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NOMENCLATURE

the square of a constraint bound

a coefficient in equation (2-6) which can either be identically equal to one for
nonperiodic cases, or equal to the required periodic function for periodic cases

scaling coefficient for the random increment matrix term in equation (2-3)
(Cg = 0.001 for this study)

scaling coefficient for the random increment matrix term in equation (2-6). The
baseline value of Cj selected for this study is 0.2000

scaling coefficient for the random increment matrix term in equation (2-4)

the probability density function Z

the performance index, which is a scalar function of Z(8)

augmented performance index, which is a scalar function of Z(6) and ©

greatest lower bound

higher harmonic control

scalar performance index

that part of the scalar performance index dependent on Z

that part of the scalar performance index dependent on 6

Kalman filter gain vector

number of accelerometers used to measure the vibration (L = 6 for this study)

least upper bound

principal dimension of the Theta-vector equal to 6 for the local model and 7 for the
global model, also the number of inequality constraints

number of blades in the rotor system (N = 4 for this study)

measurement of the Z-Vector during the current cycle. The dimension is (M x M)
for the matrix and (M x M x 2L) for the rank 3 tensor

covariance of the j-th row of the forcing function part of the T-Matrix. The
dimension is (M x M) for the matrix and (M x M x 2L) for the rank 3 tensor

(I x 1) scalar covariance of the measurement noise

external limiting envelope bound for Af

external limiting envelope bound for

F; + Q;. The dimension is (M x M) for the matrix and (M x M x 2L) for the
rank-3 tensor

Rotor Test Apparatus

time expressed in rotor revolutions

plant matrix, quasi-static transfer matrix, T-Matrix. The dimension is 2L x M)
(i.e., 2L x 6) for the local model and (2L x 7) for the global model)

J-th row of the T-Matrix (for j =1, 2, ..., 2L), a row vector with dimension
(1 x M)

estimate of the T-Matrix

Vibration Control system
diagonal (M x M) weighting matrix for the quadratic Z-Vector metric



>0

vi

" time point number (e.g., number of rotor revolutlons)

diagonal (M x M) weighting matrix for the quadratic Aé-Vector term in the
performance index

diagonal (M x M) weighting matrix for the quadratic Theta-Vector term in the
performance index

a vector of the coefficients of the cosine and sine terms of the vibration output
vector, the actual helicopter vibration response Z-Vector defined by equation (2-5).
Z is a vector function of § and, correspondingly, is also written Z(#). The
dimension is (2L x 1)

measured helicopter vibration response Z-Vector defined by equation (2-6)

a slack variable corresponding to an inequality constraint; a vector, Alpha-Vector,
whose elements are the slack variables ,

change in 6 dunng one revolution of the rotor (1 e., , Af = 6; —6;i-1) -

Theta-vector whose elements are the N — 1 the N, and the N+1 harrnomc cosine
and sine Fourier coefficients of the blade pltch control as defined in the rotating
system, and whose last element is identically equal to one for the global model.
The dxmensmn is (M x 1) (i.e., (6 x 1) for the local model and (7 x 1) for the
global model)

augmented Theta-Vector composed of the Theta-Vector and the Alpha-Vector

adjoint coefficient, vector of adjoint coefficients, a Lagranglan multiplier, the adjoint

- vector composed of Lagrangian multipliers; also a parameter used to adjust the
magnitude of the stochastic term relative to the nonstochastic terms in the
performance index and control laws of the stochastic controllers

vector composed of uniform distribution random numbers € [0.0, 1.0]. v has the
same dimension as the Z-Vector

matrix composed of uniform dxstnbunon random numbers € [0.0, 1.0]. £ has the
same dimension as the T-matrix :

phase of the sinusoidal coefficient of the random term in cquanon (2-6) expressed in
a nondimensional fraction of a rotor revolution

penod of the sinusoidal coefficient of the random tenn in cquatnon (2-6) expressed

in rotor revolutions
equality constraint funcnon, a vector composed of equahty constraint functions
inequality constraint function, a vector composed of inequality constraint functions

Superscripts

transposé ofamatrix" S T e

inverse of a matrix " T I
the solution (e.g., the optunal) value of a vanable

SubscriptS" .

T'-Matrix row number (5 =1, 2, ..., 2L), also constraint function index
constraint function and slack variablc index

v
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number of accelerometers used to measure the vibration (L = 6 for this study)
number of inequality constraints

number of blades in the rotor system (N = 4 for this study)

uncontrolled condition (i.e., evaluated for a zero Theta-Vector)
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SUMMARY

A comparison was made of the applicability and suitability of the deterministic controller, the cau-
tious controller, and the dual controller for the reduction of helicopter vibration by using higher harmonic
blade pitch control. A randomly generated linear plant model was assumed and the performance index
was defined to be a quadratic output metric of this linear plant. A computer code, designed to check out
and evaluate these controllers, was implemented and used to accomplish this comparison. The effects of
random measurement noise, the initial estimate of the plant matrix, and the plant matrix propagation rate
were determined for each of the controllers. With few exceptions, the deterministic controller yielded
the greatest vibration reduction (as characterized by the quadratic output metric) and operated with the
greatest reliability. Theoretical limitations of these controllers were defined and appropriate candidate
alternative methods, including one method particularly suitable to the cockpit, were identified.

1 INTRODUCTION

The reduction of rotorcraft vibration and loads is an important means to extend the useful life of
the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using
passive dampers and/or tuned masses, active control has the potential to reduce vibration throughout a
wider flight regime while requiring less additional weight to the alrcraft than would be required when
employing either the passive dampers or the tuned masses.

Davis (ref. 1) investigated the use of the deterministic, cautious, and dual controllers to provide
higher harmonic blade pitch control for the four-bladed H-34 rotor mounted on NASA’s Rotor Test
Apparatus (RTA) (ref. 2). For this investigation, Davis employed a detailed, nonlinear, aeroelastic
helicopter vibration simulation, the G400 computer code (a detailed nonlinear aeroelastic helicopter
vibration simulation, United Technologies Research Center), to determine the RTA vibration response to
the higher harmonic blade pitch control defined by the controller being investigated. Davis concluded
that the deterministic, cautious, and dual controllers provided excellent performance over a wide range
of steady flight conditions for both the global model system and the local model system, and that
there is no apparent advantage to using any particular subject controller or any particular model system
for the conditions which were considered. Davis further concluded that these controllers exhibited
good performance characteristics, when “properly tuned,” for transient cases which result from sudden
changes in thrust. The subject controllers employed two suboptimal methods, internal limiting and
external limiting, to impose constraints on the control vector. Davis concluded that of the two constraint
methods, internal limiting worked best for the deterministic controller.

This document discusses a comparison of the aforementioned controllers for a more general ap-
plication than that considered by Davis; a randomly generated linear plant was employed rather than
Davis’s detailed helicopter simulation. Use of a randomly generated linear plant provides a convenient
and relatively efficient means to evaluate the effectiveness as well as the robustness of the controller
being considered. Care must be exercised, however, in the selection of the governing parameters for
the random models which are employed by this scheme.



2 TECHNICAL CONSIDERATIONS

Helicopter vibration is, in general, a highly nonlinear phenomenon. As in Davis’s investigation
(ref. 1), it is assumed in this study that the relationship between the helicopter’s vibration response (the
Z-Vector) and its higher harmonic blade pitch control (the Theta-Vector) can be adequately modeled
with a quasi-static transfer matrix (the T-Matrix) that linearly relates the two over the feasible range of
control (i.e., the range of interest). This transfer matrix is the helicopter plant matrix for this assumed
hncar model. The objective of the subject controllers of thls mvesnganon (ie., the deterministic, the
trajcctory by defining the optimal control vector, which is, in general, subject to constraints. ,In,thls
case, the state trajectory is the time propagation of the T-Matrix, and the vibration is controlled via the
control vector and is measured at closely spaced, discrete time points along the state trajectory.

2.1 Systems Models

Two principal systems models were considered by Davis, the local and the global models. For

both models it is assumed that, at each of the discrete time points along the state trajectory ‘at which

the control is to be exercised, the relationship between the helicopter’s vibration response and its higher

harmonic blade pitch control can be adequately modeled with a 7-Matrix that linearly relates the two
over the feasible range of control (i.e., the control constraints are satisfied).

2.1.1 Local Model

The local model defines the change in vibration response due to a change in the control vector
between the current time and the previous time; specifically . .

Zi=T(6; — 6;—1) + Z;—1 2-1)
where T e s ranmee R
T plant matrix, quasi-static transfer matrix, T-Matrix; the dimension is (2L x 6)
Z a vector of the coefficients of the cosine and sine terms of the vibration output
vector; the dimension is (2L x 1)
0 a vector whose elements are the N — 1, the N, and the N + 1 harmonic cosine and
sine Fourier coefficients of the blade pitch control as defined in the rotating
system; the dimension is (6 x 1)
i time point number (e.g., number of rotor revolutions)
L number of accelerometers used to measure the vibration (L = 6 for this study)
N number of blades in the rotor system (N = 4 for this study)

The global model dcﬁnes thc v1brat10n responsc due to the current control vector whcrc the response
is measured relative to that for which no control is applied; specifically

Z; =T6; + 2, (2-2)
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which in expanded form is
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where
T augmented plant matrix, augmented quasi-static transfer matrix, augmented
T-Matrix; the last column is the uncontrolled vibration output vector (i.e., the
Z-Vector which corresponds to a zero Theta-Vector); the dimension is (2L x 7)

VA a vector of the coefficients of the cosine and sine terms of the vibration output
vector; the dimension is (2L x 1)
0 a vector whose first six elements are the N — 1, the N, and the N + 1 harmonic

cosine and sine Fourier coefficients of the blade pitch control as defined in the
rotating system, and whose last element is identically equal to one; the dimension
is(7x1)

uncontrolled condition (i.e., evaluated for a zero Theta-Vector)

time point number (e.g., number of rotor revolutions) '

number of accelerometers used to measure the vibration (L = 6 for this study)

number of blades in the rotor system (N = 4 for this study)

Zhs.o

2.2 Plant Model and Propagation

A randomly generated plant model, rather than a detailed helicopter simulation, was assumed for
this study. The randomly generated model offers the advantage of rapid determination of state while
having lower core requirements.

2.2.1 Plant Initialization

The T-Matrix is initialized with randomly selected elements such that the corresponding output
response vector (the Z-Vector) has a norm equal to a specified value. First the initialization procedure
randomly selects the elements of a reference control vector (the Theta-Vector) which has a norm equal
to a specified value. Then the procedure randomly selects the elements of the T-Matrix. Using this
first T-Matrix, the corresponding Z-Vector and its norm are computed. This first value of the Z-Vector
norm is compared with its specified value and is then used to scale the first selected T-Matrix so that
it will yield a Z-Vector with the specified norm.

2.2.2 Initial Estimate of the Plant for the Identification Algorithm
The controller algorithms that Davis studied (ref. 1) required that an initial estimate of the T-Matrix

be provided in order to start the identification process. Accordingly, specification of an initial estimate of
the T-Matrix was required in this comparison study. However, the ability of the identification algorithm



to converge to an acceptable 7-Matrix in a reasonable number of iterations was strongly dependent
on how close the initial estimate was to the actual T-Matrix for the cases which were examined.
The obvious implication is that a priori knowledge of the 7-Matrix is required in order to initiate
the identification process. Such a priori knowledge of the 7-Matrix can be obtained for T-Matrices
computed by a detailed helicopter simulation such as the G400 utilized by Davis. However, when the
initial T-Matrix is randomly defined, as in the cases reported herein, this a priori knowledge of the
T-Matrix does not exist. The initial estimate of the T-Matrix is

where

Cg

T
§

T= T+ Cg€ (2-3)

initial estimate scaling coefficient for the random increment matrix term (The
nominal value of Cp used in this study is 0.001.)

randomly generated reference T-Matrix (actual T-Matnx) Wthh represents the
actual helicopter plani ~~

estimate of the T-Matrix

matrix composed of uniform distribution random numbers € [0.0, 1.0]. £ has the
same dimension as the T -Matrxx

"The numerical values for the elements of 5 are generated thh a random number generator function,
which generates a unique sequence of random numbers associated with a “starting seed” value. A starting
seed value of 10691 was used throughout this study. -

A typical actual T-Matrix (7" in equation (2-3)) evaluated at the beginning of the fourth rotor
revolution is shown below. If Cg has the value of 0.001 (the nominal value used in this study), each
element of the estimated 7-Matrix, T", is within 0.001 of the corresponding element of T'.

0.007993 —0.013754  0.003573 —0.021985 —0.005801 —0.001251 —0.003533
—0.025252 —0.000619 -0.023625 -0.016151 —0.014406 —0.017560  0.003986
—0.021377 -0.002089 0.013464 —0.009670 0.007831 -0.019800 -—0.007464
—0.027889 -—0.004685  0.009947 —0.022052 —0.018997 —0.027528 —0.020086
—0.020592 —0.020647 -—0.015647 0.018364 0.024838 0.015331 0.011077

T = —0.006769  0.023869 —0.007284 0.002757 -0.013934 0.011925 0.015603
- 0.014590  0.024039 -0.000702 —0.004288 0.023183  0.011904 —0.013820

0.002893  0.026490  0.015204 —0.000985 —0.009007 0.007339 —0.004398
—0.005821 —0.003604 -—0.011587 0.018989 0.002882 —0.019509 0.011354

0.018340  0.009994 -—0.014521 -0.020836 0.017659 0.015580 -0.007720

0.016701 —0.020694 —0.026045 —0.008956 —0.029130 0.006915 0.002154

0.008342  0.021497 -0.001494 0.011485 0.001207 -0.027292  0.020534

223 Plant Projﬁgétion

The time history of the heliedpiEf plant (i.e., the time history of the T-Matrix) is the state trajectory
which is of concern in this study. Althougﬁ use of a detailed helicopter simulation is a physically mean-
~ ingful method to propagate the T-Matrix state trajectory, use of a random propagation scheme provides a

‘more difficult test for the controller and has the advantage of computational rapidity with minimal core



requirements. Although several random propagation schemes were developed, the following defined
method was used throughout this study. The reference T-Matrix, which represents the actual helicopter
plant, was propagated in time according to

T;=Tiot + Cpf (2-4)
Cp plant propagation scaling coefficient for the random increment matrix term

T randomly generated reference T-Matrix (actual T-Matrix) which represents the
actual helicopter plant

13 matrix composed of uniform distribution random numbers € [0.0, 1.0]. £ has the
same dimension as the T-Matrix
1 time point number (e.g., number of rotor revolutions)

The numerical values of the T-Matrix elements are generated with a random number generator
function, which generates a unique sequence of random numbers associated with a starting seed value.
The performance index reduction obtainable at the end of the first controlled step is dependent on the
value of this seed, which was arbitrarily selected to be 7391 during the early computational checkout.
For this value, however, the performance index only decreased 19.4% by the end of the first controlled
step for the unconstrained deterministic controller. A larger first-step reduction is necessary to properly
ascertain the effectiveness of the controller being investigated. Accordingly, a seed study was performed
in which various values of the starting seed were tried until one was found which would yield an
acceptable first-step reduction. As a result of this study, a starting seed value of 83298 was selected.
Use of this value resulted in a first-step performance index decrease of 67.0% for the unconstrained
deterministic controller. This value was used throughout the remainder of this study.

2.24 Actual Vibration Response

The actual helicopter vibration response (actual Z-Vector), Z, is determined from the actual
T-Matrix, T, and the current control vector (current Theta-Vector), according to

Z=T68 " (2-5)

where
T randomly generated reference T-Matrix which represents the actual helicopter plant
- VA actual helicopter vibration response Z-Vector defined by equation (2-5)
0 the current and/or most recently defined control Theta-Vector

2.2.5 Measured Vibration Response

The measured vibration response (measured Z-Vector) is the vibration response used by the iden-
tification algorithm to identify the T-Matrix. The measured Z-Vector differs from the actual Z-Vector
in that it includes measurement noise. The measurement noise can be constrained by either constant
bounds or by a sinusoidal envelope as required. The measured Z-Vector is defined according to

Z=2Z(1.0+CpyCcv) (2-6)



where
A measured helicopter vibration response Z-Vector
VA actual helicopter vibration response Z-Vector
v vector composed of uniform distribution random numbers € [0.0, 1.0]. v has the
same dimension as the Z-Vector
Cy  measured response scaling coefficient for the random increment matrix term

c {1.0 ~ ifr>210D+10
¢ cos(360.0%(c +t/7]) if r<1.0D+10 - —
o phase of the sinusoidal coefficient of the random term expressed in a
nondimensional fraction of a rotor revolution
t time expressed in rotor revolutions
T period of the sinusoidal coefficient of the random term expressed in rotor revolutions

This technique for introducing random noise defines the numerical values for the elements of v
using a random number generator function, which generates a unique sequence of random numbers
assocxated with a startmg seed value A startmg seed value of 49377 was used throughout this study

2;3 ‘rGenerélﬂConttrollerADeﬁnition

~ The control acting on the helicopter plant produces a vibration response in accordance with the
models presented in sections 2.2.4 and 2.2.5 figure 1. The objective of the subject controllers of this study
~ is to determine an “opnmal” Theta-Vector throughout the 7-Matrix trajectory and to use it appropnately
to control the plant in such a way that it “minimizes” some scalar measure of the vibration response (the
performance index). The general scheme for the closed-loop vibration control system (VCS) employed
by Davis (ref. 1) and used with the global model for this study is illustrated in figure 2. The general
scheme used with the local model is slightly different than that shown in figure 2. During the operation
of this system, the current Z-Vector is input to the identifier which uses it to estimate the current
T—Matnx The resulting estimate of the T-Matrix is then input to the controller which uses it to define
an “optimal” change to the Theta-Vector. This increment to the Theta-Vector is, in turn, summed with
the previous Theta-Vector to provide an updated control to the plant.

2.3 1 Vibration Minimization as a Trqjectory Optlmal Control Problem

" The VCS operates throughout the tra_)ectory Specifically, the controller is engaged to determine
the optxmal control at closely spaced discrete time points along the state trajectory. The ob)ectwe is
to minimize the performance index as defined at each of these time points. This assumes that the
performance index is dependent only on the currently defined T-Matrix; the currently defined control;
and, in the case of the stochastic controllers, the currently defined covariance tensors that represent the
measurement noise and T-Matrix identification statistics. Analytic solutions to this problem employ
conventional max/min calculus (refs. 3, 4, and 5) rather than Pontryagm s Maximum Pnnc1ple (refs. 6
~and 7) or the calculus of variations (refs. 3 and 6). Pontryagin’s Maximum Pnnc1ple or the calculus of

variations would be requrred if the value of the performance index and/or compllance ‘with the constramts
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Typically, for the helicopter vibration problem, inequality constraints are imposed on the higher
frequency blade pitch motions, blade loads, or other vehicle parameters, in addition to the basic require-
ment to minimize the vibration measure performance index. The standard max/min calculus formulation
provides, however, for the imposition of equality constraints rather than inequality constraints. Equality
constraints are imposed by adjoining a vector of corresponding constraint functions to the performance
index using an adjoint vector. This adjoint vector is composed of a Lagrangian multiplier for each
constraint function. The helicopter vibration reduction problem differs from this standard formulation in
that inequality constraints, rather than equality constraints, are imposed. Consideration of the helicopter
physics, for example, would more likely result in imposing an upper limit on the N per rev blade
pitch angle rather than constraining the N per rev blade pitch angle to be exactly some nonzero value.
This difference in constraint form can, however, be eliminated by a simple conversion of the inequality
constraint functions to corresponding equality constraint functions. This is accomplished by defining a
“slack variable” for each inequality constraint function. Specifically, the helicopter vibration reduction
problem has the form:

Minimize the performance index J = f[Z(6)] (2-7)
subject to inequality constraints Y(0) 20 fork=1,2, ... M (2-8)

Define a slack variable, oy, for each inequality constraint 15 (6), such that
o} =yp0) fork=1,2...M (2-9)
The slack variables are then treated as additional components of the Theta-Vector for the purpose of

deriving necessary conditions for optimality. The Theta-Vector together with the slack variable vector,
the Alpha-Vector, form the augmented Theta-Vector, ©, according to

S
o= ____ (2-10)
b a -l
where
S
[0
o= 2 2-11)
| QA

The equivalent equality constraints, ¢ (6), are defined
or(0) =Yp(@) —a2=0 fork=1,2...,. M (2-12)
Using the slack variables defined by equation (2-9) and the corresponding equivalent equality

constraints defined by equation (2-12), the helicopter vibration reduction problem can now be formulated
in the standard max/min calculus form:



Minimize the performance index J = f[Z(6)] (2-13)
subject to equality constraints $(®)=0 fork=1,2,..., M (2-14)

Necessary conditions for optimality can now be readily expressed using standard max/min calculus.
The augmented performance function F[Z(6), ©] is formed by adjoining the constraint vector ¢ to
the original performance index f[Z(6)] using an adjoint vector, A, whose elements are composed of
Lagrangian multipliers, one for each constraint: -

F|2(6),0] = f[2(8)] + AT¢ (2-15)
where
A )
a=| 2| and ¢ = ¢2 (2-16)
AM oM

Necessary conditions for optimality are obtained by solving the 6 + M simultaneous equations
obtained by setting the first partial of F[Z(6), 8] with respect to the elements of © equal to zero
together with the M constraint equations (eq. (2-14)):

OF

%=0 fOl‘J=1,2,...,6 (2-17)

oF

_—= j = y e M -

aa,- 0 forj=1,2 (2-18)
$;(©) =0 forj=1,2 ... M (2-19)

These 6 + 2M simultaneous equations are, in general, nonlinear.

Up to this point, the performance index and the constraints have been presented in general form.
One commonly used measure of vibration, employed by Davis (ref. 1), is a quadratic metric of the
Z-Vector, ZTWZZ . This metric is appropriate to use as the performance index:

J=f[Z(é)]=ZTWZZ - (2-20)

where L
fl2(8)] performance index
Wz diagonal weighting matrix

It is emphasized that this choice of a performance index is but one of many possibilities. This
performance index is relatively simple, representative of the control objective, and amenable to the
pertinent mathematical derivations.

[l I

R RO R



In general, constraints have to be imposed on the Theta-Vector in order to ensure that the higher
harmonic control (HHC) motion of the blades does not result in excessive blade loads, excessive control
system loads, and/or excessive power requirements. These constraints are inequality constraints and
have the same general form as that defined by equation (2-8). A possible set of constraints can be
defined by imposing a closed bound on the Fourier coefficients for the N~1, N, and N + 1 harmonics
as defined by the components of the Theta-Vector. Specifically

¥1(0) = Ay — (62 +63) > 0 for the (N — 1) harmonic (2-21)
(8) = Ay - (9% + 02) >0 for the (/) harmonic (2-22)
¥3(6) = A3 — (62 +62) > 0 for the (N + 1) harmonic (2-23)

where A;, A;, and A3 are the squares of the respective constraint bounds.

Although this choice of blade pitch constraints is the same as that used by Davis (ref. 1) to define
his external limiting constraints, as used here they serve as an example only. In general, it is necessary
to analyze each particular rotor system to determine the pertinent constraints for that system. In general,
the mathematical form of the blade pitch constraints will differ for different types of rotor systems
(e.g., articulated, teetering, hingeless) and even, possibly, for different rotor systems of the same type.
Certainly in this latter case, the constraint bounds will, in general, differ for different rotor systems.

23.2 Kalman Filter Plant Matrix Identification

The identifier part of the VCS mentioned in section 2.3 employs a Kalman filter to identify the
T-Matrix during each cycle. Equations (2-4) and (2-6) can be rewritten as

[T-Matrix]; = [T-Matrix];_; + [Random AT-Matrix};_; (2-24)
[Measured Z-Vector] = [Actual Z-Vector] + [Random Measurement Noise] (2-25)

where [T'-Matrix] has dimension (2L x M); [Random AT-Matrix], which has dimension (2L x M), is
considered to be a zero mean random sequence forcing function which varies with flight condition; and
[Random Measurement Noise], which has dimension (2L x M), is assumed to be zero mean Gaussian.

The Kalman filter identification scheme used by Davis (ref. 1), and for this study, identifies each
row of the T-Matrix (7} for j = 1, 2, ..., 2L) individually. The principal steps in this Kalman filter
identification scheme are

1. Compute the (M x 1) Kalman filter gain vector K;:
L1}

2-26
R; (2-26)

K;=

where
P is the (M x M) covariance matrix of the T-Matrix row currently being
identified, evaluated after the measurement of the Z-Vector during the

current cycle



@ is the Theta-Vector with dimension (M x 1)

R is the (1 x 1) scalar covariance of the measurement noise

M is the principal dimension of the Theta-Vector; M = 6 for the local model,
M =17 for the global model

¢ time point number (e.g., number of rotor revolutions)

2. Updatelldentxfy the j-th row of the T-Matnx T

A

[T} ], 1= 1517 + Ki{([Measured Z-Vcctor]J)z - 677} (2-27)

where .
T; is the j-th row of the T-Matrix (for j =1, 2, ..., 2L), a row vector with
dimension (1 x M)
L s the number of accelerometers used to measure the vibration (L 6 for this
study)
j s the T-Matrix row number G=1, 2, . 2L:)7

3. Evaluate the (M x M) matrix S, which is the covariance of the T; belng identified, for the

conditions prior to the measurement of the Z-Vector during the current cycle, accordlng to

Si=Pi+Q; @228

where Q is the (M x M) covariance of the Jj-th row of the [Random AT-Matrix] forcing
function whrch is a term in the T being xdentlﬁed

4, Update the (M x M ) matrix P Wthh is thc covanance of the T being identified, for the
conditions after the measurement of the Z-Vector during the current cycle, according to

5;6,6TS; o
Py =8 — it (2-29)
= ! 0,?Si9i+Ri R o

Step 4 completes the Kalman filter identification cycle This process generates (M xM )S, P,and Q
covariance matrices for each (1 x M) row of the T-Matrix. These covariance matrices, grouped according
to type (the 2L S-Matrices, the 2L P-Matrices, and the 2L Q-Matrices), define their corresponding

‘rank three covariance tensors (the S-Tensor, the P-Tensor, and the Q-Tensor). The individual (M X
M) covariance matrices are actually covariance lattices in their corresponding (M x M x 2L) rank
three covariance tensors. Speciﬁcally, the covariance S-Tensor (P-Tensor, Q-Tensor) is 'Eornpé"sed of
T-Matrix. These rank three covariance tensors are requrred to fully describe the statlsncs when the
rows of the T-Matrix have little or no dependency. It was assumed by Davis (ref. 1), and for this
study, that the S, P, and Q covariance matrices, defined dunng the identification of a single row of
the T-Matrix, would suffice for the identification of the other rows of the T-Matrix. This assumption
may be adequate when there is some dependency between the rows of the T-Matrix as would likely
be the case for the helicopter vibration problem. In that case, equations (2-28) and (2-29) need only
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be evaluated once per cycle. These covariance matrices are not, in general, the same for each row of
the T-Matrix. Use of the full rank three S, P, and Q covariance tensors in the T-Matrix identification
procedure simply requires the appropriate dimensioning of the associated S, P, and Q arrays and the
evaluation of equations (2-28) and (2-29) during the identification of each row of the T-Matrix.

2.4 Description of Controllers

The three controllers studied by Davis (ref. 1) were compared using the models presented in
sections 2.1, 2.2, 2.3, and their subsections. Although the real or actual helicopter vibration reduction
problem is as defined by equations (2-8) and (2-9), Davis (ref. 1) and his reference sources solved a
somewhat different problem which, in general, neither minimizes the measure of vibration nor necessarily
satisfies all the constraints. Indeed, the three controllers examined all use an external limiting scheme
to adjust the solution control vector to yield a feasible solution (i.e., a solution which satisfies all the
inequality constraints) in the event that the initial solution control vector results in a violation of one or
more of the inequality constraints. Methodology of this type is usually used when the classical methods
yield a problem which appears to be intractable or unsolvable.

Instead of directly addressing the problem defined by equations (2-7) and (2-8), the following
problem is solved by each of the three subject controllers, at each of the discrete time points along the
T-Matrix trajectory for which the controller is employed:

Minimize J =2TW;Z + 6T Wyb + AT WaeAf + [Stochastic Term if defined] (2-30)

Subject to No constraints for this optimization problem

where

Af=6;—-0;,, (2-31)
In reality, however, constraints are imposed on the solution Theta-Vector after the fact. The optimal
solution Theta-Vector is first determined from necessary conditions for the minimization of J as defined
by equation (2-30). This first-cut optimal solution Theta-Vector is then checked for constraint violations
and is adjusted, as required, to satisfy the constraints. In general, adjustments of this kind to the
optimal solution Theta-Vector drive the solution away from optimality with a corresponding loss in
performance (i.e., an increase in the value of J). When using methodology of this type, it is advisable
to have knowledge of the sensitivity of the performance to optimality. This after-the-fact imposition of
constraints is referred to as “external limiting.”

The motivation for this scheme is the use of the optimization process to prevent the control (and
its rate) from becoming too large while attempting to minimize the vibration measure. The relative
emphasis between the vibration measure and the control values is adjusted through the selection of
the weighting matrices Wz, Wjy, and Wpg. Penalizing the control vector by incorporating it in the
performance index in this manner is referred to as “internal limiting.”

For stochastic controliers a stochastic term, which is a function of the T-Matrix row identification
covariance P-Matrix, is added to the performance index. The principal idea here is to use the already
generated statistical data (i.e., the covariance P-Matrix) to better estimate the solution Theta-Vector by
using the optimization process to drive the covariance P-Matrix toward the zero matrix of the same

11



dimension. The implication is that better estimates of the solution Theta-Vector occur for better estimates
of the T-Matrix. Controller schemes of this type will yield a suboptimal feasible solution if external
limiting is imposed. Furthermore, if the sensitivity of performance to optimality is not too great and
the weighting matrices are reasonable, this feasible suboptimal solution can yield a satisfactory value
of the real part of the performance index (i.e., the ZTW2Z term in equation (2-30)).

Necessary conditions for optiiriaiiiy are obtained by solving the six simultaneous equations resulting
from setting the first partial derivative of J with respect to the Theta-Vector equal to zero:

3 . 5
Foj —0 N for ]—1, 2, .o .,76 o B (2'32)

The external limiting scheme first checks for the constraint violations. These constraints are ex-

pressed as
R, =1/63; 1 +63; < [Ro,maz forj=1,2,3 (2-33)

and

RAGJ- = \/AG%J—I +A0‘22J S [RAOj]maI forj = I’ 2, 3 (2-34)

In the event that the j-th 6 constraint is violated, #,;_; and 8; are adjusted according to

6251 = ([—R‘;‘:_{]o—m) 0251 and 625 = ([R@#) 625 (2-35)
7 2

e i - Dot BLiEX Ol 3EF.am

This process is repeated for the A constraints, which are adjusted in a_siﬁilér manneris recjufred
For example, in the event that the j-th A@ constraint is violated, Afy;_; and Afy; are adjusted
according to - - )

[Rap;lmaz [RAg;Imaz |
Aby;_y = (—R; .Aozj..l and Aby; = _R—ALG_ Aby; . (2-36)
J

The three controllers that Davis (ref. 1) investigated (the deterministic, &ié'é@fidus, and the dual
controllers) were examined and compared as the object of this study. Davis’s description of these
controllers and the equations (ref. 1) is presented again here for the convenience of the reader. -

tic Controller

241 Determinis

' The Wdetemﬁnistié controller has the VCS general sbheme, defined in section 2.3 and figure 2.
The equations, which define the updated theta control vector for both the local and global models, are
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determined by solving the problem defined by equations (2-30) and (2-31). In this case, the performance
index is
J=ZIWzZ; + 6T Wy6; + AT WagA6; (2-37)

Provision is made for internal and external limiting in lieu of formal constraints on the theta control
vector. Internal limiting can be applied via the last two terms in the performance index (eq. (2-37)),
and external limiting can be imposed by the procedure defined by equations (2-33) through (2-36).

The theta control vector is updated according to

6} = D{(TTW3T + Wpg)b;_1 — TTW;Z;_1} for the local model (2-38)
8; = D{Wagbi_1 — TTW; 20} for the global model (2-39)
where
D =[TTW5T + Wy + Wag)™! for both models (2-40)
and
M is the principal dimension of the Theta-Vector and equals either 6 or 7 for the

problems reported herein: M = 6 if the local model is employed, M = 7 if the
global model is employed

Wz is the (M x M) diagonal weighting matrix for the Z-Vector terms

Wy is the (M x M) diagonal weighting matrix for the Theta-Vector terms
Wag is the (M x M) diagonal weighting matrix for the Af-Vector terms

* denotes that this value of 6 is the solution to equation (2-32)

0 denotes the uncontrolled condition (i.e., evaluated for a zero Theta-Vector)
i is the time point number (e.g., number of rotor revolutions)

2.4.2 Stochastic Controllers

The cautious and dual stochastic controllers have the VCS general scheme, defined in section 2.3
and figure 2. The equations, which define the updated theta control vector for both the local and global
models, are determined by solving the problem defined by equations (2-30) and (2-31). The performance
index for the cautious and dual controllers and the theta control vector update equations are defined in
sections 2.4.2.1 and 2.4.2.2, respectively. -

As in the case of the deterministic controller, provision is made for internal and external limiting
in lieu of formal constraints on the theta control vector. Internal limiting can be applied via the second
and third terms in the performance index (eq. (2-37)), and external limiting can be imposed by the
procedure defined by equations (2-33) through (2-36).

24.2.1 Cautious Controller—When the local model is used, the performance index assumed for
the cautious controller is

J = ZTW3Z; + 6TWH; + AT WpeA8; + [Tr(W3)) AT PAY; (2-41)

13



The theta control vector is updated according to

9; = D[(TTWZT + Wag + )\{TT(Wz)}P,')@,'_I - TTWZZi_]] for the local model

where

D= {TTWZT + Wy + Wag + )\{Trt(WZ)}}’,-]'] ~ for the local model

and o i e

is the principal dimension of the Theta Vector equal to 6

TR

(242)

(2-43)

is the (M x M) covariance matrix of the T-Matrix row currently being identified,

evaluated after the measurement of the Z-Vector during the current cycle (see

section 2.3.2)

A adjusts the magnitude of the stochastic term relative to the nonstochastic term in the

control law defined by equations (2-41), (2-42), and (2-43)
* denotes that this value of @ is the solution to equation (2-32)
] is the time point number (e.g., number of rotor revolutions)

When the global model is used, the performance index assumed for the cautious controller is

J = ZIW32Z; + 6TWo; + A6TW AG; + (Tr(Wz))67 Pi#;

(2-44)

Itis convement to partmon the (7 X 7) P-Matnx into. four submatrxces the (6 x 6) PTT submatrix,
the (6 x 1) Prz submatrix, the (1 x 6) P77 submatrix, and the (1 x 1) Pzz submatrix (a scalar).

Specifically,
Prr | Prgz
(6 x 6) E (6x1)
1 d o ——
Pzr | Pzgz
(1x6)i(1x1)
Note that

Pzr=Piz
 The theta control vector for the global model is then 'ﬁ;;&éiéé'dccofding to
6} = D[Wagbi_y — TTWzZo — MTr(Wz)}Prz]  for the global model

D = [TTW3T + Wy + Wpag + MTr(Wz)}Prr]~!  for the global model
zZ 6

M is the principal dimension of the Theta-Vector, equal to 7

0 denotes the uncontrolled condition (i.e., evaluated for a zero Theta-Vector)
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2.4.2.2 Dual Controller—When the local model is used, the performance index assumed for the
dual controller is:

P;_
J = 2T W3 Z; + 6TW,6 + D6TWagA9; — AAGT (’Tl) A6; (2-49)
The theta control vector is updated according to
x T Pi_i T
6* =D [(T WyT + Wap — A {—R—}) 61— T WZZ,-_I] for the local model  (2-50)
where
T P!
D= [T WyT + Wy + Wag — A {—g—}] for the local model  (2-51)
and
M is the principal dimension of the Theta-Vector, equal to 6
P is the (M x M) covariance matrix of the T-Matrix row currently being

identified, evaluated after the measurement of the Z-Vector during the current
cycle (see section 2.3.2)

R is the (1 x 1) scalar covariance of the measurement noise

A is a parameter which is used to adjust the magnitude of the stochastic term
relative to the nonstochastic terms in the control law defined by
equations (2-49), (2-50), and (2-51)

* denotes that this value of # is the solution to equation (2-32)

1 is the time point number (e.g., number of rotor revolutions)

When the global model is used, the performance index assumed for the dual controller is:

J = ZTWzZ; + 6TWeb; + A6TWaeA6; — 26T (%) 6; (2-52)

As in the case of the cautious controller, it is convenient to partitioﬁ the (7 x 7) P-Matrix into
four submatrices: the (6 x 6) Ppy submatrix, (6 x 1) Prz submatrix, the (1 x 6) Pz7 submatrix, and
the (1 X 1) Pzz submatrix (a scalar). The theta control vector for the global model is then updated

according to
6 =D [WMB,-_I —TTWyZy— A (-P—z-z-)] for the global model (2-53)
where
Prr\17}
D= [TTWZT + Wy +Wag— ) (T)] for the global model (2-54)
and

M s the principal dimension of the Theta-Vector, equal to 7
0 denotes the uncontrolled condition (i.e., evaluated for a zero Theta-Vector)
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3 COMPARISON STUDY

The selection and definition of the baseline plant and controller are described in this section, and
then the effects of the initial estimate of the T-Matrix, the plant matrix propagation rate, and the
measurement noise on controller performance are defined.

3.1 Baseline Controller

The models used to initialize and simulate the plant and its propagation, the actual and measured
vibration response, the controllers, and the T-Matrix identification process are defined in section 2.0

and its subsections. In this section, the selection of the important controller constants and the modes of.

operation which establish the baseline controller is described. The deterministic controller was used in
making this selection.

3.1.1 Initial Random Number Generator Seed

In order to evaluate controller performance, it is desirable that the response to the initially computed
control be significantly less than the initial “uncontrolled” condition. (The uncontrolled condition, which
corresponds to a zero theta control vector, exists just prior to engaging the controller to compute the first
nonzero theta control vector.) The random method used to initialize, then to propagate with time, the
numerical values of the T-Matrix elements defines these numerical values from a sequence of random
numbers generated with a random number generator function. A particular starting seed value has a
unique sequence of random numbers associated with it. The performance index reduction obtainable
at the end of the first controlled step (i.c., the initial decrease in response) is highly dependent on
the value of this starting seed. The actual numerical values of this starting seed are not of interest in
reporting the results of this study; however, for convenience in identification, starting seed values are
presented. A starting seed value of 7391 was arbitrarily selected and used for the checkout computations.
The corresponding response for this value, which has an initial decrease of only 19.36%, is shown in
figure 3 for the case where there is no limiting and the T-Matrix is invariant. For all cases investigated,
zero theta control is assumed to the initiation of the fourth revolution, at which time the controller is
engaged. The response to the first computed nonzero theta control vector occurs at the beginning of the
fifth revolution. =~ ==~~~ I D

In a search for a better starting seed (i.e., one which would yield an acceptable initial decrease in
response), 17 different starting seed values were tried (tab. 1). No limiting and an invariant T-Matrix
was assumed for all cases. A starting seed value of 83298 was selected because it yielded the greatest
initial decrease; a 66.96%, or slightly better than three-to-one, first-step reduction of the performance
index. The corresponding response is shown in figure 4.

312 Control Limiting

~ The philbébphy and methodology of control limiting as employed by the subject controllers is
discussed in section 2.4. Recall that (1) internal limiting applies a limiting “pressure” on the theta control
vector applied by adjoining terms containing the theta control vector and its rate to the performance
index that is minimized by the optimization process; (2) external limiting, which is applied after the
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fact, adjusts the theta control vector to the appropriate constraint circle(s), defined by equations (2-33)
and (2-34), in the event that the optimization process yields a theta control vector in violation of a
constraint. The use of both external and internal limiting was examined.

3.1.2.1 External Limiting—External limiting is applied by specifying the values of the least
upper bound (L.u.b.) for the external limiting magnitude constraints ([jo]max in equation (2-33))
and/or for the external limiting rate (or incremental) constraints ([Rag,Jmaz in equation (2-34)). It
is assumed that the values of [Ry.]Jmaz are the same for j = 1, 2, 3, and similarly that the values
of [RAg ]Jmaz are the same for j = 1, 2, 3. Using one rotor revolution as the unit of time, the rate
(or mcremental) constraint functions defined by equation (2-34) are computed using a method that
makes them numerically equivalent to the corresponding magnitude constraint functions defined by
equation (2-33). Because of this computational methodology, when the values of [jo]max are specified
to be the same as the corresponding values of [RAg |maz, the constraints defined by equations (2-33)
and (2-34) are equivalent. Furthermore, when a value of [Rg ]maz is specified to be different from that
of the corresponding value of [RAg,)maz. the constraint correspondmg to the smaller value becomes
active first, thus dominating the external limiting process. Consequently, under these conditions it is
only necessary to specify one of either the magnitude or the rate (or incremental) constraints (i.e., to
define either [Rg ]maz or [Rag.)maz for j = 1, 2, 3) when examining the effect of external limiting.

4 .

Both were examined, however, in order to check out the computational process.

A summary of the effect of the value of [Rg ]maz or [Rag,]maz on the performance index at the
end of the first controlled step (i.e., at the initiation of the ﬁfth revolution) when there is no internal
limiting is presented in table 2, and the response for selected cases is illustrated in figures 5 through
10. The T-Matrix is assumed to be invariant for these cases and hence the lowest possible value of the
performance index J (i.e., the greatest lower bound [g.l.b.]) is invariant to revolution. For this case,
the g.l.b. has the value 0.0005287. If no external limiting applied, or if external limiting constraints
are inactive, the controller will define the Theta-Vector such that its corresponding performance index
has the value of the g.l.b. at the end of the first controlled step. A range of values for [Rg maz
(and cqu1va1ently for [RAg }mez which yield nonsaturated active constraints of interest were 1dent1ﬁed
This range is (1, 40) for both constraints since the unit time is one revolution. The threshold value at
which the constraints become active is 36.91; the constraints are active for values below 36.91. The
constraints become saturated for values below approximately 1. The value of the performance index at
the end of the first controlled step as a function of the constraint limit (i.e., [Rg Jmaz or [RAo Jmaz)
is shown in ﬁgure 11, and the revolution at which steady state is achieved, also as a function of the
constraint limit, is shown in figure 12. It was decided to use [Rg lmaz = 40 and [Rag;lmaz = 10 to
produce a three-per-rev delay to steady state (i.e., steady state is achieved at the initiation of revolution
8) without invoking both constraint limits (ﬁg 12) for the baseline case that will be used as the standard
for comparisons. This baseline case has the same response as that shown in figure 7.

3.1.2.2 Internal Limiting—Internal limiting is applied by specifying values of the diagonal el-
ement of Wy in equation (2-30) (Diag(Wp)) and the diagonal elements of Wxy in equation (2-30)
(Diag(Wag)). The effect of internal limiting was evaluated by varying the values of Diag(Wj) and
Diag(Wag) through several orders of magnitude with no application of external limiting. For this eval-
uation, it was assumed that each of the elements of Diag(Wj) had the same value, and similarly that
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each of the elements of Diag(Wxg) had the same value. The cases which were examined are defined
in table 3, and the response for the selected cases is illustrated in figures 13 through 21.

The first case in this series has no limiting at all, and is provided as a reference for comparison.
The response of the nonaugmented Z-Vector quadratic metric, defined by equation (2-20), is shown in
these figures rather than that of the complete performance index, defined by equation (2-37), since it is
the Z-Vector metric which is the measure of helicopter vibration. For these cases, the T-Matrix was
randomly propagated in time according to the procedure defined in section 2.2.3 and by equation (2-4),
where a value of 0.001 was assumed for the scaling coefficient C'p (See section 3.1.3 for a discussion
of the selection of the value of Cp, and section 2.2.2 for numerical values of the elements of a typical
actual T-Matrix. )

It can be seen from table 3 and ﬁgures 13 through 21 that a change of approximately two orders of
magnitude of the value of either an element of Diag(Wy) or an element of Diag(Wpg) is requlred to go
from the limit saturation condition to the no-limiting condition. The selection of the appropriate values
for an element of Diag(Wj) and an element of Diag(Wag) to sausfy the limiting constraints (;‘e the
conditions required by equations (2-33) and (2-34)) by means of internal hrmtmg, while mmlmlzmg the
Z-Vector metric, is not necessarily a simple matter. Indeed, as was pointed out in section 2.4, external
limiting is provided after the fact as a backup means to assure that the solution is feasible (i.e., the
limiting requirements are satisfied). It was also pointed out in section 2.4 that the problem which is
defined when the Z-Vector metric has internal limiting terms adjoined to it as per equation (2-30) is not
the same problem as minimizing the Z-Vector metric by itself when constramts are imposed on the theta
control vector. This can be illustrated by considering a scalar case (i.e., when T, Z, Z, 8, A6, W,
Wy, and Wy are all scalar). Two of several possible situations are illustrated in figures 22 and 23. In
both of these examples, it is assumed that the performance mdex specified by equatlon (2 30) has the
form

' J=Jz+Jg ' (3-1)
where if
Z=T0+2Zy and Jy = Z?

then Jz and Jg can be expressed

Jz=c(0-PP—y and Jp=y8® (3-2)

, Where @ B, 7, and ¢ ar;ﬂ,%cah; constants.

Constramts on the theta control vector are 1mposed specxﬁcally -

0€[0, Bmaz] | (3-3)

‘For this case, J. Z is the actual measure of the vibration, Jg is the theta control penalty term, and
J is the augmented performance index that the subject controllers seek to minimize. The unconstrained
minimum of Jz, for the case illustrated in figure 22, is assumed to occur at 8 Zmin» Which is within
the constraint limits of equation (3-3). The augmented performance index, which i is the sum of Jz and
Jy, has a minimum which occurs at 8,,;,, which in this case is less than § Zmin and lies within the

constraint limits. The discrepancy in performance between the solutions to the actual problem and the
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augmented problem is the difference between the minimum value of J; and the value of J; which
occurs at fy,;,. The corresponding discrepancy in the optimal values of @ is the difference in value
between 67 . and 6y,

The case depicted in figure 23 is similar to that illustrated in figure 22 except that the unconstrained
minimum of Jz is assumed to occur at a # value which exceeds its upper constraint limit, y4z. In
this case, the minimum feasible value of J; occurs when 6 is on the 6,47 constraint bound. As in the
previous case, the discrepancy in performance between the actual problem and the augmented problem
is the difference between the minimum feasible value J and the value of J 7z which occurs at 0,;,,. In
both cases, the minimum feasible value of Jz (i.e., the actual measure of performance) is less than that
obtained when the theta control penalty term is adjoined to the performance index to form J. For this
reason, it was decided not to apply internal limiting to the remaining cases generated in the comparison
studies.

3.1.3 Plant Matrix Propagation Rate

Several values of C), the random term scaling coefficient of the plant matrix propagation model
described in section 2.2.3 and equation (2-4), were examined to determine a baseline value which would
produce a significant, but not overly exaggerated, random change in the plant matrix over 100 revolu-
tions. A summary of the cases which were examined is presented in table 4, and the T-Matrix time
histories for C, values of 0.0005, 0.001, and 0.002 are shown in figures 24, 25, and 26, respectively.
A value of 0.001 for C) was selected for the baseline controller. This value yields a representative and
reasonable time propagation of the T-Matrix.

3.2 Effect of the Initial Estimate of the 7-Matrix on Controller Performance

The Kalman filter identification scheme, described in section 2.3.2 and used in this study, requires
an initial estimate of the T-Matrix to start the identification algorithm. The ability of the algorithm to
converge to a reasonable, identified T-Matrix greatly depends on the accuracy of this estimate. The
method used to select this estimate is an issue which is separate from the evaluation and comparison
of the three subject controllers. The real issue here is the sensitivity of controller convergence to the
initial estimate. For this reason, this initial estimate was simplified and systematized using the random
procedure defined in section 2.2.2 and by equation (2-3). For convenience, equation (2-3) is shown here
as well as in section 2.2.2. Specifically, the initial estimate of the T-Matrix is

T=T+Cgt (2-3)

where
Cg  initial estimate of the scaling coefficient for the random increment matrix term (The

nominal value of Cg used in this study is 0.001.)
T randomly generated reference T'-Matrix (actual T-Matrix) which represents the
actual helicopter plant
estimate of the T-Matrix
matrix composed of uniform distribution random numbers € [0.0, 1.0). ¢ has the
same dimension as the T-Matrix

™o,
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The numerical values for the elements of ¢ are generated with a random number generator function,
which generates a unique sequence of random numbers associated with a starting seed value. In a manner
similar to that described in section 3.1.1, a starting seed value of 10691 was selected and used throughout
this study.

In a manner similar to that described in section 3.1.3, the values of Cg were examined for the
deterministic controller. A baseline C'g value of 0.001 was selected because that value yielded an initial ;
estimate of the T-Matrix which was nearly as inaccurate as possible while still allowing the identification !
algorithm to reliably converge in a reasonable manner. The principal cases examined are defined in
table 5, and the response for selected cases is illustrated in figures 27 through 31. When the baseline
values of the starting seed and Cr are used for the initial T-Matrix estimate for the deterministic
controller, the response is that shown in figure 27. This is the reference case for the T-Matrix Initial
Estimate Study summarized in table 5.

A sufficiently large value of Cr was selected to ensure that the deterministic controller would not
converge to the response of the baseline case shown in figure 27. This value, Cg = 1.0, was used to
test the cautious and dual controllers to see if their stochastic nature would overcome the effects of a bad
initial estimate of the T-Matrix. Specifically, using Cr = 1.0 to define the initial 7-Matrix estimate,
the adjoint coefficient, A, of the stochastic term in the performance index for both stochastic controllers
was varied parametrically through several orders of magnitude (see table 5) to see if convergence to the
response of the baseline case could be obtained. Figures 32 through 41 show that use of the stochastic
controllers in this manner did not enhance convergence for bad initial estimates of the 7-Matrix. Indeed,

in some cases it made matters worse. Convergence only occurred for the trivial limiting case when
A — 0, or equivalently when the stochastic controllers coalesced with the deterministic controller.

3.3 Effect of the Plant Matrix Propagatlon Rate on Controller Performance

" The' ‘method used to propagate the T-Matnx is descnbed in section 2 2. 3 specxﬁcally by equa-
tion (2-4). For convenience, equation (2-4) is shown here as well as in section 2.2.3. Specifically, the
reference T-Matrrx which represents the actual hehcopter plant was propagated in time accordmg to

| T,-=71-1+7Cp§ o (2-4)

Cp,  plant propagation scaling coefficient for the random increment matrix term
T randomly generated reference T-Matrix (actual T-Matrix) which represents the
actual helicopter plant
3 matrix composed of uniform distribution random numbers € [0.0, 1.0]. £ has the
~ same dimension as the T-Matrix
i time pomt number (e.g., number of rotor revolutwns)

P T F Tommmemi m | A

The numencal values of the T-Matnx elernents are generated w1th a random number generator
function, which generates a unique sequence of random numbers associated with a starting seed value.
As a result of the seed study descnbed in section 3 1.1, a starting seed value of 83298 was selected and
used throughout this study.
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The baseline value of Cy, the random term scaling coefficient in equation (2-4), was selected to be
0.001 to produce a significant, but not over-exaggerated, change in the T-Matrix over 100 revolutions
(section 3.1.3). This case is shown in figure 42. Questions about the ability of the stochastic controllers
to converge to the responses obtained with the deterministic controller motivated investigation of the
effect of the value of C), on this convergence. Parametric values of C), for the deterministic controller
were tested to find values of C, which result in divergence of the T-Matrix. The cases tested are defined
in table 6, and the responses for selected cases are shown in figures 42 through 46. Strong T"-Matrix
divergence occurred for Cp, = 0.0026 (fig. 45), so this value was used when testing the stochastic
controllers for performance enhancement.

In a manner similar to that employed for the T-Matrix Initial Estimate Study, the adjoint coefficient
A of both stochastic controllers was varied parametrically through several orders of magnitude to see if
the stochastic controllers would provide better responses than the deterministic controller, or if, indeed,
they would converge to the response of the reference deterministic controller for which C, = 0.0026.
The cases examined are defined in table 6. In general, the stochastic controllers did not perform as well
as the deterministic controller except for the trivial limiting cases when A — 0, or equivalently when
the stochastic controllers coalesced with the deterministic controller. Selected cases of the cautious and
dual controllers for T-Matrix propagation with C, = 0.0026 are shown in figures 47 through 55.

3.4 Effect of Measurement Noise on Controller Performance

The Z-Vector was the only parameter whose measurement uncertainty was considered. This uncer-
tainty (the “measurement noise™) is modeled in accordance with the procedure defined in section 2.2.5
by equation (2-6). The measurement noise manifests itself either directly or indirectly in two of the
controller computations: (1) identification of the T-Matrix (section 2.3.2, equation (2-27)), and (2) the
performance index (section 2.4, equation (2-30)). The measurement noise is modeled in such a way that
it is (1) random with constant limiting envelopes (“random nonperiodic™), (2) random with sinusoidal
limiting envelopes (“random periodic™), or (3) constant or sinusoidal with no randomness (“nonrandom
constant” or “nonrandom periodic™).

34.1 Random Nonperiodic Measurement Noise

The method used to simulate the measured vibration response is described in section 2.2.5, by
equation (2-6). For convenience, equation (2-6) is shown again here. The measured helicopter vibration
response is defined according to

Z=2(1.0+CpyCcv) (2-6)

where

measured helicopter vibration response Z-Vector

actual helicopter vibration response Z-Vector

vector composed of uniform distribution random numbers € [0 0, 1.0]. v has the
same dimension as the Z-Vector

Cpm  measured response scaling coefficient for the random increment matrix term

c { 1.0 if 7 > 1.0D + 10
¢ €0s(360.0%[c +t/7]) if 7 < 1.0D + 10

T NN
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o phase of the sinusoidal coefficient of the random term expressed in a
nondimensional fraction of a rotor revolution

t time expressed in rotor revolutions

T period of the sinusoidal coefficient of the random term expressed in rotor revolutions

This technique for introducing random noise defines the numerical values for the elements of v
using a random number generator function, which generates a unique sequence of random numbers
associated with a starting seed value. A starting seed value of 49377 was used throughout this study.

The effect of the Z-Vector measurement noise was first investigated for random nonperiodic cases
for the deterministic controller. For these cases Cyy, the scaling coefficient for the measurement noise
term in equation (2-6), was varied parametrically to determine the sensitivity of the response to mea-
surement noise. The cases examined are defined in table 7, and the response for selected cases is shown
in figures 56 through 61. The reference no-noise case (the “0% noise level” case) is obtained when
Cp = 0. This case (fig. 56) serves as a reference for comparison with the other cases described in this
section. The 20% noise level case (fig. 57) is representative of the lower end of normal noise, and the
120% noise level case (fig. 61) is representative of the situation in which the noise overshadows the
Z-Vector itself. - - L -

The stochastic controllers were compared with the deterministic controller for both the 20% and
the 120% noise levels for parametric values of the adjoint coefficient A. As in previous comparisons,
A was varied through several orders of magnitude to see if the stochastic controllers would provide
better responses than the deterministic controller. The cases examined are defined in table 7. In
general, the stochastic controllers did not perform as well as the deterministic controller except for the
trivial limiting cases when A — 0, or equivalently when the stochastic controllers coalesced with the
deterministic controller. Selected cases of both the cautious and dual controllers for 20% and 120%

ical
dimension of the stochastic controllers defined for this study was insufficient for the fully random 7-
Matrix model with independent rows that was used. Either the full covariance tensor should have been
used in the definition of the stochastic controllers, or the rows of the plant model should have had a
sufficient degree of linear dependency so that a single lattice of the covariance tensor would suffice.

noise levels are shown in figures 62 through 79. These results support the contention that the stati

~ 342 Random Periodic Measurement Noise

The effects of random periodic measurement noise were investigated in a manner similar to that
described in section 3.4.1. For these cases, the limiting envelope for the random noise is sinusoidal
with a 20-cycle period (= = 20 revs in equation (2-6)) and a zero phase angle (¢ = 0.0 revs in
equation (2-6)) rather than constant. As in the case of random nonperiodic measurement noise, Cjs
was varied parametrically from 0% noise level to 40% noise level for the deterministic controller, to
determine the sensitivity of the response to measurement noise. The cases examined are defined in
table 8, and the response for selected cases is shown in figures 80, 81, and 82. The 20% noise case
(fig. 81) is representative of the lower end of normal noise. The situation in which the response to the
measurement noise by itself is of the same order of magnitude as the response to the Z-Vector with no
measurement noise was not investigated for random periodic measurement noise cases. -
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The stochastic controllers were compared with the deterministic controller, assuming a 20% noise
level, for parametric values of the adjoint coefficient A\. As in previous comparisons, A was varied
through several orders of magnitude to see if the stochastic controllers would provide a better response
than the deterministic controller. The cases examined are defined in table 8. In general, the stochastic
controllers did not perform as well as the deterministic controller except for the trivial limiting cases
when A — 0, or equivalently when the stochastic controllers coalesced with the deterministic controller.
Selected cases of the cautious and dual controllers with a 20% measurement noise level are shown in
figures 83 through 90. These results also support the contention that the statistical dimension of the
stochastic controllers defined for this study was insufficient for the fully random T-Matrix model with
independent rows that was used. Either the full covariance tensor should have been used in the definition
of the stochastic controllers, or the rows of the plant model should have had a sufficient degree of linear
dependency so that a single lattice of the covariance tensor would suffice.

3.4.3 Nonrandom Periodic Measurement Noise

Finally, the effects of nonrandom periodic measurement noise was investigated in a manner similar
to that used for random periodic measurement noise. For these cases, the limiting envelope is identically
the measurement noise, and is sinusoidal with a 20-cycle period (7 = 20 revs in equation (2-6)) and
a zero phase angle (0 = 0.0 in equation (2-6)). The random vector v in equation (2-6) was set to
be identically equal to 1 which, correspondingly, bypasses the generation of random elements in the
measurement noise. As in the case of random periodic measurement noise, the scaling coefficient C)s
for the measurement noise term in equation (2-6) was varied parametrically from the 0% noise level case
to the 40% noise level case for the deterministic controller, to determine the sensitivity of the response
to measurement noise. The cases examined are defined in table 9, and the response for selected cases
is shown in figures 91, 92, and 93. The 20% noise case (fig. 92)is representative of the lower end of
normal noise. The situation in which the response to the measurement noise by itself is of the same
order of magnitude as the response to the Z-Vector with no measurement noise was not investigated
for nonrandom periodic measurement noise cases.

Even though it was expected that use of a stochastic controller would not have any advantage in
cases having nonrandom noise, the stochastic controllers were compared with the deterministic con-
troller, assuming a 20% noise level, for parametric values of the adjoint coefficient A. As in previous
comparisons, A was varied through several orders of magnitude. The cases examined are defined in
table 9. In general, the stochastic controllers did not perform as well as the deterministic controller ex-
cept for the trivial limiting cases when A — O, or equivalently when the stochastic controllers coalesced
with the deterministic controller. Selected cases of both the cautious and dual controllers with a 20%
measurement noise level are shown in figures 94 through 101.

4 RESULTS

The helicopter vibration reduction capability of two stochastic controllers was evaluated and com-
pared with that of the deterministic controller. The first step was to define a baseline deterministic
controller. The resulting baseline definition is described in sections 3.1 through 3.4 and is characterized
by specific baseline values of parameters in equations (2-3) through (2-6). For convenience these equa-
tions are shown here together with the baseline values of these parameters. The initial estimate of the
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T'-Matrix is defined by
T=T+Cg¢ (2-3)

where B I _
Cg  initial estimate of the scaling coefficient for the random increment matrix term (The
nominal value of Cg used in this study is 0.001.)

T randomly generated reference T-Matrix (actual T-Matrix) which represents the
actual helicopter plant

estimate of the T-Matrix _

matrix composed of uniform distribution random numbers € [0 0,1 .0]. £ has the
same dimension as the T-Matrix. The baseline value of its associated starting seed
for this study is 10691

mong,

The reference T-Matrix, whxch represents the actual hehcopter plant was propagated in time
according to
Ti=T1 4Gk - (2-4)

where -
Cp  plant propagatlon scaling coefficient for the random mcrement matrix term. The
baseline value of C) used in this study is 0.001
T randomly generated reference T-Matrix (actual T-Matnx) which represents the
actual helicopter plant
13 matnxkcomposed of uniform dlstnbutxon random numbers € [0.0, 1.0). £ has the

" same dimension as the T-Matrix. The baseline value of its associated starting seed
used in this study is 83298

1 time point number (e.g., number of rotor revolutions)
The actual helicoprer vibration responseZ is defined according to
Z=T60 (2-5)

where

T randon}ly generated reference T-Matnx which represents the actual helicopter plant

VA actual helicopter vibration response Z-Vector defined by equation (2-5)
6 the current and/or most recently defined control Theta-Vector

‘ The measured he}xgopter v1bratxon response is deﬁned according to
Z= Z(I.O + CMC'CV) - (2-6)

measured hehcopter vibration response Z-Vector
actual helicopter vibration response Z-Vector -
vector composed of umform distribution random numbers € [0.0, 1.0]. v has the
" 'same dimension as the Z-Vector. The baseline value of its associated starting seed

used in thxs study is 49377 ..

NN

"€y measured response scang coefficient forft‘he random increment matrix term. (The
baseline value of Cjs used in this study is 0.200.)
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c 1.0 if 7> 1.0D + 10
¢ c0s(360.0%[c +1/7]) if T < 1.0D + 10

o phase of the sinusoidal coefficient of the random term expressed in a
nondimensional fraction of a rotor revolution

t time expressed in rotor revolutions

T period of the sinusoidal coefficient of the random term expressed in rotor revolutions

The next step was to define the reference deterministic controllers to be used as the basis of
comparison for the investigations of the effects of the initial estimate of the 7-Matrix (sec. 3.2), the
T-Matrix propagation rate (sec. 3.3), and measurement noise (sec. 3.4). To be able to make these
definitions, however, it was first necessary to determine the performance degradation of the deterministic
controller for each of the comparison conditions to be investigated. Specifically, the performance
degradation of the deterministic controller from its baseline configuration was determined for

1. an increasing error in the initial estimate of the T-Matrix (modeled using the value of Cfg),

2. an increasing scaling coefficient used for 7-Matrix propagation (modeled using the value of
Cp), ’

3. an increasing envelope for the measurement noise (modeled using the value of Cjy).

Using this performance degradation data, the reference deterministic controllers were selected to
define conditions which would be relatively more advantageous to the stochastic controllers. These
reference deterministic controllers differ from the baseline deterministic controller by the following
values:

1. Cg = 1.0 for the initial estimate of the T-Matrix investigation

2. Cp =0.0026 for the T-Matrix propagation investigation

3. Cpr = 0.2000 for the investigation of measurement noise at the lower end of normal noise
levels '

4. Cps = 1.2000 for the investigation of measurement noise when it overshadows the Z-Vector
itself

The comparison of the helicopter vibration reduction capability of two stochastic controllers with
that of the deterministic controller was then accomplished by assuming the numerical characteristics of
the appropriate reference deterministic controller and then parametrically varying the adjoint coefficient
A of the stochastic controller being investigated (secs. 3.2, 3.3, and 3.4).

4.1 Results Obtained from the Comparison Study

In general, the deterministic controller proved to be reliable and robust for the assumed random
plant and the conditions which were investigated, The deterministic controller was able to converge to
the desired response for (1) large excursions in the initial estimate of the 7-Matrix, (2) large T-Matrix
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propagation rates, and (3) moderately high levels of measurement noise. Aside from minor exceptions
which were probably coincidental, and the trivial limiting cases for which A — 0, the stochastic con-
trollers did not perform as well as the deterministic controller for the cases which were investigated.
Neither external nor internal limiting was applied in order to ensure that the deterministic solution was
optimal. Absence of limiting did not affect these results.

The study of the effect of the initial estimate of the T-Matrix on controller performance showed
(sec. 3.2) that the deterministic controller would converge to the response of the baseline controller
even if the T-Matrix initial estimate scaling coefficient Cz were increased by two orders of magnitude
(figs. 27 through 31), but that the stochastic controllers would not converge to the baseline case for
any value of the adjoint coefficient A (figs. 32 through 41) when the initial estimate of the 7-Matrix
was made sufficiently large by setting Crp = 1.0 in equation (2-3). In other words, the statistical
characteristics of the stochastic controllers, as defined for this study, did not alleviate the problem posed
by a bad initial estimate of the T-Matrix.

- During the study of the effect of the plant matrix propagation rate on controller performance
(sec. 3.3) the stochastic controllers, as defined for this study, did not enhance convergence to the reference
case when the T-Matrix propagation rate was made large by setting Cp = 0.0026 in equation (2-4).
Convergence did occur, but only when the value of the adjoint coefficient A (figs. 47 through 55) was
small enough that the stochastic terms were negligible. The statistical characteristics of the stochastic
controllers not only did not alleviate the problems which occur with high T-Matrix propagation rates,
but they actually exacerbated the situation.

- It was seen during the study of the effect of measurement noise on controller performance (secs. 3.4.1
through 3.4.3) that the stochastic controllers, as defined for this study, did not enhance convergence to the
reference cases either for relatively low measurement noise (e.g., when Cyr = 2.000 in equation (2-6))
or for relatively large measurement noise (e.g., when Cjs = 1.2000 in equation (2-6)). As in the other
cases, convergence did occur, but only when the value of the adjoint coefficient A (figs. 62 through
79) was sufficiently small that the stochastic terms were negligible and the controller coalesced to the
deterministic controller. The presence of the stochastic terms was actually a hindrance rather than a
help to convergence.

4.2 Identification of Possible Causes of the Results of this Study

Based on the results of previous studies, it had been anticipated that the stochastic controllers would
perform better than the deterministic controller under some conditions. The deterministic controller,
however, appeared to perform better than the stochastic controllers for the cases which were examined.
~ Indeed, the statistics and its method of application to stochastic controllers was more of a hindrance than
a help to convergence. The stochastic controllers, as defined and tested for this study, would approach
the performance of the deterministic controller only when the value of the adjoint coefficient \ was
small enough to cause the magnitude of the stochastic terms to become negligible when compared to
the deterministic part of the controllers. This apparent lack of performance of the stochastic controllers
is most likely due to (1) the use of a random plant model rather than a detailed helicopter simulation,
(2) the use of a single lattice (i.e., Matrix) of the covariance tensor for the identification process, (3) the
adjoining of a stochastic term to the performance index, which is functionally dependent on a single
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lattice of the covariance tensor, or (4) the coalescence of stochastic controllers with the deterministic
controller for the assumed measurement noise model.

4.2.1 Random Plant Model Versus Detailed Simulations Used on Previous Studies

The apparent lack of performance by the stochastic controllers could be the result of assuming
simplified statistics to define the stochastic performance index. Specifically, it was assumed that a
stochastic term defined as a function of a single lattice of the rank three covariance tensor associated with
T-Matrix identification could be adjoined to the performance index so that its inclusion would enhance
vibration reduction. The presumption that the identification statistics can be adequately represented by
a single covariance lattice has the effect of reducing the statistical dimension by one, and can be made
if the identification statistics (e.g., the covariance lattice) for each row of the T-Matrix is nearly the
same. If the helicopter fuselage was a rigid body that pivoted at a point, its associated T-Matrix would
be approximately of rank one and, correspondingly, a single covariance lattice should be adequate for
all the rows of the T-Matrix. The helicopter fuselage is, in general, a nonlinear aeroelastic body with
bending modes. How reasonable it is to use a single covariance lattice in the performance index depends
on at least three circumstances: (1) to what degree the fuselage approximates a rigid body, (2) whether
or not the vibration response as measured by the accelerometers is similar to that which would result
if the fuselage were a rigid body, and (3) how much variation exists in the identification statistics (i.e.,
the covariance lattice) for each T-Matrix row. The expected values of the rank three covariance tensors
(note, each covariance tensor is composed of twelve covariance lattices, each of which is of rank seven)
were determined for a number of the cases computed during this study. In none of the cases examined
did it appear as if the statistics could be adequately represented by a single lattice of the rank three
covariance tensor. This result is undoubtedly due to the random methods employed during this study
to generate and propagate the T-Matrix. The use of a single lattice of the covariance tensor not only
affects the definition of the stochastic performance index, but it also affects the T-Matrix identification
process itself.

4.2.2 Plant Matrix Identification

A single lattice of the covariance tensor, rather than the full rank three covariance tensor, was
used in the Kalman filter identification process (sec. 2.3.2, equations (2-26) and (2-28)). The “correct”
procedure would be to define a Kalman filter gain, K, for each T-Matrix row, T}, being identified.
Since the T-Matrix appears in the control laws of the three controllers (secs. 2.4.1, 2.4.2.1, and 2.4.2.2),
it was expected that the use of only a single lattice of the rank three covariance tensor for T-Matrix
identification could significantly affect the corresponding definition of the T-Matrix. Oddly enough, but
not necessarily in contradiction with the apparent difficulties in defining the optimal control with the
stochastic controllers, the evidence obtained during this study clearly indicates that this approximation
did not significantly adversely affect the T-Matrix identification. Indeed, the 7-Matrix identification
process used in this study appeared to work reasonably well.

4.2.3 Stochastic Term in Performance Index

It was pointed out in section 2.3.1 that typically for the helicopter vibration reduction problem, it was
desired to minimize a scalar measure of the vibration (i.e., a vibration metric) subject to the imposition
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of inequality constraints on the control. It was also pointed out that the adjoining of nonperformance
terms, other than bona fide equality constraint functions adjoined by bona fide Lagrangian multipliers,
to the performance index did, in general, result in a suboptimal solution. Indeed, a scalar example of
this performance degradation was illustrated in section 3.1.2.2. There is no apparent justification for
adding separate stochastic terms to the performance index of the stochastic controllers examined in this
study; indeed, it should be expected that the addition of these stochastic terms to the performance index
would decrease performance. If the philosophy is to enhance identification by driving the covariance
to zero; this should be done in the identification part of the process in conjunction with the covariance
update. Even if the addition of a covariance term to the performance index were desirable, this term

should, in general, involve the full rank three covariance tensor, not just a single lattice of it, for the
T-Matrix model used in this study. o o

4.2.4 Coalescence of Stochastic Controllers with the Deterministic Controller

Rather than adding covariance terms to the performance index as was done for the cautious and
dual controllers, a more meaningful approach to using the statistics of the process to enhance selection
of the control is suggested in part by the minimum variance controller presented by Davis in reference 1.
For this approach, the expected value of the quadratic metric of the Z-Vector defined by equation (2-20)
is minimized subject to the inequality constraints defined by equation (2-8):

Minimize '
J = E[ZTW;Z] 4-1)
subject to - o - -
Yi(0) >0 fork=1,2,..,. M 4-2)
where
E[ZTWZZ] = /+°° /+°° . /+OO(ZTWZZ)f(Z)dzl dzy ... dzp 7(4-3)
=00 J-—00 -0

and f(Z) is the probability density function.

This stochastic controller should perform as well as or better than the other stochastic controllers
which were the subject of this study simply because this controller directly addresses the real problem,
that is, minimization of the expected value of the vibration metric. The probability density function for
the random modeling used in this study is uniform and is defined by |

f(Z)={C i lzklﬁl} | fork=1,2,... 2L (4-4)
where C is a nonzero constant.

Setting the derivative of J to zero for the uniform probability density function defined by equa-
tion (4-4) yields the same conditions for optimal control as those defined for the deterministic controller.

In other words, this stochastic controller coalesces with the deterministic controller when the probability
density function becomes uniform.
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The stochastic part of the controller defined by equations (4-1) through (4-4) only describes the
measurement noise statistics; the statistics of the 7-Matrix identification process is not included. This
means that the T-Matrix is assumed to be known identically and, correspondingly, the performance
of this stochastic controller should be better than that of stochastic controllers for which the T-Matrix
is identified with statistical errors (e.g., the cautious and dual controllers). If indeed this is true, and
it appears reasonable that it is even though it is not readily provable, then the stochastic controllers
as defined and modeled in this study cannot be expected to perform any better than the deterministic
controller.

4.3 Theoretical Limitations of These Controllers

Two principal limitations in the formulation of the subject controllers were identified: (1) the
definition of the desired control problem to be solved, and (2) the selection of the T-Matrix identification
algorithm. The desired control problem to be solved is simply to define the control which minimizes a
metric of the vibration, subject to the imposition of inequality constraints on the control, and in which
the T-Matrix is identified in an efficient, reliable, and accurate manner. The T-Matrix identification
algorithm determines the quality of the identified T-Matrix and its associated statistics, which are used
by the controller to define the “optimal” control.

4.3.1 Definition of the Optimal Control Problem

The subject controllers of this study appeared not to directly address the desired control problem,
defined in equations (2-7) and (2-8). Instead these controllers were formulated to address the different
problems defined by (1) equations (2-37) through (2-40), for the deterministic controller, (2) equa-
tions (2-41) through (2-48), for the cautious controller, and (3) equations (2-49) through (2-54), for
the dual controller. The stochastic controllers included internal limiting in the performance index and
external limiting applied after the fact, rather than adjoining the appropriate constraints to the perfor-
mance index with an adjoint vector composed of Lagrangian multipliers. Furthermore, these stochastic
controllers incorporated the statistics as add-on stochastic terms to the performance index. Because
of this, it is expected that these controllers could never perform better than a controller designed to
solve the desired problem defined by equations (2-7) and (2-8). For convenience in documentation,
the limitations of these controllers are grouped according to their applicability to the deterministic and
stochastic parts of the controller.

_ 43.1.1 Deterministic Part—The deterministic part of all three controllers should include only
that which is to be minimized. The limitations of optimization theory require that this performance
index be a scalar. Furthermore, to facilitate the automation of the process, this performance index
should be a function of only one performance parameter. If more than one performance parameter is
to be minimized, some parameterization scheme should be employed in which one of the performance
parameters is minimized while the others are parametrically varied as appropriate.

The relatively common procedure of simply adding the performance parameters to form a scalar
performance index is fraught with peril. In the first place, the minimization of a sum of parameter
terms is not the same thing as minimizing the individual terms. It is possible that some of the terms
will decrease while others will increase, or that some of the terms will not decrease as much as desired
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while others will decrease more than required. The practice of using weighting coefficients for the
various terms requires trial-and-error selection and adjustment for example problems and can, in some
circumstances, become a problem of sorcery and witchcraft. Even if all the terms decrease in an
acceptable manner, a minor change in the problem can cause the individual terms in the solution to
have different relative values, thus complicating the interpretation of the results.

The example scalar problems illustrated in figures 22 and 23 clearly show the discrepancy between
the solutions to the optimal control for minimization of the vibration metric, 4 Zomine and the optimal
control for minimization of the augmented problem, 6, with a corresponding discrepancy in the
attainable vibration reduction. The actual multidimensional helicopter vibration problem examined
during this study has similar discrepancies from the actual optimal control vector and its corresponding
attainable vibration reduction. . '

43.1.2 Stochastic Part—The stochastic terms in the performance index and corresponding con-
trol laws for the cautious and dual controllers were assumed to be dependent on only a single lattice of
the rank three covariance tensor, rather than on the entire covariance tensor itself. Since the assumed
T-Matrix models are random in all elements and have no apparent row (or column) linear dependence,
there is no apparent justification for assuming that a single lattice (matrix) of the covariance tefsor asso-
ciated with a specific row of the T-Matrix adequately describes the statistics of T-Matrix identification.

A single lattice might suffice if some degree of linear dependence between the T-Matrix rows existed.

In general, only the actual single scalar measure to be minimized (or maximized) and the duly
adjoined (added with Lagrangian multipliers) proper constraint functions (i.e., constraints of the form
defined by equation (2-14)) should be elements of the performance index. There is no advantage to
including anything else in the performance index; indeed, the inclusion of anything else will result
in a suboptimal solution. For this reason, it should be expected that stochastic controllers whose
performance index has the form defined by equation (2-30) will not generally perform as well as either
deterministic or stochastic controllers whose performance index has the form defined by equation (2-7)
or equation (2-13). o '

432 Limitations of the Plant Matrix Identification Algorithm

The principal limitation of the Kalman filter identification scheme used in this study was the
accuracy required for the initial estimate of the T-Matrix (sec. 3.2). In general, notwithstanding the
use of only a single lattice of the covariance tensor, this identification algorithm appeared to adequately
identify the T-Matrix for reasonable initial estimates of the T-Matrix.

'5 FUTURE CONTROLLER DEVELOPMENT

The results of this study suggest that (1) controller performance could be improved by defining
the performance index to be the actual vibration measure and expressing the resulting optimal control
problem in the classical max/min calculus form with constraints, (2) an improved stochastic controller
could be defined by using the classical form, with the performance index defined as the next-cycle-
expected-value of the actual vibration measure, (3) other identification schemes should be examined to
determine if any of them provide better identification when used with these specific controllers, and
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(4) a relatively simple higher harmonic blade pitch control scheme for the cockpit can be defined when
the aforementioned controllers are employed.

5.1 Theoretical Considerations

The theoretical considerations focused on (1) the deterministic and stochastic parts of the optimal
control problem the controller is designed to solve, and (2) the 7-Matrix identification scheme.

5.1.1 Deterministic Part

It is strongly contended that both the deterministic and stochastic controllers should be designed
to solve the optimal control problem defined by equations (2-7) and (2-8), in which the inequality
constraints are transformed to equality constraints and then adjoined to the performance index with an
adjoint vector composed of Lagrangian multipliers, rather than the problem defined by equations (2-30)
and (2-31), in which the control constraints are treated as part of the performance measure to be
minimized instead of constraints to be satisfied. Specifically, only the vibration measure should be
used to form the performance index. For the deterministic controller, the performance index should be
ZTWZZ as defined by equation (2-20). For the stochastic controller, the performance index should
be the expected value of ZTWZZ, E(ZTWZZ ), as defined by equation (4-1) at the next time step.
The next time step is usually the first opportunity to implement the newly determined control vector.
The control vector constraints, which are inequality constraints, can easily be transformed to equality
constraints by using the slack variable method defined by equations (2-9) through (2-12) so that they
can be adjoined to the performance index with Lagrangian multipliers and the problem can be solved
using conventional max/min calculus. This methodology is common to the recommended deterministic
and stochastic controllers and is referred to herein as the deterministic part of the problem.

A problem similar to the problem addressed in this study, of a lower dimension but with the form
defined by equations (2-7) and (2-8), was solved analytically in this manner to demonstrate the feasibility
of obtaining an analytic solution to the full problem. A cursory attempt was made to solve the full
problem addressed in this study. Although a full analytic solution to this problem has not been derived
at this time, the solution process clearly shows that the solution, if it exists, is similar to that obtained
for the lower dimensional problem which was solved.

512 Stochastic Part

It is also strongly contended that the stochastic controller should be designed to solve the optimal
control groblem defined by equations (4-1) through (44), in which the performance index is defined to
be E(Z* WzZ) at the next time step, rather than the problems defined by equations (2-30) and (2-31),
in which the control constraints are treated as part of the performance measure to be minimized instead
of constraints to be satisfied. Specifically, the statistics of the problem should be incorporated into
the solution by using the appropriate probability density functions to define the expected value of the
vibration measure, E(ZTW3Z), that is to be minimized at the next time step, rather than by adding
bits and parts of a covariance tensor to a deterministic performance index. This methodology is referred
to herein as the stochastic part of the problem and is unique to the stochastic controller.
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5.1.3 Plant Matrix Identification

Although the Kalman filter identification scheme used in this study adequately identified the
T-Matrix only for reasonable initial estimates of the 7-Matrix, no alternative identification schemes
were examined. It is noted that the actual scheme employed in this study used only a single lattice of
the covariance tensor, and extension of this scheme to use the full covariance tensor only requires a
relatively simple and minor modification. It was determined that the initial estimate of the T-Matrix
does affect controller performance. Alternative identification schemes should be examined, as Jacklin
did in his comparison of five identification schemes (ref. 8), to determine if any other schemes offer
greater reliability, robustness, simplification, ease in initiation, or other advantages. It would greatly
simplify matters if it were not necessary to provide an initial estimate to the T-Matrix, and if covariance

tensors were not required as part of the identification process. -
S.2 Cockpit Application

~ When the optimal control problem is in the form defined by equations (2-7) and (2-8), that is,
when the problem is to determine the control that minimizes a metric of the vibration subject to the
imposition of inequality constraints on the control, the solution can be exploited to yield a relatively
simple higher harmonic blade pitch control device for the cockpit. The definition of the constraint
envelopes will, most likely, be based on required maintenance intervals and wear/fatigue/structural
limits. Typically, a relationship exists between the level of the operating higher harmonic blade pitch

constraint envelopes and the time left before the next required maintenance. It is expected that the higher
the operating constraint envelope levels, the shorter the operating time to the next required maintenance.
Accordingly, a set of operating constraint envelope limits, characterized by the fime to next required
maintenance, can be defined. For example, operating constraint levels corresponding to time to next
required maintenance values of 1,000 hr (for normal operation), 100 hr (for elevated operation), 10 hr
(for higher elevated operation), 1 hr (for still higher elevated operation), and 6-min_ (for emergency
operation) can be defined. Correspondingly, the HHC unit (fig. 102) would include the HHC switch
with an OFF position and positions for the time to next required maintenance values specified above.
Since the time to next required maintenance is dependent on theé operating constraint level, if the HHC
switch is set to different positions between consecutive maintenances, then evaluation of the timé to
next required maintenance requires an integration of the current time to next required maintenance.
This integration can be easily accomplished with an integration circuit in the HHC unit. A convenient
way to display these results would be to include a digital counter on the HHC unit which displays the
“integrated actual” time to next required maintenance.

~ Operationally, the pilot would set the HHC switch to the 1,000-hr (normal) position when HHC
was desired. If an emergency occurred involving a rotor imbalance of some kind, the HHC switch could
be tuned to its limit at the 6-min (emergency) position. If no improvement occurs, the pilot would
have to take other measures including backing the HHC switch down to a lower setting. If satisfactory
improvement occurs, the switch would be backed down to a lower, but acceptable, setting after the pilot
regains satisfactory control of the helicopter. ' R
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TABLES

Table 1. The effect of the starting seed on the first-step decrease in J.

Staningsegd t ;f,',;:,; oL T IUETETT TTITIeR - .
~ value for Figure  Percentage decrease in J
propagation number after the first control step

7391 3 19.356
3962117 56.375
435 42.919
10691 16.931
7398495 31.775
990539 28.594
62117 50.663
49377 64.825
83297 ' 65.800
83293 56.900
83298 4 66.956
27438 7 28.256
27437 39.706
83299 o 66.206
83300 , 48.869
83301 | 30.175
83296 | 43.619

Notes:

%The starting seed value of 7391 for 7-Matrix initialization and propa-
gation was assumed initially during program checkout.

ba starting seed value of 83298 for T-Matrix initialization and propaga-
tion yielded the greatest decrease in J after the first control step.
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Table 2. Summary of the external limiting study.

Number of
External limiting l.u.b. Figure Percentage decrease in J revolutions
[Rp,maz and/or [Rag.lmaz ~ number  after the first control step to g.Lb.
100,000,000 66.956 5
1,000 66.956 5
100 66.956 5
80 66.956 5
60 66.956 5
40 5 66.956 5
36.91 - 66.956 5
36.905 66.950 5
34 66.444 5
31 66.019 5
28 62.681 5
27 61.700 5
20 6 52.006 6
10 7 29.556 8
8 23.850 9
6 8 18.831 11
4 13.644 14
2 7.231 23
1 9 3.569 30+
0.1 10 0.013 30+
0.01 -0.356 30+
0.001 -0.39%4 30+
0.0001 -0.400 , 30+
0.0000000001 -0.400 30+
Notes:

©The theta control vector is zero at the initiation of the fourth revolution at which time the controller is engaged.
The response to the first computed nonzero theta control vector occurs at the beginning of the fifth revolution.
bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.

©The T-Matrix is invariant.



Table 3. Summary of the internal limiting study.

Internal limiting  Internal limiting  Figure - -
diag (Wp) diag (Wag) number Remarks
0 0 13 Reference case with no limiting.
0 10,000 14 Saturated, no effective decrease in J.
0 1,000 Saturated, no effective decrease in J.
0 100 Saturated, no effective decrease in J.
0 10 Saturated, no effective decrease in J.
0 1 Saturated, no effective decrease in J.
0 0.3162 Saturated, on verge of a decrease in J.
0 0.1 15 Saturated, some decrease in J.
0 0.03162 Slow convergence, minimum J by 40 revs.
0 0.01 16 Slow convergence, minimum J by 20 revs.
0 0.003162 Convergence to minimum J by 20 revs.
0 0.001 17 Nearly the same as the no-limiting case.
0 0.0001 Nearly the same as the no-limiting case.
100 0 18 Saturated, no effective decrease in J.
10 0 Saturated, no effective decrease in J.
1 0 Saturated, no effective decrease in J.
0.1 0 Saturated, no effective decrease in J.
0.01 0 19 Saturated, on verge of a decrease in J.
0.003162 0 Saturated, some decrease in J.
0.001 0 20 Saturated, significant decrease in J.
0.0003162 0 Closer to the no-limiting case.
0.0001 0 21 Nearly the same as the no-limiting case.
0.00003162 0 Nearly the same as the no-limiting case.
0.00001 0 Nearly the same as the no-limiting case.
0.000001 0 Nearly the same as the no-limiting case.
Notes:

%The theta control vector is zero at the initiation of the fourth revolution at which time the controller is engaged. The
response to the first computed nonzero theta control vector occurs at the beginning of the fifth revolution.”

bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.

“The T-Marrix was propagated with the propagation scaling coefficient Cp = 0.001 (see sections 2.2.3 and 3.1.3).
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Table 4. Summary of the baseline plant matrix propagation rate study.

T-Matrix pro;?gation

scaling coefficient C, Figure Remarks
0.0005 24 Flat and unexciting.
0.0007 Reasonable, but somewhat too flat.
0.0010 25 Reasonable and representative, selected to be the baseline.
0.0013 Reasonable, but excursions slightly too high.
0.0020 26 Excursions too high.
0.0030 Excursions too high.
0.0100 Excursions way too high!

Notes:

%The theta control vector is zero at the initiation of the fourth revolution at which time the controller is engaged. The
response to the first computed nonzero theta control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.
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Table 5. Summary of the T-Matrix initial estimate study.

T-Matrix initial ___ Adjoint

Controller estimate scaling coefficient
type coefficient Cg A Figure
Deterministic 0.001 0 27
Deterministic 0.01 0 28
Deterministic 0.1 0 29
Deterministic 0.69897 0~
Deterministic 1.0 0 30
Deterministic 6.98970 0
Deterministic 10.0 0 31
Cautious 1.0 ~0.00001-
Cautious 1.0 - 0.0001 32
Cautious 1.0 0.001
Cautious 1.0 0.01 33
Cautious 1.0 0.1 34
Cautious 1.0 1.0
Cautious 1.0 10.0 35
Cautious 1.0 100.0
Dual 1.0 0.0000001
Dual 1.0 0.000001 36, 37
Dual 1.0 0.00001
Dual 1.0 0.0001 38
Dual 1.0 : 0.001 39
Dual 1.0 0.01 40
Dual 1.0 0.1 41
Dual 1.0 1.0
Notes: —

2The theta control vector is zero at the initiation of the fourth revolution at which
time the controller is engaged. The response to the first computed nonzero theta
control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was
assumed.

®The T-Matrix was propagated with the propagation scaling coefficient Cp =
0.001 (sections 2.2.3 and 3.1.3), with 20% random nonperiodic measurement noise
(Cpr = 0.200), with no limiting, and for parametric values of the initial 7-Matrix
estimate scaling coefficient C. '
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Table 6. Summary of the 7-Matrix propagation rate study.

T-Matrix propagation Adjoint
Controller scaling coefficient coefficient
type Cp A Figure
Deterministic 0.0010 0 42
Deterministic 0.0020 0 43
Deterministic 0.0022 0
Deterministic 0.0024 0 44
Deterministic 0.0026 0 45
Deterministic 0.0028 0
Deterministic 0.0030 0 46
Cautious 0.0026 0.00001
Cautious 0.0026 0.0001 47, 48
Cautious 0.0026 0.001 49
Cautious 0.0026 0.01 50
Cautious 0.0026 0.1
Cautious 0.0026 1.0
Cautious 0.0026 10.0
Cautious 0.0026 100.0
Dual 0.0026 0.0000001
Dual 0.0026 0.000001 51,52
Dual 0.0026 0.00001 53
Dual 0.0026 0.0001 54
Dual 0.0026 0.001 55
Dual 0.0026 0.01
Dual 0.0026 0.1
Dual 0.0026 1.0
Notes:

%The theta control vector is zero at the initiation of the fourth revolution at which time
the controller is engaged. The response to the first computed nonzero theta control vector
occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was assumed.
CThe T-Matrix was propagated with parametric values of the propagation scaling coef-
ficient Cp (sections 2.2.3 and 3.1.3), with 20% random nonperiodic measurement noise
(Cpr = 0.200), with no limiting, and for the initial T-Matrix estimate scaling coefficient

Cg = 0.001.
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Measurement noise

Table 7. Summary of the random nonperiodic measurement noise level study study.

~Adjoint
Controller scaling coefficient coefficient
type Cum A Figure
Deterministic 0.0000 0 56
Deterministic 0.1000 0
Deterministic 0.2000 0 57
Deterministic 0.3000 0 :
Deterministic 0.4000 0 58
Deterministic 0.5000 0
Deterministic 0.6000 0 59
Deterministic 0.7000 0
Deterministic 0.8000 0
Deterministic 0.9000 0 60
Deterministic 1.0000 0
Deterministic 1.1000 0
Deterministic 1.2000 0 61
Deterministic 1.3000 0
Cautious 0.2000 0.00001 62
Cautious 0.2000 0.0001
Cautious 0.2000 0.001 63
Cautious 0.2000 0.01 64
Cautious 0.2000 0.1 65
Cautious 0.2000 1.0
Cautious 0.2000 10.0
Dual 0.2000 0.0000001 66
Dual 0.2000 0.000001 -
Dual 0.2000 0.00001 67
Dual 0.2000 0.0001 68
Dual 0.2000 0.001 69
Dual 0.2000 0.01
Dual 0.2000 0.1
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Table 7. Concluded.

Measurement noise Adjoint
Controller scaling coefficient coefficient
type Y A Figure
Cautious 1.2000 0.000001
Cautious 1.2000 0.00001 70
Cautious 1.2000 0.0001 71
Cautious 1.2000 0.001 72
Cautious 1.2000 0.01
Cautious 1.2000 0.1 73
Cautious _ 1.2000 1.0
Dual 1.2000 0.000000001
Dual 1.2000 0.00000001 74
Dual 1.2000 0.0000001
Dual 1.2000 0.000001 75, 76
Dual 1.2000 0.00001 77
Dual 1.2000 0.0001 78
Dual 1.2000 - 0.001 79
Dual 1.2000 0.01

Notes: .

“The theta control vector is zero at the initiation of the fourth revolution at which
time the controller is engaged. The response to the first computed nonzero theta
control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was
assumed.

©The T-Matrix was propagated with the propagation scaling coefficient C = 0.001
(sections 2.2.3 and 3.1.3), for parametric values of the random nonperiodic measure-
ment noise coefficient C'ps, with no limiting, and for the initial T-Matrix estimate
scaling coefficient Cg = 0.001.



Table 8. Summary of the random 20-cycle periodic measurement noise level study.

Measurement noise Adjoint
Controller scaling coefficient ‘coefficient
type Cy A Figure
Deterministic 0.0000 0 80
Deterministic 0.1000 0
Deterministic 0.2000 0 81
Deterministic 0.3000 0
Deterministic 0.4000 0 82
Cautious ' 0.2000 0.00001 83
Cautious 0.2000 - 0.0001
Cautious 0.2000 0.001 84
Cautious ’ 0.2000 0.01 85
Cautious 0.2000 0.1 86
Cautious 0.2000 1.0
Dual - 02000 0.0000001 87
Dual 0.2000 ~0.000001
Dual 02000 0.00001 88
Dual 0.2000 0.0001 89
Dual 0.2000 0.001 90
 Dual 0.2000 -~ 0.01 -

—

Notes: - - -
@The theta com:rol vector is zero at thc initiation of the fourth revolution at which
time the controller is engaged. The response to the first ¢ niﬁftéaionzero theta
control vector occurs at the beginning of the fifth revolution:

bThe starting seed value of 83298 for T-Mamx 1muahzauon and propagauon was
assumed. . e e ene e Sl L
CThe T-Matnx was propagated with the propaganon scalmg coefficient Cp = 0.001
(sections 2.2.3 and 3.1.3), for parametric values of the random 20-cycle periodic
measurement noise coefficient Cps, with no limiting, and for the initial T-Matrix
estimate scaling coefficient Cg = 0.001.
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Table 9. Summary of the nonrandom 20-cycle periodic measurement noise level study.

Measurement noise Adjoint
Controller scaling coefficient coefficient
type Cy A Figure
Deterministic 0.0000 0 91
Deterministic 0.1000 0
Deterministic 0.2000 0 92
Deterministic 0.3000 0
Deterministic 0.4000 0 93
Cautious 0.2000 0.00001 94
Cautious 0.2000 0.0001
Cautious 0.2000 0.001 95
Cautious 0.2000 0.01 96
Cautious 0.2000 0.1 97
Cautious 0.2000 1.0
Dual 0.2000 0.0000001 98
Dual 0.2000 0.000001
Dual 0.2000 0.00001 99
Dual 0.2000 0.0001 100
Dual 0.2000 0.001 101

Dual 0.2000 0.01

Notes:

%The theta control vector is zero at the initiation of the fourth revolution at which
time the controller is engaged. The response to the first computed nonzero theta
control vector occurs at the beginning of the fifth revolution.

bThe starting seed value of 83298 for T-Matrix initialization and propagation was
assumed.

“The T-Matrix was propagated with the propagation scaling coefficient Cp = 0.001
(sections 2.2.3 and 3.1.3), for parametric values of the nonrandom 20-cycle periodic
measurement noise coefficient Cpz, with no limiting, and for the initial 7-Matrix
estimate scaling coefficient C; = 0.001.

43



G OGARAA 0 ) R

(R I T

BN TN TR L A AL LT i [T

"86C€8 = onjea "16€L = onfea
Pos Bunrels 10j osuodser [enu] - amBig pees 3Junre)s Joj esuodser el g amSiyg

H38WNN NOILNTOAIY HIGWNN NOILNTOAIY
oL 8 9 v 4 oL 8 9 14 4

\

o
(=]

w

e}

/

W
-

]
(=} [=
™~ -
" p-0L X X3ANI 3ONVYWHOIH3d
e
-0l X X3ONI IONVIWHOIH3d

&

[¥e]
N

&

"WIa)sAs [0I3U0O WOIPBIqIA
doo[-paso[o oYy} 10§ aueyos [elRUd) -z am3ig

Fm=—==-=" ¥3ToHINGD ~ T T T T T I

) |

Huaiaunaar !

W x041vieL H3110H1NOD] |

“ XIOLVW-1 I "9su0dsal UoIyRIqIA POfjoIU0) | amsg g
}

I

> Q3i411N3qK

!
r- HO1J3A 2

||||||||||||| - :
HOLVHINID INVId |
Q3UNSYIN " 3 P Xigiv-1 |/ _,Ico 19 =Y
HOLD3A i ANVId H3140D113H N6
3SION INIWIUNSYaW !y | ,
|
|
- N

XIHLVW-1
INVd
I ¥ uo1o3n 7 |431d02113H




‘9 = "qY
Sunuuip [euldixe ULYm  osuodsay

H3IGWNN NOILNTOA3Y
0z 51 oL S

o

T4}

N

(=)
-

0
-

(=)
~
p-01 X X3ANI JONVINHO4H3d

n
N

0 = Q7
Sunruy [BuI)Xe uwoym  asuodsay

H3IGWNN NOILNTOA3Y
174 Sl oL S

o

[T-]

<

(=]
-

wn
-

(=]
N

-0t X X3aANI IONVNHO4 H3d

&

01 = qn
Sunwi] [eUId)Xd Uudym oesuodsey

H3IBANNN NOLLNTOAIY
(174 Sl oL ]

45

(-]

n

N\

[=]
-

n
-

[=)

L]
-0t X X3ONI 3DNVINHOIH3d

o = Qg
Sunmun  peureixe ueym  esuodsoy

H3IBWNN NOILNTOA3Y
(114 sl ot S

&

(=

14}

[=)
-

n
-

[=]
N

p-0t ¥ X3ANI IONVWHOIHId

[Te]
N



st

TR O L IO 11y T W N R
"passiyo8
91e)s  Apwals uaym uoTMIoAdy  “zT oSy
XYW o) 8 XYW o) Lt 1NIveLSNOD
00L 09 ov oz oo 9 ¢ z l
7T ) T L T TTTT T Y ¥ ) L ' H
m
o <
[e]
e €
&5
J o
2
1a
m
-4 <
[/;]
L=
>
- Q
nA
Joz
>
~ -4
m
vz m
>
o (v]
X
g 8z M
m
[w]
T'0 = "qy

Surmuy [euIagxs

ot

usym  esuodsoy -1 oSy

H3EWNN NOILLNIOAIY

274 (174

St oL S

o

(=

0

(=4
-

wn
-

& 8

p-0L X X3ANI IDNVYWHOIH3Id

‘dags
PS[[OIIU0D ISIY 19378 XOPUT SOWBULIONIS]  'TT oSt
XYW lovu) ® X" w1 Liw INIVELSNGD
0L 09 Ov 02 OL 9 b z L

FTrTTrT—Y L T mmyrrTrr T L v

o~ [=4
- -
#-01 X X3ONI 3ONVINHOL4H3d

= ‘qmq
Sunmun  euiexs uoym  esuodsay ‘g amnSiy

R
,_
i

i

H38WNN NOLLNIOA3Y

o€ ST (174 ] ! oL S ]

om

n

s 3

T 2
0

i SlL 2
Q
i H
0z x

)

74 A

46



"10°0 = VA1 Y3 pardde
St Bunun] [eussyul udym asuodsey -9y amIig

HIBANN NOILNTOA3Y

05 o o€ 0z oL 0

0

m

o)

\}\LI/ . m m
o

(9]

/ o

513

-

0z X

x

o
74 A

‘00001 = ¢V yum poydde
ST Sunjuu euIdjul udym osuodssy T o

H38WNN NOILNTOA3Y
0s ov (12 174 oL

o

0

[=]
-
v_Ol X X3ON! 3ONVINHOJH3d

[Ts)
-

J
%

&

'T'0 = VA4 Y3 porjdde
ST JunuIn [eulsjur uaym osuodsey QT amSij

H38WNN NOILNTOAIY

0s oY o€ oz oL o _
m

v

n

s

- 3

./\/\I

AN oL m
/)).\//\./ o

I\l\/ m

Y,

°N 1
sz 7

"Sujrwy] ou st a10Y) usym asuodsay g1 omSig

HIBWNN NOILNTOAIY
05 oy og 174 oL

(-]

J
[T+]

oL

sL

B

174

-0l X X3ANI 3ONVINHO4H3d

n
~N

47



e [T N R TR A N TRIR T T f_s,: 0l (| T i

'100°0 = %M Y3 porgdde
SI Sunjiui reursjur ueym osuodsay g amS3ig

H38ANN NOLLNTOA3Y

0S5 oy (114 174 oL 0
m
o
o
"3
i L T >
oL
—t 5t 3
s
m
oz X
x
S Or

00T = %44 Yy pardde
ST Junrua [euIdjul usym osuodsay gy am3ig

H3IGWNN NOILNTOAIY

0s ov (118 (174 oL 0 ,
m
X
o
3
S
oLz
9]
m
Sl w
..\\) m
A:l\/\l\.’\‘.\.}/\ *®
=
ST A

T0°0 = 4 Yy poypdde
ST Sunuy [eursiul ueym asuodssy ‘g] aanSig

H3ISWNN NOILNTOAIY

0S oy ot (174 oL 0 -
m
X
n
s 9
3
oL 2
O
| m
=
1
/\/\1 ‘l\l\l 0z _._x..
x
=
sz A

1000 = V41 UM pardds
ST Suiyw [RUIjUI weym esuodsay .1 amSig

H3IGANN NOILNIOA3Y

0s ov 0t 0z oL 0
]
m
=
AT — TN
] s 9
>
/ oL
(2]
m
] Si 3
Q
m
0Z X
x
-4 or

48



"1000°0 = ‘M [ paridde
st Sunyruy reusdjur ueym oasuodsey 1z oS

HIGWNN NOILNTOA3Y
0S ov (1} 114 1]

o

1
)

/\/\/\\\I\I\n\

Y1)
=4

__4_—-—-—1'-—-'J
=
-

/<)
&
-0 ¥ X3AGNI 3ONVNHO4H3d

n
™~

49



0 LU TR U IUN O T T O T T

[ paziuurua
10J Z dLIjeUI UOIYBIQIA WNUITUTW oY) ur

LI 1T i

H NG R

‘[ pozruurm

Aouedaiosip Surmoys aseo T8[BOS PUOXAG gz om3yg 10§ Zf DMjeW UOIYBIqIA WMUWITUIW 3}
) ur £ouedaIdstp Suimoys esed Tereos 3s1 gz omSBig
0 NI AONVdJ3HISIO
_ 6 NI ADNVd3HOSIa
Z_S.NQ _
0 --— e o—g
\\ // W I//
4 N N N
4 \ y N \
V4 / \ \/ / //
/ \ 7 /O N h \
- \\ \ / wﬁ - N \
\\/ N~ 7 N * . \\\\ ~ ’r NI ADNV43HISIQ
/7 N P4 ' \Y % X
/ ’ / \
S /' \ | *r N1 AONVd3auDsIa - N/ \
/ \ W « \ / \
,\ T N\ / / \ \
, \ / / /
1, \ b / \\ \ \
N \ 4 / / \
\ ‘ / \
/ \ \ \
/ \
/ N
! W AN .
/ § %+ =r / r+°r=
/ N !
/ \
]
/
/
r r

50



'200°0 = %0 URLa00 Jur
-Teds 93el uorjededoid uoym asuodsey -9z aInSrg

HIGNNN NOLLNTOA3Y

00L 06 08 OL 09 0S Oy OE 0Z OL o _

!

o

OGN A T e g

v (2}

m

SLz

7 :

m

oz %

k3
sz %L

"100°0 = 90 jua1o1ga00 Sur "G000°0 = ?) juatdYgs0d Suy
-Teos oyel uorjededord uoym assuodssy gz amSrg -Teos ayer uolyededoid uoym assuodsay §z omSig
H3EWNN NOILNTOA3Y HIBWNN NOILNTOAIY
00L 06 08 0L 09 05 Oy O 0Z Ol 0 00L 06 08 O/ 09 05 Ov OE 0Z OlL o _
po—= m m
)

g 2

oz oz

m m

SLZ >

S St M

v:M m

0z 0z X

m -
SZ A sz L

51



LML e e TR LT . TR0 1 1
01 =49 To=49)
%@ pauyap ayewr)sa Xuyew- 7 rerjmur \3 peuyep ajsuun)sa Xujyeur- 7 petjrur
10} osuodsal I1a]j013u00 ousiumgle  (og amSig 10} asuodsor Is[[0IjU0d OdSIUIIISID(] '6g 9In3i g
HIGWNN NOILNTOAIY H3IBWNN NOILNT0OAIY
001 08 09 ov 0z 0 001 08 09 114 174 0 -
0
m m
w i)\u)\r\/\. w
£ A
LA on 3 A o1 3
N i i
m m
>—. :,\ ,/>> A S1L 3 ¥ ]
<<< TS o O
2 <
{ (174 W 0c x
J_ “ sz % sz A
00 =49)H 1000 = 9D
Aq peuyep oyewmyse XIIyeUI- 7 [e1jur : Aq peuyep ayeUISO Xuysw-J, perjur
10j esuodsal I1a[[013U0D onSIUmIeQg gy oSy 10} osuodser Ia[joIju0d oNSTUIULIdS(]  °Lg amSig
H38WNN NOLLNTOA3Y ) IR HIGWNN NOILNTIOAIY
001 08 09 (117 174 0 - ] 08 09 oy 174 0 -
m ; ! m
‘r\l\'n\l\\/\‘ “ , ‘(l\l)\l.\’\‘ w—
Aol e\ 5 o A - g o]
\ v YV uwa V Vv m
oL W oL W
o o
m m
SL 2> gL 2
o] O
m m
0z X oz ¥
= )
e 4 S A

52



10 = X pue
0’1 = 9 Aq pauyoep 9)elurIss X1~ ],
rerytur 10§ asuodsal IS[[OIJU0D snoNg)) ¢ aINIg

H38INNN NOILNTOA3Y

0oL 08 09 ov 0c 0
m
o e}
o
g o
=
a A Pi<7.r Q-. >
Nid m
i< ,()\2( ] C
¥ P | MF -
v VA8
m
oz X
ST Or

"1000°0 = Y pue
0’1 = 9 Aq pauyep eBUII}SO XTIJeUI- ],
TerjIut 10§ 8syodsal IS[[0I3U0d snoyne) -z omSi

H3IGNN NOILNTOA3YH

ool 08 09 oy 02 0
-l

D

s O

o]

P\ b<>>> c—W
A :
A W, P
2

i Al
og %

z x

J mNOT

"10°0 = Y pus
0’1 = 9 £q pauyoep 2yBUIIIS XIIYeUI- ],
enyur 10§ asuodsar I9[[0IjUO0d snoyne) "gg oImS3rq

H3GWNN NOILNTOA3Y

ool 08 09 ov (174 0
©
m
)
m
S O
X
:
ol M
) A VT P P
Z< ; Ww <</ o
g 0z X
f x
o
LN

001 = 9D
Aq pouysp ojewNIIse XUjeU~] [Nl
10} osuodsel I9[[OIJUOD ONISIUMULININ(] 'TE amSB1g

H3IGANN NOLLNTOAIY
oot 08 09 ov (174 0

T AN A el ]
TN

-0l X X3aNI 3ONVIWHOdH3d

53



R NN LRI TR LR L L] Tk ok 0

"1000°0 = Y pue ‘1000000 = Y pue
0'T = T Aq pauysp oyew)se XuIyew- | 0'T = 9D 4£q pouyap ay8uINISe XLIY8W- [
[eIyur 10y esuodsar IS[[OIUCO [en Qe am3r [Bryiul 10§ esuodsor Isfjoruod [eng e oInSig
HIGWNN NOILNTOA3Y H3I8WNN NOILNTOAIH
0oL 08 09 oy 0z 0 0oL 08 09 oy 114 0
o
%Nﬂ:)L [PV YAN | o % e FPAANTIINAN | 500 m
n
o o
< 00 2 voo' £
I 3 3
900" & 900"
2 g
-0 .
800 m 800 m
oL0’ oLo’
"100000°0 = Y pue ‘00T = Y pue
0’1 = 9D £q pauysp 238w} XLIJeW- ], _ 0'T = 9D Aq pauyep 8j8uII}Se X118 W- ],
[eIyur 10] asuodser Is[jo13ucd [en ‘9¢ am3rg [eljIul 10§ 9suodsal IB[[OIJUOD SNOINB) "QE AINTL ]
H3IBWNN NOILNTOA3Y H3EWNN NOLLNTOA3Y
00l 08 09 oy 174 0 001 08 09 ov 0z 0
m m
X X
mn Iy
s 9 s 9o
N, 3 2
W MA oL o
>\ v vy < /’ ANJ m
L | S I A
X AN AN\ A Ala ) .
174 + 174
X WYYV << YW N x
: _ 3 3
_ ~ 8¢ L ST )

54



01000 = %0
Aq pauyep oye1 uonyeSedolrd xiijew-J,
I0] osuodsar I9[[013U0D OUSIUIULIANR( ‘g omSi

HIBWNN NOILNT0A3Y

ool 08 09 oy (174 0

m

L~ 2
1 m
( >1>‘1\f 3<> [+ w

3

oL 2

(2]

m

SL >

Q

X

174 x

=
ST A

100 = Y pus

0'T = 9 4q peuysp syeuInyse XyRwW- I
[BIyIUl I0j osuodsal Ia[[013u00 [en( ‘(p amSig

H38WNN NOILNTOA3IY

oL 08 09 o 0z 0

-
AN N°°- “
(\/\/\.\r)}\< - n
(@)
)trb ><>‘>>\$‘,>7>\¢ v00° 2
\4 ¢./>\ 3
2
900"
Z
800" 9
X

oLo°

‘0 = Y pue
0’1 = D 4q peuyep s)8uIlsa XLIYeU-
reryiur 10 asuodsar Io[joIjuocd Ten( I amSLg

H3EWNN NOILNTOA3Y

00l 08 09 oy o0z 0

-
£
A VvV NY Ay AV ‘\A\/\P(r pOLA 200’ m
b
»00° 3
<
O
900" ™
Z
800" m
X

oLo”

1000 = Y pue

0'T = 9D £q pauyep ajeuUINSs XlIyeu- [
feliur 1oy osuodsar sfjoijuoo [eng ‘gg emSry

H3ISWNN NOILNTOA3Y

ooL 08 09 oy 0z 0
™
In [kl I - ”m
f 2
7 -
| | o 2
» _“ oLo’ %

55



LT T N T R T | ]

08000 = °D
Aq peuyep aye1 uorpeSedoid Xujyeuw- g

10§ asuodsel Io[lO1UOD OMSIUIULIAIA(  °Qp amS81 g

H38WNN NOILN10AIY
oot 08 09 oy 174

\<

My Nl 1

Ml I

$200°0 = %D
Aq peuyep o381 uoryeSedoid Xl1jeur- g

(]

[ 0 (=] 0
~N - -

"]
N
-0l X X3ANI IONVIWHOIH3d

10j osuodsal IBJOIJUCD OIISIUIULIRYS(] " oSy

H3IEWNN NOILNTOA3Y
ooL 08 09 oy 174

A

ol NV

il il

i r

(-]

& = 2 =
-0l X X3AGNI 3DNVWHO4HId

D
N

92000 = %D
Aq pauyep aje1 uoryeSedosd xupew- L
10} 9suodsal JIB{[0IJUCD ONSIUTWINNS( "G aInSi

H3I8WNN NOILNTOA3Y

ool 08 09 oy (174 0 -
m

o)

A, g m

, o Z

f 2

My sl 3

|| 8

Y \ 023

f a “3

02000 = %D
Aq pauyep aye1 uoryeFedoid Xuyeu-
10j 9suodsol IS[OINUCD OUSTUTULINIS 'EF ama3r g

HIGWNN NOILNTOAIY
ooL 08 09 oy 174 0
$ )
m
0
31 S M
P
N :gi os
W 5

[}
m

St >
o

02 X
x
s

274 L

56



"T0°0 = Y P 92000 = D
Aq pouyep oye1 uoryeSedord xuyew-J
10} esuodsar  IS[JOIUCD  snomnB) "0g SINSi]

H3GANN NOILNTOA3Y

0oL 08 09 oy 0C 0

m
VG Rl
‘5\/&\/\/\(\/\(,‘;}7,).\/\/))\«.) vo0 m
>
L2
900 qﬂ
800" 5
m
x

oLo’

10000 = Y PUe 92000 = %D
4q pouysp aje1 uoryefedoird xuyew-
10} esuodser  Is[onuoo  smopnv) gy omSig

H3IGWNN NOILNT0A3Y

0oL 08 09 ov 174 0

vl v 200° ﬁ
2
V00" 2
>
¥
900 "
2
800 M
X

oLo°

"T00°0 = X PU® 9200°0 = %O
Aq poauyep 93e1 uoryededord xujew-J
10 a9suodsor  I9[[oIju0d  snonnB) 6 2mMILg

d38NNN NOILNTOA3Y

001 08 09 oy (174 0

™

o o]

A A m—

|4 s =}

[V 2

- o

A, i ;

m

}g _\ 0z X
T | ik

"1000°0 = Y PUe 92000 = “D
Aq pouyop aje1 uoryededoid XLyeu- 7,
10} esuodsar IS[[OIJUOD  smOWNB)) P am3t

HIEWNN NOILNTOAIY

oot 0 09 ov 0 0 o
VAR

RGN TR

| mr

-—-—d.
]
~N

57



"T000°0 = Y PUe 92000
= %) 4q peuysp ay8r uoryeSedod

XLIyeuI~ [ 10} 9suodsar 19[[013u00 feng ‘3o a3 g
H3IBWNN NOILNI0A3Y
0oL 08 09 ov 0z 0
.
‘ \/\ A <00’ m
1 P}
(] oo 2
>
\ :
900" m
z
800" )
X
oLo°
"100000°0 = Y pue 92000
= 99 £q pouyep oje: uotyededoxd
X[yeW- 7, 10§ dsuodsal IO[JOIU0d [en ‘zg am3r g
HISWNN NOLLNTOA3Y
001 08 09 ov 0z 0
b
A \,\(J.\(z\f\)\ y \\n\ L 200 m
v 3
v00" 2
>
Z
200" §
2
I 800" ©
x
oLo

"10000°0 = ¥ Pu® 9200°0
= 9) 4q pouyep ey81 uonyeSedoid
XHyew- J, 1o} asuodsar Io[l0IU0O [8n( '£G amSig

H3BWNN NOILNTOA3Y

(1111} 08 09 oy 174 0 -

2

i g m

TR .

ND;\< h m

Sl 3

\) 5

v v oz %

L sz S,
ny

"100000°0 = Y pu® 92000
= 9 4q pouygep oy81 uonpeSedoid
XHIysuI-J, 10§ asuodsar Is[jo13uod reng -yg am3i g

HIBWNN NOILNTOAIH

001 08 09 oy 0z 0
v
m
4
8l S
Vv 2
/ :
0
m
>\- ‘\ ) A MP m
\ g
A 02 X
| | =
A G ©
A

I

58



‘00070
= W5 Aq pouyep oSIOU JUIWSINSBOW

10 esuodsal ID[OIJUOD OMSIUIULIONR( QG 9InBi]

H3IBAINN NOILNTOA3Y

0oL 08 09 oy (114 0
; o
m
Wi E:
A A )\ L L ¢ O
\ v D

g
O
m

18 >
(@)
m

0Z X
x
°

74 A

(00000 = 7)) ss10U JusWRIMSEAIW
OU 107 35UOdSaI I[[013U0D DYSTUTULINNI(]  "9G oInSL]

HIGWNN NOILNTOATY

(1 1] 08 09 ov 174 0

-

.Ia\l\a\\(n “
(\/\'}\a}.\;/«'\/\((\ m m

g

o3

e}

m

Gl >

o

m

0Z X

x
52 or

00020
= W Aq peuyop asiou JUSIAINSBIUI
I0j osuodsal IB[[OIJU0D OSTUNULIDYR( LG 2INSI]

H3IGWNN NOILNTOAIY

001 08 09 ov 0c 0

N O

m

0

1 A O N\ m
\ v Vv § 0

g

oL

O

m

Sl s

3]

m

oz X

x
sz or

"100°0 = X Pu® 9200°0
= 99 Aq pouyep oyer uoryeSedord
XIy8UI- ], 10j 9suodse1 Ie[[ojuod [en( °'qg emSig

H3IGWNN NOLLNTOA3Y
ooL 08 09 oy oz 0

%fszigé i

X3ANI JONVNHOJHAd

oLo’

59



‘1000070 = Y pue
00020 = YD £q pauysp ssiou Juowraims

~BOW IO} asuodsal Ia[joIjucd snonmey) -zg anSig
HIAWNN NOILNTOA3Y

(1113 08 09 ov 174 0 -
} m
')\ll).\/\ w
e amgica v s T
S
oLz
o]
m
SL 2
o
m
0z
-
74 Or

"0006°0

= W5 Aq pouyep asiou juswaInNSEIW
10j osuodsal IS[[OI3UOO OTISTUTULISGA(] 09 am3t g

HIBWNN NOLLNTOA3Y

oot 08 09 oy 174 o _
m
2
X Algo
WML LR E
I :
¥ \ sL2
<
02 5
)
S &

000Z°1
= W) Aq peuyep astou jusmamseowr

Ioj asuodsar Ia[joI13U0d ONSIUTIIINNB( °T9 a3y
H3IEWNN NOILNT0AIY

oot 08 09 oy oz 0 5
| o
a
g N . i 5 > ] m
TN
VIR s
m
s1 2
T
0Z x
[ 3
i sz &

00090

= W) Aq pouyep 9sIOU JuSUISINSBOUT
10} asuodsel Ia[[0IIUCD OUSTUIULINN(] GG oIMIL]

HIBNNN NOLLNTOAIY

oot 08 09 oy 0z o .
} m
D
WY A >J s S
/ 2
. HHH o3
l :
| sl 2
%
0z
sz 9

60



10000000 = Y
pue 00070 = W Aq pauyep asiou juaul

-9Inseowl Ioj asuodsel I9[[01juocd ren( -99 omJiq
H38WNN NOILNTOA3Y
ool 08 09 ov (114 0 5
m
‘ o
— A !
\ VQAA/E,\QJ\ S M
o2
O
m
SL 2
_ o
m
0z X
=
S A
: 100 = X pue
000Z'0 = ") £q psuyep asiou JusWIaINS
-BawWl 10j asuodsol IS[[OIJU0D snonne)) ‘$9 aIm3Iig
Y3AWNN NOILNT0A3Y
0oL 08 09 ov 0z o
om
P
m
X s 9
MAy m
AA /\/2 ?} oLz
m
A A s
m
0z 3
]
SC A

‘T'0 =Y pue
0002°0 = W) £q pauyop asIou JUsWILINS
-gowl 10j 9suodsol IS[[OIJUOD SNOINE) °GY dINIL
HIBWNN NOILNTOA3Y
0oL 08 09 oy 0z 0
m
P
m
s 9
s
oz
2]
m
A SLZ
TV U A
Vi A AR, .
A V| </ N o
)
B | ST L
: ‘100°0 = Y pus
000Z°0 = ) £q pauyop as10U JUIWINS |
-gowl 10j 9suodsal IO[[OIIU0D SMOIMB)) €9 INI1 ]
Y3SWNN NOILNTOAIY
0oL 08 09 ov 0z 0 -
t m
A.)\.)\l\/\ m
NAPNY 18 m
>
oL2
0
m
GL3
Q
m
0z X
o
SZ A

61



'10000°0 = Y pus
00021 = ) 4q psuyep ssiou jusuraing

“B9W 10} asuodsal Ia[[013U00 snonne) (), oSty
H3ISWNN NOILNTOAIY
oot 08 09 oy 0z o
[ 4 m
=
N Nls3
TNV
A
L2
VMV
512
, ]
0z X
=]
sz &

‘10000 = Y
Pue 000Z°0 = ") £Aq pauyap astou Jusw

~oImsgaw 1o} ssuodsar 1s[jo13u0d reng gy QBME_

H3IBWNN NOLLNTOAIY
ool 08 09 ov 114

o

P

Y
A Il

L1/

© o © o o
St ™M N - o

e
"]
g-0l X X3ANI 3ONVWHO4H3d

1000 = Y
PU® 000g°0 = WD 4q psuyap sstou jusw
-0mseoul 10§ ssuodsal IS[JOIIU0D [N 69 am3r g
HIGWNN NOILLNTOAIY
ooL 08 09 ov 174 0 -
m
X
m
s 9
2
o3
(2]
m
St =
O
A ad >§ 0z “
14 o *
A\ WNAMA N Y
IVYVY v V

100000 = Y
Pue 000Z°0 = W) Aq psuyap astou jusw
~Inseall 10§ ssu0dsal IO[[0I3U0D Ten(] "9 a3y g

HIEWNN NOILNTOAIY

ool 08 09 ov 02 0 .
m

; a
\ ><<?>\/ ¥ S w

< (118 3

m

Sl M

<

| 0e x

| 3
S »

62



100000000 = Y
pue 000z 1 = ~) £q peuyep astou jJuswt
-9InsBaw 10§ 9su0dsal IB[[OIju0d [Bn( ‘§) oINS g

43IGWNN NOILLNTOAIY
ool 08 09 orv 174 0

WA
i

ty

=
n

<§> I &

—
T2) [=3 (2} [=]
o~ ~N - -

$-0b X X3GNI 3ONVIWHOIH3d

1000 = Y pue
000Z°'1 = " Aq psuyap asiou jusuIams
-83UI I0] 9SUOdSaI I9[[0I3U0D snomne) g2 am3Lg

H3SWNN NOILNTOA3Y
0oL 08 09 oy 0z 0

Ny 4 P VAN
07N YOl T
< ME’ , woc.m
lINL

o—c.X

'T0=Y pus
000Z'1 = Y £q pouyop 9sIOU JuUaUIaINS

-gouwl 10j 9suodsal IA[[OIU0D snoune)) ‘¢) oIm3rg

H3I8WNN NOILNTOA3YH

PA AA AL A,
g
'1000°0 = Y pue

000Z'T = W) £q pauyap as10u JuUaWAINS

00’

vo0’

900’

800°

X30NI IONVINHO4H3d

oLo’

-8ow 10j 9suodsal Ief[oIjuco snopne)) ‘T2 amSig

HIBWNN NOILNTOA3Y
ool 08 09 ov 174

N a
AT T

(=]

g & 2 w
V‘OL X X3aN1 3ONVINHOJ1H3d

&

63



‘10000 = Y
PUB 0002’1 = N 4Aq pauyap sstou jusw
BINSedw 10§ ssuodser I9[[0I1jU0D renq ‘g amSyy

H3IBWNN NOILN10A3H

00t 08 09 oYy 174 0

°
¥ > N ‘ i >. Ng.m
VI LI
T \ \ﬂ - 00 m
2
900"
| 2
- ¥ 800"
x

oL

1000000 = ¢

PI® 000Z'T = " 4q pauyep esiou juam
~oInsgaur 10} asuodser 1ayjo13U0D eng -9, a3t

HIGWNN NOILNIOAIY

001 08 09 ov oz 0
A {S -l
TLNASY n .o
S WA ¥ 200" 2
I \[ 8
v00" 2
p-3
2
900" §
F
800" Q
x
oL

o
0 o

100000 = Y
PU® 0002 T = ) Aq pauryap estou Jusur
~OIMSBoW 10} dsuodsal Io[jo1jU0d [enq  -yy am3i g

H3IGWNN NOILNTIOA3Y
ool 08 09 oy 0z 0

| 3
200" @
WL [p] 8
i 00" F
| 3 [ >
2
900" Q
\ S
_ 800 S
‘ °
oL’
1000000 = Y
PUe 000z’ 1 = W) Aq Pauyap astou juawr
~OIMSBOUI 10j asuodsar 1a[joryuco ren@ -g. am3ig
HIBWNN NOILNTOAIY
0oL 08 09 ov (174 0
t m
]
)
1 g m
ﬁ { ; > R A ot W
ATl TN
} f sLs
R
(17
\ x
G2 or

64



'000%°'0 = WD 4q pauyap astou
JuawaInseaw drpotiad 9[04d-()Z wopuel

10} asuodsel IS[[OIUOD OIISIUTULILN( 78 dMILJ

H3ISWNN NOILNTOA3Y
0oL 08 09 ov 114

A //J N\

N

(000070 = WD) 8slou JUSWAINSEIW

o

[= I ] [=} T2}
N - -
V‘OL X X3AGNI 3ONVIWHO4H3d

wn
o~

ou 10 9su0dsel IO[OIJUCD JSTUTILIRR(] "8 2M3L]

HIBWNN NOILNTOA3Y
00l 08 09 ov 174

o

0n o 0
- -

o
N
p-0b X X3ANI IONVWHOL4H3d

5S¢

"0002°0 = WD £q pauysp sstou
JueweNsBaW d1potiad a[0fo-(g wopuer

10j asuodsal Is[0IjU0Cd OusUIILIBIRJ I8 aIn31f
Y3ISWNN NOILNT0A3Y

ool 08 09 ov 0z o _
m

L~ E
AL PaVat g O

="y e X

>

oL2

2]

m

St =

o

m

0z %

t3

5
Sz A

1000 =X

pue 000z 1 = W' 4q pauyep asiou jusm

-oInseow Ioj osuodsal IA[OIU0D [eng 6L 93]

H38WNN NOLLNTOA3Y
ooL 08 09 ov 174

| A L 2 A

AL

N TS

Al

IR ,

200’

Yoo’

900°

oLo’

X3aNI 3ONVINHOdH3d

65



To=Y
P8 00020 = "D 4q poeuyep ssiou
jusumeInseauwl drpousd Loz urop
-uRlI 10 asuodsel Ia[joIyuod snonney 98 ol

YIGWNN NOILNTOAIY

001 08 09 oy 02 0 -
3

1]

s 9

i

o3

2

.r;m

A/ M AAM R
Y «<< NI x

o

sz A

1000 =Y
PU® 00020 = "D 4q peuyep asiou
juswaInseawr drpotrad s[4z wop
~UBl 10j asuOdsal JIA[[OIJWOD snomne) pg oINS g

H38WNN NOILLNT1OAIY

ooL 08 09 oy 0c 0

" )

m

; 2
\/r\/ |

\ e S 8

5

oL >

o

.

, SL 3

O

m

oz <

x

o

74 A

1000 =Y
PU8 0000 = ApH Aq pauyep esiou
juouIaISedW dipottad 9o4d-)g wop. ‘
-uBl 10] 9suodsel IB[[OIJU0D snonne) ‘gg am3ig

H3IEWNN NOILNTOA3Y

o0t 08 09 oy 0z 0 -
m
£
/fJ 2
VaN o3
o
A\ L=
a oA m —
v\ 2
YAV N S
0z X
x
sz %)

‘100000 = Y
PUE 00020 = W) 4q peugep asiou
Jueuwamsedw  otpousd 9pAo-Oz urop
"Bl I0j asuodsel Iefjorjuoo smonne) gg am3i

H3EGWNN NOILLNI0A3Y

ooL 08 09 ov 0z 0
¢ -l
L~ m
( <><Z/ v \A S m
2
oL 2
(2]
m
Sl >
o
m
0Z X
*
=
Sy

66



'100°0 = Y Pue 000g"0 = /D) £q pauyap
ostou juswanssaw dpouad a[oLo-)z

wopurer 10j esuodsal I9[[01jU0d [en( ‘(6 am3r g
H3GWNN NOILNTOAIY
ooL 08 09 ov 0z 0

m

)

-

s 2

=

o3

[2]

m

SL3

A =

, ..<> g\</. 0z %

| x

) ) :

NAAMARE. ’
100000
= X PU® 00020= "o £q peuyep
9si0U  juswamseaw d1porred 8[dLo-()z

wopurel 10j ssuodsal I3[oIjuco [en(y gy am3rg

H3ISWNN NOILNTIOAIY
ool 08 09 ov 0z ]

v

\ .V S W

o s

2

(2]

5L 7

2

o

0z %

x

5z 5

1 —_ r

10000
= Y PUe '0002'0 = "D 4q pauysp
9sIou jusweInseaw orpotred o[IAd-(g

WOpUeI I0j asuodsal IB[[OIJW0O Ten( ‘68 oIndij
Y38WNN NOILNTOAIY
001 08 09 ov (174 0
m
2
et S O
D
;)\.\,\ W
L¢ o
0
m
St 3
1] 8
m
0Z X
\ x
o
\ sz

"10000000 = Y
PU® 00020 = "D 4q pouyep astou
jusumaInssawl Jporad 9[ofo-oz wop
-uel 10y asuodsar Io[[OIjUOd [en( ‘.8 am31

H3ISWNN NOLLNTOAIY
ool 08 09 oy 174

L~

o

AL Paval

\' Rl 4 é(

n

©
p-0L X X3ANI IDNVINHOI H3d

D
-

€ &

67



[ A A S A T I T NIV AT I T ]

'10000°0 = Y
PU® 00020 = "D 4q peuysp ssiou
JueuraInseau o1poirad a[0Ad-)z wopuel
-UOU 10} 9suodsaI 15[[0IJU0O SNONNB)) "y oS

H3IGANN NOILNIOAIY

oot 08 09 oy 0z o _
m

X

L\\'{;\\n/ N g O
WO T

oL

o]

m

513

O

m

0z X

sz %

'0002°0 = W) 4q pauyop sstou jusw
-oInseaw dporrad a[0Lo-()z wopueIuou
10} 9suodsal IS[[OIJUOD DIISIUTULIIS(] "76 23y

Y3IBWNN NOILNTOAIY
0oL 08 09 oy oz

NN
N

[~

[T+]

(=)
-

n
-

p-0b X X3ANI 3INVINHOJIY3d

& 8

"0007°0 = W) £q peugep astou juawr
-amseaw dipotiad 9[0Ado-()Z wopuBIUOU
10 osuodsar I9[[OIJUCD OUSTTIIID( °£6 MBI

H3WNN NOILNTOA3Y

001 08 09 ov 0¢ 0
m
e o]
S TN LA 2
S X
\WWAR\VANTEI
\ .( owm
\ 3
2] N
v &
m
oz X
F
o
sz A

(00000 = #D) ss10u JuomaMSBIUI
OU 10j asU0dsax 19[[013TO0 DSTUTULIZR(  'T6 9B ]

H3IEWNN NOILNTOA3IY

0oL 08 09 ov 0z 0
-
I\\\.)l./(/ m
r\/\li\l\./.\/\(.\ 5 W
2
o2
0
m
st 3
o)
m
0z X%
»
sz 9

68



100000070 = Y
PU® 00070 = WO 4q pauyep ssiou
juemIdInsesw dipotrad 9aLo-9z wop
-uBIUOU I10J 9sUOdsal IB[[OIJU0D [en( °gE 2InBig

H38WNN NOILNTOAIY
0oL 08 09 ov 174

VIN ] o]
VoW N

Qo

wn

[~}
-

w0
-

=]
&
v_OI. X X30AN] 3ONVINHO4H3d

n
~N

T00=YX
pue 00020 = WD 4Aq peuyep ssiou
jusuraInseaw dipotrad a[oLo-()z wopuel
-uou 10j a9suodsal I9[[0IJU0O smonNe) 96 oINS

HISWNN NOILNTOA3H
ool 08 09 ov 0c 0

SN | A mw
/\ /;z\/ A opw
AN

0z X

m~wr

T0 =Y
pue 00020 = O 4q pouyep esiou
JUoWAINSBIW JTpoLIad a[o£d-()Z wopusl

-uou Ioj 9suodsaI IO[0I17u0d snonne,) -6 omSL
H38WNN NOILNTOAIY

0oL 08 09 oy 0z 0
m

2

o

"2

o—w

AN AN AN BN WA Gz

A A AT V]

m

VA R VT
sz 1

; Y

1000 =Y
PuB 00020 = "D Aq peuysp astou
juduIaINSBIW dfpoLrad a[o£o-(z wopusl
-Iou 10j 9suodsal IS[[0IU0D snoINe)) ‘GG AMIL]

HIBWNN NOILNTOA3Y
0oL 08 09 ov (174 0

TN A
VN O\

D

.
e
p-0L ¥ X3ANI IONVIWHOIH3d

D
-

[=]
~N

&

69



o "T000°0 = ¥
PU® 00020 = D £q pouyep asiou
juswraImseaw olpouad d[240-0g wop

-UBIUOU I0j 9sUOdSaI IS[O13UCD [en Q0T oInSi]

H38WNN NOILN10A3Y
0oL 08 09 ov 174

AN VA\

VAR

(-]

[[1] o wn
- -

[=4
~N

&
-0 X X3ON! 3ONVWHO4H3d

‘1000 =Y
PUB 00020 = "D 4£q pouyop ssiou
juswaImseawl drpolrad opfd-0g wIOp

-URIUOU I10j dsU0dsel Ia[[01U0d [en ‘TOT oISy
H3IAWNN NOILNTOAIY
0oL 08 09 ov 0z 0
m
o ¢}
M
s 9
2
o
[e]
TANE P
A 513
A LNTIN T VS
oz X
LAV :
74 OP

100000 =Y
PU® 00020 = WD 4q pouyep asiou
juomamseaw Orpotrad 8[pAd-gz wop

-UBIuou 10 asuodsel Is[[oIjU0d Teng ‘66 amS3yg
HIGWNN NOLLNTOAIY
(1 1] ) 08 09 ov 174 0

-l

m

7T 2

1 > ™\ N g M
/ L/ ~ v D

g

Y o5

o

m

Si >

(%]

i m

0z x

x

=
& 74 A

70



i-i
VECTOR VECTOR, [HELICOPTER| Zi VECTOR

I
PLANT >1
T-MATRIX |

|

|

A6;  MEASUREMENT NOISE |
VECTOR |
|

MEASURED
PLANT GENERATOR
e B e Z, VECTOR- -

T-MATRIX
CONTROLLER T-MATRIX
IDENTIFIER

PN CONTROLLER ]
_ 4£¥N _ _CONTROLLER _ _ _ _ __

S

]

|

|

|

|

|

r

| IDENTIFIED

I

|

|

|
.

T

r

LIMI

100 HR
10 HR
1 HR

EMER-

|

|

|

NORMAL :
|

|

GENCY :
|

|

|

|

J

(1000 HR)

OFF
(6 MIN)

CONSTRAINT-LEVEL
OPERATING LIMIT

L HHC CONTROL SWITC

Figure 102. HHC controller with control switch.



Form Approved
~ REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public burden for this collection of information s sstimated t0 1 hour par tespones, inciuding the time fo Instructions, ssarching existing data souroes,
np::!uha - 'th. dala nesded, and umpl':ﬂn:‘md um:\gmll’.colloabnwd information. Send comments ' nvn:‘ burden sstimate :rmw um aspect of this
collection of information, ing stions for reducing this burden, 1o Washington ors Bsrvices, Directorate for information Operations and Reports, 1215 JeHerson
Davis Highway, Bulte 1204, Arlington, VA 22202 3 fo the Office of Management and get. Paperwork Reduction Project (0704-0188), Washington, DC 20503,
— e
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1992 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Comparison of Three Controllers Applied to Helicopter Vibration

6. AUTHOR(S) 505-61-51
Jane A. Leyland
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Ames Research Center
Moffett Field, CA 94035-1000 : A-89130
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM-102192

11. SUPPLEMENTARY NOTES

Point of Contact: Jane A. Leyland, Ames Research Center, MS T042, Moffett Field, CA 94035-1000
(415) 604-3092 or FTS 464-3092

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Unclassified — Unlimited
Subject Category 08

A comparison was made of the applicability and suitability of the deterministic controller, the cautious
controller, and the dual controller for the reduction of helicopter vibration by using higher harmonic blade pitch
control. A randomly generated linear plant model was assumed and the performance index was defined to be a
quadratic output metric of this linear plant. A computer code, designed to check out and evaluate these controllers,
was implemented and used to accomplish this comparison. The effects of random measurement noise, the initial
estimate of the plant matrix, and the plant matrix propagation rate were determined for each of the controllers,
With few exceptions, the deterministic controller yielded the greatest vibration reduction (as characterized by the
quadratic output metric) and operated with the greatest reliability. Theoretical limitations of these controllers were
defined and appropriate candidate altemative methods, including one method particularly suitable to the cockpit,
were identified.

T —————————
14. SUBJECT TERMS 18. NUMBER OF PAGES
Helicopter vibration control, Higher harmonic control, Helicopter controller %0
6. PRICE CODE
A0S
[17. SECURITY CLASSIFICATION ]18. SECURITY CLASBIFICATION ] 19, SECURITY CLASSIFICATION |20, LIMITATION OF ASSTRACT]
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 208 (Rev. 2-89)

Presrrined hv ANGT Qed F

(IR AT

[ AURRRENN I



