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1. Introduction

The Strategic Defense Initiative (SDI) concepts require the development of systems for

complex space applications subject to demanding real time computational resource

requirements and very high reliability requirements. Complex space applications

are characterized by large amounts of numerical processing, large data bases, and

iterative approximations to optimal solutions. The algorithms used in the signal

and image processing that are necessary for target detection, classification, tracking,

and trajectory estimation are computationally intensive and must meet real-time

deadlines to match the incoming data rates of wideband sensors. However, these

algorithms can usually be decomposed into highly regular computational structures.

On the other hand, mission planning functions employ programming techniques in

which the computational requirements vary with dynamic changes in the incoming

data. The missions that these applications address require extremely long system

operating life. They are also divided into phases composed of long periods of moderate

activity followed by very short periods of high activity and characterized by vastly

different reliability and performance requirements. In addition, the system operates

under demanding system weight and power requirements in an environment subject

to radiation and thermal and mechanical stress.

These system characteristics lead to complex non-uniform architectures comprising a

large number of processors with mechanisms to extend operational life and to support

changes in mission phase or the attrition of system resources. Specifically, the ap-

plications require architectures that combine elements of massive parallel computing

techniques and of fault-tolerant system design. Parallel computing is a rapidly emerg-

ing field of _ch and many of the complex practical problems related to realizing

effective architectures have not been solved. This, coupled with the extra complexity

brought on by the fault tolerance requirements, presents the system engineer eval-

uating the performance and reliability for such systems with the extremely difficult

problem of conducting performance and reliability trade-offs over large design spaces

and verifying performance and reliability over a wide range of operating conditions.

The methods and tools to fully and effectively deal with these problems do not ex-

ist. This is due in pa_t to the sheer size of the systems involved. However, the

very nature of these systems dictate evaluation criteria that differ in many respects

from those used to evaluate more traditional computing systems. Consequently, tools

which can meet the challenge presented by the high level of complexity and the ex-

panded evaluation criteria for such systems are required. Further, the combining of

parallel computing with fault tolerance requirements dictates the need for integrating



the performanceand reliability evaluation tools in order to facilitate trade-offs be-

tween performance and reliability. Even if tools which meet the demands of present

applications did exist, the advances in this rapidly emerging area could soon render

them inadequate. Thus, the goal of this program is to develop an integrated set of

performance and reliability tools capable of managing the complexity of such designs

and robust enough to adapt to the inevitable technological advances.

In order to determine what tools are needed and how those tools should interact, this

first phase of the toolset development was focused on relating tools to a methodology

framework through the development and analysis of a paradigm of the design process

for an SDI-llke system. The paradigm was used to determine what system models

are needed, how the models interact, and what experiments and analyses are needed

in an effective methodology for system design for performance and reliability. It was

also used to illnstrate how tools support such a methodology and what the tool fea-

tures and capabilities should be. Based on the identified interactions between the

reliability and performance analyses, the paradigm will be expanded in a subsequent

phase to allow the examination of fault tolerance mechanisms and the study of per-

formance/reliability trade-offs. Also, existing tools will be identified and additional

took and interfaces specified and built in a subsequent phase.

This report documents the activity and findings during the first phase of this contract.

Section 2 discusses the issues related to tools and methodology. Section 3 discusses

the development of the paradigm and the algorithms and architectures selected for

inclusion therein. Sections 4 and 5 discuss the performance and reliability analyses

performed for the paradigm.



2. Tools/Methodology

The dual requirements of high reliability and high performance for systems that will

operate nearly autonomously in mission- and life-critical applications dictate that

those systems be validated to a high level of confidence. Accordingly, it is expected

that a rigid development process be utilized to assure that design errors are eliminated

before the system is delivered and to assure that the system will meet reliability and

performance objectives. A design for reliability methodology framework has been set

forth in the working document of the SDIO BM/C 3 Processor and Algorithm Working

Group [13]. This methodology specifies eight steps for system design:

1. Identify classes of expected faults over the lifetime of the system.

2. Specify goals for the dependability of system performance.

3. Partition the system into subsystems for implementation, taking into account

both performance and fault tolerance.

4. Select error detection and fault diagnosis algorithms for every subsystem.

5. Devise state recovery and fault removal techniques for every subsystem.

6. Integrate subsystem fault tolerance on system scale.

7. Evaluate the effectiveness of fault tolerance and its relationship with perfor-

mance

8. Refine the design by iteration on steps three through seven.

The methodology also specifies five phases of design and establishes milestones for

each phase and deliverables for the design reviews that occur at the end of each phase.

The specified design reviews are as follows:

1. System requirements review to specify a computational model, requirements

for performance and fault tolerance, applicable architectural approaches, and a

development plan.

2. System design review to evaluate architectural trade-otis and to select an archi-

tectural approach and fault tolerance strategy.

3



3. Preliminary design review to specify preliminary hardware and software design

and to provide performance and fault tolerance evaluation.

° Critical design review to provide a completed hardware and software design,

refined analysis of performance and fault tolerance attributes, and a plan for a

feasibility demonstration.

° Demonstration, evaluation, and test review to include a demonstration of brass-

board components and operational software, and an experimental evaluation of

performance and fault tolerance features.

The working document also specifies the use of tools in each phase and describes the

characteristics of those tools, as summarized below.

During the system requirements phase, tools are needed to evaluate very high-level

designs without detailed hardware and architectural information. These tools must

interface with the tools that analyze more detailed designs in later phases. The out-

puts of these tools should be usable as inputs to more detailed tools and/or compared

with more detailed evaluation results to verify that the high-level requirements are

met by the actual design. -It should be possible to share data files by tools at all levels

in the design process. The need for integration is paramount. Current practice in

this area results in ad hoc methods being reinvented by each contractor and results

in tools that do not readily interface with tools at other levels of design. A generally

accepted standard is sorely needed.

At the system design review, architecture alternatives are evaluated. Tools are needed

that will allow meaningful comparisons of the performance and fault tolerance at-

tributes of each alternative system. The tools must model high-level architecture

features and must incorporate a high-level fault model. In the expert report, it is also

recommended that error propagation effects and the effects of corruption of system

state due to faults be modeled at this level. An accurate testability analysis is also

required. Some tools are available that do part of this job (PMS and ISP simulators,

for example). Unfortunately, these simulators do not consider the effects of faults. An

integrated tool that evaluates both performance and fault tolerance attributes using
a common data base and model is needed.

At the preliminary design review, more details of the selected design are available.

It should be possible to refine the models created for the system design review to

reflect the newly available detail. More accurate estimations of performance and

fanlt tolerance parameters should then be possible. The tools should now be able

to provide accurate estimates of coverage of the error detection mechanism and to

4



evaluate the quality of the error containment and error recovery procedures. The

tools must have a clean interface to the more detailed tools that will come later and

to the more general tools used earlier. Accurate reliability modeling tools are also a

necessity at this stage.

At the critical design review, details of both hardware sad software designs axe com-

pleted. The evaluation tools should allow further refinement of the models to reflect

the additional detail. Detailed hardware and software simulations should now be

performed. Since existing tools cannot handle the complexities of modern designs at

this stage, some form of hierarchical simulation will most likely be needed. A small

part of the system will be modeled in great detail and interfaced with higher-level

simulations of the remainder of the system. This will require a clean interface be-

tween the higher-level and the lower-level simulation tools. Reliability models will

also need to be refined to reflect the more detailed information. Simulation results

such as coverage factors, recovery times, etc., need to be easily transferred from the

simulation program to the reliability analysis program. Again, integration is needed.

At the test, implementation, and validation review, the results of experiments per-

formed on the prototype should be presented. The reliability modeling tool should

have predicted a behavior of the system that can be verified by actual injection ex-

periments. The modeling and simulation tools should be interfaced with the testbed

so that the required inputs to the testbed can be generated automatically and the

outputs compared with those predicted by the simulations.

Given this methodology framework and its reliance on tools to support design and

produce deliverables for the design reviews, a tools/methodology task was included

in the DAHPHRS program. The objectives of this task were to show how the use

of performance and reliability tools within such a methodology framework can sup-

port the design process and to identify the interactions between the performance and

reliability analyses. The tools/methodology task benefited from actual evaluations

of architectures and algorithms using currently available performance and reliability

tools. These evaluations produced a number of observations concerning the capabil-

ities of tools for the performance and reliability analysis of multiprocessor architec-

tures. In particular, by addressing the question of what information (level/resolution)

is required to ensure that the fidelity of the analysis is adequate and that desirable

system configurations are not precluded from consideration, it has become evident

that distinct computing paradigms require distinct simulation paradigms. For ex-

ample, tightly coupled architectures require different modeling techniques from those

that are suitable for loosely coupled multiprocessor architectures. It also became

clear in the course of this effort that a number of tools are necessary for managing



the complexity of the simulation of the designs. The need to establish the accuracy

of the simulation results also arose along with a recommended approach for doing so.
Validation of results is especially important in critical applications.

2.1. Performance Models and Tools

The role of performance models and tools in support of the methodology was inves-
tigated through performance analyses of the paradigm algorithms and architectures.

These analyses illustrate the roles of measurement, functional simulation, and stochas-
tic methods in support of modeling. Two fundamental issues are the validation of

models and the selection of an appropriate level (fidelity) of modeling. The appro-
priate level depends both on the information required to build the model versus the
information available and on the amount of data that can be derived from the model

versus its reliability and usefulness. The analyses also identified additional tool needs.

System performance should be modeled by multiple models of increasing detail and

complexity consistent with the amount of information available at particular design
stages. Also, as the performance analyses conducted by Honeywell for the Encore
Multimax and the JPL Hypercube demonstrate, the resolution required in a per-

formance model also depends on the architecture. Consequently, the methodology

requires a decision as to what level of model is needed to support the required gran-

ularity of simulation for a given architecture at a given design phase. At the highest

level, the system is modeled by an analytical model using primitive information such

as processing and communication workloads for the algorithms and processors and
IO and memory bandwidths for the architecture. As the hardware and software of

the system are defined in more detail, performance modeling by simulation and en-

gineering models can be initiated. The performance modeling process, as illustrated

in Figure 2.1, starts with a description of the architectures and algorithms that make

up the system. Prom this description, the functional, performance, and engineering
models can be developed.

The performance model is the essential system model, consisting of a data/control

flow model of the algorithmic processes which has been mapped, or constrained, to a
structural model of the architecture. A functional model can be built which describes

the behavior of either the components of the architecture or the algorithms "that will

be executed by the system. Finally, the engineering model consists of system proto-

types for the algorithms and/or architectures. All three models produce performance

predictions, the functional and performance models through simulation and the engi-
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neering model through measurement. The three models interact through parameter
values computed by the functional and engineering models for use by the performance

model. Eac_ of the models can be built to whatever degree of detail is reasonable for

the stage of design under consideration, and the cross-validation that occurs among
the models as they produce consistent performance assessments allows the models

to be used and built upon with confidence at subsequent levels. Thus, performance

models that have been built from and validated by measurements from engineering
models can be used in later analyses or subsequent system designs without the need

for implementing a full engineering model.

The performance and functional models of the paradigm architectures and algorithms

were created using the Architecture Design and Assessment System (ADAS). ADAS

is a tool developed by RTI for the hierarchical description and assessment of system
designs. In ADAS, the system performance model is created from a structural model

of the architecture and a data/control flow model of the processes. The structural

model, or ADAS hardware graph, is a directed graph comprising nodes to describe the

architectural components and arcs to describe the connectivity among components.
Attached to each node and arc of the graph are attributes which become constraints

in the performance model based on the construction of a mapping from the structural

model to the algorithm model. The algorithm model, or ADAS software graph, is a di-

rected graph describing the data/control flows (arcs) of the software processes (nodes)
in the system. Its attributes define the required computing and communication re-

sources and control the assignment of software components to hardware components.

The constrained software graph created by the construction of a mapping and con-

talning processing times defined by the attributes of both graphs becomes the ADAS

performance model. This pedonnance model can be simulated by the ADAS tool
GIPSIbi to predict the performance of the software processes on the architecture for

that mapping and thereby predict whether the system will attain its throughput re-
quirements. In ADAS, a CSIM functional simulation model can also be constructed

to simulate the function of software processes (such as the application algorithms

and, as was done by VPI, reconfignration algorithms) or the detailed operations and

interactions of the system components (as was done by Honeywell for the Multimax

model).

Recent modifications to ADAS will make it easier to explore the large experiment

space inherent in the design of parallel and fault-tolerant systems. An Attribute

Definition Language (ADL) and ADL Evaluator (ADLEVAL) have been developed
for the creation of parameterized performance models. ADL expressions describe

the performance model attributes in terms of system parameters. These expressions
are associated with ADAS nodes, arcs, and graphs, and are translated into ADAS



attributes by ADLEVAL. Also, the ADL expressions can be inherited and synthesized

throughout the hierarchy of graphs that describe the system so, for example, processor

instruction processing speeds, memory and interconnect bandwidths, and mission

parameters can be included in an ADL file at the root graph and be accessed at all

subsequent graph levels. A prototype ADL and ADLEVAL were used in this study

and, as a result, modifications to the ADL specifications and their implementation

were identified that provide more flexible parameterization and facilitate modeling

more complex systems.

The Graph Transformation System (GTS) is a rule-driven tool that aids the user in

customizing software to fit system constraints, including the capabilities of available

hardware resources and the processing requirements of other algorithms that are part

of the system model. The transformation rule base is a set of ADAS graphs, each of

which describes the patterns and transforms of a coexistent set of rules designed to

transform an algorithm to improve its fit with the system constraints, without chang-

ing its function. Transformations can be used to increase or decrease parallelism, to

insert fault-tolerant features into an algorithm, to represent the cost of communica-

tions delays, or to eliminate unnecessarily redundant operations from an algorithm's

description.

In addition to the ADAS performance and functional models, an engineering model of

the WAUCTION_ASSIGNMENT algorithm was constructed from available engineer-

ing code. This engineering model was used to measure expected system performance

as well as to provide parameters for the performance model. It is especially impor-

taut that measurements and statistical data be produced to derive the parameters of

simulation models of mission planning algorithms, since the control flow and iterative

structure of such algorithms is highly data and mission parameter dependent. It is

also necessary for these algorithms that stochastic model attributes can be specified

and utilized in performance simulation.

The complexity and size of the systems under consideration are certainly at the stress

limits for the existing tools for both model creation and simulation. A considerable

amount of effort was required to create the algorithm models. This effort highlights

the need for automatic generation of models from system and requirements descrip-

tions, such as those developed by CASE tools. It also highlights the need for a library

of models of functions common to a wide class of algorithms, such as sorting and lin-

ear programming constructs. Since parameterized function models can be built to a

high level of detail independent of any architecture, they can contain a higher degree

of information than those that were built for this study. Thus, when a library of func-

tion models exists, the individual models can be used to build an application-specific



model of greater resolution than would be feasible by constructing the model from
scratch.

2.2. Reliability Models and Tools

The role of reliability models and tools in support of the methodology was investigated

through reliability analyses of the paradigm architectures. Since the major emphasis

on fault tolerance will occur in Phase II, a selection of preliminary reliability analyses

were undertaken in this phase. These preliminary analyses highlighted the reductions
of large models, particularly the creation of approximate models to bound the exact

model of a complex system; the use of tools to document and provide verification of
the models; and additional tool needs.

The high system reliability requirements that exist for an application critical to a

long space mission can only be met by a system designed to be fanlt-tolerant. Such

a system has to be carefully evaluated to determine whether or not the reliability
requirements are met. However, the existence of fault tolerance mechanisms makes

that evaluation more difficult by increasing the number and complexity of significant

factors affecting system reliability. Thus, the ideal reliability modeling .tools will have

to handle very large, complex systems; analyze complex processor intercommunica-

tion networks; handle permanent, transient, and intermittent faults; accommodate

time-variable failure rates; allow system starting states other than zero failures with

unity probability; model complex fault recovery processes; allow for cool spares with
reduced failure rates until activated; handle time sequence dependencies between cer-
tain faults; and allow for multiple near-coincident faults.

As with system performance, system reliability should be assessed by multiple mod-
els of increasing detail and complexity within an overall framework. The reliability
modeling process, as illustrated in Figure 2.2, starts with a specification of the fault

environment within which the system will operate and of the goals for the depend-

able performance of the system. System models are then created from a description
of the architectures and algorithms that comprise the system. The reliability model
describes the behavior of the system in response to the occurrence of faults and is used

to predict the probability that the system will be operating correctly at a given time.

The fault and recovery models describe the mechanisms by which the system detects
faults and isolates and recovers from them. These models are used to predict the

effectiveness of these mechanisms and to derive measures of parameters used in the

reliability model. Each of the system models can be built to whatever degree of detail
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is reasonablefor the stage of design under consideration. However, as the fault and

recovery models become more detailed, the parameters of the reliability model can

be specified more accurately. When engineering prototypes of the system have been

developed, measurements of the fault detection, isolation, and recovery parameters

can be made mad used to validate the models of the mechanisms for future use.

Two common techniques for reliability analysis are fault tree analysis and Markov

modeling. Although the creation of fault tree models is straightforward and tools to

solve them exist, such as the NASA-LaRC Fault Tree Compiler [11], they can only be

used to describe fault-occurrence behavior. However, for a system to be able to at-

tain the ultrareliability required for mission-and life-critical applications, it must have

some fault handling capability and would probably incorporate dynamic reconfignra-

tion. In fact, the fault handling mechanisms can become the most important factor in

system reliability for short missions or for particular mission phases. Therefore, tools

such as ARIES [12] have been developed based on finite-state, continuous-parameter

Markov processes. Since in a Markov model system behavior is described by transi-

tions among operational and failure states, reconfiguration is easily modeled.

The fault-handling recovery mechanisms that are usually represented by a transition

rate parameter in Markov models can be explicitly modeled with the semi-Markov

extensions of tools such as CARE III [4]. These extensions allow the inclusion of

multiple recovery transitions even though they may occur at rates much faster than

the fault occurrence transitions.

The solution of Markov and semi-Markov models is computationaUy difficult and

leads to tools being built around fixed, parameterized fault-handling models with

simplifying assumptions that permit a stable and efficient solution [1]. Since a rigid

model precludes a tool's use on systems not satisfying all of its assumptions and

requires that the user develop an in-depth understanding of the model and its as-

sumptions, attempts to generalize or include multiple models have resulted in tools

such as HARP [3].

In addition to handling built-in models, most Markov tools assume fixed, usually

exponential, distributions for the transitions. However, the Semi-Markov Unreliability

Raage Estimator (SURE) program from NASA-LaRC [5], can solve models with slow,

exponential fault arrival transitions and arbitrary recovery transitions, as long as the

fast transitions are several orders of magnitude faster than the slow ones. SURE is fast

and accurate for these models because it computes upper and lower bounds on system

death state probabilities based on algebraic properties of the means and variances of

recovery times, rather than directly solving the differential/integral equations of the

12



model.

Markov (including semi-Markov) modeling provides a flexible way of describing fault-

tolerant systems, and tools exist to compute solutions of the models. However, since
the Markov state descriptions increase rapidly with system size and complexity and

the solutions are computationally difficult, tools that are based on Markov models

have inherent limitations. In general, since highly-reliable, high performance systems

result in large, sequence-dependent models, no current reliability analysis tool can

address all of the complex interactions of such systems. Even if the underlying model

is flexible enough to describe the system, the complete model would be too large

to be solved. Furthermore, no tools exist to assess the reliability of the complex

multiprocessor networks found in these systems.

Independent of any tool's ability to compute a solution for a particular model, the
creation and validation of a correct reliability model is difficult. Thus it is important

to have a tool such as the Abstract Semi-Markov Specification Interface to the SURE

Tool (ASSIST) [8] that can create a parameterized model from a program language

description of the system's fault occurrence and handling behavior. Such a tool not

only facilitates the creation and subsequent modification of large models, but also

provides documentation for the model and a means of communicating a system's fault
tolerance description among different staff and phases of the development process.

Any methodology for reliability analysis has to include facilities for tracking the sys-

tem requirements through some conceptual reliability model to a_:tual and analyzable

approximate models. This suggests exploring methods for the systematic creation of a

complete reliability model from the system description to which reduction techniques
can be applied to produce analyzable models. A technique for generating a model

based on the system description could start with the definition of system failure in
terms of software module failure. Module failure would in turn be defined in terms of

processor failure, based on the software to hardware mapping. Ultimately, processor

failure is defined in terms of hardware component failure, such as the CPU, memory,
and interconnections.

As an example of the construction of such a mode], consider a system where system
failure is defined as the failure of 4 processes. Ea_ process consists of 3 redundant
modules and is considered to have failed if any 2 of its 3 modules fail. A module

fails if the Processing Element (PE) that it is mapped to fails. APE fails if either
its CPU or its Network Element (NE) connection fails. If an NE falls, then all PEs
connected to it fail. An NE fails if either its CPU or any of its cluster connections

fail. Figure 2.3 shows the mapping of such a system to the FTPP duster. In this

13



figure, the processors that comprise earth of the four TMR's are labeled as P1, P2,

P3, or P4. Each of the four processes are mapped to a distinct TMR. For example,

process module M1 and its redundant modules M4 and M7 are mapped to TMR P1.

The ASSIST code to describe the system and generate the Markov description of the

system is listed in Figure 2.4.

Since the systematic creation of reliability models of complex systems will result in

large models, reduction techniques that can be applied to produce analyzable models

are needed. One technique is to bound the reliability of the complete system by that

of an approximate system. An optimistic bounding model can be built by relaxing

constraints on reconfiguration and eliminating some of the degrading transitions. A

pessimistic, or conservative, model can be built by limiting reconfignration possibil-

ities and by creating some degrading transitions. For example, a mapping of the

complete model of the above example to a reduced, conservative model can be con-

structed by aggregating all states where the number of failed modules per process is

the same and combining redundant transitions. A Markov description of the com-

plete model contains 260 states, 3312 transitions and 2434 death states (aggregated

into 4 death states); the reduced model, 17 states, 128 transitions, and 98 death

states (aggregated into 1 death state). While the complete model of this example is

not necessarily too large to solve, it illustrates how model size can be significantly
reduced.

2.3. Integrated Performance and Reliability Tools

The performance and reliability of a system that must be both fault tolerant and

capable of high throughput cannot be accurately gauged independently. A system's

fault tolerance mechanisms must be included in the system performance analysis as

well as in the reliability analysis since they not only require significant processing

resources, but have to be executed within strict timing constraints. Furthermore, the

definition of what constitutes an operational versus a failed system state for reliability

has to be derived from an assessment of the ability of the system in that state to

achieve the required performance levels. Another level of interaction is required when

embedding applications into ,_ parallel system since the fault tolerance mechanisms

a_ect the partitioning of tasks. For example, the task granularity that gives the best

computational performance may not be optimum for systems where rollback is used

for error recovery.

The goal of integrated performance and reliability analysis tools is to provide consis-
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n_nes = 4; (e Junber of htuork Elements (IEs) *)

n_processes = 4; (* total nunber of processes in the systen *)

redundancy = 3; (e nunber of redundant nodules per process e)

• _nodules =n_processes • redundancy;
l_con = le-7; (* failure rate of interconnections *)

l_vote • lo-6; (* failure rate of voters ,)

l_cpu • le-6; (e failuzs rate of processors e)

l_pe • l_cpn + l_con;
l_ne • l_vote + (n_nss-l)el_con;

rpace • (•: array[1..n_iodules] of O.. 1) ;

start • (•_nodules of 1);

(e transitions due to processor failure e)

($ each processor services exactly one nodule *)

for j=l,n_•odules

if •[J] > 0 tranto n[J] • 0 by l_pe;
endfor;

(e transitions due to fault containment region failures e)

if •[I] + hE2] + •[3] > 0

tranto •[1] • O, •[2] = O, n[3] = 0 by l_ne;
if •[4] + •[5] + •[6] > 0

tranto n[4] • O, •[5] = O, •[6] - 0 by l_ne;
if •C7] + •C8] +n[O] • 0

tranto •[7] • O, •[83 = O, nO9] = 0 by l_ne;
if •[10] + •Ill] + nil2] • 0

tranto •[10] • O, •[11] • O, •[12] = 0 by l_ne;

(e death states _re def±ned e)

(* by the napp£n s of alKorithunodules to processors e)

(e and by the grouping of nodules into processes e)

deathtf •[ 1] + •[ 4] + n[ 7] < 2

deathif n[lO] + n[ 2] + n[ S] < 2

danthtf •[ 8] + nil1] +,hi 3] < 2
dsathif m[ 6] + m[ 9] + •[12] < 2

(e process ! failure e)

(e process 2 failure *)

(e process 3 failure e)

(e process 4 failure e)

Figure 2.4. ASSIST Code
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tent performance and reliability models and to facilitate the transfer of data from one

model to the other so that through an iterative design process a reasonable trade-off

between performance and reliability can be attained. The flow of data among the

models is illustrated in Figure 2.5. This data includes the architectural and perfor-

mance measures that al_ect reliability model parameters (such as the number and

failure rates of components and the system configuration), the network topology, and

models of the fault tolerance mechanisms that can be used to assess their impact on

performance.

The high-level interactions between the performance and reliability models that need

to be studied are those that determine both the minimum number of components, ac-

tive and spare, and the system configuration required to achieve both the performance

and reliability requirements for the system. At a more detailed level, the fault de-

tection, isolation, and reconfiguration (FDIlt) parameters such as time and resources

required to attain adequate reliability can be measured, and the software-implemented

fault tolerance mechanisms such as system reconfiguration algorithms can be evalu-

ated. For example, the reliability analysis m_ay include a coverage model parameter

based on the time for execution of an FDIR algorithm. If a performance model of the

algorithm exists, its execution time could be obtained from a performance analysis

of that model mapped to the target architecture. On the other hand, if a system

performance requirement is specified on the basis of an application parameter, such

as the number of targets a system should be able to prosecute at a given time during

a mission, the reliability analysis could be used to determine the expected number of

processors available at that time and a performance analysis could then determine if

the required target capacity could be met. Finally, performance/reliability trade-offs

can be performed to assess the efficacy of fault-tolerant mechanisms and their effect

on system performance, such as a comparison of triplex redundancy versus duplex re-

dundancy with checkpoint/restart with respect to system reliability and performance

cost.

Techniques for closer interaction between reliability analysis tools and performance

analysis tools will depend upon further work on reliability analysis. In the second

phase of this e_ort, when the fault tolerance mechanisms and algorithms for the

paradigm systems will be modeled, the appropriate performance/reliability trade-

offs will be conducted. However, in this first phase some examples of preliminary

types of analyses were conducted, such as the high-level assessments of the commu-

nication costs associated with the FTPP's strategy to achieve Byzantine Resilience

(Section 4.3) and a group of analyses to evaluate the performance of alternative re-

configuration procedures (Section 4.7).
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In addition to enhanced capabilities for performance and reliability analysis, inte-

grated tools would support a design-for-reliability methodology in the areas of exper-
iment planning and documentation for validation. Experiment planning is essential
due to the large size of the design space, the use of tools at the limits of their capac-

ity, and the need for regression testing of models. Additional research in experiment

planning is needed in the areas of consistency checking and configuration manage-

ment. Consistency checking has to address ways of assessing that the level of reso-

lution is consistent across all system models and especially that there is consistency

of resolution between different input parameters, between simulation time and input
parameters, and between input and output. Configuration management policies have

to address what consistency checks need to be applied and when they are required, as

well as how to support regression testing. Tools for running experiments should allow

the user to define the search space, to define the search strategies, and manage the
files generated by and for the experiments. They should also support the validation

of the models and aid the comparison of results from different runs.

A proposed structure for integrating performance and reliability analysis tools is il-

lustrated in Figure 2.6. This structure would provide a shared data base to facilitate
interaction between the models and an evaluation controller to implement the experi-

ment planning and execution functions. In addition to the data required to build the

performance and reliability model, the data base would include a library of models

of primitive functions that could be used to build algorithm n/odds; rules for the

transformation of architecture models to meet requirements of specific applications,

to reflect alternate configurations, or to achieve parallelization goals; and rules for
mapping algorithms to architectures.

The evaluation controller would control the design and analysis space, maintain con-

sistency among the models, and support model regression testing. To be able to

control the design and analysis space, it should support application of appropriate
tools at each design and analysis phase, searches of the design space, and pruning

of unnecessary analyses. It should provide consistency maintenance through built-

in configuration management and consistency verification. Also, since each design

change requires some validation that previous constraints have not been violated,
the evaluation controller should provide support for regression testing through back

annotation and generation of consistent model configurations.

A configuration can be defined as the collection of files which describe and support

the analysis of a particular model or of all the models of a system. Many versions
of models and the files assodated with them result from an iterative and hierarchical

approach to design. Thus, it is important that configuration management provide
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access to consistent files for use by the tools. Preliminary requirements for tools

to support configuration management are that each file must contain a file version

number, each tool must be able to verify that it is processing files for a consistent

configuration, and each tool must include configuration information in its outputs.

A tool can verify that it is using files from a consistent configuration by building

its own configuration, by using a configuration built by the evaluation controller, or

by accessing the configuration information in the data base. The configuration data

base c_an be updated by either the evaluation controller or the tool, but consistency

checking must be done whenever configurations are defined or modified.

The main issue in the design of the shared data base is the management of the

heterogeneous collection of files that results from the many models required to describe

and analyze the pedormance and reliability attributes of a system. Other issues are

how to provide common storage for shared data to support both the generation of

tool-specific input files and the extraction of parameters from output files and how

to incorporate the configuration management facilities of the evaluation controller.
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3. Paradigm

Based on the framework provided by the design for reliability methodology of [13],
a paradigm for performance/reliability modeling in support of system development
was created, as illustrated in Figure 3.1. In this paradigm, the system development

phases from system concept to implementation and test are carried out in the ap-

propriate system engineering domains under the guidelines of the methodology. As

architectures and algorithms are developed in this process, performance and reliabil-

ity tools assist the individual designers in evaluating and changing the designs and in

maintaining the consistency of the designs with the overall system requirements and

specifications. Selected results from the modeling effort are used to satisfy portions

of the requirements for the various development milestones such as design reviews.

Ideally, it would be desirable to exercise the paradigm through the analysis of a

complete "SDI-like" system to determine what system models are needed, how the
models interact,: what experiments and analyses are needed, how tools support the

methodology, and what the tool features and capabilities should be. Lacking both
the specification of such a system and the funding, it was not possible to exercise

and assess all aspects of performance and reliability modeling support for the system

development process. Consequently, effort was focused on those facets of the paradigm

likely to reveal weaknesses in the existing methods and tools or likely to yield payoffs

in the form of refinements to large portions of the methodology. To this end, areas

where the characteristics of the complex spare mission are distinguished from more
ordinary applications were considered of special interest, and two algorithms and
three architectures were selected for analysis.

A typical SDI application could have requirements to detect and trar.k potential

targets and to allocate weapons necessary to destroy targets. The signal/image pro-

cessing algorithms that would be employed to provide target detection, classification,

tracking, and trajectory estimation are computationally intensive. However, most
often they can be decomposed into highly regular computational structures that can

be effectively handled by vector and pipeline processing techniques. The optimal
allocation of weapon resources to targets requires the use of algorithms that differ

significantly from signal/image processing algorithms. These mission planning func-
tions employ linear, integer, nonlinear, or dynamic programming techniques which

have computational requirements that are dependent upon the incoming target data
and that vary with the number of targets. These algorithms are more difficult to de-

compose and embed in a parallel computing architecture, and were therefore judged

to be of particular interest for this effort. Two mission planning algorithms were
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selected and used in this study. These algorithms are discussed in Section 3.1.

Meeting the demanding throughput requirements of such applications will require

advanced architectures consisting of a large number of interconnected processors or

computers. Of the various parallel computing architectures that have been proposed,

three were selected for use in this study. The JPL Hypercube, an MIMD distributed

memory architecture, was selected primarily because the hypercube is one of the most

extensively investigated parallel computing architectures. The Encore Multimax, an

MIMD shared memory architecture, was selected to provide contrast to the hyper-

cube particularly in the area of interprocessor communications. Finally, the Charles

Stark Draper Labs Fault-Tolerant Parallel Processor (FTPP) was selected because

it is the only parallel processing architecture which has the advanced fault-tolerant

features necessary to attain very high reliability. As such, modeling for the FTPP

is distinguished from ordinary parallel processor modeling and should be expected

to provide insight into weaknesses in the methods and tools as they pertain to high

reliability applications. These architectures are discussed in Section 3.2.

An important aspect of the paradigm is the information required to carry out the

modeling for various stages of the design process. As part of this study, an audit of

the information used to construct the various models was conducted. This information

is discussed in Section 3.1, Algorithms, and Section 3.2, Architectures.

3.1. Algorithms

The algorithms selected for the paradigm are two mission planning algorithms devel-

oped by Alphatech, Inc. The first algorithm solves the weapon-target assignment and

target sequencing decision problem by breaking it into a four-level optimization prob-

lem [16]; the second, by conducting an auction among the targets for the available

weapons [16].

3.1.1. Algorithm 1: Weapon to Target Assignment and Tar-

get Sequencing (WTA/TS)

This algorithm is directed toward the optimal assignment of space-based Directed

Energy Weapons to multiple hostileboosters [16].It solvesthisoptimization prob-

lem by partitioninginto four subproblems that can be solved iteratively.WTA/TS
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consistsof four component functionscorresponding to the four subproblems: target

clusterdefinition(TCD), weapon-target clusterallocation(WTC), weapon to target

assignment (WA), and targetsequencing (TS). Figure 3.2 shows the major data flows

among the WTA/TS functions.

The input parameters that control the sizeof the problem are the number N of

targets,the number W of weapons, the number C of clustersto be formed, and the

degree R of redundancy for weapon assignment. Other external inputs include the

N × N targetinterdistancematrix, the N x W killprobabilitymatrix, the N x W

weapon slew time matrix, the N × W utilizationmatrix, the N x W targetprocessing

time matrix, the vector of N targetdue dates, the vector of N target values, the

vector of N target processingtimes, the time startfor the planning frame, and the

time startfor a new launch. Ea_ of the WTA/TS functions issummarized below.

TCD: The target cluster definition function assigns targets to clusters based on

intertarget distance. It seeks to optimize Q = F [intertargetdis_ance], where each

target is in one and only one cluster. The optimization problem is an integer (0/1)

programming problem solved using LaGrange multipliers and a subgradient iterative
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algorithm.

WTC: The weapon-target cluster allocation function balances the cluster allocation

load across weapons, assigning multiple weapons to each cluster of targets. It seeks

to optimize

Q = F [kill prob, target value, weapon use, reassign cost]

where a cluster is assigned to at least Rk weapons. The optimization problem is

solved by breaking it into subproblems. The first subproblem is defined to be

Q1 = _ MIN F [killprob, targetvalue, reassigncost, use, LaGrange]
elmfler

and solved as multiple integer programming problems. The general integer program-

ming solution is illustrated in Figure 3.3.

The second subproblem is defined to be

Q_ = F [Use, LaGrange]

and solved as simple scalar.

The two subproblems combine as Q1 + Q2 with

Maz [Q,[M] + Q2[M]]

being solved via a subgraxiient method.

WA: The weapon-to-target assignment function assigns weapons to targets within a

cluster based on kill probability, time required to switch from target to target, and

the value of the target. It seeks to optimize

Q = F [killprob, switehtirne, targetvalue, weapon]

for each cluster, where at least one weapon is assigned to each target. This problem

is solved similar to the weapon to target cluster allocation problem.

TS: The target sequencing function establishes an optimum firing sequence for the

list of targets assigned to each weapon. It seeks to optimize

Q = F [targetvalue, duedate, proctime, switehtime]

Seven suboptimal algorithms are under consideration for this function; these algo-

rithms use dynamic programming concepts and two use heuristics.
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3.1.2. WAUCTION__ASSIGNMENT

The WAUCTION.ASSIGNMENT algorithm is a target-oriented weapon-to-target

assignment algorithm with the objective of minimizing the expected value of surviving

targets [16]. ALPHATECH's solution to this non-linear, NP-complete problem is

Iterative Linear Network programming (ILINE), which approximates the non-linear

problem iteratively with a linear one [16]. Their formulation of ILINE is as follows:

Step 0: Initialize for all targets and weapons:

XP,_ 4-- 0

(the number of interceptors permanently

assigned from weapon j to target i)

Step 1: Solve the linear programming problem:

xid s

xij _< mj for every weapon j
$

E x_j < 1 for every target i

Step 2: Locate the weapon-target pair j°, i" yielding the

largest value of (v_ 'PiZ" x_z) from the LP solution.

Step 3: Update the permanent assignments, weapon capacity,

and target value; check for termination:

Xp_',_" 4-" Xp_',i" "_- 1

nj. *--- nj. - 1

vs. _ vi,(I - pioj.)

Stop ifallinterceptorsfrom allweapons have
been allocated.

Otherwise, return to Step 1.
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WAUCTION..ASSIGNMENT implements ILINE using a modified auction strategy to

produce the linear programming solution in Step 1. This auction strategy is based on

the auction algorithm developed by Bertsekas [16]. The weapons, targets, and the fea-

sible matchings between them form a network. Initial values are assigned to each tar-

get and a minimum bid increment is specified. Cycles of bidding in which targets bid

for weapons alternate with assignment phases. The initial value of a target is updated

to an expected value after the target is assigned to a weapon. These expected values

are compute d as the product of target value and the kill probability of the weapon-

target pair. The bidding phases along with the assignment of expected values and the

specified minimum bid increments allow alternative weapon-target assignments to be

considered, thus increasing the optimality of the solution. The bidding-assignment

phases are conducted iteratively within an outer, non-linear iteration until all inter-

ceptors from all weapons have been allocated to targets and the targets of greatest

value have been assigned. The inputs to the WAUCTION.ASSIGNMENT algorithm

are the number of weapons, number of targets, number of assignments to be made

per iteration, the bid scaling constant, the kill probability matrix, the initial target

values, the number of interceptors per weapon, and the minimum kill value threshold.

The outputs from the algorithm are the assignment matrix of number of shots per

weapon i assigned to target j and the expected surviving value of each target. A data

flow graph of WAUCTION_ASSIGNMENT is shown in Figure 3.4.

3.2. Architectures

The primary goal of this research is to determine the nature and requirements of sys-

tem engineering tools for the performance analysis of algorithm/architecture combina-

tions. Since the specific algorithms are "representative _, their absolute performance

is not by itself of much value. Of greater interest is the structure of the algorithms

and the techniques and associated tools used to analyze the target architectures.

In order to increase the coverage of tool and methodology areas of interest, three

systems representative of distinct classes of architectures were analyzed. The JPL

Mark III Hypercube represents a class of distributed-memory, loosely coupled archi-

tectures. A major issue in the design of efficient parallel algorithms for such machines

is the minimization of interprocessor communication. Solutions to related problems

such as algorithm partitioning, mapping, and scheduling, attempt to achieve this

goal. The Encore Multimax represents the class of shared-memory, tightly coupled

architectures. One of the principal determinants of machine performance is conflicts

in accessing of shared-memory. These conflicts occur because of contention for the
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processor-memorybus, or in access to shared variables. Again, solutions to related

problems attempt to minimize such access conflicts. The Charles Stark Draper Labo-

ratory Fanlt-Tolerant Parallel Processor represents the class of architectures designed

for fault tolerance. It is a Byzantine Resilient Multiple Instruction stream Multi-

ple Data stream computer designed to produce orders of magnitude more processing

power than current highly reliable systems. The fault tolerance mechanisms of this

architecture are of particular interest, especially the impact of increased communica-

tions requirements on performance.

One of the advantages of choosing fundamentally different types of architectures is

the differing demands they will place on the system analysis tools. Let us consider

the algorithm representations described in the previous section. Two nodes in this

graph that are ready to fire cannot do so if they both require the same resource.

In distributed memory architectures, tasks executing on distinct processors utilize

separate processor-memory paths. Only tasks (communication nodes) mapped to

the same processing element (link or intermediate routing node) are so constrained.

Thus, for a given mapping algorithm, the resolution of the simulation can be that of

the firing delay of the smallest task. The accuracy of the firing delays themselves can

be computed based upon detailed knowledge of the operation counts of the tasks and

the architecture of the individual node. Based on these characteristics, the GIPSIM

utility of ADAS is suitable to analyze the performance of the Mark III Hypercube.

By definition, processors in bus-based shared-memory architectures require access to

a shared resource on potentially every instruction execution cycle. The execution

of every instruction competes with each other since they all require the use of the

global bus for memory access. Multiple processors can also conflict on every cycle

in the access to shared memory. Thus, these architectures are very dependent upon

the mapping of (shared) data structures into the memory modules. Furthermore,

memory modules tend to be heavily interleaved to match the processor/bus band-

width. The normal approach to achieving high simulation resolution is to map tasks

to processors and all communication nodes to the bus, essentially serializing all com-

munication. However, most architectures use some form of a cache to alleviate the

processor/bus/memory bottleneck. The performance depends very heavily on the use

of the cache. In the case of the Encore Multimax, modeling is further complicated

by the fact that pairs of processors share access to a single cache. Cache coherency

control adds to the memory traffic in a non-trivial way and must be a part of the anal-

ysis. The interactions between the processor, cache, bus and memory are at the level

of the fastest device (typically the cache or bus), and this dictates the level of resolu-

tion of the simulation. Since phenomenon such as cache hit rates and bus arbitration

are generally non-deterministic, an approach to simulation must enable behavioral
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modeling while explicitly preserving the structure of the architecture. Therefore, the

CSIM facility of ADAS is required to attain the necessary simulation resolution.

To summarize, the simulation resolution that can be achieved depends upon the gran-

ularity of parallelism being modeled. High-level resolution simulations are possible for

loosely coupled systems, and a relatively simpler, purely structural simulation, is pos-

sible (GIPSIM). For modeling tightly coupled, fine-grained architectures, one needs

low-level simulation resolution. Furthermore, the introduction of a non-deterministic

phenomena such as cache operation requires the capability for modeling stochastic

behavior (CSIM).

3.2.1. JPL Mark III Hypercube

A binary k-cube of P = 2 k processing elements (PE) is axranged as a p = log2P

dimensional hypercube. Each processing element is represented by a binary address

Pn-lP,,-_, ...,PlPo, and is connected to all processing elements whose address differs

from it in exactly one bit, i.e., P,-lP,,-2, ...,_, ...,I_Po, for all i. The topology of a

sixteen-node hypercube is shown in Figure 3.5. The architecture of each hypercube

node or PE is illustrated in Figure 3.6. The node architecture is comprised of three

basic blocks: the communication processor, the data processor, and the floating point

array processor.

The communication processor (CP) is a 32 bit MC68020 and is dedicated to handling

interprocessor communication and node I/O. Each node is interconnected to its neigh-

bors by channels. Associated with each channel is a 64-byte buffer. Interprocessor

communication is achieved by reading/writing the channel buffers as 64-byte packets.

Thus, if processing element 1 in Figure 3.5 is to send a packet of data to processing

element 0, a packet of data is transferred from the memory of PE 1 to the input

buffer of PE 0 on the appropriate channel. This sequence is repeated several times

for multipacket transfers. When transferring data from local memory to a channel

buffer (or vice-versa) the CP has higher priority access to local memory than the data

processor, and the latter stalls. The CP static RAM holds the node operating system

which is responsible for interprocessor communication and synchronization. On re-

ceiving a packet in one of its barfers, the CP checks the destination. If it is local, it is

transferred to local memory. If it is not, it is transferred to a buffer on the appropriate

channel as defined in its destination or routing tag. Thus the three modes-of data (or

equivalently, paraket) motion the CP is responsible for are local-memory-to-channel-

buffer, channel-buffer-to-channel-buffer, and channel-buffer-to-local-memory. These

are the modeling parameters of interest.
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The data processor is also a MC68020 and operates with the MC68851 conventional

memory management unit and a MC68881/2 floating point co-processor. In addition,

there is an array processing unit built around a 30 Mflop Weitek chip set. This

processor runs as a slave to the data processor. The modeling parameters of interest

are the interrupt latency to respond to the presence of a message, the speed of the

processor, the speed of the array processor, and the memory access latency.

3.2.2. Encore Multimax

The Encore Multimax is a shared memory tightly coupled multiprocessor architecture.

The overall organization is illustrated in Figure 3.7. The principal components are

the Dual Processor Card (DPC), the Shared Memory Card (SMC), and the System

Control Card (SCC). The remaining components are not of direct interest from the

point of view of computing performance. All of the components are configured around

the I00 Mbytes/sec nanobus. Current configurations provide up to twenty processors.

The DPC is comprised of two processors which share access to a 32K instruction/data

cache. The cache reduces the traffic on the nanobus, and features a write-through

update policy with snooping cache controllers to enforce cache coherency when mul-

tiple processors update shared data. The processors are from the NS32X32 faraily of

microprocessors and currently can be augmented with special-purpose floating-point
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Figure 3.7. Encore Multimax
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hardware. Each SMC provides up to 16 Mbytes of RAM in two independent banks.

In addition, 4-way interleaving among SMCs is permitted, providing 8-way interleav-

ing for structured accesses. The SCC functions as the bus arbitrator and diagnostic

center for the Multima.x. The bus allocation strategy is a "rotating" daisy chain --

the current bus master becomes the lowest priority requester in the next arbitration

cycle.

The Multimax is programmed by using shared memory locations as locks to coor-

dinate multiple processes. Code is stored in a single memory module while data

is distributed across memory modules. In particular, access to matrices can take

advantage of the interleaving in the memory system design.

3.2.3. FTPP

The FTPP architecture was proposed in an effort to combine the disciplines of fault-

tolerant computing and parallel processing to yield theoretically sound design princi-

ples for a high throughput, highly reliable computer [7]. In particular it was designed

to provide greater performance than that achievable by current fault-tolerant systems,

especially the fully connected cluster-based architectures such as the Software Imple-

mented Fault Tolerance (SIFT) and Multicomputer Architecture for Fault-Tolerance

(MAFT) computers, while maintaining their high level of reliability. The architecture

consists of a partially connected network of clusters of multiple primary fault contain-

ment regions (PFCR) consisting of an input/output element and multiple processing

elements connected to a network element. The network elements are specialized hard-

ware components that execute the synchronization, voting, and consistent ordering

protocols required to achieve Byzantine Resilience. This allocation of protocol tasks

to the network elements prevents the attached processors from being diverted from

application tasks. The FTPP architecture components are illustrated in Figure 3.8,

Figure 3.9, and Figure 3.I0 from [7].

The configuration of processing elements into computational sites is constrained by

the necessity of allocating each channel of a redundant processing (fault masking)

group to a different network element so that each channel will belong to separate

PFCRs. Figure 3.11 [7] illustrates a possible cluster configuration of 16 processors

into one quadruplex (Q1), one triad (T1), and nine simplexes (S1-$9) distributed over

four network elements. Note that the quadruplex channels are distributed over each

of the four network elements, the triad over three, and the simplex over all four. To

support the distribution of the computational sites, the network elements that form

a cluster are fully connected by point to point communications links.
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Sincethe executionspeedandcommunicationslink bandwidthof thenetworkelement
are not sufficient to support the large nul_lbersof processorsthat manyapplications
require, multiple interconnectedclusterscan be built. The specialinput/output el-
ementsthat are attached to eachof the network elementsin a cluster are used to
implementthe connection.Figure 3.12[7] illustratesa possiblemulticluster topology,
but the number of clustersand the connectiontopology, as well as the number of
networkelementsperclusterand the numberof processingelementsper network,are
determinedby the performanceand reliability requirementsof the application.

The fault tolerancemechanismsof the I"TPP are basedon the Byzantine Resilient
Virtual Circuit (BRVC) Abstraction, which guaranteesthat messagessent by one
FMG to another aredelivereduncorruptedand in the order sent,that all non-faulty
membersof a recipientFMG receivemessagesin identicalorder,and that the absolute
timesof arrival of correspondingmessagesat the membersof a recipientFMG differ
by a known uppcr bound (skew). In the FTPP there are sixteenmessageexchange
classesof two basic types. Messagesthat emanatefrom a sourcesufficiently redun-
dant that a vote will guaranteereceipt of identical information at all destinations
are Class 1 exchanges.Those from a singlesourceare Class2 exchanges.A Class
1 exchangethus originatesfrom a FMG, consistsof a broadcastamongall network
elementsassociatedwith tt,esourceand destinationFMGs anda voteon the received
message,and can becompletedin one round. A Class2 messageexchangeis origi-
nated by a singleprocessor;it consistsof a broadcastamongNEs, a reflectionof the
receivedmessage,and a voteon the reflectedmessage,and thus requiresa two-round
interactive consistencyprotocol.

Therefore,the redundancy management overhead is dependent upon the mix of ex-

change classes utilized in the application.

The FTPP network element provides the message exchange services for the cluster.

It operates in cycles consisting of frames to recognize and classify exchange patterns,

to decide which messages to transmit, and, finally, to transmit, vote and receive

messages. For inter-cluster communication, messages are exchanged among connected

IO elements attached to the network elements. A voted message from the lelevant

network elements is sent to the designated IO element group, where it is validated by

message exchanges occurring at a specified rate. When a group receives a message

for another cluster, all group members transmit that message to the IO group in the

destination cluster. The source IO group also computes routing information when a

message must pass through intermediate clusters to reach its destination.

The prototype Fq'PI' architecture uses 12.5 MHz 68020 processors, 68881 floating
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point coprocessors,1 MB RAM, 128KB EPROM, and 64 Mbps buses(8MHz x 8
bits).

3.3. Paradigm Framework for Analyses

Since the aim of the paradigm was to relate tools to the methodology, a framework

was constructed from which analyses could be selected that would illustrate the role

of particular tools and analyses in the design process. This framework specifies the

characteristics and interactions of system models in the early design stages. It also

specifies the information required for the analyses and the decisions that can be made

from the analysis results. From this framework, process graphs were constructed to

show the information flow and the decision points of particular modeling phases.

Figure 3.13 illustrates a high-level process that can be used to determine the required

processing resources for a system based on mission requirements and to express those

resources in terms of mission parameters. Figure 3.14 illustrates the process of mak-

ing architectural trade-offs by building on the high-level process, refining the model

descriptions, and providing more detailed information about the system.

Based on these process graphs, particular perh_rmance and reliability analyses of

the algorithms and architectures described in the preceding sections Were selected to

illustrate the types of models that are needed, how the models interact, and the types

of experiments and analyses that can be conducted.

The models that were constructed and the performance analyses that were carried

out are described in Section 4; the reliability models and analyses are described in

Section 5.
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4. Performance Analyses

This section describes the performance modeling and analyses that were carried out

for highly parallel, highly reliable systems within the framework described in Sec-

tion 3. The cases for study were selected so that issues related to the design of

distributed fault-tolerant systems could be assessed. In particular, they were selected

so that the adequacy of existing methods and tools could be tested. In this Phase I

of the study, emphasis was placed on the impact of parallel processing issues on the

methods and tools; even though some aspects of fault tolerance were drawn into

the performance modeling, it was planned that the fault tolerance issues would be

emphasized in the second phase of this program.

There are many opportunities for performance modeling in support of parallel archi-

tecture design, particularly in the area of embedding applications in an architecture

so that the processing resources are well utilized. In this area, performance modeling

can support evaluating the relative effectiveness of various granularity levels and algo-

rithm decompositions, and can aid the analysis of load balancing, resource scheduling

and contention, and deadlock prevention; studies of interprocessor communications;

data flow analyses to identify data/program dependencies; and the analysis of re-

source utilization and memory sizing. The specific issues investigated in this effort

include the impact of network communications on performance and the impact of

fault tolerance on communications, the speedup and effectiveness achievable through

varying levels of parallelism as a function of processor/communication speed and the

existence of sequential and non-parallelizable tasks, the embedding of algorithms in

architectures, and the distribution of workload by function and by processing resource.

The performance modeling activities conducted to examine these issues included cre-

ating algorithm descriptions, building models of algorithms and architectures, select-

ing and developing performance assessments, conducting the assessments with the

chosen simulation tools, analyzing the simulation results, and assessing the use and

limitations of the methods and tools.

Figure 4.1 lists the areas of performance modeling identified in the paradigm frame-

work that are investigated in this research effort and identifies the particular case

studies for each area.
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4.1. Development of Algorithm Descriptions

The primary concern of the algorithm description effort was the identification of the

information, with respect to both type and resolution, that would be required to

ensure adequate fidelity of the performance modeling at the various stages in the

development process. It was also important to assure that in the early stages of the

development process the algorithm descriptions were not so detailed as to preclude

potentially desirable system configurations.

Considerable effort was necessary to develop the algorithm descriptions used for the

development of performance models. These descriptions were developed from in-

formation that was less complete than would normally be available to the system

engineering process. This was due in part to the status of the algorithm development

and to the fact that the algorithm developers were not directly involved in this effort.

Assumptions were made regarding algorithm behavior and implementation that in

a normal development process would be known to the system engineers. However,

the format, content, and detail is representative of that available early in the system

engineering and design phases of a development program. As such, the role that these

descriptions play in the modeling process, the fidelity of the resulting model, and the

need for incorporating additional information in them can be assessed for the purpose

of improving methods and tools.

The algorithm descriptions include a diagram of the major subfunctions within the

algorithm. For each subfunction, the inputs, processing, and outputs were described.

Where appropriate, subfunctions were further decomposed and inputs, processing,

and outputs were identified and described for each resulting component. Data inputs

and outputs were dlaracterized by their source or destination, by their size as func-

tions of system parameters such as numbers targets or weapons, and by their type such

as numerical or logic variables. Subfunction processing steps were described wherever

possible. To the extent possible, data dependencies, data addressing patterns such as

linear or random and opportunities for parallel decomposition were included in the

descriptions. Diagrams, called N-square diagrams, indicating all inputs and outputs

for each subfunction and their relationship to other subfunctions were included in the

descriptions.

Real time processing constraints were specified for each algorithm. Finally, estimated

operation counts and memory access counts were included for each subfunction. These

operation counts constituted the primitive information used to characterize workloads

for the performance models.
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The format followedfor thesedescript,ioI_sis similar to that usedfor computerpro-
granl performancespecificationsusedfor l)oi) systemdevelopmentprior to the use
of DoD-STD-2167docunlentatioustandards.

A description of a weapons-to-targetassignmentand target sequencingalgorithm
(WTA/TS) is given in [2]. This description was developedfrom a document [16]
which describeda proposedstrategyfor obtaining optimal weapons-to-targetassign-
ment and target sequencingfor a constellationof directedenergyweapons.For each
stepin the proposedstrategy,costfunctions,constraintsandsolution techniqueswere
suggested.This information wasnot adequatefor high fidelity performancemodel-
ing. To createan adequatealgorithm description,assumptionsregarding the type
and characteristicsof the requiredcomputationsweremade. The primary assump-
tions involvedthe characteristicsof linear integerprogrammingmethodsto carry out
the constrainedoptimiz_ttionsindicated in the proposedstrategy. Further assump-
tions involved the averagenumberof iterations requiredto obtain optimal solutions.
Another assumptionmadeto simplify the algorithm descriptionand subsequentper-
formancemodelingwas that the numberof targets assignedto a target cluster was
equal to the total numberof targetsdivid_.dby the numberof clustersformed. While
theseassumptionsimpact the specificsof the performancemodeling, the resulting
descriptionswereadequateto servethe primary purposeof the paradigmwhich was
to exercisetoolsand methodswith "SDI-like" examples.

The algorithm description for the WAUC, TION algorithm [14] was derived from a

software implementation of the weapons-to-target assignment technique. In contrast

to WTA/TS, the description for WAUCTION did not require assumptions to be made

regarding the computational methods used to implement the algorithm. Further, the

dependence of workload on parameters such as numbers of targets and numbers of

weapons could be determined by executing the code. Consequently, the algorithm

description for WAUCTION contains more detail and higher fidelity estimates of

computational workload.

The effort required to develop the algorithm descriptions could be reduced by in-

cluding additional features in the modeling tools. Use of computer-aided software

engineering (CASE) tools to specify and create the algorithm descriptions would be

a more effective way to handle the development of algorithm descriptions.
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An additional benefitwould bethat performancemodelscould beautomatically con-
structedfrom thesealgorithm descriptionswhich in turn could be transferredto the
performancemodelingtool via anappropriateCASE tool/performancemodelingtool
interface. Effort could be further reduced by inc:orporating a library of models for

a wide range of common processing algorithms such a.s sort algorithms and linear

programming algorithms.
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4.2. WTA/TS High-Level Workload Analysis

Typically, the design of a system progresses from high-level, low-fidelity knowledge

of tile design to detailed low-level, higil-resolution design details. In the early stages,

ttle high-level information can be used to identify critical design problems, to select

potential candidate architectures, to determine certain system characteristics and to

eliminate system configurations which are not feasible. High-level performance mod-

eling results can support this phase of the design process by providing quantitative

measures of the computational workload.

One of tile first steps in selecting the architectures to be considered is to obtain a

coarse estimate of tile workload requirements. This estimate can be used to establish

the approximate number of processors required and the speed of the processors. To

illustrate how this first step is carried out and how the results can be used to guide

the design process, the WTA/TS algorithm was considered for a single processor

system. ADAS software graphs were developed for the algorithm. The graphs shown

in Figures 4.2-4.6 represent a two-level breakdown of the algorithm.

Figure 4.7 shows an example of the ADi, files that were created for each graph to

establish the parameters to be used in the ADAS simulations. The parameters such

as number of targets and weapons are used to determine the number of operations

required for various functions in the algorithm. These operation counts in turn de-

termine the associated firing delays in the ADAS simulations. An implementation

expansion factor or multiplier was used to convert the primitive operation counts to

implementation operation counts. A factor of five was selected for this analysis. In

an actual design study, this factor may be determined either by experience or by

additional analysis. In addition to the implementation expansion factor for opera-

tion counts, assumptions regarding the average number of iterations required for the

WTA/TS integer programming algorithms to converge to a solution were made. In a

more precise analysis these parameters would have to be better characterized.

The total execution times required as a function of number of targets and _,'eapons

for a single processor operating at an average of 1 × 10 6 operations per second are

given in Figure 4.8. These results can be used by the system designer in various

ways. l'br example, if 5 seconds has been budgeted for the WTA/TS algorithm when

100 targets are being processed, a single ] x 106 operations/second processor cannot

meet the requirements. A single processor of 25 x 106 operations/second capability

could meet the requirement. The system designer may wish to consider a multiple

processor system. Under the best conditions, twenty-five 1 x 10 6 operations/second
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* This is the Attribute Definition Language file for *

* Node: GLM in graph tcd.swg *

* File: tcd_glm.adl *

* Description: This ADL defines the firing delay, produce, *

* consume, threshold, and initial attributes for *

* the Gradient, LaGrange, and Median processing node *

* in the Target Cluster Definition graph. This node *

* is a leaf node. *

* Top level graph: wtats.swg *

* Author: C. Scheper (Revised G. Frank) ,

* Date: 03/10188 (03/18/88) •

graph: -- Key Input Parameters

nbr_targets, --

LIc,

Cim_size,

dim_size,

xim_size,

The number of targets (J).

N needs to take on values of

-- 25, 50, 100, and 200.

-- LaGrange Iteration Count

-- Size of Cim data structure

-- Size of dim data structure

-- Size of xim data structure

Hardware Parameters

fpt_mult,

read_fpt,

mips;

-- Time required for a floating point multiply

-- TiLe required to read a floating pt nbr

-- Instruction processing rate

int: opcount,

instr_count,

mpy_count,

io_ops;

-- Count of the number of operations

-- Count of the number of instructions read

-- Count of the number of floating pt mpys

-- Count of the number of I/O operations.

op_count = 8 * nbr_targets * nbr_targets;

instr_count = 5 * op_count;

mpy_count = nbr_targets;

io_ops = xim_size ÷ dim_size + Cim_size;

firing_delay = ( instr_count/mips ) +

( mpy_count / fpt_mult ) ÷

( io_ops / read_fpt );

-- Consumes an entire xim matrix each iteration

token_consume_rate(in0) = xlm_size;

firing_threshold(inO) = token_consume_rate(in0);

-- An initial xlm matrix starts the loop

initial_token_count(inO) = token_consume_rate(inO);

-- Consumes an entire dim matrix each iteration

token_consume_rate(inl) = dim_size /LIc;

firing_threshold(inl) = token_consume_rate(inl);

-- Produces an entire Cim matrix each iteration

token_produce rate(outO) = Cim_size;
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processors would be required. It is likely that substantially more processors would be

required and the system designer may wish to set about determining a better estimate

of the number of such processors required. Ill any case, these results based on coarse

high-level information (:an serve a.s a starting point for the system design.

The next step in the WTA/TS performance modeling was to determine the distri-

bution of workloaxl among the various WTA/TS subfunctions. Figure 4.9 shows

execution time requirements for each major function within WTA/TS as a function

of number of targets and assuming a single processor. Figure 4.10 shows the per-

centage of the total execution time required by each major function. These results,

derived from relatively high level performailce modeling, are sufficient to draw the

system designer's attention to potential problem areas and to help identify system
characteristics.

Observe in Figure 4.10 that as tile number of targets increase, the function that has

the largest workload shifts from the Weapon-to-Target Cluster Assignment (WTC)

function to the Target Cluster Definition (TCD) function. If this algorithm had

to be decomposed and distributed among several processors, it is probable that a

workload decomposition that is effective for a small number of targets would not be

effective for a larger number of targets. If efficient use of resources is necessary for

all numbers of targets, a designer could conclude from these results that the system

would require some form of dynamic workload decomposition to cope with different

numbers of targets. Alternatively, a decision to design an effective decomposition for

the maximum number of targets could be supported if the resource utilization was

not significant and a less complex design was desired.

Since TCD workload is dominant except for smaller numbers of targets, the distri-

bution of workload within TCD was examined. Figure 4.11 shows the percentage

distribution of workload among subfunctions within TCD. This distribution does not

change with the number of targets. Further, it can be seen that Cluster Formation

is the dominant subfunction. In the description of WTA/TS in [2], it can be seen

that while the Gradient, LaGrange, Median subflmctions can be easily decomposed

for parallel processing, the dominant subfunction, Cluster Formation, cannot be eas-

ily decomposed. Furthermore, it is embedded in a loop such that it appears as a

sequential component that cannot be overlapped or pipelined with other functions.

Based on this coarse design information, a potential limitation or problem area has

been identified. At this point ill an actual system development, it could be necessary

to restructure the algorithm or to develop a special system architecture to avoid this

potential problem.
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Severalvaluable roles that high-level performance modeling can play in the early

stages of system design have been demonstrated by this example.
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4.3. High-Level Decomposition of an Algorithm for FTPP

An important factor ill the effectiveness of particular architectures for parallel pro-

cessing is interproccssor communication. Often intcrprocessor communication is the

dominant performance limiting factor. For topologies other than the fully connected

network, interproccssor communication generally is influenced not only by communi-

cations bandwidth but also by the "distance" that communicating processor pairs are

from each othcr. Evaluation of interprocessor communications in the decomposition

of algorithms for parallel processing architectures is, therefore, a necessary component

of performance modeling. A parallel decomposition of the Gradient, LaGrange and

Median (GLM) portion of the WTA/TS algorithm was used to conduct interprocessor

communications performance analyses for several configurations of an FTPP.

The ADAS software model is shown in Figure 4.12. In this model, the Gradient

Lagrange Median function (GLM) is decomposed into four parallel parts which can

be assigned to four different processors. A diagram of an FTPP configuration is

shown in Figure 4.13. In this graph, four FTPP clusters are linearly connected by

dual links between clusters. Figure 4.14 shows the steps involved in FTPP data

transfers between processors four clusters apart in the linearly connected network.

The vote and reflect steps provide fault tolerance. Each of the four parallel parts

of GLM were assigned to a processor within the FTPP. In one case, the assigned

processors were within a single cluster. In another, two processors were used from

each of two clusters. Finally, a single processor was used from each of the four clusters.

Figure 4.15 shows the execution time for GLM for each of the three cases. The portion

of the communications delay due to fault tolerance was removed and the results are

also shown in Figure 4.15. Figure 4.16 shows the percentage of processing time due

to fault tolerance for each of the three cases.

The processor speed was varied for each of the cases discussed above. Figure 4.17

shows the ratio of execution time for four processors compared to a single processor

of the same speed. As can be seen, the single processor execution time in this case

is less than the multiple processor execution time for processor speeds above l MIP.

These results show the impact of communication overhead and its increase as the

distance between processors increases.
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High-Level Generic Parallel Performance Models

Based on the results of the performance modeling described in the previous sections,

it was decided to develop a high-level model to assess the effectiveness of algorithm

decomposition and embedding strategies for a given architecture. The process struc-

ture of interest, whose occurrence was observed frequently in the modeling described

above, is that given in Figure 4.18. In this ADAS graph, a process that can be

decomposed into parallel tasks is followed by a task that cannot be decomposed.

The process or algorithm structure was characterized by the processor workload, tom-
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munications workload, rules for distributing workloads when the process is decom-

posed for parallel processing, and the workload distribution between decomposable

and sequential tasks. The architecture shown in Figure 4.19 could be characterized at

the higher level by the number of processors, processor speed and overhead, commu-

nications speed and overhead, memory speed, and communication distance between

processors.

Experiments were conducted for the two categories of sequential and no sequential

component in the algorithm. For the no sequential component case, simulations were

performed to measure the effects of increased processor workload and increased com-

munication workload. By varying the ratio of processor workload to communications

workload for a given number of processors, the effectiveness of decomposition for dif-

ferent algorithms can be examined for a given architecture. By varying the ratio of

processor speed to communications speed for a given number of processors, the effec-

tiveness of different architectures can be examined for a given algorithm. Figure 4.20

shows the speedup for different numbers of processors as a function of the processor

to communications workload ratios.

Figure 4.21 shows the same information normalized by the number of processors being

used in the configuration.
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This information would provide guidance as to tile effectiveness of a given architecture

for different algorithms. (_'onclusions could be drawn regarding which algorithm could

be executed more rapidly on a given architecture. Note that for this case processes
whose communications workload is at least one half of the processing workload r_ult

in no speedup over a single processor.

The required processor-to-communication speed ratio to attain a given speedup for a

particular algorithm Call be determined from the model.

For the sequential component case, simulations were performed for increased proceBsor

workload-to-communication workload ratio and increased sequential comp0aeat to

parallel component ratio. Given that a process consists of two tasks th_1; require

T1 and T2 execution times, respectively, the total process time for the sequential

execution of the two tasks is T = T1 + T2. If task1 can be parallelized _croaj N

processors, T = "J'l/N + T2. If task2 is non-paradlelizable (sequential)

T(N) = T /N+T 
= T, + T2/r,)
= T .(I/N +R)

where R = 7_/TI is the sequential-to-parallel ratio of the process. Ther_ T(1) =

T1. (1 + R) and

Speedup -- T(N)

Tl.(l+n)
- T .OIN+R)

This relationship is known as Amdahl's Law. Figure 4.22 shows the maximum

speedup that can be obtained as a function of the ratio of sequential wotkloa, d to

parallel workload. Figures 4..23 and 4.24 show the speedup obtained aa l,he alg0-

rithms workload ratios are varied when the sequential component workload ill two

times the parallel workload.

It is believed that an enhanced model of the type described above would be _, v_luable

tool for the initial high-level design phases in the development of parallel t_0mputing

applications.
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4.5. WAUCTION_ASSIGNMENT High-Level Workload As-

sessment

The WAUCTION_ASSIGNMENT algorithm is an example of a mission planning al-

gorithm used for determining optimal resource allocation. In tile performance analysis
conducted for WAUCTION_ASSIGNMENT, workload and workload distribution was

assessed. The methods and modeling process used were similar to those described

for WTA/TS. tlowcver, the modeling effort differed from that used for WTA/TS in

several ways.

As discussed in Section 3.1, the algorithm description was developed using an engi-

neering software implementation of the algorithm. The operation counts which were

used in the performance model were derived in much the same manner as was used

for WTA/TS, with the exception that the WAUCTION_ASSIGNMENT algorithm

was known in detail, whereas assumptions had to be made regarding the techniques

used to solve the integer programming problems handled by the WTA/TS algorithm.

In this respect, a much higher fidelity description of the algorithm was produced.

For the WTA/TS performance modeling, assumptions were made regarding the num-

ber of iterations required to attain optimal assignments, bbr WAUCTION_ASSIGN-

MENT, the number of iterations for all data dependent loops in the implementation

w(;re measured by instrumenting and executing the engineering software. As a re-

sult, the models derived for WAUCTION_ASSIGNMENT should be more accurate.

Use of the engineering software to attain parameters for the performance modeling

introduces a role for measurement in the performance modeling methodology.

Figures 4.25 - 4.27 show the ADAS graphs that were used to determine workload for

WAUCTION_ASSIGNMENT. The WAUCTION_ASSIGNMENT model contained

thirteen parameters whose values represent the number of iterations required for

thirteen iterative processes. As indicated previously, these parameters were measured

by executing the engineering software for a range of targets and weapons. Average

values were used for most of the model parameters. Linear dependence upon the

number of targets or the number of weapons was used where appropriate.

Figure 4.28 shows the predicted workload as a function of the number of targets for dif-

ferent numbers of weapons. Figures 4.29 - 4.34 show the distribution of workload for

each WAUCTION_ASSIGNMENT function as the number of targets is varied. These

results indicate that Make Permanent Assignment (MPA) and Linear Loop/Insert

Bid dominate the workload and increase with the number of weapons. Figure 4.35
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Figure 4.25. Top Level WAUCTION_ASSIGNMENT ADAS Graph
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shows tile first dill_.rq'nce ill the worklo_u! a.s the number of targets is varied. Such

results are useful to determine the sensitivity of the workload to changes in algorithm

parameters. All workload/execution times for these results are based strictly upon

the operation counts with no expansion factor included for implementation.

Since the engineering software was available, the CPU time required for the program

to execute was obtained for various combinations of targets and weapons. Figure 4.36

shows the measured CPU time for WAUCTION_ASSIGNMENT under varied param-

eters. Note that these' curves are not as smooth as those shown in Figure 4.28 which

were produced by the performance model. However, they increase in a similar man-

ner. The departure in shape can be explained by examining the actual behavior of

the loop iteration counts measured using the engineering software. The loop iteration

counts for the three major nested loops are shown in Figures 4.37 and 4.39. Note

that the iterations for the target/weapon pairing loop, the inner most nested loop,

is not ordered by number of weapons. Note also that for weapons = 20 and tar-

gets = 160 the count is extremely high. This large jump is reflected in the measured

execution time shown in Figure 4.36. Note that the measured linear loop iteration

count has a maximum, or peak, at the point where the number of targets is equal to

five times the number of weapons. Since the number of shots allowed for each weapon

is five for this example, the peak occurs at the point where the number of targets

is equal to the total number of shots available. Recall that only average values and

simple linear functions were used to model these iteration counts.

The main observation to be made regarding these measured results is that unlike

algorithms typically used in signal/image processing, the workload of the WAUC-

ri'ION_ASSIGNMENT algorithm cannot be characterized by simple functions of com-

plexity parameters such as N, N 2, or logN. The behavior is much more complex. To

characterize this behavior, measurements have to be made and the results incorpo-

rated into the model to provide more accurate results. Consequently, the role for

measurement in performance modeling can be seen to be important for this algo-

rithm. Two roles are apparent: that of determining parameters to be used in the

model and that of validating overall modeling results.

In comparing the measured results to the performance modeling results given in Fig-

ures 4.28 and 4.36, note that no mention of the absolute scale for the two families of

curves was made. Since the model used primitive operation counts to determine re-

sults, the overall difference in the measured versus the model results can be attributed

to an implementation expansion factor. To get the two families of curves to overlap as

shown in Figure 4.40, an implementation factor of 10 was used. It is not claimed that

the factor of 10 should be used for all modeling. Rather, the significance of this result
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lies in the impact that such a factor carl have on modeling results. Multiplication

of the results which were based on the primitive information used in the model by

such a large factor requires that the factor be known with some degree of accuracy.

Consequently, analyses or measurements must be made to establish the implementa-

tion expansion factor. Alternately, the components contributing to the factor, such

as software operating system characteristics and compiler expansion characteristics,

must be incorporated into the performance modeling process.
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4.6. WTA/TS Using the Hypercube and the Multimax

Two distinct parallel processing architectures were investigated using the WTA/TS

algorithm as the target application workload. Honeywell Systems Research Center

conducted the investigation under a subcontract from RTI.

The performance modeling carried out in this effort is representative of that which

would occur after the high-level, early design phases. As such, the models require

the use of more detailed algorithms and architecture design information. These tasks

resulted in the most extensive use of the performance modeling tools during this

research effort. As anticipated, these more demanding tasks taxed the methods and

tools and resulted in the identification of weaknesses and limitations.

The SDI algorithm analyzed in this study embodies the functions of target cluster

detection (TCD), weapon-to-target-cluster assignment (WTC), weapon-to-target as-

signment (WA), and target sequencing for fire control (TS). These major functions

occur in a fixed serial order. However, opportunities exist for parallelism within each

of these functions. Parallelism can be realized as a function the number of targets

being tracked, the number of target clusters, or the the number of weapons plat-

forms. For the purposes of this study, the number of clusters and weapons platforms

have been fixed at ten each. The number of targets is variable, and the performance

for 100, 200, 400 and 600 targets was examined. The definition of the computa-

tional requirements of the algorithm utilized in this study have been documented by

Research Triangle Institute and served as the starting point for this analysis. The

computational requirements of each task are described by three parameters: opera-

tion count, number of reads/writes, and number of multiplications. Partitioning of

the major functions and subfunctions and coalescing of all tasks that must execute

serially produces an algorithm structured as a macropipeline as shown in Figure 4.41.

The individual ADAS graphs for each function and subfunction are documented in

Appendix A of [15].

In Figure 4.41, each set of tasks that can execute in parallel will be referred to as a

stage of the pipeline. The tasks in a stage will be referred to as parallel tasks and

all other tasks will be referred to as serial tasks. Each stage of the pipeline" can

be represented as an ADAS graph, as illustrated in Figure 4.42. Each task can be

represented by a node in the ADAS graph. This node will be assigned a firing delay

to model the execution of this task. The firing delay is computed from the knowledge

of the operation counts and the architectural parameters such as the processor speed,

memory access latency, and I/O speed.
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Figure 4.41. Algorithm Structure

In the ADAS graph it is necessary to explicitly represent events such as the transfer

of information between tasks. In the algorithm structured as it is in Figure 4.41,

there are two communication patterns that must be supported. At the beginning of a

pipeline stage, information is transferred from a serial task to all of the parallel tasks

in the stage. Each parallel task receives distinct partitions of data, e.g., a matrix.

This pattern of providing data to all of the tasks within a stage is a broadcast tree.

Analogously, at the conclusion of a stage, each of the parallel tasks provides results

which will be utilized by the serial task preceding the next stage. Such a pattern

of communication is an accumulation tree. Communication nodes representing the

broadcast and accumulation of data are explicitly represented as shown in Figure 4.42.

The algorithm model studied does not allow very much parallelism. This is evident

from Figure 4.43 which illustrates the percentages of serial operations (those cannot

be parallelized) as a function of increased workload (represented by the number of

targets). Based on this mix of serial operations, the maximum speedup for a parallel

processor over a uniprocessor would be bounded by a factor of about 3 for 100 targets.

However, the primary goal of this program is not the absolute performance of the

algorithm, but the development of insight into the requirements for tools necessary

for the design and performance evaluation of similar systems.
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As will becomeevident in the following section, this description of the algorithm
is utilized in two different waysin the analysisof the Mark III Hypercube and the
Encore Multimax.

4.6.1. JPL Mark III Hypercube

Consider the algorithm representations in Figures 4.41 and 4.42. Two nodes in the

graph that are ready to fire cannot do so if they both require the same hardware

resource. In distributed memory architectures, tasks executing on distinct processors

utilize separate processor-memory paths. Only tasks (communication nodes) mapped

to the same processing element (link or intermediate routing node) are so constrained.

Thus, for a given mapping algorithm, the resolution of the simulation can be that of

the firing delay of the smallest task. The accuracy of the firing delays themselves can

be computed based upon detailed knowledge of the operation counts of the tasks and

the architecture of the individual node. Based on these characteristics, the GIPSIM

utility of ADAS was used to analyze the performance of the Mark III hypercube.

The modeling parameters of interest for the communication processor (CP) are the

three modes of data (or equivalently packet) motion the CP is responsible for: local-

memory-to-channel-buffer, channel-buffer-to-channel-buffer, and channel-buffer-to-

local-memory.

The modeling parameters of interest for the data processor are the interrupt latency

to respond to the presence of a message, the speed of the processor and the speed of

its associated array processor.

The analysis of the Mark III Hypercube involves two steps: task mapping, and the

scheduling of intertask communication. Our approach to both of these problems is

described in the following subsection.

4.6.1.1. Mapping

Given the macropipeline structure of the algorithms, the mapping is relatively straight-

forward. All of the serial sections can be mapped to one PE, e.g., PE 0. All of the

tasks in the same stage of the pipeline can be mapped to any set of distinct PEs and

can therefore execute in parallel. Tasks in different stages are independent, are never

active at the same time, can be mapped independently, and can co-exist on the same
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PE. Tile specific dloice of PEs for a stage is dictated by the need to minimize com-

munication, i.e., the time required to realize the broadcast trees at the start of each

stage, and the accumulation trees at the end. This is achieved by placing all tasks in

a stage on PEs that are as close as possible to the PE executing the serial section. In

our analysis we chose PE 0 to execute the serial section. Given the symmetric nature

of the hypercube topology, any other PE would have produced equivalent results.

Figure 4.44 illustrates the hypercube of Figure 3.5 redrawn to show PEs at a given
distance from PE 0.

Ideally, it would be desirable for all of the tasks in a pipeline stage to be mapped onto

PEs adjacent to PE 0. However, due to the fixed number of channels per PE, this is

not always possible. A straightforward greedy algorithm for performing the mapping

is as follows. With reference to Figure 4.44, mapping for a stage is performed left to

right, level by level, starting at the level of PEs distance 1 from PE 0. One possible

mapping for a stage of six tasks is (0 ---* 1,1 --4 2,2 _ 4,3 ---, 8,4 ---, 5,5 --* 3),

where --_ signifies a mapping from a task to a PE. Since the communication pattern

is that of a broadcast tree, it does not matter how individual tasks are assigned to
PEs within a level.

The remaining issue concerns the mapping of the communication nodes corresponding

to the broadcast trees and accumulation trees. Since some pairs of tasks can be

at least distance two from each other, it is not feasible to construct a mapping of

communication nodes to links or intermediate nodes. Our approach is to assign

delays that reflect intermediate node routing, and conflicts in the use of channels. This

requires a complete static scheduling of intertask communication of the hypercube for

a given mapping. The regular structure of the hypercube and the algorithms under

consideration makes this possible. This interprocessor communication schedule for

hypercubes and macropipelines is described in the following subsection.

4.6.1.2. Scheduling of Intertask Communication

Initially we obtain an expression for the communication delay for a sequence of packets

traversing an arbitrary number of links. This expression is in terms of the parameters

of interest and assumes the absence of any routing conflicts. All communication takes

place at the beginning and end of an algorithm pipeline stage. The communication

delays are then adjusted to include routing conflicts between each independent se-

quence of packets. All scheduling of intertask communication is performed statically.

This is possible because of the structure of the hypercube and the simplified structure

of the algorithms.
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Figure 4.45 illustrates the functional nature of interprocessorcommunicationin the
Mark lII. The sourcenodemust transferdata from local memoryto the buffer of an
adjacentnode. Intermediatenodesmust perform transfersbetweenchannelbuffers.
Destinationnodesmustperform transfersfromchannelbuffersto localmemory. Each
packetin the Mark Ill is64byteslong. Of this, 56bytesarefor dataandtheremainder
are requiredfor destinationrouting andcontrol. Packettransmissioncanbepipelined
acrosstheselinks.

When the first packet reaches the destination, it interrupts the processor. This in-

terrupt latency is typically large relative to the interprocessor packet transfer time.

It is also a function of the processor design and the operating system. Subsequent

packets incur a smaller interrupt latency. With the Mark III running the Crystalline

operating system, these latencies are 100gsecs and 25#secs respectively. As depicted

in Figure 4.45, multipacket transfers can be treated as a pipeline with the following

expression for the delay:

Delay = _,,, + (It- 1)tro,,t + ti,_, + t,,, + (p- 1)(tro.t + max(tro,,t,(t_,,t + tin))),

where

t,_ = memory to channel buffer packet transfer time,

h = number of links traversed,

t_o,,t = packet routing delay at a node,

ti,,t = interrupt response time for the first packet,

p = number of packets, and

tT,i,_t = interrupt response time for successive packets

Consider Figure 4.44 and the beginning of a stage of computation involving 10 tasks.

These 10 tasks will be mapped to the processors in the first two rows of Figure 4.44.

Each of these processors must receive data from processor 0 to begin their compu-

tations. Data communication between processor 0 and the remaining processors is

scheduled in thc following manner. Data is successively transferred to processors

1,4,2 and 8. Data is then transferred to processor 5, being pipelined across two links

(0 _ l and 1 _ 5). After the last packet is transferred to processor 1, communication

of data can begin to processor 6 via two links (0 ---* 4) and (4 ---* 6). In a similar

fashion, the initiation of communication to processor 9 can be overlapped with the

last few packets being transmitted to processor 6. The richness of the topology of the

hypercube enables this distribution of data to the processors to take place without

having to wait for a busy link to become available.
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The firing delaysof eachof these communication nodes can now be fixed according to

the communication schedule described above. For example, in Figure 4.44, the delay

for an ADAS node representing communication delay of data to a task mapped onto

processor 6 would be computed as follows:

t¢ = tl + t4 + t2 + ts + ts- F

where ti = time to transfer data to processor i, and F = time to transfer the last

few packets to processor 5. These are the packets that overlap with transfers to

processor 6.

Thus, all scheduling is done statically, and there are no conflicts. The accumulation

of data at processor 0 from all of tile processors is performed in a similar manner. Fig-

ure 4.46 illustrates a schedule for sixteen processors. Each vertical column represents

the unit of time required to transfer the required data between a pair of processors.

Specific data transfers are indicated within each column, i.e., 5 --* 7 represents a

transfer from processor 5 to processor 7. Multiple transfers in the same column imply

that they take place simultaneously. Figure 4.47 provides a similar schedule for ten

processors. All of the data is being accumulated in one processor (processor 0). Rela-

tive to this processor, both of these schedules enable data to be transferred into it in

the minimum amount of time; i.e., processor 0 is never waiting for data. Therefore,

this schedule represents an efficient schedule. The actual values of the communication

delays to be associated with the ADAS communication nodes at the end of a stage

are derived from the first line in the schedules shown in Figures 4.46 and 4.47. For

example, if the data from a specific node arrives at processor 0 in the ninth time

unit, then the delay of the corresponding communication node is computed as (9*the

duration of the time unit). The duration of the time unit is the amount of time to

transfer the required number of packets between adjacent processors.
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The algorithms weremapped,scheduled,and the firing delaysfor the communication
nodesfixed accordingto the schedulesdescribedabove. The resultsof the ADAS
simulations aredescribedin the following section.

4.6.1.3. Simulation Results

The architectural parameters of interest are the the processor speed, the routing delay,

and the memory speed (this includes transfer into and out of the channel buffers).

The algorithm parameter of interest is the number of targets, which dominates the

complexity of the algorithm. The performance parameters of interest are the latencies

for the algorithm execution and the processor utilizations.

Our approach has been to analyze the performance of the "base" case, and then the

effect of varying the architectural and algorithmic parameters of interest. In this

manner it would be possible to discern how much improvement can be obtained by

improving a particular parameter. For example, if 40% improvement in latency is

required, it may be possible to observe that 20% can be obtained by improvements

in processor speed, 15% from improvements in routing delay, and 5% from feasible

improvements in memory speed. The simulation experiments have all examined the

effect of a single parameter on the performance of the machine relative to the base

case. The base case is characterized by a processor speed of 2 MIPs, memory access

time of 260 ns, routing delay of 40 ns per node, and 100 targets. The range of

parameter values considered were:

• 100, 200, 400, and 600 targets

• 2, 5, 10, 15, and 20 MIPs

• 260, 150, 100, and 50 ns memory access time

• 40, 20, and l nsec routing delay

The effect of the architecture/algorithm parameters on the latency and utilization is

shown in Figures 4.48 through 4.52.

From Figures 4.48 through 4.50 it is evident that the TCD is the dominant func-

tion. Processor 0 hosts the serial fraction. Furthermore, due to the sizable serial

fraction and the compute-bound nature of the application, the speed of interproces-

sor communication and memory access has a negligible effect. This is also evident
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from Figures4.51 through 4.53. This information is reproduced in tabular form in

Figure 4.54. This table also indicates the percentage performance improvement that

can be expected from improvements in the individual architectural parameters.

4.6.2. Encore Multimax

By definition, processors in bus-based shared memory architectures require access to

a shared resource on potentially every instruction execution cycle. The execution

of every instruction potentially competes with each other since they all require the

use of the global bus for memory access. Multiple processors can also potentially

conflict on every cycle in the access to shared memory. Thus, these architectures

are very dependent upon the mapping of (shared) data structures into the memory

modules. Furthermore, memory modules tend to be heavily interleaved to match the

processor/bus bandwidth.

The normal approach to achieving high simulation resolution is to map tasks to

processors and all communication nodes to the bus, essentially serializing all com-

munication. However, most architectures use some form of a cache to alleviate the

processor/bus/memory bottleneck. The performance depends very heavily on the use

of the cache. In the case of the Encore Multimax, modeling is further complicated

by the fact that pairs of processors share access to a single cache. Cache coherency

control adds to the memory traffic in a non-trivial way and must be a part of the

analysis. The interactions between the processor, cache, bus and memory are at the

level of the fastest device (typically the cache or bus), and this dictates the level

of resolution of the simulation. Since phenomenon such as cache hit rates and bus

arbitration are generally non-deterministic, an approach to simulation must enable

behavioral modeling while explicitly preserving the structure of the architecture. For

this we used the CSIM facility of ADAS.

The behavior of each modeled component of the Multimax was described by a program

written in the C programming language. The basic time unit of the model was the

speed of the fastest component in the system -- the nanobus. The nanobus is capable

of transferring data between processors at the rate of two 32-bit words every eighty
nanoseconds. The time for bus arbitration and control is modeled as a function of the

bus interface units. The behavior of the nanobus itself required reading processor and

memory inputs in a round robin fashion and routing them serially to the appropriate

processor cache or memory module. Access to the memory modules was modeled as a

two-stage pipeline where the delay of each stage was an integral number of bus cycles.

In addition, the memory would process the requests responding to read requests while
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acting as a sink for write requests. All instruction accesses were directed to a single

memory module that stored a copy of the code. Instruction reads prompt the memory

to return a block of instructions, thereby mimicking block loads that typically occur

on an instruction cache miss. Only the first instruction reference to a block causes a

miss and the transfer of the block into tile cache. Thereafter, remaining instructions

in that block can I)e referenced at cache speeds. No explicit cache fetch policy,

replacement policy, or mapping policy was implemented within the model. All of

these policies affect the hit rate, and it is only the variances in the cache hit rate that
is modeled.

The DPC consists of two processors, the cache and the nanobus interface. The

nanobus interface acts as a simple delay for accessing the nanobus. The cache is

the sink for all processor requests and memory reads. It embodies a user specifiable

cache hit rate. This determines the number of requests that are actually transmitted

over the nanobus. The processor generates all of the instruction/data read and write

requests. On a read miss to the cache, the processor waits until the read is satisfied

by main memory. On a write miss to the cache, the write to memory is initiated and

the processor can continue execution from the cache. This model executes a specific

algorithm by having the processors generate instruction reads and data read/write re-

quests in accordance with the specific tasks mapped onto them. The means to do this

must also enforce sequencing constraints between tasks. Our approach to achieving

this is best understood after an explanation of the mapping of tasks to processors.

4.6.2.1. Mapping

Since each stage can be mapped independently of other stages, mapping of macropipe-

lines to bus-based multiprocessors is trivial. The serial tasks are mapped to one

processor (processor 0). All of the parallel tasks in a stage are mapped to distinct

processors. There is no data distribution for each stage since this is a shared memory

machine. All data is in shared memory. Each of the tasks on a processor belong

to different pipeline stages, and therefore they can be executed in a fixed order.

The mapping of tasks to a processor is captured in a table such as that illustrated in

Figure 4.55. This shows a table for any of the processors not executing the serial tasks.

The symbols DR, IR, and DW stand for data read, instruction read, and data write

respectively. The numbers reflect the actual number of corresponding operations for

the related task. During simulation, the processor model reads these values from the

table and proceeds to generate the exact number of memory references and operate

(fire) at a user-specified rate, e.g., 2 MIPS. When the task execution is completed, the

processor signals processor 0 and waits. When processor 0 has received completion
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signals from all processors in a pipeline stage, the next stage is initiated. When a

processor model is invoked again during simulation, the next set of values for DR, IR,

and DW are used. This corresponds to the task of the next stage of the pipeline that

is mapped on that processor. This table is identical for all of the processors executing

parallel tasks. Since processor 0 also executes the serial section, its table is different.

The table for processor 0 contains information to distinguish between blocks of code

that correspond to the serial tasks, and blocks of code that correspond to the parallel

tasks (and therefore control has to be broadcast to other processors to initiate their

tasks).

The values of DR, DW and IR were derived from expressions supplied by RTI. These

expressions were in terms of the algorithm parameters, e.g., number of targets, re-

dundancy, number of weapon platforms and number of clusters. The expressions

themselves were derived from an analysis of the algorithms. The input to Honey-

well's effort was a description of the parallel segments of the BM/C 3 algorithms, and

expressions for DR., DW and IR. for each of the segments.

The CSIM model is independent of the algorithm. All of the algorithm-specific func-

tionality is embodied in the table that is created for each processor. It is possible

to envisage compilers that produce these (or similar) tables for a CSIM architecture

model from a specification of the computational requirements of the algorithm.

4.6.2.2. Scheduling of Intertask Communication

Intertask communication takes place over the nanobus. While the individual DPC

caches reduce the nanobus traffic, it is a shared resource for which access conflicts

can occur. These conflicts are a function of the processor behavior, memory access

patterns, and the resulting cache hit rate. In the CSIM behavioral model, these

conflicts occur naturally in the course of the execution of the simulation. Therefore,

no static scheduling of communication need take place.

4.6.2.3. Simulation Results

In the Multimax, interference between parallel tasks can take place at the granularity

of an instruction fetch or data store. In order to accurately model the performance

of the architecture, simulation must be at the resolution of these events n the 80as

bus cycle time. The cache cycle time is the same as that of the bus, as is the nanobus
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interfacecycle time. The memory(non-interleaved)accesstime is four buscyclesand
the processorspeedsrangebetweentwo and twenty MIPS. At this levelof granularity
and running on a S13N3/360 worksta.tion,eachsimulation required approximately
1000 CPU hours. This was clearly infeasible,especiallysincewe are interested in
exploring a rangeof possibilities. As a result, the computational requirementswere
scaledto reflect the "reasonable" simulation times and the available scope of this

effort. Scaling factors used varied from 1000 to 100000. Since it was infeasible to run

the simulation at full resolution, it is difficult to assert the effects of scaling effects.

It does appear that if the program achieves a form of steady state behavior with

respect to its pattern of memory references, and if it achieves this behavior even after

after scaling back the computations, then the effects of scaling on performance are

insignificant. For example, consider a module of 1000000 instructions, that we scaled

back to 1000 instructions. If steady state behavior is achieved with 500 instructions,

executing to 1000000 instructions would not significantly affect the performance char-

acteristics. It is difficult to determine within the scope of this effort if indeed this was

the case.

The architectural parameters of interest are the processor speed, the bus speed, and

the memory speed. The algorithm parameter of interest is the number of targets,

which dominates the complexity of the algorithm. The performance parameters of

interest are the latencies for the algorithm execution and the processor utilizations.

The effect of the architecture/aigorithm parameters on the latency and utilization is

depicted in Figures 4.56 through 4.63. As in the analysis of the Mark III, performance

was examined with respect to a base case-processor speed of 2 MIPs, a bus speed of 80

ns, memory access time of 320 ns and 100 targets. The range of parameters examined

were

• 100, 200, 400, and 600 targets

• 2, 5, 10, 15, and 20 MIPs

• 320, 150, 100, and 50 ns memory access time

• 80 ns, 40 ns, 20 ns, and 1 ns bus cycle time
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Figure 4.56. Latency vs. Processor Speed

118



Percentage Change, Time vs. Memory Delay,
WTATS on Encore

4O 80 120 160 200 240 280 320 360 400

Memory Delay (ns)

Figure 4.57. Latency vs. Memory Access Time

ll9



1.0

0.9

0,$

0,7

°iml

oO.S

I=
0.4

i.i
i,)

0.3

0.2

0,1

10

Percentage Change, Time vs. Bus C

WTATS on Encore

20 30 40 50 60 70 80

Bus Delay

i i i.L1:.

ii!:i
iiii!
:':I;

_'_...T_..
;iiii

_ _..-t2t_.

:::::

:::::

I1:::

: : : : :

:::::

:::::

i!!!_

_P

! iTrt'.
WA:P..:
"rs_

90 100

Figure 4.58. Latency vs. Bus Speed

120



Increasein Time, Time vs. Targets,

on Encore
T - '4 '

ii"l_ ""_' _ "[I!I.. .
-LLi3_: "

Jill _ ....

:_:_ F !!ii
-g.;.li , iiii

-- iiii

iiii

iiii

i!!!

iiii
_: iiii

44- _
iiii

_ iii!

100 200 300 400 500 600 ?00 800 900 1000

Number of Targets

Figure 4.59. Latency vs. Number of Targets

121



IO0
Percent Utilization vs. MIPS, WTATS on Encore

90

80

t

70

O
o_

60
tq

°....

e,

U
_s

SO

40

30

20

10

2 4 6 8 10 12 14 16

MIPS

18

Figure 4.60. Utilization vs. Processor Speed

122



Percent Utilization vs. Memory Delay, WTATS on Encore

100

90

8O

70

10

120 160 200 240 280 320 360 400

Memory Delay (ns)

Figure 4.61. Utilization vs. Memory Access Time
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Figures 4.56 through 4.59 echo the trends of the Mark III performancedata. In
Figure 4.60, Max Mere and Max Cacherefe,"to the maximum utilizations of the
memorymodulesand cachesrespectively.Thesevalueslevelout at a processorspeed
of about 10 Mips, indicating faster processorssaturate the cache. The remaining
figuresessentiallyindicate trends whereslowingsomecomponentof the architecture
increasesits utilization. The data in Figures4.56 through 4.63 are reproduced in the

tables in Figure 4.64 with the percentage improvement afforded by each architectural

feature. The first table shows the execution time in seconds for the baseline case of

2 MIPS, 100 targets, 320ns memory delay, and 80ns bus delay. The second table

shows the percentage change in time ti from the baseline time to, where

to - tl
A%--

to

It should be noted that each of the numbers in the tables reflect the effect of one

parameter on the baseline. These entries do not reflect cumulative effects or the

simultaneous effect of a number of different parameters. Thus, if one needed to

achieve a 40% improvement in execution speed over the baseline configuration, it

would be possible to select entries from the table that totaled 40%. These entries in

turn would dictate the required values of architectural parameters.
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[] MIPS

Task and Module Execution Time in Seconds

1 21 51 101 151 20 II
TCI) 8.882 5.157 2.597 2.462
WTC 1.777 1.028 0.780 0.709

WA 0.613 0.537 0.526 0.528

TS 0.278 0.240 0.229 0.223

WTATS 11.550 6.962 4.132 3.922

Memory Delay 320ns 150ns lOOns 50ns

TCD 8.349 8.295 8.264

WTC 1.697 1.687 1.683

WA 0.526 0.523 0.521

TS 0.221 0.215 0.211

WTATS 10.793 10.720 10.678

Bus Delay 80ns 40ns 20ns lns
TCD 8.311 8.058 7.768

WTC 1.648 1.604 1.547

WA 0.580 0.580 0.577

TS 0.262 0.241 0.240

WTATS 10.800 10.483 10.112

Targets 100 200 400 600
TCD 35.12 138.33 311.6

WTC 6.05 18.62 43.4

WA 1.19 2.40 4.5

TS 0.98 3.78 8.7
WTATS 43.33 163.12 368.2

2.600
0.573

0.538

0.218

3.928

PercentChange in Execution Time from Baseline
MIPS 2 5 10 15 2O

TCD 100% -41.9 -70.8 -72.3

WTC 100% -42.1 -56.1 -60.1
WA 100% -12.4 -14.2 -13.9

TS 100% -13.7 -17.6 -19.8

WTATS 100% -39.7 -64.2 -66.0

Memory Delay 320ns 150ns 100ns 50ns

TCD -6.0 -6.6 -7.0

WTC -4.5 -5.1 -5.3

WA -14.2 -14.7 -15.0

TS -20.5 -22.7 -24.1

WTATS -6.6 -7.2 -7.5

Bus Delay 80ns 40ns 20ns Ins

TCD -6.4 -9.3 -12.5

WTC -7.3 -9.7 -12.9

WA -5.4 -5.4 -9.1

TS -5.8 -13.3 -13.7

WTATS -6.5 -9.2 -12.5

Tatget_ 100 200 400 600
TCD 295.4 1457.4 3408.7

WTC 240.5 947.8 2342.3

WA 94.1 291.5 634.1

TS 252.5 1259.7 3029.5

WTATS 275.2 1312.3 3087.9

-7o. 
-67.8
-12.2

-21.6

-66.0

Figure 4.64. Performance of the Encore Multimax
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in detail in [10]; however, this algorithm is not of interest in the present context.

Given the above system, two alternative algorithms for recovery from the occurrence

of faulty cells were investigated. Since the control plane controls the system con-

figuration, it is the area of interest. The control plane cells must reconfigure the

system to perform correctly in the presence of the faulty cells. Given that a fault has

been detected, by whatever means, by neighboring cells, no evaluation of the fault

detection mechanism is made at this time.

4.7.2. Description of ADAS Model

The evaluation of the recovery algorithms was conducted using an ADAS model of

the architecture. The array model (Figure 4.69) used in the simulation is a seven-

by-seven matrix representing an execution array of forty-nine cells. This is the main

body of the array. In addition, there is a clock node which provides timing tokens to

initiate each of the operational cycles of the array. These timing tokens are input to

seven intermediate nodes, called split nodes, which provide tokens to each of the cell

nodes in the execution array. The clock node produces one token each time increment,

which is transmitted to the split nodes. The split nodes have firing delays set at zero,

so they provide no time delay to the model. All other nodes have firing delays equal

to one.

The clock node has seven output arcs, one to each of the split nodes. Each of the split

nodes has seven output arcs, each of which is connected to one node in the execution

array in the same row as the split nodes.

There are forty-nine cells in the array of the simulation model. They are numbered

from zero to forty-eight, beginning with the upper left corner arid increasing along

the rows to cell number 48 in the lower left corner. Rows begin with cell numbers 0,

7, 14, 21, 28, and 35.

The nodes in the simulation array each have eleven input ports, or inports, numbered

zero through ten and ten output ports, or outports, labeled zero through nine. The

arcs delivering the clock tokens from the split nodes are connected to inport ten, with

the other ten inports reserved for input from neighboring cells. All cell outports are

connected to neighboring cells. The port assignment for cell arcs is
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0. Cell to the farwest (CELL 0)

1. Cell to the west (CELL l)

2. Cell to the northwest (CELL 2)

3. Cell to the north (CELL 3)

4. Cell to the northeast (CELL 4)

5. Cell to the fareast (CELL 5)

6. Cell to the east (CELL 6)

7. Cell to the southeast (CELL 7)

8. Cell to the south (CELL 8)

9. Cell to the southwest (CELL 9)

10. Clock input

Since the port number three is assigned to be both the inport and the outport com-

municating with the cell to the north, the following pairing results between inports

and outports. Inport 0 receives the output of outport 5 of the proper cell. Inport 1

is connected to an outport 6, inport 2 to outport 7, inport 3 to outport 8, inport 4 to

outport 9, inport 5 to outport 0, inport 6 to outport 1, inport 7 to outport 2, inport

8 to outport 3, and inport 9 to outport 4.

Arcs that make the above connections are routed to allow the graphical representation

on the display to resemble as nearly as possible a drawing of the active connections

during simulation. Arcs have the default color of orange when the graph is initially

drawn on the screen, but the color attribute is modified by the CSIM programs when

simulation begins. During simulation, active arcs will have a color of magenta, and

inactive arcs will be gray. This gives the appearance almost identical to a hand-drawn

representation of the array and makes debugging of the model very easy.

Simulation is begun when a token from the split nodes reaches a cell inport. The node-

user-text attribute of each cell is set to "any," which means any token received at any

inport will start the execution of the cell. All tokens are consumed when received.

Firing delays, the time allotted for cell execution, are set to one time increment.

At first glance, the graph may appear strange. To achieve the desired appearance, all

execution cells are three-by-three grids in size. This enables routing arcs into a cell

boundary without connecting to a port. Using this technique, all arcs either enter

the center of one of the four edges of the nodes and go to a grid crossing before being

connected to a port, or they enter the corner of a cell to a grid point and then go to

a port. This allows the graph to have a very symmetrical appearance when only the
activated arcs are enabled.
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Figure 4.65. Fault-Tolerant Cellular Array [16]

131



0 " PROGRRM_ABLE SWITCH

Figure 4.66. Computational Plane [16]
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Figure 4.67. Control Plane

133



INC ITM1

f
V

J

J
J

NORMAl_ CONNECTION

- BODED CONNECTION

Figure 4.68. Connections to a Cell in the Control Plane [16]

134



O_00¢

--C3--- -

Figure 4.69. ADAS Simulation Model [16]

135



There are no bi-directional arcsto simulate the method of communicationsin the
array, so two arcsmust be used. The two arcsare routed in tim samespaceoutside
thecell boundary.This practicewasfoundvery usefulfor checkingconfigurationsand
debuggingthe algorithm. When the simulator is renewingthe screengraphics, if an
arc from cell A to cell B is enabled,but not from B to A, the resultswill beobvious.
The screenis redrawnone cell and onearc at a time; by watching the graphics it is
possibleto tell whenonecell hasactivateda port, and the other hasnot. Either the
arc from A to B will initially becoloredred whencell A is drawn and be changedto
black whenB is drawn, or the colorswill changefrom black to red whenthe second
cell is drawn.

A routine must be written in the C programminglanguagefor eachnodetype. For
this simulation,only three are required: clock,split, and cell.

The clockmodeldoesno functional operations. Therefore, the C routine for this node

simply sets outputs and is the same for both algorithms.

The C routine for the split nodes also performs no functional operations; this program

is used to generate necessary output to debug, verify, and collect data. The output

generated is specific to each algorithm and is sufficient to determine any information

needed to compare the two algorithms. This node is used differently in the two

simulations. In the White-Gray model, the output is activated by setting the node-

user-integer of one of the split nodes to a non-zero value. Usually split0 is used for

this purpose. The split nodes are used to generate the output because they execute

only when all cells have completed processing. Having the cells produce the output

would require changing the reporting cell each time the model size is changed. The

output is controlled by setting the user-integer in split0 to any number betweeri one

and seven. The output produced for each value of the integer can be selected by

the user. In the Yanney-Hayes simulation, each cell node produces its own output;

therefore, the split nodes are only used to produce tokens to drive the simulation.

The C routine for each cell defines the reconfiguration algorithm and is different for

each algorithm being investigated. The C routine for the Yanney-Hayes algcrithm is

documented in Appendix B of [15]. The C routine for the White-Gray algorithm is

documented in [17].

4.7.3. Yanney-Hayes Algorithm

The Yanney-Hayes algorithm works as follows:
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• Each active node can detect all errors from a specifiedset occurring in its
neighborhood.The detectionprocessisassumedto becompleteand not subject

to failure.

• In response to detecting an error in node j, node i executes the following recovery

strategy which is assumed to be fault free:

1. If there is a spare node in the neighborhood of node i that has the correct

connections to replace node j, then node i changes the state of the spare

node to that of node j and the recovery is complete.

2. If there are no spares in the neighborhood of node i that can assume the

role of node j, then node i assumes the state of node j if it has the correct

connections. This creates another error (the absence of state i) which will

be detected by some other node. This other node will then execute the

recovery strategy.

3. If neither of the first two conditions holds, then the recovery attempt fails,

and node i leaves the system state unchanged.

• An error at node j results in the removal, due to failure or a recovery step, of

the state sj from the system. It is the absence of sj that is detected by the

neighbor assigned to process errors in node j.

• The error sets detected by each node are disjoint. The union of all error sets is

the set of all possible error conditions.

• The failure modes and the recovery strategy are constrained so that no more

than one error at a time can be present in the system.

• When configuring its neighborhood in response to the absence of state si, a

node either assigns state sj to a spare node or changes its own state to sj.

• The neighborhood of a node is restricted to adjacent nodes in the system graph.
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This algorithm is describedin more detail in [18]. To evaluate this algorithm, a

C routine was written so that each node in the ADAS array performs the same

procedure. See Appendix B of [15] for the complete program.

4.7.4. White-Gray Algorithm

The White-Gray Algorithm was developed in a thesis at Virginia Tech [17]. The

ADAS simulation was done as part of that thesis and only the results are used here

to provide a comparison with the Yanney-Hayes algorithm. This algorithm has two

modes of operation, local and global. The local mode is activated when only a single

fault occurs, or a multiple fault occurs in which there is no more than one faulty node

in each row. The global mode is activated whenever more than one fault occurs in

the same row of the active array.

In the local mode of operation, each cell passes the contents of a ten-bit register to

each of its four immediate pattern neighbors (two in the same row and two in the

same column of the pattern). These neighbors may not be in the same physical row

or column if a prior reconfiguration has occurred. Based on the information received,

each node updates its ten-bit register and passes the new value. This continues until

equilibrium is reached.

At any time that a node discovers two or more faults in a row, the global mode is

initiated. In the global mode, the array is cleared, a new seed is planted, a space

detection algorithm is executed, seed migration occurs, and a completely new pattern

is grown in a different part of the array. This is the same algorithm developed by

[10]. The details will not be given here.

For comparison purposes, the assumptions underlying the algorithm are given below:

A faulty cell can not be relied upon to produce any valid output signals. For this

reason, methods must be found to isolate the faulty cell without utilizing fault-

free cells solely for this purpose. A switch-controlled communications scheme

can serve this purpose.

Wrap-around communications will not be used within the array. It is felt that

this adds communications paths to the array that severely hmit array timing,

especially one of wafer-scale size. Therefore wrap-around communications is
not considered.
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The array implementing this algorithm will have at least one column of spare

cells on the far eastern boundary.

All cell faults are permanent. No provision is made for intermittent faults,

although a slight modification to the algorithm would cover this possibility.

Retesting a faulty cell and re-enabling the communications network should be

investigated.

All cell failures are independent. No single cell failure will cause other ceils to

fail.

Each cell tests all cells with which it has active communications.

Testing will be sufficient to determine whether a fault is internal to a cell, or in

the communications network. In the event of a communications network failure,

the testing algorithm must determine which cell to isolate.

Communications between two cells within the array will be under the complete

control of the two cells involved. No control signals will be generated, and no

communications paths will be added, outside cell boundaries.

All four cells communicating with a faulty cell will detect the fault during the

same clock period.

The cells in the control plane are used only to determine operations of execution

cells. Programmable switches in the execution plane are either controlled by

the execution cells, or are controlled by control cells in another plane.
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4.7.5. Experimental Results

A three-by-three square array with four nearest neighbor connections was selected as

the base graph to be embedded. The base graph, the global architecture with spare

nodes and spare links, and the base graph embedded in the global architecture is

shown in Figure 4.70.

To implement the Yanney-Hayes algorithm, an assignment of error detection respon-

sibilities must be made. The algorithm itself does not specify how this should be

done; the selected assignment is shown in Figure 4.71. This has not been verified to

be an optimum assignment, but it performed better than any other assignment.

The two algorithms sometimes reconfigure in the same way, and sometimes differently.

Figure 4.72 shows how each algorithm responds to a fault in cell 8. In this case, the

final configuration is different. Figure 4.73 shows how both algorithms respond to a

sequential double fault in cells 9 and 6 (a single fault in cell 6 occurs only after the

system has correctly reconfigured in response to a fault in cell 9). In this case, both

algorithms produce the same final configuration.

ADAS simulations were run for all single faulty cells and for all possible sequences

of sequential double faults. A sequential double fault is defined as two single faults

separated in time so that reconfiguration in response to the first fault has completed

before the second fault occurs. For a description of the failure sequences and final

configurations for all single faults and for selected sequential double faults using the

Yanney-Hayes algorithm, see Appendices C and D of [15]. Results for the White-Gray

algorithm are given in [17].

The first comparison criterion to be considered is coverage. Both algorithms cover all

single faulty cells. The local mode of the White-Gray algorithm covers all coincident

or near-coincident double faults that do not both occur in the same row. Coincident

faults occur during the same clock period. Near-coincident faults occur close enough

together so that the system is responding to the first fault when the second occurs.

The Yanney-Hayes algorithm does not cover coincident or near-coincident double

faults. Recall that one of the assumptions is that only one fault is active in the

system at a time. Some sequential double faults are covered by the Yanney-Hayes

algorithm and some are not. The local mode of the White-Gray algorithm will cover

any sequential double fault in which both faults are not in the same row. The global

mode of the White-Gray algorithm will cover all double faults, regardless of their

position. A comparison of the local mode of the White-Gray algorithm with the

Yanney-Hayes algorithm is made because the global algorithm is much more complex
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Figure 4.70. Base Graph Embedded in Global Architecture
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and time consumingthan the local mode and it could be addedas a secondmode
to any local algorithm (including Yanncy-llayesalgorithm). Figure 4.74containsa
summaryof the results. From the table, weconcludethat the bestalgorithm relative
to coveragedependsoil the relative probability of coincident and sequentialdouble
faults. White-Gray in local modeis muchbetter for coincidentdoublefaults, but not
asgood for sequentialdouble faults. In addition, there is one particularly troubling
fault mode in the Yanney-Hayesalgorithm for the sequentialdoublefault E(9)E(9),
wherethe algorithmgoesinto an infinite loop. Suchfaults wouldhaveto be identified
in generaland compensatedfor with sometype of timer or counter.

Recoverytime is another important attribute. A comparisonof recoverytimes com-
piled from ADAS simulationsis shownfor singlefaults in Figure4.75and for double
faults in Figure 4.76. The time unit of two-phasestepswas usedin both cases.In
terms of two-phasesteps,Yanney-Hayesis better than Gray-White in about 50% of

the cases of sequential double faults and in about 33% of the single faults.

Although two-phase steps were convenient for simulation purposes, they have different

interpretations for the two algorithms. In the White-Gray algorithm, a two-phase

step consists of a serial exchange of ten bits of information in the first phase followed

by a decoding of these bits and conditional setting of control signals in the second

phase. The second phase is very short and takes only one PLA combinational logic

circuit delay. On the other hand, for the Yanney-Hayes algorithm, the first phase

consists of an exchange of state information (similar to that for White-Gray), but the

second phase requires the execution of a complex decision algorithm using a significant

amount of stored data that varies with time. We believe that the implementation

of phase two will require a micro-controller of some type. Therefore, phase two

will require a significantly longer time to complete than phase two of White-Gray.

The conclusion is, therefore, that the Yanney-Hayes algorithm will require longer to

execute in all cases than White-Gray.
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CELL STATE ERRORS CHECKED

2 E(1)

3 E(2)

4

5 E(4)

6 E(3), E(5)

7

8 E(7), E(9)

9 E(6), E(8)

Figure 4.71. Error Detection Assignment for Yanney-Hayes Algorithm
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FINAL CONFIGURATION

White-Gray Yanney-Hayes

Figure 4.72. Reconfiguration for a Single Fault in Cell 8
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Figure 4.73. Reconfiguration for a Sequential Double Fault in Cells 9 and 6
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Fault Class

Single Faults

Coincident Double Faults

Near-Coincident Double Faults

Sequential Double Faults

YH WG

Local Global

100% 100%

0% 75%

0% 75%
83% 67%

25%

25%
33%

Figure 4.74. Summary of Coverage from ADAS Simulations

Error

Condition

E(1) 16

E(2) 17

E(3) 18

E(4) 23

E(5) 24
E(6) 25

E(7) 30

E(8) 31

E(9) 32

Faulty

Cell

1

2

1

1

2

1

1

2

1

Two-Phase Two-Phase

YH Steps WG Steps

Figure 4.75. Time Analysis of Single Faults from ADAS Simulations
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Figure 4.76. Time Analysis of Double Faults from ADAS Simulations

147



Fault

Sequence

E(8)E(1)
E(6)E(2)

E(6)E(3)

E(6)E(4)

E(6)E(5)

E(6)E(6)

E(6)E(7)

E(6)E(8)

E(6)E(9)

E(7)E(1)

E(7)E(2)

E(7)E(3)

E(7)E(4)

E(7)E(5)

E(7)E(6)

S(7)S(7)

E(7)E(8)

E(7)E(9)

E(8)E(1)

E(S)E(2)

E(8)E(3)

E(8)E(4)

E(8)E(5)

E(8)E(6)

E(a)E(7)

E(8)E(8)

E(8)E(9)

E(9)E(1)

E(9)E(2)

E(9)E(3)

E(9)E(4)

E(9)E(5)
E(9)E(6)

E(9)E(7)

E(9)E(8)

E(9)E(9)

Faulty

Cells (YH)

25,16

25,17

25,18

25,23

25,24

25,26

25,30

25,31

25,32

30,16

30,17

30,18

30,23

30,24

30,25

30,29

30,31

30,32

31,16

31,17

31,18

31,23

31,24

31,25

31,30

31,32

31,26

Coincident or

Near-Coincident

Faults

Two-Phase

YH Steps

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Two-Phase

WG Steps

3

2

1

Fails

Fails

3

2

1

3

3

3

3

3

3

F_Is

Fails

3

2

2

3

2

2

Fails

Fails

Double

Sequential

Faults

Two-Phase

YH Steps

2

3

2

2

Fails

Fails

2

3

2

2

3

2

2

3

2

4

Fails

2

3

4

3

3

4

4

Fails

Fails

3

Two-Phase

WG Steps

4

3

2

Fails

Fails

Falls

4

3

2

6

5

4

6

5

4

Fails

Fails

Fails

5

4

3

5

4

3

Fail.

Fails

Faib

32,16

32,17

32,18

32,23

32,24

32,25

32,30

32,31

32,33

Fails

Fails

Fails

Fails

Fails

Fails

Fails

Fails

3

2

1

3

2

1

Fails

Fails

2 4

3 3

2 2

2 4

3 3

2 2

2 Fails

Fails Fails

Loop Fails

Figure 4.76. Time Analysis of Double Faults from ADAS Simulations (continued)
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5. Reliability Analysis

The application characteristics of complex space missions that impact reliability mod-

eling requirements are mission criticality, long operating life, distinct mission phases

with diverse activity levels and reliability requirements, very high throughput require-

ments, a harsh operating environment, and strict constraints on volume, weight, and

power.

The high system reliability requirements that exist for a mission critical application

can only be met by a system that is both fault-tolerant and, in the event of system

failure, fail-safe. Such systems have to be designed for fault tolerance and care-

fully evaluated to determine whether or not the requirements are met. However, the

existence of fault tolerance mechanisms makes that evaluation more difficult by in-

creasing the number and complexity of significant factors affecting system reliability.

Likewise, increased complexity of system design and evaluation also result from the

other application characteristics.

Since the system will have a long operating life, the MTBF's of major components

will be less than the mission duration, and attrition of components via failures will

be a dominating factor for system failure due to permanent faults. Consequently,

techniques that extend system life, such as a pool of cool spares that have reduced

failure rates and that can be activated upon failures, will be required and nonuni-

form architectures will result. Further, the extended periods without maintenance

implies system complexity will be increased to permit self repair and redundancy

management.

The multiple mission phases characterizing these applications require performance of

different functions, are of widely varying duration, and are subject to different reliabil-

ity requirements. The multiphase nature of the mission may also require mechanisms

for dynamic resource management. During the low activity phases, adequate system

resources should be available for self test and some components could be powered"

down to reduce power consumption and failure rates. The attainment of the desired

reliability for the brief engagement phase is conditional upon the successful attain-

ment of the lower reliability requirements of the long pre-engagement phase. During

the short, but very active, engagement phase, fault coverage may be the dominant

factor contributing to system failure and fault masking mechanisms will have to be

employed.

The need for very high throughput will result in a large number of interconnected

processors. The reliability analysis of such systems is made more difficult by the
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number of compo,,cntsand the complexity of the interactions betweenthem. It is
also mademore ditficult by the needto evaluatecomplexnetworks,which requires
identifying the very largenumberof combinationsof link failuresthat leadto system
failure.

The occurrenceof faults in the system is acceleratedby the harsh environment in
which it will operate. Faults may be induced in the early phasesby the stressof
launch and thermal differentials. Natural and hostile radiation dosingwill lead to
transient faults throughout the mission and accelerated failure rates and intermittent

faults at the end of the operating life.

Any component redundancy provided for reliability will have to be carefully justified

since weight and power are at a premium. This will lead to more complex designs

than one would encounter with simple redundancy techniques. For example, error

correction hardware may be used on program memories and system state memories

but limited error correction hardware may be provided for data memories. This leads

to a more complex reliability model both in terms of the number of unique major

components and in terms of the diversity of error rates.

For the purposes of defining the tools that are needed to evaluate highly parallel, high

performance systems for these complex space missions, the large system problem, the

impact of sequence dependencies and model complexity resulting from system configu-

ration and management strategies to attain high reliability goals, and the interactions

between the performance and reliability analyses are issues that need to be investi-

gated. During this phase of the project, a selection of preliminary reliability analyses

was devised to address these issues using models from the paradigm architectures.

These preliminary analyses address two of the design phases specified in [13].

From the areas of reliability analysis that were identified in the paradigm framework

(Section 3.3), a high-level analysis appropriate to the system requirements phase to

determine sparing levels required to keep a system operational for a long mission; an

analysis appropria.tc to the system design review of an FTPP cluster; and a network

analysis were selected. These analyses are described below and were performed using

reliability estimation tools provided by NASA Langley Research Center, including

ASSIST, SURE, and the Scaled Taylor Exponential Matrix (STEM) program. SURE

computes an upper and lower bound for the probability of entering a death state

of a semi-Markov model containing arbitrary recovery transitions and STEM com-

putes death state probabilities of Markov models based on the assumption that the

distributions are exponential. ASSIST was used to create models in the input form

required by SURE and STEM.
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In the high-level analyses,the large number of componentsand sparesrequired to
maintain the systemthrough thefive-yearmissionresultedin a largemodelwith long
paths to the death states,eventhough the complexitiesof the recoveryprocesseswere
not modeled. Also, the missionlength wassufficient for exercisingthosepaths. The
number and length of the paths made the use of SURE infeasible due to excessive

memory requirements and execution times. However, STEM, which has less modeling

flexibility but is more computationally efficient for this type of problem, was able to

input the saa'ne ASSIST-generated model and compute the system failure probability.

Since a detailed model of a large complex system such as the FTPP is unsolvable,

model reduction techniques were of particular interest in the FTPP cluster study.

One approach is to truncate the generation or solution of certain paths through the

model based on reduced contribution to system failure. Aggregation of states based

on complex definitions of state vectors can also be accomplished. The liability of these

approaches results from the likely creation of what is only an approximate model un-

der the guise of creating an exact model. Also, the model will very likely be difficult

to verify or understand. Because of these difficulties with exact models, the approach

used in the reliability analysis of the FTPP cluster was to create approximate, bound-

ing models based on the underlying triad structure of the configuration chosen for the

paradigm. The triad models were then combined and embelhshed to produce lower

and upper bounds on the system failure probability of the FTPP.

5.1. High-Level Analyses

High-level analyses were performed of the type used to determine how many spares

would be required to attain a mission goal of five years and how long mission life

could be extended by accepting degraded performance. For the spares analysis, a 16

processor system was assumed with varying numbers of spares. Figure 5.1 shows the

Markov model used for these cases. The input to STEM was created by the ASSIST

file shown in Figure 5.2.

151



(16,i) (16,i-l)

16)_v(1- c)

\
(15,i) (15,i-1)

i= 16,25,32,36,40,50,64,100

(16,0)

165v(1 - c)

\/
(15,1)

16,_p

\/
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34 states, 49 transitions to 202 states, 301 transitions

Figure 5.1. Spare Analysis State Model

For each case the probability of system failure (P(SF)) was computed for (1 -

c) = 10 -4 to 10 -6, where c is the probability that a failure is detected and the

failed processor is successfully replaced by a spare. The models ranged in size from

34 states and 49 transitions to 202 states and 301 transitions. The results of the

analyses are shown in Figure 5.3.

For the degraded performance analysis, a system of 16 processors and 16 spares was

assumed. The P(SF) of that system at five years was computed and then successive

system models were built allowing the system to isolate the faulty processor(s) and

continue, down to ten fault-free processors. Each degradable system was analyzed to

determine how many operational years it could attain with the same P(SF) as that

of the non-degradable system at five years. The largest model contained 136 states

and 359 transitions. The results of this analysis are shown in Figure 5.4.

The large number of components in parallel systems and the large number of spares

required to maintain a system for a long mission result in large models with long

paths through the system states. The long mission times and the long paths stress

the reliability tools with large memory requirements and excessive execution times.

The creation of the generic parameterized models via ASSIST made it much easier

to vary the system parameters and thus to perform analyses for a range of those

parameters. The analysis of extended mission time versus degraded performance

illustrates a point of interaction between reliability and performance analyses.
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INPUT nspares ;

INPUT nprocs ;

INPUT min_conf ;

INPUT coy;

lambda_p = 2.5e-5;

lambda_s = 1.25e-6;

"prune = 1.0e-20;"

(* Number of Spares *)

(* Number o_ Processors *)

(* Minimum Number of Processors Required *)

(* Probability of Detecting and Reconfiguring *)

(* Active Processor Failure Rate *)

(* Spare Processor Failure Rate *)

SPACE =(np: O..nprocs,

ns: O..nspares);

(* Number of Active Processors *)

(* Number of Available Spares *)

START = (nprocs,nspares);

DEATHIF (np< min_conf);

IF (np >= min_conf AND ns>O) THEN

(* Spare Failure *)

TRANTD (np, ns-l) BY ns*lambda_s;

(* Failed Active Processor Replaced by Spare *)

TRANTD (np, ns-i) BY np*lambda_p*cov;

(* Transition to Degraded State Due to Coverage Failure *)

TRANTO (np-l,ns) BY np*lambda_p*(l-cov);

ENDIF;

IF (np>--min_conf AND ns=O)

(* Transition to Degraded State Due to Exhaustion of Spares *)

TRANT0 (np-l,ns) BY np*lambda_p;

Figure 5.2. Spare Analysis ASSIST File
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5.2. FTPP Cluster Analysis

The FTPP was designed to achieve high performance in a system designed to meet

stringent fault tolerance requirements. It has been described and evaluated in [7]

and [9]. The primary emphasis of the Phase I FTPP analysis was to illustrate issues

in constructing reliability models, not to assess the reliability of the FTPP. It was

performed on the system configuration used for the performance analysis of WTA/TS

to facilitate the future investigation of the interactions between performance and re-

liability analyses. The selected configuration consists of four interconnected clusters,

where each cluster consists of four processing and four network elements. The pro-

cessing elements in each cluster are configured in triads, with the three processors

in each triad being distributed over threc network elements. The network elements

within a cluster are fully connected, and each cluster is connected to each of the other

three clusters through special purpose input/output processing elements (IOEs). The

cluster structure is illustrated in Figure 5.5 and the network of clusters in Figure 5.6.

In this analysis, which is an example of a preliminary analysis, no sparing or reconfig-

uration was modeled. Thus, for a cluster, system failure is the loss of any triad. The

processors in a triad perform redundant processes and the results are voted to isolate

a faulty processor. Thus, triad failure is the failure of any two of the component

processors. For the analysis, two processor failure rates were considered: 1E-5 and

5E-5 + 1E-6. The latter failure rate includes the failure rate of the link from the

processor to the network element. Likewise, two network element failure rates were

considered: 1E-6 and 1E-5 + 1E-6. A mission time of one-half hour was assumed.

The reliability analysis was partitioned into an analysis of a cluster and an analysis
of the network of clusters.

A complete Markov model of a cluster consisting of 4 network elements and 12 pro-

cessing elements contains more than 24 • 212 states. The distribution of the triad

components over the network elements introduces sequence dependencies between

NE and PE failures, which further complicate the model. The size and complexity of

the system thus make it infeasible to create and attempt to solve a complete _nodel,

so reduction techniques have to be considered. Depending on the tools available for

construction and analysis, either the construction of the model can be simplified or

the solution of the model can be truncated.

One common technique to create smaller, simpler models is to decompose a system,

if possible, into independent subsystems that can be solved separately and the results

combined to assess the complete system. Another frequently used method to reduce

the number of states in a model is to aggregate states based on a common failure
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aspect, such as total number of faults existing in the system or the number of active

processes. That is, states that have a common feature relevant to the operational

state of the system but are reached by different transitions from possibly different

states can be combined. The rates of the transitions associated with the combined

states can in turn be combined and new transitions created.

Some truncation mechanisms are usually included in the tools to allow states and

transitions in a model to be ignored if their probability of occurrence falls below a

specified floor, and thus do not significantly impact system reliability. ASSIST also

allows other user-specified model truncations to be effected by death state definitions.

Finally, bounding models can be created to approximate system reliability. That is, a

tractable model of a system is built which can be shown to have greater or less system

reliability than the actual system under consideration. If optimistic and pessimistic

models within a sufficiently close range of reliability can be built and solved, then

the actual system reliability can be known within acceptable bounds. An optimistic

bounding model can be built, for example, by relaxing constraints on reconfiguration

and eliminating some of the transitions to degraded, operational states. Likewise, a

pessimistic model can be built by limiting reconfiguration possibilities and by creating

some degrading transitions.

There are various approximate models that can be used to bound the P(SF) of

the FTPP. The most optimistic approximation is that of four independent triads.

Adding four independent network elements produces another, less optimistic, model.

On the other hand, a conservative approximation can be made by a model that

captures interdependencies between the triads and the network elements, but does

not distinguish all of the failure sequences that lead to continued operation rather
than failure.

The probability of failure, P(FT_) of a triad for time = 10 hours is computed by SURE

to be between 7.49994E-11 and 7.50000E-11. Since the four triads are assumed to be

independent, the probability of system failure is

P'(SF') _ P(FT_) + P(FT_) + P(FT3) + P(FT4)

Thus, 2.99997E-10 < P(SF) < 3.00000E-10. However, for the purposes of considering

the methods of reducing models, it is instructive to consider a full model of a system

of four independent triads.

The Markov model shown in Figure 5.7 consists of states that represent the occurrence

of faults on specific triads. States 3 through 6 represent the occurrence of one fault on

one triad; states 7 through 16 represent the occurrence of two faults, either two on one
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triad (failurestatesdenotedbysquares)or on two triads (activestatesdenotedby cir-
cles);andsoon to states46 through 49 (fiw' failures). For this model, the probability

of system failure was computed to be 2.99997E-10 < P(SF) < 3.00009E-10.

This model can be reduced by aggregating states according to the number of failures

that have occurred and tile distribution of those failures across triads, as illustrated

by the first diagram in Figure 5.8.

This aggregated model can be further reduced to that illustrated in the second di-

agram by aggregating the transitions. For this reduced model, system failure was

computed to be 2.99997E-10 < P(SF) < 3.00009E-10. The addition of four inde-

pendent network elements to the system results in a computed system failure of

3.01497E-10 < P(SF) < 3.01509E-10.

An approximate model was built that captured interdependencies between the triads

and the network elements; however, this model overestimated the loss of processors by

aggregating certain combinations of network element and processor failures in worst-

case states. This model contained 130 states and 184 transitions; the probability

of system failure was computed to be 3.76495E-10 < P(SF) < 3.76510E-10. Thus,

since this is a conservative estimate and that of the independent triads and network

elements is optimistic, the true lower bound on P(SF) is between 3.01497E-10 and

3.76495E-10, asld the true upper bound is between 3.01509E-10 and 3.76510E-10.

Figure 5.9 shows the approximate model reduced to 6 states and 10 transitions.

In this reduced model, the states represent the number of degraded triads and the

number of full triads, and the transitions are due to combinations of processor and

network element failures. The probability of system failure was computed to be

3.76825E-10 < P(SF) < 3.76840E-10.

The P(SF) of each model as computed by SURE for a half-hour mission, assuming a

processor failure rate of 1E-5 and a network element failure rate of 1F_,-6 and assuming

a processor failure rate of 5E-5 + 1E-6 and a network element failure rate of 1E-5 +

1E-6, is summarized in Tables 5.1 and 5.2 respectively. Note that the higher failure
rates also include tile failure rates of the associated links.

5.3. Network Analysis

The FTPP network configuration used in the performance analyses is illustrated in

Figure 5.6. It consists of four clusters interconnected so that each network element
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Figure 5.7. Full Modelof IndependentTriads
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Figure 5.8. Reduced Model of Independent Triads

Model Lower Bound Upper Bound

Full Triad 2.99997E-10 3.00009E-10

Reduced Triad 2.99997E-10 3.00009E-10

Independent Triads & Network Elements 3.01497E-10 3.01509E-10

Full Interdependent Triads & Network Elements 3.76495E-10 3.76510E-10

Reduced Interdependent Triads & Network Elements 3.76825E-10 3.76840E-10

Table 5.1. P(SF) with Ap = 1E-5, A, = 1E-6, t = .5
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Figure 5.9. Reduced Model of Interdependent Triads and Network Elements

Model Lower Bound Upper Bound

Full Triad 7.80267E-09 7.80419E-09

Reduced Triad 7.80267E-09 7.80419E-09

Independent Triads & Network Elements 7.98417E-09 7.98585E-09

Full Interdependent Triads & Network Elements 1.21910E-08 1.21936E-08

Reduced Interdependent Triads & Network Elements 1.22310E-08 1.22335E-08

Table 5.2. P(SF) with Ap = 5E-5 + 1E-6, A, = 1E-5 + 1E-6, t = .5
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Figure 5.10. Example Network Model

Pt, = .9999485

ql, = 5.15E-5

in each cluster is connected to a network element in another cluster through their

associated PEs. This connection scheme gives each cluster two connections to each of

two clusters and allows messages to be passed between any two clusters. To completely

model all interactions among all components would require more than 2 s • 216 • 218. 248

states.

Since tools to compute network reliability are not widely available and those that

are being developed are generally for the two-terminal case, an example of a dis-

joint products technique to assess all-terminal reliability that is described in [6] is

included here. This example is illustrated for the simple network topology illustrated

in Figure 5.10.

For an all-terminal, undirected problem, the reliability of the network is defined to
be

RelA = the probability that for every pair vlv2 of nodes,

=1a path from vl to v2.

Assuming statistical independence of failures and the perfect operation of nodes, an

approximate model can be created by only considering network link failures. However,

since this is an all-terminal case, perfect node operation does not have to be assumed:

system reliability can be computed as the product of perfect-node RelA and the
individual node reliabilities.

The technique described in [6] begins with an enumeration of the minimal sets of

operational states, or minpaths, for a network, N. For each minpath P/, let E; denote
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the event that all edgesin P_ are operational. Then the reliability of N is the sum

over all minpaths I] of the probability of each disjoint product event Di formed from

the events El,..., E;. Each disjoint product event is written as a Boolean expression

and hence a Boolean expression is derived for Rel(N). This Boolean expression can

then be simplified and evaluated.

The minpaths for an all-terminal network are spanning trees, and [6] has modified an

algorithm by Ball and Nemhauser to generate a Boolean expression for ReI(N) while

generating the spanning trees. The Boolean expression generated by this algorithm

for the all-terminal reliability of the network in Figure 5.10 is

RelA(N) = ZlZ2Z4 + XlZ2_4z5 "JF zl_2x3z4 -Jr- Zl;_2._3_4z5 _-

XI:r2_3X4X5 + ,TIX2X3_4Z5 + XlX2_3Z4X$

Assuming that the probability, pt_, that a link i is operational is .9999485, the prob-

ability, ql,, that it is not is 5.15E-5. Substituting Pt, for zi and qt_ for _i, Reln(N)

is computed to be .99999. Assuming a node failure probability of 1.22335F_08 (see

Table 5.2), t_lA with node failures = .99998.
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6. Summary

6.1. Goals

The goal of the DAHPHRS effort is to develop an integrated set of tools to assist

the system architect in the design of high-performance, highly reliable systems. A

program consisting of three phases was designed to achieve this goal. In Phase I,

tools would be related to a methodology framework and baseline system descriptions

would be developed and analyzed. In Phase II, tools would be specified and the

baseline system descriptions enhanced for fault tolerance. Finally, in Phase III, tools
and interfaces would be built.

Phase I has been completed by developing a paradigm of the systems design pro-

cess using a representative example system subject to representative requirements

and methods. For this paradigm, the JPL Hypercube, the Encore Multimax, and

the CSDL FTPP architectures and the ALPHATECH WTA/TS and WAUCTION_-

ASSIGNMENT algorithms were modeled. The issues investigated through the per-

formazace analysis of these systems include the impact of communications in networks,

the cost of fault tolerance, the speedup and effectiveness achievable through varying

levels of parallelism as a function of processor/communication speed and the extent

of sequential tasks, mapping algorithms to architectures, and workload distribution.

The creation of the paradigm models and the selection of the performance analy-

ses were directed toward the tool/methodology issues of 1) selecting an appropriate

model level, or fidelity, based on the information required to build the model versus

the information available and the amount and type of data that would result from the

analysis; 2) the roles of measurement, functional simulation, and stochastic methods

in support of modeling; and 3) the validation of models.

The issues investigated in the reliability analysis of parallel, highly reliable systems

include the large system problem, the impact of system configuration and manage-

ment on the size and complexity of reliability models, and the interaction between

the performance and reliability analyses. The reliabihty an_ysis tools/methodology

issues considered are the creation of approximate models to bound an exact and diffi-

cult to analyze model and the relationship of the performance model to the reliability
model.
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6.2. Simulation Paradigms

System simulation is essentially an approximation of the system behavior. The gran-

ularity of a simulation is the amount of simulated time that can be realized in a unit

of real time. It is always desirable to realize maximum simulation granularity, con-

sistent with a minimum acceptable level of accuracy. An important outcome of this

project has been the identification of a relationship between the nature of the system

being simulated and the appropriate simulation paradigm. Loosely coupled systems

can typically be modeled with high simulation granularity, whereas tightly coupled

systems typically realize lower simulation granularity. Higher simulation granularity

is desirable since such models require less real time to execute.

Coupling is the extent to which the execution of one processor (process) can interfere

with the execution of another processor (process) and defines the granularity of pro-

cess. Coupling can be due to resource sharing (e.g., memory) or control (e.g., lock

step execution vs. message based synchronization). Fine grained architectures are

tightly coupled while coarse grain machines are loosely coupled. In modeling loosely

coupled systems, e.g., the Mark III, each task (an ADAS node) physically exercises

a separate processor-memory data path. The execution time for that task can be

computed based on processor specific characteristics, and is independent of the ex-

ecution times for other tasks. All of the information a task requires for execution

is locally available. The only reason a task cannot fire when rea_iy is due to exter-

nally specified constraints (e.g., resource constraints due to mapping). The delay of

an ADAS node can represent a task as large as the granularity of the computation

being represented. Thus, for loosely coupled, medium/coarse grain computations, a

GIPSIM-type modeling paradigm is efficient and desirable.

In tightly coupled architectures such as the Multimax, processors can potentially

interfere on every memory access since all accesses must be across the bus. In this

case, we must model events to that level of granularity, i.e., a bus transaction. The

size of the ADAS graph increases drastically since each one must now represent a

memory access, in some cases beyond several hundred million nodes. Even if one

were to assume that mapping and scheduling such a graph is feasible, we notice that

cause and effect is not local any more. The behavior of a memory access depends on

whether it is a write or read access. The behavior of the bus depends on whether the

processor or memory enabled the bus. Further, the operation of the cache and the bus

arbitration policy are (or maybe) non-deterministic. In such cases it is necessary to

model data dependent computation -- it is no longer enough to satisfy only sequencing

constraints between events. Modeling in such cases requires CSIM-like behavioral
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modeling tools.

In summary, the nature of the architectures being modeled place demands on the fea-

tures of appropriate modeling tools. Loosely coupled architectures modeling medium-

coarse grained computation can achieve high simulation granularity with tools that

represent sequencing constraints betw_n events. Tightly coupled systems model-

ing fine grained computation realize low simulation granularity and often require the

ability to model data dependent computation. For either class of machines, modeling

non-deterministic phenomena requires the ability to model data dependent computa-
tion.

6.3. Operational Tools

Experiments require exercising the simulation models over a range of parameters --

both algorithmic and architectural. Modeling changes in these parameters requires

making changes to some attribute of the simulation model. This can be both time

consuming and error prone, and generally involves straightforward, repetitive cal-

culations. The architectures being modeled are becoming more complex, and the

search space of possible solutions is growing exponentially. Tools for managing and

performing these repetitive simulations are necessary.

In particular, when dealing with complex algorithms, the number of nodes required

can be from several hundred (this program) to several thousand. When a single al-

gorithmic parameter is changed, several thousand to tens of thousands of attributes

need to be recomputed. Further, when these tools are hierarchically organized, it is

desirable that intermediate nodes inherit values from nodes higher in the hierarchy,

or be able to synthesize values from nodes lower in the hierarchy. The capability

for model inheritauce enables one to reuse basic blocks such as processors and net-

works in several different models. It is essential for rapid prototyping, configuration

management and efficiency. The individual node descriptions that support such de-
scriptions and the flow of information between them also serve as documentation for

the behavior of that node. There are no conceptual barriers to the development of

such a capability, aJ, d the existence of a prototype embodying some of these concepts

is the Attribute Definition Language (ADL). We found the use of ADL, though not

yet fully developed, to be invaluable. Such a tool is mandatory for any large-scale
simulation toolset.

The systematic search of the architecture search space is the realm of a Simulation
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ManagementFacility, suchasthat describedin Appendix A of [15]. Weagainreiterate
the valueof sucha facility. This program demonstratedthe needfor a similar tool
for algorithmic parameters(as discussedabove).

6.4. Mapping and Scheduling

It has become widely established that communication and synchronization overhead

are often the principal determinants of performance in parallel architectures. How-

ever, adequate tools for enabling system designers to examine these issues axe really

lacking. As an outcome of this program, we have been able to disconcern two possible

approaches -- one for each simulation paradigm.

In the case of loosely coupled architectures (the GIPSIM-like world) the ADAS soft-

ware graphs consist of nodes representing tasks interspersed with nodes representing

intertask communication. A mapping algorithm may assign two communicating tasks

to processors that are "far" apart, i.e., communication between them must cross sev-

eral links. The ADAS communication node between these two tasks can be replaced

by a series of nodes. The number of nodes represents the number of intermediate

processors that communication must be routed through. This information can be de-

rived from a description of the target architecture. Communication nodes mapped to

the same processor node cannot fire simultaneously. Whether communication nodes

and task nodes mapped to the same processor can fire simultaneously or not depends

on the architecture of the node itself. Either case is easily modeled by appropriately

setting t_e hardWare attribute value in the individual nodes. This approach requires

structural modification of the ADAS graphs. This can be either fully automated or

performed with interactive user approval.

For tightly coupled architectures (the CSIM-hke world), all of the algorithm spe-
cific information is embodied in the tables that control the behavior of each of the

components. It is possible that some description of an algorithm (such as an ADL

description) can be compiled to produce these tables. Placement of the tables is dic-

tated by a mapping algorithm, and schedulifig is handled naturally within the model.

One can think of a library of CSIM architectural models being available, and algo-

rithm descriptions being compiled to produce the tables. These tables would form

the input to a mapping algorithm, and would drive the simulation.
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6.5. Validation

In the course of constructing and executing simulation models one is required to

make a number of assumptions about the architectures and algorithms. In addition,

it is necessary to make decisions about what facets of the architecture, algorithm,

or architecture/algorithm combination are important enough to be modeled. This

naturally leads to the issue of the accuracy of the simulations themselves. We feel the

ultimate test is the design, construction, and operation of the architecture/algorithm

being modeled. However, the purpose of reliable simulation is to be able to make

design decisions without having to learn from experience.

A more practical alternative is the construction of benchmarks that exercise different

aspects of the architecture. These benchmarks may be evaluated via simulation as

well as executed on various test machines. This approach is subject to the same crit-

icisms as benchmarks in general, but also realizes many advantages. The important

distinguishing feature from conventional benchmarks is that these benchmarks ave for

the purpose of evaluating the accuracy of the modeling and simulation tools, not to

evaluate the performance of the architectures.

6.6. Miscellaneous

The remaining issues are not as significant as those discussed above. They are desir-

able more from the point of view of ease of use of tools themselves than any increased

modeling or decision power that they would realize.

,

.

.

4.

.

Simulation results should be exported and displayed in real time. This makes

it easy to identify trends and may preclude the execution of unnecessarily long

simulations.

Checkpointing and incremental evaluation is necessary to recover from unnat-

ural termination of long simulations.

Incremental compilation.

ADAS graphs should be created automatically from standard descriptions, e.g.,

programs or other representations internal to software development tools.

Perhaps the largest benefit will be derived from the availability of tools for

paxallelizing applications. This is not central to modeling and simulation, but
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will have a great impact -- both from the point of view of ease in deriving

ADAS representations of the computations and the validity of the results of the

computations.

What we foresee is generation of tools that are integrated to form complete System

Development Environments. Such environments will include tools that manage de-

scriptions and requirements, tools that perform modeling and simulations, and finally,

tools that enable validation and system development. This integrated environment

is necessary to ensure the synergistic combination of tools that deal with the diverse

aspects of large complex parallel/distributed systems.

6.7. Conclusions

As a result of the Phase I paradigm construction and analysis, a performance modeling

process based on simulation of functional and performance models and measurement

of engineering models of algorithms and architectures was proposed. The interactions

of the three threads of this approach address the problems of fidelity of model to

information and maintaining model consistency throughout the design process and

result in validated, reusable models.

The information found to be necessary to create models for the assessment of archi-

tectures includes

• the structure and processing speed of the functional elements,

• the structure, size, and bandwidth of the memory elements,

• the structurc and bandwidth of the interconnection network,

• the message formatting and error checking overhead required by the intercon-

nection network,

• the structure and bandwidth of the input/output subsystem,

• the message formatting and error checking overhead required by the input/output

subsystem,

• the fault-tolerant features of the architecture (e.g., fault containment regions,

reconfiguration algorithms, redundancy management techniques), and
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• the functions and overhead associated with the operating system (e.g., dis-

tributed executives, task allocation overhead).

The necessary information for the assessment of algorithms includes

the potential for parallel implementation,

the size and organization of major data structures,

the system data and control flow, preferably as hierarchical data flow diagrams

or input/output matrices,

the use of standard mathematical and signal processing functions (e.g., matrix

multiply, linear programming, and Fourier transforms),

memory addressing patterns for each function and each data structure used by

the function (e.g., linear, random but local, random and global),

parallel implementation approaches (for some basic functions, the parallel pro-

cessing capabilities may be known, e.g., matrix multiply),

the number of instructions executed for each module of the system as a function

of parameters which characterize an operational scenario, and

information about data and control flow dependencies.

Tools can provide valuable insights into design decisions at the early stages in the

design process; however, the current set of tools is unable to handle the size or com-

plexity of SDI algorithms and architectures effectively. There do exist methods for

reducing the complexity of the models to the point where they can be solved by ex-

isting tools, but the construction and validation of the reduced models is not well

understood. Further, the current set of tools is not well integrated.

A preliminary environment for the integration of performance and reliability analysis,

consisting of an evaluation controller, performance analysis tools, reliability analysis

tools, and a shared data base, was proposed. The specification of the requirements for

the tools and their integration into this environment which are scheduled for Phase II

will derive from the following needs identified in Phase I:

• Tools need to be sensitive to parameter changes in the algorithm.
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• Sophisticatedmappingand schedulingtoolsareneeded.

• A propermatch of model resolutionto tool capabilitiesmust bemaintained.

• Run-timemodification of hardwareattributcs to modeldynamicresourceman-
agementis required.

• The developmentof requirements via CASE tools and the automatic creation

of performance models from the CASE descriptions are needed.

• The effects of the software operating system need to be brought into the mod-

eling process.

• Measurement is necessary to support and validate modeling.

• The systematic generation of reliability models and tools for model reduction

needs to be explored.

• Tools for network reliability analysis need to be explored.

• Mechanisms for bringing fault tolerance mechanisms into performance models

are needed.

• Tools to support experiment planning are needed.

• A shared data base consisting of the following elements is required:

- the data required for performance and reliability models,

- a library of primitive function models,

- architecture transformation rules,

- parallelization transformation rules, and

- mapping rules.

6.8. Further Work

The Phase I effort results in three areas of further work for Phase II: methodol-

ogy, the paradigm, and tool/data base specification and development. In the area

of methodology, methods need to be developed for modeling operating system fea-

tures, dynamic parallelism and fault tolerance features; for model validation; and for

experiment planning. Further work on the paradigm is needed to study modeling
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fault tolerancemechanisms,operating systems,and other types of applications, as
well asmoremodelingof the WAUCTION_ASSIGNMENTalgorithm asa vehiclefor
investigatingdynamic performancemodels.
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