada’s operational SAR data processing facility

On innovation, error and space exploration

A monitoring and control system for complex man-machine systems - Preliminary design

The Atlas E/F launch vehicle - An unsung workhorse

A real-time Ada environment that simplifies management and reduces cost

D

DENMARK

Management in SDE-based organisations

FRANCE

How artificial intelligence can improve man-machine interface - Practical example with extravehicular activities

Can the U.S. industry retain its leadership?

Preparatory programs for the International Space Station utilization - Emphasis on the French program

The electronic copilot - A fruitful experience toward complex project management using artificial intelligence in the space domain

Aeronautical R and D in smaller countries

Planning applied research in France

SPOT image

Some comments on multinational cooperation

Knowledge based framework for man-system interaction in space control centres

French SATCOM program and related international activities

Summary of EEE component anomalies encountered in the SPOT line of Earth observation satellites and lessons derived therefrom for future generations

Preparing electronics quality for the next century

EQML: A chance for Europe

Space manufacturing quality through statistical process control: An application at Texas Instruments France, a space semiconductors production line

Total quality management: What are the facts behind the concepts?

Which position for MIL-space industry facing QML

Preparation and optimisation of a BAE Systems/SELEX joint venture project

Computer-aided conceptual aircraft configuration development by an integrated optimization approach

Columbus generic element management concept

Failure management in spatial-temporal redundant, integrated navigation and flight control reference-systems

Dynamic development of space business - A study of German space industry

Improvements needed for software development in the large

Columbus logistics support. A conceptional definition of the operational phase

Organization and activities of the DLR

Organisational aspects of assembly, integration and verification for Columbus

Columbus generic element management and planning concept

Promotion of information technology research: German and European strategies. Proceedings of a forum at the Embassy of the Federal Republic of Germany

Experiences with components in the DFS-project: Seen from a customer's point of view

A statistical evaluation of EEE-parts procurement data from telecommunication satellites

Rationalization for the selection of a parts procurement system (coordinated versus centralized) from a prime contractor point of view

Specification, procurement and testing of passivated microwave semiconductor chips for space applications

Progress in submicron technologies

The role of Knapp Forschungsinstitut in international R and D cooperation

Know-how for Europe

Europe 1993: Challenge and opportunity for distribution logistics

International Organization

Computer-aided planning of SS/TDMA network operation

Some considerations on organising requirements for systems management

A series on the European Communication Satellite Program. I - Historical background and start of the TELECOM programme

Speeding payments to industry - The ESA solution

Recent developments in ESA’s information and data policy

‘Hyperline’ - The information browser

Development of a configurable infrastructure for the control of a large variety of spacecraft - The SCOS

The ESA software engineering standards - Their application to ESA software projects and their evolution

Design methodology for space automation and robotic systems

Coordinated parts procurement for ISO - A contribution to cost-effectiveness

Risk management at ESA

A series on the European communication satellite program. II - The Telecom project OTS. III - The Telecom programme and beyond

QUALITY

Economics and productivity

ITALY

Activities of Selenia Spazio

Integrated logistics support - Suggested approach for Columbus

Helicopter configuration selection - A procurement point of view

Software management practices and strategies for space systems development

Standards and S/W development environments - The point of view of a S/W engineering company involved in several space programs

Implementing a corporate software development methodology

The problem of network management: An approach using AI techniques

The design of an Integrity Consistency Checker (ICC) for an object oriented database system

Hypertext development using a model-based approach

FOREIGN TECHNOLOGY INDEX
JAN

JAPAN

Development of Japanese Experiment Module (JEM) (IFAP PAPER 90-068) p 14 A91-13777
An analysis on space commercialization in Japan (IFAP PAPER 90-614) p 72 A91-14115
Trials for developing information system in NASA (Space Operation Information System for JEM era) [AIAA PAPER 90-5016] p 29 A91-14951
Total successful implementation of knowledge-based systems - Expert systems vs. knowledge sharing systems p 30 A91-19890
Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory p 89 A91-48193
Town planning for the Pacific space port (AAS PAPER 89-619) p 57 A91-55817
Management and operation of environmental test facility complex p 10 N91-15225
US-Japan task force on scientific and technical information (PB90-237561) p 29 N91-17820
Satellite data link research and development program in Japan p 69 N91-32108
A plan of NASA's parts database in the reliability information system p 91 N91-32381

KUWAIT

Project risk assessment using the analytic hierarchy process p 15 A91-26937

MEXICO

The SATEX project p 60 N91-15202

NETHERLANDS

Integrated logistic support in the NH90 project p 81 A91-45399
Bermuda bias - Substantial ownership and effective control 45 years on p 84 A91-45346
Two recent German cases of privatization - Air traffic controllers and the space agency p 94 A91-45350
Extraction of marketable information from ERS-1 data [BRS-90-03] p 76 N91-16425
Theoretical considerations on error management [REPT-90-75] p 39 N91-18750
Checklist for thick-film hybrid microcircuits manufacturer and line survey [ESA-PSS-01-607-ISSUE-1] p 20 N91-23396
Checklist for thin-film hybrid microcircuits manufacturer and line survey [ESA-PSS-01-611-ISSUE-1] p 20 N91-23397
Profiles in management: Relations in the market and business place [ETN-91-99436] p 11 N91-25000
Method management for the benefit of large software packages for analysis in CAE [NLR-TP-490027-U] p 51 N91-30786
Quality assurance in the management of information systems [MEMO-INF-90-90] p 91 N91-31013
ESA's component programme plan p 85 N91-32373

SPAIN

Space flight components database p 52 N91-32377
CPFS: The total information system tool for EEE parts procurement p 85 N91-32379

SRI LANKA

Taxation in the field of international air transport - Legal aspects p 94 A91-45448

SWITZERLAND

Work starts on North American mobilesats p 56 A91-31372

U.S.S.R.

Cosmos, an international center for advanced studies (IFAP PAPER 90-507) p 1 A91-14161

D-2

Dynamics of control systems p 1 A91-17001
The exploitation of space and developing countries (International-law problems) p 84 A91-47575
Issues in space policy, budgeting p 62 N91-20166
US experience cited to urge change in space program management p 11 N91-27188
Galeev discusses history, prospects of Institute of Space Research p 67 N91-30174

UNITED KINGDOM

The European ATC system - Constraints and traffic management p 88 A91-41439
The progressive improvement of European flow-management p 88 A91-41440
The airline's perception of air traffic management p 88 A91-41441
Alternative strategies for traffic flow-management in Europe p 88 A91-41442
Ground support equipment maintenance data analysis p 32 A91-41538
Management of a large scale data-processing project for spacecraft operations p 32 A91-42869
Sub-contracts play new strategic roles p 73 A91-43273
Synchronized manufacture of composites knowledge study (SMACKS) p 16 A91-48768
Human factors for pilots p 2 A91-50999
Quality costing at British Aerospace Dynamics - A case study p 74 A91-54396
Some experiences of advanced manufacturing cells at British Aerospace Warton Unit p 18 A91-54397
F-22 - Managing the challenge p 18 A91-56750
Aero engine design factors for a low fuel price scenario [PNR-908091] p 18 N91-10066
Fabrication aspects of glass matrix composites for gas turbine applications [PNR-90752] p 18 N91-10073
Industrial applications and markets for ceramic matrix composites [PNR-90753] p 74 N91-10138
Multi industry application of advanced materials [PNR-90764] p 74 N91-10139
Engineering design: A powerful influence on the business success on manufacturing industry [PNR-90763] p 74 N91-10197
An evaluation of the production processes and methods associated with Careto,Cel at RISTS, Telford [ETN-90-97576] p 18 N91-10228
Introduction: Needs and approaches to reliability and quality assurance in design and manufacture [PNR-90863] p 89 N91-10297
Total quality management at Rolls-Royce PLC [PNR-90758] p 89 N91-10298
Fully automatic analysis in an industrial environment [PNR-90722] p 23 N91-10847
The development of SCORPIO as a commercial product [PNR-90746] p 58 N91-12098
Software management guidelines for automated measuring systems [NPL-DES-99] p 27 N91-12626
The impact of the new management strategy on senior operational commanders at group level within Royal Air Force Strike Command [REPT-8955/MCHALE/03-MDA] p 10 N91-19954
A role model for quality management in finite element analysis p 11 N91-24539
The economic aspects of developing and marketing full text databases p 79 N91-25911
Personal information systems: The implications of job and individual differences for design p 44 N91-25947
Information management: A uniform conceptual model [ETN-91-9956] p 28 N91-30845
The Saterxy project for spacecraft operations p 85 N91-32372
Upscreening of components for space applications p 85 N91-32376
The merits of an independent pre-cap inspection p 91 N91-32378
Cost effective electronic components for short life space missions p 80 N91-32387

FOREIGN TECHNOLOGY INDEX

Technology approval using capability indices p 92 N91-32389
<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>PAGE</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF PROJ. 2338</td>
<td>p 90</td>
<td>N81-26994</td>
</tr>
<tr>
<td>AF PROJ. 9993</td>
<td>p 11</td>
<td>N81-26993</td>
</tr>
<tr>
<td>AF-AFOSR-0319-90</td>
<td>p 64</td>
<td>N81-24441</td>
</tr>
<tr>
<td>AF-AFOSR-89-0033</td>
<td>p 31</td>
<td>N81-29345</td>
</tr>
<tr>
<td>BCRS PROJ. OC-2.20</td>
<td>p 76</td>
<td>N81-16425</td>
</tr>
<tr>
<td>DA PROJ. 2Q2-63007-A-79</td>
<td>p 3</td>
<td>N81-12208</td>
</tr>
<tr>
<td>DAVG22-84-K-0049</td>
<td>p 25</td>
<td>N81-36202</td>
</tr>
<tr>
<td>DE-AC01-86ER-30152</td>
<td>p 59</td>
<td>N81-12824</td>
</tr>
<tr>
<td>DE-AC02-86CH-10093</td>
<td>p 67</td>
<td>N81-29649</td>
</tr>
<tr>
<td>DE-AC03-76SF-00098</td>
<td>p 23</td>
<td>N81-12232</td>
</tr>
<tr>
<td>DE-AC04-76DP-00789</td>
<td>p 48</td>
<td>N81-26737</td>
</tr>
<tr>
<td>DE-AC05-84CR-21400</td>
<td>p 41</td>
<td>N81-21984</td>
</tr>
<tr>
<td>DE-AC06-76RL-01830</td>
<td>p 96</td>
<td>N81-24956</td>
</tr>
<tr>
<td>DE-AC07-76ID-01570</td>
<td>p 45</td>
<td>N81-25963</td>
</tr>
<tr>
<td>DE-FG05-87TH-10343</td>
<td>p 50</td>
<td>N81-30057</td>
</tr>
<tr>
<td>DE-FG01-86-EC-27462</td>
<td>p 79</td>
<td>N81-30058</td>
</tr>
<tr>
<td>DE-FG02-86DP-48058</td>
<td>p 5</td>
<td>N81-31988</td>
</tr>
<tr>
<td>DE-AC05-84CR-21400</td>
<td>p 13</td>
<td>N81-32002</td>
</tr>
<tr>
<td>DE-AC06-76RL-01830</td>
<td>p 75</td>
<td>N81-12752</td>
</tr>
<tr>
<td>DE-AC07-76ID-01570</td>
<td>p 19</td>
<td>N81-12823</td>
</tr>
<tr>
<td>DE-FG06-87TH-10343</td>
<td>p 37</td>
<td>N81-14082</td>
</tr>
<tr>
<td>DE-FG01-86-EC-27462</td>
<td>p 60</td>
<td>N81-16257</td>
</tr>
<tr>
<td>DE-FG02-86DP-48058</td>
<td>p 59</td>
<td>N81-16805</td>
</tr>
<tr>
<td>DE-AC05-84CR-21400</td>
<td>p 66</td>
<td>N81-16292</td>
</tr>
<tr>
<td>DE-AC06-76RL-01830</td>
<td>p 27</td>
<td>N81-26828</td>
</tr>
<tr>
<td>DE-AC07-76ID-01570</td>
<td>p 67</td>
<td>N81-26784</td>
</tr>
<tr>
<td>DE-FG05-88ER-04021</td>
<td>p 49</td>
<td>N81-22907</td>
</tr>
<tr>
<td>DE-FG05-88ER-75498</td>
<td>p 49</td>
<td>N81-25075</td>
</tr>
<tr>
<td>DE-FG06-87TH-10343</td>
<td>p 69</td>
<td>N81-33016</td>
</tr>
<tr>
<td>DE-FG05-88ER-04021</td>
<td>p 13</td>
<td>N81-30979</td>
</tr>
<tr>
<td>DE-FG06-87TH-10343</td>
<td>p 68</td>
<td>N81-30980</td>
</tr>
<tr>
<td>DE-FG01-86-EC-27462</td>
<td>p 79</td>
<td>N81-30981</td>
</tr>
<tr>
<td>DE-FG02-86DP-48058</td>
<td>p 68</td>
<td>N81-31885</td>
</tr>
<tr>
<td>DE-FG05-88ER-04021</td>
<td>p 68</td>
<td>N81-31885</td>
</tr>
<tr>
<td>DE-FG01-86-EC-27462</td>
<td>p 66</td>
<td>N81-31886</td>
</tr>
<tr>
<td>DE-FG02-86DP-48058</td>
<td>p 82</td>
<td>N81-19075</td>
</tr>
<tr>
<td>DTF01-85-C-0008</td>
<td>p 90</td>
<td>N81-21178</td>
</tr>
<tr>
<td>F19628-85-C-0003</td>
<td>p 37</td>
<td>N81-14762</td>
</tr>
<tr>
<td>F19628-85-D-0002</td>
<td>p 4</td>
<td>N81-16585</td>
</tr>
<tr>
<td>F19628-85-C-0009</td>
<td>p 46</td>
<td>N81-16619</td>
</tr>
<tr>
<td>F19628-85-C-0003</td>
<td>p 46</td>
<td>N81-17597</td>
</tr>
<tr>
<td>F30602-85-C-0008</td>
<td>p 27</td>
<td>N81-27792</td>
</tr>
<tr>
<td>F30602-85-C-0274</td>
<td>p 26</td>
<td>N81-27798</td>
</tr>
<tr>
<td>F33615-89-C-5708</td>
<td>p 46</td>
<td>N81-27807</td>
</tr>
<tr>
<td>F41622-89-C-0018</td>
<td>p 46</td>
<td>N81-27811</td>
</tr>
<tr>
<td>F41622-89-C-0018</td>
<td>p 46</td>
<td>N81-27812</td>
</tr>
<tr>
<td>F41622-89-C-0018</td>
<td>p 46</td>
<td>N81-27813</td>
</tr>
<tr>
<td>FD-4596-234-1323</td>
<td>p 61</td>
<td>N81-17175</td>
</tr>
<tr>
<td>MD-90-3-85-C-1099</td>
<td>p 82</td>
<td>N81-16830</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-26934</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-11208</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-12008</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-12783</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-26818</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-23371</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-20810</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-27884</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-20692</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-20692</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-21964</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-21964</td>
</tr>
<tr>
<td>DAAG29-84-K-0049</td>
<td>p 25</td>
<td>N81-32207</td>
</tr>
<tr>
<td>DAAG29-84-K-0049</td>
<td>p 25</td>
<td>N81-11715</td>
</tr>
<tr>
<td>DAAG29-84-K-0049</td>
<td>p 25</td>
<td>N81-12908</td>
</tr>
<tr>
<td>DAAG29-84-K-0049</td>
<td>p 25</td>
<td>N81-16334</td>
</tr>
<tr>
<td>HAF936-84-C-0041</td>
<td>p 25</td>
<td>N81-11715</td>
</tr>
<tr>
<td>HAF936-84-C-0041</td>
<td>p 25</td>
<td>N81-12908</td>
</tr>
<tr>
<td>HAF936-84-C-0041</td>
<td>p 25</td>
<td>N81-16334</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-11715</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-12908</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-16334</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-11715</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-12908</td>
</tr>
<tr>
<td>MDA090-85-C-0003</td>
<td>p 48</td>
<td>N81-16334</td>
</tr>
<tr>
<td>REPORT NUMBER INDEX Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT NUMBER</td>
<td>ACCESSION NUMBER</td>
<td>ON MICROFICHE</td>
</tr>
<tr>
<td>Typical Report Number Index Listing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT NUMBER</td>
<td>ACCESSION NUMBER</td>
<td>ON MICROFICHE</td>
</tr>
<tr>
<td>A-90303</td>
<td>p 8</td>
<td>N91-10048</td>
</tr>
<tr>
<td>A-91050-VOL</td>
<td>p 26</td>
<td>N91-2758</td>
</tr>
<tr>
<td>A-91105</td>
<td>p 27</td>
<td>N91-2773</td>
</tr>
<tr>
<td>A-91192</td>
<td>p 28</td>
<td>N91-32155</td>
</tr>
<tr>
<td>AAS PAPER 89-610</td>
<td>p 57</td>
<td>A91-55817</td>
</tr>
<tr>
<td>AAS PAPER 89-620</td>
<td>p 81</td>
<td>A91-55818</td>
</tr>
<tr>
<td>AAS PAPER 89-632</td>
<td>p 82</td>
<td>A91-55819</td>
</tr>
<tr>
<td>AAS PAPER 90-006</td>
<td>p 15</td>
<td>A91-26836</td>
</tr>
<tr>
<td>ACTA-POLYTEC-SCAND-MA-56</td>
<td>p 13</td>
<td>N91-31008</td>
</tr>
<tr>
<td>AD-A224888</td>
<td>p 9</td>
<td>N91-12866</td>
</tr>
<tr>
<td>AD-A225122</td>
<td>p 3</td>
<td>N91-12806</td>
</tr>
<tr>
<td>AD-A225208</td>
<td>p 9</td>
<td>N91-12878</td>
</tr>
<tr>
<td>AD-A225304</td>
<td>p 9</td>
<td>N91-12802</td>
</tr>
<tr>
<td>AD-A225355</td>
<td>p 55</td>
<td>N91-12880</td>
</tr>
<tr>
<td>AD-A225521</td>
<td>p 75</td>
<td>N91-12856</td>
</tr>
<tr>
<td>AD-A225563</td>
<td>p 75</td>
<td>N91-12866</td>
</tr>
<tr>
<td>AD-A225753</td>
<td>p 35</td>
<td>N91-13078</td>
</tr>
<tr>
<td>AD-A226100</td>
<td>p 75</td>
<td>N91-12858</td>
</tr>
<tr>
<td>AD-A226446</td>
<td>p 37</td>
<td>N91-13840</td>
</tr>
<tr>
<td>AD-A226502</td>
<td>p 37</td>
<td>N91-14692</td>
</tr>
<tr>
<td>AD-A226735</td>
<td>p 38</td>
<td>N91-16698</td>
</tr>
<tr>
<td>AD-A226867</td>
<td>p 62</td>
<td>N91-6630</td>
</tr>
<tr>
<td>AD-A227145</td>
<td>p 37</td>
<td>N91-14757</td>
</tr>
<tr>
<td>AD-A227426</td>
<td>p 37</td>
<td>N91-14762</td>
</tr>
<tr>
<td>AD-A227668</td>
<td>p 38</td>
<td>N91-16697</td>
</tr>
<tr>
<td>AD-A228454</td>
<td>p 24</td>
<td>N91-16616</td>
</tr>
<tr>
<td>AD-A229475</td>
<td>p 38</td>
<td>N91-16619</td>
</tr>
<tr>
<td>AD-A229479</td>
<td>p 38</td>
<td>N91-17597</td>
</tr>
<tr>
<td>AD-A226443</td>
<td>p 89</td>
<td>N91-16608</td>
</tr>
<tr>
<td>AD-A229218</td>
<td>p 10</td>
<td>N91-17831</td>
</tr>
<tr>
<td>AD-A229239</td>
<td>p 82</td>
<td>N91-16699</td>
</tr>
<tr>
<td>AD-A229255</td>
<td>p 4</td>
<td>N91-16999</td>
</tr>
<tr>
<td>AD-A229297</td>
<td>p 83</td>
<td>N91-30792</td>
</tr>
<tr>
<td>AD-A229482</td>
<td>p 67</td>
<td>N91-30974</td>
</tr>
<tr>
<td>AD-A229487</td>
<td>p 67</td>
<td>N91-30975</td>
</tr>
<tr>
<td>AD-A229527</td>
<td>p 67</td>
<td>N91-30976</td>
</tr>
<tr>
<td>AD-A229617</td>
<td>p 53</td>
<td>N91-32993</td>
</tr>
<tr>
<td>AD-A229695</td>
<td>p 4</td>
<td>N91-20997</td>
</tr>
<tr>
<td>AD-A229751</td>
<td>p 25</td>
<td>N91-20810</td>
</tr>
<tr>
<td>AD-A229788</td>
<td>p 40</td>
<td>N91-20797</td>
</tr>
<tr>
<td>AD-A229851</td>
<td>p 40</td>
<td>N91-19713</td>
</tr>
<tr>
<td>AD-A229952</td>
<td>p 62</td>
<td>N91-32075</td>
</tr>
<tr>
<td>AD-A229982</td>
<td>p 62</td>
<td>N91-20399</td>
</tr>
<tr>
<td>AD-A30114</td>
<td>p 20</td>
<td>N91-20175</td>
</tr>
<tr>
<td>AD-A302054</td>
<td>p 37</td>
<td>N91-20177</td>
</tr>
<tr>
<td>AD-A302066</td>
<td>p 25</td>
<td>N91-20093</td>
</tr>
<tr>
<td>AD-A302074</td>
<td>p 25</td>
<td>N91-20080</td>
</tr>
<tr>
<td>AD-A302060</td>
<td>p 10</td>
<td>N91-20092</td>
</tr>
<tr>
<td>AD-A302075</td>
<td>p 10</td>
<td>N91-20097</td>
</tr>
<tr>
<td>AD-A302093</td>
<td>p 90</td>
<td>N91-21178</td>
</tr>
<tr>
<td>AD-A303150</td>
<td>p 43</td>
<td>N91-22940</td>
</tr>
</tbody>
</table>
ACCESSION NUMBER INDEX

MARCH 1992

Typical Accession Number Index Listing

<table>
<thead>
<tr>
<th>ACCESSION NUMBER INDEX LISTING</th>
<th>NASA SPONSORED</th>
<th>ON MICROFICHE</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A91-10048 * # p 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>ACCESSION NUMBER</th>
<th>INDEX</th>
<th>P</th>
<th>PAGE</th>
<th>NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A91-10010</td>
<td>A91-15799</td>
<td># p 54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10019</td>
<td>A91-19803</td>
<td># p 54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10021</td>
<td>A91-19804</td>
<td># p 55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10022</td>
<td>A91-19848</td>
<td># p 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10100</td>
<td>A91-19849</td>
<td># p 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10115</td>
<td>A91-19891</td>
<td># p 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10136</td>
<td>A91-20485</td>
<td># p 72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10192</td>
<td>A91-20775</td>
<td># p 93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10397</td>
<td>A91-21219</td>
<td># p 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10399</td>
<td>A91-21375</td>
<td># p 55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10165</td>
<td>A91-22171</td>
<td># p 72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10167</td>
<td>A91-22305</td>
<td># p 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10204</td>
<td>A91-24524</td>
<td># p 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10442</td>
<td>A91-24874</td>
<td># p 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10902</td>
<td>A91-26050</td>
<td># p 55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10907</td>
<td>A91-26060</td>
<td># p 55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10908</td>
<td>A91-26286</td>
<td># p 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10930</td>
<td>A91-26478</td>
<td># p 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10945</td>
<td>A91-26546</td>
<td># p 72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-10970</td>
<td>A91-26728</td>
<td># p 53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11034</td>
<td>A91-26828</td>
<td># p 54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11043</td>
<td>A91-27423</td>
<td># p 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11072</td>
<td>A91-27579</td>
<td># p 73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11097</td>
<td>A91-27722</td>
<td># p 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11292</td>
<td>A91-27723</td>
<td># p 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11293</td>
<td>A91-27928</td>
<td># p 72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11416</td>
<td>A91-29054</td>
<td># p 73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11436</td>
<td>A91-29087</td>
<td># p 51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11437</td>
<td>A91-29107</td>
<td># p 84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11432</td>
<td>A91-29345</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11470</td>
<td>A91-29693</td>
<td># p 86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11475</td>
<td>A91-29864</td>
<td># p 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11485</td>
<td>A91-29925</td>
<td># p 73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11492</td>
<td>A91-31972</td>
<td># p 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11501</td>
<td>A91-32023</td>
<td># p 57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11520</td>
<td>A91-32088</td>
<td># p 57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11552</td>
<td>A91-32184</td>
<td># p 57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11612</td>
<td>A91-33044</td>
<td># p 54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11689</td>
<td>A91-33087</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11701</td>
<td>A91-33094</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11742</td>
<td>A91-33096</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11743</td>
<td>A91-33097</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11750</td>
<td>A91-33099</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11759</td>
<td>A91-31019</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11800</td>
<td>A91-31020</td>
<td># p 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11809</td>
<td>A91-31023</td>
<td># p 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11910</td>
<td>A91-31027</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11909</td>
<td>A91-31036</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11907</td>
<td>A91-31038</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11906</td>
<td>A91-31039</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11905</td>
<td>A91-31040</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11904</td>
<td>A91-31041</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11903</td>
<td>A91-31042</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11902</td>
<td>A91-31043</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11901</td>
<td>A91-31044</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11900</td>
<td>A91-31045</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11909</td>
<td>A91-31046</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11908</td>
<td>A91-31047</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11907</td>
<td>A91-31048</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11906</td>
<td>A91-31049</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11905</td>
<td>A91-31050</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11904</td>
<td>A91-31051</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11903</td>
<td>A91-31052</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11902</td>
<td>A91-31053</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11901</td>
<td>A91-31054</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11900</td>
<td>A91-31055</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11909</td>
<td>A91-31056</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11908</td>
<td>A91-31057</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11907</td>
<td>A91-31058</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11906</td>
<td>A91-31059</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11905</td>
<td>A91-31060</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11904</td>
<td>A91-31061</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11903</td>
<td>A91-31062</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11902</td>
<td>A91-31063</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11901</td>
<td>A91-31064</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A91-11900</td>
<td>A91-31065</td>
<td># p 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A91-10000 Series)

Publications announced in IAA are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at $10.00 per document (up to 50 pages), additional pages $0.25 each. Standing order microfiche are available at the rate of $1.45 per microfiche for IAA source documents and $1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is $2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N91-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, VA 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other report number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)
Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center - Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.

Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.

Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).

Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, DC 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.

Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
FEDERAL DEPOSITORY LIBRARY PROGRAM
In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 52 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 52 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are not sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS
An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA — Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.
<table>
<thead>
<tr>
<th>Organization Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Institute of Aeronautics and Astronautics</td>
<td>Technical Information Service</td>
</tr>
<tr>
<td></td>
<td>555 West 57th Street, 12th Floor</td>
</tr>
<tr>
<td></td>
<td>New York, New York 10019</td>
</tr>
<tr>
<td>British Library Lending Division,</td>
<td>Boston Spa, Wetherby, Yorkshire, England</td>
</tr>
<tr>
<td>Commissioner of Patents and Trademarks</td>
<td>U.S. Patent and Trademark Office</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20231</td>
</tr>
<tr>
<td>Department of Energy</td>
<td>Technical Information Center</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 62</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge, Tennessee 37830</td>
</tr>
<tr>
<td>European Space Agency-Information Retrieval Service</td>
<td>ESRIN</td>
</tr>
<tr>
<td></td>
<td>Via Galileo Galilei</td>
</tr>
<tr>
<td></td>
<td>00044 Frascati (Rome) Italy</td>
</tr>
<tr>
<td>Engineering Sciences Data Unit International</td>
<td>P.O. Box 1633</td>
</tr>
<tr>
<td></td>
<td>Manassas, Virginia 22110</td>
</tr>
<tr>
<td>Engineering Sciences Data Unit International, Ltd.</td>
<td>251-259 Regent Street</td>
</tr>
<tr>
<td></td>
<td>London, W1R 7AD, England</td>
</tr>
<tr>
<td>Fachinformationszentrum Energie, Physik, Mathematik GMBH</td>
<td>7514 Eggenstein Leopoldshafen</td>
</tr>
<tr>
<td></td>
<td>Federal Republic of Germany</td>
</tr>
<tr>
<td>Her Majesty's Stationery Office</td>
<td>P.O. Box 569, S.E. 1</td>
</tr>
<tr>
<td></td>
<td>London, England</td>
</tr>
<tr>
<td>NASA Center for AeroSpace Information</td>
<td>P.O. Box 8757</td>
</tr>
<tr>
<td></td>
<td>Baltimore, MD 21240-0757</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>Scientific and Technical Information Program (JTT)</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20546</td>
</tr>
<tr>
<td>National Technical Information Service</td>
<td>5285 Port Royal Road</td>
</tr>
<tr>
<td></td>
<td>Springfield, Virginia 22161</td>
</tr>
<tr>
<td>Pendragon House, Inc.</td>
<td>899 Broadway Avenue</td>
</tr>
<tr>
<td></td>
<td>Redwood City, California 94063</td>
</tr>
<tr>
<td>Superintendent of Documents</td>
<td>U.S. Government Printing Office</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20402</td>
</tr>
<tr>
<td>University Microfilms</td>
<td>A Xerox Company</td>
</tr>
<tr>
<td></td>
<td>300 North Zeek Road</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor, Michigan 48106</td>
</tr>
<tr>
<td>University Microfilms, Ltd.</td>
<td>Tylers Green</td>
</tr>
<tr>
<td></td>
<td>London, England</td>
</tr>
<tr>
<td>U.S. Geological Survey Library National Center</td>
<td>MS 950</td>
</tr>
<tr>
<td></td>
<td>12201 Sunrise Valley Drive</td>
</tr>
<tr>
<td></td>
<td>Reston, Virginia 22092</td>
</tr>
<tr>
<td>U.S. Geological Survey Library Flagstaff</td>
<td>2255 North Gemini Drive</td>
</tr>
<tr>
<td></td>
<td>Flagstaff, Arizona 86001</td>
</tr>
<tr>
<td>U.S. Geological Survey</td>
<td>345 Middlefield Road</td>
</tr>
<tr>
<td></td>
<td>Menlo Park, California 94025</td>
</tr>
<tr>
<td>U.S. Geological Survey Library Denver</td>
<td>Box 25046</td>
</tr>
<tr>
<td></td>
<td>Denver Federal Center, MS914</td>
</tr>
<tr>
<td></td>
<td>Denver, Colorado 80225</td>
</tr>
</tbody>
</table>
NTIS PRICE SCHEDULES
(Effective October 1, 1991)

Schedule A
STANDARD PRICE DOCUMENTS
AND MICROFICHE**

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>$ 9.00</td>
<td>$ 18.00</td>
</tr>
<tr>
<td>A02</td>
<td>12.50</td>
<td>25.00</td>
</tr>
<tr>
<td>A03</td>
<td>17.00</td>
<td>34.00</td>
</tr>
<tr>
<td>A04-A05</td>
<td>19.00</td>
<td>38.00</td>
</tr>
<tr>
<td>A06-A09</td>
<td>26.00</td>
<td>52.00</td>
</tr>
<tr>
<td>A10-A13</td>
<td>35.00</td>
<td>70.00</td>
</tr>
<tr>
<td>A14-A17</td>
<td>43.00</td>
<td>86.00</td>
</tr>
<tr>
<td>A18-A21</td>
<td>50.00</td>
<td>100.00</td>
</tr>
<tr>
<td>A22-A25</td>
<td>59.00</td>
<td>118.00</td>
</tr>
<tr>
<td>A99</td>
<td>0.60</td>
<td>120.00</td>
</tr>
<tr>
<td>N01</td>
<td>60.00</td>
<td>120.00</td>
</tr>
<tr>
<td>N02</td>
<td>59.00</td>
<td>118.00</td>
</tr>
<tr>
<td>N03</td>
<td>20.00</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Schedule E
EXCEPTION PRICE DOCUMENTS
AND MICROFICHE**

<table>
<thead>
<tr>
<th>PRICE CODE</th>
<th>NORTH AMERICAN PRICE</th>
<th>FOREIGN PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>$11.00</td>
<td>$ 22.00</td>
</tr>
<tr>
<td>E02</td>
<td>14.00</td>
<td>28.00</td>
</tr>
<tr>
<td>E03</td>
<td>16.00</td>
<td>32.00</td>
</tr>
<tr>
<td>E04</td>
<td>19.00</td>
<td>38.00</td>
</tr>
<tr>
<td>E05</td>
<td>21.00</td>
<td>42.00</td>
</tr>
<tr>
<td>E06</td>
<td>24.00</td>
<td>48.00</td>
</tr>
<tr>
<td>E07</td>
<td>27.00</td>
<td>54.00</td>
</tr>
<tr>
<td>E08</td>
<td>30.00</td>
<td>60.00</td>
</tr>
<tr>
<td>E09</td>
<td>33.00</td>
<td>66.00</td>
</tr>
<tr>
<td>E10</td>
<td>36.00</td>
<td>72.00</td>
</tr>
<tr>
<td>E11</td>
<td>39.00</td>
<td>78.00</td>
</tr>
<tr>
<td>E12</td>
<td>43.00</td>
<td>86.00</td>
</tr>
<tr>
<td>E13</td>
<td>46.00</td>
<td>92.00</td>
</tr>
<tr>
<td>E14</td>
<td>50.00</td>
<td>100.00</td>
</tr>
<tr>
<td>E15</td>
<td>54.00</td>
<td>108.00</td>
</tr>
<tr>
<td>E16</td>
<td>59.00</td>
<td>118.00</td>
</tr>
<tr>
<td>E17</td>
<td>64.00</td>
<td>128.00</td>
</tr>
<tr>
<td>E18</td>
<td>69.00</td>
<td>138.00</td>
</tr>
<tr>
<td>E19</td>
<td>76.00</td>
<td>152.00</td>
</tr>
<tr>
<td>E20</td>
<td>88.00</td>
<td>176.00</td>
</tr>
<tr>
<td>E99</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Contact NTIS for price quote.

** Effective January 1, 1991, the microfiche copy of any new document entering the NTIS collection will be priced the same as the paper copy of the document.

IMPORTANT NOTICE
NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD $3.00 per TOTAL ORDER
All Other Countries — ADD $4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:
ORDERS REQUESTING NTIS RUSH HANDLING
ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.
This bibliography lists 630 reports, articles and other documents introduced into the NASA scientific and technical information system in 1991. Items are selected and grouped according to their usefulness to the manager as manager. Citations are grouped into ten subject categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs, and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy.
<table>
<thead>
<tr>
<th>State</th>
<th>Library Name</th>
<th>Address</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALABAMA</td>
<td>Auburn Univ. at Montgomery Library</td>
<td>7300 University Dr, Montgomery, AL 36117-3566</td>
<td>(205) 244-3650</td>
<td>(205) 244-0678</td>
</tr>
<tr>
<td>ARIZONA</td>
<td>Dept. of Library, Archives, and Public Records</td>
<td>Third Floor State Capitol, 1700 West Washington Phoenix, AZ 85007</td>
<td>(602) 542-4121</td>
<td>(602) 542-4400; 542-4500</td>
</tr>
<tr>
<td>ARKANSAS</td>
<td>Arkansas State Library</td>
<td>One Capitol Mall, Little Rock, AR 72201</td>
<td>(501) 682-2659</td>
<td></td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>California State Library</td>
<td>914 Capitol Mall, P.O. Box 942837, Sacramento, CA 94237-0001</td>
<td>(916) 322-4572</td>
<td>(916) 324-8120</td>
</tr>
<tr>
<td>COLORADO</td>
<td>Univ. of Colorado - Boulder Library</td>
<td>North Library, Govt. Publications, Campus Box 184 Boulder, CO 80309-0164</td>
<td>(303) 492-8834</td>
<td>(303) 492-2185</td>
</tr>
<tr>
<td>CONNECTICUT</td>
<td>Connecticut State Library</td>
<td>231 Capitol Avenue, Hartford, CT 06106</td>
<td>(203) 566-4571</td>
<td>(203) 566-3322</td>
</tr>
<tr>
<td>FLORIDA</td>
<td>Univ. of Florida Libraries</td>
<td>Govt. Documents Dept., Library West, Gainesville, FL 32611-2048</td>
<td>(904) 392-0366</td>
<td>(904) 392-7251</td>
</tr>
<tr>
<td>GEORGIA</td>
<td>Univ. of Georgia Libraries</td>
<td>Govt. Documents Dept., Jackson St., Athens, GA 30602</td>
<td>(404) 542-8949</td>
<td>(404) 542-6522</td>
</tr>
<tr>
<td>HAWAII</td>
<td>Univ. of Hawaii Library</td>
<td>Hamilton Library, Govt. Documents Collection, 2500 The Mall, Honolulu, HI 96822</td>
<td>(808) 948-8230</td>
<td>(808) 956-5968</td>
</tr>
<tr>
<td>IDAHO</td>
<td>Univ. of Idaho Library</td>
<td>Documents Section, Moscow, ID 83843</td>
<td>(208) 885-6344</td>
<td>(208) 885-6817</td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>Illinois State Library</td>
<td>Reference Dept., 300 South Second Springfield, IL 62701-1796</td>
<td>(217) 782-7596</td>
<td>(217) 524-0041</td>
</tr>
<tr>
<td>INDIANA</td>
<td>Indiana State Library</td>
<td>Serials/Documents Section, 140 North Senate Avenue, Indianapolis, IN 46204</td>
<td>(317) 232-3678</td>
<td>(317) 232-3728</td>
</tr>
<tr>
<td>IOWA</td>
<td>Univ. of Iowa Libraries</td>
<td>Govt. Publications Dept., Washington & Madison Streets, Iowa City, IA 52241</td>
<td>(319) 335-5926</td>
<td>(319) 335-5830</td>
</tr>
<tr>
<td>KANSAS</td>
<td>Univ. of Kansas</td>
<td>Govt. Documents & Map Library, 6001 Malott Hall, Lawrence, KS 66045-2800</td>
<td>(913) 864-4850</td>
<td>(913) 864-5380</td>
</tr>
<tr>
<td>KENTUCKY</td>
<td>Univ. of Kentucky Libraries</td>
<td>Govt. Publications/Maps Dept., Lexington, KY 40504-0033</td>
<td>(606) 257-3139</td>
<td>(606) 257-1563; 257-8379</td>
</tr>
<tr>
<td>LOUISIANA</td>
<td>Louisiana State Univ.</td>
<td>Middleton Library, Govt. Documents Dept., Baton Rouge, LA 70803</td>
<td>(504) 388-2570</td>
<td>(504) 388-6992</td>
</tr>
<tr>
<td>MAINE</td>
<td>Tri-State Documents Depository</td>
<td>Raymond H. Fowler Library, Govt. Documents & Microforms Dept., Univ. of Maine, Orono, ME 04469</td>
<td>(207) 581-1660</td>
<td></td>
</tr>
<tr>
<td>MARYLAND</td>
<td>Univ. of Maryland</td>
<td>Hornbake Library, Govt. Documents/Maps Unit, College Park, MD 20742</td>
<td>(301) 454-3034</td>
<td>(301) 454-4965</td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td>Boston Public Library</td>
<td>Govt. Documents Dept., 660 Boylston Street, Boston, MA 02117</td>
<td>(617) 538-5400 ext. 226</td>
<td>FAX: (617) 267-8273; 267-8248</td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>Detroit Public Library</td>
<td>5201 Woodward Avenue, Detroit, MI 48202-4093</td>
<td>(313) 833-1440; 833-1409</td>
<td>FAX: (313) 833-9539</td>
</tr>
<tr>
<td>MISSISSIPPI</td>
<td>Univ. of Mississippi</td>
<td>J.D. Williams Library, Federal Documents Dept., 106 Old Gym Bldg., University, MS 38677</td>
<td>(601) 232-5857</td>
<td>(601) 232-5453</td>
</tr>
<tr>
<td>MISSOURI</td>
<td>Univ. of Missouri - Columbia</td>
<td>Ellis Library, Govt. Documents, Columbia, MO 65201</td>
<td>(314) 882-6733</td>
<td>(314) 882-8044</td>
</tr>
<tr>
<td>MONTANA</td>
<td>Univ. of Montana</td>
<td>Maureen & Mike Mansfield Library, Govt. Documents Div, Missoula, MT 59812-1195</td>
<td>(406) 243-6700</td>
<td>(406) 243-2060</td>
</tr>
<tr>
<td>NEBRASKA</td>
<td>Univ. of Nebraska - Lincoln</td>
<td>D.L. Love Memorial Library, Govt. Documents Dept., Lincoln, NE 68588</td>
<td>(402) 472-5662</td>
<td></td>
</tr>
<tr>
<td>NEW JERSEY</td>
<td>Newark Public Library</td>
<td>U.S. Documents Div., 5 Washington Street - P.O. Box 630 Newark, NJ 07101-0630</td>
<td>(201) 733-7612</td>
<td>(201) 733-5648</td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>Univ. of New Mexico</td>
<td>General Library, Govt. Publications Dept., Albuquerque, NM 87131-1466</td>
<td>(505) 277-5441</td>
<td>(505) 277-6019</td>
</tr>
<tr>
<td>NEW YORK</td>
<td>New York State Library</td>
<td>Govt. Documents/Gift & Exchange Section, Federal Depository Program, Cultural Education Center, Albany, NY 12230</td>
<td>(518) 474-5563</td>
<td>(518) 474-5786</td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>Univ. of North Carolina - Chapel Hill</td>
<td>CB#3912, Davis Library, BA/SS Dept. - Documents, Chapel Hill, NC 27599</td>
<td>(919) 962-1511 FAX: (919) 962-0484</td>
<td></td>
</tr>
<tr>
<td>NORTH DAKOTA</td>
<td>North Dakota State University</td>
<td>Libraries Office, Fargo, ND 58105</td>
<td>(701) 237-8886 FAX: (701) 237-7138 In cooperation with Univ. of North Dakota. Chester Fritz Library, Grand Forks</td>
<td></td>
</tr>
<tr>
<td>OHIO</td>
<td>State Library of Ohio</td>
<td>Documents Dept., 65 South Front Street, Columbus, OH 43266</td>
<td>(614) 644-7051</td>
<td>FAX: (614) 752-1917</td>
</tr>
<tr>
<td>OREGON</td>
<td>Portland State Univ.</td>
<td>Miler Library, 934 SW Harrison - P.O. Box 115 Portland, OR 97207</td>
<td>(503) 725-3673</td>
<td>(503) 725-4527</td>
</tr>
<tr>
<td>PENNSYLVANIA</td>
<td>State Library of Pennsylvania</td>
<td>Govt. Publications Section, Walnut St. & Commonwealth Ave., P.O. Box 1651 Harrisburg, PA 17105</td>
<td>(717) 787-3752</td>
<td></td>
</tr>
<tr>
<td>SOUTH CAROLINA</td>
<td>Clemson Univ.</td>
<td>Cooper Library, Public Documents Unit, Clemson, SC 29683-3001</td>
<td>(803) 656-5174 FAX: (803) 656-3025 In cooperation with Univ. of South Carolina, Thomas Cooper Library, Columbia</td>
<td></td>
</tr>
<tr>
<td>TENNESSEE</td>
<td>Memphis State University Libraries</td>
<td>Govt. Documents, Memphis, TN 38152</td>
<td>(901) 678-2586</td>
<td>(901) 678-2511</td>
</tr>
<tr>
<td>TEXAS</td>
<td>Texas State Library</td>
<td>United States Documents, P.O. Box 12007, 2101 Brazos Austin, TX 78711</td>
<td>(512) 463-5455</td>
<td>FAX: (512) 463-5436</td>
</tr>
<tr>
<td>TEXAS Tech. University Libraries</td>
<td>Govt. Documents Dept., Lubbock, TX 79409</td>
<td>(806) 742-2268</td>
<td>(806) 742-1920</td>
<td></td>
</tr>
<tr>
<td>UTAH</td>
<td>Utah State Univ.</td>
<td>Merrill Library & Learning Resources Center, UMC-3000, Documents Dept. Logan, UT 84322-3000</td>
<td>(801) 750-2684</td>
<td>FAX: (801) 750-2677</td>
</tr>
<tr>
<td>VIRGINIA</td>
<td>Univ. of Virginia</td>
<td>Alderman Library, Govt. Documents, Charlottesville, VA 22903-2498</td>
<td>(804) 924-3133 FAX: (804) 924-4337</td>
<td></td>
</tr>
<tr>
<td>WASHINGTON</td>
<td>Washington State Library</td>
<td>Document Section, MS H-11, Olympia, WA 98504-0111</td>
<td>(206) 753-4027</td>
<td>FAX: (206) 753-3546</td>
</tr>
<tr>
<td>WEST VIRGINIA</td>
<td>West Virginia University Libraries</td>
<td>Gov. Documents Section, P.O. Box 6089, Morgantown, WV 26506</td>
<td>(304) 293-3640</td>
<td></td>
</tr>
<tr>
<td>WISCONSIN</td>
<td>St. Hist. Soc. of Wisconsin Library</td>
<td>Govt. Publications Section, 814 West Wisconsin Avenue, Madison, WI 53706</td>
<td>(608) 262-2781 FAX: (608) 262-4711 In cooperation with Univ. of Wisconsin-Madison, Memorial Library</td>
<td></td>
</tr>
<tr>
<td>MILWAUKEE PUBLIC LIBRARY</td>
<td>Documents Div., 814 West Wisconsin Avenue, Milwaukee, WI 53203</td>
<td>(414) 278-2167 FAX: (414) 278-2127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYOMING</td>
<td>Wyoming State Library</td>
<td>Supreme Court & Library Bldg., Govt. Publications Cheyenne, WY 82002</td>
<td>(307) 777-9300 FAX: (307) 777-6289</td>
<td></td>
</tr>
</tbody>
</table>