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Abstract 
Intelligent optimization methods are applied to the problem of real-time flight 

control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight 
conditions that will be encountered by single-stage-to-orbit vehicles, such as the 
National Aerospace Plane, present a tremendous challenge to the entire spectrum of 
aerospace technologies. Flight control for these vehicles is particularly difficult due 
the combination of nonlinear dynamics, complex constraints, and parametric 
uncertainty. 

This thesis presents an approach that utilizes all available a priori and 
in-flight information to perform robust, real-time, short-term trajectory planning. 
Stable tracking of a desired trajectory is achieved through the repetitive solution of 
a receding-horizon nonlinear optimal control problem, which includes all constraints 
and uncertainties. A viable correction trajectory is generated, followed for a short 
interval of time, and then recomputed. The flight control approach consists of an 
enhanced A-Star optimization technique that incorporates a Lyapunov stability 
criterion in a highly parallelizable algorithm. The efficiency of the A-Star search, 
and the theoretical guarantees of a Lyapunov approach, are both achieved. 
Conditions are derived in order to assure controllability of the vehicle, convergence 
of the optimization algorithm, and stability of the correction trajectory. Robustness 
of the solution to interval bounded parametric uncertainty is achieved through a 
minimax optimization in which the worst-case cumulative tracking error is 
minimized by the solution trajectory. Finally, some enhancements to the algorithm 
address practical implementation issues such as memory and time limitations. The 
resulting Robust Intelligent Flight Controller (RIFC) provides guaranteed tracking 
performance in the presence of uncertainty while observing all physical constraints. 

The effectiveness of this approach is demonstrated through a series of flight 
tests using a realistic hypersonic vehicle simulation that includes detailed models of 
the airframe, aerodynamics, and scramjet propulsion system in order to provide 
representative AHSV characteristics. The results are compared to those for a 
single-step optimal controller. 
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Chapter 1 

Introduction 

1.1 Motivation 

As human exploration and development of space continues to expand toward 

orbiting space stations, a permanent lunar base, and missions to Mars, it becomes 
evident that a new fleet of advanced spacecraft will be required to support these 
future ventures. Despite many problems, the National Aeronautics and Space 

Administ ration (NASA) has demonstrated the capability to transport cargo and 

crew to and from low-earth-orbit (LEO) in a reusable winged spacecraft. Since the 
maiden voyage of Columbia on April 12th, 1981, the Space Shuttle has been 

launched into space and returned to Earth on numerous successful missions. The 

shuttle's versatility as a research and multipurpose space vehicle has also been well 

established on many flights, including several related to satellite recovery and 

repair. Unfortunately, however, the Space Shuttle program suffers from several 
serious drawbacks. The shuttle can only be prepared and launched at specially 
equipped (and expensive) facilities, only one of which is operational at this time. 
Furthermore, the hardware required for each shuttle flight is not all reusable, (such 

as the external tank), and many of the systems are very complex, requiring 
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extensive refurbishing prior to each mission.1 These factors, as well as the limited 

size of the fleet (currently four orbiters), contribute to the severely restricted flight 

schedule and the tremendous costs associated with delivering payload to orbit on 

the shuttle. For the specific purpose of launching satellites, the shuttle is really 

quite inefficient since i t  is burdened by the immense additional overhead of 

requiring crew life support. This makes it important for NASA to combine several 
mission objectives into every flight. These and other disadvantages suggest the need 
for a more diversified fleet of future spacecraft that can handle all space related 

missions more effectively. [Mccl, Chal, Frel, Bakl] 

Research related to potential future spacecraft designs has included a variety 

of new vehicle concepts ranging from inexpensive unmanned cargo boosters=, to 
futuristic interstellar spacecraft powered by fusion reactors. 0 t her proposed 
spacecraft include the following: orbital transfer vehicles (OTV's), for positioning 
payloads in desired orbits; reentry or aero-capture vehicles, for exploration of the 

planets or return to Earth; and hypersonic vehicles (HSV's), for maneuvering 

within the atmosphere of the Earth or other planets at (or near) orbital speeds. 

[Deml, Cral] Many applications are possible for vehicles that are capable of 

operating in the hypersonic flight regime. One such concept is a fully reusable 

single-stage-to-orbit (SSTO) winged spacecraft that is capable of flight from 

subsonic through hypersonic speeds powered by an air-breathing propulsion system. 

An experimental prototype of these air-breathing hypersonic vehicles (AHSV's), 

called the National Aerospace Plane (NASP), is currently under development to 

assess the applicable technology. If successful, other NASP derived vehicles could 

eventually replace the shuttle in the task of transporting personnel, 
instrumentation, and other sensitive cargo to and from low-earth-orbit. As fully 

reusable vehicles, with the promised ability to takeoff and land at any conventional 
airport, AHSV's have the potential to make transportation from Earth to orbit an 

inexpensive and almost routine procedure. [Klul, Dem2, Bekl] 

 ore than BOO0 people and almost one million manhours are required to perform more than 
760 ,000  separate operations in order to prepare a Shuttle for its next launch. 

'shuttle-c and the Advanced Launch System (ALS) are examples of launch vehicles intended for 
lifting heavy payloads to orbit. 



SECTION 1 .  I MOTIVATION 

A successful flight of the National Aerospace Plane would represent a 

remarkable achievement in the integration of today's state-of-the-art technology 

in a wide range of engineering disciplines. The most prominent characteristic of the 
NASP vehicle (or an AHSV) is the desired capability for sustained hypersonic flight 

powered by an air-breathing supersonic combustion ramjet (scram jet) engine. This 
propulsion system is the key element that would make i t  possible to achieve 
single-stage-to-orbit operation. It is also one of the main complications for the 

NASP , since its performance is highly sensitive to vehicle geometry and orientation. 

As such, the airframe and propulsion design have to be integrated to a degree never 

before encountered for other flight vehicles. The planned Earth-to-orbit trajectory 
of the NASP would also include some of the most extreme flight conditions ever 

experienced by a manned aircraft. Chemically reacting high speed gases, intense 

structural loading, and extremely high surface temperatures present a formidable 
challenge to the aerodynamic, propulsion, structural, and materials engineers. The 

vehicle must continually operate at  the highest possible dynamic pressures to 

maintain propulsive efficiency while avoiding destructive structural loads or 
temperatures. The demand for a singl~tage-to-orbit capability also imposes 
conflicting objectives on the vehicle design. Aerodynamic properties that are 

beneficial for efficient hypersonic flight are detrimental for the subsonic portion of 

the trajectory. The same difficulty arises for the engine, since the principles of 

scramjet propulsion are inoperable at subsonic or low supersonic speeds. 

Flight control design for an AHSV is a particularly difficult task for several 
reasons. First of all, for a wide range of hypersonic flight conditions the 

aerodynamic, propulsive, and control coefficients may not be fully predictable from 
theory or experimental data. This is because several theoretical aspects of 
hypersonic £low are not adequately understood, and the high Mach number flight 

conditions cannot be reproduced in available wind tunnels. Furthermore, due to the 

coupling between the aerodynamic behavior and the performance of the scramjet 
engine, the overall vehicle dynamics will be highly nonlinear and very sensitive to 

attitude changes while at hypersonic speeds. In addition, the aggressive nature of 

the SSTO trajectory for an AHSV implies that the control system will be required 

to maintain tight tolerances on the state tracking errors relative to a desired 

trajectory. The controller will also be limited by a variety of constraints which 
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restrict the range of admissible control actions at any time. These include state 
constraints, actuator limits and maximum rates, and others (such as bounds on 

temperature, dynamic pressure, or maximum acceleration), all of which may vary 

with flight conditions. 

In short, the flight control problem for an AHSV is to closely track a desired 

trajectory from Earth to orbit, given a set of highly nonlinear, multivariable, 

time-varying dynamics with uncertain coefficients, in the presence of multiple 

constraints, and disturbances. Moreover, a control strategy is desired for which 
stability, tracking convergence, and robustness to uncertainty can be guaranteed, 

and for which a solution can be obtained in real time. Collectively, these objectives 
eliminate from consideration most, if not all, conventional control system 
methodologies. 

The considerations mentioned above (and discussed further in Chapter 2) 

motivate the need for an advanced flight control design that can quickly determine 
the most appropriate control action, while accounting for the system's 

nonlinearities, uncertainties, and constraints, as well as the future changes in these 

properties. This thesis presents an approach that utilizes all available a priori and 

in-flight information to perform robust real-time short-term trajectory planning. 

Stable tracking of a desired trajectory is achieved through the repetitive solution of 
a receding-horizon nonlinear optimal control problem. A viable correction 

trajectory is generated, followed for a short interval of time, and then recomputed. 

The flight control approach combines an enhanced A* optimization algorithm with a 
Lyapunov stability criterion in order to perform an intelligent search for a solution 

that guarantees tracking performance in the presence of uncertainty, while observing 

all physical constraints. 
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1.2 Research Objectives 

The flight control challenge presented by air-breathing hypersonic vehicles 

was the motivation for this research effort. The overall objective of this thesis has 

therefore been to develop representative models and a simulation for AHSV vehicles, 

design an effective control strategy, and demonstrate its operation in flight using a 

simulated vehicle. The specific objectives are listed below: 

To construct reasonably complete models to represent the geometry, 

mass properties, aerodynamics, propulsion, controls, and operating 

environment of an air-breat hing hypersonic vehicle, such as the 

National Aerospace Plane, in hypersonic flight. 

To develop a computer program for the parametric design and dynamic 

simulation of an AHSV, and for the evaluation of candidate flight 

control algorithms. 

To develop a new approach to handle nonlinear multivariable control 

problems with complex constraints and uncertain dynamics. This 

approach is based on combining Lyapunov stability theory with 

intelligent optimization techniques in an algorithm that is suitable for 
parallel processing. 

To demonstrate the capabilities of this new Robust Intelligent Flight 

Control method (RIFC) through its application to the flight control 

problem of NASP type vehicles. 

m To evaluate the performance of the RIFC algorithm in a variety of 

simulated flight experiments. 

To compare the RIFC control algorithm to a compatible, existing, 

alternative approach based on the concept of Single-Step Optimal 

Control (SSOC). 
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1.3 Contributions 

The development of a new Robust Intelligent Flight Control approach 
that is applicable to vehicles with uncertain nonlinear dynamics, 
capable of utilizing all available a priori and on-line information, and 
suitable for parallel implementation on advanced flight computers. 

A demonstrated solution to the tracking flight control problem of 
air-breathing hypersonic vehicles, (including the nature of the 
dynamics, constraints and uncertainties specific to AHSV's). 

* 
The combination of an enhanced A optimization algorithm with 

Lyapunov st ability theory in order to provide st ability, convergence, 
and robustness guarantees, within a prescribed memory limit. 

1.4 Organization Of Thesis 

Chapter 2 presents some introductory material on hypersonic vehicles and the 
National Aerospace Plane. Many of the technological challenges associated with the 
development of the NASP are examined qualitatively. In particular, those issues 
relevant to the flight control problem are discussed. This chapter also gives a 
historical perspective on the development of flight control met hods, and it concludes 
with a discussion of the merits and limitations of several approaches in the context 
of the AHSV application. 

Chapter 3 describes the main objectives for a trajectory controller for an 
AHSV, and it presents a suitable structure for the overall control system. This 
chapter then gives a complete qualitative description of the Robust Intelligent 
Flight Control system that is developed in this thesis. In addition, an overview 
section summarizes the nature of the models and simulation software used to 
represent AHSV configurations and dynamic behavior. A brief discussion of the 

scope of this research is also included. 
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Chapter 4 develops all of the models for AHSV's in some detail. The vehicle 

geometry, mass properties, and atmospheric models are presented first, followed by 
the aerodynamic and propulsion models which are more involved and require some 

preliminary theoretical background. This chapter also derives the full six 

degrees-of-freedom equations of motion for an AHSV in a spherical rotating 

reference frame. The dynamic model used by the flight controller is derived from 
these general equations. 

Chapter 5 explains the operation of the simulation software used to design 
realistic AHSV configurations and to test candidate flight control algorithms. The 

important capabilities and options are mentioned, and a few specifics of the 
implementation are discussed. 

Chapter 6 provides the theoretical background necessary to understand and to 
derive the properties of the RIFC trajectory control algorithm. The first section 

explains the basics of Lyapunov stability theory and leads up to the specific 

definitions and theorems that are later needed in Chapter 7 to develop the RIFC 

approach. In the second section, the fundamental concepts of heuristic optimization 
techniques are discussed with an emphasis on the theoretical properties of the A* 
algorithm and its variations. The definitions and theorems given will be required 

for the following chapters. Also note that the application of an intelligent search 
approach to the AHSV control problem is largely motivated by the discussion in 
this section. 

Chapter 7 begins by formally stating the AHSV flight control problem. It 

then presents four propositions which establish the properties of controllability, 

stability, convergence, and robustness to uncertainty under some reasonable 

assumptions and conditions. These propositions are verified by supporting proofs, 
derivations, and physical arguments. The fundamental structure of the RIFC 

control algorithm is also given. 

Chapter 8 discusses several issues relevant to the practical implementation of 

the RIFC controller. Computer memory and speed limitations are addressed 

through a number of enhancements to the fundamental search algorithm. A 
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specialized node storage scheme is also developed which can guarantee convergence 

of the search within a prescribed memory limit. The overall controller logic is 

described and a parallel implementation of the algorithm is proposed. Other topics 

include a discussion of the effects of quantization in the states, controls, and time, 
and an analysis of the numerical complexity of the RIFC algorithm. 

Chapter 9 presents the results of simulations using the RIFC controller under 
a variety of test conditions. Experiments are performed to evaluate and 
demonstrate the controller's performance in the presence of uncertainty and 

disturbances. Comparisons are made to the performance of the SSOC controller. 

Chapter 10 discusses the conclusions and some suggestions for further research. 



Chapter 2 

Hypersonic Flight 

2.1 The National Aerospace Plane 

In January of 1986, in his State of the Union address, President Reagan 
announced that I' W e  are going forward with research on  a new 'Orient Ezpress' that 
could, by the end o f t he  next decade, take off born h U e s  Airport and accelerate up to 
25 times the speed of sound, attaining low-earth-orbit or  flying t o  Tokyo within two 

hours." With these words began the National Aerospace Plane Program, which has 
as its ultimate objective the development and demonstration of a fully reusable 
horizontal takeoff and landing (HTOL) aircraft that can accelerate to hypersonic 
speeds and reach orbit with a single stage. In his speech, the president actually 
referred to a combination of what is now considered two different research 
programs. The development of an experimental NASP prototype falls under the 
heading of the "X-30" technology demonstrator, and will be the first aircraft to 
actually test air-breathing hypersonic fight. As for commercial transport vehicles, 
NASA is actually pursuing a separate High-Speed Civil Transport (HSCT) study, 
but this research will also undoubtedly benefit from technological developments of 

the NASP program. [Will, Voel] 

The main objective of the National Aerospace Plane is to develop and 
demonstrate a cheaper more efficient mode of transportation to low-earth-orbit. 
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By taking off and landing horizontally, and using atmospheric oxygen to  burn 

propellant, rather than carrying onboard oxidizer, air-breathing hypersonic vehicles 
(AHSV9s), such as the NASP, are intended to operate more like conventional 

aircraft than like rockets. The savings in oxidizer weight and the benefit of 

aerodynamic lift are the principal advantages of this design. The additional 
objective of singlestage-to-orbit operation means that NASP derived vehicles 
could benefit from a fully reusable design. This translates into minimal 

maintenance and ground support requirements when compared to previous launch 

support vehicles. These operational advantages are expected to drastically reduce 

the cost of access to LEO, as well as to increase the frequency at  which flights can 
be launched, thus rendering the mission to orbit a routine operation. [Keyl] 

The National Aerospace Plane is only one of a wide range of possible 

hypersonic vehicle concepts that have all contributed to the recent resurgence of 

interest in hypersonic research [Hanl]. Several other applications that may also 

involve some degree of hypersonic maneuvering, include reentry vehicles, spacecraft 

for interplanetary missions, and other vehicles or probes that employ aero-braking 

or aero-capture maneuvers. For many space missions, significant fuel savings are 

possible if atmospheric maneuvering can be used to effect orbital changes. One type 

of vehicle, known as a Hypersonic Waverider, has recently attracted special 
attention due to significant advances made in hypersonic fluid dynamics. By taking 

into account viscosity effects in hypersonic flow, a new method for tailoring vehicle 

geometry to optimize aerodynamic performance has been developed. The resulting 

hypersonic designs exhibit exceptionally high lift-to-drag ratios. This has 

generated much enthusiasm for a myriad of ambitious planetary missions which 

involve hypersonic maneuvering through the atmosphere of one or several planets. 
For such missions, and for many others, extraordinary benefits are possible, (in 
terms of fuel savings, mission flexibility, maximum payload, time, and cost), given 

the capability to operate a spacecraft under the extreme conditions of hypersonic 
flight. [And2, Lewl, Bow2, Corl] 

There are actually several hypersonic vehicle concepts that would directly 

benefit from NASP research experience. In fact, many vehicles can be viewed as 

scaled-down variations of the NASP with different, and usually less complex, 
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mission requirements. For example, the military is interested in developing a new 
high-speed interceptor, as well as in replacing the now retired SR-71 fleet with new 
hypersonic reconnaissance vehicles [Voel]. Although these aircraft will have their 
own design difficulties, their mission is less demanding than the Earth-to-orbit 
trajectory required by an AHSV. The Hypersonic Waverider for interplanetary 
exploration is another good example. This vehicle would operate in a similar 
environment to the AHSV, and experience gained with hypersonic aerodynamics, 
materials, and controls, would be directly applicable. The waverider, however, 

would not be as complex as the AHSV in the sense that it would not use an 
air-breathing propulsion system, (it is essentially a glider), and it would not be 
required to operate at the lower Mach numbers [Lewl]. As a final example, the 
next generation of commercial transport vehicles would also certainly benefit from 
NASP research, particularly in the areas of structures, materials, and propulsion 
[Dril, Dem2, Leal]. Since the challenge of designing an AHSV is, in several ways, a 
more difficult problem than many of the other hypersonic applications, the NASP is 
perhaps a vehicle that is representative of the technology required for a whole class 
of new advanced flight vehicles. 

Despite the promise of all these applications, much research is still needed in 
the areas of materials, structures, aerodynamics, hypersonic gasdynamics, and flight 
controls, before many vehicle concepts can actually be tested. Although hypersonic 
flight spans a wide range of Mach numbers and atmospheric densities, the flow 
conditions surrounding a vehicle throughout this flight regime are, in general, quite 
inhospitable to materials and mechanical systems. Whether a vehicle accelerates to 
hypersonic speeds from the surface, or it enters the upper atmosphere of a planetary 
body at orbital speeds, it would be subject to  extreme temperatures and high 
structural loading. Design tolerances for any type of hypersonic vehicle are likely to 
be stringent, and unfortunately the physics of hypersonic flow is not yet understood 
well enough to predict local flow properties with a high degree of accuracy. [Korl] 
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2.2 The NASP Technological Challenge 

The development of the National Aerospace Plane presents a tremendous 
technological challenge to the aerospace community. Never before has any vehicle 
depended so critically on the combination of the latest advances in so many fields of 
engineering. As such, there are many significant obstacles and issues which 
complicate the development of the NASP. Most of these difficulties can be 
attributed to factors related to its required flight trajectory, characteristics of the 
hypersonic environment, s ingles tage- t~rb i t  operation, and the integration of the 
aerodynamic and propulsion design. [Grel] 

2.2.1 NASP TRAJECTORY 

The objective of an Earth-twrbit trajectory is a major element contributing 
to the design challenge of the NASP vehicle. To successfully fly as a winged aircraft 
from a low-speed horizontal launch to the altitude and velocity required for orbital 
flight, the NASP must perform effectively at subsonic, transonic, supersonic, and 
hypersonic speeds. These very different flight regimes impose conflicting objectives 
on the aerodynamic and propulsive design [Johl]. 

For low (subsonic) speeds, best performance demands a high aspect-ratio 
configuration for sufficient lift, and an engine equipped with a compressor to 
generate adequate thrust. At higher (supersonic) speeds, shock waves and high 
dynamic pressure encourage lower aspect ratios, larger wing sweep angles, and a 
tapered fuselage design to reduce wave drag penalties. Then, once the vehicle 
reaches a flight condition with a high enough dynamic pressure, (around Mach 3), it 
becomes possible to use a ramjet configuration for propulsion. This type of engine 
uses the air ram-pressure to compress the flow through a normal shock wave, rather 
than requiring a compressor prior to mixing and combustion. Finally, at still higher 
Mach numbers (hypersonic flight), the aerodynamic and propulsive design is 
complicated by extremely high temperatures, high dynamic pressure, and a 

chemically reacting ionized flow. Issues such as shock impingement, aerodynamic 
shadowing, structural loading, boundary layer thickness, laminarlturbulent 
transition, as well as cooling considerations, dominate the design requirements. In 
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this flight regime, the propulsive efficiency of a ramjet sharply declines and the 
capability for supersonic combustion is required in order to have air-breathing 
propulsion. 

To meet its objectives, the NASP design will clearly have to balance the 
tradeoffs between all of these flight regimes. That is, in order to achieve best 
overall performance, (e.g. payload to orbit, range, etc.), design parameters must be 
chosen to optimize cumulative measures covering the entire mission from Earth to  
orbit. The final aerodynamic/propulsive configuration, as well as the vehicle's flight 
trajectory, must therefore depend not only upon mission requirements, but also 
upon opposing design considerations associated with the various flight regimes that 
will be encountered. [Adal, Sanl] 

2.2.2 THE BYPERSONIC ENVIRONMENT 

Extended operation under hypersonic £light conditions is another major 
challenge for the NASP. Thermal management and structural integrity are primary 
issues to be addressed. The hypersonic environment is characterized by ionized 
chemically reacting gases and extremely high temperatures. Due to these 
conditions, there is a delicate tradeoff between airframe and propulsion system 
requirements. For best propulsive efficiency, a trajectory of high dynamic pressure 
is most desirable, however, this same trajectory threatens the vehicle's structural 
integrity, and is limited by airframe thermal and structural constraints. New 

advanced materials capable of handling temperatures reaching up to 3000 OF, while 
supporting loads as high as 1500 psf, will be required. On the vehicle nose and 
leading edge surfaces temperatures may exceed 4000 OF, suggesting the need for 
some form of active cooling to handle thermal loading. [Newl, Jacl, Tenl] 

Extreme temperatures and pressures also present a serious problem for 
external sensors as well as control actuators. New instruments will be required to 

measure important flow properties without extending probes into the flow. 1 

5raditional instruments such as pitot tubes or other protruding sensors would experience 
extremely high surface temperatures and could not survive in this environment. 



HYPERSONIC FLIGHT CHAPTER 2 

Devices currently under development include laser-based optical sensors, and 
indirect sensors based on heat flow measurements. Aerosurface loading during 

hypersonic flight would exceed that experienced by any previous aircraft. In 
addition, some degree of aerodynamic shadowing2 is unavoidable at hypersonic 

speeds, and this will adversely affect the control authority of aerosurfaces while 

operating in this flight regime. Other control actuators will therefore be required to 

offset aerosurface loading and to provide needed control authority at  the higher 

Mach numbers. Thrust vectoring and/or reaction control jets will probably be 

required. [Kanl, Honl, Mi131 

A find problem related to  the hypersonic environment is the modelling and 
prediction of aerodynamic and propulsive behavior. At low speeds one can simplify 

the analysis by treating air as an inviscid fluid. At hypersonic speeds, however, 
viscosity becomes much too important to ignore. In this flight regime, viscosity is 
sensitive to flow chemistry as well as to local temperatures, and i t  is directly 

responsible for the character of the flow within boundary-layers both external to  

the vehicle and internal to the engine. As such, i t  has a profound influence upon the 

aerodynamic, propulsion, and control coefficients while in hypersonic flight. 

Theoretical modelling of hypersonic flow is very difficult, as it must account for 

viscosity, heat transfer, and chemistry, in addition to the complexity of a 

t h rd imens iona l  high Reynolds number compressible supersonic flow. Many 
aspects of hypersonic flow are still not fully understood, such as turbulence, fuellair 
mixing, skin friction in a rnixing/reacting flow, finite-rate chemistry, and the effects 

of heat transfer, pressure gradients, thre&mensionality, chemical reactions, and 

shock waves on the transition of hypersonic boundary layers. 

To further complicate matters, design evaluation for the NASP will have to  be 
done using CFD (Computational Fluid Dynamics) numerical codes, since hypersonic 

flight conditions beyond Mach 8 are not fully reproducible in currently available 

'~erod~namic shadowing refers to a condition where part of the vehicle blocks the flow which 
would otherwise encounter other downstream surfaces. This is particulary significant at 
hypersonic speeds where the mean free path of molecules in the free stream can take on 
dimensions of the order of the vehicle size The degree of shadowing depends upon Mach 
number, Reynolds number, and vehicle orientation. 
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wind tunnels. The state-of-the-art CFD hypersonic modelling codes are capable of 
accounting for effects due to  chemistry, shock/boundary-layer interactions, flow 
spillage for scramjet engines, three4imensionality of the flow, and more, but 
several important factors have not yet been incorporated. Current research in CFD 
is aimed at  understanding and modelling phenomena such as hypersonic 
boundary-layer transition, turbulence, and combustion flow chemistry. Validation 

of hypersonic CFD codes is another serious problem since very little empirical data 
is available for the higher Mach numbers. As a result, CFD codes may not be 
correct for some portion of the flight envelope. 

It seems that, at best, predictions of aerodynamic (and propulsive) behavior 
will be approximate for flight at hypersonic conditions. This, in effect, complicates 
the NASP development since adequate performance must be assured in the presence 
of potential modelling errors that cannot be resolved until the vehicle is actually 
tested in flight. In fact, an evolution of the vehicle design may be necessary as the 
operational flight envelope is expanded. [Dwol, Povl, Davl]. 

Additional challenges to the development of the NASP can be attributed to 
the objective of having a single-stage-to-orbit vehicle. The main purpose of this 
goal is to assure maximum reusability while minimizing the operational complexity 
and expense associated with disposable hardware and refurbishing. A NASP derived 
SSTO transport vehicle could allow a quick turn around time between flights, 
minimal ground support requirements, and (not least of all) the elegance and 
simplicity of a single one-piece aircraft capable of routine flight between Earth and 
space. Unfortunately, however, the SSTO requirement presents a serious obstacle 
to the design of AHSV's due to several other factors. 

Having only one stage, the NASP must carry the entire propellant load within 

the volume of the spacecraft itself. In addition, the propellant will necessarily be 
hydrogen, since this is the only fuel known that can burn quickly enough for 
hypersonic air-breathing propulsion, and has a high enough specific impulse to lift 
itself plus a payload into low-earth-orbit. One problem is that some preliminary 



16 HYPERSONIC FLIGHT CHAPTER 2 

estimates indicate that the required mass of fuel required for an Earth-to-orbit 
trajectory may exceed 90 % or more of the vehicle's gross takeoff weight. This 
figure implies that the payload lift capacity of the NASP may be severely limited, 
and that the vehicle mass properties will change dramatically (as fuel is burned) 

over the course of a flight, thus creating potential problems for flight control. In 

addition, the low specific density of condensed hydrogen creates a conflict between 

the fuel volume requirements and the objective of minimizing projected frontal area 

to reduce aerodynamic drag. To offset these difficulties, the NASP design will 

clearly have to emphasize the development of extremely lightweight (high strength 
& heat resistant) materials for the airframe structure, as well as the achievement of 

the highest possible propulsive efficiencies to reduce fuel requirements. The st orage 
of hydrogen fuel in the form of a cold slush (rather than as a liquid) is also under 
consideration to help alleviate these problems. [Marl] 

Other flight systems on the NASP are also burdened by additional overhead 

with the requirement of a SSTO design. For example, over most of the trajectory 

the propulsion system is required to deliver sufficient thrust to continually 

accelerate the vehicle. The scramjet engine is expected to provide this propulsion 
over a wide range of Mach numbers (from Mach 6 to perhaps Mach 25), however, it 

is not capable of operation at the lower Mach numbers, nor is it capable of boosting 

the vehicle into low earth orbit. In effect, a turbojet type engine mode will be 
required to accelerate the craft from a runway up to supersonic speeds (Mach 2 or 

3)) at which time a ramjet propulsion mode could be used to accelerate up to about 

Mach 6. The scramjet can then potentially attain velocities close to  that required 

for orbit, but some form of rocket will be required for orbital insertion. Clearly a 

vehicle design which carried four different engines for each of the four flight regimes 

would not be very practical. Ideally, one multi-mode engine would be designed to 

operate as a turbojet, ramjet, scramjet, and rocket engine, depending upon the 

current flight condition. Although much research has been done to investigate the 

feasibility of combined cycle engines, their potential is difficult to assess in the 

context of this thesis due to security restrictions. [Marl] 

Another SSTO design challenge is the control actuator requirements for flight 

through a wide range of environmental conditions. Just as with the propulsion 
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system, a multitude of actuators will be needed to  assure adequate control authority 
over the entire trajectory. Aerosurface controls would be useful for subsonic, 
supersonic, and part of the hypersonic segments of the flight. For phases of the 
trajectory which include very low dynamic pressures, however, the aerosurfaces 
would be quite ineffective. For on-orbit attitude control of the NASP, a number of 
jet thrusters, (like those used for the Shuttle), will be required at  strategic points 
around the vehicle exterior. These jets could also be used for attitude control on 
ascent at  the higher altitudes to supplement aerosurface controls, and on reentry 
until aerosurface control authority is recovered. At the lower altitudes, however, 
attitude control jets would not be practical for two reasons: the jets would waste 
fuel while aerosurfaces could meet control requirements; and the disruption to the 
external flow could cause unpredictable effects on the aerodynamic and propulsive 
behavior of the vehicle. Finally, some degree of thrust vectoring will most likely be 
needed in order to provide control authority in flight conditions for which the 
aerosurfaces experience shadowing, and to account for the changing vehicle 
dynamics as fuel is used and flight conditions change.3 

2.2.4 AERODYNAMIC & PROPULSIVE COUPLING 

A final characteristic of the NASP that is a major factor contributing to its 
technological challenge is the close integration of the aerodynamic geometry and the 
propulsion system design. In sharp contrast to other aerospace propulsion systems 
currently in use, the performance of a scramjet engine is strongly dependent upon 
the shape and orientation of the vehicle which it propels. The flow entering the 
engine is initially compressed through oblique shocks emanating from the 
undersurface of the entire forebody of the vehicle. The inlet Mach number, flow 
density, pressure, temperature, and boundary layer characteristics are completely 
determined by the external vehicle geometry and attitude with respect to  the free 
stream. Likewise, the geometry of the aft undersurface acts as a nozzle and 
completely determines the expansion of the flow exiting from the engine. The 
magnitude and direction of the thrust vector are critically dependent upon the 

3~ime-varying aerodynamic, propulsionr and mass properties will affect the center of mass (CM) 
center of pressure (cP), and the aerodynamic/propulsive pitching moments. 
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properties of this expansion, (as is the propulsive efficiency). The performance of 
the scramjet engine is therefore directly related to the geometry of the vehicle. Of 
course, the airframe geometry is also the primary influence upon the aerodynamic 

behavior, and as a result the propulsion system and the aerodynamic configuration 

cannot be designed independently. This coupling between aerodynamics and 
propulsion is also troubling in the context of maneuvering the vehicle in flight. In 

general, aircraft attitude and engine thrust are used to control speed and altitude. 

For the NASP, these inputs cannot be controlled independently since the propulsive 
performance is sensitive to  vehicle attitude. [Weil, Edwl, Wall] 

2.3 Flight Control For Hypersonic Vehicles 

For many reasons, the flight control problem for AHSV9s (such as the NASP) 
goes far beyond the difficulties encountered with previous aircraft and spacecraft. 

The control obstacles are related to many of the same issues already discussed in the 

preceding section. The vehicle design (aerodynamics/propulsion), the desired 

trajectory (high dynamic pressure, high temperature, SSTO), and the performance 
requirements (tracking, tolerances, constraints, robustness), all contribute to the 
challenges faced by the flight control system. Just as with many other high 
performance aircraft, the AHSV dynamics exhibit a nonlinear, multivariable, 

time-varying, nonminimurn phase type of behavior. But while various assumptions, 

approximations, and techniques are often applicable to simplify the control task for 

other vehicles, certain characteristics of the AHSV seem to defy most approaches to 

the problem. 

In the past, it has been common practice to use linearized (approximate) 

equations of motion to represent an aircraft's dynamic behavior. Since the airspeed 
and altitude are typically the main sources of variation in the dynamics, the 
linearized model and/or the parameters of the control system are often scheduled as 
a function of the flight condition. This works well enough for many applications, 

since the operating range of the other important variables is often small enough that 
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the linearized approximations are justified. The advantage of using a linear model 

is, of course, that a wide range of analysis and design tools are available for linear 
systems. 4 

In problems with severely nonlinear or quickly time-varying dynamics, 
however, a linearized approach would fail since the system would continually 
operate outside the applicable range of the linearization. High performance flight at 
high angles of attack is a good example of a current research area in which the 
dynamics are extremely nonlinear and not well suited for a linearized treatment. 

With AHSVYs, the difficulty is related to the highly coupled nature of the 
aerodynamics and the propulsion system. Forces and moments from the scramjet 
engine are directly related to external flow prbperties in the vicinity of the forebody 
and aft surfaces of the vehicle. In these areas shock angles, boundary layers, flow 
temperatures, pressures, and densities will all vary with the angle of attack. This 

creates a highly nonlinear dynamic dependence on vehicle attitude which changes on 
a time scale which is much faster than that of the usual scheduling variables (such 
as velocity and/or altitude). Considering both the time scale and the severity of the 
attitude nonlinearities for an AHSV, a linearized approach to the flight control 
problem is not practical. This tends to complicate the design of a flight control 

system for AHSV configurations, since the available tools for nonlinear 
multivariable systems are very limited. 

Another AHSV characteristic that distinguishes it from most other classes of 
aircraft is the number of critical constraints which must be observed during the 
course of a flight. An aggressive trajectory from Earth-to-orbit is required for an 
AHSV to sustain optimum propulsion efficiency and achieve orbital velocities. But 

structural integrity and passenger comfort impose limitations on the maximum 
dynamic pressure, external skin temperatures, and maximum acceleration. Mission 

objectives, therefore, call for routine operation at  or near these constraint 

'properties of linear systems, primarily superposition, make possible the use of Laplace 
Transform Theory, eigenvalue/eigenvector analysis, pole placement algorithms) a l l  frequency 
domain methods, such as Bode plots (gain and phase margins), Ryquist methods, Singular value 
analysis for multivariable systems, and more. 
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boundaries. In addition, tight tolerances in tracking a preprogrammed trajectory 

will be important, since time-varying dynamics (e.g. changing mass properties) 

could prevent a large deviation from being correctable. This implies constraints on 
the maximum allowable tracking errors in velocity, flight path angle, and angle of 

attack. Limit ations on scramjet engine performance will also impose constraints on 
the angle of attack to assure sufficient combustion pressure, prevent engine 

un-starts, and avoid excessive flow spillage at the inlet. Note that the constraints 
mentioned above are not typically encountered on other high performance aircraft. 

The additional complexity for an AHSV can be attributed to its unique mission 

objective of accelerating to near orbital speeds using an air-breathing propulsion 

system. 

Another, more common, type of constraint involves the physical limitations of 

the actuators used to execute the commands of the control system. Aerosurfaces 
have a limited angular range as well as maximum deflection rates. Similar 

limitations exist for throttle controls, thrust vectoring, and attitude control jets (if 

available). Although these constraints are common to any flight vehicle, the AHSV 

controls involve other complications. The hypersonic flight environment introduces 

additional factors which influence the behavior of the controls. In this flight regime, 

local temperatures can have a profound effect upon local pressures and boundary 

layer transition, which in turn affects the performance of partly embedded 

aerosurfaces. Likewise, these same effects influence engine behavior (and thus 

engine controls). Furthermore, aerodynamic shadowing can occur, reducing the 

effectiveness of control surfaces that are blocked by other parts of the vehicle. All of 

these effects are strongly dependent on the vehicle's attitude, and so the control 
authority for each actuator tends to be a highly nonlinear function of not only 

control input, but also of the vehicle state. 

Perhaps the most troublesome obstacle for an AHSV flight control system is 

that the vehicle aerodynamic, propulsion, and control coefficients will be uncertain 

for much of the operational envelope. For most high performance aircraft to date it 

has been possible to verify the design using theoretical, numerical, and/or 

experimental methods. Subsonic and supersonic aircraft operate in a flow 

environment which can be approximated by assuming an ideal inviscid gas with a 
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thin viscous boundary layer attached to vehicle surfaces. This makes it possible to 
perform crude theoretical calculations or a more refined numerical analysis of 

aerodynamic behavior. In addition, particular designs can be carefully evaluated in 

wind tunnel experiments before testing a vehicle in actual flight. Furthermore, huge 

quantities of empirical data are available from flight experience with previous 
aircraft. This information can be used to design and predict aerodynamic behavior 
for new vehicles. 

For AHSV's, however, much of the planned flight envelope will include flight 
conditions for which none of the above holds true. The theory of hypersonic £low is 

not completely developed, there is little or no empirical data in this flight regimes, 

and it is beyond the capabilities of available wind tunnels to fully reproduce very 

high Mach number conditions (above Mach 8) .  Most of the analysis will therefore 

have to be done using numerical flow codes, which are at best approximate, since 

(as discussed earlier) many aspects of modelling hypersonic flow are still poorly 

understood. Moreover, the numerical analysis is very expensive comput ationally 
due to the extremely high Reynolds numbers involved. As a result, the flight 

control system for an AHSV will probably have to operate using a model of the 

system which includes some uncertainty in the parameters. Robustness to this 

uncertainty will be an important factor in the design. 

From all the preceding discussion it is evident that the National Aerospace 
Plane presents a unique challenge to the aerospace community on many fronts. In 

particular, the extreme nature of hypersonic flight and the special problems posed 

by AHSV designs motivate the need for a new advanced flight control strategy 
capable of handling highly nonlinear dynamics with complex physical constraints, 
while accounting for parametric uncertainties, in the setting of a real-time 

application. 

''The Space Shuttle does operate as a winged aircraft at hypersonic speeds during reentry, 
however it  is an unpowered glider and follows a trajectory through flight conditions that are 
different from those that would be experienced by the RASP. 
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2.4 Previous Flight Control Experience 

Historically, aeronautical applications have been by far the most significant 

motivating force behind the development of Control Theory. One simple reason for 
this might be that, for aircraft, adequate control is a necessity to  avoid disaster. In 

general, however, flight control has always been a special problem in several ways: 

the dynamics of aircraft are relatively complex, the response to inputs and 
disturbances is relatively fast, the system behavior is variable and depends upon 
flight conditions, and instability can lead to the loss of a vehicle and possibly human 
livesa. 

Flight control really began with the first successful powered flight at  Kitty 

Hawk on December 17, 1903. The Wright brothers were the first to realize that an 
efficient control system was the key to preventing the kinds of accidents that 

plagued (and killed) their predecessors7. Eventually, improvements in engine 

efficiency made it possible for aircraft to access a wider range of speeds and 
altitudes. By 1944, the first turbojet driven aircraft was fully operational. Then in 
the 19509s, with the demand for increased performance over an ever expanding flight 

envelope, it became apparent that vehicle behavior significantly changed as a 

function of flight condition. It was in this era that the concept of Adaptive Control 

really began. (Classical Control Theory had already been developed and was in use 

for simple regulating autopilots). An additional design objective for the autopilot 

now included compensation for plant variations with flight condition. The first 

"adaptive" controllers were systems that simply adjusted single-loop compensator 

gains according to  air-data measurements. [Krel, Rynl, Bar2, Kall] 

'1n sharp contrast, the regulation of room temperature, or the control of chemical concentration 
in a brewing process, are slowly changing non-critical processes with invariable behavior. 

7 ~ n  the 1890's1 Otto Lilienthal was the first man to achieve sustained flight in an unpowered 
glider. After nearly 2000 flights, he crashed when a gust of wind stalled one of his wings. In 
lP001 the Wright brothers pioneered the use of wing warping to prevent stall and to control 
bank angle. They also included elevators and a rudder in later designs to control their 
aircraft in pitch and yaw. By 19021 they had a completely controllable glider. Their first 
powered flight (1903) was piloted by Orville, and flew 200 ft. 
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Eventually, two distinct approaches to the problem emerged. The first is 
known as Gain Scheduling, and is essentially the blending of several autopilot 
designs as the flight conditions change from one regime to  another. Parameters of 
the control system are optimized to yield the best performance at several operating 
conditions within the flight envelope. These parameters are then stored, and later 
retrieved during actual flight. Typically, Gain Scheduling is done using a linearized 
model of the dynamics for different speeds and altitudes. In most cases, a linear 
feedback law with adjustable gains is used to effectively position the closed-loop 
system poles to achieve desired performance specifications*. These gains are then 
scheduled as a function of flight condition (ie. control gains are interpolated for 
current speed and altitude). 

The other approach is the formal concept of Adaptive Control, in which the 
control system is able to recognize that the dynamics are changing, and in some way 
adapt to these changes on-line. Adaptive Control is subdivided into two categories, 
namely direct and indirect methods. Indirect Adaptive Control divides the problem 
into two parts: one of identifying some changing parameters of the dynamic model, 
and one of using the best estimate of the model to compute gains for the controller. 
Direct Adaptive Control involves directly identifying parameters of the controller to 
yield the best performance. In either case, adaptive control always involves the 
on-line adjustment of internal parameters in conjunction with providing feedback 
control. Adaptive control is an enticing concept because of its "black box1' nature; 
that is, the idea that an ideal adaptive controller might be able to control a class of 
systems without any a priori knowledge of the dynamics. 

In the late 1 9 5 0 ' ~ ~  Model Reference Adaptive Control (MRAC) was introduced 
by H.P. Whitaker at MIT [Whil, Whi21. This very popular method allowed an 
autopilot to minimize the error between the aircraft behavior and the response of an 
ideal aircraft model. The controls were chosen in such a way as to  reduce the error 
in the direction of its negative gradient. Unfortunately, this algorithm was not 
based on any theoretical arguments, and it was later shown that a MRAC autopilot 

'such as gain margin, phase margin1 overshoot, response time, etc.. 
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could be destabilized with certain inputs [Ast4, Par31. This realization inspired 
much of the more recent research in the stability theories of Lyapunov and Popov. 
Meanwhile, the promise of adaptive control was appealing, and through the 1960's 
experimental research in this area was actively continued with aircraft like the F A ,  
F-101, F-111, and the X-15 [Hall, Stel]. It was during this time that many bad 
experiences, and an X-15 flight test that ended in complete disaster, gave adaptive 
control a poor reputation [Rynl]. 

Eventually, Gain Scheduling became the preferred method of flight control for 
high performance aircraft. This was particularly true because of improvements in 
the design of sensors for measuring air-data) and better predictions of aerodynamic 
derivatives from wind tunnel tests [Stel]. With Gain Scheduling, autopilots could 
be designed to operate effectively and reliably over a wide range of flight conditions 
without the risk of instability. 

In the 1970's) the trends toward digital flight computers, redundant systems, 
increased performance requirements, and wider flight envelopes, shifted the 
emphasis once again. By this time, major developments in control theory had been 
made in the areas of st ability theory, system identification, estimation, stochastic 

control, state-space design and analysis, and more. The MRAC method had been 
redeveloped using Lyapunov stability methods, and interest in adaptive control 
resurfaced [Par3]. Many flight control concepts of this era involved some type of 
parameter estimation or system identification coupled with a model-following or 
other feedback control algorithm [Isel]. Several algorithms of this type, with a 
variety of identifier and controller combinations were demonstrated in simulations 
during this period [Kaul, Kau21. In the early 80's, however, it was discovered that 
unmodelled dynamics and additive disturbances could cause instability in these 
systems [Rohl, Roh21, and this generated interest in a new topic called Robust 
Control Theory. Major results were obtained in this area during the 1980's (see for 
example references [Mor 1, Narl, Lozl, Nar21). 

Current research in flight control emphasizes many areas. More general 
algorithms for the design of multivariable control systems are of interest, 
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particularly for systems having some kind of structured uncertainty. Nonlinear 

control is also a very active area because of the trend toward high angle of attack 
maneuvering for advanced fighter aircrafts. The use of digital computers for the 

implementation of most current flight control systems has spurred much 
investigation in the area of discrete-time control for multivariable systems [Gool, 
Goo2, Lanl]. Adaptive control activity is directed at  achieving results for 
multivariable systems, and toward robust adaptive algorithms [Bitl, NarS]. Other 

research areas in adaptive control, with applications to flight control, include 
control of partially known plants, or systems with bounded parametric uncertainty 
(Cla2, Ossl]. 

2.5 Control Methods & Limitations 

At present, the state-of-the-art in control theory can handle a wide range of 
possible problems. For linear multivariable systems, there are control methods to 
deal with additive disturbances, measurement noise, and even structured parametric 
uncertainty. For nonlinear systems, there are several approaches to handle 
single-input-single-output (SISO) problems, or problems with only one nonlinear 
component. There are even robust nonlinear control methods for SISO systems or 
restricted multi-input-multi-output (MIMO) systems. 

In the context of the flight control system for the National Aerospace Plane, 
however, none of the available control methodologies are really able to deal with the 
full complexity of the problem. A large number of control design techniques make 
use of frequency domain concepts such as pole placement, Nyquist stability, and 
Bode plots, and there are now MIMO extensions of these classical methods based on 
singular value concepts. Another main category of control design methods are based 
upon quadratic minimization of a state-space performance measure, such as the 
Linear Quadratic Gaussian - Loop Transfer Recovery (LQG-LTR) approach, and 
its many extensions. Robust variations of these techniques have also been 

g~ppl icat ions  in robotics and many other areas have also motivated much research in nonlinear 
control theory. 



HYPERSONIC FLIGHT CHAPTER 2 

developed for systems with modelling uncertainty. Less conservative approaches 
such as p-synthesis can be used to handle problems with structured uncertainty. 

Unfortunately, the common feature of all of these control system design methods is 

that they all depend on the assumption that the system can be approximated as a 
linear time-invariant plant over some useful range. As discussed above, this is not 

a reasonable assumption for the AHSV problem. 

Optimal control theory can, in general, address nonlinear problems; the 

difficulty is to  find a practical method for solving a nonlinear constrained 

optimization problem on-line. Adaptive control algorithms do exist for 

multivariable systems, however, current results are limited to a restrictive class of 
problems. Nonlinear design methods for multivariable systems are extremely 
limited. Input/Output linearization is one interesting approach that transforms a 

nonlinear problem into an equivalent linear one. Several restrictions apply on the 

original system and there is no direct way to map control constraints, or parametric 

uncertainty, to the equivalent system. Another approach for nonlinear systems is 
the so-called Sliding Mode Control (SMC) method. The advantage of Sliding Mode 

is that it can track a desired trajectory, and is robust to modelling uncertainty. It 

is also applicable to a restricted class of square multivariable systems. 
Unfortunately, the SMC technique requires the nonlinear system to have a few 

special properties, (for example - the controls must enter the dynamics in a linear 

fashion $(t) = f(_z,t)+g(&t)~(t)), and the AHSV dynamics do not meet these 
conditions. In short, the combined difficulties of highly nonlinear MIMO dynamics, 
modelling uncertainty, and complex physical constraints, render most modern 
control methods ineffective for the AHSV flight control problem. 



Chapter 3 

Intelligent Control Approach 

3.1 Flight Control Objectives 

It is clear from the discussion in the previous chapter that, for many reasons, 
flight control for air-breathing hypersonic vehicles is a formidable challenge. Before 
presenting a candidate approach to solving this problem, it is useful to summarize 
some of the important issues that any controller proposed for this application would 
have to address. 

The most apparent AHSV flight control obstacle is the fact that the system 
dynamics are severely nonlinear. Aerodynamic, propulsive, and control coefficients, 

and therefore the vehicle dynamics, are strongly dependent on vehicle attitude; as 

will be demonstrated dramatically in Chapter 9, a linearized model of the form 

k(t) = A z ( t ) + B ~ ( t )  would experience parametric variations (Aij,  Bij) on a time 
scale similar to some of the states. It would, therefore, not be reasonable to design 
an AHSV trajectory control system based on a locally linearized model. The 

controller should be able to account for the nonlinear behavior as part of its design. 
Moreover, the expect ation of strict performance requirements, suggests that an 

approach that deals with these nonlinearities directly would be preferable to one 

which bounded them in some overly conservative fashion. 
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Constraints are another important issue to be addressed by the controller. As 

discussed earlier, several types of constraints exist for AHSV's. Each control 

actuator is limited by a bounded range and maximum rates, and the states 

(velocity, flight path, pitch rate, and attitude) are constrained by tracking error 
tolerances and other physical limitations. Additional dynamic constraints are 

imposed, such as dynamic pressure, and maximum acceleration. For an AHSV, it is 

critical that these constraints are carefully observed by the controller, because the 
vehicle will often operate in flight conditions at or near these boundaries. In 

addition, the nature of the AHSV trajectory from Earth to orbit amplifies the 
problem of dealing with these constraints. It is not good enough to simply provide a 
feedback law which avoids all state and control constraints at  the current state, 

since that would not guarantee that (in the process of tracking a desired trajectory) 

constraints can continue to be avoided in the near future. Ideally one would like an 

autopilot that is capable of "looking aheadf1 to assure that control actions taken now 
will lead to an entire error-correcting future trajectory that is admissible in the 

states and controls. 

Another important objective is to have a control system for which vehicle 

stability and tracking convergence are also guaranteed. If a linear approach to the 

problem were considered, the fact that some coefficients in the linearized dynamics 

might change as quickly as some of the states, presents a problem for stability 

analysis. A linear, locally stable, feedback law may result in instability due to the 

fact that the linear dynamics are time-varying. A nonlinear control approach 

would anticipate the dynamic variation with attitude. The only other time-varying 
components for an AHSV are related to the slow change in vehicle mass and inertia 

matrix due to fuel expenditure4 In any event, instability is clearly intolerable since 

it would most likely mean loss of the vehicle. However, guaranteeing closed-loop 
stability for a nonlinear MIMO system, with modelling uncertainty, and external 

disturbances, is nontrivial. For an AHSV, it can be further complicated by the 

requirement that the vehicle track a preprogrammed trajectory. Stability and 

convergence in tracking would then be critically important as. well. Given a 

%'he dynamic variation with flight condition, (ie. Mach number and altitude), is, in a sense, 
time-varying over the course of a trajectory, but it  is really a slowly changing state 
dependency. 
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disturbed state, offtrack from the desired trajectory, the flight control system would 
have to be able to find a short term restoring trajectory with the guarantee of 
convergence at some future time. Nonlinear dynamics, multiple constraints, 
parametric uncertainty, and a desired trajectory which is no doubt time-varying, 
make this a very ambitious requirement. 

A final control objective is the robustness of stability and tracking 
performance to the presence of modelling uncertainty. The type of uncertainty 

expected for the AHSV dynamics is primarily due to the inability to accurately 
predict the aerodynamic, propulsion, and control coefficients, for the hypersonic 
flight regime. Since flow below around Mach 6 is well understood and can be 
reproduced in wind tunnels, accurate values for these coefficients, as a function of 
Mach number, altitude (density), and vehicle orientation, can be obtained for the 
lower speeds. As the Mach number (and flow temperature) increases, the 
uncertainty in any ground based (a priori) predictions will increase. For the AHSV, 

it is critically important that the flight control system be robust to these 
uncertainties. 

One way to improve performance is to try to identify these coefficients while 
the vehicle is flying (as in adaptive control). However, for best performance, and for 
the most reliable operation, it would be wise to combine the best available a priori 
predictions of these coefficients with any additional information that can be 
obtained on-line. An important advantage of this approach is that any on-line 
identification can be checked against predictions to assure that values fall within 
reasonable ranges. Predictions and uncertainty bounds for dynamic and control 
coefficients could be tabulated as a function of flight condition (Mach number, 
altitude, angle of attack). The objective then would be to design a flight control 
system that is robust to parametric uncertainty within these bounds, and which can 
provide better performance if the uncertainty can be decreased using on-line 
information. This structure is also consistent with the most recent adaptive control 
philosophy (see [Roh3]) of coupling a robust control design with an identification 
scheme that works to reduce the set of plants for which the controller must be 
stabilizing. 
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Based on consideration of all the control objectives a conceptual design for the 

overall flight control system is defined. The structure shown in Figure 3.1 

represents, in a rough sense, a combination of an indirect adaptive control scheme 

with a scheduling approach in order to obtain the best properties of each. Control 
gains are not tabulated, however. Instead, a priori estimates and uncertainty 

bounds are stored for all of the aerodynamic, propulsion, and control coefficients. 

These estimates can be combined or compared with parameter values obtained from 

on-line estimates. The results could be used to obtain an improved instantaneous 

model, or to reject spurious on-line information. This table, therefore, provides 

both a reliable worst-case parameter envelope, and a means for cross checking 
on-line identification. A robust nonlinear control design can then determine its 
response on the basis of the best available information at any given time. When 
parametric uncertainty is reduced due to the use of new information, performance 

should improve. 

Figure 3.1: Conceptual Design for an AHSV Flight Control System 
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In Figure 3.1, the Guidance Trajectory represents the desired flight path from 
Earth-twrbit for an AHSV. This path is essentially a complete time-history for 
each of the state variables. It might be precomputed off-line as the solution to a 
global optimization problem, or it may be computed (or adjusted) on-line, 
depending upon the approach taken for the overall guidance scheme. The problem 
of tracking this desired trajectory is addressed by the Trajectory Control System. 
This block solves a short-term trajectory planning and control problem based on 
the desired trajectory, the current state, and a model of the vehicle dynamics. The 
objective of the Trajectory Control System is to find a viable2 control solution to 
correct for any deviations from the desired guidance trajectory. This problem is 

solved repeatedly, and the solution is treated as a low frequency feedback law for 
the stabilization of tracking error. Depending upon the bandwidth of the Trajectory 
Control System and the nature of the disturbances, a Local Feedback Control 
subsystem may be needed for the rejection of higher frequency disturbances. The 
Vehicle Dynamics Model is used by the Trajectory Control System to predict the 
system's response to candidate control input functions. This model includes the full 
nonlinear equations of motion, and is parameterized by the aerodynamic, 
propulsion, and control coefficients. All modelling uncertainty is lumped into the 
uncertainty in these coefficients. The vehicle model accesses predicted parameter 
values, and uncertainty bounds, from the Codlicient Database. This information is 
tabulated as a function of flight condition, and is based on a priori knowledge from 
wind-tunnel measurements, empirical data, numerical flow analysis, or theoretical 
results. Coefficient estimates, and their associated uncertainties, can also 
potentially be improved on-line using information collected in flight. An On-Line 
System Identification subsystem would perform this function using information 
gathered in the Sensor Fusion block, which includes environmental as well as 
inertial measurements. A State Estimator is shown in the figure, but for the 
purposes of this thesis it is assumed that accurate full state information is available. 
It is also assumed that the Coefficient Database always represents the best 

combination of all information available (from a priori and on-line sources), thus 
the problem of system identification is not addressed as part of this work. The focus 

'candidate solutions are considered viable if they are stable, meet al l  state and control 
constraints, and provide some degree of tracking convergence. 
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of this thesis is on the Trajectory Control System, which will also frequently be 
referred to as the Trajectory Controller. This block is responsible for achieving the 
desired tracking performance, maintaining stability, and accounting for all the 

nonlinearities, constraints, and uncertainties. 

3.2 Robust Intelligent Flight Control 

Ideally, one can imagine that the best control solution could be obtained if 
somehow, at  each time, one could choose from among the set of all possible future 

trajectories, a path that meets all the constraints (for all time) and converges to the 

desired trajectory in some predefined optimal sense. If this selection process was 

continued repeatedly , responding to disturbances by r ~ p t i m i z i n g  the future 

trajectory, it is clear that the best possible performance would be achieved. If the 
maximum "look ahead1' time is limited to some ha,, and terminal constraints are 

imposed at ha,, then, in fact, this is referred to as a Receding Horizon Optimal 
Control (RHOC) Problem [Mayl]. Unfortunately, with multivariable nonlinear 

dynamics (with constraints, changing desired states, etc ...), the problem is far too 
complex to solve analytically. However, if the state space is discretized at intervals 
of time ~ t ,  and the control inputs are divided into quantized values, it is possible to 

solve this problem numerically. A dynamic programming approach would typically 
be used, but in this case, the solution to the problem would require such intense 

computational effort that it would not normally be considered for on-line 

applications. 

In this thesis an alternative approach is developed using intelligent search 

techniques for solving optimization problems. This approach will be seen to 
drastically reduce the required search space, (as compared with dynamic 
programming), and is structured such that i t  can take full advantage of parallel 

processing computer hardware. This new met hod combines Lyapunov st ability 

theory with a modified A* ( A-Star) optimization dgorithm, to guarantee stepwise 

stability of the system, and to assure convergence of the optimization to a solution 
within a prescribed memory limit. 
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The flight control approach taken in this thesis, which will be called Robust 
Intelligent Flight Control (RIFC), has several important advantages. First of all, as 
the algorithm searches for a solution, it generates candidate trajectories by 
predicting forward in time the response of the full nonlinear dynamics to sequences 
of control inputs. No approximations are necessary, so that the actual trajectory 
can be expected to  behave as predicted (with the exception of disturbances and 

uncertainty). Furthermore, parametric uncertainty is easily included in the 
optimization, (as will be shown in Chapter 7)) by predicting not only the nominal 
trajectory, but also a growing uncertainty envelope around it. A robust control 
solution is obtained by minimizing the worst case tracking error rather than the 
nominal error. This approach is also particularly well suited to using a tabular 
represent ation of the predictions of the dynamic and control coefficients along with 
interval uncertainty bounds. Another important advantage is that the state, 
control, and dynamic constraints actually simplify the problem. All constraints are 
automatically included, and they effectively reduce the search space explored by the 
optimization algorithm. Only trajectories which observe all constraints (for all 
t 5 &,) are considered as candidate solutions. Another beneficial property of this 
approach is its ability to consider a variety of actuator types simultaneously. It is 
also reconfigurable in the case of identifiable changes in-flight. Not only can it take 
advantage of improved coefficient estimates based on in-flight measurements, but it 
can easily handle hardware failures, or other changes in actuator authorities, when 
these changes are detectable by other onboard systems. Finally, this algorithm has 
inherent guarantees of stability and tracking convergence, and it is suitable for 
parallel computation, making its real-time implementation feasible in (not too 
distant) future flight computers. 

Qualitatively , the RIFC trajectory control algorithm operates as a single-step 
feedback controller with the added capability to look ahead a number of steps to be 
sure that the controls chosen now will lead to tracking convergence (without 
constraint violations) in the future. It is implemented as a short-term planning 
algorithm, which repeatedly solves for a multi-step trajectory during each 
single-step of actual flight time ( A t ) .  It can therefore also be viewed, (during any 
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single-step), as a low bandwidth feed-forward control solutions, where the 
bandwidth is determined by the control cycle-time ( A 6 ) . 4  The choice of this 
trajectory control bandwidth is influenced by several factors. It would not be 
sensible to re-optimize a correction trajectory at very high frequencies just to 
counteract small high-frequency disturbances. Nor would it be practical (or 
computationally feasible) to re-solve the problem at very short intervals of time. 
The control cycle-time should be short enough, however, to capture the effects of 
time-varying coefficients and atmospheric variations on the vehicle dynamics. In 
contrast, the upper bound on At, is limited by the tradeoff between desired tracking 
precision and control quantization (discussed further in Chapter 8), as well as the 
deterioration of prediction accuracy due to uncertainties and future disturbances. 
The t imestep At, should be small enough to prevent environmental disturbance 
terms from dominating other terms in the state equations, particularly those related 
to control inputs. 

In short, the trajectory control system is intended to provide a stabilizing 
(limited bandwidth) feedback law which accounts for the system's nonlinearit ies, 
constraints, and uncertainties. An inner feedback loop can then be used to track the 
outer-loop commands by rejecting disturbances between the outer-loop control 
time-steps. For a prudent choice of the bandwidth separation between inner and 
outer loops, the control design of the inner-loop can be relatively simple. Although 
a robust linear control method could be used, a better approach (suggested in 
Chapter 8), is to utilize a s i n g l ~ t e p  version of the RIFC controller. This method 
has the advantage that all nonlinearities and uncertainties could be included in the 
feedback loop, while very little additional software would be required. For the 
purposes of this thesis, however, the existence of an appropriate inner-loop feedback 
controller is assumed, and the emphasis will be placed on the development and 
analysis of the (outer-loop) trajectory control system. 

3 ~ t  is not strictly a feed-forward controller, however, since only one time-step of the 
feed-forward trajectory is used before the problem is solved again. 

' ~ o t e  that the integration step size used for trajectory prediction (within the trajectory 
controller) can be much smaller than Ak, or even variable, to attain a desired degree of 
precision. 
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The theoretical foundation of the RIFC algorithm is based on a combination of 
Lyapunov stability theory and the properties of a modified A* optimization 
technique. The A* approach performs an intelligent search for a solution which 
minimizes a cumulative cost function, guided by estimates of that cost function for 
incomplete trajectories. In the basic algorithm, candidate trajectories are generated 
and explored in an order consistent with a best-first rule. That is, trajectories 
which are estimated to have a lower overall cost are explored first. The details of 
A*, and of several enhancements to the basic A* method to improve its efficiency, 
will be explained in Chapter 6. The important point for this discussion is that given 
a simple property of the cost estimating function, the A* search can be shown to 
converge to the optimal solution. The combination of a Lyapunov criterion with the 
A* optimization essentially assures that the algorithm converges to a solution with 
guaranteed stability properties. 

The development of the RIFC algorithm begins with the determination of 
constraints on the state space that assure controllability. A Lyapunov function of 
the tracking error is defined, and the existence of a solution that stabilizes the 
tracking error dynamics is verified. It is then shown that if the A* cost function is 
chosen as a cumulative sum of tracking errors measured by the Lyapunov function 
(which is a norm of the errors), then the A* search will converge to a solution that 
tracks the desired trajectory. Robustness to parametric uncertainty is then attained 
through a redefinition of the Lyapunov function to include a maximization over the 
parameter space. State space constraints also have to be recomputed to account for 
uncertainty. The resulting search guarantees robustness by performing a minimax 
type of optimization, where the worst case tracking error is minimized. Finally, a 
scheme is developed to manage the optimization such that a solution can be 
guaranteed with limited available memory. 

One way to view the RIFC algorithm is as an enhanced Single-Step Optimal 
Controller (SSOC). The SSOC approach is also based on the fact that solving a 
complete dynamic programming problem on-line is not feasible. The SSO C met hod 
compromises by optimizing only one step at a time. With this type of approach, it 

is hoped that a sequence of single-step optimal trajectories will approximate the 
overall multistep optimal trajectory. Otherwise, the SSOC is applicable to the 
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same kinds of problems. It can be made to  predict forward with the nonlinear 

equations (one step), account for uncertainty, and avoid constraints. It cannot, 
however, probe ahead to be sure that its s i n g l ~ t e p  optimal solution does not lead 
the system toward trouble a some later t imestep.  

The advantage of the RIFC trajectory control algorithm is that it considers 
multistep trajectories, and chooses its single-step decisions based on the 

optimality and constraint avoidance of a full multi-step correcting trajectory. I t  is 

more computationally expensive than SSOC, but far less burdensome than dynamic 

programming. The required computational effort can also be significantly reduced 
by combining a number of search enhancements to find admissible suboptimal 

trajectories very quickly. Since the objective of performing the optimization is 
future admissibility and convergence of the single-step decision, and since the 
problem will be solved again each t imestep,  a suboptimal solution meeting all 

constraints may be perfectly acceptable. An enhanced A* algorithm, could find a 

viable solution and then spend any remaining allotted time improving the cost. In 

any case, the RIFC method is effectively a SSOC approach with enough additional 
foresight to guarantee certain properties of its solution . As such, for the purposes 

of this thesis, the SSOC method will be used as a basis for comparison. It will be 
shown later (Chapter 9), that situations may arise in which the RIFC controller 

succeeds, while the SSOC controller fails. 

The research in this thesis can be divided into four major areas: modelling, 
simulation, control, and experiments. These topics are presented in detail in the 

following chapters. It is useful, however, to  summarize the efforts in each area to 

give the reader an overview of the entire work. In this section, the main ideas from 
each of the topics above will be briefly reviewed. 



SECTION 3.3 OVERVIEW 

3.3.1 MODELLING 

Although flight control for air-breathing hypersonic vehicles was the main 
focus of this research, a significant amount of effort was devoted to developing 
models of the vehicle geometry, mass properties, aerodynamics, propulsion, controls, 
and environment, in order to provide the basis for a realistic AHSV simulation. 
Actually, it is important to distinguish between two separate classes of models that 
have been used. First, there are the high fidelity models used by the simulation to 
try to reproduce the actual flight behavior of the vehicle. These models include 

modules such as the flow analysis code, or the scramjet engine code, which compute 
component forces and torques on the vehicle as a function of many flight condition 
and design variables. The second class of models includes the nonlinear equations 
used by the flight control system to predict vehicle behavior. Appearing in these 
equations are all of the aerodynamic, propulsive, and control coefficients, which are 
tabulated (along with uncertainty bounds) in the Coefficient Database as a function 
of flight condition. Each of these models will be briefly described in turn below. 

Trnt h Model For Simulation 

To provide a reasonable characterization of the behavior of an actual AHSV, 
all the component models work with a fairly general parameterized vehicle design. 
The three dimensional (3-D) geometry of an AHSV is represented by 50 

intersecting polygonal surfaces. A wide range of possible shapes can be obtained by 
varying 18 geometric parameters, such as length, wing span, sweep angle, combustor 
length, nozzle angle, fuselage aspect ratio, forebody ramp angles, and inlet height. 
The software automatically constructs the polygonal surfaces to generate a 3-D 
vehicle geometry. A mass properties model then makes certain assumptions about 
the materials, structure, propellant distribution, and equipment, to integrate mass 
distribution throughout the complex 3-D shape, to arrive at an overall vehicle mass 

and inertia matrix. These values will, in fact, change as propellant is used over the 
course of a simulation. 

The atmospheric model is based on data from the space shuttle simulation at 
the NASA Dryden Flight Research Center. Temperature, density, pressure, and 
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speed of sound are tabulated as a function of altitude at increments of 1 Km up to  
244 Km. The atmosphere is assumed to be stationary with respect to  the Earth, 
and disturbances, such as wind gusts or density variations, are modelled by 
adjustable random' processes that are added during flight simulation. The 
aerodynamic model uses a hypersonic Newtonian flow approximation to compute 
pressure coefficients on each of the 50 vehicle surfaces. Laminar to turbulent 
transition is predicted over the vehicle surface, and skin friction coefficients are 
determined based on local flow properties. Oblique shock and expansion fan models 
are used to determine local flow. Net force vectors for each panel are combined to 
produce overall vehicle aerodynamic forces and moments in six degrees-of-freedom 
(6-DOF). Similarly, the scramjet propulsion model performs a full inlet, 
combustor, nozzle analysis depending upon the flight condition and 23 variables 
which specify the engine design. This engine model (and code) was adapted from 
some work done at MIT on the analysis of scramjet engines [Itenl]. Propulsive 
efficiencies and flow properties are used to compute overall specific impulse, a net 
thrust vector, and the thrust moment on the vehicle. 

All force and moment contributions from the models are combined and 
integrated by the dynamics model which includes the full 6-DOF translational and 
rotational equations of motion for an arbitrary latitude, and longitude, and 
direction, in the atmosphere of a rotating spherical Earth. All centripetal and 

coriolis effects are included, since they are not insignificant at hypersonic speeds. 
The rotational dynamics use a Quaternion representation to keep track of attitude. 
Control surfaces are modelled directly as part of the aerodynamic model in terms of 
pressure and frictional forces. Aerodynamic shadowing effects are also added to the 
model to account for conditions where part of a control surface is blocked by the 
rest of the vehicle. Together, all the component models can predict forces, 
moments, and the dynamic response of any particular NASP design (geometry and 
engine) in most realistic hypersonic flight conditions. The scope of the work in this 
thesis is limited to flight in the hypersonic regime. 
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Analytical Model For Controller 

The flight control research in this thesis is limited to consideration of 
longitudinal motions only. As such, the controllers model consists of four 

differential equations describing the rates of change of the states xT = [V 7 w 4 
(velocity, flight path angle, pitch rate, and attitude). These equations are nonlinear 
functions of the states, parameters, controls, and time. 

Implicit in equation (3.1) is the uncertainty of the aerodynamic, propulsion, 
and control coefficients, which are represented by the parameter vector d. These 

equations are derived from the full 6-DOF nonlinear equations used for the 
simulation truth model. Appropriate simplifications are made for the longitudinal 
case, such as equatorial launch to orbit, and zero bank/yaw angles, roll/yaw rates, 
and so on. For the controller, a tabulated model of coefficients along with 
associated uncertainties is used. Values are derived from numerical simulation data 
taken at various Mach numbers, and angles of attack. Fictitious uncertainty in the 
coefficients is then created by adding bounded noise to these values. 

3.3.2 SIMULATION 

The AHSV simulation is an interactive software package developed for the 
purpose of vehicle design, flight simulation, and the analysis of flight control 
systems. The user interface consists of pulldown menus to access all options, and a 
real-time 3-D graphical display of an AHSV in simulated flight. Other displays 
present flight data or any combination of real-time graphs to display variables of 
interest. Options are available to design the vehicle, select different models, set the 
initial flight conditions, add disturbances, test different control algorithms, display 

different variables, record or play back flights, analyze scramjet engine performance, 
change to different display modes, use different integration algorithms, and more. 
The software is divided into two tasks, namely Design and Flight. Altogether, 39 

variables have to be chosen to specify an AHSV design, and the interaction between 
aerodynamics and propulsion makes it very difficult to design a 
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balanced vehicle. Special design software has been written to aid in the search for a 
set of parameters which constitute a balanced configuration that is optimized for a 
given flight condition. Other routines build tabulated models for a specific design in 
order to speed up some of the calculations during simulated flight. The flight 
software then coordinates all of the models discussed in the previous section to 
actually create a real-time flight environment. Finally, flight control software is 
tested as if it were operating in the actual vehicle. 

3.3.3 CONTROL 

The theoretical development of the RIFC algorithm begins with a statement of 
the problem in precise mathematical terms. The algorithm is then derived and 
justified through a series of propositions that are followed by supporting arguments. 
Guarantees of controllability, st ability, convergence, and robustness are 
demonstrated on the basis of certain reasonable assumptions, and the properties of 
Lyapunov stability theory' and A* optimization techniques. A number of 
enhancements are then made to the algorithm in order to improve its overall 
efficiency in the face of practical computational considerations. 

3.3.4 EXPERIMENTS 

Demonstration of the RIFC controller is carried out through a series of 
experimental flight simulations. A particular AHSV design is chosen, and then used 
as the basis for evaluating the flight controller under different circumstances. The 
properties of the optimization are examined, and the controller's performance in the 
presence of uncertainty and disturbances is demonstrated. The RIFC autopilot is 
compared to the SSOC method for a number of cases. 
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3.4 Thesis Scope 

The following list summarizes the assumptions and limitations adopted in this 
research: 

The operational envelope for the simulation is limited to the hypersonic 
flight regime. 
Flight control is limited to longitudinal dynamics. 
Certain models are limited to a range of useful Mach numbers and 
angles of attack. 
Coefficients in the database are assumed to be the best available 
combination of a priori and in-flight information. On-line system 

identification is not addressed. 
Perfect state information is assumed. (However, measurement noise 

can be added to the uncertainty accumulated in the state predictions 
used by the optimization). 
Heat transfer has not been modelled nor is temperature included among 
the constraints. 
Controls are limited to elevons, throttle, and thrust vectoring. 
Actuator dynamics have been neglected. 
Aerodynamic, propulsion, and control coefficients are available in a 
tabulated form as a function of flight condition. 
Parametric uncertainty is in the form of interval bounds. 
The modelling of atmospheric disturbances for hypersonic flight has not 
been addressed. 



Chapter 4 

Vehicle Modelling 

In this chapter, the AHSV £light environment and the dynamic behavior of the 
vehicle are characterized. For the purpose of simulating a realistic flight, models 
are developed to represent the atmosphere, the geometry and mass properties of the 
vehicle, as well as the aerodynamic and propulsive behavior. These models are 
combined to generate overall forces and moments, which are then integrated by a 
dynamics model to obtain the translational and rotational response of the vehicle. 
The simulation is capable of reproducing the hypersonic portion of a 
six-degree-of-freedom SSTO trajectory over a spherical Earth for a class of 
parameterized AHSV vehicles. For longitudinal flight control, a reduced order 
model of the dynamics is developed. This model predicts the response of the vehicle 
to control inputs using a tabulated representation of the aerodynamic, propulsion, 
and control coefficients. It also comprises all of the information that is available to 
the control system, while the higher fidelity models are treated as the true 
environment. 

4.1 Vehicle Geometry Model 

The need for good performance over a wide range of flight conditions, and the 
close coupling between the aerodynamic and propulsive requirements, makes the 

geometric design of an AHSV critically important. The model developed for this 
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research was motivated by the desire to adequately characterize the important 

physical features of an AHSV, while taking into consideration the computational 

effort required to analyze the flow field (over a complex geometry) in a simulation 

that strives to operate in near real-time. The result is a three-dimensional 

solid-object vehicle geometry represented by 50 polygonal surfaces. These surfaces 

are generated as functions of 18 design variables of which 14 are independent. These 

parameters can be freely changed to create a wide range of possible vehicle 
realizations. A typical AHSV design is shown in Figure 4.1. 

Figure 4.1: A Typical AHSV Geometric Design 
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The geometric design variables, listed below in Table 4.1, are a combination of 
important aerodynamic and propulsion parameters, some of which are specific to  
air-breathing hypersonic vehicles. 

(1) Vehicle Length (h) 
(2) Wing Span ( b )  
(3) Wing Sweep Angle (6)  
(4)  Body Aspect Ratio (BB) 
(5) Combustor Width (wc) 

(6) Corn bust or Length ( k )  
(7) Capture Height (h) 
(8) Ramp Angle 1 (71) 
(9) Ramp Length 1 (kl) 

(1 0) R m p  Angle 2 (72) 
(11) Ramp Length 2 (Irz) 
(1 2) Nozzle Angle (P) 
(1 3) Nozzle Length (In) 
(1 4)  Nozzle Lip Length (11) 

(1 5) Inlet Height (hi) 

(16) Inlet Angle (73) 
(1 7) Elevon Length (&) 
(1 8) Center Of Mass Bias (CMb) 

Table 4.1 : Geometric Design Variables 

These design variables, along with some other useful dimensions, are 
illustrated in the following figures. 

Figure 4.2a: Physical Dimensions of an AHSV - Side View 
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Top View 

Y b  

Figure 4.2b: Physical Dimensions of an AHSV - Top/Bottom View 
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The following equations define all of the dimensions in the figure above in 
terms of the independent design variables: 

(4.1 a) 
(4.1 b) 
(4.1 c) 
(4.1 d) 
(4.1 e) 
(4.1 f) 

(44) 
(4.1 h) 
(4. li) 

(4. lj) 
(4.1 k) 

(4.11) 

(4. lm) 

(4. ln) 

(4. 10) 

(4.1~) 

(4.1 q) 

The vehicle geometry is constructed by generating the three dimensional 
coordinates of the vertices for all surface panels based on the values of the design 
variables.1 These coordinates are then grouped and ordered in an array of 
polygonal elements. The ordering of the coordinates is done in a manner that 
identifies the direction of the outward normal for each surface panel. This is 

important, since the aerodynamic force on each panel will depend on its orientation 
with respect to the external flow, and which side of the panel is exterior to the 
vehicle. The unit normal vector for each panel is obtained through the cross 
product of the two vectors which connect the pairs of opposing vertices. 

kach surface panel is a four sided polygon. 
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Figure 4.3: Normal Vector Calculation for Surface Panels 

The surface area for each panel is calculated by adding the areas of the two 

triangles A123 and Al34.  Since, for example, 11 yl2 x Y13 11 = I Y12 1 - I Yl3 1 szn(8) is 
the area of the parallelogram 1-2-1'-3, the triangle 1-2-3-1 has half this area. 
Therefore the surface area for a panel is given by, 

The centroid of each panel, which will also be required, can be found by 

averaging the coordinates of the vertices. 
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The full thredimensional geometry of the vehicle is therefore characterized 

by an array of points (coordinates of the vertices), an array of surfaces (groups of 

pointers to  elements of the array of points), and three additional arrays for the 
normal vectors for each panel, the panel areas, and their centroids. An important 

advantage of this representation is that the orientation of the entire vehicle (all 

individual surfaces), with respect to any other coordinate frame, can be easily 
obtained through the simple matrix multiplication of these arrays by transformation 

cosine matrices.2 The geometry model, therefore, only has to generate the required 

arrays for a particular design once, at the beginning of an AHSV flight simulation.3 

4.2 Mass Properties Model 

The dynamic response of the AHSV to aerodynamic and propulsive forces and 
moments depends upon the mass properties of the vehicle. This section presents a 

representative model of the vehicle mass, inertia tensor, and the location of the 
center of mass. The estimation of these mass properties can be divided into 

contributions due to the vehicle structure, fuel, engine, payload, and other 
equipment. For convenience, the internal volume is divided into fuselage and wing 

components. Specific assumptions regarding the location of the payload, fuel, or 

equipment are avoided. Instead, all internally located mass contributions are 

combined and represented by one average internal density. An adjustable bias for 

the location of the center-of-mass (CMb) is used to represent the (limited) design 
freedom in terms of the mass distribution.4 

2 ~ o r e ~ v e r ,  since the array of surfaces only contains pointers to the coordinates in the array of 
points (i e. it does not directly contain any dimensions), this array never requires any 
transformations. The array of surface areas is also clearly invariant to any changes in the 
coordinate system. 

'with the exception that subsequent changes to the vehicle geometry, such as a deflection of the 
elevon aerosurfaces, do require some of the surfaces to be recalculated. 

4 ~ o r  a more detailed discussion on the estimation of mass properties for space transportation 
systems see reference [ ~ a c l ]  . 
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In this section, all values will be referenced to a vehicle-geometry coordinate 

system as shown in Figure 4.4. The origin of these axes is at the vehicle nose with 
the positive x-axis toward the rear of the vehicle; the y-axis is in the starboard 

direction; and the z-axis points up. 

Figure 4.4: Vehicle-Geometry Coordinate System 

Beginning with the vehicle fuselage and wing structure, the total surface area 

(&) can be calculated from, 
N 

where Si is the surface area of the zth of N surfaces. 
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Using p, as the density of the structural material, the total surface structural mass 
is given by, 

Ms =ps ST (4.6) 
and the center of mass for the external structure can be expressed as, 

where the coordinate (Zi,jji,zi) is the centroid of the ith surface. 

The structural moments of inertia are, 
N 

I,,, = I,, = 0 (from symmetry) 

In order to estimate the remaining mass properties, the interior volume of the 
vehicle is required. The geometry of the fuselage has been modelled as half of an 
elliptic cone (see Figure 4.1). The dimensions of the cone are specified by the 
vehicle length (I), the combustor width (w,), and the body aspect ratio ( A l e ) .  
Integrating the interior of the half-cone and omitting the details, the volume of the 
fuselage is given by, 
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and the mass of this section is, 

Mf = Pv Vf ( 4 . 1 0 )  

where pv is the mean density of the fuel and payload mass contributions. 

The center of mass for the fuselage is taken to be at, 

(2fl P f l  z f )  = (31/4, 0, 0) ( 4 . 1 1 )  

which utilizes the formula for the centroid of a cone to obtain a. The value of Zf is 
taken to be zero since it is assumed to be balanced by the z-component centroid for 
the wing mass. By symmetry, P f  = 0 .  

Integrating the moments of inertias for the fuselage gives, 

To simplify the mass property estimates for the wing, the chordwise cross 

section is approximated by a rectangular section with the same area. The wing 
section, shown in Figure 4.5, has a root thickness (t) equal to the average actual 

root thickness (see also Figure 4.2b). 

' ~ n  genera11 the moments o f  inertia are given b y  the following integrals, 

I = =  j(y?+2)pvdv 1 ~ = j ( 2 + 2 ) ~ ~ d ~  I . = ~ ( z + ~ ~ ) ~ ~ ~ v  
v v v 

I x z = - J y Z z p V d v  I ~ ~ = - J ~ z ~ ~ ~ v  I X ~ = - J ; ~ ~ ~ ~ V  

where Vrepresents the volume o f  the region o f  interest. 
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Integrating the interior of this geometry results in a wing volume and mass 

given by, 

The center of mass for the wing is found to be at, 

- - [3% ; 5n)  
XW - (4.16a) 

- - 
yw = zw = 0 (4.1 6b) 

(again gw by symmetry, and 2, is assumed to be 
balanced by the fuselage contribution ff) 



SECTION 4.2 MASS PROPERTIES MODEL 

Integrating the inertias for the wing geometry gives the formulae,s 

JXW = [A] j b3 PV ( a  - Za) (4.1 7a) 

- 5 3 
~ y w  = t PV ( % - a )  [i Za2 + 2. ( a - 4  + ZU ( a - k ) ' ]  (4.1 7b) 

39 b2 + 260 za2 + 480 Z ~ Q  + 660 a2 
3600 1 (4.1 7c) 

For the scramjet engine, the mass properties are estimated using a 
characteristic mass per inlet area (p,). The inlet area is given by w, x hi, therefore, 
the engine mass is given by, 

The center of mass for the engine is assumed to be at the center of the combustion 

chamber (see Figures 4.2a-b), so that 

5pt 3,) = ( ~ i + i l c )  0) -G -+hi) 

The inertias for the engine are given by, 

The results above for the structure, fuselage, wing, and propulsion components 
are now combined to give the mass properties for the entire vehicle. 

Total Mass: M T = M ~ + M ~ + M , + M ~  

' ~ h e s e  integrals were somewhat involved due to the complex geometry of the wing section. The 
Mathematica software package was used to verify the results. 
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Center Of Mass: 3,. = a [ Ms 3, + Mr Zr + Mw Zw + Mp 4 I 

Moments Of Inertia: IX = IXS + Ixr  + IXW + IxP 
IY = Iys  + I y f  + Iyw + Iyp 
I Z  = 12s + Izf + Izw + Izp 

1x2 = Ixzs + Ixz f  + Ixzw + I x z p  

Also, since the moments of inertia will later be needed with respect to the 
center of mass, the shifted values are given below: 

Clearly, the final mass properties for a particular vehicle design will depend 

upon the values for the three densities ps,  p p ,  and p,. A basis for estimating the 
structural mass density for the wing and fuselage of a single-stag+to-orbit vehicle 

is presented in reference [Hat3]. A value of 34.5 kilograms per square meter of 
external surface area is obtained ( p ,  = 34.5 kg/m2). The mass of the propulsion 
system per unit of inlet area ( p p )  is derived in reference [Hat4]. A representative 
value for p p  is found to be 1,435 kg/m2. 

Also following [HatS], the mean internal density pv can be estimated using 
some approximate relationships based on Space Shuttle data (and a few 
assumptions). First, note that the AHSV interior volume is the sum of the fuselage 
and wing volumes: 
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For simplicity, an AHSV payload capacity of 30,000 Ibs (Mpayload = 13,600 kg) is 

assumed. Based on the shuttle capacity and volume (65,000 lbs and 10,600 ft3), this 

corresponds to a payload volume of 4,890 f t3  (Vpayload = 138.6 m3). For the crew 
compartment 2,000 f t 3  ( Voe, = 56.7 m3) are reserved (compared to the shuttle's 

2,525 ft3). The remaining internal volume is divided between the propellant, 

propellant storage tanks, other equipment, and unusable space. I t  is assumed that 
80% of this volume is available for propellant storage. 

The mass of the cryogenic storage tanks is approximately 10.3 kg for each cubic 
meter of propellant, so that 

and 20,000 lbs of fixed equipment is assumed (Mequip = 9,090 kg). Also from [HatS], 
the mass of the orbital maneuvering system (OMS) is approximately 15% of the 
vehicle dry mass. 

Moms = 0.15 [ M s  + Mp + Mtanks + Mequip] (4.28) 

It is also assumed that 5% of the hydrogen fuel is required for the final 

exo-atmospheric portion of the trajectory to orbit. The mass of on-board oxidizer 
required to burn this fuel is approximately five times the mass of hydrogen.7 

Solving for the propellant mass, 

from, 

Vhydrogen + Voxygen = Vprop  

Poxygen Voxygen = 5 (0.05 Phydrogen Vhydrogen) 

we have, 

Vhydrogen = V p r o p / ( l  f 0.25 phYdrogen/~oxygen)  

Voxygen = Vprop  - Vhydrogen 

and then, 

Mprop = Phydrogen Vhydrogen + Poxygen Voxygen 

where from [Thrl,Hat3], 

Phydrogen # 80.0 kg/m3 (for hydrogen slush) 
/Ioxygen = 1,145. kg/m3 (liquid) 

 or the rocket mode, 0. 625 times the stoichiometric mass ratio is required [ ~ a t 3 ] .  
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Finally, the mean internal density for the vehicle is obtained by the following 

expression: 

Pv = M ~ r ~ D  + Mtanks + MequiD + MDavload + Moms 
Vtotal 

Now that the densities ps, pp, and pv have been specified, all of the terms in 
equations (4.21-4.24) are completely defined in the calculations of this section. The 
mass properties can therefore be computed for any AHSV design geometry. Since 
the actual vehicle design process allows some flexibility in the placement of cargo, 
fuel, and equipment, an additional term is included to bias the location of the center 
of mass (C.M.) for the overall vehicle. The value of CMb is restricted to the range 

(0 CMb 5 1.0), which corresponds to a forward and down C.M. shift given by, 

As a final note, the mass properties model must be continually updated 
throughout the course of a simulation due to the effect of the expenditure of fuel on 
the total mass and inertias. This is simply accounted for by adjusting the mean 

internal density pv accordingly and recomputing the affected equations. 

4.3 Atmospheric Model 

The properties of the atmosphere at any given altitude are represented by a 
model which was derived from the shuttle simulation software at the NASA Dryden 
Flight Research Center. The atmospheric data from this model is reproduced in 
reference [Hats]. Ambient temperature, pressure, density, and speed of sound are 
tabulated as a function of altitude at increments of 1 kilometer up to  a maximum of 
244 kilometers. The atmospheric profiles are shown in Figure 4.6. 
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Temperature (K) Pressure (Pa) Density (kgIm3) Speed of Sound (m/s) 

Figure 4.6: Tabulated Atmospheric Data from Dryden Shuttle Simulation 

For the AHSV application, it is assumed that the atmosphere is stationary 
with respect to the rotating Earth's surface. Wind data, which is part of the 
original shuttle simulation model, is therefore not used. Atmospheric disturbances 
are included, however, and this is achieved by artificially adding noise to the air 
density, ambient temperature, angle of attack, and airspeed. These disturbances are 
modelled as gauss-markov processes with adjust able variance and correlation time 
constants. 
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The atmospheric model is called repeatedly during the course of an AHSV 
simulation. A linear interpolation scheme is used to determine the ambient 

conditions for the current altitude. In the interest of storage and computational 

efficiency, a subset of the entire data set, representing a 10 km range of altitudes, is 

stored in memory at any given time. As the vehicle transitions beyond this range a 

new set of data is loaded into memory prior to the next interpolation. 

4.4 Aerodynamics Model 

In this section a model is developed for the aerodynamic forces and moments 

experienced by an AHSV. In order to limit the scope of the modelling effort 

required for this research, only the hypersonic portion of the Earth-to-orbit 
trajectory is considered. This is the flight regime that is unique to  AHSV's, and is 

perhaps the most challenging (in terms of structures, materials, propulsion, and 
controls) for many of the reasons already discussed in Chapter 2. Since the 

conditions of high Mach number flight cannot be completely reproduced in currently 

available wind tunnels, and since many of the complex theoretical aspects of 

hypersonic flow remain poorly understood, the accurate prediction of aerodynamic 

behavior, by empirical or numerical means, is a difficult task. Moreover, the 

complexity of a high temperature, high Reynolds number, chemically reacting flow 

within shock and boundary layers, means that any numerical flow analysis model 

would be computationally expensive (even for the evaluation of one flight 
condition). 

For the purposes of this research, however, a representative model is desired 
which captures the important hypersonic aerodynamic characteristics of a particular 
vehicle design, while being simple enough to be applicable to a real-time simulation. 

This is achieved by using a Newtonian flow approximation to obtain pressure 

coefficients for each of the 50 panels on the vehicle surface, and by estimating the 
frictional forces based on laminar and turbulent flow models. Boundary layer 

transition is predicted from the local flow properties which are derived using oblique 

shock and expansion fan calculations. 
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4.4.1 HYPERSONIC FLOW 

The most important distinction between hypersonic flow and subsonic or 

supersonic flow, is that the kinetic energy of a hypersonic gas far exceeds the 
thermal energy. Since the probabilistic thermal speed of the gas molecules is given 
by JZltT, the hypersonic condition can be expressed as, 

Noting that the Mach number is defined by, 

it is clear that the Mach number is inversely proportional to the ratio in (4.32a). 
Therefore, for hypersonic flow, equations (4.32a-b) imply that the Mach number 
must be large Ma >> 1. Usually this is taken to mean that the hypersonic flow 
regime begins at approximately Mach 6 and is well developed by Mach 10. [Kapl] 

When the kinetic energy of a gas exceeds the thermal energy, the result is 

extremely high gas temperatures behind shock waves and inside boundary layers. In 
fact, the gas temperature rises with the square of any velocity changes imparted to  
the flow, and if the temperature is high enough, the simple ideal gas model is no 

longer valid (due to excitation and dissociation of the gas molecules) and the 

assumption that the atmosphere behaves as a continuum breaks down.* Hypersonic 
flow can therefore also be characterized as a condition in which chemically reacting 
gases occur within the shock and boundary layers. 

The flow surrounding a vehicle can only be considered to be in a state of 

chemical and kinetic equilibrium (i.e. a continuum flow) as long as the rate of 

molecular collisions is high. Once the molecular mean free path approaches the 

dimensions of the vehicle the result is a free molecular flow. A quantitative 
parameter used to distinguish bet ween continuum and nonequilibrium flow is the 

%his is also true for low density flows. 
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Molecu 1 ar Mean Free Path X 
Kn= Veh ic l e  Character is t ic  Lengfh =-r 
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If the Knudsen number is high (typically Kn > 5) the vehicle is operating in a 

regime of free molecular flow. Under these conditions the aerodynamic 

characteristics of the vehicle are governed by the kinetics of the collisions between 

individual gas molecules and the vehicle surfaces. [Kapl] 

Another distinguishing characteristic of hypersonic flow is the so-called 
viscous interaction phenomenon. Considering a flat plate in a hypersonic flow, 

much of the flow's kinetic energy is dissipated within the boundary layer giving rise 

to very high temperatures. The flow density and viscosity coefficient within the 

boundary layer increase accordingly, and this results in a rapidly growing boundary 

layer. In fact, the thickness of a laminar hypersonic boundary layer is proportional 

to the square of the freestream Mach number and inversely proportional to the 
square root of the local Reynolds number (6  a M a 2 / m .  The extreme thickness of 

the laminar hypersonic boundary layer may cause an interaction with the outer 

inviscid flow that is not significant for subsonic or supersonic conditions. For 

surfaces inclined to the freestream flow, high Mach numbers correspond to thin 

shock layers. I t  is therefore possible for the shock and boundary layers to merge. 

Under these conditions the entire shock layer behaves as a viscous flow and the 
conventional boundary layer analysis methods are no longer applicable.9 [And21 

The fact that high Mach number flows result in very thin shock layers is a 

very useful property. It can be shown from oblique shock theory (section 4.4.2) that 

for a given flow turning angle (corresponding to the inclination of a surface with 
respect to the flow) the shock angle decreases with increasing Mach number. For 

high Mach numbers this means that the flow streamlines do not turn until they axe 

very close to the surface, and once beyond the shock they move parallel to the 

surface. The situation is illustrated in Figure 4.7. [And21 

 he viscous interaction phenomenon may not be a major problem for air-breathing hypersonic 
vehiclesr since the dynamic pressure requirements of the engine demand a trajectory of high 
enough air density that most of the boundary layer is expected to be turbulent. 
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Figure 4.7: The  Hypersonic Shock Layer 

The behavior described above for the hypersonic streamlines motivates the 
application of a Newtonian flow approximation to the modelling of the 
aerodynamics for hypersonic vehicles. Newton's method assumes that the flow can 
be treated as a stream of particles. When a flow particle strikes another surface, the 
momentum normal to the surface is transmitted, the tangential momentum is 

preserved, and the flow continues in a direction parallel to the surface. While this 
approximation is invalid for flow at low speeds, it has been shown to work 
extremely well for predicting aerodynamic forces under hypersonic conditions. This 
approach is commonly used to predict pressure forces and to determine aerodynamic 
coefficients for vehicles experiencing high Mach number or free molecular flows. 

4.4.2 HYPERSONIC AERODYNAMICS MODEL 

For the prediction of the aerodynamic forces experienced by an AHSV in 

hypersonic flight, there are two contributing effects that must be considered: 

pressure forces, and shear forces. The pressure forces are associated with the 
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momentum changes of the flow as it is forced to turn by the presence of the vehicle 
geometry. The shear forces are a result of the viscous flow properties, which for 
hypersonic flow are associated with large velocity and temperature gradients. Heat 
transfer, in this case, is the dominating factor influencing boundary layer separation 
(laminar/turbulent transition) and therefore the frictional forces. In this section, a 
Newtonian flow model is used to approximate the pressure forces. A local flow 
analysis is performed to predict transition and to estimate the shear forces from the 
local skin friction coefficients. Flow calculations are made on a panel by panel 
basis, and the overall aerodynamic forces and moments are obtained through a 
summation of force vectors (applied at different locations). 

Pressure Forces 

The principal advantage of using Newtonian flow theory to approximate 

hypersonic flows is that the pressure coefficient (Cp) is a function only of the local 
geometry. 

Cp = k(&g2 = k sin2($) 

In this equation, 5 is the freestream unit velocity vector, fi is the local surface 
normal unit vector (pointing into the surface), @ is the angle of incidence between 
the flow and the surface, and k is the proportionality constant. In the classical 
Newtonian theory k = 2. This value comes from the assumption that all flow 
momentum normal to the surface is lost, while the tangential momentum is 
retained. 

The definition of the pressure coefficient is given by, 

and from the momentum equation (for the assumption above), 

where the subscript '0' refers to the freestream values. Substituting (4.36) into 
(4.35) gives, 

Cp = 2 sin2($) (4.37) 

and therefore k = 2. 
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Other values for k are often used in order to best fit empirical data 

corresponding to particular shapes. For example, experimental data suggests that 
for blunt bodies the best value for k is the maximum pressure coefficient behind 
normal shocks. For low incidence angles, a value of k = y+l gives good results and 
approaches the exact shock calculation for Cp at high Mach numbers. For complex 
geometries an approach can be taken in which different values of k are used for each 
surface component. Since the geometric configuration of the AHSV can be generally 
classified as a slender design, the modified Newtonian value of k = y+1 will be 
used in this model. For a detailed coverage of Newtonian flow theory see references 
[Hayl, Coll, Jasl, and Pikl]. The application and validation of this approach to 
the determination of forces on arbitrary thredimensional shapes is well 
documented in reference [Genl]. 

The tot a1 pressure force exerted by the flow on the vehicle can be expressed as, 

where the pressure coefficient Cp and the normal vector 6 are functions of position 
(z,y,z), and 'A '  represents the exterior surface of the vehicle. Not explicitely shown 
in equation (4.38) is the complication that not all exterior surfaces have 
unobstructed projections into the flow. For any orientation of the vehicle, some of 
the surfaces will face downstream, and others may be blocked by other upstream 

surfaces. The first situation is easily rectified by not integrating external surface 
regions with downstream normal projections (i.e. 5 - i  < 0).  The second situation, 
which is referred to as aerodynamic shadowing, can occur only for geometric shapes 
that are not convex. Typically, for hypersonic aircraft, this problem affects 
rearward aerodynamic surfaces which can be shadowed by the body or wings. 

Since the geometric model represents the AHSV configuration using a number 
of polygonal panels, the integral in equation (4.38) can be replaced by the following 
sum: 

N 1 
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Note that the pressure coefficient and the normal vector only have one value per 

panel (Cpi, b), since each of the N panels is planar (with surface area Si). The 
value of Cpi is given by, 

where the angle $i is the incidence angle between the ith surface and the freestream 
flow. 

For convenience, the AHSV geometry model actually keeps track of outward 
pointing normals (denoted by 5,) for each panel. An array of normal vectors is 
stored in body-coordinates, and a transformation cosine matrix between 
body-oordinate and wind-coordinate axes is continually updated during 
simulation. The flow incidence angle for each panel is then easily calculated by 
transforming the normal vectors to the wind-coordinate system and finding the 

complement to the angle between the normal vector and the freestream velocity 

vector. The geometry is illustrated in Figure 4.8. 

Figure 4.8: Angle of Incidence for Surface Panels 



SECTION 4.4 AERODYNAMICS MODEL 

Since the vector & is a unit vector, when expressed in the wind-oordinate 
system its elements are simply the cosines of the angles between & and the 

coordinate axes. Therefore, the angle d i  in the figure is the inverse cosine of the 

first element of &, and if & = [ ~ g ~  noy %AT (in wind axes), the incidence angle is 

given by, 

In order to facilitate the calculation of aerodynamic moments, it is also 
assumed that the force on each panel acts at the surface centroid. The force vector 

for each panel can be expressed in body coordinates as, 

Denoting Ti as the vector from the vehicle center of mass to the centroid of the ith 

panel, the total aerodynamic moment (due to pressure forces) is then given by, 
N N 

Aerodynamic shadowing is included in the modelio by projecting the wing 

planform area and the rear elevon surface areas into a plane perpendicular to the 
freestream flow. By examining the overlapping projections, the degree of elevon 

shadowing and the resulting effective area can be computed. For a given vehicle 

geometry (wing sweep angle and elevon length), the fraction of elevon surface that is 
hidden behind the triangular shadow of the wing depends on the angle of attack and 

elevon deflection angle. There are two possible scenarios, shown in Figure 4.9, for 

which the effective elevon area is decreased. In the figure, Se denotes the elevon 

surface area, and Se is the area of the effective (unshadowed) portion. 

losince large sideslip angles are not expected to be part of the AHSV trajectory, 
shadowing of the aerosurfaces due to the fuselage is not included in the model. 
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Case 1: Case 2: 
Effective Area Effective Area 

Figure 4.9: Aerodynamic Shadowing of the Elevons 

A final correction is now made to the overall Newtonian flow model for the 
AHSV in order to improve the pressure coefficient estimate for the second forebody 
ramp and the elevon surfaces. In computing pressure coefficients based only on 
local geometry, the simple Newtonian approximation assumes that the flow over 
each surface is independent. In actual fact, upstream surfaces do affect the flow 
over downstream surfaces, however, empirical data suggests that the Newtonian 
approximation works quite well for geometries that are convex. The same is not 

true for concave geometries, and the junction between the first and second ramp of 
the AHSV configuration presents such a surface. Since the second ramp area 
intercepts a large fraction of oncoming flow, the effect of an improved value for the 
pressure coefficient may be significant. The only other surfaces that may end up 
downstream of a concave corner are the elevons. Since these surfaces determine the 
pitch attitude control authority for the vehicle, an improved estimate for these 
pressure coefficients is also desirable. 
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For the forebody, a direct approach to improving the model would be to 
correct the properties of the flow incident on the second ramp by accounting for the 
changes caused by the first ramp.11 Figure 4.10 defines the terms which are used in 
the following discussion. - 

Freestream 
_____t 

Flow - 

Figure 4.10: Flow Properties a t  the First and Second Ramp 

Directly applying the simple Newtonian flow approximation to estimate the 
pressure coefficients for each ramp would give, 

= (7+1) sin2(sJ 
Cpl= t p o u o  (4.44a) 

P2-P02 = (7+1) sin2(bl+b2) 
Cp2= t p o u o  (4.44b) 

The corrected value for Cp2 is obtained as follows: 

Now, from the momentum equation (and the Newtonian flow assumption), 

P2 - PI = pl u12 s2n2(62) 

'%here is  an implicit assumption that the sideslip angle is small enough that the first ramp 
encounters the freestream flow first. 
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and using Ul = Uo cos(bl), 

Cp2 = Cp + 2 fi cos2 (63 sin2(&) 
[Pol 

For a perfect gas P = p R T, and therefore, 

which becomes, 

by making use of the momentum and energy equations, 

and, TI - To = -~-q- u0 sin2(bl) 

Finally, Cp2 can be expressed as,la 

CHAPTER 4 

The pressure coefficients for the elevon surfaces can be corrected in exactly the 
same manner. In that case, Cpl would represent the pressure coefficient for the 
wings, and the correction would only be necessary, of course, for certain 
combinations of the angle of attack and elevon deflection angle. 

Shear Forces 

In hypersonic flight, the most difficult aerodynamic forces to  predict 
accurately are those due to friction. A complete theoretical understanding of the 

three-dimensional hypersonic boundary layer does not yet exist, and approximate 
numerical codes are computationally expensive. In this model, an engineering 

approach is taken to estimate the local skin friction coefficients. The entire AHSV 

1 2 ~ h i s  correction approaches the correct two-shock calculation for high Mach numbers. It 
should be used with caution, however, since it  can actually be worse than the simple llewtonian 
estimate for low Mach numbers. 
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geometry is approximated (in cross section) by a wedge composed of two flat plates 

that bound the upper and lower surfaces. Local flow conditions for any point on the 
vehicle are then estimated using an inviscid flow analysis based upon oblique shock 

or expansion fan calculations. The local Mach and Reynolds numbers are then used 
to predict the location of the boundary layer transition on the basis of empirical 

data. In this manner, the distribution of laminar and turbulent flow over the 
vehicle surface panels is established. A reasonable value for the vehicle surface 

temperature is assumed, and the local laminar/turbulent skin friction coefficients 

are predicted from theoretical boundary layer results for flat plates. As with the 
aerodynamic pressure forces, these coefficients are integrated over the vehicle 

surfaces to obtain net forces and moments. Reference [Genl] utilizes a similar 

approach for the analysis of viscous forces on arbitrary three-dimensional bodies in 
hypersonic flows. 

The shape of the wedge that encompasses the AHSV geometry is shown in 

Figure 4.11. The upper surfaces are contained within a flat plate at  an angle equal 

to the angle of the upper fuselage. The lower surfaces are bounded by another plate 
which extends from the vehicle nose at an angle that intersects the bottom of the 
inlet lip. 

Figure 4.11: Approximate Wedge Representation for the AHSV Geometry 
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The flow turning angles for the top and bottom surfaces are approximated by, 
& = f $ ~ - a  (4.46a) 

OD = + a (4.46b) 
where a is the angle of attack for the vehicle. In order to estimate local inviscid 
flow properties (for both the top and bottom surfaces), a shock calculation is done if 
the turning angle is greater than zero, and an expansion fan calculation is done if it 
is less than zero. These procedures are now described in detail. 

Obliaue Shock Calculation 

An excellent coverage of the subject of supersonic flow and a discussion of 
normal and oblique shock theory is found in reference [Liel]. Here, an algorithm is 
developed for the determination of the flow conditions downstream of an oblique 
shock for a given flow turning angle and Mach number. A typical oblique shock 
configuration for the approximate AHSV wedge geometry is illustrated in Figure 
4.12. The flow turning angle is 0, and B is the shock angle. 

Figure 4.12: A Typical Oblique Shock for the AHSV Wedge Geometry 
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The relationship between the turning angle, the shock angle, and the Mach 

number for an oblique shock is given by, 

If the angle of attack is too large for a given wedge angle and Mach number, it may 
not be possible to satisfy equation (4.47). This means that the required flow turning 

angle is not possible with an oblique shock. Physically what occurs is that the shock 

detaches from the bow and locally forms a normal shock that tapers back and 

becomes oblique farther downstream. The flow in the region of the bow becomes 

subsonic and can therefore negotiate the larger turning angle. Since the flow 
properties are much more difficult to analyze under these conditions, the shock 
model for the AHSV is restricted to the case of attached shocks. Since this is also a 
desirable condition for the scramjet engine, it does not present a serious limitation. 

A test for the existence of an oblique shock solution can be derived from 
equation (4.47) by differentiating with respect to  P. 13 This gives an expression for 
the maximum possible turning angle Omax. 

where, 

T = - [ ( ~ ~ + 1 ) @ - 4 +  'Ya JX [ ( ~ a + l ) ~ (  + 8 A-I)@ + 16 I 'I (4.48bJ 

Now, if O > Omax then the vehicle attitude is beyond the range of validity for 
the model. Otherwise, equation (4.47) is solved iteratively for the shock angle. A 
close estimate of for small turning angles is given below, and can be used as a 
starting point in the iteration. 

1 3 ~ h e  curves of shock angle, as a function of Mach number, have peaks at the maximum turning 
angle. See figure 4. 2, page 87, of reference [ ~ i e l ] .  
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Newton's method is used to find the exact shock angle. Rewriting equation (4.47) in 

a more useful form by making the substitutions r = s i n 2 ( ,  and p = tan(8) gives, 

and the derivative, 

Solving for r iteratively, 

rn+l = rn - ~ r n )  [girn)] -' 

and the shock angle is obtained from P = sin-I(JiJ. 

The downstream conditions are then given by the following oblique shock 

relations once P is known: 

Ex~ansion Fan Calculation 

If the £low turning angle is negative ( 0  c O), the flow expands through a series 
of Mach waves that originate from the vehicle nose. The downstream Mach number 
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can be found by using the Prandtl-Meyer expansion fan equation, 

The difference between the upstream .and downstream Prandtl-Meyer angles is 

equal to the expansion angle 8. 

The value of Ml can be found iteratively using Newton's method by making the 

following simplifications: 

[ .+I]' ~ e t  c =  I- 'Ya -1 = K = ~ + W ( M ~ )  

Equation (4.55) can then be written as w(Ml) - K = 0 or, 

where. 

and iterating for T, . 

the downstream Mach number is obtained from Ml = d m .  

Once the downstream Mach number is known, since the expansion of the flow 

is an isentropic process, the one-dimensional adiabatic compressible flow equations 

can be used to obtain the remaining downstream flow properties: 
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Boundarv Laver Transition 

It is difficult to accurately predict the location of the transition point for 
hypersonic boundary layers since very little data is available on this subject, 
particularly for the higher Mach numbers. According to [LewS], published wind 
tunnel transition data only extends up to Mach 8, and even these results conflict 
with flight test data. With very little else to work with, the transition model for 
the AHSV is based upon the sharp cone transition data from reference [Shell, which 
extends from Mach 1 all the way up to Mach 16. 14 This data gives transition point 

as a function of the local Mach and Reynolds numbers. An excellent fit to this data 
for Mach numbers in the hypersonic range is found to be given by, 

Re, NN 4.87~105 e -0.333 M 

where, 
U s Rex E 
P 

is the local Reynolds number, is the viscosity coefficient for air, and x is the local 

length along the surface. Since the variation of viscosity with altitude is very small 
compared to the changes in density and velocity along the AHSV trajectory, a 
constant value of p = 1.58~10-5 kg/(m s) is used. This approximation is within 10% 

of the actual value for a range of altitudes up to at least 100,000 fE. The transition 
length (T,) for a given flight condition is therefore, 

where the density, velocity, and Mach number ( p ,  U, M) are the local values 
obtained from the shock or expansion fan equations for the upper and lower wedge 
surfaces. The criteria for laminar and turbulent boundary layer flows are, 

z < Tx 
If { } the flow is { lami nar 

2 2 TX t u  r bulent 

'*HOW closely this cone data represents transition on a flat plate is uncertain. 
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where the length x is the distance from the vehicle nose to a local position on one of 
the vehicle surface panels. 

The procedure for determining the distribution of laminar and turbulent 
panels begins by testing the four vertices of each surface against the transition 

length. If all corners are within the laminar flow regime then the entire panel is 

designated as a laminar surface. Similarly, the panel can be designated as being 
entirely turbulent. For these cases, the appropriate boundary layer model is used to 

compute skin friction coefficients for each of the panel vertices, and the composite 
coefficient for the panel is taken to be the mean of these values. In the case that the 
panel is split (partially laminar and partially turbulent), the appropriate skin 

friction coefficients are evaluated for each corner, and the overall coefficient for the 
panel is estimated by a weighted mean. 

Laminar 1 x Turbulent 
4 

Panels Panels 

Transition Panel , 

Figure 4.13: Distribution o f  Laminar and Turbulent Surface Panels 

Laminar Panel: = C Gi/4 

Turbulent Panel: C!f = C Qi/4 
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Laminar Skin Friction Coefficient 

For surface coordinates that are within the laminar flow regime, the skin 
friction coefficient is calculated using a laminar compressible boundary layer model 
for flat plates with zero pressure gradients. The details of the model are given in 

reference [Marl], which presents a chart of friction coefficient as a function of local 
Reynolds number and Mach number. A notable characteristic of the model is that 

the results are only slightly sensitive to wall temperature. Therefore, the effects of 
surface cooling can be. safely neglected for this case. An accurate fit to the model is 
found to be given by the following relationship, which is reproduced in Figure 4.14 

below. 

Cf - - 2 [0.3 + 0.364 e 
laminar 

Laminar Skin Friction Model 
. .  . . . . .  

, . . .  . . .  . . .  : : : :  - . .  , . . .  . . . .  

. . . .  . . . .  . . , .  . . . .  . . . .  . . .  ? . . . 
0 5 10 15 20 

Local Mach Number 

Figure 4.14: Skin Friction for Laminar Compressible Boundary Layers 
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Turbulent Skin Friction Coefficient 

For the turbulent surface regions, reference [Marl] presents the flat plate 

compressible turbulent boundary layer model of Van Driest. For turbulent flow, the 
friction coefficient is seen to decrease rapidly with increasing wall temperature (T,) 
as well as with Mach number. Therefore, in this case, the skin friction coefficient 
depends upon local Reynolds number, Mach number, and the temperature ratio 
(Tw/To), where T o  is the freestream temperature. The chart, reproduced in Figure 
4.15, gives the skin friction coefficient in terms of the Reynolds number based on 

boundary layer thickness (rat her than length). 

Turbulent Skin Friction Model 

1 3 S 10 20 30 50 100 

Figure 4.15: Skin Friction for Turbulent Compressible Boundary Layers 

The local Reynolds number is first converted to a thickness value using (from 

[Marl]), 

log (Re6) = 0.95 log (Re,) - 1.42 
10 10 

(4.66) 

and the skin friction coefficient is obtained using the following curve fit to the 

model: 
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where, 

and the coefficients bo.. .  bs are given by, 

[bo, bl, bz, b3] = [3.935, -4.459, 2.129, 4.39551 

CHAPTER 4 

(4.68) 

Net Forces & Moments 

Once the skin friction coefficients have been estimated for each surface panel, 
the overall friction forces and moments for the vehicle can be computed. The shear 

force on the zth panel can be expressed as, 

where the density and velocity are local values, and the unit vector ji is in the 

direction of the friction force. From geometry it is not too difficult to show that 

(for the outward pointing unit normal vector defined by &, = [%, %y 

where is the angle of incidence ($i = lr/2 - COS-i(nox)), (iw, iw, iw) are the unit 
axes for wind coordinates, and the angle ti is given by ti = tan-l(%,/%,). The 

total shear force on the vehicle is, 

N N 

and the shear moment is given by, 

N N 

where Ti, once again, is the vector from the vehicle center of mass to the centroid of 

the zth panel. 
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Finally, the total aerodynamic forces and moments are now given as the sum 

of the pressure and shear components: 

4.5 Propulsion Model 

As mentioned earlier, in this research the models for the AHSV are limited to 

the hypersonic portion of the trajectory from Earth to orbit. This is, in part, to 

limit the scope of the .problem, but also because the hypersonic flight regime 
remains largely unexplored and is of primary interest for this class of vehicles. For 
the range of Mach numbers that will be considered (Mach 6 to Mach 16), the 
scramjet engine is currently the only viable option for air-breathing propulsion. In 

this section, the important features of a representative scramjet propulsion model 

are presented. 

4.5.1 THE SUPERSONIC COMBUSTION RAMJET (SCRAMJET) 

As flight speed increases beyond Mach 3, the utility of conventional aircraft 
propulsion systems declines rapidly due to the effects of extreme temperatures on 
compressor blades and other turbomachinery. The maximum flight velocity for a 

turbojet engine is limited by the temperature constraints required to assure the 

integrity of the internal components. At higher Mach numbers, the ramjet 

propulsion system outperforms the turbojet, since the required flow compression can 

be achieved by ramming the airflow past compression surfaces, without expending 
the energy to drive turbines or a compressor. Beyond Mach 6, however, the ramjet 
engine also suffers from extreme temperatures in the inlet, and becomes inefficient 

due to losses in total pressure across the compression shocks. At very high Mach 

numbers, it is possible to achieve air-breathing propulsion through the use of a 
scramjet propulsion cycle. The scramjet engine avoids the problems above by 

mixing and burning the fuel within a supersonic airstream. A comparison of the 

relative efficiencies of the various propulsion cycles, measured in terms of ISP 
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(specific impulse), is presented in Figure 2.1 of reference [Matl]. The applicable 

range of Mach numbers for each type of propulsion is also discussed in detail. 

The fundamental principle behind the operation of a scramjet engine is the 

compression of the inlet flow through a series of oblique shocks and the subsequent 
injection and combustion of the fuel at supersonic speeds. Since the flow through 

the combustor section is supersonic, the residence time of the flow and, therefore, 
the time available for the combustion process is typically very short. Hydrogen is 

therefore considered to be the only viable fuel for a SSTO vehicle, due to its high 

combustion rate and high specific impulse. 

Experimental results with scramjet engines have demonstrated that a large 

mass flow of air and a large expansion surface are necessary for efficient operation at  
hypersonic speeds. This has lead to the current concept of an airframe-integrated 

scramjet engine [Matl]. For the AHSV configuration, this means that the entire 

forebody of the vehicle acts as an inlet compression surface, and the entire aftbody 
undersurface acts as an expansion nozzle. The successful integration of the airframe 

(aerodynamics) and propulsion system is one of the most challenging design issues 

facing the development of an AHSV. Some discussion on this topic was presented in 

Chapter 2, and it is addressed in detail in references [Edwl, Weil]. 

Figure 4.16 illustrates the geometry of an airframe-integrated scramjet 

propulsion system. In general, the forebody compression can be accomplished with 
a smooth surface, or through a series of compression ramps as shown in the figure.15 
Oblique shocks are formed as a result of the flow turning angles that are enforced by 

the forebody geometry and orientation with respect to the flow. These shocks 

compress the incoming flow, decrease the Mach number, and guide the flow toward 
the inlet to the combustor. Inside the combustor, fuel struts inject hydrogen into 

the airstream, and the combustion process adds energy to the flow by increasing its 

1 5 ~ o r  the analysis in this research the forebody is modelled as a series of two ramps. 
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temperature. Thrust is generated from the pressure forces on the aft undersurface of 
the vehicle as the flow expands and cools in the nozzle (converting thermal energy 
into kinetic energy).ls 

I Compression lnlet 
Combustor 

Nozzle tip 
Ramps 

Section 

Figure 4.16: An Airframe-lntegrated Scramjet Propulsion System 

Although the scramjet engine is the primary development that makes it 
possible to achieve hypersonic air-breathing flight, it is also the source of many 
difficulties. The fact that the engine's performance is so closely coupled to the 
airframe design also means that it is very sensitive to attitude. The vehicle's angle 
of attack profoundly affects the character of the forebody shocks, which in turn 
affect the character of the flow entering the combustor. Inlet temperature, pressure, 
and mass flow directly vary with attitude, as do the effects of local heating, spillage 

drag, shock ingestion, and inlet boundary layer thickness. The one-sided nature of 

I6note that for the AHSV (or airframe-integrated) configuration, a large fraction of the nozzle 
is only one sided. This property is the source of a myriad of design problems ranging from trim 
penalties associated with undesirable propulsion moments, to the complication of the 
interaction between exhaust gases and the freestream flow under different flight conditions. 
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the nozzle also means that the characteristics of the flow expansion are susceptible 

to effects related to angle of attack. Good performance is also difficult to  achieve 

for a wide range of flight conditions, since the character of the inlet shocks depends 
directly on Mach number as well. For a fixed geometry, there is only one 

combination of Mach number and angle of attack for which performance is optimal 

(a design condition where all shocks coalesce directly on the inlet lip). In all other 

flight conditions performance will be degraded (due to flow spillage, losses, etc.). 

The capability for a variable geometry may be necessary to achieve adequate 

performance over the full trajectory. For an in-depth discussion of the difficulties 

associated with scramjet engine design for hypersonic vehicles see references [LewS, 
Marl, Matl]. 

Even with the capabilities of today's supercomputers, a numerical algorithm 
for the complete three-dimensional flow analysis of a scramjet propulsion system is 
beyond the state-of-the-art. Deficiencies in the current theory, finite 

computational speed, and the scarcity of hypersonic (in-flight) data required for 

code validation, limit the ability of current CFD codes to predict the detailed flow 
properties. 

The important characteristics of such an engine, however, can be modelled 

using approximate methods. One such approach is presented in reference [Matl], 

which performs a detailed numerical analysis of the flow through the inlet, 
combustor, and nozzle sections of a scramjet engine. Some assumptions and 

approximations are made to facilitate the analysis (such as neglecting finite rate 
chemistry), but the results are still useful in comparing the performance of different 
designs. 

For the purposes of this research, a propulsion model is desired that can 

realistically represent the behavior of a scramjet engine in response to on-line 

control commands in a simulated flight. For this application, it is clearly not 
feasible to perform a detailed flow analysis for each new flight condition. An 

alternative approach to modelling a scramjet engine was developed a t  M.I.T. by 

Chiang-Hwa Ren under the supervision of Prof. Manuel Martinez-Sanchez [Renl]. 
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This model avoids the computational burden of a CFD approach by making certain 

assumptions, and using approximate analysis methods to estimate the flow 

properties in the inlet, combustor, and nozzle sections of the engine. 

The propulsion model for the AHSV is based on the work presented in [Renl]. 
Modifications to the algorithms have been made to compute overall forces and 
moments by integrating local pressures over the internal engine surfaces; to account 

for some missing contributions in the overall thrust; to obtain some desired 
quantities that did not appear in the original model; to provide extensive error 
checking to handle conditions for which the model fails; and finally, to provide a 

consistent interface between the propulsion model and the geometric and 
aerodynamic models. 0 therwise, however, the fundamental analysis met hods are 
exactly as presented in [Renl]. 

4.5.2 HYPERSONIC PROPULSION MODEL 

As with the geometric and aerodynamics models, the scramjet propulsion 
model performs an analysis for a parameterized configuration. The performance of a 
wide range of possible engine designs can therefore be reproduced for any desired 
flight condition. There are 23 design variables that are required to specify a 

particular engine design. These parameters (listed below in Table 4.2) include items 

related to the geometric, atmospheric, and internal specifications corresponding to a 

design flight condition for which the engine will be optimized. The model decides 

upon the optimal inlet ramp lengths, combustor area ratio, and nozzle geometry in 

order to achieve maximum performance. Once designed, 17  variables are needed to 

specify a set of off4esign conditions (Table 4.3). The model then performs an 
off-design analysis, and generates overall thrust and moment estimates along with 8 

other useful outputs such as ISP and fuel mass flow rate (Table 4.4). 

Since the scramjet engine is designed for optimal performance at  a certain 

flight condition, the design process is an iterative procedure that involves the 

aerodynamic design as well. That is, given a set of geometric specifications for an 

AHSV (Table 4.1), the engine design for a certain choice of the design Mach number 

and angle of attack may require modifications to the forebody or nozzle geometry. 
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(1) Design Mach number (2) Design Angle of  Attack 

(3) Ramp Angle 1 (4) Ramp Angle 2 

(5) Capture Height (6) Combustor Length 

(7) Combustor Width (8) Com bust or Wall Temper at ure 

( 9 )  Nozzle Length (1 0) Nozzle Lip Length 

Inlet Wall Boundary Layers (Laminar or Turbulent) 

(11) Wall 1 - 1st Ramp (1 2) Wall 2 - 2nd Ramp 

(13) Wall 3 - Combustor Top (14) Wall 4 - Combustor Bottom 

Inlet Wall Temperatures 

(15) Wall l - 1st Ramp (16) W d  2 -  2nd Ramp 

(1 7) Wall 3 - Com bust or Top (18) Wall 4 - Combustor Bottom 

(1 9) Design Hydrogen Injection Temperature 
(20) St oichiometric Oxidizer/Fuel Mass Ratio 
(21) Design Altitude (22) Ambient Pressure 

(23) Am bien t Temperature 

Table 4.2 : Scramjet Propulsion Design Parameters 

(1) Flight Mach number (2) Actual Angle of  At  tack 

(3) Nozzle Lip Length (4) Com bustor Wall Temperature 

Inlet WaJl Boundary Layers (Laminar or Turbulent) 
(5) Wall 1 - 1 st Ramp (6) Wall 2 - 2nd Ramp 

(7) Wall 3 - Combustor Top (8) Wall 4 - Corn bustor Bottom 

Inlet Wall Temperatures 
(9) Wall 1 - 1st Ramp (1 0) Wall 2 - 2nd Ramp 

(1 1) Wall 3 - Corn bust or Top (12) Wall 4 - Combustor Bottom 

(1 3) Hydrogen Injection Temperature 
(1 4)  Oxidizer/Fuel Mass Ratio (15) Flight Altitude 

(16) Ambient Pressure (1 7) Ambient Temperature 

Table 4.3: Off-Design Conditions for the Scram jet Engine 



SECTION 4.5 PROPULSION MODEL 

(1) Horizontal Thrust (2) Vertical Thrust 
,\ 

(3) Propulsive Pitch Mom en t (4) Specific Impulse \ 

(5) Flow Expansion Fraction (6) Corn bustion Temperat u k  
(7) Corn bustion Pressure (8) Fuel Mass Flow Rate 
(9) Ideal Thrust from ISP (1 0) Design Nozzle Angle 

Table 4.4: Outputs from the Scramjet Model 

This, however, would change the aerodynamic characteristics. The overall design 
objective, therefore, is to find a configuration for which the aerodynamic and , 

propulsion forces (and moments) are in equilibrium for one particular (design) flight 
condition. If a nominally accelerating design is desired then the configuration must 

include a net force while balancing aerodynamic and propulsive moments. 

This iterative design process has been partially automated as part of the 

AHSV simulation. Starting with a set of aerodynamic and propulsion design values, 

the propulsion model is used to reconfigure the vehicle geometry for optimal 

performance at the design flight condition. All models are used to predict net forces 
and moments, and if the vehicle is not in the desired state, several of the geometric 

variables and the design angle of attack are adjusted accordingly. The process is 

repeated until an acceptable design is found.17 

Even though the vehicle may never even encounter the exact design flight 

condition, it still serves as an important reference point from which off-design 

performance can be measured. Experience with the model has also shown that the 

design Mach number influences the range of Mach numbers for which good 
performance can be achieved. 

I 7 ~ h i s  is not a simple task, and often requires several initial configurations before 
converging to a successful design. 
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Inlet Analysis 

The modelling of the scramjet inlet, as presented in [Renl], is accomplished by 

assuming that the forebody flow can be approximated by a two-dimensional 

geometry. The classical assumption of a separate inviscid outer flow and a thin 
viscous boundary layer is used to estimate the flow properties along each ramp and 
inside the inlet. For the design cycle, a shock matching condition a t  the lip of the 
inlet is used as a criterion to  assure optimal inlet performance. The oblique shock 

relationships are used to compute the external flow, which is used to provide 

boundary conditions for the boundary layer calculations. The boundary layer 

thickness is approximated by a linear growth, and the ramp surfaces are pushed 

back so that the displacement thickness of the boundary layer does not interfere 

with the external flow. This, combined with the shock matching condition, 

determines the design geometry of the inlet. 

For the off-design calculations, the solution is obtained through an iteration 
between the oblique shock and boundary layer equations (since the geometry is now 

fixed). Here, the inviscid flow turning angles are adjusted on the basis of the new 

boundary layer thickness, and the shock calculations are repeated and followed 

again by the boundary layer calculations until the solution is found. 

The off-design character of the inlet flow depends on whether the flight 

condition is above or below the design Mach number. At higher Mach numbers the 

shocks are swept into the inlet, while at lower Mach numbers they do not even 

reach the lip (causing flow spillage and creating additive drag). The variation with 
angle of attack is also significant, causing the shocks to either coalesce before the 

lip, or move apart. In each of these cases, a control volume approach is used to 
determine the exit conditions of the inlet (i.e. conditions at the entrance to  the 

combustor). The possible inlet shock conditions are illustrated in Figure 4.17. 

For laminar. flow, the inlet boundary layer is modelled using the Crocco 

relations and the integrals for momentum and boundaxy layer thickness. The 

predicition of boundary layer transition is avoided in this analysis by assuming that 
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the 2nd ramp is turbulent, and the effective velocity approach of van Driest is used 

to estimate the thickness of the turbulent boundary layer. [Renl] 

Flow 
Ca ture 
&a 

Design Condition 

Figure 4.17: Design and Off-Design Inlet Conditions 

A detailed description of the inlet analysis is presented in [Renl], where it is 
also pointed out that the results of this approach agree well with higher fidelity 

models. 

Combustor Analysis 

The combustion process is the most difficult part of the scramjet propulsion 
system to model. The effects of high temperature, finite--rate chemistry, and 

hypersonic boundary layers, along with the uncertainties associated with turbulent 

mixing and combustion, are more pronounced within the combustor than with the 

external flows. Since many of these issues are still beyond the state of the current 

theory, the model used for the AHSV is correspondingly approximate. This analysis 
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circumvents the details of the combustion process by utilizing a control volume 
approach to determine the properties of the flow exiting the combustor. 

The approach taken in [Renl] is fundamentally based on the Crocco 

relationship for the integral analysis of a combustor, 
€ 

p2 = 
T- (4.75) 

which relates the pressure distribution to the cross sectional area. The constant 6 is 

an unknown constant to be determined. 

The model uses mass and momentum conservation for a control volume inside 

the combustor, to obtain the exit velocity and pressure as a function of the inlet 

conditions, the parameter E ,  and the oxidizer/fuel mass ratio. An energy balance is 

then applied to determine the enthalpy at the exit. Assuming chemical equilibrium 

at the exit, the exit temperature can be related to the composition of the products 

of combustion. Therefore, the correct exit temperature is found through an 

iteration until the combined enthalpy of all the exit species matches the calculated 
value. Finally, the value of e is obtained through another iteration until the 
resulting area ratio is correct. A correction to this analysis is applied to account for 
the boundary layer that travels into the combustor from the inlet. Refer to [Renl] 

for more details. 

Nozzle Analysis 

The performance of the nozzle is also evaluated using a control volume 
approach. For the design condition, pressure matching at the lip and a parallel 
exhaust flow are used as conditions to design the nozzle geometry. The method of 

waves is then used to compute the local flow properties throughout the expanding 
flow field. For the purpose of analysis, the upper contour of the nozzle (vehicle aft 

undersurface) is shaped as a curve which forces a compression turn to cancel any 

expansion waves reflected from the lip. This simplifies the calculations and results 

in a parallel flow (for the design condition). An approximate linear fit to the curved 
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nozzle is passed back to the AHSV simulation, and the force calculations are 

actually done by integrating local pressure over the approximate flat nozzle surface. 

The nozzle analysis accounts for the effects of an expansion which includes 

both a chemical equilibrium and a frozen flow component. For the frozen flow, an 

isentropic expansion is assumed, and an iterative procedure to find the exit 
temperature is developed from the enthalpy equation. This is done for two cases: 

pressure matching (for design), and a known area ratio (for off-design). A chemical 
kinetics code is used to  determine the freezing point pressure, and a chemical 
equilibrium analysis, similar to that used for the combustor, is used for the 
equilibrium flow section. 

For off-design conditions, the flow streamlines may no longer emanate 
straight back from the nozzle lip. Whether the nozzle flow is over or under 

expanded is determined by the area ratio from the control volume analysis. The 

model includes an additive drag component for each of these cases. Again, for more 

details refer to [Renl]. 

Propulsive Forces 8 Moments 

The computation of thrust and thrust moment for the scramjet propulsion 

system is accomplished through the integration of pressure forces along the interior 

surfaces of the combustor and nozzle. The forces and moments on the inlet are 
already included as part of the aerodynamics model. The entrance and exit 

conditions for each section (combustor and nozzle) are known from the results of the 

scramjet model. The Crocco relationship (4.75) is now used to march along the 

interior of the engine (downstream), and compute the local pressure as a function of 
the cross sectional area. Positive contributions to the thrust can only occur in 

sections with a diverging cross section. A net vertical force occurs in the last stage 
of the nozzle where there is no lower lip. Figure 4.18 illustrates these contributions 

to the overall thrust. Also shown in the figure is the location of the vehicle nose 

which is used as a reference point for the thrust moment calculations. The moment 

is later transferred to the vehicle center of mass by the dynamics model. 
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x x  

Vehicle Nose . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4.18: Calculation of Propulsive Forces and Moments 

The total thrust can be expressed as, 18 

with the horizontal and vertical components given by, 

ax =$s jEI s in (a Jwc  dz 

where al is the angle of the surface and wc is the combustor width (also the nozzle 
width). The thrust moment is found to be, 

18110te that the integration of pressure along the interior surfaces of the engine I 
accounts for both the pressure and momentum changes in the flow. For exam let in the 
horizontal direction, usin A for the the cross sectional area, the integral I B ~ A  can be 
written as 1 d(pA) - 1 dP. From conservation of mass, i t  is easy to show that locally 

A dP = - d. (h = mass flow rate, = velocity). Therefore, I P dA = (PA)out - 
(PA)in + 1 h d ~ ,  0, T ~ T U S ~  = (PA)out - (PA)in + m (G-ui). 
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A correction is now made to account for the thrust due to the momentum 
change of the fuel as it is injected into the combustion chamber. Since the hydrogen 
fuel is preheatedlg, its temperature and pressure are very high just prior to injection. 
In fact, the fuel may even be injected at  a greater velocity than the air flow in the 

combustor. This effect is not included in the original model, and the simple 

integration of pressure on the walls of the combustor and nozzle overlooks the forces 

on the walls inside the fuel reservoir. 

The contribution to the thrust is obtained by assuming that the fuel pressure 

matches the combustor pressure at  the injection point [Marl]. Beginning with the 
energy equation, 

where (%)inj is the injection fuel velocity, Cpf is the specific heat of the fuel (for 

hydrogen Cpf z 14 ,500  J/(kg K) ) ,  Tfo and Tfi are the reservoir and injection 

temperatures of the fuel. For an adiabatic expansion to the injection point this can 
be expressed as, 

where Pfo and P f i  are the reservoir and injection pressures. For a fuel mass flow 
rate of 7iv, the momentum equation gives a force of Finj  = inr (%)inj which must 
be distributed over the walls of the fuel reservoir. This additional thrust is therefore 
given by, 

I91t is used for cooling other components. 
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For simplicity, the reservoir is assumed to be at a pressure (Pfo) of 3 
atmospheres, and a temperature (Tfo) of 1200 K for fuel that has already been used 
for cooling the vehicle. These values are reasonable, and if more details for a 
specific engine design were available then more accurate values could be used. 

For the AHSV simulation other assumptions were made with regard to the 
propulsion system model. The boundary layers were assumed to be laminar for the 
1st ramp and the lower surface of the combustion chamber. The 2nd ramp and the 
upper surface of the combustor were assumed to be turbulent. In addition, the 
temperature of all the walls for the inlet were assumed to be maintained 'at 1000 K. 
The combustor wall temperature was fixed at 2000 K. These assumptions were also 
made in reference [Renl] for various reasons which are motivated therein. 

A final modification to the original scramjet model is the inclusion of a thrust 
vectoring capability. Due to the effects of shadowing on the elevon control surfaces, 
it was determined that some degree of directed thrust control is necessary. For the 
AHSV propulsion model this is accomplished using a deformable nozzle geometry. 
Since the shape of the vehicle's aft undersurface would be difficult to change 
appreciably, the length of the lower nozzle lip is assumed to be controllable. The 

simulation passes a lip length control input to the propulsion model, which performs 
the thrust calculation for the new geometry. 

For completeness, a few representative curves from the propulsion model are 
reproduced in this section. For comparative purposes, all of the plots are for the 
same engine design. The design conditions were Mach 10, altitude 30 km, a = 4 . 3 O ,  

71=4O, y2=6", & = 6 2 m , I , = 1 2 m ,  ~ , = 1 5 r n , ~ = 2 5 ~ , h , = 5 m , 1 ~ = 1 2 . 5 m  
(see Figures 4.2a-b). 

Figure 4.19 charts the horizontal thrust (in wind axes) as a function of Mach 
number. Note that the altitude is held constant, so that a higher Mach number 
corresponds to a higher velocity. The inlet shocks are swept in, and, for a constant 
fuel mixture ratio, the additional mass £low of air is matched by additional fuel, 
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therefore, increasing the thrust. The vertical thrust is not shown but it also 

increases with Mach number. The moment for this particular case was pitch down 
and decreasing with Mach number. 

Horizontal Thrust vs Mach Number 

8 10 U 14 16 

Mach Number 

Figure 4.19: Typical Scramjet Behavior (Horizonal Thrust vs Mach Number) 

In Figure 4.20 the horizontal thrust is plotted as a function of angle of at tack. 

A larger capture area results in a larger mass flow and more thrust. Again, this is 
for a constant stoichiometric ratio. Of course, the gain in thrust is offset by an 

increase in aerodynamic drag which is not visible here. The vertical thrust also 

increases with angle of attack, and the pitch moment becomes larger pitch down. 
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Horizontal Thrust vs Angle of Attack 

Angle of Attack 

Figure 4.20: Typical Scramjet Behavior (Horizontal Thrust vs Angle Of Attack) 

Figures 4.21 through 4.23 illustrate the variation of horizontal thrust, 
combustor temperature, and specific impulse, with the setting of the throttle 
ratio (4 ) .  An air mass to fuel ratio of 34.32/1.0 is the stoichiometric condition, and 
the lower ratios correspond to  the fuel rich case. Notice that thrust increases for 

mixtures below the stoichiometric ratio. This is because additional fuel means a 
higher mass flow and therefore additional thrust . This cannot continue indefinitely, 

however, because the additional mass causes the temperature in the combustor to 

drop rapidly (Figure 4.22). At some point, the temperature becomes too low to 

support combustion. In the model, this effect causes the combustor analysis to fail 

and valid results cannot be obtained below a certain mixture ratio (N 4 < 8). Also 

note that (in Figure 4.23) the specific impulse begins to drop off sharply as the 

excess fuel is wasted ( 4  < 34.32). 
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Horizontal Thrust vs Throttle Ratio 
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Figure 4.21: Typical Scramjet Behavior (Horizontal Thrust vs Throttle Ratio) 

Combustor Temperature vs Throttle Ratio 

Throttle Ratio (OxidizerPuel by Mass) 

Figure 4.22: Typical Scram jet Behavior (Combustor Temp. vs Throttle Ratio) 
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Specific Impulse vs Throttle Ratio 

0 10 20 30 40 50 60 70 80 

Throttle Ratio (Wdizer/Fuel by Mass) 

Figure 4.23: Typical Scramjet Behavior (Specific Impulse vs Throttle Ratio) 

As a final example, the propulsive pitching moment is shown as a function of 
the nozzle lip length in Figure 4.24. From this illustration it is clear that the nozzle 
lip can make an effective thrust vector control actuator. 

Pitching Moment vs Nozzle Lip Length 
OE+OO 
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Figure 4.24: Thrust Vector Control Using Nozzle Lip Length 
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4.6 Flight Dynamics Model 

The geometric, atmospheric, aerodynamic, and propulsion models presented in 

this chapter provide the basis for calculating the overall forces and moments acting 

on a hypersonic .vehicle for a wide range of design configurations and flight 
conditions. This section develops the dynamics model which (in conjuction with the 

mass properties model) determines the vehicle's translational and rotational 

response to these forces and moments. 

This model includes the full six-degree-of-freedom equations of motion for an 

arbitrary direction and location in the atmosphere of a rotating spherical Earth. All 
centripetal and Coriolis effects are included, and are significant at hypersonic 
speeds. In addition, the gravitational model accounts for variation with altitude. A 
stationary atmosphere is assumed, and only rigid body motions are considered.20 

Beginning with the fundamental relationship for the rate of change of a vector 

(A) in a rotating reference frame, 21 

the translational and rotational dynamic equations are derived by substituting the 
velocity vector (3 and angular momentum vector (L) in place of A. 

Since _V = d_r/dt, and (d_r/dt) = (d_r/dt) + _w x _r from (4.82), equation (4.83a) can 
I R 

2 0 ~ o t e  that the AHSV modelling and simulation are complete 6-DOF representations of the 
vehicle. The RIFC controller developed in Chapters 7 and 8 ,  however, has been limited to 

longitudinal dynamics in order to simplify the problem. 

211refers to an inertial frame and R to a rotating frame. 
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[$$J I= [$[[$I R+ L!i I]] + I [[$I R+ W I] 

CHAPTER 4 

Now, for a vehicle mass of M and an external force given by the vector & the 
inertial acceleration is determined from _F = M (dwdt)  I . Substituting in for _F and 

noting that the angular acceleration of the rotating frame is zero (4, = 0), since it is 
the rotation of the Earth that is of interest ( w  ), equation (4.85) becomes, 

-E 

Equation (4.86) is a general expression for translational dynamics of a body in a 

reference frame rotating with the Earth. The AHSV dynamic equations are derived 
by expressing the vectors _F and Y in terms of the flight variables, and writing out 
the entire equation in the rotating coordinate system. 

The rotational dynamics are obtained from (4.83b) using the fact that the 

moment _M = (dLJdt)l. Also, since 4 = 1 g (4.83b) becomes, 

where, 

is the inertia matrix. In this case, the vector (g) refers to  the angular rate of the 
body axes with respect to an inertial coordinate system. Substituting y = [w, wy 

wZlT and _M = [Mx My M.]* gives the angular accelerations which result from an 
applied external moment, 
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where, 

A = M x  - I x z y q .  - (12-Iy)wywz 
B = Mz - Ixzwywz - ( I ~ - I J Y w ~  

Returning now to the translational equations, the expansion of equation (4.86) 

requires the definition of several coordinate systems. Figure 4.25 illustrates an 

inertial coordinate frame with the z-axis pointing toward the North pole. The 
local-horizontal-local-vertical frame (LVLH) is also shown at  an arbitrary 

longitude, latitude, and radius from the origin (r ) .  The relationship between the 

wind axes coordinate system, the body frame, and the LVLH frame is shown in 
Figure 4.26. The following definitions are used: 

dl E Latitude el 5 Longitude 
r Radius to  Earth center 7 E Flight path angle 
$ = Heading angle cr E Angle of  Attack 
a E Roll (Bank) angle p r Yaw Angle 

North 

Local Vertical 
Local Horizontal 

Frame 

Figure 4.25: Inertial Coordinates and the LocaI-Vertical-Local-Horizontal Frame 
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LVLH to Wind Axes 
......... - - A 

Body Axes i, 
vv 1llU ru uuuy A x L ; S  

tzw 

Figure 4.26: The  Relationship Between Wind, Body, and LVLH Coordinates 

From these figures the following vectors can be defined in the LVLH 

coordinate frame: 
,. 

r = r k  - (4.91 a) 

V = Vcos(~)cos(J) ; + Vcos(y)sin($) l)j. + Vsin(7) k - (4.91 b) 

_w = wEcos(@ I )  3 + ~ ~ s i n ( 4 ~ )  k (4.91 c)  

where w is the angular rate of the Earth. Before substituting into (4.86), the 
E 

external (propulsive and aerodynamic) forces are decomposed into a tangential 
component (along the velocity vector) and a normal component (perpendicular to  
the velocity vector). Bypassing the details, 

and the gravitational term is expressed as Eg = - M g(r) k. 
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Substituting the above equations into (4.86), expressing d v d t  in the LVLH 
frame, and performing a substantial amount of algebra (see [Busl] or [Etkl]) gives 

the translational dynamic equations of motion: 

1 F ~ s i n  u @ = +~ - rCO~(7)~03($)tan(#i)  + 2wE V [tan(7)cos(#i)sh(llJ 

- sin(#i)] - w i r  s~n(#~)cos(#~)cos($)/cos(~) ( 4 . 9 3 ~ )  

where, 
GME g ) ,  FT = Tv-D, and FN = TN+L 

L r Lift, D E Drag, Tv : Thrust along 1, TN = Thrust I t o  1 

Also, by expressing d d d t  in the LVLH frame and comparing to (4.91b), the 

kinematic relationships for global position are found to be, 

Radius from Earth center: " = v sin(?) a£ (4.94a) 

Longitude from launch: 

Latitude: 

Translational velocities and positions are obtained in the AHSV simulation by 

simple numerical integration of equations (4.93a-c) and (4.94a-c). Standard Euler 

integration and an adaptive step-size Runge Kutta algorithm are both available. 

The angular velocities of the vehicle can likewise be obtained by integrating 

equations (4.89a-c). Attitude, however, cannot be determined in this way since it 
is not a directly integrable quantity. A quaternion integration approach has been 
chosen for this purpose. 
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Quaternions (or Euler parameters) have the advantage of only depending on 

four parameters that require integration (whereas cosine matrices require 9 

integrations). Numerically, quaternions are very efficient, and a const raining 

relationship between the parameters provides a convenient way to  enforce a 
consistent result. In order to obtain the attitude variables, perform aerodynamic 
calculations, and simulate the vehicle in flight (including display), cosine matrices 
between the different coordinate systems are used. The elements of these 
transformation matrices are calculated directly from the quat ernion parameters. 

See reference [Hugl] for the quaternion integration equations and the relationships 
between quaternions and cosine matrices. 

4.7 Flight Controller's Model 

Since the scope of this research is limited to longitudinal flight control, the 

controller's model of the dynamics can be obtained from the equations in the 

preceding section for the case of equatorial launch to orbit with all lateral variables 

set to zero (@l = = 9 = wx = wZ = 0). Also, expressing the forces along the 
velocity vector22 as XFxw, the normal forces as CFzw, and the total pitching moment 

as xnl,, equations (4.89), (4.93), and (4.94) reduce to, 

For the controller, the forces and moments (XFxw, XFzw, EMy) are not obtained 

using the other models in this chapter. The simulation uses the models of sections 

2 2 ~ h i c h  is also along g w r  the unit wind coordinates x-axis. 
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4.1 through 4.6 to generate the "truthn environment. The control system is 
assumed to have its own model based on a database of aerodynamic, propulsion, and 
control coefficients as a function of flight condition. This database is comprised of a 
priori and on-line information, and it provides a best estimate of the vehicle 

characteristics given limited knowledge. An uncertainty bound for each coefficient 
is also assumed to be given by this model. Each of the coefficients described below 
is nondimensionalized by the dynamic pressure, the wing reference area, and the 

root mean chord length in the case of moment coefficients. 

CL (Ma, a )  r Aerodynamic lift coefficient 
CD (Ma, a )  E Aerodynamic drag coefficient 
CMa(Ma, a) E Aerodynamic pitch moment coefficient 
Qv(Ma, a )  : Thrust coefficient along velocity vector 

@,(Ma, a )  r Thrust coefficient normal to velocity vector 

CMp (Ma, a )  r Thrust pitch moment coefficient 

Cxbe(Ma, q 6 e )  t Elevon control force coefficient in & direction 

Cz be (Ma, a, 6e) r Elevon control force coefficient in iw direction 

C ~ ~ ~ ( M a , q 6 e )  r Elevon pitch moment coefficient in i. direction 

Cx (Ma,a,h)  r Throttle control force coefficient in & direction 6r 
Cz (Mala,&) r Throttle control force coefficient in iw direction 6r 
CM (Ma, a, &) z Throttle pitch moment coefficient in i, direction $. 
Cx bv(Ma, a, 6v) r Thrust vector force coefficient in iw direction 

Cz 6v(Ma, a, 6v) r Thrust vector force coelficien t in iw direction 

C ~ ~ ~ ( M a , a , 4 6 v )  r Thrust vector pitch moment coefficient in direction 

Note that each coefficient is a function of flight Mach number (Ma)  and angle 

of attack ( a ) .  The control coefficients are also functions of their respective input 

values (be,  $, bv). The controller's model of the dynamics is now expressed in 
terms of the coefficients above. 
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GME S ref v(t) = - [---+ - w: T] sin (7) + (4 p v ) ~  [fiv ( ~ a ,  0) - 4 a)] 
S ref 

+C~~,(Ma,~dv)~[G~(Ma,~)+~~(~~,~,&rn] (4.964 

1 Sref  - ( t p ~ l [ , I - ~ [ c z ~ ~ ( ~ a I a , 6 e )  + ~ ~ ~ ( ~ a l a t h )  

+C~,,(Ma,%bv).[C~~(Ma,a,h)-~~(~a,a)]] (4.96b) 

b(t) = w (t) (4.96d) 

with the auxiliary equations, +(t) = V sin($ 

4) = W)-r(t) 
Ma(t) = V.4ra-m 

These are the final equations used by the controller to  predict the vehicle 

response to a candidate set of inputs. Note that the equation i)(t) = w(t) is also 
included as a formal state equation. The longitude equation (4.95e) is omitted only 
because the performance objective considered later in Chapter 7 does not depend on 

downrange position. Finally, an important characteristic of equations (4.96a-e) is 

that the thrust vector coefficient appears (in a nonlinear manner) as a multiplier of 
other coefficients. These equations will be analyzed in more detail in Chapter 7. 



Chapter 5 

Flight Simulation 

5.1 Simulation 0 bjectives 

In order to facilitate the evaluation of flight control strategies for hypersonic 
vehicles an extensive software package was developed to provide a realistic flight 
simulation capability. A tool was desired with which vehicle designs could be 
evaluated, modified, and tested under various flight conditions. It was designed 

with a modular structure so that different vehicles, models, conditions, disturbances, 
controllers, and many other options could be selected and combined as needed for a 
particular test run. The ability to access simulation data in various forms was also 
important. An on-line plotting capability, full-state numeric display, and 
graphical vehicle representations were therefore included. The final AHSV 
simulation software is a fully integrated menu-driver design and analysis package 
which includes a.ll of the hypersonic vehicle modelling effort presented in Chapter 4, 
as well as the flight control algorithm and logic developed in Chapters 7 and 8. In 
addition, it provides capabilities such as automated parametric vehicle design, 
stability coefficient determination, local linearization and linear simulation, 
standard Euler and adaptive stepsize Runge Kut ta integration, programmable 
atmospheric and wind disturbances, scramjet engine analysis and design, various 
display and warning modes, a trajectory store and replay option, and more. These 

options and the other capabilities described in this chapter form the basis of a 
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realistic t est-bed for hypersonic flight control algorithms such as the RIFC 
autopilot developed in this thesis. 

5.2 Simulation Structure 

At its highest level, the AHSV simulation code can be described by the simple 
flow diagram shown in Figure 5.1. A Set DeEaults block first initializes a number of 

settings, and then an Options Menu is displayed from which all capabilities of the 

software can be accessed. These options are used to either Design the vehicle, 

Codigure the simulation, or actually Run a simulated flight. At the beginning of 
each simulation an Initialization procedure is invoked to reset all initial conditions, 
construct the vehicle geometry, and compute the mass properties. Once initialized, 
the simulation then cycles through a primary loop which executes the following 
general routines: Integration, Environment, Models, Dynamics, Control, Estimation, 

Display, and Interrupts. The Integration module advances the simulation by one 

time-step using the selected integration scheme. The Environment, Models, and 

Dynamics modules are called by the integrator to determine the rates of change for 

all variables at any time. All blocks call the proper subroutines depending upon the 

specific configuration.1 If the simulation is in Playback mode then several routines 

are bypassed and the flight data is read directly from a previously stored file. The 

main loop is repeated continually as the flight trajectory evolves from a specified 
initial condition. User interrupts can change a variety of run-time options or end 

the simulation. 

The remainder of this section describes an expanded view of each of the blocks 

shown in Figure 5.1. The intention is to provide a functional overview of the AHSV 
simulation as well as a brief explanation of the software capabilities. Toward this 

end, an outline of the logical structure of the major components for each block is 

presented. The inputs and outputs are given for important modules, and any 

relevant options are discussed. 

%hat is, the configuration determines which models are called by the Models block, or which 
control algorithm is called by the Control block, etc. 
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Figure 5.1: High Level AHSV Flight Simulation Flow Diagram 
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For the purpose of specifying inputs and outputs to various modules, it is 
convenient to define the following categories of simulation variables: 

Attitude: 

Attitude Rates: 
Position: 
Velocity: 
Flow Variables: 

Forces: 

Inputs: 
Geometry: 

Mass Properties: 
Transformations: 

Design Parameters: 

Tabulated Data: 

Roll, pitch, yaw attitude, angle of attack, 
flight path, etc ... 
Roll, pitch, yaw rates. 
Altitude, longitude, latitude. 
Velocity, ascent rate, etc ... 
Temperature, density, speed of sound, 
pressure, viscosity, Mach number, dynamic 
pressure. 
Aerodynamic, propulsion, and control, 
forces and moments. 
Elevon, throttle, and thrust vector settings. 
Arrays of (x,y,z) coordinates to specify 
vehicle shape, surface polygons, normal 
vectors, centroids, and areas. I'B and rw 
are the same arrays expressed in the body 
and wind coordinates respectively. 
Vehicle mass, inertia matrix, fuel flow rate. 
Between inertial, LVLH, wind, body, and 
viewer's coordinates. 
Aerodynamic and propulsion design values 
(i.e. wing span, sweep angle, fuel injection 
temperature, etc ...). 
Scramjet engine tables or the coefficient 
database model. 

Set Defaults 

The first function of the Set Defaults block (Figure 5.2) is to load a number of 
configuration settings from a default file when the simulation is started. This file is 
used to store previous configurations so that commonly selected options do not have 
to be reselected every time. Defaults include all simulation modes as well as options 

for integration, modelling, control, and display. Other flags, display defaults, and 
the disturbance settings are also intialized at start-up. In addition, a set of vehicle 
design parameters are loaded from a default design file. Depending on the start-up 

configuration other files may be loaded as well; an example would be the currently 
active scramjet data file. 
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Load Defaults From Disk 

1 
I n i t i a l i z e  A l l  Flags I 

1 
I n i t i a l i z e  Disturbances 

1 r Set Display Defaults 

1 
I Load Vehicle Design I 

Figure 5.2: Set Defaults Block 

Options Menu 

This block (Figure 5.3) provides an extensive pulldown-menu interface which 

is used to access vehicle design and analysis tools, configure all simulation options, 
and begin an actual simulation. The menu options are divided into the following 

categories: Display, Simulation, Control, Estimation, Design, Models, Conditions, 
Inputs, and Defaults. Each of these categories includes a number of options that 
either set flags, select modes, loadlsave models, choose algorithms, specify 
conditions, perform specialized tasks, or present additional suboptions. Some 

options lead to entirely new pulldown menus, such as the Scramjet Analpsis or 
Vehicle Design options. All selections ultimately return to the main menu, 
including the option which runs the simulation. In that case, however, the menu 
will not appear until the simulation is complete or terminated by user request. 
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Figure 5 -3: Options Menu Block 

Design 

This block (Figure 5.4) includes all of the functions used to produce viable 
AHSV designs as well as tabulated models used by the simulation at run time. The 
two major design functions are Vehicle Design and Scramjet Analyais, each of which 

presents an entirely new set of options. In Vehicle Design the vehicle geometry, 
flight conditions, and scramjet engine design parameters can all be changed to  
create new designs. Various designs can be stored, retrieved, and modified by 
adjusting any of the design parameters discussed in Chapter 4 (i.e. wing span, sweep 
angle, combustor length, etc.). A Force Balance option evaluates each design using 
all of the models to  determine if the vehicle is in equilbrium for a particular flight 
condition. An Automatic Parameter Search option will search for a balanced design 
automatically through iterative adjustments of a selected set of parameters. This 
design process is limited to  optimizing the vehicle for one particular flight condition. 

The off-design operating range will depend upon the available control authority to 
trim the vehicle at other Mach numbers and angles of attack. 
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Figure 5.4: Design Block 

The Scramjet Analysis software provides the interface between the AHSV 
simulation code and the scramjet propulsion model. Available options are divided 
into the following categories: Scramjet Parameters, Scramjet Display, Scramjet 
Execution, and Scramjet Tables. The Scramjet Parameters options include 
initializing design or off-design conditions, and editing all scramjet engine inputs 
(21 variables - see Chapter 4). Scramjet Display options are used to select 

dependent and independent plotting variables, generate plots, or view engine model 
outputs. Possible outputs include thrust, moment, specific impulse, fuel flow rate, 
combustor temperature, etc. Possible independent variables are Mach number, 

angle of attack, throttle setting, etc. The Scramjet Execution options perform the 
actual calls to the scramjet analysis code (or tabulated models) to generate engine 
outputs for one or a series of input conditions. Finally, the Scramjet Tables options 
are used to load tabulated scramjet data files, and to construct tables for later use 
with the simulation. Tables are used because the scramjet analysis code is too 
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complex (i.e. too slow) to include in the actual simulation. Options for a 
multivariable linear or cubic spline interpolation scheme are also included. Both 

algorithms have been implemented to provide smooth extrapolation in any or all of 
five dimensions .a 

Another Design option, called Controller Model, is used to build up a database 

of coefficients by sampling the results of all the models in the AHSV simulation. 
This database, combined with the nonlinear dynamic equations (4.96a-g), becomes 

the controller's model of the system. Since the controller should not realistically 
have a perfect model, this data is then corrupted with noise (the bias and 

distribution of which is programmable). The resulting database of coefficients is 
stored along with associated interval uncertainties. The table consists of 
aerodynamic, propulsion, and control coefficients for various Mach numbers, angles 

of attack, and control input settings. 

The last Design function is called Linearize Dynamics and provides the 
capability to linearize the vehicle dynamics in any flight condition. This is done 
numerically by perturbing the states and controls and executing all models to 

determine the resulting rates. That is, from f(t) = f(g(t),g(t)), the linear system 

x(t) = Ag(t)+ B3(t) is obtained by numerically computing the following derivatives: - 

The matrices (A, B) are then displayed, and the system can be saved to disk. The 

file format used is compatible with popular design packages (such as MatLab or 

MatrixX) so that linear analysis and control system design tools can be applied. 
Other options allow the linear system to be selected as the true AHSV dynamics 
model for the simulation. 

2 ~ h e  scramjet tables store the horizontal and vertical components of thrust, thrust moment, and 
fuel flow rate] as a function of altitude] Mach number, angle of attack, throttle setting] and 
thrust vector input (which is the nozzle lip length). A warning message is displayed when the 
scramjet model is extrapolating beyond the range of the tabulated data 
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Configure 

This block (Figure 5.5) includes all options in the main menu that are used to 
configure the simulation prior to execution. These options can be divided into the 
following categories: Simulation Modes, Flight Conditions, External Inputs, and 
Simulation Defaults. 

Configure Options 1 
I 

Conditions Defaults 

Figure 5.5: Configure Block 

There are two categories of Simulation Modes: static and dynamic flight. The 
dynamic modes actually execute all models and integrate the dynamics based on 
calculated rates for all variables. Manual Flight Control and Automatic Flight 
Control are both dynamic simulation modes. In Manual the control actuators can 
be operated from the keyboard, while in Automatic mode one of the control 
algorithms is implemented. For the static modes no integration is performed and 
the vehicle attitude is controlled directly from the keyboard. Rotations can be 
referenced to the user's "computer1' frame, or to the body axes of the vehicle (i.e. 
pilot's frame). The most useful static mode actually calls all of the models (to 
determine forces, moments, coefficents, rates, etc.) but then does not integrate the 
dynamics. This is useful, for example, to examine or plot aerodynamic, propulsion, 

and control derivatives, as a function of user controlled variations in other variables, 
such as the states or control inputs. 

The Flight Conditions option is simply used to set the flight conditions prior 
to a simulation run. The starting altitude, Mach number, flight path angle, angle of 
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attack, elevon deflection, throttle setting, and thrust vector angle, can all be 

initialized to any desired values. Initial conditions can be stored and retrieved from 

files which may correspond to different designs, models, or test cases. It is also 
possible to specify default flight conditions which can be set or reset at the 
beginning of each simulation. 

The selection of External Inputs is further divided into Noise Generation, 

Command Inputs, and Control Dithering. The available disturbances include 

lateral variations in atmospheric density and temperature, as well as wind gusts in 

the form of angle of attack and velocity variations. A fictitious disturbance can also 

be used to directly affect pitch attitude. All noises are modelled as Gauss-Markov 
signals (i.e. normally distributed white noise passing through a first order filter). 
The variance and correlation time constant for each noise can be specified 

arbitrarily. The Command Inputs option is used to specify the desired flight 

conditions. Constant reference commands can be chosen if regulation about a fixed 

flight condition is desired. 0 t herwise a desired trajectory which has been previously 

tabulated can be loaded from a file. A random trajectory generator can also be 

selected. The Control Dithering option is used in conjunction with the Recursive 
Least Squares algorithm for linear controller models (see the Estimation block). 

The Simulation Defaults category is used to configure many of the run-time 

simulation options. In addition, several debugging tools are available as defaults. 

In particular, the Damp, Trace, and Debug modes can be used to dump variables 
from anywhere in the simulation, display messages for each module as it is executed, 

and perform other programmable debugging functions. Other defaults include a 

speed factor to slow down the simulation (used for manual flight), a graphics mode 

setting, and an option to defeat the run-time error messages generated by all  of the 

models. Additional options to store simulation trajectory data or playback a 

previous simulation are also available. The default settings can be reset at any 
time, or stored and retrieved from user specified files. 
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Initialization 

At the beginning of each simulation all vehicle states must be initialized to the 

proper values. This includes three dimensional position, velocity, attitude, and 

attitude rates. Control inputs are also set to their nominal values (which can be 

specified). From the initial state, the coordinate transformation matrices can then 
be determined. This initialization stage is also where the entire vehicle structure is 

generated. Based on the design parameters, the Vehicle Geometry Model computes 
the coordinates, panels, normal vectors, centroids, and areas of the exterior vehicle 
surface in a structural coordinate frame. The Mass Properties Model then 

integrates the volume and surface densities to determine overall vehicle mass, center 
of mass, and inertia properties.3 Finally, the geometric vehicle structure (I) is 

translated into body and wind axes (IB, rw) using the center of mass as the origin. 

L 

I n i t i a l i z e  Flight 
Conditions 

I Outputs: J,g,g,I,1 I 

I n i t i a l i z e  Transformation 
Cosine Matrices 

Inputs: 8 
Outputs: _C 

-- 

Vehicle Geometry Model 

Outputs : 
- 

Inputs: r,_C 
Outputs: y,b,fw 

Pigare 5.6: Initialization Block 

' ~e f er  to Chapter 4 for a detailed description of the geometry and mass properties models. 
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Integration 

To simulate the dynamics there is a choice of using either standard Enler 
Integration or an adaptive stepsize 4th order R a g e  Kutta Integration. These 
options are available regardless of which models are in effect (i.e. the high-order 

6-DOF aerodynamic and propulsion models, down to  the approximate linear 

dynamics). Euler integration uses a fixed time-step which can be any desired 

fraction of the simulation output timestep.4 The Runge Kutta method attempts 

to meet a desired accuracy specification between simulation output t imwteps.  

This accuracy is entered as a scalar fraction which is internally multiplied by a 
vector of nominal values for each state. The algorithm adaptively changes its 
stepsize to assure that the cumulative errors for each state independently meet the 
requirements. An option for a minimum Runge Kutta stepsize is also provided to 

limit the time required for an integration. In this case an error message would 

indicate a failure to meet the desired precision. 

I Integration I 

Figure 5.7: Integration Block 

4 ~ h e  output time-step is the interval at which simulation data is available for display, 
storage, plotting, etc  It is also the control cycle-time. That is, the update rate for the 
control system inputs and outputs. 
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Environment 

The Environment block determines the external flow properties (4) as a 
function of altitude and velocity. Flow temperature, density, speed of sound, 

pressure, and viscosity are obtained by the Atmospheric Model through 
interpolation of tabulated data (see section 4.3). The flight velocity is required as 
an input since the model is also used to compute Mach number and dynamic 
pressure. Disturbances to the ambient flow temperature, density, velocity, and 
direction are then added by the Disturbance Model. 

1 

I Disturbance Model I 
Figure 5.8: Environment Block 

Models 

A choice of several models are available for simulation of the AHSV dynamics 
(Figure 5.9). There are two classes of models: those which are intended to represent 
the actual flight behavior of the vehicle, and those which comprise the controller's 
model. At run-time the "truth model" and the controller's model must be 
completely isolated from one another. In this way, the simulation reproduces the 
conditions of an actual flight in which the controller is limited by its approximate 
model plus any information that can be obtained on-line. 

The standard configuration for the AHSV simulation is to use the 
Aerodynamics Model combined with the Scramjet Propulsion Model as the true 
system, while the Coefficient Database Model provides the controller with its model 
of the system. In this configuration the simulation computes forces and moments 
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I Models I 

Aerodynamics Podel Coefficient 

Inputs: 1,1,4,l!?E,l 
O U ~ P U ~  s : _Qae 

Scramj e t  Propulsion Simplified 
Propulsion 

Inputs: 8,_z,d,~,!,_C 
Outputs: gvr,, 

Figure 5.9: Models Block 

using the full hypersonic aerodynamics5 and scramjet analysis codes. The controller 
bases its decisions on the dynamic equations given by (4.96a-g) and the predictions 
of aerodynamic, propulsion, and control coefficients stored in the database along 

with associated uncertainties. Various scramjet tables and coefficient tables can be 

loaded from stored files, while the aerodynamics code always executes on-line. An 

option also exists to substitute a simple ( Thmst = Drag) model for the propulsion 

system. Alternatively, it is possible to configure the simulation to use the 
controllerls model as if it were the truth model. This is a useful feature for testing 

the control system, since in this case the controller has a perfect model of the 
dynamics. 

Other configurations for the simulation use Approximate Linear Models to 

represent the vehicle dynamics. Some simple second or third order systems can be 
selected as examples. Moreover, a complete 5-DOF linear system can be used as 

'i. e. Newtonian flow to obtain pressure coefficients for each panel, shocks and expansion fans 
to obtain local flow properties, and skin friction coefficients from laminar and tubulent 
boundary layer calculations for each panel. 
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the truth model to represent the full longitudinal dynamics. Typically, these 

models are based on a linearization of the full nonlinear system (see Design), and 
can be stored, retrieved, and modified as desired. 

Dynamics 

The Dynamics block is responsible for determining the derivatives of all the 
states at any given time. For the full nonlinear simulation this means combining all 
aerodynamic and propulsion forces and moments to compute linear and angular 
accelerations for the current mass properties (see section 4.6). The derivatives for 
the mass properties are also obtained by the Dynamics Model based on the fuel flow 
rate given by the scramjet model. For simulation modes using approximate linear 

models, or the coefficient database model, the rates are obtained by simply 
evaluating the right hand side of the dynamic equations (i.e. A_z(t)+B~(t) for linear, 
or f(g(t),g(t)) for nonlinear dynamics). 

I Dynamics Model 

Inputs: _8,_u,_z,I,i!,id I 
Outputs: B,k,t,P,t I 

1 

Figure 5.10: Dynamics Block 

Control 

This block utilizes all available information to determine what control action 
should be taken to meet some desired objectives. Other inputs, not shown in 

Figure 5.11, may include a desired trajectory, dynamic constraints, and actuator 
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Control Algorithms 

Inputs: #,l!,z,!,Ii,,!i,- 

1 

Figure 5.11: Control Block 

bounds and rate limits. For the RIFC algorithm, the control inputs are chosen to  
minimize a worst case integrated tracking error with respect to the uncertainty in 
the dynamics, while observing all constraints. A variety of other control algorithms 
have also been implemented and are available as controller options. Among these 

are a simple PD controller, a discrete adaptive controller, an LQR approach, and 

the single step optimal controller (SSOC) which is compared to the RIFC algorithm 
in Chapter 9. 

Estimation 

Since the objective of this research is focused on the control problem, only a 

few options are available in this category. An. interface for state estimation and 

parameter identification is included, and future efforts may utilize this capability 

more extensively. In this work, perfect full state feedback is assumed, and the 

controller's database model of coefficients is assumed to  represent the best 

combination of a priori and in-flight information. Nevertheless, an Extended 
Kalman Filter, and a Recurtrive Least Squares parameter identification algorithm, 

have been implemented for use with the approximate linear models and discrete 

linear controllers. An algorithm for real-time learning or improvement of the 

aerodynamic, propulsion, and control coefficient estimates would be the next logical 

addition to the AHSV simulation. 
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Display 

While a simulation is in progress, the information that is presented to the user 
will depend on the display configuration settings. The Vehicle Display option, for 
example, displays an exterior 3-D solid object representation of the vehicle in flight 
with indicators to display altitude, ascent rate, downrange distance, Mach number, 
throttle setting, thrust vectoring, and elevon deflections. The Status Panel option is 
a full numeric display showing ad forces, moments, positions, rates, coefficients, 
controls, etc. Another primary option is for On-Line Plots which have the 
capability to do multivariable plots of any of 50 simulation variables as functions of 
time or any other variable. Altogether over 30 different display formats are 

possible, including multiple data entry formss; vehicle design displays; scramjet 
engine geometry; and control system performance displays, such as state tracking 
errors, constraint violations, trajectory cost, and search progress. 

1 Display Option I 
& 

1 1 1 

Display Displays 

I 1 1 I 
1 

Pigare 5.12: Display Block 

For modes which display the vehicle, varying degrees of graphical fidelity can 
be selected. The simplest representation is a wireframe vehicle, followed by a 

normal projection model, and finally a solid-ob ject (full hidden surface removal) 
rendering. Normal projection means that only surfaces with outward pointing 

' ~ a t a  entry forms are used, for example, to specify geometric design parameters, flight 
conditions, scramjet design parameters, disturbance magnitudes, control requirements such as 
constraints or tolerances, etc. 
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normal vectors having a projection toward the viewing direction are visible. For 

completely convex objects, normal projection works quite well. The solid object 

mode, however, will correctly display only the panels that should be visible, 

regardless of the shape, and is better suited for more complex geometries.7 
Naturally , the speed of the simulation decreases with increasing fidelity, however, 

the hidden surface algorithm used was specially tailored to meet the requirements of 
a real-time simulation. A specialized surface sorting algorithm that takes 

advantage of nearly ordered sets is combined with a polygon blanking approach to 
provide almost perfect (but very fast) projections.0 

There are several other options relative to vehicle display. One of these is an 
observer's reference frame. The simulation actually keeps track of 5 different 

coordinate systems including body, wind, LVLH, inertial, and observer's axes. The 
view seen on the display can be moved to any position around the vehicle, and the 

orientation and size of the vehicle is displayed accordingly. Other options include a 
mass properties display, differential shading of laminar and turbulent panels, 
selectable background and foreground colors, and a choice of display resolutions. 

Interrupts 

The final block in Figure 5.1 is for Interrupts, which are user generated 

keyboard commands that are entered while a simulation is running. Many of the 
simulation options can be reconfigured "on the fly", including display modes, 
debugging trace and dump modes, error messages, 3-DOF or 6-DOF simulation, 
flight control modes, and all graphics options. In addition, an interrupt is available 

to terminate the simulation. 

' ~ o t e  that these projection algorithms are not only for display. The Newtonian hypersonic 
aerodynamics model uses the normal projection approach to determine pressure coefficients for 
each surface panel (see Chapter 4). 

' ~ r ro r s  can only occur for one unusual circumstance, from a certain viewing direction, in 
which a small panel overlays a panel which is much larger. For the AHSV geometry this 
situation cannot occur. For general geometries, the algorithm works best for panels of 
approximately the same size, and i t  becomes infallible as the panels get smaller. 
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Theoretical Background 

The purpose of this chapter is provide the theoretical background that is 

required for the development of the RIFC controller in Chapter 7. The first section 
covers the fundamental concepts of Lyapunov Stability Theory. The import ant 

definitions and theorems are presented in a manner which leads to the specific 

results that are directly applicable to the flight control problem for air-breathing 

hypersonic vehicles. The reader familiar with this subject may wish to read only the 
material related to the stability of discrete-time systems beginning with Definition 
6.9. The following section in this chapter presents a full discussion of heuristic 

optimization methods and the A* algorithm. The detailed A* search procedure is 
explained, and the theoretical properties of A* using different classes of heuristic 

information are developed. The notation, definitions, and theorems in this section 

will be important for Chapter 7. The discussion is guided by the objective of 

motivating the application of A* to the solution of discrete optimal control 

problems, since this is how it is used in the RIFC controller. 

6.1 Lyapunov Stability Theory 

For any control problem, regardless of the application, the most important 
issue to be addressed is the stability of the closed-loop system. Unstable systems 
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are typically useless and can often lead to disasterl. In general, there are two 
fundamental approaches available for the analysis of the stability of dynamic 

systems. The first, Lyapunov Stability Theory, is based on the work of Alexander 
Michhailovich Lyapunov, which was published in 1892 (The General Problem of 

Motion Stability). Lyapunov stability is applicable to the analysis of dynamic 

systems that are initially in a nonequilibrium state, or are momentarily disturbed 

from equilibrium. All the available tools known for linear control theory depend 
upon Lyapunov's theorems for justification of their application to the analysis and 

control of locally linearized nonlinear systems. The second approach to stability 
analysis is called Input-Output Stability, and is applicable to problems for which it 

is desired to characterize a system's output behavior given known properties of its 
inputs. Signals are classified into sets defined by the L,-Spaces, and stability is 
defined in terms of the properties of a system's input-output mapping. For the case 

of L bounded signals this kind of stability is called Bounded-Input-Bounded- 
m 

Output (BIBO) stability. This thesis is concerned with stability in the sense of 

Lyapunov, and the reader is referred to reference [Vidl] for a complete discussion of 
both Lyapunov and Input-Output Stability. 

The concepts in Lyapunov stability theory are divided into two basic methods 

called Lyapunov's Indirect Method (or First Method), and Lyapunov's Direct 

Method (or Second Method). The First Method characterizes the properties of a 

nonlinear system in the neighborhood of an equilibrium point based on the 

properties of the locally linearized system. This method is the one which provides 
the theoretical justification for using linear st ability theory to control nonlinear 
systems for small perturbations from equilibrium. 

THEOREM 6.1: Lyapunov's Indirect Method 

Given the autonomous2 nonlinear system 

2 = f(d with f(0) = 0 
- - -  

' ~ h i s  is particularly true in the context of the present problem. 

2 ~ n  autonomous system is defined as one for which the dynamic equations are not explicitely 
dependent on time. 
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which can be expressed as  3 

and the linearized approximate system 

where A = (v) x = O  - 
the following statements are true: 

a Ifthelinearizedsystemin/6.lc)isstrictlystable,(alleigenval~es 

Xi(A) are in the left-half plane (LHP)), then the equilibrium is 
asymptotically st able for the original nonlinear system. 

If the linearized system is unstable, (at least one eigenvafue X i(A) is in 
the right-half plane (RIP)) ,  then the equilibrium point is unstable for 
the originaf nonlinear system. 

Ifthelinearizedsystemismarginallystable,(allXi(A)areintheLHP 

except a t  least one on the &-axis), then no conclusion can be drawn 
regarding the stability of the original nonlinear system. 

REMARKS: 

(1) For proof, refer to reference [Vidl]. 

(2) Note that this theorem also applies to the more general system 
described by 2 = f(g,%), with a nonzero equilibrium at z: = G. A 
redefinition of the state as _z = _z - G, and the representation of the 
feedback law as 3 = g(d, gives a system of the form 2 = _h(d with the 
equilibrium _h(O) = 0, which fits the description of (6.la). This 
property will hold for aU Lyapunov theorems presented in this section. 

(3) This theorem applies only to local stability in an arbitrarily small 
neighborhood of the equilibrium point. For control purposes, the 
linearized system may not be useful if the operating range goes beyond 
the radius from equilibrium for which the stability results apply. 

'where fNOT (z) refers to higher-order- t ens  of the ~ a ~ l o r ' s  expansion for .f(~). 
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Lyapunov's Direct (Second) Method is the more general stability analysis tool, 

since it is capable of directly analyzing the properties of nonlinear time-varying 

systems. This approach is based on the concept of the energy of a system. Consider 

an isolated system which has some state that can be identified as an equilibrium 

condition. Also, suppose that a suitable "energy" function can be defined in such a 

way that it is zero at the equilibrium state, and positive for all other states. Now 

suppose that the system is initially disturbed from its equilibrium. If the system is 

purely dissipative, the energy stored must decrease with time until the system has 

reached a state with the lowest possible energy. In other words, if the total energy 

of a physical system is continually dissipated, then the system must eventually end 
up at its equilibrium state. Thus, it is possible to draw conclusions about the 
stability of a system by examining the behavior of a simple scalar function (the 
system's energy). The utility of Lyapunov's Second Method is that it gives 
conditions on the stability of a system without having to directly solve the dynamic 
equations, (which can be very difficult for many systems). [Slol] 

Before presenting Lyapunov's theorems, it is important to define exactly what 
is meant by stability. For linear systems, stability can be simply defined in terms of 

the location of the poles of the closed-loop system. For nonlinear systems, however, 

the notion of stability becomes much more complicated, and several definitions are 

required to fully describe the stability of a system [Hedl]. 

DEFINITION 6.1: Lyapunov Stability 

The equilibrium state 1: = _O of the dynamic system 2 = f(_z,t) is stable (in the 
sense of Lyapunov) i f ,  for every real R > 0, there exists an r(R,to) > 0, such 

that 11 ( t o )  11 < r implies that )I g(t; %,to) 1) < R for all t 2 to. Otherwise, the 
equilibrium point is unstable. 4 

4 ~ h e  notation z(~;zo, to) is used to recognize that for non-autonomous systems the trajectory 
is a function of the initial state and time. Since for autonomous systems the response is 

time invariant, and the dependence on initial state is understood, the trajectory is expressed 
simply as ~(t) .  
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REMARKS: 

(1) Essentially, stability means that small disturbances result in small 
deviations from the equilibrium. The system trajectory can be kept 
close to the equilibrium state provided the system starts sufficiently 
close to it. 

(2) If r(R,to) is independent of to the system is uniformly stable. 

(3) If r(R,to) includes the entire state space, then the equilibrium is said to 
be globally stable. 

DEFlN ITION 6.2: Attractivity 

The equilibrium state _z = _O of the dynamic system 3 = f(2, t) is at  tractive, if 
for some e > 0 and all 6 > 0 (where 6 < E ) ,  there exists some T(G,to) such 

that, for dl 11 _z(to) 11 < e l  11 g(t) 11 < 6 (for t-to> T). 

REMARKS: 

(1) Attractivity means that all trajectories starting in a neighborhood of 
the equilibrium eventually converge to the equilibrium (_z(t) + Q as 
t 3 00). 

(2) If T(b,to) is independent of to the system is uniformly attractive. 

(3) If 11 ,z(to) (1 < t. includes the whole state space, then the equilibrium is 
said to be globally attractive. 

DEFINITION 6.3: Asymptotic Stability 

The equilibrium state _z = _O of the dynamic system 3 = f(&t) is 
asymptotically stable if it is both stable and attractive. 

REMARK: See [Hedl] for examples of attractive but unstable systems. 
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DEFINITION 6.4: Equiasymptotic Stability 

The equilibrium state _z = _O of the dynamic system 2 = f(gJt) is 
equiasymptoticdly stable if i t  is both stable and uniformly attractive with 

respect to go. 

DEFINITION 6.5: Uniform Asymptotic Stability 

The equilibrium state _z = _O of the dynamic system 2 = f(gJ t)  is  uniformly 
asymptotically stable i f  it is both uniformly stable and uniformly at tractive. 

DEFINITION 6.6: Exponential Stability 

The equilibrium state _z = _O of the dynamic system 2 = f(g, t) is  exponentially 
stable i f  there exist a > 0, A > 0, for some I (  _z(to) (1 < r such that 

I I  0 )  I I  1 0 11 dto) ll e -A(t-tol \ I t ?  to 

GENERAL REMARKS: 

(1) All the above stability definitions are global if the conditions hold over 
the entire state space. 

(2) For linear time-invariant (LTI) systems the above definitions are 
reduced to only one type of stability, since linear stability is always 
global, asymptotic, and exponential. 

A final stability definition that will be important for the remainder of this 
chapter is the concept of robust stability. So far, stability has been defined in terms 
of the properties of a known system in the neighborhood of an equilibrium point. In 
general, however, we are interested in the stability of a class of closed-loop systems 
of the form &(t) = f(g,L,t) for 1 E 4, where 1 is a parameter vector from the set of 

all possible parameter values b. The regions of the parameter space for which the 

system remains stable is of primary importance. 
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DEFINITION 6.7: Robust Stability 

The equilibrium state _z = _O of the dynamic system $ = f(g)j,t) is robustly 

stable with respect to the set of parameters &,, if i t  is stable for all vectors 

such that j E 4. 

REMARK: Robust definitions (with respect to a set of parameters) for the 

properties of at tractivity, asymptotic, uniform, and exponential 

stability, all follow similarly to the definition above. 

A final definition is required to describe the concept of positive definite 

functions, which will be needed for Lyapunovys Direct Method. 

DEFlN ITION 6.8: Positive Definite Functions [Vidl] 

A continuous function V(gIt) which maps IRnxlR+ --+ IR is said to be locally 

positive definite (1.p.d.) if there exists a continuous nondecreasing function 

a: IR --+ IR such that, 

(a) a(O) = 0, a(()  > 0, V ( > 0 
(ii) V(Q,t) = 0, V t 2 0 

(iii) V(gJt) 2 afll _z 1 1 ) )  v t 2 0, and v _z E 

where Br is the n-dimensional ball defined by 

Br={_2:lI_zII 5 r ) , r >  0 

V is said to be globally positive definite (p. d.) if (izi) holds for all _z E IRn and, 

in addition, a(( )  --, co as ( --, oo. 

REMARKS: 

(1) V(gJt) is negative definite if -V(_z,t) is positive definite. 

(2) V(g,t) is positive semi-definite if V(J,t) = 0 and V(gl t)  2 0 V g # 0. 
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(3) V(gJ t) is negative semi-definite if - V(gJ t) is positive semi-definite. 

With the various types of stability and the properties of positive definite 

functions defined above, it is now possible to present the fundamental theorem of 
Lyapunov's Direct Method for stability analysis. The most general form of the 
theorem will be presented first, followed by a discussion of its application to more 

specific cases. It is assumed without loss of generality (See Remark 2 of Theorem 
6.1) that the dynamic system can be expressed in the form 2 = f(3,t) with an 
equilibrium point at 3 = 0. The basic approach is to define a positive definite 

(energy) function of the states, V(2.,t), and to show that this function decreases with 

time (since that would imply that the system converges toward an equilibrium). 
This idea is expressed more formally below: 

THEOREM 6.2: Lyapunov's Direct Method [Vidl] 

Consider the nonautonomous nonlinear dynamic system 

x =  f(g$t) with f(@,t)=@, V t 1 0  - (6.2) 

I f ,  within a ball _z E B, (B, E ( g: 11 _z 11 5 r ), r > 0) around the equilibrium 

point = Q, there exists a scalar function V(g,t) defined for t 1 0, with 
con tin uous partial derivatives, and satisfying 

(2) V(_z,t) is positive definite 
V(Z,~) 2 ad1 Z 11) > 0 (6.2a) 
(where a (0 is p. d.)  

(22) ~ ( g ,  t)  is negative semi-defini t e 
av i/(_z,t) = + v V* f(zlt) 5 0 (6.2b) 

then the equilibrium state _z = _O is stable in the sense of Lyapunov and 

the function V(gl t )  is called a Lyapunov function of the sys tern. 

I f ,  furthermore, 

(iii) V(z, t)  is a "decrescen tw  function 

v k t )  5 snl _z 11, ( 6 . 2 ~ )  
(where s ( ( )  is p.d.) 
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then the equilibrium state 2 = _O is uniformly stable. 

If condition (22) is strengthened by requiring that 

( 2 ~ )  V(Z, t )  is negative definite 
av 

~ ( g ) t )  = in + v v * f ( ~ , t )  ,4)I -~ f l~ l l )  (6.2d) 

(where 7(() is p.d.) 
then the equilibrium state _z = _O is uniformly aspmptotidy stable. 

If ,  in addition, 

(v) - z E B, is replaced by 2 E IRn, and (6.2e) 

(wi) V(2, t) is radially unbounded (6.2f) 
an1 2 Ill -, 03 as II z I1 00 

then the equilibrium state 2 = 0 is globally uaiformly asymptotically 
stable. 

REMARKS: 

(1) The proof of this theorem is based on the fact that v being negative 
definite implies that V(_z(t), t )  < V['[to), to), V t > to, since 

As V(~(t) , t )  decreases ( t )  -+ 0 since this is the value for which V has 
its minimum. See references [Vidl,Slol] for the complete proof. 

The conditions for stability presented above are sufficient conditions 
only. If these conditions fail for a particular choice of the function 
V(g,t), called a candidate Lyapunov function, then nothing is implied 
about the stability of the system. The system may indeed be stable, 
and a better choice of the candidate Lyapunov function could indicate 
this. The disadvantage of Lyapunovys Direct Method is that, in 
general, necessary conditions for stability cannot be ascertained. 
Furthermore, for general nonlinear systems there is no systematic 
approach for selecting good Lyapunov functions. 
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(3) Lyapunov's Direct Method consists of selecting candidate Lyapunov 
functions, testing for stability with the conditions above, and either 
concluding some degree of stability, or repeating the process with 
another candidate Lyapunov function. 

One of the conditions above for asymptotic stability, item (iv), is often very 
difficult to meet. A very important extension to Theorem 6.2 above, called 
LaSalle's Theorem, provides a means to prove asymptotic stability for systems and 
Lyapunov functions which satisfy condition (ii) but not the stronger condition (iv). 

TH EO REM 6.3: LaSalle2s Theorem 

Consider the autonomons nonlinear dynamic system 

2 = f(xJ with f(@ =Q - (6.3) 

If, within a ball _z E B, around the equilibrium point g = 8, there exists a 
scalar function V(g) with continuous partial derivatives, and satisfying 

(2 )  V(g) is positive definite (6.3a) 
(22) v ( ~ ( t ; ~ o ,  to)) < 0, V 2 (6.3 b) 

(negative semi-deiioite) 

(222) V(.(t;~o,to)) # 0, v t 2 to (6 .3~)  

dong trajectories of $ = f(g) with go # 0 

then the equilibrium state _z = _O is asymptotically stable. 

I f ,  in addition, 

(4 - z E B, is replaced by E fRn (6.3d) 

(v) V(g) is radially unbounded (6.3e) 
then the equilibrium state _z = 0 is globaUy asymptotically stable 

REMARKS: 

(1) The basic idea behind LaSallePs Theorem is that asymptotic stability 
can be concluded even if v is not negative definite. As long as V <  0 
(negative semi4efinite) and v # 0 along any system trajectories from 
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nonzero initial conditions, then it is impossible for the system to get 
'Ltrapped" in any states other than the equilibrium state. For the 

complete proof see [Vidl]. 

(2) Note that LaSalleys Theorem is applicable only to systems with 
timeinvariant (or periodic) dynamics. 

(3) For nonautonomous systems, a similar theorem can be obtained using 
Barbalat's Lemma, which relates the asymptotic properties of functions 
to the properties of their time derivatives (see [Slol]). 

Lyapunov's Direct Method has been presented for the general case of nonlinear 
time-varying dynamic systems. The conditions for st ability of linear or 
autonomous systems are somewhat less restrictive. For LTI systems, in fact, 
Lyapunov's Theorem can be used to generate necessary as well as sufficient 
conditions for stability. It can be shown that, if the solution to the so called 
Lyapunov Equations is a symmetric positive definite matrix, then the 
corresponding LTI system is strictly stable. Many other stability analysis tools are 
available for linear systems, such as eigenvalue analysis, Routh Hurwitz tests, Bode 
plots (gain & phase margins), and Nyquist techniques. The equivalence of these 
methods and the criteria for Lyapunov stability is discussed in [Hedl]. A number of 
approaches also exist for the analysis of SISO-LTI systems in combination with 
nonlinear (memoryless) feedback elements. The Circle criterion is applicable to 
these systems, and is an extension of the Nyquist criterion for a class of nonlinear 
elements called sector (1st and 3rd quadrant) nonlineari ties. Popov's criterion is 

another frequency domain approach based on the properties of positive real transfer 
functions. An important result known as the Kdman-Yacubovich Lemma provides 
the relationship between the existence of Lyapunov functions and the conditions for 
stability in the frequency domain; it is instrumental for the derivation of Popov's 
criterion, and many other results. The reader is referred to references [Vidl] and 
[Hedl] for a thorough coverage of the topics mentioned above, which are limited to 
LTI, or SISO nonlinear systems. 

T T  or 2 = Az, V = _2 Pz, and V < -g Qg < 0, the Lyapunov Equation is given by 

P + PA = -Q. 
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In this thesis, we are interested in stability for the more general problem of 
MIMO nonlinear systems. As will be discussed in section 7.1, however, the AHSV 
trajectory control problem can be simplified by making some reasonable 
assumptions for which the plant dynamics are effectively time-invariant (i.e. 
autonomous). The st ability criteria for the (simplified) case of autonomous 
nonlinear systems are presented below. 

THEOREM 6.4: Lyaptmovls Direct Method for Autonomous Systems 

Consider the autonomous nonlinear dynamic system 

x = f(iJ with f(@ = _O - (6.4) 

I f ,  within a ball _z E B, around the equilibrium point _z = Q, there exists a 
scalar function V(g) with continuous partial derivatives, and satisfying 

(2) V(c) is locally positive definite (6.4a) 
(22) v ( ~ )  is locally negative semi-definite (6.4 b) 

then the equilibrium state _z = _O is stable. 

If, instead, 

(22) v ( ~ )  is locally negative definite 

then the equilibrium is asymptotically stable. 

I f ,  in addition, 

(222) the ball B, is replaced by IRn (6 .4~)  

(4 V(2.l ---+ 0 u.9 11 ,Z 11 -) 00 (6.4d) 

then the equilibrium state _z = 0 is globally asymptotically stable. 

REMARKS: 

(1) The main difference between this theorem and Theorem 6.2 is that for 
autonomous systems there is no need for a uniformity condition (see 
item (222) Theorem 6.2). 

(2) Note also that LaSallels Theorem applies directly to the autonomous 
case. 
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It is also useful to mention, that in addition to Lyapunov criteria for the 

stability of systems, there are theorems which guarantee the instabiIity of a system. 
One might expect, in view of the above discussion, that if there exists a positive 

definite function V(zJ for which v(zJ is also positive definite, in the neighborhood of 

the equilibrium f(@ = Q of the autonomous system 2 = f(g), then the equilibrium 

point is unstable. Similar criteria for the instability of nonautonomous systems also 

exist. 

Another important category of theorems related to Lyapunov stability, are the 

existence theorems. It can be shown that if a nonautonomous system given by 

x = f('g,t) has an equilibrium state that is uniformly asymptotically stable then - 
there exists a Lyapunov function V(g,t) that meets the conditions of Theorem 6.2 

(see [Hedl]). 

In all of the discussion above, stability has been defined, and the criteria for 

the stability of a system have been expressed, in terms of continuous functions and 
their derivatives. The flight control system in this thesis, however, necessarily 
operates as a discrete-time system. The controller is implemented on a digital 

computer, and all inputs and outputs are values pertaining to discrete time 

intervals. Definitions for stability and a statement of Lyapunov's Direct Method 
are therefore needed for the case of discrete-time systems. A proof of Lyapunov's 

Theorem for discrete systems is also included, since this theorem is directly utilized 

later in Chapter 7. 

DEFINITION 6.9: Discrete Lyapunov Stability 

The equilibrium state of the discrete dynamic system g(t+At) = fd(z(t)) 
with fd(J) = J is stable if, for every real R > 0, there exists an r(R) > 0, such 
that 11 ~ ( 0 )  11 < rimplies that )I g(kAt) 1) < R for dl k E I ,  s {1,2,3,...m) 
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DEFIN ITION 6.10: Discrete Asymptotic Stability 

The equilibrium state of  the discrete dynamic system g(t+At)= fd(g(t)) 

with fd (l?) = is asymptotically stable if i t  is stable, and i f  there exists an 
T > 0, such that ) I  g(0) 11 < r implies that ) I  g(kAt) I (  -4 0 as k --+ oo, (i.e. 
there exists k > 0, k E H+, such that 11 g(kAt) (1 = 0). 

THEOREM 6.5: Lyapunov's Direct Method for Discrete-Time Autonomous Systems 

Consider the discrete-time autonomous nonlinear system 

.(t +A t )  = fd (g(t)) with fd (a = _O (6.5) 

I f ,  within a ball g E B, there exists a scalar function V(g) with continuous 

partial derivatives, and satisfying 

(2) V(g) is locally positive definite 

(22) V(z(t+A t)) - V(_z(t)) l 0 

then the equilibrium state g = _O is stable. 

If, instead, 

(222) V(g(t+A t)) - V(g(t)) < 0 (6 .5~)  

for all g # _O, then the equilibrium is asymptoticaUy stable. 

PROOF OF DISCRETE STABILITY: 

Since V(g) is positive definite and continuous, the following are true: 
(1) V(l?) = 0 

(2) 3 V,>Osuchthat V,= Ma {v(_z)] for any R, 0 i R 5 RO II  -z I I  =R 
where Ro defines the ball g E Baa for which conditions (a) 

and (zi) above hold true. 

vzvm I I - z I I ~ R  
(3) Mso, we have from (2) that 

VSVm II.II<R 
From (I), (2), and the continuity of V(g), there exists an r: 0 < r < R 
such that for 11 _z 11 5 r* V(g) < V,. 
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Also, since V(g(t+At)) - V(g(t)) ( 0, V(g) is a nonincreasing function 
along any trajectory of the system and therefore V(g(kAt)) 5 V(z(0)). 
Now, i f  11 g(0) 11 5 r then V(g(0)) < V,, which also implies that 
V(g(kAt)) < V,, and this requires that 11 _z(kAt) I( < R for all k E I ,  
from (3) above. 
Therefore, 11 ( 0 )  11 3 r * (1 g(kA t) 11 < R, which implies st ability 
from Definition 6.9 above. 

PROOF OF DISCRETE ASYMPTOTIC STABILITY: 

This proof is based on showing that the assumption that ~ ( t )  is not 

asymptotically stable leads to a contradiction for systems meeting 
conditions (a), (ii), and (iii) in Theorem 6.5. 

Since asymptotic stability implies that 11 ( k A t )  11 = 0 (Definition 6.10) 

for some k E U,, it is initially assumed that g(kAt) # _O for all k E a,. 
Now, condition (iii), V(g(t+At)) - V(g(t)) < 0, implies that along any 
particular path g(kAt), _z(kAt) # _O (for any k), there exists some 0 > 0 
such that V(g(t+At)) - V(g(t)) < -p for all k E I,. Extrapolating this 

inequality out to time t=kAt gives V(g(kAt)) 5 V(g(0)) - ,dk. 
The assumption that g(iiAt) # 0 for all k, and the fact that V(g) is 
positive definite, means that V(g(kAt)) > 0, therefore, 

But this inequality leads to a contradiction in the limit as k -4 oo 

(since th e signs of 4 k, and V are all positive). 
Therefore, there must be a k such that _z(kAt) = 0. In other words, 
there exists k > 0, k E I+, such that 11 ( k A t )  11 = 0, which implies 
asymptotic stability from Definition 6.10. 

Finally, since it is also the objective of the AHSV flight controller to provide 
stability robustness, the only remaining task in this section is to modify the 
definitions and stability theorem above to include parametric uncertainty. 
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DEFINITION 6.11: Robust Stability For Discrete Systems 

The equilibrium state of the discrete dynamic system ( t + A t )  = fd(g(t),@ 
with fd(lJ,U = lJ is m b d y  stable with respect to the set of parameters Jl+, if 

i t  is stable (according to Definition 6.9) for all vectors 4, such that 4 E $. I t  

is robustly asymptotically stabJe with respect to ll+, if it  is asymptotically 

stable (according to Definition 6.10) for dl 4 1~ fl+. 

THEOREM6.6: Lyapmov's Theorem For Robust Stability Of Discrete-Time 
Autonomous Systems 

Consider the discrete-time autonomous nonlinear system 

If, within a ball a: E B, there exists a scalar function V(_z,giJ with continuous 

partial derivatives, for all 4 E &, and satisfying 

(2) V(g,# is locally positive definite 

(ii) V(~(t+At),giJ - V(-(t),!U 5 0 

then the equilibrium state : = _O is robustly stable. 

If ,  in addition, 
(222) v (_~( t+At) ,d  - v ( _ ~ ( t ) , d  < 0 (6.6~) 
then the equilibrium is robustly asymptotically stable. 

REMARK: The proof of Theorem 6.6 exactly parallels the proof already given for 
Theorem 6.5 with the addition that each statement must apply for all 

L E Q .  

The main objectives of this section have been to review the important 
concepts of Lyapunov Stability Theory, and to develop the specific theorems that 

are directly applicable to the flight control problem for AHSVs. I t  is important to 
note that all of the results presented here apply only to unforced systems. 
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Therefore, Theorems 6.5 and 6.6 would actually be used in a manner that 
determines which feedback law, when applied to the open-loop system, results in 
stability for the closed-loop. Also note that the desired state for the flight control 
problem is not at z. = _0, but along a continuously changing desired trajectory. Since 
the objective is to  track this trajectory, the results of this section can be applied to 
the dynamic equations in terms of the state errors ( j ( t )  = _h(g(t),u or 

e(t+At) = hd(g(t),#). For these error dynamics, the desired state is always at - 
e = 0, independent of the desired trajectory or actual state values. The details of - 
how to apply Lyapunov's theorems to the development of the AHSV flight 
controller will be presented in Chapter 7. 
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6.2 The A* Optimization Method 

Despite the fact that optimal control theory is a well developed field with 

powerful capabilities (see [Kirl], and [Bryl]), i t  is often impractical in the 

application to real problems. Many real systems are multivariable, nonlinear, 

constrained by complicated state and input inequality constraints, and are often, to 

some degree, unknown (see section 7.1). For these kinds of systems, the 
(Hamilton-Jacobi-Bellman) HJB-equation, or the Calculus of variations, usually 

results in a series of coupled two-point boundary value problems that are extremely 

difficult to solve, especially for high order systems. Dynamic programming is an 
a1 t ernative approach (applicable to discretized systems) that essentially floods the 
state space with optimal trajectories (obtained through use of the principle of 
optimality) and then interpolates among these for the optimal solution from a 

specified initial st ate. Unfortunately, however, the curse of dimensionality is a 

major handicap for dynamic programming with high order systemss. This also 

prevents dynamic programming from being very useful for real-time applications. 
Another drawback of optimal control theory is that there is no mechanism for the 
inclusion of additional information regarding the specific properties of the solution 
to a particular problem. This kind of information is often available, but not in the 
form of constraints or costs, and can be very useful in reducing the size of the 

solution space and in guiding the search for an optimal trajectory. Finally, in the 
context of practical real-time problems, it may be desirable (or necessary) to accept 

a suboptimal solution in order to reduce the required computational effort. A 
quantifiable tradeoff between optimality and feasibility is not directly possible using 

classical optimal control methods. 

6.2.1 INTELLIGENT CONTROL 

With the trend toward cheaper, high-speed computers with parallel processing 

architectures, has come the possibility to approach complex control problems in new 

ways that offer an improved degree of flexibility, simplicity, and capability. 

''The memory and computational requirements for dynamic programming increase dramatically with 
the number of states and controls. 
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Intelligent Control techniques attempt to combine some of the concepts from 
Control Theory, Artificial Intelligence, and Operations Research, in order to 
simplify the task of control system design. One kind of intelligent control concept, 
presented in [Guel], provides a general framework for the application of heuristic 
search strategies to the solution of optimal control problems. A structure is defined 
for an algorithm ( d l e d  Heuristically Enhanced Optimal Control (HEOC)) which 
would use an A* type search strategy to solve optimal control problems represented 
in the form of a graph or tree. The original problem is discretized in time, 

quantized in the states and controls, and the graph represents the entire space of 
possible sequences of future states (depending on the control inputs) up to some 
final time. Compared to dynamic programming, this strategy has the advantage of 
a more efficient method of exploring the solution space. Under certain conditions 
discussed below, the A* algorithm is also guaranteed to find the optimal solution, 
and with far less computational effort than with dynamic programming. The RIFC 

algorithm developed in this thesis fits into this general HEOC framework. 

A few other studies have also investigated the use of heuristic search 
techniques for applications to control problems. Reference [Parl] presents a path 
planning controller for control moment gyros used to control the attitude of 
spacecraft. A heuristic search is used to find appropriate gimbal motions in order to 
achieve desired control torques while avoiding singularities present in the actuator 
space. Another application [Niil] performs a trajectory optimization for spacecraft 
proximity operations using an A* search technique. 

It is important to point out that the term Intelligent Control has been used to 
describe a wide variety of control schemes. Some of these are heuristic search 
techniques [Peal], neural networks/connectionist control [Bar3], rulebased 
heuristic algorithms [Asal], and expert control systems [Ast3]. Many of these 
methods have in common the idea of reducing the complexity of a problem by using 
a memory intensive approach. There is a great deal of variation among these 
"intelligentn schemes, however, in terms of theoretical properties that can be 
guaranteed in the context of a control problem. For example, an informed search 

algorithm can use heuristic information to solve an optimization problem while 
retaining certain guaranteed properties. A gradient method is a good example, since 
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it is known to have theoretical guarantees of local convergence, and it is essentially 
an algorithm that uses the heuristic llalways move in the direction of the negative 
gradient of the function." On the other hand, a heuristically based set of rules in a 
software control program may not be able to guarantee anything about the actual 
behavior of a dynamic system. Likewise, theoretical guarantees of stability or 
convergence remain elusive in the application of neural networks to the control of 
dynamic systems [Mi12]. In the context of this thesis, Intelligent Control is meant 
to refer to the solution of an optimal control problem using an informed 
(heuristically guided) search technique. It will be shown later that this approach 
can be made to exhibit the desired properties important for control, (such as 
convergence to a solution, guaranteed stability, and robustness to uncertainty). 

6.2.2 HEURISTIC OPTIMIZATION METHODS 

The A* algorithm is only one of a class of heuristic search techniques for 
solving problems with the objective of optimization and/or the satisfaction of 
constraints. In general these techniques are applicable to any problem that can be 
put in a form that presents choices among a multitude of possible options available 
in different states of a system. There must be a goal and/or some measure by which 
to evaluate and compare potential solutions. All of the following examples fit this 
description: path planning problems such as the road-map or travelling salesman 
problem [Hell]; game playing problems such as for chess or checkers; puzzles or 

maze problems; or any general (discrete) optimization problem. 

The distinguishing feature of heuristic search techniques is a systematic and 
informed strategy for finding a solution to a problem. Complex problems often 
involve an immense number of possibilities, and heuristic information can be used to 
minimize the search space and reduce the number of evaluations required to obtain 
a solution. A heuristic is defined as a criterion, method, rule, or principle for 
deciding which among several alternative courses of action promises to be the most 
effective in order to achieve some goal. In the context of problem solving, heuristics 
can be divided into two categories: Problem Domain heuristics, which provide 
information about the solution from knowledge about the problem; and Algorithmic 
heuristics, which are rules that direct the search procedure. Heuristics in the first 



SECTION 6.2 THE A* OPTIMIZATION METHOD 

category can often be used to drastically simplify the problem, however, this is 
sometimes at the risk of missing the solution altogether. The second category of 
heuristics are really the defining characteristics of a particular search algorithm 
(such as the gradient search method). Depending on the choice of these "rules" 
certain properties of the search algorithm can be guaranteed independent of the 
problem. Fortunately, it is often possible to include both types of heuristics in a 
search for a solution without compromising the properties of the algorithm. [Peal] 

Besides providing a more efficient means for finding the solution to 
optimization problems (that may have otherwise been intractable), heuristic search 
techniques have other advantages as well. The ability to incorporate any kind of 
additional information that can help to simplify a problem is an inherent property 
of this type of approach. Furthermore, it is possible (see section 6.2.5), to  control a 
t radeoff between the optimality of the solutions and the required computational 

effort in obtaining them. Another advantage is flexibility, since any special cases, 

unusual constraints or costs, discontinuities, failures, contingencies, and other 
problem specific complexities can be easily included in the problem. This general 
framework can include almost any mathematical or other type of criterion in an 
optimization problem. Finally, these algorithms can directly utilize the parallel 
processing capability of modern computers to achieve greater performance. The 
main disadvantage of intelligent search strategies, despite all their devices to search 
as efficiently as possible, is that these methods are still computationally intensive 
and may require a considerable amount of computer memory. These issues will be 
addressed in later sections. 

Central to any heuristic search strategy for problem solving are the following 
elements: a means to  represent candidate solutions, a method for evaluating these 
candidates, and an algorithm to direct the search in the most promising directions. 
These elements are the basis of discussion in the following paragraphs. 

The most natural representation for many problems is in terms of subsets of 

potential solutions organized in the form of a graph (or tree) as shown in Figure 6.1. 
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Figure 6.1: Graph Structure for Search Problems 

Nodes in this graph structure represent states of a system, and the branches from a 
particular node represent the possible actions available from that state. For any 
node ni, the nodes nj, representing the achievable states resulting from these 
actions, are called successor (or offspring) nodes, and the node ni is referred to as 
the parent (or predecessor) node. A tree is defined as a graph in which each node 

has at most one parent. The system's initial condition (or initial problem) is 
designated as the start node S, and any terminating (solution) nodes are identified 
as T nodes, which are elements of the set of goal nodes I' (i.e. T E I'). A sequence of 
nodes nl, na, ... nk, where each ni is the successor of ni-1 is called a path of length k. 
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A path from node S to node T is, therefore, a solution to the problem. Any 
specified path fiom the start node S to any other node n represents a unique subset 
of candidate solutions. It also represents a unique subproblem, since the remaining 
path from n to a terminating node T is still unspecified, and the number of possible 
paths from node n to Tare a subset of those from S. The branching degree of each 
node, denoted NB, is defined as its maximum number of possible offspring; and a 
uniform graph is one for which NB is the same for all nodes. When the branching 
degree is a finite number the graph is called locally-finite. We will only be 

interested in uniform locally -finite graphs. 

Candidate solutions are compared using a cost function which in some way 
evaluates the merit of any particular path. Usually, the branches (or arcs) of the 
graph are assigned individual weightings or costs c(ni,nj), and these are associated 
with the overall objective that is to be accomplished or optimized. The cost of any 
path is a function of the costs along its individual arcs, and the optimal solution 
(from S to 2') is, therefore, the admissible path with the minimum total cost. 

The selection of the cost function is a highly problem-specific task. The 
properties of the cost function, in combination with the search algorithm itself, are 
the distinguishing features of the various heuristic search techniques. This is an 
important point, because i t  is possible to use heuristics in the cost function as well 
as in the search algorithm, and the difference can be dramatic. For example, 
consider a chess playing application. Certain heuristic rules related to the game 
(such as trade a Knight for a Queen) could be directly included as weighted terms in 
a cost function to be minimized. Problem domain information used in this fashion, 
however, allows the meaning of what is called an optimal solution to be affected by 
the heuristics. A search algorithm that minimizes the resulting cost function might 
easily lose a game simply because it optimized the wrong objective. If the true 
objective is to win the game, then the algorithm can fail. In certain problems, as in 
chess, the objective is very difficult to define, and there is little choice but take this 
approach and accept the risk. Unfortunately, the occasional failures of algorithms 

using heuristic information in this specific way, has given heuristics, in general, a 
bad reputation for usually working well, but not all of the time. 
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In sharp contrast to the example above, there are many other problems that 
lend themselves very well to rigorously defined cost functions. Optimal control 
problems are typically in this category. For example, consider a servo positioning 
application where the cost is measured in terms of a time integral of squared 
position error. Any search that truly minimizes this cost function actually finds the 
optimal solution for a problem with a precise objective. The difference between this 
example and the previous one (chess) is that here, heuristic information is not used 
in the specification of the objective function. Note also, that nothing has been said 
here to preclude the use of heuristics in the decision process of the search algorithm 
itself. In fact, it will be shown that algorithmic heuristics meeting certain 
requirements can be used to guarantee various properties of the search procedure. 
Based on this discussion, it should be clear that for critical applications, where 
failure is not acceptable, the use of heuristics should be limited to the algorithmic 
rules of the search itself. 

In order to apply heuristic search techniques to discrete optimal control 
problems, a cost function must be defined as a cumulative function of the states 
and/or the control actions along a trajectory (or path). The cost of a solution path 
passing through any node n is then comprised of the interval costs for each arc of 
the trajectory through all nodes along the entire solution path. Candidate solutions 
can be compared by using partial cost information from S to their deepest node n, 
plus an estimate of the cost from n to T (since the actual cost for the unexplored 
part of the solution path is unknown until the search has been completed). 
Algorithmic heuristics can help to estimate the cost of terminating a candidate 
solution. As will be seen later, the better these estimates are, the more efficient the 
search algorithm becomes. 

The search algorithm itself can be viewed as a set splitting procedure. It 
st arts with only the S node, from which the set of all possible paths can be reached. 
It then chooses to explore various paths leading to other nodes, from which only a 
subset of the possible paths can be reached (i.e. the subset of paths constrained to 

pass through that node and its predecessors). The fundamental operations of the 
search algorithm are generating a successor from any node, handling pointers to  
relate offspring to parent nodes, evaluating candidate paths, and deciding the order 
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in which nodes should be explored. Other tasks include expanding nodes, which 

means to generate all direct successors, and truncating them, which prevents any 
successor nodes from ever being explored. Truncating is performed when the 
algorithm is sure that the solution path does not pass through a particular node (for 
example, due to constraints). The process of splitting subsets of solutions and 
comparing partially completed paths continues until a node is found that is a 
member of the set of goal states. The path leading to this node is a solution for a 
constraint satisfaction problem. Better solutions (lower cost) are usually obtained 
by continuing the search along promising but incomplete paths. The optimal 

solution is found when all other paths (partial or complete) are sure to have a higher 
cost. Since in most practical problems, the entire search graph will be far too large 
to be represented explicitly in memory, a search algorithm will incrementally 
generate and store only the portions of the graph which are needed at any one time. 
An efficient well-guided search strategy should be able to avoid exploring the entire 
graph without unduly discounting viable solution candidates. 

There are three categories of search strategies for exploring a graph: hill 

climbing, uninformed systematic search, and informed directed search. Hill 
climbing is a local optimization method. The gradient method for function 
minimization falls into this category. In terms of a graph search procedure, this 
approach expands a node, evaluates the successors, chooses the best one, and repeats 
the process at the next level. For simple convex problems this technique works very 
well. In general, however, it suffers from the drawback that it converges to local 
extremal solutions and cannot escape. The main types of uninformed systematic 
search procedures are the breadth-first and depth-first strategies. Breadth-first 

algorithms explore all possibilities to the same depth before continuing to deeper 
levels of a graph. Although the optimal solution is guaranteed (if one exists) a large 
amount of memory and time may be required. Depth-first algorithms search a 
graph in depth before breadth, generating one node at a time and exploring it before 
any others. Backtracking is used to redirect the search to unexplored nodes when a 
particular candidate solution leads to failure. This approach is very economical in 
terms of storage, and can work well when there are many solutions. It can be very 
inefficient, however, especially for problems with a large branching degree and many 
levels in the graph. Both of these methods are simple variations of an exhaustive 
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blind search; that is, the search direction is not guided by the nature of the solution 

or the costs of the explored paths. The method of dynamic programming also falls 

into this category, since it is essentially a recursive formulation of a breadth-first 
search which indiscriminately solves for optimal paths from every point in the state 

space (see [Peal,Guel]). 

An informed directed search is one which uses additional information to decide 

which nodes to explore first. These are known as best-first (BF) algorithms, since 

at each step they expand the node that is the most Lcpromising" of all nodes 

encountered so far in the search (regardless of where it is in the graph). As the 
search progresses, it jumps from branch to branch on the graph as it pursues the 
most promising paths. The search terminates when a god node is found, or it 
cannot find a more promising node to expand than the last one explored. 

The promise of a node n (or a candidate path) can be measured in many ways. 

In general, a numerical figure of merit called the heuristic evaluation function f(n) is 

defined. The form of f(n) is completely arbitrary and can include any kind of 

heuristic information in its computation. As explained earlier, however, the choice 

of f(n), and the type of heuristics used, directly affects the inherent properties of the 

search algorithm. For this reason, in optimal control applications it is desirable to 
rigorously define f (n )  as being exactly equal to the problem's cost function for an 
optimal path constrained to pass through the node n. Since the terminating cost of 

an incomplete candidate path is unknown, however, this portion of the cost usually 

has to be estimated. This means that the search algorithm has to work with path 
cost estimates, denoted by f(n), rather than with f (n) itself. Nodes are then 

compared using the cumulative costs associated with each state or arc along a path 

in the graph. During the search, the best node to expand is the one with the lowest 

estimated cost f(n). A method of estimating the terminating cost for each partial 

trajectory is required, but it can be shown [Peal] that if these estimates are always 

optimistic, then the best-first search is guaranteed to converge to the global 

optimal solution (if one exists). Such a convergence proof is given for the A* 
method in Theorem 6.9 of section 6.2.4. 
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6.2.3 THE A* SEARCH PROCEDURE 

Best-first algorithms differ in the way they choose their heuristic evaluation 
functions f(n). The A* search procedure is a special case of the best-first approach 
where the objective is to achieve a minimum sum cost. The following properties of 
f(n) are required by the A* algorithm: 

(1) The function f(n) is a cost function of the form 

fin) = 9(n) + hlnl I6.7) 

where g(n) represents the cumulative cost along the path from the start 
node S to the node n, and h(n) represents the estimated cost of 
completing the path from node n to a terminal node T. 

(2) The cost function is additive, that is 

with no = the start node S 

and nN = the current node n 

and g(n2 = g(nJ + c(ni,nj) (6.9) 

node n . n descendant of ni 
3 

The A* algorithm was first developed by Hart, Nilson, and Raphael [HarP,HarS], 
and is one of the most popular search techniques used because of its efficiency and 
other favorable properties (discussed below). In view of the specific A* 
characteristics given above, it is also clearly consistent with the objectives of 
discrete optimal control problems. 

The A* algorithm is presented in Figure 6.2. It works by keeping track of two 
sets of nodes, those that have been generated (OPEN nodes), and those that have 
already been expanded (CLOSED nodes). It also makes use of pointers which link 

each node to its predecessor. The search begins with the starting node S (initial 
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Figure 6.2: The A* Search Algorithm 

state) in the OPEN set, moves it to the CLOSED set, and then generates all 

immediate (1st level) successors denoted as n'. These new nodes are placed in the 

OPEN set with pointers directed back to the start node. The cost for trajectories 
passing through each successor node is estimated as j(n') = g(n') + h(n'), where 
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g(nf) is the known cost from S to n', and h(nfj is the estimated termination cost 
from n' to some T E I' . Based on the values of f(nJ) the next node for expansion n* 
is selected. Before proceeding, n* is tested to check if it is a goal node. If so, the 
solution is obtained by tracing back the pointers to recover the full solution path. 
Otherwise, n* is moved to the CLOSED set, and all its successors are generated 
repeating the cycle. Depending on the problem, it is possible for newly generated 
nodes to overlap existing ones (two paths leading to the same state). When this 

occurs, the path from S to n' with the lowest cost g(nJ) is preferred, and the pointer 
is adjusted from n' to the parent node along the preferred path. If the OPEN set 

ever becomes the empty set, it means that no solution has been found. If the basic 
A* algorithm is allowed to continue processing until the search terminates, the only 
way it can exit with failure is if there is no solution. [Peal] 

The A* algorithm, as presented thus far, generates sets of nodes (OPEN and 
CLOSED) which continually grow until a solution is found. There are many 
mechanisms, however, that can operate during the search to reduce these sets or 
slow their growth. The constraints of a problem can eliminate nodes and entire 
sub-trees of the graph either before or after expansion. For optimal control 
problems, constraints on the control inputs limit the number of nodes per expansion, 
and constraints on the states eliminate sets of candidate paths. Other ways to 
reduce the search space fall into the category of enhancements to the basic A* 
algorithm, such as cost-bounded paths, suboptimal search, hybrid methods, and 
others which will be discussed in section 6.2.5. 

6.2.4 PROPERTIES OF THE A* ALGORITHM 

It has already been mentioned that the properties of heuristic search 
algorithms can depend upon the way in which heuristic information is used. The 

purpose of this section is to present some important properties that can always be 
guaranteed under certain conditions. Since the A* algorithm is the basis for the 
RIFC controller, the discussion is focused on the properties specific to A*. The 
following definitions will be required:' 

 h he material and the notation in this section follows the discussion found in reference [ ~ e a l l ,  
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P E Any path from node ni to nj Pn 7n r The set of all such paths 
" r n j  8 j 

'n- T r Any path from a node n to a solution node T, (T E I') 

%--r r The set of all paths fiom n to the set I' (solution nodes) 

P* n -n r An optimal path fiom node n, to n 
2 j j 

c*(ni,n$ s The cost of the optimal path irom ni to n 
j 

g*(n) 2 The optimal cost fiom S to n, (i.e. c*(~,n)) 
Min * h*(n) s The optimd cost from n to T, T E r { ~  (n, T)} 

fl(n) - g*(n)+hh'(n) a The cost of the optimal solution passing through n 

d = The cost of the optimal path from S to l', (i.e. h * ( ~ ) )  

r * The subset of solution nodes accessed by optimal paths 

The function f ( . )  has some interesting properties. For an optimal path, 

f(s) = since f ( ~ )  represents the cost of the entire path. Also note that f (s) = 

h * ( ~ )  = g * ( ~ )  by definition. Now, for a node n* along an optimal path (n* E P & ~ )  

it must be true that f (n*) = d. That is, if a node is on an optimal path, then the 
best trajectory that is constrained to pass through i t  will be the optimal path, (with 

the optimal cost). Conversely, i t  is also true that if a node is not along an optima3 
path (n j! pLr) then the cost of the best trajectory constrained to pass through it is 

greater than that of the optimal solution (f (n) > d ) .  This implies that a solution 
can only be optimal if every node along its trajectory contains an optimal path 
passing through it. This is, in effect, a statement of the principle of optimality (see 
[Kirl]). 

Another very important property of f (9) is that, if f ( n )  were known exactly 
for all nodes n, it would provide enough information to lead an A* search directly 
toward the optimal solution. This is true, since for all nodes in each expansion, 
f ( n )  gives the best possible cost for pursuing a path passing through each node n. 

where a more detailed analysis of the subject can be found. 
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There would be no need to explore to deeper levels to  decide which nodes were best. 
A search using f(.) would only expand nodes along the optimal path and the 
solution trajectory would be found immediately. Now, for any partially explored 
path, the function f (n) is unknown only because the cost of the terminal portion of 
the trajectory h*(n) (from n to 7') is unknown. However, h*(n) can be 

approximated by some function h(n), and this is the basis for the efficiency of the 
A* algorithm. Using f(n) = g(n)+h(n) to approximate f(n), A* is able to  
discriminate between partial paths which are potential solutions and those which 
cannot possibly lead to an optimal solution. The more precisely h(n) approximates 
h*(n), the more discriminating the search becomes. In sharp contrast, the dynamic 
programming approach essentially searches the entire space to find the exact value 
of h*(n) for each node n. [Peal] 

The most fundamental property of the A* algorithm is its convergence 
behavior. I t  is shown below, that if the cost estimate h(n) is always optimistic, that 
is h(n) underestimates h*(n), then the A* algorithm is guaranteed to converge to 
the optimal solution (if one exists). The cost estimate h(n) is commonly called the 
heuristic function, since it usually uses some heuristic information to estimate the 
true cost of completing a particular trajectory. The condition above defines what is 
meant by an admissable heuristic. Note that any kind of information whatsoever can 
be used to compute h(n), and as long as h(n) is admissible, the A* algorithm will be 
guaranteed to converge. This idea is presented more formally in the definitions and 
theorems below. Theorem 6.9 provides the proof of convergence for the A* 
algorithm. 

DEFINITION 6.12: A heuristic function h is said to be admissible if 

(i.e. the terminating cost estimate is optimistic) 

THEOREM 6.7: The A* algorithm always terminates with a solution if one 
exists. 
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PROOF: Referring to Figure 6.2, the search fails only in the case that the set of 
OPEN nodes becomes empty. Now, assume that n' represents a node 
along a solution path PsT . 
Note that, 

( I )  ifasolutionpath PsTexists, then, atanytimeduring 

the search, tbere must exist a node n' (along PsT) such 

that n' E OPEN.* 

(2) ifP~Tisnotfound,andOPENisempty, thenthenode 

n' (on PsT) must have no successors. 

This, however, contradicts the assumption that n' is along a solution 
path, since by definition, any such node (except the terminal node T), 
must have one successor which is also along PsT . Therefore, the set 

OPEN cannot become empty before the solution PsT has been found. 

THEOREM 6.8: If h(n) is admissible, then at any time during the A* search, 
there exists an OPEN node n' along the optimal path P& 

such that f (nt)  5 C'. 

REMARK: Essentially, this says that if the search has not terminated, one of the 
nodes available for expansion is part of the optimal solution and has an 
optimistic cost estimate. (This result is needed to prove Theorem 6.9) 

# PROOF: Consider any optimal path P; - E where is defined by 

the sequence of nodes, 
* PSVT = [S, nl, n?, ..., n', ..., TI. 

 his is true, since the search starts with the node S in OPEN. When S is expanded it  is moved 
to the set C L O S E D ,  but one of its successors 71' is clearly on the path Ps-T. The node n' 
stays in the set OPEN until it too is expanded, at which time one of its successors (nor in 
O P E N )  must also be on Ps-T. Therefore, there is always one node on Ps-T in OPEN until T is 
found. 
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Also let n' be the ddlowest OPEN node such that n' E P: - T. 

(Some node along the optimal path is always in OPEND) 

AII ancestors of n' are therefore in the set CLOSED, and since the 
partial path defined by [S, nl, nz, ..., n'] is optimal, it follows that, 

gin' 1 = d (n' ) 

Now, using the fact that h(n) is admissible, 

f(nf ) = g(n')+h(nf) = s*(nf)+h(n') 5 g*(n')+h*(n') = f (n') 

Finally, since n' is along the optimal path, f (n' ) = C' 
and therefore, 

/In' 1 l C' 
which verifies the theorem. [Peal] 

THEOREM 6.9: Convergence of the A* Algorithm 

The A* algorithm using an admissible heuristic function h(n) converges 

to the optimal solution (if  one exists). 

PROOF: From Theorem 6.7 above, we have that the A* algorithm always 

terminates with a solution if one exists. 
Now, suppose a search terminates with a solution node T E I" such that 

f(T) = g(T) > d, (i.e. a suboptimal solution). 

Referring to the A* algorithm in Figure 6.2, the node T could only have 

been selected i f ,  

f(T) i f(n) V n E OPEN 

Since f(T) > Cf, this would require that fln) > C' for all other nodes 
in OPEN as well. This, however, contradicts Theorem 6.8, which 

assures the existence of at least one OPEN node n' with f(n') < d, 
provided that h(n) is admissible. 

* 
'using the sane argument as in the previous footnote, but substituting Ps-T for Ps-T. 
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Therefore, the terminal node T must have f(T) = g(T) = C', which 

implies that the A* search terminates when i t  has found the optimal 

solution path 

Based on the preceding discussion, and on Theorem 6.9 above, it is clearly 
desirable to have the largest possible terminating cost estimate function h(.) such 

that h(n) 5 h*(n) for all n. The inequality guarantees convergence to the optimal 
solution, while the difference h*-h determines the efficiency (or discriminating 

power) of the A* search. As mentioned earlier, if h = h* then the A* algorithm 

would only explore nodes along the optimal path. Conversely, if no heuristic is used 

(h = 0) then A* becomes an exhaustive breadth-first search which expands all 
nodes for which g(n) < C'. The interval 0 j h(.) j h*(-) represents the entire 

spectrum of search effort, from exhaustive search to immediate solution. The 
ability of the A* algorithm to reduce the required search effort by excluding nodes 
from expansion (based on estimated path costs) is called the pruning power of h(-). 

Furthermore, an A* search using a heuristic h2 (denoted A;) such that hz(n) > hl(n) 

(If n # T, T E I') is said to be more informed than the A; search using hl. It can 

also be shown that A; is a more efficient search than A; in that i t  requires less node 
expansions to find the optimal solution. The following theorem defines which nodes 

will be expanded in an A* search. 

THEOREM 6.10: Any node n that is expanded by an A* search, using an 
admissible h(*), cannot have a path cost estimate f(n) that 
exceeds the actual cost of the optimal solution c*. That is, 

f(n) j C* for aU expanded nodes 

REMARKS: (1) AD nodes for which f(n) > C* are excluded from expansion. 

(2) Note that since f(n) = g(n)+h(n), a larger terminal cost 

estimate h(n) increases f(n). A larger f(n) implies that more 

nodes will be excluded from expansion according to (1). 

Theorem 6.10 also suggests a possible enhancement to the basic A* algorithm, 
using Cost-bounded paths, that will be used to advantage in the RIFC control 
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system. If C' were known a priori, all paths passing through nodes for which 

f(n) > C* could be eliminated as candidate solutions. Since d is not known, if it 
can be upper bounded such that d < Cmax, then all nodes in OPEN with 
f(n). Cma, could be eliminated immediately'o. By requiring all OPEN nodes to 
meet the criterion f(n) < Cmax, the search effort and storage space needed by A* can 
be drastically reduced. The upper bound Cma, can come from an initial suboptimal 
solution, and can be updated as the search progresses. 

Another useful property of the A* algorithm is related to the concept of a 
monotonic heuristic function. This will have important implications for the RIFC 
control strategy developed in Chapter 7 and 8, since the cost function used will fit 
this description. 

DEFINITION 6.13: A heuristic function h(.) is monotonic if i t  satisfies: 

h(n) < c(n,nf) + h(nf)  (6.11) 

for all n, n' such that n' is a successor to n. 

REMARKS: (1) In effect, a monotonic h(*) implies that the cost estimate j(n) 
for a particular path is more optimistic when the node n is 
farther from a goal node T E l". 

(2) For deeper nodes (i.e. more thoroughly explored paths) the cost 

estimate is higher, and as -T, j(n) --+ f (n). 

(3) It is also quite easily shown that every monotonic heuristic 
function h(n) (satisfying h(T) = 0) is also admissible. 

THEOREM 6.11: An A* algorithm using a monotonic heuristic function finds 
optimal paths to each expanded node, that is, 

9(n) = 9%) for all n E CLOSED (6.12) 

1°lf fw > Cmax then the cost of the partially explored path PS-n is already so large that a 

complete path passing through this node could not possibly be optimal. 
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REMARKS: (1) This theorem states that, of all possible paths PS-n leading 

from the start node S to a node n, the optimal one P : - ~  will 

have been found by the A* search before any successor nodes to 

n are explored. 

(2) For the proof, refer to [Peal]. 

The advantage of having monotonic heuristics is that, since the explored part 
of any trajectory is always known to be optimal, the A* search will never require a 

node to be expanded more than oncell. This can be seen by noting that from 

Theorem 6.11, the comparison between nodes in the set OPEN is now based on the 

quantity f(n) = g*(n~+h(n~, which cannot be improved by taking a different path 
from S to n. Therefore, once a node is selected, expanded, and CLOSED there 
would never be a need to OPEN it again. This property is useful because it 

prevents the search from wasting effort re-expanding nodes. 

The properties of the A* algorithm with monotonic heuristics also help to 

illuminate the relationship between the cost estimate h(n) and the discriminating 
power of A*. Since the actual cost g*(n) of a partially explored path P: - is known 

prior to expanding an OPEN node n, the cost estimate f(n) = g*(n)+h(n) is really 

dependent only upon h(n). The condition for node expansion, expressed in Theorem 
6.10 as f(n) < d, is given below for monotonic h(0). 

THEOREM 6.12: The necessary condition for A* to expand a node n, given that 
the function h( - )  is monotonic, is given by 

f(n) = g*(n) + h(n) 5 d (6.13a) 

and the s a c i e n t  condition is 

f(n) = g*(n) + h(n) < c' (6.13b) 

"without monotonic h(n) it it possible that a new path, with a lower cost, might be found from 
the initial state to a node that has already been expanded. 
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Note here that, since h( - )  is monotonic, g*(n) is known before a node n is expanded, 
and the cost estimate f(n) is clearly a direct function of h(n). The criterion for 

excluding a node from OPEN becomes h(n) > &*(n), (from f(n) > d ) ,  which 
will hold for more nodes if h(n) is more informed (larger), and this translates into 
less node expansions and reduced search effort. 

6.2.5 ENHANCEMENTS TO THE A* ALGORITHM 

In the previous section it has been shown that the A* algorithm using the cost 
estimate f(n) = g(n)+h(n) with admissible h(n) is guaranteed to converge to the 
optimal solution (if one exists). In addition, if h(n) is a monotonic and well 
informed heuristic, the search effort can be minimized. In fact, the A* algorithm 
can be shown to be optimal (in the sense that it expands the least number of nodes) 
when compared to all other optimization algorithms that minimize an additive cost 

function, with the same amount of information, while guaranteeing convergence 
[Decl]. 

There are two practical problems, however, that may prevent the basic A* 

algorithm from meeting its objectives: computation time and available memory. If 
a search is interrupted prematurely because an application cannot wait any longer 
for a solution, then the guarantees of returning a complete solution are forfeit. 
Similarly, if any branches of the solution tree are unduly truncated due to 
limitations on the storage space for expanded nodes, the algorithm may fail. These 
issues are important, since for most complex problems the search graph for the basic 
A* algorithm can be quite large. This section mentions several enhancements to the 
A* algorithm that can be used to reduce the memory and computational 
requirements. More details are presented in Chapter 8, where all of the concepts 
below are utilized in some form as part of the RIFC autopilot logic. 

The most fundamental way to simplify the task of an A* search is through the 
definition of the problem. Any constraints on the properties of the solution 
automatically restrict the number of paths that are considered admissible. In the 

context of an optimal control problem, constraints on the states and controls 
naturally limit the branching degree and the graph size. Otherwise, the 
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discretization of the state space, the controls, and time, determine the dimensions of 
the graph that must be searched. For best performance, the quantization steps used 
for each variable should be made as large as possible while retaining enough 
precision for the specific problem. 

As mentioned in the previous section, Cost-bounded paths can be used to 
drastically reduce the size of the search space. Once a complete path is found that 
meets all the constraints, then all future candidate paths, having an estimated cost 
greater than the cost of the known path, can be eliminated from the search. This 
will be discussed in more detail in Chapter 8. 

Hybrid search strategies are another way to improve the performance of A*. 
There are many variations on this concept, but the main idea is to alternate 
between depth-first and best-first search patterns. This approach is also known as 
a staged search because most of these algorithms switch strategies in stages of depth 
on the graph as the search runs out of memory. 

The most important topic in this section is a variation of the A* algorithm 
known as the A: search. The basic A* search typically wastes a considerable 

amount of effort simply deciding among paths that are very nearly equivalent in 
terms of cost. Using A: it is possible to sacrifice a controllable degree of optimality 

in the solution in order to eliminate this computational effort. This is applicable, of 
course, only in situations where a suboptimal solution that meets all the constraints 
is acceptable. The A: algorithm is almost identical to  the A* algorithm described 

in Figure 6.2, with only one exception that is explained below. 

DEFINITION 6.14: The A: Algorithm 

( I )  A: uses the sets OPEN and CLOSED as described for A*. 

(2) I t  makes use of another set called FOCAL, which is the set of aI1 
OPEN nodes such that the estimated cost f(n) is not higher than ( I + € )  

times the current best cost estimate, that is 
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M i n  FOCAL = { n: j(n) 5 (I+€) 

(3) Nodes are selected for expansion from the set FOCAL (not OPEN), 
and the priority for selection is based on a dep th-first rule. 

REMARKS: (1) This definition actually describes a specific variation of the A: 

algorithm. In general, the set FOCAL is used to group nodes 
with approximately similar costs. Which of these nodes is 
actually explored is then determined by an independent rule. In 
this case, the rule is chosen to be a depth-first priority. 

(2) The result of using the above algorithm can be visualized by 
defining another set called LOCAL (not FOCAL) as the set of 
all nodes n' generated from the last expansion of a node n*. 

Now, for monotonic h(n), the A: algorithm is essentially biased 

to expand the best node from LOCAL unless a node on another 
path has a substantially better cost estimate. In this way, the 
A: search probes to deeper levels of the graph sooner by 

avoiding superfluous branching for small improvements in cost. 

The degree to which optimality is traded for speed is determined by the value 
of c, as seen in the following theorem. 

THEOREM6.13: The~~aJgorithmconvergestoasuboptimdpathP~ - *costing 

no more than ( I+€)  times the optimal cost, 

f(T) 5 (I+€) d (6.15) 

PROOF: See reference [Peal]. 

Since the cost distribution among paths in any graph is specific to the 
problem, it is not possible to make any quantitative statements relating an e to a 
given decrease in required node expansions. It is feasible, however, to adjust the 
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search speed on-line by adjusting the value of E dynamically. In this way, a search 

could be forced to  reach goal-level depths within a prescribed amount of time. 

Several other variations and enhancements to the basic A* algorithm are 

possible, including some that depend on the nature of the problem. In Chapter 8, i t  
will be shown how certain properties of the AHSV flight control problem can be 
used to advantage in order to strictly limit the memory requirements for the 

optimization. In Chapter 7, Lyapunov stability theory is combined with the A* 
algorithm to guarantee the other properties that are important for control (tracking 
st ability and robustness to uncertainty). 

Finally, regardless of any enhancements to the A* and A: algorithms, these 

search techniques are particularly well suited for implementation on computers with 

parallel computing architectures. The evaluations of f(n), for each newly generated 
node in an expansion, are completely independent processes that could be done 

simultaneously. In a problem that had a thousand possible successors for each node, 

the search could proceed a factor of a thousand times faster on a parallel machine 

(with a thousand simple processing units). Other tasks, such as managing the sets 
of nodes (OPEN, CLOSED, etc.), could also be done in parallel, and in the 

background while the search continues. An evaluation of the computational 

requirements for the RIFC controller, in the context of the capabilities of today's 
parallel computers, is given in Chapter 8. 



Chapter 7 

Control System Development 

The vehicle models and the flight simulation, described in Chapters 4 and 5, 

provide the means to represent the dynamic behavior of an air-breathing hypersonic 
vehicle. In this chapter, the flight control problem is addressed, and the approach 

taken in this thesis, called Robust Intelligent Flight Control (RIFC), is developed 

and justified from a theoretical point of view. First, however, a formal statement of 
the AHSV flight control problem is presented and discussed. The foundations of 

this approach are then given as a series of propositions, which are followed by 

supporting proofs, derivations, and physical arguments. The objective is to 
demonstrate that the performance of the RIFC algorithm can be guaranteed under 
some reasonable assumptions and conditions. This chapter concludes with a 

functional and logical description of the fundamental RIFC algorithm. A discussion 

of practical enhancements to  the algorithm (related to time and memory 
limitations) is reserved until Chapter 8. 

7.1 Formal Problem Description 

A qualitative description of the objectives and the structure of an overall 

AHSV autopilot was given in Chapter 3. In short, the main objectives of the flight 

control system are to account for the nonlinear dynamics, to observe a variety of 
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state and control constraints, and to assure stability and tracking performance in 

the presence of modelling uncertainty. In Figure 3.1, the problem was divided into 

functional subsystems that perform tasks related to sensor data management, st ate 

estimation, system identification, dynamic modelling, local feedback, and trajectory 

control. Refer back to Chapter 3 for further discussion of the flight control 

objectives and the advantages of the defined autopilot architecture. As discussed 
earlier, this research focuses on the trajectory control subsystem of the overall 
autopilot . 

The objectives of an AHSV fight control system are now presented more 

formally in terms of the variables of interest for the problem that is addressed in 
this thesis. The elements below characterize a general statement of the problem: 

Nonlinear Multivariable Timevarying Dynamics: (7.1 a) 

where, - ~ ( t )  E Wn, - s ( t )  = [ V(t) 7(t) ~ ( t )  w ]  

u(t)~W'", uT(t)=[be(t)6r(t)6v(t)] - - 

L(z,t)€IP, d T ( ~ , t ) = [ C ~  CD G a G n  G v L L p  

are the st at es, controls, and parameters (aerodynamic, 
propulsion, and control coefficients - see section 4.7). 

Control Act nat or Constraints: 

Bounds: u*(t) : u. <u i ( t )<u .  (i=l..m) 
f i n -  h a x  

Rates: 

State Inequality Constraints: (7.1 c) 

I vlt)- vd  (t) 1 5 B,, (t) Velocity Tracking Tolerance 



SECTION 7.1 FORMAL PROBLEM DESCRIPTION 165 

I 'Y(tk'Yd(t)l 5 B,(t) Flight Pa th Tracking To1 eran ce 

I w(t)-wd(t)l 5 ~ , ( t )  Pitch Rate Constraint 

I e(tked(t)l 5 Be(t) At tit ude Constraint 

Other Dynamic Constraints: 

4 P v(t) < Qmax Dynamic Pressure Limit 

[ P + ( v ~ ) ~ ~  5 3 9 3  Maxim urn Allowable Acceleration 

Tracking Of Preprogrammed Desired Trajectory: (7.1 e) 

Parametric Uncertainty: 

Disturbances: 

F(t) p(t) Density, Temperature 
v(t) &(t) Velocity, Angle Of At tack 

where p(t), ?(t) are due to lateral and vertical atmospheric 
variations, and v(t), &(t) represent the effects of wind gusts. 

The flight control objective is to design an on-line control system to track the 
desired trajectory (7. le) within the tolerances specified by (7. lc) for the 
multivariable nonlinear dynamic system in (7.la) while observing the constraints in 
(7.1b,?.ld), assuring stability in the presence of the disturbances (7.lg), and 
guaranteeing robustness to the interval uncertainty on the parameters in (7.lf). At 
this point, a complete description of the dynamic equations, the definition of a 
performance measure, a criterion for robust stability, and some specific assumptions, 
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are as yet unspecified. A more specific statement of the problem addressed by the 

FUFC algorithm requires the clarification of these details. 

The longitudinal equations of motion for an AHSV (in 7.la) have been derived 

in Chapter 4. These equations represent the full rigid body translational and 
rotational dynamics with all uncertainty lumped into the unknown parameters 

(aero/prop/control coefficients). The RIFC autopilot uses these equations 

combined with a tabulated model of dynamic coefficients to predict the vehicle 

response to control inputs. These equations are, therefore, the controller's model of 

the dynamics. Interval uncertainty in these parameters is also stored in the 
database model, and this information is used to account for uncertainty in the 
predictions of the state trajectory. The detailed dynamic equations are given below: 

GME S ref  V t )  =-  [.7-wir]sin('Y) + ( 4 ~ r q ) ~ [ G , ( ~ a r l a ~ ) -  C o ( M a r J q )  

S ref  + ( i P r ~ ) ~ [ c X ~ , ( ~ a r ) a r , f i e )  + Cnh(Marl4,6r) 

I 
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with the auxiliary equations, 

+(t) = V sin(y) (7.2f) 

~ ( t )  = O(t) -7(t) (7.2g) 
= V / m  (7.2h) 

(where ya = Cp/Cv, the ratio of the specific heats for air) 

In these equations, CL, CD, and CMa are the lift, drag, and aerodynamic 
moment coefficients. Likewise, Orn, and a, are the thrust coefficients in the 

normal (up) and tangential directions with respect to the velocity vector. The 

thrust moment coefficient is CUP. The remaining coefficients (Cxde, Cx6,, CX& 

Czk, Czh, Czdv CMde, CMh, CMSv) are the control derivatives in each direction 

(in wind coordinates, i.e. X-along y, M o w n  and I to _V, M-pitch up) for the 

elevon (6e) ,  throttle (b), and thrust vector (Sv) controls. Each one of the 15 

coefficients above is a nonlinear function of the Mach number, angle of attack, and, 
for the control derivatives, the position of the respective actuator (Se, &, Sv). 

Equations (7.2a-h) have been carefully writ ten to distinguish between terms 

that are inertial, and others that are affected by atmospheric disturbances, such as 
variations in density, temperature, wind velocity or direction. The subscript "P 
refers to  a relative value with respect to a nonstationary atmosphere. The terms Vr 
and cu, refer to the vehicle's wind relative velocity and angle of attack. The term p, 

is local atmospheric density, which can differ from the expected density profile p(r) 
both laterally and vertically (where this r = altitudel). The relative Mach number, 

l~ctual ly ,  f is the radial distance from the center of the Earth. It w i l l  also be loosely referred 
to as altitude. 
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Ma,, is the ratio of the relative velocity Vr to the speed of sound (Ma, = Vr/Vs, V, 
= ./.yaRT), which itself may differ from its expected value for a given altitude due to 

temperature fluctuations. Also seen in equations (7.2a-h) is the time-varying 

nature of the AHSV dynamics due to the slowly changing mass and inertia terms, 

M(t) and Iy (t). 

Finally, observe that the thrust vectoring control coefficients (Cxbu) Cz bv, 

CM6V) complicate the dynamics by entering the equations as multipliers of both the 

nominal thrust coefficients (fin, fiv, Gp) and the throttle control derivatives 

(a6,, Czh, CMh). This nonlinearity prevents the direct representation of the 

dynamics in the form g(t) = f(g(t),t) + g(g(t),t).~(t) in equation (7.2a). 

The flight control problem addressed in this research has been limited to 
longitudinal motions only. Note that velocity, flight path angle, pitch rate, and 

pitch attitude are the primary state variables in equation (7.2a). Altitude ~ ( t )  is 

also one of the states, since it appears on the right hand side of the equations. The 
relationship +(t) = V sin(?) is listed as an auxiliary equation, however, since i t  is 
assumed that the desired AHSV trajectory is parameterizable in terms of altitude 

rather than time. That is, the flight control objective is defined to be the tracking 

of a desired velocity vector as a function of altitude along the trajectory from Earth 

to 0rbit.2 

This parameterization implies that the desired velocity vector is more 
importantly related to  the current flight condition (altitude) than to the actual time 
that the vehicle arrives at that point in its mission. Without this assumption, 
situations could arise, for example, in which the vehicle's velocity vector is perfect 

for the current flight condition, but the control system attempts to make drastic 

 here are desired values for the attitude states as well, namely Wd and Od, but these only 
re resent nominal values that may not even be complete1 compatible with the desired velocity e' d and flight path angle Yd. The tracking of Wd and d is a secondary objective to achieving 
the desired velocity vector. In factJ vehicle attitude is used as a pseudo-control to achieve 
translational tracking. 
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corrections because it is running late! In effect, parameterizing the trajectory by 

altitude, rat her than time, simplifies the problem by removing a degree-of-freedom 

from the tracking objectives. 3 

Also note that many of the constraint and uncertainty bounds in (7.la-g) are 
expressed as slowly time-varying quantities. In fact, these bounds might be more 

correctly defined as functions of the state, since they are slowly changing functions 
of the flight condition, which itself varies with time along a mission trajectory. 

For the purposes of flight control, then, it will be assumed that the desired 
trajectory is parameterized as a function of altitude, and the constraint juncert aint y 

variations are tabulated as a function of flight condition (which includes altitude, 
but may also include any of the other states). In the interest of clarity, however, 

the time-varying represent ations in (7. la-g) will remain unchanged. Instead, all 

time dependent bounds should be interpreted as referring to a slow variation with 

flight conditions along the trajectory. 

There are two complications that arise with the assumptions above. The first 

problem is that the trajectory from Earth-to-orbit may not be a monotonic 

function of altitude. The second problem is that the mass and inertias for the 

vehicle vary more directly with time than with flight condition (as fuel is 

expended). Both of these issues can be addressed by assuming that the overall 
trajectory is managed by the guidance system which provides unambiguous 

short-term desired state histories along with appropriate tracking tolerances (7 .1~)  

to the trajectory controller. It is further assumed that these tolerances account for 

the variation of the dynamics, and assure that the mass properties are never so far 
from nominal that the desired states are impossible to achieve. 

A final point regarding the time-varying nature of these equations is that, for 

the trajectory control problem, it is assumed that the mass properties are effectively 

3 ~ h e  trajectory is stil l  determined by integrating the velocity vector and the equation with 
respect to time. 
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constant during the short time interval over which the controller predicts ahead to 
evaluate candidate error-correcting trajectories. 

Referring, now, back to equations (7.2a-h), note that the effects of 

atmospheric disturbances on the dynamics of an AHSV are embedded in the many 

terms of the state equations. For the analysis in this chapter, it will be useful to 
rewrite these equations in a form that separates the disturbances from the rest of 

the dynamics. This can be done, in principle, by replacing the relative terms by 
their expected values plus a disturbance, and bounding the resulting effect on the 
system using information on the magnitudes of the individual disturbances. 

Substitute, P ~ = P + B  with I B I 5 Bmax (7.3a) 

V r = V + V  with ( T' ( < Vmax (7.3 b) 

% = a ! + &  with I ii I ha, (7.34 

Mar= Ma + h a  with 1 Ma 1 5 LZhaX (7.3d) 

(Note: MU is a function of P and p) 

The system can then be written in the following form: 

where _d(t) represents the difference between the actual dynamics (equations 7.2a-h) 

and the undisturbed svstem. That is. 

and, 

" act) = [N] ihtiV, - [2lt)] nominal 

The task of modelling these atmospheric disturbances is beyond the scope of 
this thesis. Nevertheless, given bounds (P..,, kax, ha, Ma,..) as a function of 

flight condition, it would be possible to derive the limits on di(t) shown in (7.5b) 

using the equations (7.2a-h) in conjunction with tabulated or empirical models of 

the coefficients. In this research, a wide range of possible magnitudes for these 
disturbances will be arbitrarily assumed in order to test the flight control system 
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under a variety of simulated disturbance conditions. The controller's model of the 
AHSV dynamics is presented below with all disturbances lumped into additive 

terms for each state equation. 

where, 

GME S ref h ( g l t )  =-  [7- uirIsin(7) + @ ~ v ) ~ [ @ v ( M ~ , , ~ J - c D ( M ~ J ~ ) ]  (7-7a) 

S ref svlz lu) t )  = + ( t P v ~ ~ [ ~ ~ , l ~ a ~ f f , w  

+ ~ x ~ ( ~ a , ~ ~ ) + ~ i r ~ ~ ( ~ a ~ ~ , ~ v ) - ~ ~ r ~ + ~ x ~ ~ ]  (7.7b) 

[ I v G M ~  w 2 r  COS(T)+[T]~~~(7 )+2wE f,O t)  = - T- 7 * 
S ref +(t p v)rnJ [or. (Ma, a )  +cL (Ma, a)] ( 7 . 7 4  

S ref s,(g,at)  = - ( t P ~ ) ~ [ ~ z ~ , ( ~ a ) a , 6 e j  

+ Cz br (Ma, a, h)+ cz &fa, a ,  6v)- [4 br - Orn] ] ( 7 . 7 4  

and as before, ?(t) = V sin($ 

4 )  = e(t)-r(t)  
Ma(t) = v / m  
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An important element of the AHSV flight control problem that has not yet 
been discussed, is the definition of a specific measure of tracking performance with 
which the controller can evaluate the merit of candidate trajectories. Since the 
problem is formulated essentially as a receding horizon optimal control problem (see 
section 3.2) it is natural to measure performance in terms of a penalty function of 
the tracking error. For several reasons, a stepwise cumulative cost function is 
chosen of the form: 

where) NAt, = La, is the maximum look-ahead time. 
x(&,kA&), %(a&) are the actual & desired states at t = kAQ. - 
h(g)) 4 (g) are the parameter estimates and associated uncertainty 

intervals at the current state _z(kA&). 

The specific choice for the function Jk will be motivated in the development of 
section 7.5; suffice it to say here that it is a positive definite function of the tracking 
error along the candidate trajectory, and it includes a penalty for the uncertainty in 
the state predictions. Note that this performance measure is used to evaluate (and 
compare) candidate trajectories, and does not necessarily have to be globally 
minimized in order to find a viable control solution. 

Recall from Chapter 3, that a viable solution is defined as one which is stable, 
observes all the constraints, and converges towmd the desired trajectory. Any 
viable suboptimal trajectory is perfectly accept able. Besides, the confidence in what 
may be the global optimal solution is diminished with future time steps due to the 
propagation of uncertainty through the dynamics. Furthermore, only one time step 
of any solution will actually be used for feedback, since a multi-step predictive 
trajectory is recomputed at each interval of time (A&). The true tracking 
performance is, therefore, determined by the sequence of single step control actions 
taken at each time interval. This is the control feedback actually experienced by 
the vehicle, and it must be guaranteed to lead to a viable tracking trajectory in the 
near future. 
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Based on the discussion above, the foremost criterion for a candidate solution 
is, therefore, its viability in terms of stability, constraints, and convergence. 
Minimizing the cost function is then a secondary criterion, which selects from the 
set of viable solutions one that is optimal in terms of tracking performance. This 

distinction between the viability and optimality of a solution is important in the 
context of this problem, since it may be desirable to sacrifice some degree of 
optimality to reduce the computational burden of the optimization. This is 
discussed in more detail in Chapter 8. 

The concept of the viability of a candidate trajectory, as discussed above, 
refers in part to the property of stability, which has not yet been defined in the 
context of this problem. Since the main objective of an AHSV flight control system 
is to track a desired trajectory, stability for this system will be defined in terms of 
the state tracking error dynamics. It is assumed that the desired trajectory is a 
sequence of reachable states for the vehicle.4 The tracking errors are, therefore, 
deviations from these states, and tracking stability would be implied by stability of 
the error dynamics. The particular choice of the stability criterion is motivated in 
section 7.4. It is based on a discrete Lyapunov stability argument for a suitable 
scalar measure of the total tracking error. The Lyapunov function is a weighted 

norm of the individual state errors, 

and the stability criterion is given by the following inequality: 

In this equation, the time step AtL represents a discrete time interval for 
which it is possible to get a reduction in the Lyapunov function. In general, A ~ L  is 
greater than the control cycle-time A&. The maximization over the parameter 
space of the predicted tracking error at time t+AtL in equation (7.10) makes this a 

4~onstraints for the desired trajectory will be derived later to assure feasibility. 
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robust stability criterion in the presence of modelling uncertainty. The choice of the 

norm Q, the time step A h ,  and the determination of constraints on the system to 

assure the existence of a solution that meets this criterion, are all issues addressed in 

the following sections. 

The preceding discussion has clarified many of the details which define the 
specific problem that is addressed by the RIFC trajectory controller. The 

combination of the items (7. la-g) at the beginning of this section, with the dynamic 
equations and disturbances defined by (7.4, 7.5b, 7.6a4, 7.7a-k), the defining cost 

function for tracking performance (7.8), and the Lyapunov stability criterion (7. lo), 

comprise a full mathematical statement of the AHSV flight control problem. 

7.2 Theoretical O v e ~ e w  

The Robust Intelligent Flight Control algorithm is constructed in such a way 
as to account for all significant nonlinearities, constraints, and uncertainties present 
in the AHSV trajectory control problem, while guaranteeing the important 
properties of stability, convergence, and robustness of the control solution. This is 

accomplished by treating the task of trajectory tracking as a receding horizon 

optimal control problem and combining an A* optimization technique with certain 

results from Lyapunov st ability theory.5 A Lyapunov stability criterion is chosen 

for which it can be shown that a solution exists (with reasonable restrictions on the 
system and trajectory). The optimization problem is then structured and solved in 
a manner that concentrates the search on the subspace of trajectories that meets the 

stability criterion, and guarantees convergence to a solution. 

The steps below outline the logical sequence of arguments used in the 

following sections to justify the approach taken by the RIFC algorithm in terms of 

its theoretical properties: 

5 ~ e f e r  back to Chapter 3 for a qualitative description of the RIFC approach. 
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(1) Establish controllability of the tracking error dynamics by limiting the 

desired trajectory and constraining the admissible state space to  an 
envelope for which the existence of control margins can be assured. 

(2) Define a discrete Lyapunov stability criterion in terms of a normed 

measure of tracking error, such that it can be satisfied by converging 

trajectories which meet the controllability conditions. 

(3) Show that the A* search algorithm converges to the optimal solution 
for the optimization problem defined by the constraints and bounds 
derived in (I), and a cost function equal to  the cumulative sum of the 

stepwise Lyapunov measure of tracking error from (2). 

(4) Augment the conditions in (1)) the Lyapunov criterion in (2)) the cost 

function in (3)) and the solution criteria for the A* search, to guarantee 

robustness to the presence of uncertainty in the parameters. 

The analysis in the following sections serves to demonstrate that, under some 

reasonable assumptions and conditions, the performance of the IUFC algorithm can 

be guaranteed. 

7.3 Controllability 

Before the questions of stability or tracking performance can be addressed, i t  

is necessary to establish that the AHSV system dynamics represented in equations 

(7.2a-h) are controllable from the given inputs. Since there are practical limits on 

the control actuators, tracking tolerances on the states, and other constraints on the 
system, there is the issue of physical as well as theoretical controllability. Adequate 

control margins must be assured in order to track, as well as converge to, a desired 
trajectory. Clearly this implies some limitations on how aggressive the desired 

trajectory can be before it is no longer feasible. 
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The objective of this section is to identify the bounds of a controllable 

envelope in the state space. This envelope defines the capabilities of the vehicle in 
terms of translational and rotational accelerations and, therefore, limits the tracking 

performance for a given desired trajectory. Due to the nonlinear nature of the 
equations, tabulated represent ations for the coefficients, and constraints on the 

states and controls, it is very difficult to identify the complete controllable space for 

the AHSV dynamics. A more conservative envelope can be found, however, based 
on some reasonable assumptions and by bounding many of the terms in the state 

equations. These assumptions make it possible to represent the dynamics in a 
simplified form for which an analysis of controllability can be carried out. 

Theoretical controllability is confirmed, and the relationships between the tracking 
tolerances, limits on the desired trajectory, control margins, and constraints, are 

derived such that controllability of the error dynamics is assured. 

PROPOSITION 1: CONTROLLABILITY 

Given that there exists an operational envelope for which there is suficient 

control authority to achieve, at a minimum, the following nonzero 

bi-directional accelerations: 6 

1 v < 0 < v (acceleration tangential to the velocity vector) 
+ 

2. < 0 < kmarg (angular acceleration in pitch) 
+ 

3. ?;aq < 0 < ?marg (acceleration normal to the velocity vector) 

then, there exist bounds, 

and constraints on the desired trajectory, 

' ~hese  accelerations are referred to as marginal values, and the subscript ('marg'' is used. 
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Min[wd (t)] < #d (t) < Maz[dd (t)] 

such that, the tracking error space defined by 

e,(tl = V ( t j  Vd (tl e7(t) = 7(tkt)-7d (tl 

ew(tl = ~( t ) -Wd( t )  eg(t) = O(t)-fld(t) 

is controllable. 

ARGUMENT 1: 

Referring back to equations (7.6, 7.7), note that the control coefficients 

(Ckse, Cx6,, C X ~ ~ ,  Czge, Czh, C Z ~ ~ ,  as,, adbr, ad are all coupled and 

interrelated functions of the control inputs (Se,&,bv). For example, the value of the 

moment coefficient for elevon deflection abe cannot be selected independently of 

the elevon contribution to normal acceleration Cz All nine control coefficients 

are determined for any choice of the three control settings. It is clear that selecting 

any one of the inputs to control one of the states (e.g. 6e --+ w), has a spillover effect 

on the other state equations (i.e. Cxse and Czge in this case). 

The assumptions of Proposition 1, however, imply that the control input space 

can effectively be mapped into an equivalent input space comprised of two 

independent control coefficients: one for translational force (bF) and another for 

rotational torque or moment (JM). An equivalent normal force control would also be 

possible, but it is assumed that angle of attack, and not direct force control, will be 
the primary means of achieving normal acceleration. Figure 7.1 illustrates the input 

space for the equivalent controls dF and bM. The rectangle bounded by F1, F2, MI, 
M 2  represents a region in this space for which it is possible to independently select 
& and &. Note that this mapping does not limit the controller's ability t o  use to 

advantage the Cz derivatives; it is only a device to simplify the analysis in this 
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section. For a given 6~ and bM, the spill-over into the Cz derivatives will be. treated 

as a disturbance.' 

Figure 7.1: Mapping from Actuator Space to Equivalent Control Inputs 

The region bounded by F1, F2, MI, M2 in Figure 7.1 is conservative, since, 

for example, it may be possible to have 6~ > F2 provided bM is less than some value 
below M2. The advantage of this conservatism is that it allows the treatment of & 
and bM as independent equivalent-controls. 

Before deriving expressions for F1, F2, MI, M2, the equations from (7.6, 7.7) 

are modified in order to lump all spillover effects into the disturbances. The thrust 

control ($) is the main effector for accelerations along the velocity vector, and the 

elevon (be)  and thrust vector (6v) controls are primarily for rotational accelerations. 
The equations are simplified to reflect these properties by examining the worst case 
perturbations to each state equation, due to "unwantedn control actions in each 

axis, and adding these contributions to the disturbance terms. Note that this 
operation is also conservative, since it does not consider the possibility of a coupled 
multiaxis control effort; but again, this applies only to the analysis and does not 

limit the options available to the controller. 

 or analysis, not for control. 
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Starting with the velocity equation, 

where from (7.7b), 

Now define, 
S ref 

9;(z,C,t) = ( + P ~ ) ~ [ c k ~ ( ~ , s r ) ]  

and rewrite ~ ( t )  as, 

~ ( t )  = fv(z, t )  + 97'%h,t) + d;(t) (7.12d) 

with, 

and, 
z c & is defined as the set of states g(t) = [V(t)  '(t)(t) u(t)  0(t)IT inside the - 
envelope, 

I v(t)- vd (t) 1 < 6 1 ' ~ ( t h ' d  (t) 1 < b7 (7.13a) 

1 u(t)-wd (t) 1 < 6, I e(t.ked (t) 1 5 6, (7.13b) 

where the bounds bl, fi7, bw, 6, have not yet been specified. 

For the flight path state equation, 

y(t) = f7(z., t )  + g?(g, be, dr, bv,t) + d7(t), with I d7(t) I < dYax(t) (7.148) 

where from (7.7d), 

g7(s, be, h, 6% t )  = - (4 P v&&- [ ~z be (., h) 

+cz, (z, &I+ cz,,,(i, avl- [ cz , (z, h) - orn ( d l ]  (7.14b) 

Since normal acceleration is assumed to be achieved through attitude, define 

g+(~ , t )  = 0 ( 7 . 1 4 ~ )  
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and rewrite j.(t) as, 

?(tl = f7(z1 t )  + d+(t) 

with. 
Max Max Maz Maz I d+(t) I < dyax (t) + .2 E& 6e bv 1 g7(g16e1 h16vl t, 1 (7.14e) 

Finally, for the pitch rate equation, 

where from (7.7f), 

Now define, 

and rewrite G(t) as, 

G(t) = f,(z,t) + g;(z16e,6v,t) + d;(t) (7.1 5d) 

with, 

Since gg(~ ,u1 t )  = dg(t) = 0, the result is the following system: 

Vt) = f,bt) + 9 ; 6 6 r J t )  + d;(t) (7.16a) 

?(t) = f,(Z t )  + d;(t) (7.1 6b) 

~ ( t )  = f,(z1 t )  + g;(% 6eJ 6vJ t )  + d;(t) (7.1 6c) 

e(t) = fs(3 t )  (7.1 6d) 

Referring to (7.12c, 7.15~) the equivalent-controls can be defined by, 
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g3 (a, t )  hi s;(z1 6el 6vl t )  (7.1 7b) 

where, 
S ref 9,(gJt) = (j p l n ) r n  (7.1 7c) 

(7.1 7d) 

The values of F1, F2, MI, M2 from Figure 7.1 can now be obtained as follows: 

F1 = Min (&] = Max { M i n  br [ g ~ ( ~ J b r l t ) / g l ( ~ J t ~ ] }  (7.18a) 
$ ax 

F2 = Maz [6~] = (7.1 8b) 

MI = M Z ~  16.1 = 

M2 = Max [ b ~ ]  = Man Max Max 
_z@,( 6e 6v 

Finally, making the following substitutions, 

fl= fv1 f2= fy f3= fd f*= f0J 

d  = d J J  d = d; d  = d; 
1 v 2  3 

equations (7.16a-d) can be written as, 

The original assumptions of Proposition 1 can now be explicitly defined in 
terms of the system variables. The first assumption stated that there is always 

enough control authority to achieve a positive or negative acceleration tangential to 
the velocity vector. Referring to equation (7.19a), this means that for any value of 
the states in an envelope g E b, 
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Assumption 1 

Max [ f ( ~ , t )  + 9 ( ~ , t )  b~ + d  it)] 2 G a r g  > 0 
6 ~  1 1 1 

(7.20a) 

Min 
JF [f1(z1t) + I , (E ,~)  JF + d 1 (t)] I K a r g  c 0 (7.206) 

where the acceleration margins Viarg and Viarg are defined by, 

v i a rg  = M i  [ f l  (g, t)] + Mi [g (z, t)] M 4  & J + Min[dl (t)] (7.21 a) 
Enx  ~ 4 x  1 

Max 
~ i a r g = ~ , n  - JC [ f ~ t ) ]  1 + " ' n [ 9 ( g , t ) ] * M i q 6 ~ ] + M a d d ( t ) ]  ~ € 0 ~  (7.216) 

1 

(Note: Mad&] = F2, M i n [ 6 ~ ]  = F1) 

Equations (7.20a-b) mean that it is always possible to accelerate or decelerate 

by at least ~ : ~ r ~  or i/marg for some choice of & provided the states remain in the 

set _z E Ex.8 Likewise, the second assumption states that there is always enough 

control authority to achieve a positive or negative pitching acceleration. Referring 
to equation (7.19c), this means that for any value of the states in an envelope 

: E  !L, 

Assum~tion 2 

Max [ f  (g,t) + i ~ j t )  a, + d  (t)] w:arg > 0 
J M  3 3 3 

(7.22a) 

M i n  [f (z, t )  + g3 (z1 t )  6 ~  + d (t)] s ~ i a r g  < 0 
3 3 (7.22b) 

where,the pitch acceleration margins Wiarg and Wiarg  are defined by, 

. + Man M i n  
wmarg = , ~ f i  [{ (z,t)l + [g3(Zt)l M ~ & I  + ~ i n [ d  (t)] (7.23a) - -X 2 ax 3 

G a r g  = Max [ f  (z,t)l + 
E l L  3 

[g (2, t)] Min[&] + Mazf d  (t)] (7.236) 
3 3 

(Note: Mad&] = M2, Min[h]  = MI) 

'late that the assumptions of Proposition 1 assure that there exists enough thrust control 
authority to swamp out the other terms with the t e n  9 (&t) &' to achieve at least the marginal 

1 
accelerations in each direction. 
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Equations (7.22a-b) mean that it is always possible to achieve a positive or 
negative angular acceleration of at least wiarg or karg for some choice of 6u 
provided the states remain in the set g E b. 

The third assumption from Proposition 1 states that there is enough control 

authority (within the operational envelope) to achieve a positive or negative normal 

acceleration. It is also assumed that upward (positive) normal accelerations 

correspond to angles of attack above the equilibrium value, and downward 

(negative) normal accelerations correspond to angles of attack below equilibrium. 
Furthermore, the maximum normal accelerations are experienced at the extreme 

values of the admissible angle of attack range. Referring to equation (7.19b) the 

above statements imply the following: 

M i n  M i n  M i n  Max 
V Y W  { a [f2(g)t)] + d2(t)} G a r g >  0 

+ 
where, the normal acceleration margins jymarg and j'& are defined by, 

. + M i n  M i n  M i n  
7marg = v r w  
- M a x  Maz Max 

'Ymarg = V Y W  

With the system dynamics in the simplified form of equations (7.19a-d), and 

the assumptions expressed mathematically in equations (7.20) through (7.25)) the 
issue of controllability can now approached. 
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Theoretical Controllability 

Controllability is a property that identifies whether a given system can be 

steered from any state to any other desired state in a finite time with the available 

control inputs. For linear systems of the form i ( t )  = Ag(t) + B3(t) (with g E IRn, 
21 E IRm, m < n), controllability is determined by examining the rank of the - 
controllability matrix defined by 

If the matrix _C has rank n then the system is controllable. In effect, this criterion 
determines if the inputs 3 have an influence on every state or its derivatives. For a 

complete discussion on linear controllability see reference [Kwal]. 

Controllability for nonlinear systems is more complicated. The controllability 

test is based on the idea that a controllable system must be uniquely transformable 
into a controllable canonical form. In this form, each state is the derivative of 

another state, or a function of the states and inputs. Therefore, this test also 
determines if the inputs 3 have an influence on every state or its derivatives. A 
nonlinear controllability matrix is used, and must also have rank n for a controllable 

system. A full treatment of nonlinear controllability is given in references 

[Her 1, Hunl]. 

In order to present the nonlinear controllability matrix, it is first necessary to 

define some terms from Lie bracket algebra, which are used to represent the higher 

derivatives of the system. Consider two vector functions f(g) E IRn and g(g) E IRn (as 

in the system &(t) = f(g) + g(g) 3 ). The Lie bracket operator is defined as, 

and the higher order brackets are defined as, 
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ill = [l: 91 
ad2(f, 9) = If, If, gll 

a&f, g l =  If, adi-l(f, dl 

THEOREM 7.1: Nonlinear Controllability 

The multi-input nonlinear system defined by 
m 

is controllable if the matrix 

has n independent column vectors. 

Before applying this theorem to the AHSV dynamic equations from (7.19a-d), 

it is useful to notice that the velocity equation (7.19a) can be controlled 

independently of the other states. Recall that, 

where from (7.17c), 

S ref 
91(z,t) = ( ~ P W ~  

In atmospheric flight, gr(g,t) will never be equal to zero since p, V, M, and Sref 

are all positive scalars. Also, from Assumption 1, see equations (7.20a-b), there is 

enough control authority in 6 to achieve positive or negative accelerations (i3 for 

all admissible states E b, disturbances (dl(t)l dlmax(t), and any setting of the 

equivalent -control &. Therefore, the state V is directly controllable from the 

equivalent-input bF at all times. 
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At this point, the velocity state will be considered controllable, and the 

remaining state equations will be tested for controllability using Theorem 7.1. For 
convenience, the equations for 9, G, and 0 are repeated below: 

where from (7.7~-h), 

+ (+ p v)& [ Crn (Ma1 a)+ CL (Ma1 a)] ( 7.31 a) 

with, ~ ( t ) = e ( t ) - 7 ( t ) ,  M a ( t ) = v / h m '  

The nonlinear controllability matrix (7.28b) is now evaluated for these 

definitions of f(z) and g(g). 9 

Since the elements a3,l) and CJ2,2) are nonzero for all time, to assure that _C 

has full rank, it is required that, 

Q~ctual ly l  for the matrix _C shown, the ordering used for the states in f(d was 

[f2 (21 t) f 4 ('I t) f 3 (&?I t)lT - 
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Since 0 = y + a, and all derivatives with respect to 7 are zero (i.e. 

a n  = Orn(Ma,a) and CL = CL(Ma,a) only), equation (7.34) becomes, 

For hypersonic flight, these sensitivities are both nonzero and positive for all 

angles of attack except possibly at extreme values ( a  -4 90°), or for large negative 

angles of attack where the bow shock becomes an expansion fan due to negative flow 
turning angles. For operational angles of attack, equation (7.35) will always hold 
and, therefore, the state equations (7.30a*) are controllable from the input 6~. In 

conclusion, the AHSV dynamic system is controllable from the equivalent controls 

6 ~  and h, which implies controllability of the original system (7.7a-h) with the 
assumptions given. 

Qualitatively, one would have expected equations (7.30a-c) to be controllable, 
since from 

with, 

it is clear that w(t) is controllable from h. This is true, since gs is never zero, and 

from Assumption 2, see equations (7.22a-b), there is enough control authority in b~ 
to achieve positive or negative pitch accelerations (LI) for all admissible states 

z E b, disturbances 1 ds(t)) < dsm,(t), and any setting of the equivalent-control 6 ~ .  - 
Now, since b(t) = w(t), B(t) is also controllable from &. For the flight path 

equation, note that a = B - 7, and, since q(t) is a function of a, i t  is driven by this 

difference between 19 and y. 
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t l t l  = f, lz ,  t )  + d i t )  
2 

(7.38) 

with, 
f (g,t) = Inertial terms + (4pV) 

2 

Differentiating ~ ( t )  three times with respect to time will recover the control 
input JM, SO that JM does have an influence on all three states w, 9, and 7.  In short, 
pitch rate is directly controlled by h, attitude (and thus angle of attack) is 

controllable through pitch rate, and flight path angle is controllable through the 
normal acceleration resulting from the vehicle's attitude. 

Physical Controllability 

From a theoretical point of view, controllability has been established for the 

AHSV dynamic equations given by (7.7a-k). This result has depended on some 
assumptions which made it possible to represent the control inputs in a simplified 
form, and which guaranteed the existence of adequate control authority for some 

admissible envelope of the state variables. Up to this point, however, the bounds of 

this controllable region have not been specified. The fact that all states cannot be 
controlled independently, the presence of rate limits on the actuators, and the 

aggressiveness of the desired trajectory, are all considerations that have not been 

included, and are related to the physical controllability of the system. Since the 

ability to not only track but to converge toward the desired trajectory is required, 

the objective is to establish controllability of the tracking error dynamics (rather 

than of the states themselves). 

The tracking errors are defined by the difference between the states and their 

desired values. 

d t l  = [e,,(t) e71tJ ewlt) egltllT 

where, 



SECTION 7.3 CONTROLLABILITY 

e,, (t) = v(t)- vd (t) ey(t) = 71tt7d 0) 
ew(t) = ~( t ) -~d  (t) ee(t) = e(t)--ed 0) 

or, 
e (t) = ~ ( t )  - a (t) - 

The error dynamics are therefore defined by, 

i? (t) = $(t) - $d (t) - 

which, referring to equations (7.19a-d), can be expressed as 

i? (t) = f(z, t) + g(z, t)B(t) + d(t) - 2d (t) - 
where ~ ( t )  represents the equivalent control inputs, 

. + . + 
Now, the marginslo (v&,,, %kg, 'Ymarg, %arg, Wmarg, h k g )  that were 

defined in (7.20-7.25), represent limits on the range of achievable translational and 

rotational accelerations that can be guaranteed for a particular set of admissible 
states E nx. These margins are needed for two reasons: tracking the desired 

trajectory ~ ( t ) ,  and converging to it. If the desired trajectory involves 
accelerations that exceed the margins above, the vehicle's tracking ability cannot be 
guaranteed. Moreover, a second set of margins is needed to assure that control 

authority exists to converge to a desired trajectory that is "pulling away" at its 

maximum allowable rates. These new margins correspond to the excess control 

authority needed to reduce the tracking errors, and are essential for the 
controllability of the error dynamics. Conceptually, the acceleration margins are 
partitioned as follows: 

Accelerations Required By Trajectory 
Acceleration Margins = + I (7.46) 

Error Rates For  Tracking Convergence 

lowhen it is not  important to  distinguish between positive and negative acceleration margins, v+/- . +/- . +/- 
the following shorthand notation w i l l  sometimes be used: marg, 'Ymargt Wmarg. 
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More specifically, 

= Mad vd] + it  . - 
Vm arg = Mid vd] + b-  Vmarg (7.4 7a) 

. + 
'Ymarg = Maz(jd] + bi 

- 

'Ymarg ?marg = + t -  'Ymarg (7.4 7b) . + 
= Madkd] + b  + 

- 
Wmarg 

G a r g  #marg = 
Ma4wd] + b  - 

%arg 
(7.4 7c) 

These equations indicate that there is a tradeoff between the accelerations of 

the desired trajectory and the ability of the system to recover from tracking errors. 11 

The margins in q, and w, are dependent on the admissible state envelope _z E & 
(e.g. see 7.21a), and the maximum error rates depend on these margins and the 

properties of the desired trajectory. Clearly, equations (7.47a*) define absolute 
upper bounds on the rates at which the desired states can change before i t  is 

physically impossible for the system to keep up. A feasible desired trajectory must, 

therefore, meet conditions consistent with the margins defined above, 

Man[ vd] < vd (t) < MaZ[ vd] 
Min[;yd] < ;yd (t) < Mazj;yd] 

Min[wd] < wd (t) < M d k d ]  

For controllability of the error dynamics, there must be nonzero margins for 

the error rates in each axis. 
- 

b  
Vmarg 

< O  < b +  
Vmarg 

- 
b  < 0 < t i  

'Ymarg 'Ymarg 
- 

e  
%arg 

< O  < e +  
%arg 

These equations do not imply that the tracking errors can a l l  be reduced 

simultaneously, but that it is at least possible to influence each of the state errors in 

the correct direction.12 This is achieved by defining an admissible tracking error 

" F O ~  example, if the desired acceleration vd  is the same as the margin v:argr then a non-zero 
tracking error e < 0 ( V < Vd) cannot be reduced. v 
"~ t t i t ude  error-rate margins are not shown since e(t) is controllable directly from ~ ( t ) .  
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envelope _z E & in order to assure desired acceleration margins ( v:,,~, etc ...), and 
then applying constraints to the desired trajectory (7.48a-c), such that the 
difference (7.47a-c) provides acceptable control margins for tracking performance 
(7.49a-c). 

Recall from (7.13a-b) that E & was defined as the set of states 
( t )  = [ V(t) 7(t) ~ ( t )  O(t)lT S U C ~  that, 

I v(thvd(t)l 5 6v 1 7&7d (t) I < d7 (7.50a) 

I  thud (t) 1 5 6w I Q'tked (t) 1 5 be (7.50 b) 

Now, referring back to the original statement of the problem, equations (7 .1~)  
defined tracking tolerances on the states V, 7, w, and 8. The first two of these 

constraints, ( V(t)-V,(t)l 5 B (t) and 1 y(t)--rd(t)l 5 B,(t), limit the allowable v 
translational tracking errors and are assumed to be given bounds.13 The bound on 
pitch rate, 1 w(t)-wd(t)J 5 Bw(t), is envisioned as a given passenger comfort 

tolerance. The attitude constraint, I B(t)-Bd(t)l i Bg(t), comes from a combination 

of the flight path constraint and a restricted angle of attack range due to 
requirements for the scramjet engine. The limits of the admissible state space _z E & 
are therefore confined by, 

based on a priori considerations. Otherwise, the bounds of the envelope g E can 
be chosen (or constrained further) to attain desired acceleration margins. Since the 
primary control objective is to track a trajectory defined by the velocity and flight 
path angle, constraining these state errors (V, 7) any further would only make the 
problem more difficult. Adjusting the pitch rate constraints would have no effect on 
the achievable margins, since w does not appear on the right hand side of equations 
(7.7a-h). Therefore, the only free parameter available which really has an effect on 
the acceleration margins is the attitude constraint. Furthermore, since the attitude 

I 3 ~ o r  example, they may come from a sensitivity analysis of the results from an off-line 
Earth-to-orbit trajectory optimization. 
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constraint above is really an angle of attack constraint, and, since the aerodynamic, 

propulsion, and control coefficients (see 7.7a-h) are all direct functions of angle of 
attack (not pitch angle), it will be more convenient to work in terms of an angle of 

attack range, as defined below: 

1 a(t)-w(t)i 5 6, < B,(t), with 6 - 6 + 6, 0 -  7 
(7.52) 

From our original assumptions, there must be an admissible set of angles of 

attack for which acceleration margins do exist, and, clearly, given the constraints 
(7.51a-b), the choice of the range 6, has a direct influence on these margins. For 

example, examine equation (7.21a) which is repeated below for convenience. 

M i n  Man 
Gar ,  = - tn -x [f18tlI  + B,n,[glbtlI *MazICI + Min[d 1 (tll 

Increasing the admissible range of angle of attack, ba, enlarges the set E L, 
and decreases the achievable marginal acceleration (v:,,) that can be guaranteed 
for a given equivalent control range (&). The same property holds for the angular 

acceleration margins (see 7.23a-b). In sharp contrast, the normal acceleration 

margins are increased for a wider range of admissible angles of attack, as seen, for 

example, in the following equation (from 7.25a). 

Finally, notice that the admissible range $, and thus E &, also limits the 

range of the equivalent control inputs.14 Recall equation (7.18a), 

F1 = Min [SF] = 

The choice of 6, is clearly a compromise. A smaller admissible angle of attack 

range means more control authority (Fl ,  F2, MI, M2) and better velocity and 

14i. e. , the available force and torque that can be guaranteed to be independently achievable 
from the actuators for al l  Z E b. 
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. +/- +/- 
rotational margins ( V,, rg, ima rg). A larger admissible range means better normal 

+/- acceleration margins ( jma rg) and more maneuverability for faster trajectory 
corrections. 

The final equations which relate the tracking error-rate margins, the desired 

trajectory, and the admissible tracking error envelope are now presented. These 

equations are referred to as the physical controllability conditions, and are obtained 

by substituting equations (7.21a-b, 7.23a-b, 7.25a-b) into (7.47a,b,c) respectively. 

Ph vsical Con trofla bili t v Conditions 

b+ - - M"[fl(gJt)]+Min[g(gJt)]-Madb~]+Min[d(t)]-~a$~d] (7.53a) 
Vmarg ~ ! ! x  :€fix 1 1 

- 
t - - Max [ fl (gJ t)] +Mi [g (gJ t)] Man[&] +Mad d (t)] -Min[ h] 
Vmarg S ~ f i x  '€f ix 1 1 

(7.53 b) 

- 
b - - Max 
Wmarg F E ~  [f3 (gJ t)] + M" [g (g, t)] Man[&] + M d d  (t)] - Min[&] (7.53d) 

: € f i x  3 3 

b + - M a n  M i n  Man Max 
Xarg - V 7 w { a [ f, (zJ t)] } + ~ i n [ d ~  (tll -Ma34 ?dl (7.53e) 

- 
b - M a s M a x M a x  
'Jnarg - V 7 w (7.53f) 

where, Ma2[SF] = F2, Man[&] = F1, M d b ]  = MI, Mid bar] = M2 

are defined in equations (7.1 Bad) 

and, - x E & is defined by the tolerances, 

I v(t)vd(t)l 5 b y  = Bv(t) 

1 7 ( t h d  (t) 1 5 = B7(t) 

I w(t)wd (t) 1 5 Jw = Bw(t) 

I o(tkod (t) 1 5 6, 

with, b = 6 + bd for some choice of ba 
0 7 
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These equations balance the tradeoffs between the objectives of the desired 

trajectory and the size of tracking error envelope for which controllability can be 
assured. The selection of the actual values is a design problem, and is not addressed 

in this research. The nature of the overall desired trajectory, expected magnitude of 

the disturbances, sizing of the actuators, desired tracking convergence rates, and 

other tradeoffs would affect these choices for a particular design. In general, 
however, given the tolerances (7.53g-i), an admissible range of angles of attack 

could be chosen to guarantee control margins in terms of the achievable 

translational and rotational accelerations. The aggressiveness of the desired 

trajectory could then be balanced against the achievable tracking convergence rates 

(i.e. the error-rate margins). This process could be repeated using different values 
until a satisfactory combination is found.15 

Given a set of tracking tolerances, an admissible angle of attack range with 

acceleration margins, and constraints on the desired trajectory that assure 
error-rate margins, most of the practical considerations that could prevent the 

system from being controllable have been taken into account. The only remaining 
concern is if the admissible tracking error envelope _z E can be maintained. If the 

bounds of this region are violated, the original assumptions may no longer be valid 

and the margins cannot be guaranteed. 

Unachievable accelerations of the desired trajectory or physical limitations of 

the actuator rates may prevent the system from responding fast enough to remain 
inside the controllable envelope. For example, even with vd < viar,,, if the desired 
acceleration changes too quickly (d2Vd/dt2), then a constraint of the form 

d k / d t  < &,,, might allow the tracking error to increase beyond the tolerance 
I V(t)-Vd(t)l > bv This problem can be avoided by limiting the accelerations of 

the desired trajectory, and constraining the second derivatives of the state errors in 

the admissible envelope. It will be assumed that actuator rate limits do not prevent 

the existence of a solution from admissible states (or that the controllable envelope 

accounts for these limits). 

150therwise, the vehicle configuration or desired trajectory may require some modifications. 
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Another potential problem is the fact that the states (or the state tracking 
errors) are not independently controllable. For example, for an arbitrary 
(controllable) dynamic system, forcing one of the states to a desired value may 
require other states to temporarily diverge from their desired values. If the 

admissible state space is bounded, the solution might require the violation of these 
bounds. This does not present a problem for the dynamics of the AHSV. To 

demonstrate that the states can be controlled without violating the region : E b, 
consider the following qualitative description of a control solution. 

Given an initial condition with nonzero tracking errors for all states, 

and a feasible desired trajectory a(t), for to 5 t 5 tf. 

It has already been shown that the velocity state equation is 

independently controllable from the equivalent control &. Therefore, 
the input bF (t) is chosen to close the loop on the velocity error, so that 
ev (to) > I V(t) - Vd (t) 1 -- 0. t6 

For the remaining states, if the control of flight path angle (7) is 
considered the priority, this can be achieved through the variation of 
attitude (actually angle of attack) to get desired normal accelerations 
(Vj). Since attitude is dependent on the pitch rate (i) = w), and pitch 
rate is the state directly controllable from the equivalent input 6a((t) 
(7.19c), all three states are coupled, and the tracking errors 
1 w ( thud (t) 1 and I B(t)-Bd (t) 1 will not, in general, be monotonicaUy 
decreasing as long as I y(t)-yd(t) 1 # 0. The tolerances from g E b, 
however, can be easily observed. Since w(t) is directly controlled from 
62(, the constraint boundary 1 w(t)-wd(t)l < 6, is simply avoided. The 

''since vd(t) is feasible, there is enough control authority from 6~ to track Vd(t), and to 
approach it with a converge rate of at  least the error-rate margin. 
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only effect this has on B(t) is that the rate at which i t  can change is 

limited. Provided that ~ ( t )  is feasible, and using w(t) to control B(t), 

the constraint 1 O(t)-Bd(t)l < be can then also be observed. This, in 

turn, only affects ~ ( t )  in that its rate of change is limited (%dig), and 

as long as (t) is feasible, 1 7(t)-cld (t) 1 < 6 can be maintained. 
7 

In summary, this section has demonstrated the controllability of the AHSV 
dynamics from both a theoretical and physical point of view. Some reasonable 

assumptions were made which made it possible to represent the inputs to  the system 

in terms of an equivalent force and moment. Using this equivalent representation, 

theoretical controllability of the nonlinear system was established. A desired 
trajectory, constraints on the actuators, and tracking tolerances on the states, then 
motivated the need to examine the controllability issue from a practical (or 
physical) perspective. The objective was to find restrictions on the desired 

trajectory and the tracking-error envelope in order to assure feasibility and 

controllability. This was accomplished by deriving conditions for the existence of 

acceleration and error-rate margins for each of the state equations. The final 

relationships balance the aggressiveness of the desired trajectory against the 
tracking tolerances and the achievable tracking-error convergence rates. 

This section has established conditions for the existence of control margins and 

a controllable tracking error envelope. The results, however, are based on some 

conservative bounds, and there may be better (less restrictive) conditions and larger 
controllable envelopes that could be found (albeit with substantially more effort). 
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Note, however, that these results do not restrict the controller itself in any way.17 

They are used only for the analysis and development in the following sections 
(where stability and convergence will depend on the existence of a solution) and are 
satisfactory for that purpose. 

7.4 Stability 

Given a controllable tracking error envelope and a feasible desired trajectory 
(from the previous section) it is now possible to approach the problem of finding a 

suitable control solution. Since stability is an essential property of the closed loop 
system, and since the RIFC approach searches over the control input space, it would 
be sensible (and advantageous) to limit the search to the set of candidate 

trajectories that exhibit a stabilizing behavior. In this section, a Lyapunov st ability 

approach is used to find an achievable stability criterion that can be applied to the 

search as an additional constraint. The chosen Lyapunov function also turns out to 

be a useful measure of performance for candidate solutions in the A* optimization. 

For the AHSV flight control problem, it is the stability of the tracking error 
dynamics that is of interest. Typically, for st ability analysis, Lyapunov function 

candidates are tested for a particular system by examining the sufficient conditions 
for stability, which were presented in the theorems of Chapter 6. If the conditions 

are met, the system is stable. Otherwise, no determination can be made and 

alternative Lyapunov function candidates may be considered. Lyapunov functions 

can also be used to design stabilizing feedback control laws for open loop systems. 
This is often a trial and error process, but if a control law can be found, for which a 

1 7 ~ h e  EIFC control algorithm searches directly in the actuator space for the best possible 
resulting trajectory. It does not use, or depend on, any information regarding the margins or 
restrictions discussed in this section. In the actual search, the physical constraints and 
actuator limitations must be observed. However, if the controllability conditions are not 
enforced, then it is stil l  possible that the algorithm finds a solution. It would just not be 
guaranteed. 
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Lyapunov function of the closed loop system meets the stability conditions, then the 

design is successful. 

The constrained nonlinear nature of the AHSV problem precludes the trial and 

error approach described above. Lyapunov stability theory can still be applied, 

however, to the determination of a stabilizing control solution. In Proposition 2, a 

general form for a Lyapunov function of the tracking errors is defined. A weighted 

quadratic norm of the errors is chosen for simplicity, and also because it has a 
physical meaning in terms of a scalar measure of the tracking error.18 Note also 

that the criterion for tracking stability, in equation (7.56), is based on a 
discrete-time inequality. This accounts for a limited response time due to the 
effects of state and actuator constraints on the system. 

For any choice of the weights Qi (Qi > 0) and the time interval AtL, if a 
control input function a(t) can be found that satisfies the criterion (7.56), then it is 

a stabilizing control law. Physically, however, such a solution may not be 
admissible due to violations of the constraints or tracking tolerances. Ideally, the 
stability criterion would be satisfied only by trajectories that converge to the 

desired trajectory and observe the controllability conditions of the previous section. 

The objective here, then, is to identify conditions on the weights Qi and the time 
interval A h ,  such that the existence of admissible solutions that meet the stability 

criterion is assured. 

PROPOSITION 2: STABILITY 

Given the following general form for a Lyapunov function of the state 
tracking error, 

1 8 ~ h i s  functional form is also chosen because it is suitable as a pointwise penalty function that 
can be accumulated over time to construct an optimality criterion. 
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there exists a weighting matrix Q, a time interval A ~ L ,  and a control input 
function ~ ( t )  E nu 19, such that the asymptotic stability criterion, 

is satisfied, for all : E II,, 
where, 

t + A t  
(7.57) 

provided that the envelope E II, is controllable, and the desired trajectory is 
feasible, as prescribed in Proposition 1 .  

ARGUMENT 2: 

The concepts of discrete Lyapunov stability and asymptotic stability are 
introduced in Chapter 6 as Definition 6.9 and 6.10. Sufficient conditions for 

stability are then given in Theorem 6.5, which presents Lyapunov's direct method 
for discrete-time autonomous systems. For convenience, this theorem is restated 
below in terms of the current variables: 

THEOREM 7.2: Lyapunov's Stability of Discrete-Time Antonomons Systems 
(From Theorem 6.5) 

Consider the discretetime autonomous nonlinear system 

I f ,  within a ball g E ne there exists a scalar function L(g) with continuous 
partial derivatives, and satisfying 

(9 L(j)  is locally positive definite (7.58 b) 
(za) L(.(t+At)) - L(z(t)) 5 0 (7.58~) 
then the equilibrium state g = ,O is stable 

"~dmissible control inputs satisfy the expression 'll(t) E !!u, where !!u defines the set of a l l  
achievable inputs given the control contraints from (7. lb). 
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If ,  in addition, 

(iii) L(-(tfAt)) - L(g(t)) < 0 
then the equilibrium is asymptotically stable. 

CHAPTER 7 

Note that Theorem 7.2 provides sufficient conditions for the stability of an 

autonomous discrete-time dynamic system with an equilibrium at  the origin, and 

no external inputs. Nevertheless, it is applicable to the control problem of tracking 

a desired trajectory for the AHSV for the following reasons: 

(1) The time dependence of the AHSV dynamic equations is due to the 
variation in vehicle mass M(t) and inertia Iy(t) along a trajectory from 
Earth-to-orbit. On the short time scale of trajectory tracking control, 
this time variation is very small and will be neglected by the 

controller. 

(2) The desired trajectory is assumed to be a solution to the state 

equations for some nominal values of the control inputs, 

- kd (t) = f ( a  0 ) )  + 9 ( a  ( t ) , ~  (t))  (7.59) 

therefore, the tracking error dynamics, defined by 

has equilibrium states ( j ( t )  = Q) wherever ~ ( t )  = a ( t )  for an 

appropriate choice of the controls. Since g(t) = g(t) - ~ ( t ) ,  this 

corresponds to the origin of the error space (g(t) = Q).20 

(3) The error dynamics for the tracking problem can be represented in 
discrete form by, 

' '~he fact that the desired trajectory %(t) is time-varying does not preclude the use of the 
autonomous form of the Lyapunov stability theorem. The system itself is time-invariant 
according to item (I), and a ( t )  is just s known reference command input. I t   could^ for 
example, be generated as an output of another time-invariant system. 
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e(t+At) = ( t+At)  - a(t+At) - 

or, g(t+At) = T(g(t),3(7),a(t+At)), where T E [t,t+A t], (7.61) 

and the function 7(.) includes the integral (7.57). 
Expressing 3(*) in terms of the tracking error, 

- e(t+At) = T ( g ( t ) + a ( t ) , ~ ( ~ ) , a ( t + A t ) )  (7.62) 

and since the desired trajectory is a given quantity, the discrete error 
dynamics can be written as in (7.58a), 

&+A t) = fd (&)) 

for any particular choice of the input function _u(t). Theorem 7.2 can 

therefore be used as a sufficiency test to determine if a candidate 
control solution is asymptotically stabilizing for the system.21 

The ball g E Q, in Theorem 7.2 is the same tracking error envelope defined 

earlier by E &: & is the set of admissible states ( V, 7, w, O) ,  and ne is the set of 
admissible errors (ev, e7 eJ eg), for which the conditions of (7.13a-b) are met 

(i.e. I V(t)-Vd(t)l 5 J V  etc.). 

In order to verify Proposition 2, it is clear from Theorem 7.2 that it must be 
shown that the Lyapunov function can be chosen (Q, AtL), such that it is a locally 
positive definite function of the tracking error (7.58b), and that the inequality, 

L(g (t+A tL))  - L(g(t)) < 0, holds for some admissible control input function 
u(t) E Q, (7.58d). - 

The general form of the Lyapunov function (7.55) can be expressed 

equivalently as, 

L (Z (t)) = [ ~ ( t k a  (t)lT e r d t h  (t)l (7.63) 

'%he system is well behaved between sampling times as long as the time-step At is small enough 
to capture the dominant modes of the system. For longitudinal hypersonic flight the time 
constant for the short period mode is typically of the order of several seconds or larger. 
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where, the matrix Q is taken to be a diagonal weighting matrix, 

or alternatively, 

Referring to Definition 6.8, the function L(=) is positive definite for weighting 
matrices Q that are positive definite. A diagonal matrix of positive values clearly 

meets this condition. 

The remainder of this section is devoted to showing that the weights Qi, and 

the time interval AtL, can be chosen for the Lyapunov function L, such that the 

stability criterion L(g(t+AtL))-L(g(t)) < 0 can be met by a solution that observes 
the bounds of the controllability envelope _z E & and the constraints on the controls 

u E Q,. - 

Choosing The Weighting Matrix IQ 

It is assumed that the desired trajectory is constrained to be feasible, and that 

a suitable tracking error envelope _z E & has been defined to provide adequate 
acceleration and error-rate margins according to the relationships derived in section 

7.3. 

Now, the stability criterion defined by equation (7.56) is valid for any choice 

of the weights Qi, provided Qi > 0. If the criterion can be met by a particular 

control input function, then the solution is asymptotically stable. The reason that 

the weights cannot be arbitrary positive values, is that a stable tracking solution 



SECTION 7.4 STABILITY 

must also be constrained to remain within the bounds of the controllability envelope 

X E  0,. A solution that meets this constraint, and also satisfies the stability 
criterion, cannot be guaranteed for all values of Qi. 

The choice of these weights determines the relative change in the Lyapunov 
function for a decrease in any of the state errors. Recall (from section 7.3), 

however, that the tracking errors cannot, in general, be reduced simultaneously, due 
to the coupling of the state equations. It is easy to see that a poor choice for the 
weights might cause a conflict. For instance, consider a case where Q4 is much 

greater than Q1, Qz, and Q3. In this example, the stability criterion would demand 
that the attitude error be reduced, even if the velocity or flight path error was 
diverging beyond acceptable limits. 

The relationship bet ween the stability criterion and the controllability 
conditions can be visualized as shown in Figure 7.2. This figure presents a two 
dimensional analog of the four dimensional situation. For any initial condition e(t) 

in the tracking error space, there is a region of accessible error-states RA that can 
be reached after a time interval A ~ L .  The controllability envelope x E 0, defines 
another region denoted by &. Finally, there is a region Rq that includes the set of 
error states, such that the transition from e(t)  to this set in A ~ L  would meet the 
stability criterion for a particular choice of the weights Qi. The intersection of 
these regions, Rs E RA n Re n Rq, defines the largest possible set of admissible 
stabilizing trajectories that can be identified for a given Lyapunov function. 

Since the constraints on the envelope _z E and the desired trajectory have 
been chosen to assure controllability of the error dynamics, the regions RA and & 
are known to overlap. Since the stability envelope, defined by the region RQ, is a 
parameterized function of the weights, the size of the intersection of the three 
regions (Rs )  depends on the values of the Qi's. 
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Figure 7.2: T h e  Relationship Between Accessible States, the Controllability Envelope, 
and the Lyapunov Stability Criterion in the Error Space. 

In the figure, the region Rg2 represents the stability envelope for a different 
set of weights Qi that does not include any of the accessible states in Ah .  The 
state marked P, for example, could be along a stabilizing trajectory with smaller 
tracking errors in the velocity vector. It is rejected by Rgz, however, because the 
attitude errors (though admissible) are weighted too heavily by the Lyapunov 
function. Clearly, it would be desirable to choose the weights in such a way that 
the set Rs is as large as possible. It is enough, however, to constrain the Qi's such 
that admissible solutions also satisfies the stability criterion. 

In order to simplify the notation, let A L(Ak) = L(g(t+Ak))-L(.(t)), so that 
the stability criterion can be written as, AL(AtL) < 0. Also, from (7.65), define, 

Ll(t) = (V(t)- vd (t))?QI = e;(t)QI , and similarly, L2(t) E e2 (t)Q2, 4( t )  = eL(tjQ3, 
7 

L4(t) = ei(t) Q4. Finally, represent AL(AtL) as, 
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where, 

AL;(Ah) = [eG(t+At~) - e;(t)] 91 (7.66b) 

AL2(Ah) = [e;(t+At~) - e;(t)] 42 (7.66~) 

Ah(&) = [e i ( t+At~)  - e:(t)] Q3 (7.66d) 

Now, the primary objective of the trajectory control system for the AHSV is 
to track the desired translational velocity vector (i.e. the velocity and flight path 
angle) from Earth to orbit. In fact, the rotational states, attitude and pitch rate, 
are expected to deviate from their nominal values in order to  achieve normal 
accelerations required for corrections to the flight path.22 Given a target envelope 

for the velocity and flight path tracking errors, 

and initial conditions outside this range ( 1  e (to)l > Xv and/or 1 e (to)l > X ), an v 7 7 
admissible stabilizing solution can be characterized as a trajectory that converges in 
the translational tracking errors, while maintaining the attitude and pitch rate 

tolerances specified by the controllability conditions. Once the velocity vector is 

within the target range, then the tracking of a desired attitude is a secondary 

objective. 

Constraints on the weighting in the Lyapunov function are obtained by 

requiring that the criterion for asymptotic stability, AL(At) < 0, can be met in 

each of four cases of interest. 

(1) Iev(to)1 > A v ,  le7(to)l < A 7  Velocity Error Off Target 

(2) I ev(tO) 1 < Av, 1 e7(td 1 > A T  Flight Path Error Off Target 

2 2 ~ h e  use of attitude to control flight path was discussed in  section 7. 3. 
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3 )  1 o 1 > I e7(to) 1 > A7 Both (e v & e7) Off Target 

(4) lev(tdl <A,,, Ie7(to)l < A 7  Both Errors Within Target 

The fourth case is not as important, since it is the condition where the vehicle's 

trajectory (velocity vector) is within the target range of the desired values. 

Case 1: Velocity Error - 1 ev(b)l > Av 

In this case, flight path tracking error is within its target range, and the 

attitude errors are confined to the envelope g E Q,. That is, 

le7(t)l 5 le,(t)l 5 % Iee(t)l I be (7.68) 

Beginning with, 

AL(AtL) = ALi(Ah) + AL2(AtL) + A L ~ ( A ~ L )  + A L ~ ( A ~ L )  

the terms A L ~ ( A ~ L ) ,  A L ~ ( A ~ L ) ,  A L4(AtL) can be bounded as follows: 

Since, 

A L ~ ( A ~ L )  = [e;(t+A h) - et(t)] Q2 

the maximum difference [e2 (t+Ah) - e;(t)] would be obtained if e (t) = 0, 
7 7 

and 1 e (t+A h) I = A Therefore, 
7 7' 

AL2(Ak) 5 A; Q2 (7.69) 

and likewise, 

ALs(Ah) < 62, Qs (7.70) 

A L ~ ( A ~ L )  I q Q4 (7.71) 

In order to meet the condition AL(Ah) < 0, the following inequality is required: 

A L ~ ( A ~ L )  < - M ~ A L ~ ( A ~ L )  + AL3(At~)  + AL~(A~L)]  (7.72) 

or, 

AL1 (Ah) < - [A; Q2 + 62, Q3 + 6; Q4] (7.73) 
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Now, 

STABILITY 

and given achievable error-rate margins in velocity (see (7.53a-b)), h' and 
Vmarg 

- 
i: , the maximum achievable decrease in velocity error that can be assured for 
Vmarg 

the time interval AtL is given by, 

Iev( t+Ak)-ev( t ) l=(2  Vmarg ) - A h a n  v ' 

where, for simplicity the error-rate margins have been assumed to be symmetric 
+ 

= i: = ( e- I ). Equation (7.74) can therefore be written as follows: 
('Vmarg Vnarg Vmarg 

Since, in either case e (t) and e (t+AtL) can be assumed to have the same sign,23 v v 

Comparing (7.73) and (7.77), for AL(AtL) < 0, it is required that, 

nv I ev(t) I QI > [A; Q2 + 6; Qs + 6) Q41 (7.78) 

and finally, since the stability condition is desired for values of 1 e (t)( > X v 

Equation (7.79) is the first constraining equation for the weights in the 

Lyapunov function. It assures that, under the conditions of case 1, the Lyapunov 
function can be made to decrease by decreasing the velocity tracking error. Since 

2 3 ~ o r  I ev(t)I > Xv there is no need to consider cases where e (t+Ak) is of opposite sign to v 
ev(t). Recall that the velocity state is directly controllable through the equivalent input ~ F I  

and also that the search space includes a l l  admissible input functions. If ev(t) can be made to 

switch signs in A ~ L ,  then an input function must also exist which would bring i t  to zero, and 
this would be the preferred solution. 
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velocity is directly controllable from the equivalent control bF (section 7.3), a 

trajectory satisfying the stability criterion exists (for _z E &). 

Also, note that fiom (7.79) and (7.73) 

AL(AL) <- xv I ev(t) 1 QI + [A; Q2 + 6; Q + 9 Q4] (7.80) 

The second term is dominated by the first, and the change in the Lyapunov function 

is negative AL(AtL) < 0 as desired. The conditions for asymptotic stability are 

therefore satisfied for case 1. 

Case 2: Flight Path Error - 1 e7(taJJ > X7 

This case is treated in a similar manner to case 1. Here, the velocity tracking 

error is within its target range, and the attitude errors are confined to the envelope 

e E Qe. That is, - 

lev(t)t)l 5 A,,, lew(t)l 5 by leo(t)I 5 Je (7.81) 

From, 

this time, it is the terms ALl(Ak), AL3(Ak), AL4(Ak) that can be bounded: 

Since, 

the maximum difference [e2(t+Ak) - et(t)] would be obtained if ev(t) = 0, v 
and 1 ev(t+Ak)l = A However, recall from section 7.3 that the velocity v' 
state can be independently controlled (from bF) for _z E &. Therefore, the 

contribution from ALl(AtL) can be assumed to be nonpositive, thus helping 

to reduce A L(AtL). Therefore, 

&(Ah,) 5 0 (7.82) 
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and again, 
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A L ~ ( A ~ L )  I 6; Qr (7.83) 

AL4(Ak) 5 6; Q4 (7.84) 

For A L(At) < 0, we require, 

AL,(Ah,) < - MadALl(Ah,) + AL3(At~)  + A L ~ ( A ~ L ) ]  (7.85) 

or, 

Now, 

At this point, there is a difference between case 2 and case 1, since the 
achievable error-rate margins for flight path (see (7.53e-f)), i' and b -  

"Imarg 'Ymarg ' 
cannot be guaranteed for the entire interval A h .  The constraints on the time 
interval (AtL) used for the stability criterion will be derived later in this section, 
but it must be a longer interval than the time required to reorient the vehicle to get 
maximum normal acceleration. It is assumed, here, that A& is large enough so that 
the error-rate margins above are achievable for some nonzero time interval Ak.24 
Therefore, the maximum decrease in flight path error that can be assured for the 
time interval AtL is given by, 

Ie7 ( t+At~) -e7 ( t ) l= ( i  "Imarg ) * A & = &  7 

and again, the error-rate margins have been assumed to be symmetric. Equation 
(7.87) can therefore be written as follows: 

A L 2 ( A t ~ ) = [ e ~ ( t + A h , ) + e ~ ( t ) ] [ - ~ ~ ] Q 2  fore "I (t)>O (7.89a) 

AL2(Ah) = [e7(t+At~)+e7(t)][+ r 7 ]  Q 2  for e "I (t) < 0 (7.89b) 

2 4 ~ h e  time interval A k  is the last sub-interval of A ~ L ,  where A ~ L  is long enough to account 
for actuator rate limits, and reorientation of the vehicle. 
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As in case 1, this can be reduced to, 

2 - 6 1 ( 1  Q2 

CHAPTER 7 

Comparing (7.86) and (7.90), for AL(AtL) < 0, it is required that, 

x7 I e7(t) I Q2 > Q3 + 6; Qc] (7.91) 

and finally, since the stability condition is desired for values of ( e (t)l > X 
'Y 'Y' 

The inequality of equation (7.92) constrains the weights of the Lyapunov 
function. It assures that the Lyapunov function can be made to  decrease by a 
trajectory which converges in the flight path error (when this error is outside its 

target range, and the velocity error is on target). Since controllability and the 
error-rate margins for flight path are guaranteed for the envelope E R,, the 
stability criterion can be satisfied. 

Also, from (7.92) and (7.86) 

AJYA~L) C - x7 I e7(tJ I Q2 + [bi Qs + 6; Q4] (7.93) 

The second term is dominated by the first, and the change in the Lyapunov function 

is negative AL(AtL) c 0 as desired. The conditions for asymptotic stability are 
therefore satisfied for case 2. 

Case 3: Velocity k Flight Path Error - I ev(h)l > XV, le7( )1  > A 
7 

For this case, the analysis from the two previous cases can be combined using 
an analogous procedure. The results are given below without the details. 

The cons training equation for the weights becomes, 

xv Xv Qi + & ? A 7  Q2 > Q3 + Qc] 



SECTION 7.4 

with, 

STABILITY 

and the first two terms dominate the last, so that the change in the Lyapunov 
function is negative AL(AtL) < 0, and the conditions for asymptotic stability are 

met. 

Case 4: Velocity Vector On Target - I ev(b)l < AV, 1 e7(b)l < A7 

In this case, the flight control objectives have been met, and the secondary 
objective is to stabilize the tracking error between the attitude and its nominal 
value. Here too, the stability criterion must account for the constraints on the 
controllability envelope a: E &. Since attitude is affected through pitch rate, which 

is controlled directly by the equivalent input JM, the tracking of attitude should take 

precedence over pitch rate control (to avoid attitude constraint violations). Given a 

target range for the attitude error, 

1 e ( thed (t)  1 < A , (7.96) 

it is desirable to choose the stability criterion such that it can be satisfied by 
trajectories which convergence in attitude error for the case 1 ee(t)l > A s  (when 

IeV(t)l < /I v and le7(t)l < A7). 

Rigorous conditions for the weights are difficult to derive in this case since the 

velocity and flight path errors cannot be assumed to  remain within their target 

ranges. However, since attitude tracking is of secondary importance, the following 
weaker condition is used to recognize the fact that attitude is a priority when 

compared to pitch rate: 

/I; Q4 > 6; Q3 (7.9 7) 

For sufficiently small velocity and flight path errors, we can consider only the 
8 and w contributions to the Lyapunov stability criterion (i.e. AL3(AtL) and 
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A  L4(A tL)). In this case, 

A L ( A ~ L )  : [e:(t+Ak) - e:(t)] Q3 + [e) ( t+Ak)  - ea(t)] Q4 (7.98a) 

To assure that AL(Ak)  < 0 for any admissible w, this equation is maximized with 

respect to w. This gives, 

AL(Ak)  : 6; Q3 + [e i ( t + A t ~ )  - e p ) ]  4 4  (7.98 b) 

and substituting from (7.97), 

AL(Ak)  < [ A )  + ea( t+At~)  - e)(t)] Q4 ( 7 . 98~)  

Condition (7.97) therefore implies that for asymptotic stability ( A L ( A k )  < O), 

ei(t+Atr,) < ei(t) - A;  (7.99) 

which clearly indicates that, for any admissible changes in w, the stability criterion 
can be satisfied by a decrease in attitude error. 

The combined constraining relationships for the weights Qi, from the results of 

each of the four cases, are presented below in Table 7.1. 

Table 7.1: Constraining Inequalities For T h e  Weights 

These constraints guarantee that if a solution trajectory exists which 

converges toward the desired trajectory, while observing the bounds of the 

controllable envelope defined by _z E G, then it will satisfy the stability criterion 
defined by equation (7.56). This result is limited to situations for which velocity or 

flight path tracking errors exceed given target ranges. In these cases, tracking 
convergence of the velocity vector toward its desired value implies a decrease in the 
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Lyapunov function AL(Ak)  < 0. For the case where translational tracking errors 
are within the target range, the additional (fourth) constraint is really just a 
performance tradeoff, since any choice for X B  is acceptable. In fact, aside from the 

constraints in Table 7.1, the selection of all the weightings Qi is a design task. For 

the purposes of this research, Bryson's Rule will be used to make these choices,25 

and the free parameters c1, as, 0 3  will be used as scaling factors to adjust the 
weights to meet the conditions of Table 7.1. 

Choosing The Time Interval Ak, 

Up to this point, it has been assumed that the time interval ( A ~ L ) ,  used by the 
stability criterion, is long enough that the error-rate (and acceleration) margins for 
the controllability envelope can actually be achieved. A discrete form for the 
Lyapunov stability criterion was chosen precisely because these margins are not 
possible at all times, and a quadratic measure of the tracking error might have to  
increase before it decreases. Several factors are responsible for this time delay, 

including physical limitations on the actuator rates and the bounds of the 
controllability envelope _z E R,. 

In terms of the equivalent force and moment controls, 6~ and 6~ (of section 
7.3), the largest translational and rotational accelerations on the vehicle occur at 
the extreme values of the intervals & E [F1,F2], and JM E [ML,M2] (see Figure 7.1). - +/- 
These intervals determine the largest magnitudes of the acceleration margins Vmarg 

+/- and bar, that can be guaranteed by the controllability envelope I E a (see 
7.21a-b, 7.23a-b). Although larger accelerations may be possible, only these 

margins can be assured for the extreme values of the equivalent controls &, h. 

25~ryson's Rule simply chooses the weighting matrix to be a diagonal matrix of the reciprocals 
of the squares of the maximum expected deviations for each state. In effect, the states are 
normalized by some characteristic values. 
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Now, since the physical control inputs are limited by maximum rates (7.lb), some 

time may be required (Ati) before these acceleration margins can be achieved. 

For simplicity, suppose the physical actuator rate limits can be translated into 
rate limits on the equivalent controls. 

The upper bound on the time required to attain the desired control inputs, can 
therefore be expressed as, 

MadAti]  = Maz (7.102) 

+/- The magnitude of the other acceleration margin corresponding to the 
normal force on the vehicle, is not limited by the control inputs, but by the 

admissible range of attitudes within the controllability envelope _z E a. Since the 

largest normal accelerations occur at  extreme values of angle of attack, and the rate 

of change of attitude (pitch rate) is limited by the envelope : E &, some time may 
be required ( A t )  to reorient the vehicle to the attitude required for a desired 

normal acceleration. 

From (7.13b), the maximum pitch rate is governed by the constraint, 

and it can be assumed that the desired value is typically zero, or negligible 

(wd(t) z 0), SO that, 

The maximum time required to attain a desired attitude (and therefore a 
desired normal acceleration) would then be given by, 



SECTION 7.4 STABILITY 

where Om, = """ [B], a d  em, = 
? E!L 

which accounts for the time required to achieve the maximum angular rate. 

Finally, an extra time interval is defined (At,) to assure that the system has 
some time to converge toward desired values once the acceleration margins (or 
error-rates) have been achieved. The time interval for the Lyapunov stability 

criterion is, therefore, given by, 

A ~ L  = Ati + Ata + Ate (7.104) 

where the value of At, is a design choice. For larger values of Ai$, the Lyapunov 
function can decrease further in the time A h .  However, since the overall time 

interval (ha,) for a correction trajectory would include at least several intervals of 
time A ~ L ,  (Lax = KAh) ,  the choice of At, is immaterial. Since the Lyapunov 

criterion will be used to eliminate destabilizing trajectories in the search process, the 

smallest possible value for A ~ L  would be desirable.26 

In summary, this section has established a criterion for asymptotic stability of 
the tracking error dynamics for the AHSV. The general form of a candidate 

Lyapunov function was defined as a weighted quadratic measure of the state 

tracking errors. Since the admissible domain of solution trajectories was limited by 
the controllability conditions defined in section 7.3, it was necessary to restrict the 
values of the weights in the Lyapunov function. This was accomplished by defining 

target ranges for the translational tracking errors, and assuring that solutions which 
converge toward these targets also satisfy the stability criterion. Constraints on the 

weights came from examining four possible cases, in which the errors in velocity 
and/or flight path were inside or outside their target ranges, while the attitude 

states remained within the bounds of the controllability envelope. The stability 

criterion was based on a discrete time interval, since constraints on the states and 

2 6 ~ h e  time-step A ~ L  should also be large enough to include any nonminimum phase 
characteristics of the vehicle dynamics. In Chapter 8 this issue is addressed in  detail. 
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actuators prevented the system from instantaneously achieving desired accelerations 

(or error-rates). An upper bound on the necessary time interval was obtained by 

observing the maximum time required to attain any set of control inputs and to 

reorient the vehicle to achieve desired normal accelerations. The results of this 

section assure that, if an admissible control solution exists for a given tracking error 

envelope : E a, then this solution will meet the stability criterion defined by 

Proposition 2.27 

7.5 Convergence 

The AHSV trajectory optimization problem addressed by the RIFC algorithm 
was defined in section 7.1 in terms of the state equations, constraints, desired 

trajectory, parametric uncertaintyas, and disturbances. The objectives of satisfying 
a stability criterion (developed in the previous section), and minimizing a cost 

function of the tracking errors, completed the description of the problem. The 
purpose of this section is to define the cost function, revise the constraints, and 
demonstrate that, if a solution trajectory exists, the A* search algorithm will 
converge. 

PROPOSITION 3: CONVERGENCE 

Given the optimization problem defined by, 

(1) the nonlinear dynamic equations of the system (7.6a-d, 7.7a-k), 

(2) the state, control, and dynamic constraints (7.1 b d ) ,  

(3) the constraints of a controllability envelope, and a feasible 

desired trajectory from Proposition 1 (7.53a-j), 

(4)  the stability criterion defined in Proposition 2 (7.56)) 

2 7 ~ n d  if the controllability conditions of section 7. 3 are met, then the existence of 
an admissible control solution is guaranteed. 

asparametric uncertainty will not be included in the problem until Proposition 4. 
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(5) and the cost function chosen as a cumulative sum of tracking 
errors measured by the Lyapunov function (error norm), 

N 

then, 
if a solution exists, * 
the A search algorithm using an optimistic cost function (to evaluate 
candidate trajectories) will converge to the optimal solution. 

ARGUMENT 3: 

The cost function defined above represents a cumulative measure of the 
tracking error at discrete intervals of time (A&), from an initial time (t = to) up 
through some final time (t  = tax = to + No At) .  Note that At, is not the same 
time step as the interval AtL in the previous section. The interval At, is the control 
cycle time and, in general, At, < A h .  The time tax is the horizon time required 
for a solution to converge to the desired trajectory. This "look-ahead" time will 
depend on the size of the admissible envelope _z E a and the achievable error-rate 
margins for a particular desired trajectory. An upper bound for the required ha, is 
derived later in this section. In general, however, tax > AtL > Ak.29 

The search for an optimal (or suboptimal) solution is performed by an A* 
optimization algorithm. The RIFC trajectory control system actually uses an 
enhanced A* approach which takes advantage of several devices to improve its 
efficiency in view of practical considerations, such as computation time and memory 
limitations. These issues are addressed in Chapter 8. In this section, only the 
fundamental A* algorithm is considered. 

The search begins with an initial state that is disturbed from the desired 
trajectory. A quantized control input space is then used to generate the admissible 

 he Lyapunov stability 
by computing AL(A~L)  = 
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input combinations (6e,k,6v) for the first control cycle time Ai&. These candidate 
partial trajectories are integrated forward At, seconds30 and the resulting predicted 
states become possible nodes for further exploration. The search direction is guided 
by estimates of the cost function for complete trajectories passing through candidate 
nodes and terminating on the desired trajectory. Branches of the search graph are 
truncated when a constraint (from items (2) or (3) of Proposition 3) or the stability 
criterion (4) is violated. The search continues expanding nodes and predicting 
forward at intervals of At, until a solution is found, or the search fails. The control 
solution is implemented for one time step At,, and the procedure is repeated with a 
new initial condition. It will be shown below that, for the conditions of 
Proposition 3, the A* search succeeds in finding a solution and, in fact, converges to 
the optimal solution. 31 

An important element of the A* algorithm is the definition of terminal 
conditions for a solution. These conditions identify the set of goal states. That is, 
any trajectory which observes the constraints and terminates in a state that meets 
the terminal conditions is considered a solution to the problem. Of these 
trajectories, the one which minimizes the cost function is the optimal solution.32 
For the AHSV flight control problem the goal states will be defined as a target 
envelope in the tracking error space. This envelope can be represented by requiring 
the Lyapunov function of the errors to be less than some value. Since translational 
tracking is the principal objective, the target envelope is defined by, 

and the terminal conditions are, 

The magnitude of h. corresponds to the case where velocity and flight path 
errors are within their respective target ranges, while pitch rate and attitude errors 
are admissible for controllability. The condition (7.107), therefore, is designed to 

3 0 ~ h e  integration time step can be considerably smaller than the control cycle-time A&. 
* 

3 1 ~  detailed description of the A algorithm is presented in section 6. 2. 

32~here may be a set of trajectories that minimize the cost function. 
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classify a trajectory as a solution once its velocity vector has converged to the 

desired vector. Note that this condition is less restrictive than the requirement that 
each individual state error be within its respective range. It has the advantage, 

however, that the target conditions can be met by convergence of the errors in 
velocity and flight path alone. 

Solution Trajectories 

Referring back to section 7.4, there were three cases in which the velocity or 

flight path tracking errors exceeded the bounds of their target ranges. In each case, 

it was shown that the conditions for asymptotic stability AL(Atr,) < 0 could be met 
by choosing the weights in the Lyapunov function according to the inequality 
constraints of Table 7.1. In each case, an expression was given for the change in the 

Lyapunov function in the time Ah .  Repeating equations (7.80, 7.93, and 7-95), 

case1:(IeVJ>A) v AL(Ah) case1 <-xvQl lev( t ) l+[X;Q2+6:Q3+6iQ4]  

Case2:(le '7 I > A , . j  AL(A~L) case2 < - x 7 Q 2 1 e 7 ( t ) ( + [ 6 ~ Q ~ + 6 ~ Q 4 ]  

Case 3: (Both 1,2) AL(Ah) case3 < - nvQIJ ev(t)l - n7Q21 e7(t)l + [62, Q3 + 6) Q4] 

In order for a trajectory to be considered a solution to the optimization 
problem, it is desirable to have, 

AL(A~L) 5 -$ < 0 (7.108) 

where $, is a positive constant. The achievable value of &, which is a function of 

the control margins and weights, can be obtained from the following: 

Maz [AL(A~L) 1, 
MU{,\ l > A v [ ~ ~ ( ~ t ~ ) m e J '  e '7 7 case2 

Maz Max [AL(A~L) ]} i -bz 
case3 

(7.109) 
l e v  P A V  l e 7 1 > J  7 

Therefore, given the controllability envelope _z c &, a feasible desired 

trajectory, and an appropriate choice for the weights of the stability criterion, a 
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solution trajectory would decrease according to AL(AtL) 5 -&. 33 

This reduction is applicable to all cases for which errors in velocity and/or 
flight path angle exceed their target ranges. The concept is illustrated in Figure 7.3, 
where a value of the Lyapunov function is represented by an ellipse in the four 
dimensional error-space (only 3D in figure). 

Figure 7.3: Existence of a Solution in the Error-Space 

The boundaries of this error-space are defined by the limits of the controllability 
envelope _z E & (or g E Qe), and the equation AL(Ak)  < - 6 ~  corresponds to a series 
of shrinking ellipses, at intervals of time A ~ L .  

Since, by definition (7.106), the target envelope is achieved for 1 e I 5 A and v v 
1 e I 5 A (with admissible w,B), a solution trajectory converges to the target 

7 7 

3 3 ~ o t e  that AL(AtL) is a relative value. It would take lar er values of Q1 and 92 to obtain 
a larger reduction 61, but then the value of the function ~ f g ( t ) )  would also be larger for the 
same tracking error. 
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envelope after K intervals of A ~ L ,  where 

This also gives an upper bound on the horizon time required (it,,,,,) to assure that it 
is possible for a solution to converge to the target envelope. Since the maximum 

value of L (g(to)) occurs at the limits of the controllability envelope, 

and therefore, 

= Kmx Ak = [k] [6$?1+6;~2+6:~3+6i~4 I A h  (7.112) 

Convergence Of The A* Search 

One advantage of combining a Lyapunov stability criterion with the A* 
optimization is that the solution space over which the algorithm must search is 
drastically reduced. Moreover, by using the Lyapunov function as the stepwise 
measure of the cost, the A* search is biased to proceed in directions that explore the 
portions of the graph which meet the stability criterion first (before searching 

elsewhere). These properties are extremely useful from the viewpoint of limiting the 
required search effort. Figure 7.4 illustrates the relationship between the entire 
search space and the subspace of solutions that meet the stability criterion. 

Before discussing the convergence properties of the A* search with respect to 
the optimization problem of Proposition 3, it is necessary to define the heuristic 
evaluation function f(n) used to estimate the complete cost of partially explored 
trajectories. The actual cost of a complete trajectory is given by, 
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Time 

&(t) 

Figure 7.4: Subspace of  Trajectories Meeting the Stability Criterion 

where, from (7.105) 

Now, recall from Chapter 6 (equation 6.7) that, 

and, in this case, 

where g(n) is the tracking error cost from the initial condition (Start node) to the 

state represented by the node n. 



SECTION 7.5 CONVERGENCE 223 

The value of Ic, indicates the depth of the node n in the graphJ4, and the 
partial trajectory is given by the set of states {_z(kA&): k E [I, b]) along the path to 
the node n. Therefore, for a partially explored path, the function g(n) is the known 
part of the cost function. The cost of the remaining portion of a partial trajectory is 
unknown, and the A* algorithm uses the heuristic function h(n) to estimate this 
cost: 

where E ( - )  represents an estimated value. 

For reasons explained below (and in Chapter 6), it is desirable to have a 
heuristic function h(n) that approximates the actual terminating cost as closely as 
possible, while being an optimistic estimate. If h*(n) represents the actual optimal 
cost of a trajectory from the state n to a state in the target envelope, then the 
estimate h(n) is defined to be an admissible heuristic finction (according to 
Definition 6.12) if, 

An admissible cost estimate h(n) can be easily obtained for the AHSV 
trajectory control problem, by assuming that each state variable can be 
independently controlled using the full control authority of each input. That is, 
h(n) would be the cumulative cost of a path from state n to a state in the target 
envelope, where the path is a fictitious trajectory with maximum possible 
convergence rates on all axes. Since the coupling of the states and controls would 
prevent such a trajectory from actually being possible, this cost estimate would be 
optimistic. This idea is clarified in Figure 7.5, which shows the difference between 
the terminal portion of an optimal solution (from a state n) and the corresponding 
trajectories for the heuristic estimate. 

3 4 ~ t  also represents the time at state 71, t = kA&. 
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V(t) , Note: 
Wd('l-0 

"(Q 
- - - - - - - - - - -  

I I I I I I I I I I I  

kn t 

Figure 7.5: Optimal and Heuristic Terminal Trajectories 

(t) 

The heuristic trajectory &(t) = [Vh(t) y h(t) &(t) @(t)l is obtained by 
minimizing the difference _z(kAi$)-a(kA &) for k E [k+l, N] with respect to the 
admissible inputs g E f l u  and states _z E for each state separately. 

k 

- &(kAU = z ( h A k )  +x h ( j A & )  At.  (7.11 8) 

kn t kn t 
d = desired trajectory 
* = optimal correcting trajectory 
h = heuristic estimate trajectory 

- - - -  , - - - - - - -  

f 8 ( 
I I I I I I I I I I ~ ~ )  

Referring to equations (7.6a-d), the best possible rates for each state variable in the 

error correcting directions are given by, 

(t) 
e(td 

Maz Max 
21~!!U 2 E R x  

@ (t) = (7.11 9a) 
Man M i n  
B E R U  2 E R x  [ v ( ~ ) J  9 E n U  a x  [ j  v (a,t)+gv(_zlat) I tor V >  ~d 

. - -  -..--... --  
- -  - - - _  
ed(Q 

I I I I l I I I I I I  
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Max Max 

;Vh (t)= (7.119b) 

Maz [i*(t)] = [ j  (z,tj+gu(g,,y, t)] for w < wd 
I L E ! ~  : E&X ' ~ L E R ~  -z E!!X CJ 

(t) = (7 .119~)  
M i n  M i n  [p(tl] - - M i n  Min 
B E R ~  $E!L - UE&,, _3:cRx [I w (k t)+g,(g,%t)] for w > 

Maz Max 
- u ~ ! ! ~  c ~ R x  [e(t)] = 6w f 0 r 0 < 9 d  Since 6, is the I maximum allowable 1 (7.1 19d) 
Man Min [e(t)] = -8, for e > 6, p i t c h  rate.  
~ E B U  _2€LIx 

Since it is assumed that the dynamics are autonomous for the duration of the 
horizon time in which the trajectory is being optimized (constant mass and 
inertias), the rates above can be written as $h 5 [ t" vh @IT. The cost estimate 

h(n) can then be represented by, 
N' 

where I' is the index for which _z(I'AW is within the target envelope, (i.e. 

L ( ~ ( x I a s ) - a ( I ' A a ) )  I tr). 

Now that an admissible heuristic cost estimate has been defined, the 

convergence properties of the A* search follow directly from the Theorems in 
Chapter 6. 

From Theorem 6.7: 

The A* algorithm always terminates with a solution if one exists. (The proof 
is given in section 6.2). 
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Since we have established a feasible desired tra$ctory, a con trollable envelope, 
and a stability criterion that can be satisfied by admissible converging 
tra&ctories, the A* search cannot terminate without finding a solution. 

From Theorem 6.9: 

The A* algorithm using an admissible heuristic function h(n) converges to the 
optimal solution (if one exists). (The proof is also given in section 6.2). 

Since a tracking solution exists and the heuristic function h(n) optimistically 
estimates the termination cost of partial trajectories (and is therefore 
admissible), the A* search will converge to the optimal solution. 

Based on Theorems 6.7 and 6.9 (and the results of the last three sections), the 
theoretical Convergence properties of the A* algorithm have been established for the 
AHSV tracking problem. The only remaining obstacles for convergence are related 
to practical considerations, such as computation time and memory requirements. 
Although these issues will be addressed in Chapter 8, it is worth noting that the 
addition of a stability constraint to the optimization problem (in this section -item 
(4) of Proposition 3) improves the efficiency of the A* search, since a majority of the 
solution space can be immediately truncated. Another important efficiency factor is 
the conservativeness of the heuristic function h(n). For V(t) and ~ ( t )  outside the 
target envelope, the magnitude of L('(t)) is governed primarily by the errors e (t) v 
and e (t). Now, it is clear that all of the rates h ( t )  used by the heuristic cost 

7 
estimate h(n) cannot be achieved independently. However, since velocity can be 
controlled directly from the equivalent input &, and flight path angle can be 
controlled from b ~ ,  the rates ~ ( t )  and j(t) can be independently changed. 
Therefore, the optimal trajectory may not differ too significantly from the heuristic 
solution in terms of the translational state variables. This means that (outside the 
target envelope) the heuristic function h(n) is reasonably well informed 
6.e. h(n) E h*(n)), and (from Chapter 6) this implies an efficient search. Recall 
that, if the function h(n) were known precisely (h(n) = h*(n)), then the search 
would only explore nodes along optimal paths. 
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In summary, this section has combined the original AHSV trajectory control 

problem (of section ?.I), with the constraints of a controllability envelope (section 
7.3), and the Lyapunov stability criterion (section 7.4). The cost function has been 
defined as a cumulative measure of the tracking error based on the Lyapunov error 
norm, and a target envelope or terminating condition for tracking solutions has been 
defined. An upper bound on the time to reach the target envelope (ha,) was also 
derived. Finally, an admissible cost estimate function was developed for the A* 
search, and convergence of the algorithm to the optimal solution was confirmed. 

7.6 Robustness 

Up to this point, the analysis of this chapter has not included the effects of 
parametric uncertainty in the aerodynamic, propulsion, and control coefficients. In 
order to account for this uncertainty, the results of the previous sections must be 
augmented to include variations in the parameter space. 

For controllability, the additional robustness requirement translates into 
reduced acceleration margins and/or a more restrictive controllability envelope. 
The assumptions of Proposition 1, and the final controllability conditions (7.53a-j) 
must be modified. For the purposes of this section, it is assumed that uncertainties 

in the parameters are small enough that there exists some nonempty controllable 
region in the state space. If this were not the case, then the RIFC controller would 
still perform a search for the best solution trajectory; the result, however, could not 
be guaranteed to exhibit the desired tracking properties. Flight conditions for 
which the above assumption does not hold indicate the need for an improved 
coefficient database model or a change in the vehicle configuration that compensates 
for the uncertainty with additional control authority. 

The Lyapunov criterion for stability of the tracking error dynamics, equation 
(7.56), can be made into a robust criterion by including a maximization over the 
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parameter space. A trajectory that satisfies the resulting stability criterion must, 
therefore, exhibit a diminishing tracking error (measured by the Q-norm) for any 

set of parameters within the parameter space. The inequality constraints on the 

weights Qi, and the time interval A ~ L ,  must also be recomputed to reflect changes 
in the controllability conditions due to parametric uncertainties. 

The issue of convergence for the A* algorithm also requires reexamination in 
the presence of uncertainty because the cost function and the terminal conditions for 

a solution must change. The cost function is modified to  minimize the worst case 
cumulative tracking error rather than the predicted error for trajectories with 

nominal parameter values. Since the prediction error increases with time, however, 

it is not sensible to search specifically for solutions that terminate on some target 
envelope. At some point along each trajectory, the magnitude of the uncertainty 

will have grown to be as large as the predicted tracking errors. Searching for 
optimal solutions beyond this depth is pointless, since the results would be 

completely unreliable. As such, the definition of a solution is modified to include a 
combination of the original target envelope and an error-uncertainty matching 
condition. Otherwise, the arguments for the existence of a solution to the 

optimization problem, and convergence of the A* search procedure, are essentially 
the same as that presented in section 7.5. 

PROPOSITION 4: ROBUSTNESS 

Given the following conditions: 

(1) The assumptions of Proposition 1 remain valid in the presence 
of interval bounded uncertainty on the aerodynamic, 
propulsion, and control coefficients. 

(2) There exists a nonempty region in the state space, such that the 
controllability con& tions of Proposition 1 (7.53a-j) can be 
satisfied for the case with parametric uncertainty included. 
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(3) The Lyapunov function from Proposition 2 is augmented as 
follows, 

with the stability criterion given by, 

Max 
I Eqll '(L t+A hl-a ( t + ~  k) 11 Q 

where ( * , t )  is a measured quantity (independent of the 
parametric uncertainty) and (d,t+AtL) is a predicted value. 

(4) The cost function from Proposition 3 is redefined as, 

Max J = c  d&$ ~ ~ ~ ( d , k ~ k ) - ~ ( k ~ k ) ~ ~  
k=l Q 

then, 
if a solution to the optimization problem exists that is robust to the 
uncertainty in parameters, 
the A* search converges to the op timd solution. 

ARGUMENT 4: 

Itobust Controllability 

In the analysis of section 7.3 the issues of theoretical and physical 
controllability were addressed. In the presence of uncertainty in the values of the 
aerodynamic, propulsion, and control coefficients, the analysis for theoretical 
controllability is unchanged. Some revisions are required, however, in order to 
establish physical controllability for this case. The assumptions from Proposition 1 
are presented below with modifications that account for parametric uncertainty. 
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M i n  Max 4 El!,$ { bF [fl(Z1t) + gl(g1t) 6~ + d  1 (t)] } 2 X a r g  > 0 (7.124a) 

Max Min 4 a& { br [fl(g, t )  + gl(g1t) 6~ + d  1 i t ) ]}  5 G a r g  < 0 (7.124 b) 

Assum a ti on 2 

M i n  Max 
8 f ( g 1 t )  + g 3 ( g j t ) h  + d  ( t ) ] }  G a r g >  0 d~! !d  ~ [ s  3 (7.125a) 

Max Man lEG{ dM [ f 3 b t )  + g 3 (glt) + 3 o)] }  I ~ a r g  < 0 (7.125 b) 

Max Max  Max Max M i  n { [ f 2  (21 t)] + d2 ( t ) }}  5 5 a r g  < 0 (7.126b) 

where (' . [CL Cg CMa fin fiv Qp Qbe ...I, and f14 represents the set of all 

possible parameter vectors. 

These assumptions are essentially the same as given in section 7.3. 

Assumption 1 means that it is always possible to achieve a positive or negative 
. +/- acceleration in the velocity direction (of at least Vmarg) for some choice of & 

provided the states remain within the controllable envelope z E fix. In this context, 
+/- however, the margins Vmarg must be recalculated to reflect the achievable 

accelerations despite a range of uncertainty in the parameters. Assumption 2 means 
that it is always possible to achieve a positive or negative angular acceleration (of at 

+/- least wma r g )  for some choice of 6~ provided the states remain within the controllable 
+/- envelope x E f i x .  Here again, the margins wmarg must be recalculated to account for 

uncertainty. Finally, Assumption 3 means that, even in the presence of parametric 
uncertainty, the maximum normal accelerations are experienced at the extreme 
values of the admissible angle of attack range. Furthermore, the normal 
acceleration is positive for the maximum angle of attack, and negative for the 
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minimum angle of attack. The margins corresponding to each of the above 

assumptions are given below: 

Man Man M i n  Man 
= ( E R +  Z E ~ ~  [ f (xJ t ) ]  I + (En,  x€nX [s (xj t ) ~  ~2 +  in^ dl  ( t ) ~  (7.127a) 

K a r g  = 
Max Max 

[g (xjt)] *FI + M d d  (t)] ( m, xmx[<(xjt)l  + I ~ n +  x en. I 
(7.127b) 

. + 
Wmarg = Min ( € f i g  M i n [ f ( x j t ) ] + M a n  Z E ~ X  r 4 €nO M ' n [ g ( x , t ) ] - M 2 + M i n [ d ( t ) ]  z€f iX r 3 (7.1274 

- Max Max Man M i n  
Wmarg = 4 ~ n +  

where the limits F1, F2, MI, M2 are given by, 

F1 = Mzn [bF] = 

F2 = Max [6~] = 

(Refer back to equations 7.12, 7.13 for definitions of g' V' g 1 , gb g 3 ) 

In equations (7.127a-f) the margins are obtained by calculating the largest 
possible accelerations that can be achieved in each direction while the values of the 
states, parameters, and disturbances oppose the effort as much as possible. 

Likewise, the maximum and minimum equivalent eont rol inputs (7.128a-d) 
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represent the largest possible force and moment coefficients that can be assured for 

all possible parameter values and all admissible states. 

For the purposes of this section, it is assumed that the uncertainty in the 

coefficients is small enough and the control authority is large enough, so that the 

margins specified above actually exist. That is, Assumptions 1, 2, and 3 hold and, 

therefore, there exists a range of admissible states x E Rx such that the margins 

v;arg, &;arg, qiarg are, in fact, positive quantities (and their counterparts viarg, 

&iarg, ;Yo;arg are negative). These assumptions are reasonable, since what they 
imply qualitatively is that for some admissible range of states, there is enough 

control authority to assure that accelerations in desired directions are possible, 
despite the uncertainty in the state equations, by applying enough control effort.35 
Also note that these assumptions do not limit the ability of the RIFC controller, 

since the search for a trajectory that minimizes the worst-case tracking error does 

not depend on the margins above. However, if a controllability envelope cannot be 

defined that is robust to uncertainty in the state equations, then tracking 
performance cannot be guaranteed. 

The controllability conditions of section 7.3 are now augmented to account for 

parametric uncertainty and presented below: 

Robust Con trollabilit v Conditions 

t + - - M i n  M i n  [f (XI t)] 
Vmarg ( E n +  X E ~ .  1 

+ Min ( ~ f l +  X E ~ X  [g I (xl t)] F2 + Min[d (t)] - ~4 ~ d ]  (7.129a) 
1 

- 
t - - Max Max [f (XI t)l Vmarg 4 ~ f l +  Z E ~  I 

350r by attaining an extreme angle-of-attack for achieving normal accelerations 
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i.?. + - - Man M i n  
a # 2 € f i x  

+ M" (x, t)] M2 + Min[d (t)] - Mad&] (7.129~) 
$' en,$ x ~ n x  3 3 

- 
i! - - Maz Max 
Wmarg # en4 X € f i x  

i! + - - M i n  M i n M i n M i n  
'Ymarg d E n g (  v 7 W 

i.?. - - Max M a x M a x M a x  imwg # € n A  v 7 w 

As in section 7.3 these equations express the relationship between the 

objectives of the desired trajectory, the size of the tracking error envelope for which 

controllability can be assured, and the achievable error-rate margins. All quantities 

here, however, include the additional element of parametric uncertainty. In general, 
this uncertainty will decrease the magnitude of the equivalent control limits 8'1, F2, 
MI, M2, making it necessary to further restrict the envelope X E  fl, in order to 

attain desired margins. In effect, uncertainty in the coefficients will limit the 

controllability envelope, degrade the aggressiveness of feasible desired trajectories, 

and/or reduce the attainable error-rate margins. Nevertheless, equations (7.129a-f) 

can be used to select an admissible tracking error envelope x  E fix, constrain the 
desired trajectory, and allow for acceptable error-rate margins, in order to 

guarantee the existence of a robust tracking solution (given Assumptions 1, 2, & 3). 

&bust Stability 

The concept of robust stability for discrete systems was introduced in 

Chapter 6 as Definition 6.11. Sufficient conditions for robust stability are then 
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given in Theorem 6.6, which presents Lyapunov's direct method for robust stability 

of discrete-time autonomous systems. This theorem is restated below in terms of 
the current variables: 

THEOREM 7.3: Lyapunov's Theorem for robust stability of discrete-time 
autonomom systems (From Theorem 6.6) 

Consider the discrete-time autonomous nonlinear system 

I f ,  within a ball _e E Re there exists a scalar function L(g,d) with continuous 

partial derivatives, and satisfying 

(i) L (g (t) ,d is locally positive definite in g (7.130b) 

(a.2) L ( g ( t + A k ) , d - L ( ~ ( t ) , d <  0 (7.130~) 
for al l4  E Q, 

then the equilibrium state g = _O is stable. 

I f ,  in addition, 

(222) L(g(t+A&),!I!)-L(g(t),d< 0 

for all ) E h, then the equilibrium is asymptotically stable. 

The Lyapunov function L(_e(t),d) is chosen to be a simple variation of the 
tracking error norm defined in section 7.4. A maximization over the parameter 
space is performed in order to make this norm a measure of the worst-case tracking 
error for all possible values of the uncertain coefficients. 

For this choice of the Lyapunov function, the criterion for robust asymptotic 
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stability becomes, 

Max Maz 
1 t&ll ~ ( d ~ ~ + ~ h ) - a ( t + A k )  I/ Q - pbll ~(ht)-Zd(t) 11 Q < 0 (7.132) 

As in Proposition 2, the Lyapunov function L(g(t),d is a positive definite 
function since Q is a positive definite matrix. It only remains to be shown that for 
an appropriate choice of the weights Qi and the time interval AtL, there exists an 
admissible control input function ~ ( t )  E a,, and a corresponding trajectory g(t) E &, 
such that the criterion above can be satisfied. 

It is assumed that the desired trajectory is constrained to be feasible, and that 
a suitable tracking error envelope g E has been defined to provide adequate 
acceleration and error-rate margins according to the controllability conditions from 
section 7.3 which have been modified in equations (7.129a-f) to include the effects 
of parametric uncertainty. Under these conditions, robust controllability of the 
error dynamics assures the existence of an admissible robust tracking control 
solution. As before, the choice of Q1, Qz, Qg, Q4 and AtL must be constrained to 
assure that such a solution can also meet the robust stability criterion. The 

situation is analogous to that represented by Figure 7.2; the only difference being 
that the controllable region (&) is now smaller due to uncertainty. 

The development of the constraining equations for the weights Qi remains 
essentially unchanged from that presented in section 7.4. The only effect of the 
uncertainty in the coefficients is to change the achievable reduction of tracking 
errors in the time AtL. This results from the change in the error-rate margins for 
the case where uncertainty is included. Table 7.1, repeated below, appears the same 
as before, but the values of n and n are computed using robust margins. v 7 
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wheren = ( b  ) * A k , a n d n  ( 2  )-Ak(see7.75and7.88). 
V Vmarg 7 7marg 

These constraints guarantee that, if a tracking control solution exists and 
observes the robust controllability conditions (7.129a-f), then it will also satisfy the 

robust stability criterion (7.132)) in the cases for which velocity or flight path errors 

exceed their targets. 

The time interval used for the stability criterion (Ah)  was given in section 7.4 
(equation 7.104) as A h  = Ati + At, + A&, where Ati is the required time to attain 
desired control inputs, Ata is the time to achieve a desired attitude, and A& is an 

additional convergence time (once desired error-rates have been achieved). Since 
these time intervals depend upon the controllability envelope and the acceleration 

margins, the calculation of A h  must be revised to account for parametric 
uncertainty. From (7.102) and (7.103), 

where F1, F2, MI,  M2, wiarg, B,,, and Omin are now values consistent with the 

robust controllability conditions (7.129a-f) presented in this section. 

In short, equation (7.132) defines a robust stability criterion that requires 

accept able trajectories to exhi bit an overall decrease in tracking error (as measured 
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by the Q-norm) over a specified time interval for any set of parameters within the 
parameter space. For an appropriate choice of the weights Qi and the time interval 
Ak, it  is also guaranteed that a trajectory which observes the robust controllability 
conditions and converges to the desired trajectory, will also satisfy the robust 
stability criterion. 

Robust Convergence of the A* Algorithm 

In order to account for uncertainty in the dynamics, the cost function for the 
AHSV trajectory optimization problem is redefined as shown below: 

Max J=z  4 a$ I(_zlL,kAts)-dkAU.)II 
k=l  Q 

As in Proposition 3, this cost function represents a cumulative sum of tracking 
errors measured by the Lyapunov function (Q-norm). The maximization over the 
parameter space makes this a worst-case cost. That is, for the case with uncertain 
parameters, each candidate input history g(t) (for t E [to,to+t,,,,]) represents not 
only one trajectory, but a set of possible trajectories depending on the actual values 
of the parameters. The stepwise cost in equation (7.135) is the cost of the worst 
trajectory in this set (i.e. the one with the largest measure of tracking error). 
Therefore, if an optimal (admissible) trajectory for the overall cost function exists, 
then it has the property that its performance is robust to parametric uncertainty. 

The accuracy of the predicted system response to a candidate input function 
u(t) naturally depends upon the uncertainty in the parameters. Moreover, since the - 
prediction error due to the integration of uncertain dynamics is cumulative, it is 
clear that the reliability of a predicted trajectory degrades with the "look ahead" 
time. In fact, for any solution that converges to the desired trajectory (for nominal 
values of the parameters), there must be some time t > to at which the state 
prediction uncertainty dominates the predicted tracking error. As such, it is 

possible that the worst-case predicted trajectories never reach any target envelope 
LT as defined in section 7.5. 
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This concept is illustrated in Figure 7.6. The curve e(t) represents the 
nominal predicted tracking error (norm) for a particular candidate input function 

u(t). The prediction uncertainty Ae(t) is shown by dashed curves which bound the - 
range of possible tracking errors when parametric uncertainty is included. The 
figure shows a nominal trajectory which has converged to within the target zone by 

time t = tl. At t = t2, however, the uncertainty has already grown to a magnitude 

equivalent to the target error. Beyond t = t2 the prediction uncertainty dominates, 

and the tracking error for the worst-case trajectory never reaches the target. 

Time t 1 

Figure 7.6: The Effect of Parametric Uncertainty on the Prediction Error 

Based on the discussion above, it should be apparent that the definition of a 

target error envelope (as in section 7.5) does not constitute sufficient terminal 
conditions (or goal states) for solution trajectories when parametric uncertainty is 

considered. To rectify this problem the terminal conditions are modified as follows: 
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Robust Tra-iectorv Terminal Conditions 

The terminal state of a solution trajectory to the optimization problem must 
meet one of the following two conditions: 

where, 

LT = [ X i  41 + Qz + 6; Q3 + 63 Q4 

or, 
Max 

Max 
(2b) 1 s 4 1 1 ~ ( d , k ~ ~ - a ( k ~ b ) l l  - I l d i k ~ ~ - w ( k ~ t . ) l l  >LT (7.137b) 

Q Q- 

Condition (1) is the same target envelope terminal condition defined in section 
7.5. Note that the measure of tracking error applies only to the nominal trajectory 
specified by the parameter estimates 4. Condition (2) is a new terminal condition in 
which the worst-case predicted tracking error (at some future time kA&) is less 
than the initial tracking error (2a), but the uncertainty in the predictions has 
become as large as the target error Ae(t) 2 LT (2b). This new condition is a weaker 
criterion that captures any candidate solutions that converge to the desired 
trajectory (in a robust sense) for a limited time, but are not explored deeply enough 
to meet condition (1) due to excessive prediction uncertainty.36 

In general, for arbitrary parametric uncertainty, it is impossible to guarantee 
the existence of a robust control solution. This is the reason for leaving condition 

3610te that there is a difference between the terminal conditions for a solution to the 
optimization problem and the terminal conditions for a trajectory. The former, given here, 
determine when the search considers a trajectory to be a viable solution. The latter defines the 
conditions for a complete trajectory. This distinction becomes vague in the uncertain case 
because i t  may not be possible to accurately predict far enough ahead to properly terminate 
candidate trajectories. A l l  partial trajectories however, are s t i l l  extrapolated to the target 
envelope using the heuristic terminal functions (Figure 1. 5) before their cost is evaluated. 
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(1) in terms of the nominal trajectory. In other words, the algorithm will always 

consider nominally converging trajectories as (at least suboptimal) solutions. If the 
uncertainty is so great that all worst-case trajectories diverge, then the search will 

return with its best nominal solution. The addition of condition (2), then, can only 

add to the number of viable trajectories, and the convergence of the A* search to 

some solution is guaranteed. 

If the uncertainty is small enough, the robust controllability conditions can be 
met, and the resulting error-rate margins (7.129a-f) assure the existence of a robust 

(adrnissi ble) tracking solution. Since the robust stability criterion is chosen 

(Qi,AtL) such that it is satisfied by such a trajectory, the first part of condition (2), 

equation (7.137a), can be met trivially for kAt, = AtL (see 7.132). Now, depending 

on the degree of uncertainty, converging partial trajectories (meeting 2a) may reach 
a level of prediction error that satisfies condition (2b) well before condition (1) is 
reached. For the robust case, this is considered an acceptable solution since any 

predictions beyond this point are unreliable. 

Convergence of the A* search for the robust optimization problem can now be 

established. First, the definitions of the terms in the heuristic evaluation function 

f(n) = g(n) + h(n) are given for this case. That is, 

Max 
g(n) = 1) I(L,U w -a ( k ~ k )  (1 

k=l €4 Q 

N 
Maz 

h ( n ) = E [  k=k,+l k ]  Q (7.138b) 

where Ic, indicates the depth of the node n in the graph, g(n) is the worst-case 
predicted tracking error cost from the initial condition (Start node) to the state 

represented by the node n, and h(n) is the estimated cost of completing the 

trajectory from the node n to a terminal node within the target envelope. 

The cost estimate function h(n) given in section 7.5 can still be used as an 

optimistic measure of the cost to complete a trajectory. 
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Here, N' is the index for which _z(Nf Ah) reaches the target envelope, and the vector 
jGh represents optimistic rates for each of the state variables. For this to remain an - 
admissible heuristic function in the presence of parametric uncertainty, however, the 

calculation of gh (see equations 7.119a4) must be modified to include the 
uncertainty by maximizing or minimizing over the parameter space 4 E % to 

obtain the best possible rates. 

Finally, as in section 7.5, Theorem 6.7 guarantees that the A* algorithm will 
terminate with a solution (if one exists). Moreover, the search will converge to the 

optimal solution, according to Theorem 6.9, since the heuristic function h(n) is 
admissible. 

In summary, this section has augmented the results of the previous three 
sections to include the effects of parametric uncertainty in the analysis of the RIFC 
trajectory control system. The purpose has been to demonstrate that, if enough 
control authority is available so that constraints on the desired trajectory and a 

controllable tracking error envelope can be defined for all possible values of the 
uncertain coefficients, then, if a robust tracking solution exists to the optimization 

problem defined in Proposition 4, the A* algorithm will converge to this solution. 

Toward this end, robust versions of the controllability conditions, the stability 

criterion, and the tracking error cost function have been developed. It has been 
assumed for this analysis that the uncertainty in the parameters is small enough 
that the robust acceleration margins can actually be achieved. To account for 

uncertainty, some changes were required in the constraining equations for the 
weighting matrix, the time interval for the discrete Lyapunov function, and for the 

terminal conditions of solution trajectories. 

In brief, the robust controllability conditions are used to constrain the 

operational envelope to assure the existence of control margins; the robust st ability 

criterion identifies the admissible trajectories that converge toward the desired 
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trajectory; and the robust cost function, associated terminal conditions, and cost 
estimate function h(n), assure that the A* search converges to a solution that 
minimizes the worst-case cumulative tracking error. 

Finally, note that the analysis in this chapter is based on some conservative 
assumptions and bounds, and it may be possible (with significant additional effort) 
to find less restrictive controllability conditions. The purpose of this chapter, 
however, has been to show that the performance of the RIFC algorithm can be 
guaranteed if certain assumptions and conditions can be satisfied. Otherwise, the 
applicability of this approach to the AHSV trajectory control problem is not limited 
by any of the conditions in this chapter. 

7.7 The Fundamental RIFC Algorithm 

Conditions for which the important properties of controllability, stability, 
convergence, and robustness can be guaranteed for the FUFC control approach have 
been established in the previous sections of this chapter. As a consequence of this 
development certain details of the algorithm have been determined. These specifics 
include the choice of the st ability criterion, cost function, maximum look-ahead 
time, and the relationship between the desired trajectory, tracking tolerances, and 
convergence margins. 

The purpose of this section is to present the fundamental Robust Intelligent 
Flight Control algorithm which can be applied directly to the solution of the 
problem specified in section '1.1. The performance of this algorithm is guaranteed 
with the provision that the assumptions and conditions of the previous sections are 
satisfied. These conditions can be assured through a design process of selecting and 
balancing several constraints, margins, limits, and specifications for a particular 
vehicle configuration and desired trajectory. Note that the fundamental algorithm 
described here does not yet include any enhancements which will be required to deal 
with practical implementation issues such as time and memory limitations. These 
issues will be addressed in Chapter 8. 
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In order to apply the RIFC algorithm, the dimensions of the control input 

space, state space, and elapsed time, need to be divided into discretized intervals. 

The search graph must consist of a finite number of possible trajectories, and the 
level of discretization is clearly a trade off between computational resources and 
desired precision.37 The branching degree of the graph is determined by the number 

of possible input combinations at each control cycle time-step Ah, and the depth of 
the tree is limited by the maximum look-ahead time tax which is given by 

equation (7.112). The cost function is given by equation (7.123), and partial 

trajectories are verified with respect to all constraints, including the stability 

criterion (7.122), before they are considered candidates for further exploration. The 

full nonlinear equations (7.6a-d, 7.7a-k) are integrated forward to predict the 

vehicle response to control input histories generated by the search algori thm. 

Decisions regarding search direction are based on the A* procedure described in 

section 6.2 (see flow chart - Figure 6.2). The cost estimate function used for the 

search is given by f(n) = g(n) i- h(n), where g(n) and h(n) are found in equations 

(7.138a) and (7.139). 

The logical flow diagram for the fundamental RIFC algorithm is shown in 
Figure 7.7. At intervals of the control cycle-time A&, a measurement of the 

current state is taken, the search procedure identifies an optimal short-term 

trajectory (of length kax = KAh), and the control solution is implemented. Each 

solution is implemented for only one interval of At, seconds before the process 
repeats. 

Each trajectory optimization begins with an initialization procedure which 
resets the initial conditions as well as other internal search variables.30 A node 

expansion is then performed to generate all possible control inputs beginning with 

the start node (current vehicle state). These options are placed on a stack and 

removed one at a time for evaluation. For each possibility, the predictor is first 

initialized to the current state (node n) and the aerodynamic, propulsive, and 

3 7 ~ n  analysis of computational effort is also reserved until Chapter 8. 

3 8 ~ n  the enhanced EIFC algorithm the search begins with an initial guess for the optimal 
trajectory based on the previous solution. 
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control coefficients are interpolated from the database model for the current flight 
condition. The dynamics are then integrated forward one control cycle time-step 
(A&),39 and the resulting partial trajectory is evaluated for constraint violations. If 

the trajectory does not satisfy all the constraints, the corresponding offspring node 
n' is eliminated and the next control input is considered. Otherwise, the partial 

trajectory is completed using an optimistic/heuristic path that converges to the 

desired trajectory, and the full trajectory cost is computed. If this cost is greater 

than the cost of a solution which is already known, the trajectory is again 
eliminated. Otherwise, the state corresponding to node n' is checked to see if it has 
been reached before by another trajectory (node n' in set OPEN - see section 6.2). 

If it has, the trajectory with the lower cost is retained and the other is eliminated. 

Otherwise, the trajectory is stored as a candidate partial solution by adding the 
node n' to the set OPEN. This process is repeated for each possible control input 

from the current state until the stack of options has been exhausted. 

Once all the one-step possibilities have been evaluated, the best one is 
compared to all other viable partial trajectories (i.e. other nodes in OPEN). If 

another node with a lower cost estimate exists then it is selected for expansion. The 
current state is set to the state corresponding to this "best" node, and all the 

control input options are generated. Each of these possible trajectories is then 

evaluated as described in the preceding paragraph. The search continues to expand, 

evaluate, and explore nodes until a trajectory is found with a cost that is lower than 
any other cost estimates. Since all cost estimates for partial trajectories are known 

to be optimistic, this implies that the optimal solution has been found. The solution 

is utilized for one time-step by implementing the control inputs for the first step of 

the trajectory. The entire process is then repeated with the next measurement of 

the vehicle state. 

Based on the results in this chapter, the fundamental N F C  algorithm as 
described above is guaranteed to converge to the optimal trajectory provided that 
the assumptions and conditions of Propositions 1 through 4 are satisfied. 

3 9 ~ h e  integration procedure can use any desired time-step At < A h  to achieve the desired 
precision. 



Chapter 8 

Implement ation Issues 

The purpose of this chapter is to address a number of issues that arise in the 
context of the actual implementation of the RIFC controller. In Chapter 7, i t  was 
shown that the fundamental RIFC algorithm can be guaranteed to exhibit desirable 
convergence and robustness properties provided that certain controllability 
conditions are met. These conditions are not necessaryl; but if they are satisfied, 
the algorithm will theoretically converge to a solution when one exists. From a 
practical viewpoint, however, theoretical convergence is not satisfactory. This is 
because other considerations, such as memory and time limitations, may prevent the 
search process from reaching its logical conclusion. 

In this chapter, several enhancements are made to the fundamental RIFC 
algorithm (see section 7.7) in order to improve the search efficiency and guarantee 
convergence within a prescribed memory limit. Alternative methods for attaining 
the best possible solution with limited computation time are also suggested. The 
logical structure of the complete RIFC controller is then described, and its 
suitability for a parallel implementation is discussed. This chapter also examines 
some issues related to the quantization of the states and controls, and the controller 
bandwidth. Finally, the computational requirements of the RlFC approach are 
discussed. 

' ~ e s s  conservative conditions [nay be possible for which solutions stil l  exist. 
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8.1 Practical Considerations: Memory & Time 

8.1.1 GUARANTEED CONVERGENCE WITH LIMITED MEMORY 

In section 6.2.3, the A* procedure was described as a graph searching 
algorithm that utilizes two sets of nodes to keep track of candidate solutions: the 
OPEN set is a list of nodes that have been generated; while the CLOSED set is a 

list of nodes that have been explored (i.e. parent nodes). As the search progresses, 
nodes are selected on the basis of their estimated total cost f(n), moved from OPEN 
to CLOSED, and then explored by generating all successor nodes. 

The total number of nodes in the graph (NT) is a simple function of the 
branching degree for each expansion (NB), and the number of levels required (N) to 
reach terminal nodes. That is, 

N 

The A* algorithm, however, is effectively an optimal combination between a 
breadth- and depth-first search; therefore, only a fraction of the entire graph would 
actually be explored. This fraction depends upon the nature of the problem and the 
discriminating power of the heuristic cost estimate h(n), where f(n) = g(n)+h(n). 
As explained in section 6.2.4, the closer h(n) comes to approximating h*(n), the 
more efficient the search.2 Unfortunately, the specific number of nodes that must 
be explored cannot be computed in advance. It is still easy to see, however, that 
even for reasonably well informed cost estimates the actual memory required to 
store the lists (OPEN and CLOSED) can become enormous very quickly. 

For the fundamental RIFC algorithm, the memory required is a function of 
the control cycle-time, maximum look-ahead time, quantization of the control 
inputs, cost estimate accuracy, as well as the constraints and the stability criterion. 

* 
'Itecall that if h(n) = h (n) the A* algorithm would only explore the nodes along the 
optimal path. 
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The admissibility conditions on the states, the limitations of the control actuators, 
and the stability criterion, all contribute to a reduction in the possible number of 
nodes that must be explored and therefore stored in memory. Given a limited 

amount of computer memory to work with, however, it may still be necessary to 
truncate the list of OPEN nodes well before a solution has  bee^ found.3 In this 

case, some fraction of the least promising (highest cost) nodes would simply be 
removed (pruned) from the graph in order to make room for new, hopefully, better 
candidate solutions. Clearly, if the only solutions happen to be in the set of 
truncated nodes, then the search will fail. Regardless of how unlikely it is that the 
optimal solution lies in the set of highest-cost partially-explored trajectories, any 
guarantees of convergence to the optimal solution are forfeit once nodes are 
truncated. 

Since the dimensionality of the AHSV flight control problem is quite high, an 
alternative node storage scheme has been developed in order to circumvent the 
limitations otherwise imposed by computer memory constraints. Conceptually, this 
new approach takes advantage of several characteristics of the problem in order to 
compact the space of all possible trajectories into a time-invariant hypercube in the 
dimensions of the state tracking errors. The result is a drastically reduced memory 
requirement and, more importantly, the property that no candidate solutions are 
ever truncated unnecessarily (thus retaining the convergence guarantees inherent in 
the fundament a1 RIFC algorithm). 

The main difference between the list storage scheme and the new scheme is in 
the dimensions of the storage array. In the original list structure, candidate nodes 
are enumerated on the basis of where they are in the solution graph. The sequence 
of arcs from the st art node to a node n uniquely identifies that node. For the AHSV 
problem, it is, therefore, the sequence of control inputs (at each time-step) that 
uniquely identifies each candidate trajectory. This structure does have the 
advantage that node storage is dynamically allocated only for nodes that are 
actually generated. It suffers, however, from the list truncation problem when too 
many nodes are explored. 

3 ~ f  the available memory is large enough to store the entire tree, then this is not a problem. 
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In the new scheme, the nodes are stored in the output (state) space rather 
than the input (control) space. A grid is formed by quantizing the admissible state 
tracking errors in each dimension4, discretizing time, and constructing an array 
with the tracking errors and time as the independent variables (i.e. indices). The 
grid storage location for any partial trajectory is then determined by the difference 
between the state associated with its deepest node and the desired state at that 
time. As will be shown below, it turns out that the time dimension of this grid can 
also be collapsed. Therefore the entire search space is reduced to a spatially 

quantized grid, which has only four dimensions for the longitudinal AHSV tracking 

control problem. A three-dimensional analog of this four-dimensional grid is 
illustrated in Figure 8.1. Note that since the axes of the grid are defined as the 
tracking errors, the center of the grid effectively follows the desired trajectory and 
always represents the zero error state. The limits on each axis represent the 
admissible state errors, and the target envelope is always some smaller region 
encompassing the origin. 

Zero Tracking Error 

/' At Origin 

Figure 8.1: Node Storage Grid In State Tracking Error Space 

'i e. velocity, flight path, pitch rate, and attitude errors. 
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The greatest advantage of this new grid structure is that it recognizes 
overlapping trajectories in the state space, while the list structure enumerates all 

such trajectories separately. When two trajectories result in the same tracking error 
(in all axes) at the same time, it is clear that the path with the lowest cost leading 
to that state is preferable, and the more expensive trajectory can be eliminated. A 
similar argument holds for trajectories that reach the same error state at different 
times (as will be explained later). With the grid storage scheme, overlapping 
trajectories are handled quite easily, since it is not necessary to search through a 
long list of nodes to determine if an overlap has occurred. The node storage element 
is directly specified by the (quantized) state errors corresponding to the deepest 
node on the trajectory. That is, the memory location is a function of the state 
tracking error itself.5 Therefore, overlapping trajectories automatically access the 
same memory location, and any contentions can be resolved directly as new nodes 
are stored. Since all admissible trajectories are represent able within the grid 
structure, and any duplication is handled by retaining the lower cost paths, there is 
never any need to truncate candidate solutions using this new node storage scheme. 

Another important advantage of this grid structure is that the quantization of 
the state space greatly reduces the complexity of the search. As explained in 
Chapter 6, the unenhanced A* algorithm tends to spend much of its time deciding 
between trajectories with similar costs.6 Since quantizing the states has the effect 
of grouping toget her closely adjacent trajectories (usually with similar costs), the 
total number of nodes is considerably reduced, and the search only has to compare 
trajectories that are significantly different. 7 

The use of a time-invariant grid can be justified in terms of the nature of the 
AHSV tracking control problem. Recall from Chapter 7 that the target envelope Lr 

5~onvenientlyr this also means that the state information does not have to be stored, since it  
is coded into the memory address. 

* 
'1n fact, this was one of the reasons for introducing the Af approach (section 0. 2. 5). 

( t  ' I~hat  is significant" is defined by the choice of quantization intervals for each state 
error (see section 8. 3). 
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is defined as an ellipsoid within the tracking error space. At any given time, the 
obbctive is to reduce the tracking errors in the sense that the Lyapunov function 

decreases until L(g(t)-a(t))  < & (see equations 7.106, 7.107). Since the state and 
dynamic constraints, actuator capabilities, and uncertainties are assumed to be 

timdnvariant (on the scale of the short-term correcting trajectory), the time at 

which a specific tracking error is reached is not as important as the cost. Therefore, 

if two trajectories reach the same error state at different times, the lower cost path 

can be saved and the other eliminated. This property holds for time-invariant 

tracking problems, and has the advantage that it eliminates the need for a time 
dimension in the node storage grid.8 

There is one notable situation in which it would not necessarily be desirable to 

retain the lowest cost path to a particular node in the grid. This occurs if the state 
(represented by the node) is close enough to a constraint, and is moving in such a 
direction, that a violation can only be prevented by certain combinations of the 

control inputs. Although the required control authority to reduce tracking errors is 

assured by the controllability conditions, it may not be available quickly enough due 

to input rate limitations. In this case, the state of the controls becomes important, 

and the lowest cost path to the node could easily leave the inputs in the worst 

possible state. An obvious solution would be to add the dimensions of the control 
state to the storage grid. This is not a desirable option, however, since the required 

memory would tend to defeat the other advantages of this structure. Another 

8~ollapsing the time dimension of the grid does eliminate certain types of solutions from the 
tree. One can imagine situations where the smoothest trajectory actually 'cuts a corner8 by 
anticipating a future change in the direction of the desired trajectory. On the time-invariant 
grid this type of solution might be superseded by another trajectory that reaches the same error 
state a t  an earlier time. In the context of the RIFC controller, however) this is not seen as a 
disadvantage. The controllability conditions would assure that both trajectories can be made 
to terminate within the target envelope provided that the state errors remained admissible to 
that point. Furthermore) the smooth trajectory may not satisfy the stability criterion) while 
the second trajectory would probably be the one with the lower cumulative cost. Since 
prediction uncertainty increases with look-ahead time, the faster converging trajectory would 
also be preferable even if the costs were identical. For these reasons, i t  is concluded that no 
desirable solutions w i l l  be unduly truncated by the policy of keeping only the lowest cost 
paths to any particular error state. 
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option is to simply let the search eliminate nodes that encounter these situations, 

because they represent "dangerous" flight conditions for the vehicle. Adopting this 

philosophy, a candidate trajectory is considered undesirable if it passes through a 
state that is sensitive enough to the actual control values that it may lead to 

constraint violations. With this qualification, retaining the lowest cost path to each 

node will not unduly truncate desirable solutions. 

Another consideration related to the use of the node storage grid is the 

possibility of a trajectory overlap between a newly generated node and a node that 
has already been explored. Should this situation occur, all offspring of that node 

would have to be reevaluated. The situation is illustrated in Figure 8.2 where new 

paths (shown by dashed lines) intersect other paths (solid lines) that have already 
been explored to deeper levels. 

Figure 8.2: Overlapping Trajectories in the  Error Space (2-D) 

For the RIFC controller, this possibility is avoided by choosing the heuristic 

cost estimate to be a monotonic function. From Definition 6.13, a heuristic function 
h(-)  is monotonic if it satisfies h(n) 5 c(n,n')+h(nt) for all n,n' such that n' is a 
successor to node n. Intuitively, this means that the cost estimate improves as the 

path gets closer to a solution. According to Theorem 6.11, an A* algorithm using a 
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monotonic heuristic function finds optimal paths to each expanded node, that is, 
g(n) = b(n). In other words, a node n will not be expanded until the optimal path 
from the start node to n has been found. Therefore, for an A* search with 
monotonic h(n), partial trajectories can only overlap at unexplored nodes, and the 
problem of reevaluating offspring nodes is nonexistent. Figure 8.3 illustrates the 
situation for a monotonic heuristic function. 

Figure 8.3: Overlapping Trajectories with a Monotonic Heuristic Function 

It only remains to verify that the heuristic cost estimate function h(n), as 
defined in Chapter 7 for the RIFC algorithm, is monotonic. Recall from equation 
(7.139) that, 

In order to simplify the notation, note that the term in the brackets represents the 
optimistic state history beginning with the next state. At the kth time-step this 
term will be abbreviated by h ( k ) ,  and the desired state will be written as a ( k ) .  
Therefore h(n) can be expressed as, 
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(8.3) 

and expanding this out for one term gives, 
N 

Now, the first term of equation (8.4) is an optimistic cost for a single step of the 
trajectory starting from node n. If node n' is a successor to node n, then the actual 
cost from n to n' must exceed this term. That is, 

Also since h ( k n + l )  is optimistic, it must be closer to a ( k n + l )  than the state 
corresponding to node n'. Therefore the second term from equation (8.4) would 
underestimate the cost h(ni). 

N N 
llih(k)-a(k)ll 5 i h -  =h(ni) 

k=kn+2 k=knl Q 

Combining equations (8.4), (8.5), and (8.6) gives, 

h(n) < c(n,n')+h(nt) 

and, therefore, the heuristic cost estimate for the RIFC controller meets the 
conditions for monot onicit y defined above. 

To summarize, this section has motivated the use of an alternative node 
storage scheme which avoids the problems associated with the truncation of possible 
solutions due to memory limitations. The amount of memory9 required is 

me or each node storage element in the grid, only 14 bytes are required to represent an entire 
partial trajectory- one integer ( 2  bytes) is required to store a code which indicates the control 
inputs used at  the last time-step; two floating point values (8 bytes) are needed to store the 
partial trajectory cost $(n) and the estimated total cost f(n); and a pointer ( 4  bytes) is used 
to refer back to the grid element of the parent node. By tracing back the pointers from any 
node to the start node the entire trajectory can be reconstructed. 
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drastically reducedlo, and is determined by the quantization of the admissible state 
tracking errors.11 This quantization, in turn, reduces the complexity of the search 
by grouping adjacent trajectories together and reducing the number of possible 
nodes that may require exploration. The compactness of this scheme, its efficiency 
in handling overlapping trajectories, and its ability to maintain the convergence 
guarantees of the A* algorithm, make it the preferable storage structure. 

8.1.2 NONMINIMUM PHASE INSIGHTS 

As a tail-controlled aircraft the AHSV exhibits a characteristic nonminimum 
phase behavior in the transfer function from elevon deflection to  flight path angle 
(and altitude). Physically, this means that when elevons are used to achieve a 
desired normal acceleration ( Vj.) through a reorientation of the vehicle attitude, the 
initial change in the flight path angle (7 )  is in the wrong direction due to the force 
on the elevons. For example, a downward force on the elevons accelerates the 
vehicle down, as it applies a moment that will eventually pitch the nose up and 
increase the total lift due to the higher angle of attack. Once a certain attitude has 
been reached, the change in lift for the vehicle exceeds the force on the elevons, and 
the normal acceleration changes to the desired direction. Until this time, however, 
changes in flight path and altitude will be in a direction opposite to the desired 
effect. 12 

'O~he grid storage scheme typically requires far  less memory because the maximum amount 
required is determined by the state quantization intervals, rather than the branching degree 
and depth of the search graph. For example, with the original l ist  structure, assuming 1000 
possible control actions a t  each state, and a depth of 10 time steps, equation 8. 1 gives a 
maximum of approximately nodes. For the grid structure, even if the state errors were 

8 divided into 100 values on each axis, a maximum of 10 nodes are possible. The experiments 
described in Chapter 9, in fact, successfully used a grid of only 160,000 nodes, which was 
easily stored in a conventional personal computer. 

'%'he selection of these quantization intervals is addressed in section 8.4. 

 or linear systems the nonminimum phase behavior corresponds to a zero in the right half 
complex plane. The frequency of this zero is only a function of the force and moment stability 
derivatives with respect to elevon deflection and angle of attack. These derivatives, in turn, 
only depend on the vehicle mass, pitching inertia, elevon moment arm to the center of mass, and 
the normal force derivatives with respect to angle of attack 
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For the RIFC controller the nonminimum phase behavior is an issue because it 
means that trajectories which initially appear to diverge from the desired trajectory 
(in at least the y state variable) may actually lead to optimal solutions. This is 

perfectly acceptable, and, in fact, the stability criterion of Chapter 7 is specifically 
chosen (Qi  and AtL) to account for this behavior.13 The only problem is that for 
time t < A ~ L  the stability criterion cannot be applied, and the search is left to 
explore all possibilities. 14 Since the A' algorithm explores the lowest cost partial 
trajectories first, it would exhaust all minimum phase possibilities before looking for 
nonminimum phase solutions. The result is that the algorithm wastes time in the 
initial stages of the search. Depending upon the number of control cycles in the 
interval [O,Ak], and the branching degree of each node (i.e. the number of input 
combinations), this could translate into a significant performance penalty. 

In the interest of making the RIFC controller more efficient, it would be 

helpful to somehow inform the algorithm that it should be looking for nonminimum 
phase solutions in cases where the flight path error is outside its target range. This 

is not a simple objective, however, since the dynamics are very nonlinear and highly 
coupled in the controls. In addition, there may very well be satisfactory solutions 
using thrust vectoring and throttle controls that converge to the desired trajectory 
in a minimum phase fashion. 

One possible approach, or heuristic, would be to integrate forward the effects 
of any control actions for t < A9, and evaluate the cost function as if each partial 
trajectory was explored to a depth of at least AtL. This could be done by 
considering constant controls, constant control rates, or pulsed control inputs for 
time steps less that A h .  In effect, this would limit the fidelity of the controller (for 
t < AtL) in order to save search time. 

1 3 ~ h e  weights Qi are biased to assure that a decrease in the Lyapunov function is possible with 
trajectories that allow deviations in any of the state errors as long as the controllability limits 
are observed. The time interval A ~ L  is chosen to allow enough time to attain the desired 
acceleration margins for each state (see section 7.4). 
1461ecall that the control cycle time-step is Ah,  which can be smaller than A h .  
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A far better approach comes from examining the problem more carefully and 
realizing that the nonminimum phase behavior arises because of our choice of state 
variables. The AHSV dynamics in Chapters 4 and 7 are written in terms of the 
motions of the center of mass. This is very convenient because the translational and 
rotational dynamics can be decoupled. In Chapter 7 this is critical to the arguments 
for controllability because this decoupling is used to decouple the effects of the 
controls as well (into $ and h). It turns out, however, that if the trajectory of a 
different point on the vehicle were considered, the nonminimum phase behavior 
could be eliminated altogether. 

It can be shown that, for a tail-controlled vehicle, the frequency of the 
nonminimum phase zero increases as the point of reference moves forward from the 

center of mass (CM) toward the nose [McRl]. At a distance Xc-Xcm = Iy/(M 4) 
a center of rotation is reached, where the rotation of the vehicle exactly balances the 
translation from the elevon force.15 For points forward of X, the behavior is 
actually minimum phase; that is, a positive elevon deflection gives an immediate 
positive change in flight path angle. It is easily demonstrated that the center of 
rotation must be located on the vehicle somewhere between the center of mass and 
the nose. Consider the simple geometry shown in Figure 8.4. 

The downward force on the elevons can be represented by an equivalent force 
and torque (of magnitude of Te = &Fe) at the center of mass. The initial 
acceleration of the CM and the point P are found to be, 

which accounts for the acceleration of point P relative to the CM. Therefore, in 
order to have an upward acceleration at P, A, 2 0, it is required that, 

is the pitching moment of inertia, M is the mass, and le is the elevon moment am. 
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Figure 8.4: Center of  Rotation for Elevon Moment 

Now, assuming that the elevons act at the tail of the vehicle, it can be shown 
that the maximum possible value for the inertia is given by,l6 

Therefore, in the worst case, equation (8.10) requires that I ,  = (2-a, which means 
that the point P is at the vehicle nose (with an acceleration Ap = 0). Since any 

realistic configuration would have a mass distribution with Iy < & ( 1 4 )  M, the nose 
of the vehicle accelerates upward, and the center of rotation must be somewhere 
between the CM and the nose. 

 his is obtained by maximizing Iy with respect to the mass distribution, and using the 
defining equation for the center of mass as a constraint. Since the inertia w i l l  be largest if 
a l l  the mass is located as far away from the CM as possible, the problem is simplified b 
considering two masses MI and M2 at  the tai l  and nose Then, MI -f- M2 = d 
& MI = (1-le) M2 since Xca = k ,  and Iy = a MI + (1-k)' M2. 
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The discussion above suggests that an appropriate change of variables in the 
cost function could eliminate the nonminimum phase nature of the solutions and, 
therefore, greatly improve the search efficiency. For simplicity, and to assure a 
minimum phase behavior, the nose of the vehicle is chosen as the reference point P. 

The new states 5 = [ Vp yp wp $IT can then be expressed as, 

and the cost function from equation (7.135) becomes, 

It is important to note that a change in the cost function does not change 
anything about the admissible trajectories. All that is affected is the ranking of the 
candidate trajectories according to a different measure. In fact, the controllability 
conditions from Chapter 7 can still be applied to the original dynamics. All bounds, 
margins, and constraints can be left in terms of the original state variables. The 
RIFC algorithm would even predict the vehicle response to  candidate inputs using 
the original dynamics model. Therefore, if tracking solutions exist for the original 
problem, they are still present with the new cost function. The only assumption is 
that if the nose of the vehicle tracks the desired trajectory within target tolerances, 
then so does the rest of the vehicle.17 To use the cost function above, all that is 
needed is the calculation of +(t) once ( t )  is known for a candidate trajectory (using 
8.12). Then, based on this new cost, the order in which trajectories are searched 
will be different. The nonminimum phase behavior will no longer be able to 
adversely affect the A* search. 

 hat is, the tolerances on the overall trajectory from Earth to orbit are not so strict that 
it matters which part of the vehicle is on track. 
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Since the modified cost function is essentially a cumulative measure of 
tracking errors (using the Lyapunov function of Chapter 7 as a scalar indication of 
the state error at any point), it would also be advantageous if the stability criterion 
could be applied to the new states 9 as well. This would eliminate the need to 
explicitly include a nonminimum phase time delay in the interval AhiB, and the 
stability criterion could constrain the solution space at earlier levels of the search. 

From equation (7.65) the Lyapunov function is given by, 

and the stability criterion is L(s(t+At~))-L(g(t)) < 0. Referring back to equations 
(8.12~-d), since wp = w and $ = 8 it is clear that these substitutions would not 
change the Lyapunov function. Furthermore, equation (8.12a) can be expressed as, 

which, for hypersonic speeds, becomes Vp w V since the second term on the right 
hand side is negligible compared to 1. Therefore, Vp, ~ p ,  and $ can replace V, w, 
and 8 in the original Lyapunov function without affecting any of its properties. Of 

course, the main difference between the reference point P and the CM is in the flight 
path angle, and the substitution yp R 7 cannot be made arbitrarily. 

This problem can be solved, however, by observing that the weights Qi for the 
Lyapunov function were chosen (section 7.4) in order to assure that the criterion 
AL(AtL) < 0 could be met by trajectories that satisfied the admissibility conditions 
for the states (3 E a). As such, the constraints derived for the weights are 
primarily a function of the bounds of this region. More specifically, these 
constraining equations depend on the bounds of the admissible state tracking errors 
(6v67,6u,,60), the limits of the target envelope (A ,A A ,A ), aad indirectly on the 

v r w Q  

18~eca l l  that A h  already includes a delay Ati for the rate limits on the control inputs, 
and another interval Ata to assure that al l  acceleration margins can be attained. 
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- +/- +/- acceleration margins (Vmarg, ?marg) through the constants x and ix (see 
v 7 

Table 7.1). Since there is effectively no difference between ( VP,wp,$) and ( V,w,B), 
only the yrelated bounds and margins are of any concern here. It can also be 
argued that the normal acceleration margins at point P are, for all intents and 
pur oses, a proximately the same as those for the center of mass, that is +fl , +P- qpmarg - h a r g ,  and therefore x x ix 1Q 

Yp 7- 

Now, since the target envelope is a design choice (the A's), and the admissible 
tracking error limits (the 6's) are chosen solely on the basis of assuring 
controllability, the weights used in the Lyapunov function do not have to change in 
order to apply the stability criterion to the trajectory of the vehicle nose. The 
Lyapunov function for point P becomes, 

and the criterion can be applied for t > A ~ L ,  where A h  > Ati + At,  (i.e. no 
nonminimum phase time delay is necessary). Intuitively, the reason why the same 
stability criterion can be applied to a different point on the vehicle is as follows: the 
velocity, pitch rate, and attitude variables are effectively the same; the normal 
acceleration is different (as is the flight path), but the achievable margins are 
effectively the same since the additional contribution due to w is negligible at the 
angle of attack limits; finally, the weightings in the Lyapunov function only depend 
on these margins and the fixed bounds of the controllability and target envelopes. 

"TO first order, equation (8. 12b) can be written as % % 'Y + ~ w / V ,  with first derivative qp 
given approximately by, 

;YPx;Y+tpw/v 

Row, assuming (as in Chapter 7) that the largest normal accelerations are obtained at the 
maximum and minimum admissible angles of attack, then at these limits the acceleration caused 

by the term &' is negligible compared to the normal acceleration due to lift. Therefore, the . +/- . +/- . +/- 
achievable acceleration margin is rpmarg kz Ymarg, since the margins rmarg were derived 
under the same assumptions. 
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In conclusion, the efficiency of the RIFC control algorithm can be significantly 

improved by making a modification to the cost function such that the tracking 
performance is optimized for the nose of the vehicle rather than the center of mass. 

This change of output variables eliminates the nonminimum phase behavior and 
prevents the A* procedure from exploring in inappropriate directions during the 
initial stages of the search. 

8.1.3 ENHANCED SEARCH STRATEGIES 

In this section, several possible enhancements to the RIFC algorithm are 

proposed for improving the performance of the search. Since the number of 

candidate trajectories that can be explored in a given time is a fixed quantity (that 

depends only upon the capabilities of the flight computer), the strategies presented 
here are aimed at finding the best possible solution in the least amount of time. In 

the following, it is assumed that for the real flight control problem there are 
actually many possible solutions that are acceptable.20 Therefore, it may be 

advantageous to sacrifice some degree of optimality in order to find viable solutions 

more quickly. 

* 
Suboptimal Search A, 

The A: algorithm is a variation of the A* procedure in which optimality can 

be traded for search performance in a controllable fashion. It is based on the fact 

that the A* algorithm typically wastes much of its effort deciding among nearly 
equivalent solutions. This property is overcome in the A: approach by requiring a 

minimum cost improvement (c) before the search is forced to jump to alternative 

branches of the graph. Otherwise it probes to deeper levels of the tree by choosing 

one of the locally generated nodes for expansion. A detailed description is given in 
section 6.2.5. 

2 0 ~ h a t  is, there exists a reasonably large set of control input histories corresponding to 
trajectories that converge to the target envelope while observing the constraints. 
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To use this method, the node selection rule is modified, and a value for E must 
be chosen. Instead of selecting nodes for expansion from the set of all OPEN nodes, 
the algorithm first compares the cost of the best LOCAL node21 (d)  to the best 
OPEN node ( d). If the difference is significant, 

then the best OPEN node is explored. Otherwise, the best LOCAL node is used for 
the next expansion.22 

The value of c determines the fractional difference between the final solution 
found using A: and the cost of the optimal solution. This property is guaranteed by 

Theorem 6.13, which states that the A: d g o r i t h  will converge to a suboptimal 

path costing no more than (I+€) times the optimal cost, f(T) 5 {l+t) C'. 

Unfortunately, there is no way to compute, a priori, the exact value of E 

required in order to limit the search to a given fraction of the total number of nodes. 
Therefore, an acceptable balance between search performance and the optimality of 
the solutions may have to be determined empirically through repetitive simulation 
with different values of e. 

Hybrid Search 

Another method of guiding the search to reach goal level depths more quickly 
is to combine best- and depth-first search decisions in stages throughout the 
solution graph. This approach forces the search to explore nodes from the LOCAL 
group for several intervals in a row, before another best-first cycle is executed using 

the best node from OPEN. The advantage of this approach is that the bias of the 
search towards breadth and depth can be easily controlled without affecting the 

'%he LOCAL group is defined in section 6. 2. 5 as the set of all  nodes n' generated from the - * 
last expansion of a node n . 
" ~ o t e  that the terminology of OPEN and CLOSED sets of nodes can stil l  be used in conjuction 
with the new node storage grid defined in section 8. 1. L OPEI is stil l  the set of expanded 
(offspring) nodes, and CLOSED is the set of explored (parent) nodes. 
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convergence properties of the A* algorithm. Depending on the nature of the 
problem, and the choice of a bestldepth interval parameter (BD), the search could 
potentially find viable solutions almost immediately. 

The search strategy in the RIFC controller can also perform BD depth-first 
expansions in sequence, and then select the next node for exploration based on the 
A: method. If the parameter BD = 1 this combination reduces to the A: 

algorithm, and if BD = bax/At, the search explores every node it selects to deep 
enough levels that possible solution trajectories might emerge after only BD 
expansions.23 This is at the risk, however, of spending too much time in local 
regions of the graph. The best choice for the BD parameter, as with the r in A:, 

would have to be determined through simulation experience. 

The fact that this hybrid search strategy can be used without affecting the 
convergence properties of the A* algorithm can be understood as follows. If for each 
depth-first expansion, all of the LOCAL nodes are added to the set OPEN, then the 
effect of the depth-first excursions is only to add more nodes to OPEN between 
each best-first pass. The depth-first component of the search acts only as an 
interruption to the normal A* procedure, except that it increases the number of 
candidate trajectories. 

Cost Bounded Paths 

A final technique for improving the efficiency of the A* search is to upper 
bound the allowable cost of solution trajectories in cases when such a bound is 
known. For the AHSV tracking problem, estimating a useful upper bound to the 
cost function would be difficult a priori. However, during the search process, as 
soon as any trajectory that meets the constraints and terminal conditions is found, 
it is automatically an upper bound to the optimal solution cost (C'). Therefore, in 
the RIFC algorithm, the cost of the best solution (em,) is stored and updated as 

2 3 ~ e c a l l  that Lax  is the maximum required look-ahead time to assure the existence of a solution 
provided the controllability conditions are satisfied (otherwise i t  is just the maximum 
look-ahead time). The interval A& is the control cycle time-step. 
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the search progresses. It is then used as an additional constraint to eliminate other 
candidate trajectories that do not have an estimated total cost lower than this value 

(f(n) < Cma,). Since the function f(n) is optimistic, any trajectories that fail to 
meet this condition cannot possibly improve on the solution that is already known. 
Using this rule, the algorithm can substantially reduce the search space as it works 
to find better trajectories. 

8.1.4 STARTING SOLUTIONS 

The final enhancement to the RIFC algorithm to be discussed is the addition 
of initial solution uguesses~ to the search procedure. The idea is to  start the 
algorithm off with a database of promising OPEN nodes, and perhaps even a 
solution trajectory. 

The first initial guess is an Open Loop Trajectory. The control inputs are held 
constant at their present values, and the trajectory is predicted forward to I$,,, or 
until the target envelope is reached. Clearly if the state errors are within their 
tolerances, or they are already converging toward these values, then this trajectory 
may already be a solution. Even if this trajectory fails, however, it does provide 
some useful information. By simulating the entire open-loop response (to Lax or 

the target state), this trajectory determines an immediate upper bound to the 
acceptable cost of a solution trajectory.24 The value of Cma, (from the previous 
section) can be initialized with the cost of this trajectory, and the cost-bound 
constraint can be used in the search even though no solutions have yet been found. 

The next initial guess is a Local Gradient Trajectory. This path is generated 
by performing a sequence of depth-first expansions all the way to Lax or until the 
target envelope has been reached. In other words, the path with the lowest cost 
from each node expansion is explored to deeper levels. Here too, it is possible that a 
solution is found immediately, and the trajectory provides another (probably better) 

upper bound to the complete trajectory cost C',. 

 his is based on the reasonable assumption that, since the cost function is an integrated 
measure of tracking error, most admissible solutions would have a lower cost than trajectories 
that do not converge to the target envelope. 
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Finally, the most important initial guess is the Previous Optimal Trajectory. 
This path is based on the solution found by the last pass of the RIFC controller. 
Since the algorithm implements only the first time-step of each solution trajectory, 
it is beneficial to preserve the remainder of the solution, and to test its performance 
at the next time-step. Although the system state may not be exactly as predicted 
from the previous control cycle (due to uncertainties and disturbances), the previous 
solution may provide an excellent first guess. Since all the nodes along this path are 
added to the set of OPEN nodes, the search algorithm starts with a candidate 
trajectory that may only require minor modifications. 

All of the above initial guess trajectories are implemented as part of the RIFC 
control algorithm. Each one is used to supplement the search with a number of 
promising candidate nodes, and the best of the three is used to initialize the upper 
bound cost ( Cma,) for solution trajectories. 

8.2 The Complete RIFC Autopilot 

With the enhancements to the fundamental RIFC algorithm described in the 
previous section, it is now possible to present an overview of the complete RIFC 
autopilot. Since the controller software alone involves over 120 subroutines, for 
everything from storing nodes to interpolating coefficients, a detailed discussion of 
the software implementation will be omit ted.25 Instead, this section gives a 
functional description of the autopilot subsystems, and then reviews the higher level 
logic of the controller. 

2 5 ~ h i s  is not to say that the software implementation is without its own difficulties. In fact, 
a significant amount of effort was invested to make the code as efficient as possible. For 
example, many of the required routines are devoted to memory management, including some for 
coding and decoding trajectory information in order to store i t  with fewer bytes. Also1 since 
this work was performed on a serial machine, the speed of many of the core subroutines was of 
major concern. For example, to speed up the node selection algorithm i t  is assisted by another 
routine which keeps up-to-date information on the location of the best nodes in the tree. 
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A functional partition of the RIFC autopilot is shown in Figure 8.5. At 
intervals of the control cycle t imwtep,  the algorithm starts with the actual Vehicle 
State _z(b), and upon completion of one pass of the autopilot it returns a Control 
Solution ~ ( t )  for t E [to,to+&,,,]. The Desired Trajectory =(t) is also specified for 
t E [to,t~+k,,] at the beginning of each control cycle. A Controller Configuration 
block is used to initialize all search variables to the values specified by the user (see 
Chapter 5). Some examples of configuration parameters include the following: the 
admissible trajectory bounds and target ranges, the control actuator rate limits and 
bounds, the constraints, the search control values e and BD, the maximum 
look-ahead time t,,,,,, and the weights for the cost function. The Previous Solution 
block is a time-shifted reproduction of the control input history from the last 
time-step's optimization. One time-step of this trajectory has been used and the 
remainder is now tested as a first guess for the current state. 

As the search explores candidate trajectories, nodes which satisfy all of the 

required conditions are saved in the Node Storage Grid. As explained in section 
8.1.1, the storage location for any node is a function of the state errors of the 
deepest node of any partial trajectory. A separate Node Manager is used to 
maintain an array of pointers to the best nodes in the main storage grid. This list is 
also updated as nodes are stored or eliminated, so that it can always be used by the 
Node Selection block in the decision of which node to explore next. This decision 
includes the considerations of the best- and depth-first strategies as well as the A: 

algorithm. 

The Node Expansion block generates all possible options from any state that is 
being explored. This is done by enumerating all combinations of the quantized 
control inputs. Actually, it is the control rates, and not the values, that are 
quantized and used to generate possible trajectories. This results in continuous 
input histories that are more realistic, and the control state as well as the vehicle 

state can be updated by the Trajectory Integration block. This integration is used 
to predict only one control cycle time-step (A&) forward for each offspring node at 
each expansion. Several integration steps (At) may be used, however, and for each 
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Once each candidate offspring trajectory is integrated forward, the Cost 
Estimation block computes g(n) by adding the one-step cost to the value of g(n) for 
the parent node. The predicted cost to target h(n) and the total estimated 
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trajectory cost f(n) are also computed. Note that these costs are determined for the 
tracking errors of the vehicle nose, as discussed in section 8.1.2, in order to 
circumvent the problems associated with the nonminimum phase behavior. Finally, 
each candidate offspring goes through a Node Evaluation. If it does not verify al l  

constraints and the stability criterion, then it is eliminated. This block also checks 
if the trajectory satisfies the terminal conditions and, therefore, qualifies as a 
solution. 

The logical flow diagram for the complete RIFC algorithm is shown in Figure 

8.6, which includes all of the enhancements introduced in this chapter. Since the 
essence of this figure is the same as that shown in Figure 7.7 (and described in 
section 7.7), only the differences will be mentioned here. 

The first addition is the Starting Solutions block, which generates three full 
trajectories before the search process even begins. The Open Loop, Local Gradient, 
and Previous Optimal trajectories, described in the last section, are integrated 
forward from the initial state until the target envelope or the time tax has been 
reached. All the nodes generated in the process of evaluating these trajectories are 
added to the node storage grid and become candidate partial trajectories for the 
search to explore further. In addition, the cost bound C,,, is initialized to the cost 
of the best of the three trajectories. 

Another change is the selection of the next node for expansion based on the 
best/depth parameter BD and the A: search. If the current pass is to be a 

depth-first cycle the next node is chosen from the last LOCAL group. Otherwise, if 
a significantly better node exists elsewhere (better by 6) then the search selects that 
node for expansion. If not, then the best node in the LOCAL group is used again. 

Since the new node storage grid only affects the way in which the search graph 

is managed in memory, no changes to the flow chart are necessary in this regard. 
The sets OPEN and CLOSED are still used to distinguish between unexplored and 
parent nodes. Finally, the change of variables in the stability criterion and cost 
function is imbedded in the Evaluate and Compute Cost blocks. 
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8.3 Quantization, Bandwidth, and Feedback 

The RIFC autopilot determines its control solution through a search over the 
space of input histories. For a fixed value of t,,,,,, the dimensions of the input space 
are a function of the control cycle timeinterval (A&) and the number of input 

combinations possible at any time (NB). It has also been shown that the partial 
trajectories generated by the search can be stored in a grid with dimensions related 
to the quantization of the state tracking errors. It has not yet been explained, 
however, how the time-step Ak, and the quantization of the states (Ag) and 
controls (Ag), should be selected. The choice is affected by several factors, 
including the maximum look-ahead time, the properties of the disturbances, the 
desired bandwidth, and the limitations of the flight computer. 

One important consideration, which indicates an interrelationship between the 
time-step and quantizations, is associated with the detect ability of different inputs 
in the changes of the state. In other words, if two choices of the quantized inputs do 
not differ enough in their effect on the resulting state (after At, seconds), then the 
quantized states may not register the difference. In this case, the control actions are 
effectively the same, and one of them is redundant. Qualitatively, it is clear that 
this situation can be avoided by making the Ay's larger, the A j s  smaller, or the 
time-step At, longer. An approximate relationship between Ag, Ay, and A& can 
be obtained from the original dynamic equations: 

Assuming the dynamics are time-invariant over the interval Ai&, a first order 
approximation for the change in the state for any input 2 is given by, 

Now, the change in the state due to a change in the control can be defined as, 
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which gives (to first order in B), 

This equation locally relates a change in the control input to its effect on the 
resulting states. Since it is desirable to have each quantized control increment cause 
a noticeable effect on the states, this relationship can be used to choose A_z given 
AB, or vice-versa (for a fixed At) .  For the AHSV problem, including uncertainty 
and the variation of over the admissible state space, equation (8.23) leads to 

the following approximate inequalities: 

where, 

M i n  M i n  M i n  
AZv 5 4 EO+ 2 EL 9 

M i n  M i n  M i n  
"'w s 4 ER+ z ellx g41~ll~ 

M i n  Man M i n  
s 4 En, .z 41~h pen. 

$., 6e, 6v are the throttle, elevon, and thrust vector controls, 
AxCO 8% are the velocity and pitch rate state quantizations, 

and g,,, qW are the velocity and pitch rate components of 9(') 
defined in equations (7.7b) and (7.7f), 

Equations (8.24a-c) assume, as in Chapter 7, that the throttle input is used 
primarily for its control coefficient in the velocity equation, and similarly for the 
elevon and thrust vector controls and the pitch rate equation. Since the controls do 
not directly enter the attitude and flight path equations, some additional 
inequalities are needed to guide the choice of quantization intervals for these states. 
Omitting the details, it is desired to have small enough attitude intervals to register 
discrete changes in w(t), and likewise for flight path angle with attitude changes.26 

161n equations ( 8 .  25a-b), note that 90 = = 0 (see equations 7. 19a-d). 
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Assuming that the control cycle time At, is known, equations (8.24a-c) and 
(8.25a-b) can be used iteratively to determine acceptable quantization intervals for 
the states and the controls. Another constraint that has not been mentioned above 
is that the product (2dy/Axv)~ (26dAz7)- (26JAzU) (26dAx8) must not exceed 

the available computer memory for node storage. In addition, it is required that 
these quantizations be small enough so that it is possible to meet the tolerances of 

the target envelope (i.e. Azy 5 Xy, Ax ( A , Axu 5 Xu, and Axg < A0).27 
7 7 

The choice for the interval At, is a design tradeoff between the bandwidth of 
the RIFC controller and the computational requirements. If numerical effort was 
not a concern, then it would be desirable to recompute an optimal trajectory at 
small enough time intervals to correct for any significant deviations caused by the 
disturbances. This would be ideal, since the RIFC algorithm could act as both a 
feedback controller as well as a feed-forward trajectory planner. This may not be 
possible, however, depending upon the nature of the disturbances and the available 
computational resources. If good disturbance rejection requires a high bandwidth 
for the controller, then choosing a small enough At, might cause the dimensions of 
the search space to become too large for the capabilities of the flight computer. In 
this case, a separate feedback controller would be needed to track a lower bandwidth 
feed-forward trajectory from the RIFC controller. 

The smallest possible t imestep At, is therefore limited by computer, both in 
terms of memory and speed. The quantization of the state tracking error space is 
limited by available memory; and from equations (8.24a-c) and (8.25a-b) this, in 
turn, places a lower bound on A&, since the maximum size of the A g  intervals are 
bounded by constraints. Even if memory was not a factor, then smaller values of 

27~hese  tolerances also indirectly limit the maximum values for the All's, since the controls 
should have enough fidelity to actually reach the target envelope. In practice, this is not a 
problem since the states change more slowly than the controls, and the final state is a function 
of the entire control sequence, which has many possible combinations even for large AB.  
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At, would increase the number of nodes that would have to be explored. Since the 
size of the graph that can be searched in a given amount of time is limited by the 
speed of the computer, this also places a lower bound on A&. 

Another consideration for choosing A h  comes from the time interval A h  in 
the stability criterion. Recall that A h  > Ati+Ah, which is enough time to achieve 
any desired input (given actuator rate limits), and to attain a desired attitude. 

Since the stability criterion applies at intervals of A h ,  it is required that At, A h .  
Smaller values of At, would allow higher fidelity in the controls between A h  
intervals, but would also increase the number of levels required to reach a depth 

of t a x .  

An upper bound for the At, that would allow the RIFC algorithm to operate 
without a separate feedback controller can be obtained from the state equations 

t(t) =f(z,t) +g(ic,,yt) + d(t). The maximum change in the states caused by the 
disturbances (in the time interval At,) can be expressed as, 

where A,, represents the magnitude of the maximum possible disturbances. Now, 

if A a  < Ag, then the disturbances cannot affect the states enough, within the 
interval A t ,  to require additional feedback. This requires, 

Mzn 

which would assure that the control cycle time is fast enough to compensate for the 
disturbances. 

If At, cannot be chosen to satisfy (8.27), (8.24a+), and (8.25a-b) without 
exceeding the limitations of the computer, then the RIFC algorithm should be used 
as a feed-forward trajectory planner with a lower bandwidth, and a separate 
feedback controller should be incorporated. The objective of the feedback would be 

to track the predicted RIFC correction trajectory in the presence of the 
disturbances. Since the RIFC trajectory is designed to observe al l  of the 
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constraints, the feedback mechanism can be operated strictly as a local controller. 

Several control methods would be applicable, such as robust linear control 
techniques, or the nonlinear Sliding Mode approach. With these methods, however, 

the feedback controller design could be a major independent task. 

A far simpler approach would be to use the RIFC algorithm in a single-step 
mode to provide its own feedback controller. That is, while the trajectory planner is 

working on the problem at intervals of A t ,  it could also compute single-step 
optimal feedback controls at much faster intervals (Atf ). This is equivalent to 

doing one extra node expansion per time-step Atf .  The only difference is that the 

possible inputs would be quantized fractions of the A2 intervals used for the 

feed-forward trajectory. The main advantage of this approach is that very little 
additional software is required. Furthermore, the nonlinearities and uncertainty can 

be handled in exactly the same manner as in the feed-forward controller. 

In summary, the selection of A t,, Ag, and A_u is a design choice dependent on 

the properties of the disturbances and the limitations of the fight computer. Since 

the modelling of the disturbances is beyond the scope of this research, and the 

limitations of the computer would be specific to the vehicle, further analysis of the 
tradeoffs between At,, Ag, and A2 are left to the designer. Using the relationships 

derived above, however, the following guidelines can be used to choose appropriate 

values: 

(1) Choose At, based on upper bounds for the disturbances (8.27) 

and the criterion that At, 5 A k. 

(2) Choose the quantizations A_z according to the available memory. 

(3) Choose the quantizations A3 to satisfy equations (8.24a-c). 

(4) Iterate between equations (8.24a-c) and (8.25a-b) searching for 

acceptable values for Ag and Aa. 

( 5 )  If the required Ags are too small, or similarly the A g s  too 

large, then increase At, and go back to (2). 

(6) If the final value of At, does not satisfy (8.27) then a feedback 

controller is required to track the RIFC trajectory. 
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8.4 Parallel Implement ation 

Since the state-of-the-art in massively parallel computers is advancing at  a 
rapid pace, the feasibility of applying numerically intensive algorithms to real-time 
flight control problems is slowly becoming a reality. Current parallel systems 

include as many as 16,000 processors, and are capable of speeds of up to 27,000 

MFLOPS (million floating point operations per second). A variety of computer 

architectures are also available, including, for example, the connectionist type of 
machine which is designed to perform calculations on banks of data in parallel. How 
soon these capabilities will be available for flight qualified hardware is uncertain; at 
the current rate of progress, however, significantly advanced systems may be 
available well before the NASP or other hypersonic vehicles are ready. 

An important advantage of the RIFC trajectory control algorithm is that it is 
highly suitable for parallel implementation. Many of the main functions for 

conducting the search can be performed on multiple nodes simultaneously. In 

addition, there are many subtasks within each function that can be parallelized. 

Figure 8.7 illustrates the concept of a parallel structure for the RIFC 
algorithm. For each node expanded, a bank of node processing units would 
simultaneously explore each of the candidate offspring nodes. Each processor (or 
group of processors) would have parallel access to all of the blocks shown in the 
figure. For each possible control input, the dynamics would be integrated one step 
forward using interpolated values from the coefficient database. Each of the state 
equations can be computed simultaneously, and the coefficients themselves can be 
interpolated in parallel. Each node processor would then evaluate the constraints, 
cost function, and terminal conditions for each partial trajectory. Since there are 
several constraints to evaluate, these tasks can be paallelized as well. The nodes 
that correspond to admissible trajectories could then be saved in the node storage 
grid simultaneously. 28 

28~u l t ip l e  attempts to address the same grid location could be handled by some priority scheme. 
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Figure 8.7: Parallel Implementation of the RlFC Algorithm 
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Also shown in Figure 8.7 is a separate node memory management block which 
could maintain an up-to-date list of the locations of the most promising nodes for 
further exploration. All operations related to memory management could be 
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Finally, if enough processors are available, it would also be possible to perform low 

level arithmetic tasks in a parallel fashion (as would be true of any algorithm). 
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procedures given the same amount of information).aQ In general, however, there is 
no a priori means of determining how many nodes must be explored before a 
solution is found. From Theorem 6.12, it is known that the A* algorithm will 

expand every node which satisfies the condition, 

Without knowing C' in advance, and without specific information that makes it 

possible to determine which or how many nodes fail to meet (8.28), the only upper 

bound on the number of explored nodes is that which would correspond to a 
breadth-first search. 

Let Z represent the number of explored nodes. Since A* with any function 

h(n), such that 0 < h(n) < h*(n), would perform better than a breadth-first search 

(i.e. h(n) = O), the expected value of Z is upper bounded by, 

where NB is the branching degree, and N is the depth required to reach solution 
nodes. The right hand side of equation (8.29) is easily derived from equation (8.1) 

for a breadth-first search. 

The minimum number of node explorations using A* occurs when the heuristic 

cost estimate exactly equals the optimal terminating cost (h(n) = h*(n), for all n). 

In this case only nodes along the optimal path are explored and Z = N. Therefore, 

and the actual number of nodes explored will depend on the specific characteristics 
of the function h(n) and the problem domain. 

2 g ~ h i s  applies to the class of procedures which use a terminal cost estimation function h(n) * * 
and are guaranteed to find a solution that is as good as A 's. The A algorithm is also the * 
optimal best-first algorithm that is admissible when h < h . 
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Although equation (8.30) does very little to narrow the range of the expected 
complexity of A*, experience suggests that the A* algorithm typically explores only 

a small fraction of the total number of possible nodes. One approach for 
characterizing the search complexity is to use a probabilistic model of the likelihood 

that any particular node survives to be expanded by the A* search. In this model 
the values of h(n) are assumed to be independent random variables having some 

probability distribution over the range h(n) E [0, h * ( a  A survival rate (4) is 

defined to represent the probability that a particular node satisfies equation (8.28), 

in which case it would be expanded.30 Based on these assumptions, a formula for 

the expected number of node expansions by A* is given in reference [Peal] as, 

This expression is derived by simply examining the expected number of offspring 
nodes that are generated by each off-course subtree of the overall graph. The first 

term (N) is the optimal path. The second term sums over the N non-optimal 

branches at  each node along the optimal path, and counts up the expected number 

of surviving nodes for each subsequent expansion. If the survival rates are assumed 
to be the same for all nodes in the entire graph, equation (8.31) can be reduced to 

the following expression: 

As an example consider the case for which the survival rate is 1/2, that is each 

node has an even probability of satisfying f(n) < C'. Comparing equation (8.32) to 

equation (8.29) a savings of a factor of 1/512 (in general d-N)  is realized using A* 
for a problem with only 10 levels (N = 10). For the AHSV flight control problem, 
this savings is further augmented by the state and control constraints, as well as the 

Lyapunov stability criterion, since these factors also reduce the probability that a 

3 0 ~ h e  survival rate would of course be lower once constraints are included in the problem. 
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node survives for later exploration. The A: search has a similar effect, since the 

condition for node survival becomes f(n). ( l + r )  < C', which is more difficult to 
meet. 

Unfortunately, although it suggests the potential for good performance, the 
probabilistic model above cannot guarantee an improved upper bound to the 
required number of node expansions by A* without knowledge of the actual survival 
rates; and these will depend on the accuracy of the heuristic function h(n) and the 
characteristics of the problem domain. 

Fortunately, a significantly reduced upper bound is possible as a result of the 
state space quantization and node storage grid defined in this Chapter. In section 
8.1.1 it was shown that re-expansion of nodes in the grid is never required due to 
the fact that the heuristic cost estimate h(n) is monotonic. Therefore, the 

maximum number of nodes expanded by the search cannot exceed the number of 
nodes in the grid. Since this number is determined by the quantization of the state 
space, and not the branching degree of the input space, it is typically much smaller 
than the limits obtained using the A* complexity formulas already given. 

For example, consider the case N = 10, NB = 100, q = 1/2, and a node storage 
grid with 20 divisions in each state error. Equation (8.32) gives E{ Z ) = 9.76~1016 
nodes, but it is known that no more than 160,000 nodes can be expanded since this 
is the maximum number in the grid. Clearly, for the approach taken here, the 
dimensions of the grid will usually determine the lowest upper bound. Experience 
shows, however, that even this number is very conservative. In Chapter 9 it is seen 
that most solution trajectories are found with only a few hundred node explorations. 
Even for the most difficult cases, optimal solutions were found in less than 2000 
node expansions. 

An estimate of the computational requirements for the RIFC algorithm can be 
obtained by decomposing the search procedure into its lower level functions and 
counting the number of operations required to evaluate each node. Since the actual 
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calculations used to process any given node depend on the outcome of many tests 

(e.g. whether or not the constraints are satisfied), in each case the most 

(comput ationally) expensive possibility is always assumed, and the results below are 

therefore conservative. In addition, since there are many auxilliary variables and 

support routines that are not specifically involved in the evaluation of nodes (e.g. 

keeping track of the location and order of best nodes), a conservative computational 

overhead will also be assumed. 

Referring back to Figure 8.6, the RIFC algorithm cam be divided into 4 levels 
of computation according to the number of loops in which a particular section of 

code is imbedded. At the highest level, the software related to initialization and 
solution implementation is only executed once per control cycle. These routines 

(which include the blocks labelled Initialize, Starting Solutions, Trace, and 

Implement) comprise only a very small fraction of the required calculations. At the 

next level is the logic used for node selection and expansion. These routines are 

called for each cycle of the A* search. Included in this category is the regeneration 
of the state and control history leading to the node that is being further explored. 
Functions at the third level are repeated for each offspring node. This is the main 
body of the search and it includes the blocks labelled Cycle Stack, Evaluate, 
Compute Cost, Eliminate, Update, and Adjust. The Integrate and Interpolate 
blocks are considered to be at a fourth level, since these routines are repeated for 

each of the multiple integration steps used to predict forward along each partial 

trajectory . 

Using NI to represent the number of integration steps per control step 
(NI = A&/At), Table 8.1 summarizes the computational requirements (in FLOPS) 
for each level described above.31 

31~ecall  that N = Maximum search depth, NB = Branching degree, and = lumber of nodes 
explored. 
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Level 1: I n i t i a l i z e  1058 
Star t ing Solutions 3. (238+N- (50+2950- NI)) 
Trace No (56+2950- NI) 
Implement 48 

Level 2: Node Select ion 220- 2 
Regenerating State N* (50+2950 NI) - Z 
Node Expansion (326+4* NB) = Z 

Level 3: Cycle Stack ~ - N B * Z  
Evaluate 238. NB. Z 
Compute Cost (80+136- N)-NB-Z 
Store/Eliminate 370. NB-Z 

: 

Level 4: Integration 8 1 4 * N l * N ~ - Z  
Interpolation 2136- NI . N B * ~  

Table 8.1: Computational Requirements of the RlFC Algorithm 

Combining these results, and allowing for an additional 20 percent of overhead 
software, gives the following expression for the maximum number of operations 
required: 

For example, consider the case with 100 possible control actions at each state 
(NB), 10 integration steps for each control step (A$), and a maximum depth of 20 
steps ahead (N). For this problem, approximately 4.5 MFLOPS are required for 
each node expansion. A parallel computer with 100 (NB) processors running at 100 
MFLOPS would be capable of performing over 2000 node expansions per second. 
Based on the results in the next Chapter, this would typically be adequate 

performance to obtain optimal solutions on-line. 



Chapter 9 

Results 

The purpose of this chapter is to demonstrate the performance of the RIFC 
algorithm through a variety of flight experiments. First, however, the severity of 
the system nonlinearities is illustrated by examining a linearization of the vehicle 
dynamics. In addition, the limitations of a linear controller design approach are 
demonstrated. The RIFC controller is then evaluated in terms of the number of 

node expansions required for the search to find solutions. The benefits gained from 
each of the enhancements described in Chapter 8 are demonstrated, and the effect of 
including uncertainty in the model is explored. Finally, the performance of the 
RIFC controller is tested in simulated flight, and the results are compared to those 
for the SSOC controller. 

9.1 Vehicle Design 

In order to examine the RIFC algorithm within a consistent framework, a 
representative AHSV configuration is first selected and then used to obtain the 
results presented in this chapter. For this purpose, a design flight condition of 

Mach 10 at 30,000 meters altitude is chosen. This corresponds to one point along a 
trajectory from Earth to orbit which maintains a dynamic pressure of approximately 
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2000 psf.1 For simplicity, a cruise configuration is designed such that i t  is possible 
to maintain a constant attitude and speed at this altitude. An equilibrium flight 
condition is desirable since it will be convenient to examine the optimization 
characteristics of the A* search in the context of a regulation problem. 

The vehicle design (shown graphically in Figure 4.1) is specified by the 
parameter values shown in Table 9.1. This configuration was obtained by iterating 
on the design until the net forces and moments on the vehicle were approximately 
balanced (i.e. zero) for nominal values of the control inputs. 

Vehicle Length 1, = 50.9 m Ramp Angle 2 7 2  = 10.0 . 
Wing Span b = 35.3m Ramp Length2 I f z  = 8.01 m 
Sweep Angle 6 = 61.3 " Nozzle Angle = 25.8 " 
Body Aspect Ratio ktB = 0.17 Nozzle Length l a  = 1 2 . 5 m  
Combustor Width oc = 15.3 m Nozzle Lip Length 11 = 2.50 m 
Combustor Length l c  = 12.0 m In le t  Hei t P h i  = 0.29 m 
Capture Height hc = 5.00 m In le t  Ang e 7 3  = 50.0 ' 
Ramp Angle 1 7 1 = 7.00 " Elevon Length le  = 5.00 m 
Ramp Length 1 I f l  = 18.4 m C . I .  Bias CHb = 0.33 

Design Conditions: Mach 10, H = 30 gm, Angle Of Attack = 2.50 ' 
+ 

Table 9.1 : Representative AHSV Design Specifications 

Once the design is selected, the performance of the scramjet engine (thrust, 
thrust angle, fuel mass flow rate, specific impulse, etc.) is tabulated for off-design 
conditions. This involves cycling through the propulsion model for a sequence of 
Mach numbers, angles of attack, altitudes, throttle settings, and thrust vector 
angles.2 Interpolated values from the tabulated data are used to represent the 
scramjet engine during AHSV flight simulations. 

Next, the controller's model of the dynamics (the coefficient database) is 
constructed by sampling the outputs of the full simulation at another set of state 
sequences. The coefficients (CD, CL, etc., listed in section 4.7) are determined and 

%his is expected to be reasonable for AHSV'S. 

%'he thrust vector angle is modulated using a variable nozzle lip length. 
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stored in a table. In order to develop uncertain models for the controller, the 

coefficients of this table are modified by multiplying each value by a random 
number as follows: GStimate = (1 +bi) GctUal, where bi is a fraction ( ( 6i 1 < Qi < I), 
and the # i ' ~  are the maximum uncertainty for each parameter. The #i's, which can 
be functions of state, are stored along with the coefficients to indicate the accuracy 
of each value. 

Using the vehicle model described above, the nonlinear dynamics have been 
linearized numerically at a number of angles of attack within a few degrees of the 
design flight condition. The results, shown in Figure 9.1, dramatically illustrate the 
sensitivity of the linearized system to changes in attitude. The curves shown 

represent the movement of the phugoid and short period poles as a function of angle 
of attack. Note that only a two degree change in attitude significantly alters the 
dynamic properties of the longitudinal modes. 3 This variation indicates that the 
original system is strongly nonlinear in attitude and cannot be modelled accurately 
by a linear system even for small attitude changes. 

Variation Of Pole Location With Angle Of Attack 

-0.2 -0.1 0 0.1 0.2 

Real 

Figure 9.1 : Sensitivity of the Linearized System t o  Attitude Variations 

3 ~ l s o  note that the short period mode is unstable. 
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Despite the warning evident in Figure 9.1, a linear controller was designed and 

tested for perturbations about the equilibrium flight condition using the linear 
quadratic regulator (LQR) approach [Kwal]. In the LQR design, the state and 
control weighting matrices were carefully chosen such that simulations of the 
linearized system resulted in admissible trajectories without control constraint 
violations for reasonably large initial attitude errors. The LQR feedback gain 
matrix was then tested in the full nonlinear system with an initial attitude error. 
All other states were initially set to the equilibrium values and no disturbances were 
included. 

Preliminary tests with the LQR controller failed, with the vehicle attitude 
rapidly diverging. One problem was that the linearization (2 = A_z + Ba) is a poor 
representation for the effects of large control inputs. In particular the overall 
behavior of the elevon coefficients is not well approximated by a linearization near 
zero deflection angle (as shown in Figure 9.2). Since elevons are the primary 
actuators for attitude control, the controller may require significant elevon 
deflections to stabilize the system (even with small state errors). Taking this into 
consideration, a revised linear model was obtained by using larger control 
perturbations in the calculation of the B matrix. The state and control histories 

which result from a 1 degree initial attitude error are shown in Figure 9.3. This is 
compared with the response to a 1.2 degree initial error shown in Figure 9.4. 

Figures 9.3 and 9.4 serve to demonstrate the difficulty of applying linear 
control methods to the flight control problem of air-breathing hypersonic vehicles. 
For such vehicles, the sensitivity of the dynamics to attitude invalidates the linear 
model for even small perturbations; and the linear controller fails.4 In this 
example, the modelling error in the controls, and the control rate limits, were the 
initial cause for the attitude divergence. Then, once the attitude error became 
significant, these problems were compounded by extensive errors in the A matrix as 
well. Clearly, the addition of disturbances, uncertainty in the nonlinear parameters, 
and a larger (useful) operational envelope make the situation worse. 

4 ~ a i n  scheduling i s  the standard approach for dealing with changing dynamics. However, it 
is not really applicable to this situation1 since attitude is a fast changing state. A controller 
scheduled with attitude would have no guarantees of stability. 
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Elevon Deflection (Degs) 

Figure 9.2: Elevon Control Coefficients vs Deflection Angle 
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Control In~uts  for LQR Controller 

Figure 9.3: LQR State and Control Response t o  a 1.5 Degree Attitude Error 
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Partial State Response of LQR Controller 
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P i p e  9.4: LQR State and Control Response to a 1.7 Degree Attitude Error 
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Optimization Characteristics 

In this section the performance of the RIFC controller is analyzed in terms of 
the search effort required to find short-term solution trajectories. Toward this end, 
15 series of 20 or more optimizations were performed in order to characterize the 
algorithm's performance under different conditions. 

In each test case, the state and control constraints, weights for the cost 
function, control cycle time, quantization of the state space, and target envelope 
remained the same. The cost function weights were chosen, based on the analysis in 
Chapter 7, to  assure that solutions which meet the controllability conditions could 
also satisfy the stability criterion. The stateJcontro1 quantizations, and control 
cycle time, were obtained using the guidelines presented in Chapter 8, which 
balance the memory available with the precision required to identify changes of 
state between time steps and to reach the tolerances specified by the target. The 
initial conditions and fidelity of the controls were allowed to vary between tests.5 
More difficult problems were obtained by choosing initial conditions with larger 
tracking errors. Typically this implies a search to deeper levels in order to reach 
states within the target envelope. 

Given the available resources for this research, the state space was quantized 
into 160,000 nodes and the control cycle time was 0.5 seconds. The controls were 
quantized according to available input rates, and a minimum of 5 and up to 10 
possible rates were used for each control actuator. 

One of the objectives of running several series of tests was to measure the 
effect of using different enhancements to the A* search. The benefits gained 
through use of the stability criterion, nonminimum phase change of variables, A: 

5~ome cases used only two controls, elevons and throttle. Other cases used a higher level of 
control quantization than required by the conditions in Chapter 8. 
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search, and bestldepth interval parameter ( B D )  were explored. The effect of 

uncertainty on the search performance was also examined. 

The results of a RIFC trajectory optimization are now presented as an 
example case. The initial condition is [ V, 7, w, 8] = (3020 m/s,-0.4' ,0.O0 ,2.0'], and 

the desired states change from [3000,0' ,Oo ,P ] to [3020,0.5' ,0' ,2.5" ] over the course 

of 10 seconds. The configuration of the controller is shown in Figure 9.5. Here, the 
control limits and rates, admissible states, targets, and weights are specified. For 

the example, nonminimum phase compensation (i.e. the change of variables) is used, 
the stability criterion is applied at intervals of 1.0 second with a required 
convergence of 10 percent, 6 = 0.1, and BD = 1. No parametric uncertainty is 

included in this example, and the search is configured to continue until the optimal 
solution is found. 

Figure 9.5: RIFC Configuration Panel - Settings for Example Case 
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A view of the four dimensional search in the state space grid is shown in 
Figure 9.6. These displays identify nodes which have been expanded by the search. 
The first display shows the velocity and flight path errors, while the second shows 
attitude and pitch rate errors. There is not a oneto-one correspondence between 
points on each display, since, for example, several nodes could have the same 
velocity but different attitudes. Therefore the total number of active nodes at any 
time is some umultiplication" of the points on both displays. As the search 
progresses nodes are added or deleted from this grid depending on the results of 

exploring different paths. The view in Figure 9.6 represents the final state of the 
search graph when the optimal solution was found. The nodes displayed are either 
states along partial trajectories, or the terminal states of these trajectories. The 
optimal solution passes through a subset of the nodes shown. 

Finally, Figures 9.7 and 9.8 illustrate the optimization results. The control 
input histories and resulting states are shown in Figure 9.7, and the constraints and 
costs are shown in Figure 9.8. The states are seen to converge to their desired 
values after 4.0 seconds, while all constraints are observed. The costs plotted in 
Figure 9.8 represent useful measures of the best trajectory found so far (at depth k), 
as the search progresses: first is the Lyapunov function of the nominal terminal 
state error, 

second is. 
Max 

Q 
for the uncertain cases, and third is the cumulative cost normalized by the depth, 

Max 
~3 = +x z(/jAU-a(jAU 11 

J =1 Q 
Also note that only 177 node expansions were required to find the optimal solution. 
In fact, this was typical, with no case found which exceeded 2000 expansions. 

'Ifote that J1 = J 2  in this example, since no uncertainty is included. 
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Figure 9.6: Expanded Nodes Viewed in the State Error Space 
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Figure 9.7: Control and State Histories for Example Solution Trapctory 
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Figure 9.8: Constraints and Costs for Example Solution Trajectory 
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The remainder of this section is devoted to the examination of search 
performance of the RIFC algorithm. The first property to be examined is the effect 
of the Lyapunov stability criterion on the search. Figure 9.9 presents three graphs 
which show the number of nodes explored before finding the first solution (ZJ, the 
optimal solution (Zo), and then the number of admissible nodes encountered before 

1 1  1 

termination of the search (ZA). The values have been normalized (Z1, Zo, ZA), 
however, so that the values plotted represent the fraction of nodes with the stability 
criterion to nodes without it. Therefore, any value less that 1.0 means that the 
st ability criterion reduced the search effort. 

The results indicate that the stability criterion always has a beneficial effect 
on the search effort required. However, the fraction by which the number of 
explored nodes is reduced is often not very substantial. This is not completely 
unexpected since the A* algorithm is already biased to search in the most promising 
directions first. Trajectories that satisfy the stability criterion will also tend to be 
the ones that have the lowest cumulative costs, and are therefore most likely to be 
selected for expansion by the A* search. Applying the stability criterion as a 
constraint only prevents the search from exploring candidate nodes that look 
promising due to the fact that they have not been explored as deeply as other nodes, 
and because the heuristic cost estimate is optimistic. In fact, the benefit of applying 
the stability criterion would increase as the accuracy of the heuristic estimate 
decreases. 7 

The more significant effect of the stability criterion (seen in Figure 9.9) is to 
decrease the number of admissible nodes. This property is important since i t  means 
that the stability criterion reduces the search space, independent of the ability of A* 
to explore in the right directions. It is this effect that guarantees convergence of the 

algorithm to a solution which is a stabilizing trajectory. The Lyapunov analysis of 
Chapter 7, and the choice of the weights Qi and time step Ah (to assure that a 
certain decrease of the Lyapunov function can be achieved), also assure the 

existence of a solution that converges to the target within a known time ha,. Since 

* 
 his behavior was observed for a few test cases. However, since the A algorithm is biased in 
the same manner even for h = 0, the difference is not significant enough to illustrate it  here. 
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Pigare 9.9: The Effect of the Stability Criterion on Search Effort 
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the convergence rate obtained from Chapter 7 was based on conservative control 
margins, additional tests were performed to assess the effect of using a tighter 
stability criterion (i.e. a faster decrease in L ( g ( t ) - ~ ( t ) ) ) .  These results are also 
shown in Figure 9.9. An improvement in search ef£iciency is achieved, at the risk, 
however, of not finding any solution if the demanded convergence is too strict. 
Through simulated experiments, such as these, an appropriate convergence rate 
could be determined in order to benefit the most from the stability criterion. 

The next property examined is the effect of redefining the variables used in the 
cost function in order to eliminate the nonminimum phase behavior from the system 
outputs. Recall from Chapter 8 that by tracking the motions of some point forward 
of the center of rotation, the nonminimum phase character of the transfer function 
from elevon deflection to flight path angle no longer exists. It was conjectured that 
this change of variables would improve the search efficiency, since it would decrease 
the search effort wasted looking for minimum phase trajectories (with respect to  the 
center of mass). The results are shown in Figure 9.10, which compares the search 
effort in terms of nodes explored and admissible nodes as a function of problem 
difficulty. Larger initial tracking errors typically correspond to more difficult 
problems, and the independent axis is simply the number of admissible nodes 

1 1 1  

encountered divided by 1000.8 As in the previous figure Z1, 20, ZA are the ratios of 
nodes explored for the first solution, optimal solution, and admissible nodes, to their 
corresponding values in the case where no change of variables was used. 

Clearly, the results indicate a significant improvement in search efficiency 
using the change of variables described above. Gains of 10 to 80 percent were 
realized in most cases. Moreover, this improvement reduced the effort required to 
find first solutions as well as optimal solutions. Another interesting observation is 
that the benefits also seem to be greater for more difficult problems. With a few 
exceptions the data tend to exhibit a larger improvement in convergence time when 
the search space was larger. More experience with the algorithm would be needed 
to confirm this behavior. 

 or the case where the search did not use the change of variables. 
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Figure 9.10: The Effect of Changing Variables in the Cost Function 
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In Figure 9.11 the performance of the A: search is compared to A* for a range 

of values for r. In this case several problems were solved using a series of r values in 

order to determine the effect of accepting greater and greater degrees of 

suboptimality. It was suggested in Chapter 8 that larger values of r would guide 

the search to explore deeper levels of the tree sooner, with the result that admissible 

solutions could be discovered more quickly.9 

Although the results demonstrate a significant improvement in search 
performance for a range of e values, note that increasing r does not always translate 

into faster convergence to the first solution. The explanation for this behavior can 
be attributed, in part, to the node storage scheme used by the RIFC algorithm. 
Normally, the utility of a suboptimal search is to avoid wasted effort distinguishing 

between trajectories with similar costs. The quantization of the state space, 
however, has the positive effect that similar trajectories (with similar costs) are 

already grouped together. In this case, the additional benefits of using the 

suboptimal search are diminished, and increasing the value of r is of limited 

advantage. Then, as r continues to increase, it becomes more likely that the search 
will waste time exploring in misguided directions to larger depths. The advantages 

of using A: would be more apparent (for smaller r) if the state space were not 

already quantized. 

Another interesting result is that the effort required to reach optimal solutions 

did not appear to increase as r became large.10 This might simply have occurred 

because the particular cases chosen happened to find the optimal solution along 

depth excursions encouraged by the E search. More difficult problems with less 
favorable initial conditions could very well contradict this behavior. 

'llote: For convenience, the r parameter used here is not exactly the same as described in 

Chapter 8. Instead of using the condition CL* > (I+€) C* to decide if the best local or 

global node should be expanded (see equation 8. 17)) the condition CL*(I-~) > C* is used 

instead. In this case r is in the range r E [O, 11 rather than 6 E [o, w]. 
l00ne might expect 20 to increase with increasing since more search effort would be 
wasted exploring deeper in wrong directions. 
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The final enhancement to the RIFC algorithm is the hybrid best /depth search 
which requires each node to be explored locally to a predetermined depth before 
performing the next best-first expansion. Several cases were tested with a series of 
values for the BD parameter (see section 8.1.3) ranging from 1 to 5 levels. The 

/ I /  

results are presented in Figure 9.12. As in the previous cases Z1, Zo, ZA represent 
ratios of the node counts with and without the BD search option. 

Based on the data in these plots, it is evident that the BD parameter can 
either increase or decrease the search efficiency. In the examples tested it was more 
likely to help. It seems, however, that the benefit depends on whether or not the 
search happens to encounter solutions early. If local gradients are likely to lead to 
admissible solution trajectories then the search performs well. Obviously, cases 
were found which took longer because the local gradients did not lead to solutions. 
The properties of the BD search would probably also have been more favorable if 
the nodes were not stored in a quantized state space. In that case, the A* search 
would have wasted more time deciding between similar paths, and the BD search 
would force it to look deeper. 

The effect of model uncertainty on the performance of the RIFC algorithm is 
now examined. With uncertainty in the coefficients, the search attempts to 
minimize the worst-case integrated tracking error. Admissible trajectories are 
required to satisfy the constraints and the stability criterion both nominally and in 
the worst-case sense. For simplicity the uncertainty in each of 15 coefficients was 
taken to be the same fractionll, and this fraction was increased until no trajectory 
could guarantee robust convergence in the tracking error. The results axe shown in 

/ 

Figure 9.13 for the same parameters that have been used in the previous figures (21, 
I I  

20, ZA). The second graph in the figure depicts the same results with the robust 
stability criterion removed. That is, the worst4ase trajectories are required to be 
admissible, but they are not constrained to satisfy the Lyapunov convergence rate. 

l1lctually1 the drag and horizontal thrust coefficients (CD and a v )  are treated differently 
because they appear in the dynamic equations as a difference between two large quantities. The 
fractional uncertainty is applied to the difference C D - ~ ~ V ,  rather than to each separatelyl 
since otherwise the velocity error constraints are violated by a l l  worst-case trajectories for 
relatively small uncertainties ('''woo). 
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Search Performance In The Presence Of Uncertainty 

Coefficient Uncertainty 

Search Performance without Robust Stability Criterion 

Coefficient Uncertainty 

Pigare 9.13: The Effect of Uncertainty on Search Performance 
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Clearly indicated by Figure 9.13 is that uncertainty decreases the number of 
admissible nodes in the search space. Greater degrees of uncertainty make it more 
difficult for candidate trajectories to satisfy all conditions for both nominal and 
worst-case histories. This, in fact, improves the search efficiency, since fewer nodes 
are available for exploration. Once the uncertainty is large enough, however, all 

trajectories lead to violations in the worst-case and the search fails. This occurred 
at an uncertainty of approximately 11 % for all coefficients in the first graph. 

Since it is desirable for the search to return its best solution, even if it is not 
robust to the current levels of uncertainty, the actual RIFC controller does not 
actually truncate nodes which fail the robust stability criterion. If a robust solution 
is found that satisfies this criterion, then it can only be superceded by another such 
solution with a lower worst-case cost. Otherwise, the best solution that does not 
meet this condition is returned.12 

The second graph in Figure 9.13 illustrates the search performance under the 
relaxed stability criterion. Solutions were found for uncertainties as high as 17 % on 
all coefficients. These solutions meet all constraints nominally and in the 
worst-case, but only satisfy the stability criterion for nominal trajectories. 

One noteworthy characteristic, not shown in these figures, is that as the 
uncertainty increases, the depth to which the search pursues candidate trajectories 
tends to decrease. Whereas solutions found for 1 % uncertainty may have been 5 

second trajectories, those for 10 % uncertainty were only 0.5 second solutions. This 
property was discussed in Chapter 7 and was the reason for introducing the second 
set of terminal conditions (see equations 7.137). As the uncertainty increases, the 
ability of the search to look further ahead in time decreases, and the RIFC 
algorithm approaches the single-step optimal controller in behavior. 

As a final illustration of the effect of uncertainty on the algorithm, the ability 
of the controller to bias its solution towards less uncertain control actions is 

I 2 ~ h e  same hierarchy is used for the constraints. A solution will be allowed to violate the 
constraints in the worst-case, if no other solution can satisfy these constraints. 
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Figure 9.14: Search Bias Towards Less Uncertain Controls - Case 1 
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Figure 9.15: Search Bias Towards Less Uncertain Controls - Case 2 
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demonstrated. Figure 9.14 shows an example case with no uncertainty in the 
control co&cients. Figure 9.15 shows exactly the same case with an exaggerated 
degree of uncertainty in the thrust vector control (100 %). Notice that in the 
second case the controller chooses a solution that completely avoids the use of the 
thrust vector input. In the same manner, the minimax nature of the RIFC 
optimization can account for uncertainty which changes with the state or control 

values. 

9.3 Flight Test Results 

In ' this section the performance of the RIFC controller is demonstrated in 
simulated flight. Four example cases are presented which illustrate the algorithm's 
capabilities and its superiority to the s i n g l ~ t e p  optimal controller. 

As explained in Chapter 3, the SSOC approach was used for comparison 
because it is the most compatible existing algorithm applicable to the same kinds of 
problems. The SSOC algorithm is based on the idea that, for optimal control 
problems that are too difficult to solve in real-time, the optimal solution might be 
well approximated by a step-wise optimal trajectory. In effect, the terminal time is 
assumed to be only one time-step ahead, and the inputs are chosen to minimize the 
single-step cost function. This optimization is then repeated for each t i m ~ t e p .  
Clearly, the RIFC controller can be thought of as an extension of the SSOC method 
with the additional ability to look further ahead in time to verify its single-step 
decision. Both algorithms can account for nonlinearities, constraints, and 
uncertainties in the same manner. For a detailed discussion of the SSOC algorithm 
see reference [Flol] . 

In the first example, the SSOC and FUFC controllers are given the task of 
correcting an initial tracking error. In this case, each controller has a perfect model 
of the vehicle, and no external disturbances are included. Figures 9.16 and 9.17 

show the results for the SSOC and RIFC controllers, respectively. Both controllers 
are seen to smoothly reduce the velocity and flight path angle errors. Notice, 
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Figure 9.16: Successful Initial Condition Response of SSOC Controller - Case 1 
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Figure 9.17: Successful Initial Condition Response o f  RIFC Controller - Case 1 
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however, that the RIFC controller found a solution which converged more quickly 
(2 seconds compared to 2.5 seconds). It is also interesting to note that the overall 
optimal (RIFC) solution was quite different from the SSOC solution in character. 
The pitch rate (and attitude) histories for the two figures are opposite: the SSOC 
trajectory used attitude to obtain positive normal acceleration, while the RIFC 
controller found a solution using the resultant normal force from some combination 
of the controls. 

As in the example above, it was generally found that the SSOC controller can 
perform well for small perturbations about the desired trajectory. It should be 
pointed out that, for the results shown in this section, the SSOC controller was 
given the benefit of the nonminimum phase compensation (change of variables) used 
by the RIFC algorithm. In addition, it was aided by an additional constraint 
intended to prevent attitude violations resulting from high pitch rates. The 
admissible pitch rate was varied from zero at the attitude error limits to its 
maximum value at the desired attitude. This constraint helps to avoid certain 
unrecoverable situations. For consistency, it was also given to the RIFC controller 
for the results in this section. 

To obtain good performance with the SSOC algorithm it was also necessary to 
make some adjustments to the cost function weights. Although the weights chosen 
for the RIFC controller account for the relative importance of errors in each axis, 
the avoidance of constraints is left to the A* search. Using the same weights for the 
SSOC controller was found to result in excessive pitch rates or attitude violations in 
many cases. In contrast, large weights on pitch rate or attitude errors were found to 
allow velocity or flight path errors to diverge. The weights used in the examples of 
this section have been tuned to give good overall tracking performance without 
attitude or rate constraint violations. However, it was only possible to achieve this 
locally. As seen in the next example, once errors in the velocity vector become large 
the SSOC controller runs into difficulties. 

Figure 9.18 shows the SSOC control and state histories for the same 
configuration as in Case 1, but with a larger initial tracking error. With limited 

ability to look ahead (one step is 0.5 seconds), the controller tries too hard to reduce 
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Figure 9.18: Unsuccessful Initial Condition Response of SSOC Controller - Case 2 
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Figure 9.19: Successful Initial Condition Response of RlFC Controller - Case 2 
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velocity and flight path errors resulting in an overshoot in these values. The 
chattering of the elevon input is the result of large pitch rates, which eventually 
cause the constraint violation in w(t) at t = 7.2 seconds. Figure 9.19 shows the 
results for the RIFC controller in the same situation (Case 2). A smooth solution 
trajectory is found which differs very little from the Case 1 solution. 

Case 3 examines the performance of the SSOC and RIFC algorithms in the 
presence of uncertainty and disturbances. An uncertain model for the controller was 
obtained by randomly modifying each of the coefficients by a maximum of 5 

percent,ls and then angle of attack disturbances were introduced (modelled as a 
first-order markov process, a = 0.25 degrees). In Figure 9.20, the SSOC controller 
is seen to roughly maintain a desired flight path angle of 0.5 degrees, and a desired 
attitude of 2.0 degrees. The same is true of the RIFC controller shown in 
Figure 9.21. 

In Case 4, the uncertainty is increased to 7.5 % and the angle of attack 
disturbances are increased to a = 0.5 degrees. Under these circumstances the SSOC 
controller eventually loses control and diverges in attitude (Figure 9.22). The RIFC 
controller is still able to maintain stability (Figure 9.23). 

Although many possible example simulations could be shown, the main 
purpose of these cases was to demonstrate that the RIFC algorithm has a significant 
advantage over the SSOC approach by virtue of its ability to look further ahead. Of 
course, it is more computationally expensive than the SSOC approach. However, 
based on the results in this chapter, the RIFC algorithm is extremely efficient at 
searching the solution space. With optimal trajectories typically found in a matter 
of a few hundred node expansions, and admissible solutions often much faster, this 
method could be used successfully on not-too-distant-future parallel flight 
computers. 

13~xcept for the thrust and drag coefficients, in which case the difference ~ ~ v - C D  was given 
a maximum error of 5 percent. 
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Partial State Response of SSOC Controller 

Figure 9.22: Unsuccessful SSOC Flight with Uncertainty and Disturbances - Case 4 
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Chapter 10 

Conclusion 

10.1 Summary 

The main objective of this thesis has been to address some of the flight control 
problems associated with air-breathing hypersonic vehicles (AHSV). The nonlinear 
nature of the vehicle dynamics, complex constraints, and coef£icient uncertainties 
have motivated the development of a new control approach capable of robust 
real-time short-term trajectory planning. This new method, called Robust 
Intelligent Flight Control (RIFC), achieves stable tracking of a desired trajectory 
through the repetitive solution of a receding-horizon nonlinear optimal control 
problem which includes all constraints and uncertainties. A viable correction 
trajectory is generated, followed for a short interval of time, and then recomputed. 
The flight control approach consists of an enhanced A* optimization technique that 
incorporates a Lyapunov stability criterion in a highly parallelizable algorithm. The 
efficiency of the A* search, and the theoretical guarantees of a Lyapunov approach, 
are both achieved. The analysis and development of the RIFC controller, the 
construction of a realistic hypersonic vehicle simulation, and the evaluation of the 
controller's performance using this simulation test bed, were the primary efforts in 
this research. 
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Many of the challenging characteristics of AHSV's were discussed in 

Chapter 2. Extreme surface temperatures, a chemically reacting ionized flow, 

intense structural loading, and aerodynamic/propulsion interact ions are some of the 

dominant obstacles associated with hypersonic flight. The s i n g l ~ t a g e t o - o r b i t  

objective creates additional difficulties, such as conflicting design objectives for 
different flight regimes, stringent tracking tolerances, complex constraints, and the 
requirement for a multi-mode propulsion system (or multiple engines). In addition, 
since the extreme flight conditions of hypersonic flight cannot be reproduced in 

currently available wind tunnels, much of the vehicle design and evaluation will 

have to be done using numerical flow analysis codes. Although much progress has 

been made, many hypersonic flow phenomena are still not fully understood, such as 
hypersonic boundary-layer transition, turbulence, and combustion flow chemistry. 
To some extent, therefore, it is likely that the validation of these codes will occur in 
actual flight; and the models available to the control system will include some 

degree of uncertainty. 

In Chapter 3, the characteristics and structure of the RIFC controller were 

discussed. One advantage of this approach is that it can directly include all 

nonlinearities, constraints, and uncertainties, in its determination of the best control 

solution. No approximations are required, and it is applicable to the situation 
where a tabulated set of coefficients represent the vehicle model.1 It is also a highly 
parallelizable algorithm, suit able for combining a variety of actuator types, and 

easily reconfigurable (for example, in the presence of actuator failures). Finally, the 

RIFC controller has the additional advantage of being able to choose its control 

solution based on the viability (and optimality) of a full multi-step correcting 
trajectory, thus avoiding future as well as present constraint violations. 

An overview of A* optimization techniques, as well as the fundamentals of 

Lyapunov stability theory, were presented in Chapter 6. The specific theorems and 

properties that are required for the development and analysis of the RIFC controller 

were also presented. The flight control problem was then formally stated in 

'since this model is  not easily inverted, it  presents a problem for most conventional 
control methodologies. 
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Chapter 7 as a receding horizon optimal control problem. The specific form of the 
dynamics, constraints, and uncertainties, as well as the desired trajectory and 
performance objective function were given. This chapter then proceeds to establish 
conditions for which controllability of the vehicle, convergence of the optimization 
algorithm, and stability of the correction trajectory are assured. Robustness of the 
solution to interval bounded parametric uncertainty was achieved through a 
minimax optimization in which the worst+ase cumulative tracking error is 
minimized by the solution trajectory. The analysis of Chapter 7 served to 
demonstrate that the RIFC algorithm can be guaranteed to provide robust tracking 
performance in the presence of uncertainty and constraints, when such a solution 
exists. 

Implementation issues and enhancements to the A* algorithm were addressed 
in Chapter 8. An alternative node storage scheme was developed for which 
convergence of the A* search could be guaranteed within a prescribed memory limit. 
In this structure, nodes are stored in a grid of quantized state tracking errors. Since 
all admissible trajectories are representable on the finite grid, there is never any 
need to unduly truncate viable candidate solutions due to memory limitations. 
Other advantages of this structure include its ability to store partial trajectories in 
a very compact format, and its natural tendency to group together similar 
trajectories (by quantizing the states), thus reducing the required search effort. 
Other enhancements to the A* search include a change of variables to compensate 
for the nonminimum phase system behavior, a suboptimal A: search, and a hybrid 

best /dept h search procedure. Several initial guess trajectories are also tested by the 
RIFC algorithm before a full search is begun. These trajectories may provide 
admissible solutions immediately , depending upon the level of disturbances bet ween 
control cycles. Finally, this chapter assessed the computational requirements of the 
RIFC algorithm, and the feasibility of a parallel implementation was discussed. It 
was shown that a reasonably fast parallel fight computer would be adequate to 
obtain optimal solutions on-line. 

The atmospheric, mass properties, airframe, aerodynamic, and propulsion 
models for simulating an AHSV in hypersonic flight were developed in Chapter 4. 
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These models were designed to work with a parameterized vehicle geometry and 
engine (41 variables and 50 polygonal surfaces), thus enabling the representation of 
a wide range of possible vehicle configurations. The hypersonic aerodynamics model 
is based on a Newtonian flow approximation to obtain pressure coefficients for each 
panel. Oblique shock and expansion fan calculations are used to determine local 
flow properties, which are then used to estimate skin friction coefficients using a flat 
plate analysis. The scramjet propulsion model, which was adapted from reference 
[Renl], performs a complete inlet, combustor, and nozzle analysis to determine 
engine performance for any flight condition. 

In Chapter 9, the performance of the RIFC controller was evaluated using a 
typical AHSV configuration in simulated hypersonic flight. First, the sensitivity of 
a linearization of the system to small attitude variations served to demonstrate the 
severity of nonlinearities in the dynamics; and the limitations of a linear optimal 
control scheme were illustrated. An examination of the optimization characteristics 
of the RIFC algorithm then found that the Lyapunov stability criterion and 
nonminimurn phase compensation (change of variables) had a positive effect on 
search performance. The A: procedure was also shown to reduce the number of 

node expansions required to find admissible solutions, although its benefits were 
limited due to the natural grouping of similar trajectories by the quantization of the 
grid storage structure. The advantages of using a hybrid bestldepth search 
procedure were found to depend on the likelihood that local gradients encountered 
admissible solutions, and any improvements in search performance were not found 
to be consistent. Parametric uncertainty was seen to improve search efficiency due 
to a reduction in the admissible search space. The requirement that solution 
trajectories satisfy the constraints and stability criterion, both nominally and in the 
worst-case sense, was shown to eventually disqualify ad possible solutions once the 
uncertainty reached a high enough level (11% in the example). A relaxation of the 
robust stability criterion made it possible to find more solutions, with even larger 
uncertainties (17% in the example), but without the guarantee of (worst4ase) 
convergence. Finally, the FUFC controller was shown to successfully track a desired 
trajectory in the presence of uncertainty and disturbances. A comparison to the 

performance of a singl~tep-optimal-controller (SSOC) demonstrated that 
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situations could arise in which the SSOC algorithm fails where the RIFC algorithm 

succeeds. 

10.2 Suggestions for Further Research 

The application of the RIFC control approach has been limited in this research 
to the problem of longitudinal control for hypersonic flight. Obvious extensions 
that would be useful include a six degree-of-freedom controller and the possibility 
of using many more actuators. Conceptually, there is no reason that the current 
control scheme cannot be applied directly to the more general problem. Practically, 
however, the required computational effort is exponentially related to the 
dimensions of the input space, and the memory required is exponentially related to 
the dimensions of the state space. Therefore, some means of simplifying the 
problem would be necessary in order to apply this approach more generally. This 
may not be as formidable a problem as it seems, however, since motions in the yaw 
axis direction can be assumed to be negligible (and intolerable) for air-breathing 
hypersonic vehicles.2 Therefore, the only required additional states are roll and 
roll-rate. 

A suggestion for handling many actuators might be to devise a method for 
constructing a map between the true actuators and some pseudo-controls (similar 
to those used in the analysis of Chapter 7), such that the available forces and 
torques (and their rate limits) are computable for any given flight condition 
(including the actuator states). This would limit the number of controls to two 
pairs of force and torque inputs (4 controls), which can then be mapped back into 
actual control values. This mapping could also be used to  make the controllability 
conditions derived in Chapter 7 less conservative. This would make i t  possible to 
guarantee the existence of solutions for a larger tracking error envelope through 
increased acceleration and error-rate margins. 

2~ssuming a separate control loop to maintain a zero sideslip angle 
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An even more efficient node storage scheme would greatly benefit the 

algorithm, since this would reduce the difficulty of dealing with the higher 

dimensionality of more general problems. Although the structure developed in this 
research is very compact, experience has shown that quite often most of the grid is 
empty. Since the grid coordinates were used as a code to determine the node 
number for indirect addressing, it seems difficult to condense this structure any 
further. However, there may be yet another computer programming "trick" that 
can be used. 

In Chapter 8, i t  was shown that the RIFC algorithm can act as both a 
feed-forward and feedback controller if it is executed at a high enough rate to 
compensate for external disturbances. 0 t herwise an inner-loop controller to track 
the RIFC trajectory is required, and this loop is not completely addressed by this 
research. The best design for this controller would depend on the nature of the 
expected disturbances, and since the modelling of disturbances in the hypersonic 
environment is beyond the scope of this research, the existence of an inner-loop 
controller was assumed. It was suggested, however, that the SSOC algorithm was a 
sensible choice for accomplishing this task, since it could account for the 
nonlinearities and constraints in the same manner as in the RIFC controller. 
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