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INTRODUCTION 

R.A.  Langel 
Geodynamics Branch 

Goddard Space F l i g h t  Cen te r  
Greenbe l t  Md. 20771 



A symposium entitled "Types and Characteristics of Data for 

Geomagnetic Field Modeling" was convened on Friday August 23 at the General 

Assembly of the International Union of Geodesy and Geophysics (IUGG) held 

in Vienna, Austria. The announced scope of the symposium was as follows: 

"Models of the geomagnetic field are only as good as the data upon which 

they are based and depend upon correct understanding of data 

characteristics such as accuracy, correlations, systematic errors and 

general statistical properties. This symposium is intended to expose and 

illumnate these data characteristics. Papers are invited which discuss the 

properties and availability of the various kinds of data." 

Table 1 shows the final schedule of invited and contributed papers. 

Of these, the papers by McKnight and Herzog were withdrawn. In their 

place, the following papers were given: "Helsinki Magnetic-Meteorological 

Observatory Revisited - Numerical Magnetic Data Available from 1844 to 
1908". presented by H. Navanlinna, and "Magnetic and Electromagnetic 

Induction Effects in the Annual Means of Geomagnetic Elementsn, presented 

by C. Demetrescu. 

The talks presented, while not dealing with topics generally appearing 

in scientific journals, are yet of great interest to much of the 

geomagnetic community. It was, therefore, decided to collect the papers 

into a special report to be issued by the Goddard Space Flight Center. As 

a comparison of Table 1 with the Table of Contents of this volume will 

show, unfortunately not all speakers were able to submit written versions 

of their presentations for publication. On the other hand, in order to 



make the resulting collection more complete, I invited those speakers who 

had to withdraw papers from the symposium to submit written versions of 

what they would have said and I also invited additional contributions which 

serve to complement the original papers. I would especially like to thank 

C. Williams, J. Verhoef, R. Mcnab, G.. Shaman and D. Metzger for agreeing 

to contribute. I would also like to thank W. Webers for his contribution. 

I am grateful for the support of NASA Headquarters RTOP 579-31-02 which 

made this work possible. 
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HISTORICAL DATA FOR 

GEOMAGNETIC FIELD MODELLING 

Andrew Jackson 

Depart men t of Earth Sciences 

Oxford University 

Parks Road 

Oxford, U.K. 

Abstract 

This paper describes the various types of historical d a t a  (by which we mean actual measurements of the 

field taken in t h e  past) which are available for geomagnetic field modelling, concentrating exclusively 

on observations made prior to  the 2oth century. These data  take quite diverse forms, being derived 

from voyages of discovery or scientific expeditions, from surveys on land, or  from observatories after the 

formation of the  Gottingen Magnetic Union. Towards the  latter part of the lgth century declination 

was measured quite regularly by various Naval vessels for the purpose of constructing charts. Prior to  

the invention of a method for measuring field intensities by Gauss in 1832, all measurements were of 

declination or  inclination. During the lgth century over 40,000 observations are available, with over 

2,000 observations being available in one year (the first International Polar Year 1882-83). Prior to  1800 

there are only of the  order of 12,000 measurements. We discuss measurement methods and the types 

of instruments used, as well as focussing on specific problems which have been noted, such as those 

associated with measurement of intensity on iron ships in the late lgth century. 

1 Introduction 

The last twenty five years have seen renewed interest in studies of the secular variation of the magnetic 

field by using historical magnetic observations. Partly as a result of the increasing availability of modern 

computers, most of the available data collected since 1900 were put into machine-readable form by the 

U.S. Coast & Geodetic Survey for the 1965 world charts (e.g. Hendricks & Cain, 1963); discussion of these 

da ta  can be found elsewhere in this volume. More recently, data  collected prior t o  the 2oth century have 

been the  subject of renewed attention in an effort spearheaded by Prof. David Gubbins (now a t  Leeds 

University), and this paper summarises the da ta  which are now available in machine-readable form for 

geomagnetic analyses. I am endebted to David Barraclough, Jeremy Bloxham, David Gubbins and Ken 

Hutcheson for access t o  data  that they have collected and for help in the preparation of this report. 



2 Historical Perspective 

This section gives a very brief overview of the development of geomagnetism, and does not purport to 

be comprehensive. Fuller treatments of the history can be found in various places; for example, relevant 

chapters of Merrill & McElhinny (1983) or Chapman & Bartels (1940), or Malin (1987). A detailed 

account of geomagnetism up to  1500 can be found in Crichton Mitchell (1932,1937,1939); recent articles 

on lgth century geomagnetism are those of Good (1985, 1988). Excellent discussions of geomagnetic 

instruments can be found in McConnell (1980) and Multhauf & Good (1987). 

It is generally acknowledged that the Chinese were the first to  discover the directive property of lode- 

stone, almost certainly by the first century AD. Its development as a primitive navigational device was 

slow, though the declination had almost certainly been discovered by the gth century and compasses were 

certainly in use by the llth century; early observations of declination are given by Needham (1962) and 

Smith & Needham (1967). The first recorded observation of declination in Europe was by George Hart- 

mann in 1510; inclination was discovered by Robert Norman in 1576. The fact that the field underwent 

slow changes with time (the secular variation) was not discovered until 1635: by comparing a series of 

records taken a t  London previously, Henry Gellibrand showed that'secular variation was a real effect. 

Relative intensities of the field were made at the end of the 1 8 ' ~  century by La Perouse, D'Entrecasteaux 

and Humboldt, by comparing the periods of oscillation of a magnetic needle at different places. Measure- 

ments of the absolute intensity of the field were not made until a method was devised by Gauss in 1832 
(see e.g. Malin, 1982). 

Whilst early observations of the field are extremely valuable, some problems do exist. For example 

before the discovery of SV, some observations are undated as the need to  record the date was not apparent. 

The accuracy with which an observer's position was known is also a source of error. Although the 

measurement of latitude was precise even by late 1 5 ' ~  century (for example, an accuracy of 10 minutes of 

arc was claimed by 1484 (John 11's commission, 1509)), the measurement of longitude at sea remained a 

problem until approximately 1770 with the introduction of accurate chronometers by Harrison. The result 

of this poor knowledge of longitude lead to the practice of "running down the parallel", or sailing to the 

correct line of latitude before sailing due east or west along that parallel to  the desired location. Although 

this practice meant that the ship's company often arrived a t  their desired destination, it does mean 

that large navigation errors could occur in the quoted positions of magnetic observations. For example, 

Bloxham (1986) found accumulated errors of up to 8O 45' of longitude on the legs of Cunningham's voyage 

to China in 1700. To a certain extent these errors can be deviated to  a large extent by examination of 

the original ship's log and plotting the positions on a modern chart. This painful task has been performed 

for 16'~, 1 7 ' ~  and 1 8 ' ~  century data by Bloxham (1985, 1986), Hutcheson (1990) (see also Hutcheson & 

Gubbins, 1990) and Barraclough (1985 and personal communication). 



The Greenwich meridian was adopted as an international longitude standard only in 1884, and some 

national conventions remained in use later than that date. Consequently care must be taken as to  which 

of the particular national conventions of Paris, the observatory at Pulkova (Leningrad), Washington or 

San Fernando was being used. One example of French marine d a t a  measuring longitude from Paris until 

a t  least 1895 has been given by Jackson (1989); this difference of 2' 13' of longitude between Paris and 

Greenwich is difficult t o  detect. For intensity data, the conversion 1 B.U. = 4610.8nT has been used t o  

convert intensity measurements from British (or English) units t o  nanoTesIas (Barraclough, 1978). 

3 Catalogues of Data 

Many historical geomagnetic observations have been the subject of catalogues and compilations which 

vary in their completeness and usefulness; a discussion of compilations can be found in Barraclough (1982), 

Malin & Gubbins (1983) and Bloxham (1985). Unfortunately, some catalogues do not present original 

observations but only values averaged within a time-space window. Therefore, although catalogues such 

as that of Veinberg & Shibaev (1969) have been the subject of several analyses of the historical field, as 

has been stressed previously (e.g. Barraclough, 1982) these catalogues represent a severe degradation of 

the original measurements, which should be used in preference. A similar set of tables for fixed times 

and positions was published by Mountaine & Dodson (1757), whose tables were claimed to  be based 

on 50000 observations from 1700-1756. The original observations from Naval and merchant shipping 

were unpublished and their origin is presently unknown, representing a great loss to the geomagnetic 

community. One of the most useful catalogues of early observations is that  of Bemmelen (1899), who gives 

original observations made between 1492 and 1741, some of which were extracted from manuscripts kept 

in British, Dutch and French maritime archives. Similar excellent catalogues which must be mentioned are 

those of Sabine (1868, 1872, 1875, 1877), containing over 10000 measurements of declination, inclination 

and intensity made during the  191h century, and those of Veinberg (1929-1933) which contain extensive 

original observations from the Soviet Union and adjacent countries. Data  after approximately 1860 have 

not been the subject of a catalogue or compilation; a discussion of sources of data  for this period can be 

found in Jackson (1989) and Bloxham, Gubbins & Jackson (1989). 

4 Original Data 

As a guide t o  the types and number of data available, we now give a brief indication of the sources and 

distribution of da ta  from 1500 to  1900; for the purposes of discussion these are split into century time- 

windows. More comprehensive discussions of the data can be found in Bloxham (1986), Jackson (1989) 

and Hutcheson (1990). 



Figure 1: Temporal distribution of d a t a  for the period 1500-99. 

4.1 The Period 1500-1599 

T h e  primary source of data  for this period is the catalogue of Bemmelen (1899). Most of the da ta  is taken 

from voyages of discovery, such as those of de Castro, Vicente Rodrigues, F'robisher, Edward Wright, 

Barents, Stevin, Wilkens and Drake. There are only 2 inclinations and 249 declinations. Figures (1) and 

(2) show the temporal and spatial distribution of the data.  

4.2 The Period 1600-1699 

Much of the  data  for this period can again be found in Bemmelen (1899) or the references therein. Most 

d a t a  is again taken from voyages of discovery, such as those of Hudson, Raleigh, Baffin and Tasman. 

T h e  surveys of the Atlantic by Halley in the years 1698-1700 are an important source of data. Halley's 

measurements thought t o  have measurement error of 0.5O (Barraclough, 1985). The instrumental accuracy 

for declination measurements during most of this century was estimated as just over lo from two compasses 



Figure 2: Spatial distribution of data for the period 1500-99. The projection is Aitoff equal area. 



Figure 3: Temporal distribution of data for the period 1600-99. 

carried by Jaques L'Hermite on a voyage in 1623 (Hutcheson, 1990). In this period there are 37 inclinations 

and 3097 measurements of declination. Figures (3) and (4) show the temporal and spatial distribution 

of the data. In Figure (4) an example of the practice of "running down the paralleln can be seen in the 

Pacific. 

4.3 The Period 1700-1799 

For this period some of the most famous voyages of discovery which contribute data include those of 

Bering during the years 1725-30, Bligh in 1788, and the three expeditions of Cook during the years 

1768-71,1772-75 and 1776-80 measuring both declination and inclination. Care has again be afforded to 

correcting longitudes wherever possible, although post-1770 data  have accurate longitudes because of the . - 
ability for accurate timekeeping after the introduction of the marine chronometer. Some relative intensity 

measurements were made towards end of the century (see 92). During this period there were 1633 



Figure 4: Spatial distribution of data for the period 1600-99. 



Figure 5: Temporal distribution of data for the period 1700-99. 

measurements of inclination and 7 938 of declination. Figures (5) and (6) show the da t a  distributions. 

4.4 The Period 1800-1899 

Many data (over 17500) were catalogued by Sir Edward Sabine for the early part of this century; this 

represents a fine collection. As we mentioned before, no catalogue of data exists for the latter half of the 

century. During this period was the invention of a method for the absolute determination of intensities in 

1832 by Gauss (1833). It was also due to Gauss's efforts that the Gbttingen Magnetic Union was founded 

and permanent observatories were establishment in 1841. Colonial observatories were being established 

by the British government at  the same time. 

As a result of Gauss's invention, the measurement of intensities on land and a t  sea became common- 

place. Typically horizontal intensity was measured on land with a unifilar magnetometer, whilst total 

intensity was often measured on ships using Fox's apparatus, a device also capable of measuring incli- 



Figure 6: Spatial distribution of data for the period 1700-99. 



Figure 7: Temporal distribution of data for the period 1800-99. 

nation (see McConnell, 1980). Thus the "Magnetic Survey of the South Polar Regions of the  Globen, 

performed by Ross & Crozier in the ships Erebus & Terror, and Moore & Clerk in the Pagoda in the  

1 8 4 0 ' ~ ~  included the measurement of inclination and intensity a t  sea. Similarly, in the latter pa r t  of the 

century the expeditions by HMS Challenger (in 1872-76), SMS Gazelle (in 1874-76) and the  Vanadis 

(in 1883-85) were charged with the measurement of 3 components of the field. This century witnessed 

a massive surge in the number of surveys on land; some of the earliest were the surveys of N. America 

by John Franklin from roughly 1820 onwards. From the mid-lgth century onwards similar surveys were 

performed in Europe, USSR, Australia and Japan, some on a very fine scale. The temporal distribution 

of da ta  is shown in Figure (7). Because of the size of dataset this century, the spatial data  distribution 

has been divided into the two periods 1800-1849 and 1850-1899 (see Figures (8) and (9)). 

The middle of the lgth century saw increasing use of iron in ships, and great efforts were made t o  

alleviate the  effect on the compass (see $5). By the  end of the century, charts of Declination were being 



Figure 8: Spatial distribution of data  for the period 1800-49. 



Figure 9: Spatial distribution of data  for the period 1850-99. 
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Figure 10: Observations of the magnetic field a t  London. (a) Declination. (b) Inclination. 

routinely produced by various Naval authorities, such as those of the UK from 1858, Germany from 

1880 and U.S.A. from 1882. The First International Polar Year was held during 1882-3 with 12 arctic 

stations and two southern stations augmenting the network of permanent observatories with observations 

throughout the year. The total data collected for this period comprises 5 588 horizontal intensities, 4 615 

total intensities, 12 895 inclinations, 19 858 declinations and 2 538 observatory annual means. 

4.5 Repeat Measurements 

Long series of measurements are available a t  some specific sites. For example, Figure (10) shows the 

inclination and declination measured by various observers a t  London, firstly taken from Malin & Bullard 

(1981) and then from the values reported at the Greenwich observatory. The early observations of intensity 
show considerable scatter. Unfortunately, such time series are also often disrupted by changes of location. 

Indeed, the Greenwich observatory closed in 1925 and moved location to Abinger, which subsequently 

closed and moved t o  Hartland in 1957. These changes in location are an undesirable feature of many 

long time series. Similar long records exist a t  other places, such as Copenhagen, Paris and Rome (see e.g. 

Raulin, 1867). 



5 Local disturbance of ships 

Up to the middle of the lgth century the majority of ships were of wooden construction. Subsequently, 

iron became increasingly favoured in shipbuilding, and this change in material profoundly affected a great 

wealth of marine data within the time period of interest. Note that after the turn of the century most 

marine magnetic data were collected by non-magnetic ships such as the Carnegie and Zarya, or were taken 

from magnetometers towed behind the ship and away from its magnetic field; the problems associated 

with iron are therefore mostly confined to the particular time period which we are considering. 

In 1801, Captain Flinders noted on his voyage to Australia that the compass direction was not always 

in the direction of the known declination at that place, and that the discrepancy depended on the direction 
of the ships bows. He found the effect to  be opposite in southern latitudes to  that in northern latitudes, 

and attributed it to the inductive effects of the vertical iron girders in the primarily wooden ships. The 

deviations (or differences between the measured declination and the true declination) were small, of the 

order of 2" to 3O, and his method of compensation, that of placing a vertical soft-iron bar close to the 

compass position, a so-called "Flinder's barn, was widely adopted. With the increased use of iron in the 

construction of ships in the mid-lgth century for cladding, it was found that the deviation could be as large 

as 50". In 1839 the Astronomer Royal, Airy, performed a series of experiments, and introduced a method 

of correcting the deviation using compensating magnets and bars. Two schools of thought developed on 
the subject of deviations: physical corrections, favoured by the merchant navy and advocated by Airy, 

and tabular corrections, promoted by Archibald Smith and favoured in the Royal Navy. In practice, when 

the deviations were large, the Royal Navy used a combination of physical and tabular corrections. 

It was Poisson (1824) who first set forth the mathematical theory which related the magnetic field as 

measured locally on a ship t o  that of the Earth: 

or in modern matrix notation 

Here XI,, etc. represent the components of the magnetic field as measured in a ship's local reference 

frame (with XI,, to head, KO, to  starboard and Zloc to keel for example). The primed symbols represent 

the Earth's field in the same directions, the matrix x we shall call the susceptibility tensor with elements 

{a, b, . . . i ) ,  I is the identity matrix, and B,,, = (P,Q, R) is the vector of permanent magnetic effects of 

the ship. 



Equation (4) is a completely general formulation of the effects of induced and permanent magnetisation 

on the  compass needle. In the lgth century mariners used the compass as an  aid in navigation, using the 

charts of declination which were available, and thus they had to  correct for the  ship's magnetic effects by 

knowing the deviation. Our ability t o  solve (4) for the elements of x and Bpem is limited by the fact that 

a ship has only one fully rotational degree of freedom around the vertical axis. By spinning the ship ( a  

procedure termed "swingingn) it is possible t o  measure deviation for many values of the ship's heading. 

We rewrite (4) in the form 

where B is the true field as measured in the Earth's coordinate system, and the  rotation matrix T is of 

the  form 

cosa  sin a 0 
.= ( - s i n ;  cos; :) 

and a is the angle the ship is turned through, reckoned positive anticlockwise. 
By considering (5) and (6) it can be seen that  the elements c and f of (1) and (2) cannot be determined 

from deviations only, since "swingingn the ship does not change the local value of 2. Given this deficiency, 

the  solution adopted a t  the time was that  of Archibald Smith (published in Sabine, 1843, 1846, 1868) 

and further developed in the Admiralty Manual on Deviations of the Compass (Admiralty, 1863): 

which is a good approximation for 6 less than about 20'. Here 6 is the deviation and ( the compass 

course ( the  azimuth of the ship's head from the disturbed compass position), the  coefficients A, D and E 
depending on non-linear combinations of the elements of X ,  and B and C depending on elements of x and 

also the  dip and horizontal intensity. Thus by determining the values of A, B, C, D and E a t  a certain 

locality i t  was possible t o  correct for the  deviation (by subtracting it from the  measured declination) for 

all ship's headings. In fact, a frequent procedure was t o  measure the deviations for 1 6  compass points and 

t o  plot these graphically. Since (7) depends on the local values of H and I it was necessary t o  "swingn 

frequently, especially in the event of a large change in latitude. Correction for deviation for all ship's 

headings was performed a t  the Hydrographic Office by interpolation of the curves of deviation taken a t  

adjacent spinning sites. 

Experience showed that the elements of x and Bpem were not in fact constant and regular re- 

determination-of the so-called "sub-permanent" magnetism of a ship was necessary. For example, the 

ship Royal Charter lost 17' of deviation during its circumnavigation of the globe, an  effect attributed to  

the  battering of the new ship by rough seas (London Quarterly Review, 1865). 



SMS Gazelle F Residuals 

Figure 11: Residuals between data reduced to  epoch 1882.5 and model predictions for total fid (F) 
da ta  from the Gazelle, plotted versus local field strength. Dots indicate individual residuals, consecutive 
residuals are joined by straight lines. The residuals argue against induced magnetisation, and suggest 
either permanent magnetisation or incorrect calibration. 

5.1 Case studies: SMS Gazelle and the Vanadis 

Here we give two examples of possible problems in lgth century data, caused by the influence of ship's 

magnetisation. The first is that of the ship SMS Gazelle which circumnavigated the globe in 1874-76. 
The Gazelle was a German Man-0-War whose mission was the observation of the transit of Venus on 

Kerguelen Island in 1874. Although the reported values of D and I appear satisfactory, we found Gazelle 

F da ta  t o  be somewhat biased; Figure (11) shows the differences between total field data measured on 

board and predicted values from a field model based on contemporary data. The  residuals are almost 

all positive, though they are uncorrelated with the local (calculated) field strength, which argues against 

induced magnetisation which would have caused the residuals to be roughly proportional to the local field 

strength. The  correlation between consecutive values rather argues for semi-permanent magnetisation or 

incorrect calibration. 



Vanadis Inclination 

Figure 12: Residuals between Vanadis inclination observations and those predicted by a field model, 
plotted against local field strength. Dots indicate individual residuals, consecutive residuals are joined by 
straight lines. Note the preponderance of negative values. 

A second example we give is that of the Swedish frigate Vanadis. These data were located by the 

late Dr. Folke Eleman (unpublished manuscript, 1987); the data had never been published and only 

manuscripts remain. The ship performed a circumnavigation during 1883-85, but the data are almost 

completely undocumented in the literature (although see Nature, volume 29, page 185 (1883)). All three 

components of field were measured on board, observations aimed a t  intensity determination being made 

in the form of oscillation and vibration experiments using Fox's circle. Unfortunately, the measurements 

appear to  have been improperly reduced after the voyage. Fbr example, Figure (12) shows the inclination 

residuals which are calculated with respect t o  a model of the field a t  that epoch. Note that the residuals 

are very large (much bigger than the errors the crustal field can produce, which are typically of the order 

of half a degree), and predominantly negative. Again, it would appear that improper corrections for the 

effect of the ship have been made (if any were made at all). Figure (13) shows the route taken by the 

ship. 



Vanadis (1883-8'5) 

Figure 13: Route taken by the Vanadis in 1883-85. 



1500 - 1599 251 data  
1600 - 1699 3 135 data  
1700 - 1799 9571 data  
1800 - 1899 42 956 survey data 
1800 - 1899 2 538 observatory annual means 

58451 total data 

Table 1: Resume of numbers of data  in the pre-20th century database 

6 Availability & Access 

From beginning of 1992 the database described herein will be lodged a t  the  World Data Centres. It 

will also be available by anonymous file transfer from two sites. Firstly, for those with Internet access, 

use anonymous ftp to  geophysics. ha rvard .  edu, specifying the username as anonymous and your e-mail 

address (youmame@youmddress) as the  password. Data will be found in the directory pub/geomag/data 

(see the file README). For sites with access t o  the UK's JANET, the files can be transferred using 

Network Independent File Transfer Protocol, often called Blue Book protocol. The  files reside in the 

same directory as above, and the user should connect using the name g u e s t  and password as above. The 

OSI FTAM protocol may also be used with username anon. 

7 Appeal for data 

Table (1) gives a summary of the numbers of data  available for the different periods. We hope that 

the  compilation is as complete as possible, although i t  is always possible that  some source of data was 

overlooked, or more importantly, that  someone has access to data which is not commonly available, for 

example, because it was never published. I have attempted to  publish in the Appendix the references to 

all da ta  which has been compiled. I therefore urge anyone who believes that  they may have access to 

d a t a  which is not included to  contact me. 
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Abstract 

A project was started with the goal to treat all the old unpublished magnetic dam into computer 
readable form in February 1991 at the Finnish Meteorological Institute (FMO,  the successor of the 
Helsinki magnetic-meteorological observatory. Altogether there are available about 2.5 million visual 
observations of D. H and Z made during the time interval 1844-1905. The first 10 years (1844- 
1853) period of declination data now convened to electronic form, include observations made at every 
tenth minute. The total number of observations is 489 152. In this paper we present some cxamplcs 
of declination observations in forms of tables and graphs showing hourly, daily, monthly and annual 
means. 

Secular variation of the declination in 1844-1853 have been extremely linear showing a steady 
eastward increase of 8.01/year that is more than two times larger than the present annual rate of sccular 
change in Finland. The standard deviation of the daily and monthly iesiduals, after removing the linear 
secular variation trend for the wholc time period, is about 1' demonstrating high stability and reliability 
of the observations. For this reason the data may suit for e.g. deriving 3-hour activi~y indcx K and 
daily Ak numbers giving new information for extending the cxisting long series of activity characters 
backwards in time. 

1 INTRODUCTION 

Helsinki magnetic observatory was founded in 1838 and it started regular magnetic 
observations on July lst, 1844. Observations were eye readings aided with a telescope 
(Fig. 1) as was the common practice before the advent of photographically recording 
variometers. The observation interval was 10 minutes up to 1857 and after that one hour. 
Observed were D, H and Z by using variometers constructed in Gottingen according 
to Gauss' instructions. In 1905 magnetic recordings were stopped as useless due to 
disturbances caused by nearby tramway traffic started in 1901. 

On the observatory area there were a wooden building for variometers and meteoro- 
logical instruments and a small hut for absolute measurements. The observatory site was 
near to the centre of present day Helsinki City where today is the main building of the 
Finnish Meteorological Institute. Geographical coordinates of the observatory were @ = 
60" 10.3' N, A. = 24' 59.0' E. The geomagnetic latitude (0) was 58.4" in 1844 as 
calculated from the dipole coefficients given by Barraclough (1974). (Note that in the 
time-dependent geomagnetic coordinate system Helsinki observatory was about l o  north 



of the Nurtnijtbvi observatory site locating 40 km to the north from Helsinki.) 
Early magnetic results from 1844 to 1848 have been published by the first director of 

the observatory, J.J. Nervander (1805-1848), in 1850 (Nervander, 1850). Unfortu- 
nately no later results have ever been treated for publication. However, they are still 
available in the original observation notebooks and not much of the data have been lost. 
After a thorough examination of the old recordings, they revealed to have been made 
very carefully and the variometers seem to have recorded magnetic field changes reliably 
giving useful series of magnetic data (more than two million observation values) for 
studies on magnetic activity and secular variations from a time span covering about 60 

Fig. 1. Semi-artistic view of the classical declination variometer developed by Gauss. It consists of a 
horizontal magnet suspended by a silk fibre (F). The magnet forms an angle D (declination) with the 
true North direction. The suspended magnet will follow variations of D and so will a mirror. M. 
attached to the magnet. Changes in the magnet direction are obtained by observing the reflection of the 
illuminated (by an oil-lamp) scale S in mirror M through the telescope T. There is a second mirror. 
m. fixed on the shelter near the magnet. As viewed from the telescope (shown on the left upper comer) 
there will be seen two reflected scale values, the base-line value (do) from the fixed mirror m, and a 
changing one (4 from the magnet mirror M. The magnet was put between copper bars perpendicular 
to it as shown in the picture. Induced eddy currents in copper bars damped short period vibrations of 
the magnet The whole system, including the suspension fibre, was covered by a wooden church-shaped 
shelter (not shown here) shielding the magnet for air currents. 
(Illustration by Teemu Mdkinen). 



The purpose of this paper is to give preliminary results of declination observations 
put on diskettes. There are available in digital form about 490 000 D values from the 
period 1844-1853. The objective is to continue this work and publish all the historical 
data in yearbooks starting from D observations because they are most reliable of the 
three magnetic components observed. 

2 The eye-telescope declination variometer 

The basic principle of the D-variometer of the magnet type has been the same since 
introduced by Gauss. Fig. 1 illustrates the working principle of a simple D-variometer 
from the Gaussian time, used in Helsinki observatory. It consists of a horizontal 
magnet suspended by a fibre (F) with negligible torsion, so that the magnet will 
always orientate itself towards the magnetic meridian forming an angle D with the true 
North direction. The suspended magnet will follow variations of D and so will a 
mirror, M, attached to the magnet. Changes in the magnet direction are obtained by 
observing the reflection of the illuminated scale S in mirror M through the telescope 
T. There is a second mirror, m, fixed on the shelter near the magnet. As viewed from 
the telescope, there will be seen two reflected'scale values, the so-called base-line value 
(do) from the fixed mirror m, and a changing one (d) from the magnet mirror M. 

In a first approximation a change in declination, AD, is calculated from the 
variometer readings d and do as follows 

where &is the optical scale value defined by: 

where R is the distance (in mm) between the scale S and the mirror M. If the 
absolute value of Do is not known as was the case in the Helsinki observatory, the 
variometer values (AD) give information about variations of the declination relative to 
an unknown absolute level. 

E was assumed to be constant during the whole time period studied here as it 
depends only on the distance between the magnet mirror and the scale. The value of E 

given by Nervander (1850) seems to be reliable because the diurnal variations at 
Helsinki and NurmijWi observatories Show very similar behavior being the same 
within 1' under corresponding solar activity conditions (Fig. 2). The baseline values 
do, read for each observation, have been very stable changing almost linearly only 1' 
during the time period analyzed. 

In the Helsinki observatory the D-variometer (called unifilar magnetometer) 
consisted of a 60 cm long copper bar where the magnet with dimensions 30.0 x 3.0 x 
0.7 cm was embedded. The weight of the system was 1.3 kg and it was suspended 
by a 2.7 m long silk fibre (Fig.1). Changes in the direction of the magnet were 
observed by a telescope at the distance (R) of 5.15 rn, thus from Eq. (1.1) E = 
0.334'lmrn 

3 3 



In a more detailed theory of unifilar magnetometer (e.g. Laursen & Olsen. 1971). 
the difference d - do in Eq. 1, should by multiplied by the factor 

where k is the torsion constant of the fibre, M the magnetic moment and C the 
magnetic field caused by other magnets (mainly from H- and Z-variometers nearby). 
If the factor (1.2) cannot be neglected, the variometer values will also be temperature 
dependent as k and M vary with temperature. The upper limit of C (C 50 nT) can be 
rather reliably calculated from the known properties of the magnets and distances 
between the variometer piers. The error in E due to C is < 0.003', thus negligible 
small. The effect of the torsion of the fibre may be made small enough by increasing the 
magnetic moment M. Although we have no information about the torsion properties of 
the silk thread for determining the effect of the ratio klM,  there are good reasons to 
assume it has been insignificant because Nervander was known as an ingenious experi- 
mentalist and constructor of magnetometers invented by himself. 

3 Results 

The observed 10-minute declination values (d) together with time (Gottingen mean 
time which is one hour ahead of Universal Time) and base-line values (do) were put on 
diskettes. Totally there are in electronic form 489 152 observations of declination (out 
of 499 724 possible) covering the time span of 347 1 days from 1st of July 1844 to 3 1 st 
of December 1853. Entirely missing are two months data (August and September 1852) 
when the observational routines were interrupted due to reparations in the observatory 
building. Observations are also missing from the night hours (1-4 h local time) :n 
August 1853 because of the disastrous cholera epidemic, killed about 2 500 people in a 
few months, forcing to decrease the number of observers to less than half of the normal 
amount. In addition to these data gaps 1024 other observations were discarded as 
clearly erroneous or impossible to interpret from the original handwritings. (In the 
figures below there is one year temporary gap (1 847) because the treatment of that data 
is not yet finished). 

The hourly, daily and monthly means of ALI will be published as monthly tables in 
the series Geophysical Publications of the Finnish Meteorological Institute in spring 
1992. An example of the monthly summary is,given in Table A. 

Although all declination observations were relative, an estimate of the absolute 
declination level of each month will be given. This was achieved by futing the monthly 
mean value of AD from July 1844 to be equal to the declination (= D p  = -9.2') 
calculated from a time and space (@,A) dependent polynomial (Nevanlinna, 1979) 
that has been determined by using all available absolute measurements of the declination 
data (260 data points) from different pam of Finland and from different epochs. The 
probable error in Dp is 33.5". Later "absolute" values (Dd were calculated simply as 



where AD - ADJuly ,844 represents the true secular change including external 
conmbutions. Fig. 3 shows monthly means of D calculated from Eq. (2.1). One can 
see that there have been very stable linear increase of declination by 8.07year that is 
about twice as high as the annual secular change has been in South Finland in recent 
years. When calculated from the polynomial model, derived independently from the 
Helsinki data, the corresponding annual rate was 7.2' supporting the reality of the 
secular change deduced from the present data. The secular acceleration, as calculated 
from a quadratic f i t  of the monthly mean values, is << 0.0l ' / (~ear)~ emphasizing the 
extrem linearity of the data. 

By removing the linear secular change trend, the residual daily and monthly means 
show very small scatter, standard deviation (STD) is < 1.5'. except during 1845-46 
when a new brick house for absolute measurements was erected quite close to the 
observatory variometer building. The about 0.1" swing in D during 1845-46 may be a 
signature of the disturbances caused by the construction work. 

In each month 5 most disturbed and quietest days were selected by using the daily 
STD of the 144 individual observation as the criterion of quietness. Table A shows an 
example of the monthly table depicting daily,averages of the declination together with 
some other statistical parameters. 

Fig. 2. This diagram depicts one-year average diurnal variation of D recorded in 1844-45 compared 
with corresponding values from Nurmijhi in 1986 when the sunspot cycle was in the same phase near 
its minimum roughly 13 solar cycles later. The figure demonstrates the similarity in shape of the daily 
variation curve at the two observatories as is excepted because the observatories are so close to each 
other. The one hour (exactly l h  Om 4s) difference in the location of D minimum is the difference 
between the Universal Time used at Nurmijavi and the Gouingen Mean Time used in Helsinki. 



Fig. 3. Lower parr: Monthly means (all-days) of declination. A linear fit (dashed line) gives the 
annual secular change rate 8.02'fl.04'. When only five quietest days were selected. using daily standard 
deviation as the criterion of quietness, no significant difference was found in the annual secular change 
late. 
Upper parr.: Monthly means residuals after subtracting the linear f i t  The standard deviation of the 
residuals is 1'. The jumps in 184546 are probably caused by disturbances from construction works of a 
brick house erected close to the observatory. The sharp peaks in 1851-52 are due IO disturbances of 
many recurrent big magnetic storms 3 4  years after the sunspot maximum (1848). 



STD of the daily 144 observations for each day 1844-1853 is shown in Fig. 4. 
One can clearly see the typical regular annual variation: STD in winter is about 50 % 
smaller than in summer. 
Fig. 5 depicts an example of the 27d recurrence tendency of magnetic disturbances 
through the year 1845. The curve in it was determined by a superposed epoch analysis 
in which the day i = 0 was a disturbed day in each month. STD of the most disturbed 
days was normalized to 100. The figure shows the average normalized STD of the 
days from i = -5 to i = 35. At the zero day the mean STD has been 75 % of that of 
the most disturbed day, and at i = 26-28 there is peak in STD demonstrating the 
recurrent characteristic of magnetic disturbances connected to the solar rotation period. 
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Fig. 4. Standard deviation (minutes of arc) of 144 daily observations of declination. 



40 
-10 0 lo  Day 20 30 40 

Fig. 5. Superposed epoch analysis of the 27d recurrence tendency of magnetic disturbances in 1845. 
The ordinate is mean daily standard deviation of Lhe 144 declination observations of each day. There is a 
local maximum at the day 26-28 about one solar rotation after the disturbed zero day. 

4 CONCLUSIONS 

Preliminary results from the 10 minute declination observations of Helsinki 
magnetic-meteorological observatory (1844-1853) have been demonstrated here. The 
data are of good quality, reliable and reveal all typical regular and nonregular features of 
the time varying geomagnetic field, e.g. diurnal, daily, 27 d storm recurrence, annual 
variation due to external sources, and the internal secular variation. The level of 
magnetic activity is measured by the daily standard deviation and by differences 
between successive daily means and their monthly averages. However, they are not the 
best available indices for many reasons (Mayaud, 1980) It is, therefore planned to 
calculate the 3 hour K-indices and daily Ak numbers derived from them as they better 
reflect the magnetic activity than statistical parameters and are easily calculated from 
computer readable data. Recently there have been developed many algorithms suitable 
for determining K-indices directly from digital magnetic data (e.g. Sucksdorffer al., 
199 1 ) .  



Table A. An example of monthly tables of daily averages and other statistical parameters of 
declination observations to bc published in  he series Geophysical Publications of the Finnish 
Mereorological Insritule in spring 1992 

H E L S I N K I  D E C L I N A T I O N  1 8 5 2  

YEAR MONTH DAY 

1852Dec 1 
1852 Dec 2 
1852 Dec 3 
1852 Dec 4 
1852 Dec 5 
1852 Dec 6 
1852 Dec 7 
1852 Dec 8 
1852Dec 9 
1852 Dec 10 d3 
1852 Dec 11 
1852 Dec 12 dl 
1852 Dec 13 
1852 Dec 14 
1852 Dec 15 q3 
1852 Dec 16 ql 
1852 Dec 17 
1852 Dec 18 
1852 Dec 19 
1852 Dec 20 
1852 Dec 21 q5 
1852 Dec 22 
1852 Dec 23 d5 
1852 Dec 24 
1852 Dec 25 
1852 Dec 26 
1852 Dec 27 
1852 Dec 28 d4 
1852 Doc 29 d2 
1852 Dec 30 q4 
1852 Dec 31 q2 

Means 
1852 Dec A11 
1852 Dec Quiet 
1852 Dec Dist. 

D N STD RANGE 

D STDl STD RANGE 
1.35 1.5 4.1 23.9 
1.35 0.5 1.3 6.6 
1.35 3.4 8.5 45.6 

DIFF. R 

2.1 48 
-0.5 5 0 
1.1 49 
1.1 4 3 
0.1 5 8 
-1.9 4 2 
1.2 4 3 

-0.4 29 
-0.1 4 0 
0.5 3 5 
0.9 3 3 

-5.6 2 7 
5.5 2 8 
0.4 26 
-1.1 2 1 
-0.8 28 
0.9 30 
0.6 25 
-1.3 19 
1.2 28 

-1.4 26 
1.2 15 
0.7 18 
0.0 6 9 
-0.3 7 2 
-1.1 78 
-0.4 8 2 
-2.2 76 
8.2 111 
-4.9 9 2 
-0.1 6 5 

DITF. R 
0.1 45.4 

-1.7 46.4 
0.3 53.4 

D - ~ a i l y  mean of relative declination (degrees) 
N - Number of observations (max N - 144) 
STD - Standard deviation of momentary values 02 D (minutes) 
STDl - Standard deviation of daily means (minutes) 
D1FF.- Difference of successive daily means 
R - Daily sunspotnumber 
Daily Range - mdx D - min D (minutes) 
d1...5 - Five most disturbed days 
q1 ... 5 - five most quiet days 
Approximate absolute monthly mean of D (all days) is -8.15 (vest) 
and calculated from a polynomial model -8.03 

Haximurn momentary value of D is -7.48 (Dec 29) 
Minimum momentary value of D is -8.89 (Dec 12) 
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SURVEY DATA FOR GEOMAGNETIC FIELD MODELLING 

D. R. Barraclough, S. Macrnillan 
Geomagnetism Group, British Geological Survey, Edinburgh, UK 

1. Introduction 

The survey data to be discussed hen arc based on observations made relatively recently at 
points on land. A special subset of land survey data consists of those made at specially 
designated sites known as repeat stations. This class of data will be discussed in another part 
of this document (Barton, 1991b), so only the briefest of references will be made to repeat 
stations here. 

This discussion of "ordinary" land survey data will begin with a description of the spatial and 
temporal distributions of available survey data based on observations made since 1900. (The 
reason for this rather arbitrary choice of cut-off date is that this was the value used in the 
production of the computer file of magnetic survey data (land, sea, air, satellite, rocket) that 
is the primary source of data for geomagnetic main-field modelling and for much of this 
paper.) This is followed by a description of the various types of error to which these survey 
data are, or may be, subject and a discussion of the likely effects of such errors on field 
models produced from the data. Finally, there is a short section on the availability of 
geomagnetic survey data, which also describes how the data files are maintained. 

2. Spatial distribution of geomagnetic survey data 

For convenience of data storage and manipulation we at BGS have split the very large file 
of global post-1900 geomagnetic survey data, an earlier version of which has been described 
by Fabiano & Cain (1971)' into (at present) 18 smaller and more manageable files each 
containing data based on observations made during a five-year interval centred on epoch To, 
where To is chosen to be a multiple of 5. Each file contains data for times (t) in the range 
(To - 2.59 5 t < (To + 2.5). The earliest and latest time windows are slightly non-standard, the 
earliest being 7.5 years long (containhg data with epochs in the range 1900.0 5 t < 1907.5) 
and the latest currently rather shorter than 5 years (containing data for 1987.5 onwards). 

Each data record in the files has an associated data-type code, a value of 1 indicating land 
survey data and 9 signifying repeat station data. The positions of all land survey data for 
each of the 18 time windows are plotted on the maps shown in Figures 1 to 18, inclusive. 
Similar plots of repeat station positions are given in Barton (1991b). 

Figure 1 shows dense data coverage over the USA (though many of these should probably 
be coded as repeat station data) and Mexico, in south-eastem Europe, in India and in 
Indonesia. Note also the data in the Arctic and Antarctic, representing the beginnings of 
modem polar exploration and research. The global data coverage is quite good. 

Some explanation is needed for the "land survey" positions in Figure 6 that lie in the Atlantic 
and Pacific Oceans. These are positions of observations made on the last cruise of the 
Carnegie (the Carnegie Institution of Washington's specially built non-magnetic ship) in 1928 
and 1929. Most of them have been coded as land survey observations in error and will be 



re-coded as marine data in the near future (almost certainly before this report is published). 

Comparison with the plots of repeat station positions shows that, in the early years of this 
century, most land magnetic observations aimed at a detailed, once and for all coverage of 
the territory concerned rather than the establishment and systematic reoccupation of a network 
of repeat stations. That this was deliberate policy is illustrated by the following quotation 
from Bemmelen i1909). 

In a list inserted at tbe end of the present work (table I) a short description of each station is given. 'Ibe writer 
did not enter into Full details in composing tht same, as it seems of Little value to him, whether observations may 
be made on the very same spot by an& lata on. For, if the magnetic field at that station is so disturbed as 
to render it expedient to be at tbe same place as the former surveyor. the secular variation, which necessitates 
a repeated observation, will be abnormal. And if tk field is u- there is no call for an observation in 
exactly the same spot. 

These arguments would by no means be accepted today, but the trend noted above continues 
until after the second World War. 

Figure 12, for the interval 1957.5-62.5, includes the International Geophysical Year and the 
associated World Magnetic Survey programme (Zmuda, 1971). It shows a good coverage of 
all the major land masses except for southern Asia. The enhanced activity in the polar 
regions (particularly in Antarctica) is noteworthy. Many of the Arctic data are based on 
observations made on floating ice islands - it is not immediately obvious whether these should 
be classified as land or marine data. 

A jump of ten years, to the interval 1967.5-72.5 (Figure 14), shows much reduced activity in 
ordinary land magnetic surveying, and this trend has continued up to the present (some of the 
1982.5-87.5 land survey data shown in Figure 17 should probably be coded as repeat 
stations). 

Readers with a knowledge of their national magneti'c surveying activities (past and present) 
are asked to study carefully Figures 1 to 18, inclusive, (and the equivalent Figures in Barton, 
1991b) and to report any errors or o&sions to one of the World Data Centres mentioned in 
Section 5. 

3. Temporal distribution of geomagnetic survey data 

Figure 19 shows the distribution of land survey data with time from 1900 to the present. 
Each block represents the number of observations made in the 12 months centred on the 
beginning of the indicated year. The enormous spike (61452 observations) represents mainly 
data for the USSR reduced to epoch 1940.5 and used for producing magnetic charts of the 
USSR for that epoch. There may well be some duplication here, because it is suspected that 
many of the (unreduced) observations are also in the files under their date of observation, 
derived from the comprehensive collection of Veinberg (Veinberg, 1929, 1932; Veinberg & 
Rogachev 1933). The next largest block (1 1122 observations) consists mainly of observations 
of declination reduced to epoch 1944.5 and used by Bock (1948) in producing his series of 
declination charts for Europe. Many of the 8647 observations centred on 1985.0 were 
collected in connection with the production of a mathematical model of the declination for 



Europe for this epoch. The increased data sampling centred at about 1915 represents the 
Carnegie Institution's global surveying efforts. 

4. Errors in geomagnetic survey data 

The following errors will be considered: errors produced in the process of transcribing the 
data into computer files, including the presence in the files of duplicate data; uncertainties in 
the positions of the data points; and sources of what, from the point of view of modelling the 
main geomagnetic field and its secular variation, constitutes noise. 

4.1 Errors of transcription 

Gross errors of transcription, such as transposing latitude and longitude, entering colatitude 
for latitude or vice versa, or getting the sign wrong for one of the values entered, arc usually 
detectable without too much difficulty. A standard screening technique (see, for example, 
Langel et al., 1988) for such errors is to compare the observed values with values computed 
from a global geomagnetic field model such as the International Geomagnetic Reference Field 
(IGRF) (Barraclough, 1987) and to examine closely any residuals (observed value minus 
computed value) that are large in absolute magnitude. Large is usually taken to be about 
1000 nT, the elements declination (D) and inclination (I) being first convened from angular 
measure to nanoteslas. (Here, and in this rest of the paper, reference to the XGRF is to be 
taken to mean the set of definitive (DGRF) and preliminary (PGRF) models that constitute 
the fourth generation of the IGRF.) Gross transcription errors and the corrections needed are 
usually immediately obvious, though reference to the original source is sometimes necessary 
and always desirable. More subtle transcription errors are only detectable by comparing every 
single observed value with the corresponding value in the original source. This has never, 
to our knowledge, been attempted and it must therefore be presumed that some, at least, of 
these smaller errors exist in the dataset. 

4.2 Self-consistency 

Each record of survey data contains values of the elements observed and also values of those 
other elements that can be computed £torn them. It is easy to check that these computed 
values are correct but, as far as we arc aware, this has never been done systematically for the 
whole dataset. Most modellers use only values of the observed elements, so this particular 
quality control deficiency is probably not of great practical importance. 

4.3 Duplication 

It is surprisingly easy for the same information to get into the dataset more than once. Such 
duplication, if left uncorrected would invalidate any carefully considered scheme for the 
relative weighting of data in the modelling process. The group at the Goddard Space Flight 
Center has done a great deal to detect and delete duplicate data and it can be assumed that 
there remain very few such records remain in the survey data files. 



4.4 Data uncertainties 

We turn now to a consideration of the uncertainties in the values that are now assumed to be 
correct in the sense that they accurately reflect the values in the original s o m u .  Typical 
values from the surveying activities in the UK (described in more detail in the UK section 
of Barton, 1991a), which apply equally to repeat station and ordinary land survey sites, will 
be used as examples. 

4.4.1 Positional uncertainties 

There will be an uncertainty in the positional coordinates assigned to a survey site. For the 
UK sites, the position, in National Grid coordinates, in metres, is read off from a 1:50000 
map of the m a  surrounding the site, and the accuracies of the coordinates derived in this way 
are estimated to be rather less than f 100 m. That these are reasonably accurate estimates 
was verified by using a GPS receiver at a selection of sites during the 1990 field season. A 
typical modem land survey observation should thus certainly have an uncertainty in its 
position of better than f 0.1' in latitude and longitude (i.e. approximately O.OOlO, which is the 
precision of the colatitude and longitude values in the survey data files). Data from earlier 
this century might possibly have greater positional uncertainties, but these should not exceed 
about f 1 km or about f O.OlO. Even these larger uncertainties arc relatively unimportant for 
main-field modelling purposes. 

4.4.2 Uncertainties in the magnetic elements 

The observed values of the magnetic elements will also have uncertainties associated with 
them. In the UK surveys D and I are measured with a fluxgate mounted on a non-magnetic 
theodolite acting as a null dctcctor and the total intensity (F) is measured using a proton 
magnetometer. The field observations are estimated to be accurate to about f 0.1' for D and 
I and f 1 nT for F. These field observations are then corrected as far as possible for the 
effects of external electric currents (daily variations and magnetic disturbance) by using data 
from the three UK magnetic observatories, giving values reduced to a quiet field level near 
the time of observation. Estimates of the uncertainties in these reduced values are * 1.0' for 
D, f 0.5' for I and f 5 nT for F. 

Other modem survey results quote values broadly in agreement with these estimates, as can 
be seen in Table 1 (H is the horizontal intensity and Z is the vertical component). 

Table 1. Typical uncertainties quoted for modem land survey data 

For earlier epochs, the uncertainties in D art probably about the same as these. The use of 
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dip needles or earth inductors for measuring I implies larger uncertainties, probably of f 0.5' 
to f 1' for the field observations and 3 to 4 times these estimates for the reduced values. 
Before the use of proton magnetometers became widespread in about 1960, the uncertainties 
in the force elements (usually H and Z) were several tens of nanoteslas for the field 
observations and about twice this for the reduced observations. 

4.5 Sources of noise 

From the point of view of main-field modelling there are two main sources of noise likely 
to be present in land survey data: the effects of electric current systems in the ionosphere and 
magnetosphere; and the effects of differently magnetised crustal rocks. 

4.5.1 External noise sources 

As mentioned in Section 4.4.2, all wellexecuted magnetic surveys involve the correction of 
the resulting field observations for daily variations and magnetic disturbance by using data 
from neighbouring magnetic observatories or from a specially deployed temporary variometer 
station. 

In the absence of further information it has usually to be assumed that all land survey data 
in the files have been corrected in this way, although this is almost certainly not the case. 
This could mean that there are external effects still present in the data ranging from a few 
tens of nanoteslas for observations in mid-latitudes during reasonable quiet times when-the 
main uncorrected effect is the daily variation to several hundred nanoteslas for observations 
at auroral latitudes during disturbed times. It is usually assumed that survey observations will 
not have been made during very disturbed times. This could be checked by using magnetic 
disturbance indices, such as the aa index. Unless the time of day has been included in the 
data record a fairly coarse check involving the degree of disturbance for the day of the 
observation would have to be used. This sort of selection of quiet values, though commonly 
used for aeromagnetic, marine and satellite sukeys, has rarely, if ever, been used with land 
survey data. 

4.5.2 Crustal noise sources 

Unless the sites of land survey observations have been very carefully chosen, they will all be 
more or less contaminated (from the point of view of main-field modelling) with short- 
wavelength signal from crustal sources. In other words they will be more or less anomalous. 

The screening procedure described during the discussion of transcription errors in Section 4.1 
can be used to flag large anomalies (greater than about 1000 nT) and these can then be 
omitted from subsequent analyses. Smaller anomalies can be screened out, if the areal density 
of land survey data is high enough, by taking areal means and applying a Chauvenet-type 
criterion for data rejection (see, for example, Barraclough, et al., 1975). Here, the mean and 
standard deviation of the mean are derived for all data within the area concerned. Each 
individual contributing data point is then compared with the mean value. If it differs from 
the mean by more than a selected number of standard deviations (we currently use a factor 
of 2.36), the data point is rejected, the mean and standard deviation are recomputed and the 
procedure is repeated until no further points are rejected. The procedure will not work when 



the area considered contains only a few (less than 10 or so) points. 

The screening procedure also produces statistics for the residuals of observed values from a 
global field model such as the IGRF. Modem data, for example those centred on 1965 
whose distribution of residuals is shown in Figure 20, have distributions that peak sharply 
about a residual of zero and are reasonably symmetrical. A certain amount of skewness is 
sometimes present as in the case of the data centred on 1980 (Figure 21). Earlier data 
(approximately, pre-1940) show a greater scatter of residuals, and greater skewness, for 
example the data centred on 1925 (Figure 22) and those in the earliest time window (Figure 
23). In these cases, what we are seeing is mainly caused by defects in the field models used. 
The series of IGRF models were used for comparison purposes back to 1940, but before that 
epoch the series of models produced by Vestine et al. (1947) (which extend only to spherical 
harmonic degree and order 6) were used. These models could certainly be improved on and, 
indeed, such a project is under active consideration. 

The statistics for the 18 time windows arc surnmarised in Figure 24 which shows the mean 
and root-mean-square (rms) residual as functions of time. A typical global value for the rms 
crustal noise is about 200 nT. The post-1940 data have rms values of about this size. The 
larger rms (and mean) values for the pre-1940 data are, as just mentioned, probably largely 
due to model deficiencies. 

Figure 25 summarises the statistics of the residuals for the entire post-1900 land survey 
dataset. The overall mean and rrns residuals for the 270749 observations are 20 nT and 295 
nT, respectively. 

5. Availability and maintenance of land survey data files 

The following brief remarks concerning the availability of land survey data and how the 
dataset is maintained apply equally to the other forms of data used for main-field modelling. 

Versions of the post-1900 main-field data files are currently held by World Data Center for 
Solid Earth Geophysics in Boulder, Colorado; by the Geodynamics Branch at Goddard Space 
Flight Center; and by World Data Centre C1 for Geomagnetism in Edinburgh. 

These versions are similar to one another but are certainly not identical. It is not sensible, 
with a dataset that is still in the process of being added to and amended, to expect that 
different versions will ever be identical in their entirety, but we can aim for an improvement 
over the present situation. The three organisations are making some progress in this direction. 
Particularly for past data, earlier than about 1970 or 1975, we should be able to move towards 
a set of data which we all agree is as accurate as we can reasonably get it. More recent data 
can then be treated as more volatile and subject to additions and amendments. 

Our collection procedures are rather haphazard in that, for the most part, we take what comes 
or is brought to our attention. We are in fairly regular contact with most of the organisations 
that operate magnetic observatories and, since many of these also carry out magnetic surveys 
(particularly, nowadays, repeat station surveys), we get many land survey data from them at 
the same time as they send us their observatory data. This field of data collection and liaising 



with the other holders of similar data to ensure that each is at least aware of what data the 
others hold, is one where quite a lot of work needs to be done. 

6. Conclusions 

This review of geomagnetic land survey data has attempted to give some idea of what data 
are available for the time interval from 1900 onwards and how they arc distributed spatially 
and temporally. It has highlighted actual and potential sources of error and assessed their 
likely magnitude and has briefly discussed the availability and maintenance of the survey data 
files. 
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Figure 1. Positions of land survey data based on obsclvatiom made between 1900.0 and 
1907.5. 



Figure 2. Positions of land survey data bawd on observatiom made between 1907.5 and 
1912.5. 



Figure 3. Positions of land survey data based on observations made between 1912.5 and 
1917.5. 



Figure 4. Positions of land survey data b a d  on observations made between 1917.5 and 
1922.5. 



Figure 5. Positions of land survey data based on observations made between 1922.5 and 
1927.5. 
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Figure 6. Positions of land survey data based on observations made between 1927.5 and 
1932.5. 



Pigwe 7. Positions of land survey data b a d  on observations made between 1932.5 and 
1937.5. 



Figure 8. Positions of land survey dam based on observations made between 1937.5 and 
1942.5. 



Figure 9. Positions of land survey data based on observations made between 1942.5 and 
1947.5. 



Figure 10. Positions of land survey data based on observations made between 1947.5 and 
1952.5. 



Figure 11. Positions of land survey data based on observations made between 1952.5 and 
1957.5. 
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Figure 12. Positions of land survey data based on observations made between 1957.5 a 
1962.5. 



Figure 13. Positions of land survey data based on observations made between 1962.5 and 
1967.5. 



Figure 14. Positiws of land survey data based on observations made between 1967.5 and 
1V2.5. 



Figure 15. Positions of land survey data based on observations made between 1972.5 and 
1977.5. 
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Figure 16. Position, of l a d  survey dm based on observations made between 1977.5 and 
1982.5. 



Figure 17. Positions of land mwey data based on obsc~vations made between 1982.5 and 
1987.5. 



Figure 18. Positim of land survey data based on observations made from 1987.5 onwards. 



Figurn 19. Distribution of land m e y  data with time. Each block reprwna the number of 
obsenrationa made in the 12 months centred on the beginning of the indicated year. 



Figure 20. Distnitim of dm residuals b e e n  observed values and those computed from 
the IaRF for data based on obsuv.tioM made between 1962.5 and 1967.5. 



Figun 21. Distribotion of the residuala between observed values and those computed fiom 
the IGRF for dua based on obstrvatioas medc b e e n  1977.5 and 1982.5. 
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Figure 22. Dimribution of the residuals between observed values and those computed from 
the field mockb of Vestine et al. (1947) for data based on observations mads between 1922.5 
and 1927.5. 
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F i p  23. Distribution of the residuals between observed valuu and those computed from 
the field model8 of Vestine et al. (1947) for data based on observations made between 
1900.0 and 1907.5. 



Figure 24. Mean and root mean square residuals between observed and computed values for 
each of the 18 tiroe windowu. 



Figure 25. Distribution of the midunla between observed v d u a  and those complted from 
the field models of Vemine ci al. (1947) or from the I W  for the entire dataset ( b d  on 
observations made from 1900.0 onwards). 
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ABSTRACT 

Satellite measurements of the geomagnetic field began with the launch of 

Sputnik 3 in May of 1958 and have continued sporadically since. 

Spacecraft making significant contributions to main field geomagnetism 

will be reviewed and the characteristics of their data discussed. 

including coverage, accuracy, resolution and data availability. Of 

particular interest are Vanguard 3; Cosmos 49; OGO's -2, -4, and -6; 

Magsat; DE-2; and POGS. Spacecraft make measurements on a moving 

platform above the ionosphere as opposed to measurements from fixed 

observatories and surveys, both below the ionosphere. Possible future 

missions, such as Aristoteles and GOS are reviewed. 



1.0 INTRODUCTION 

The geomagnetic field at the surface of the earth is due to sources 

within the Earth's core and crust and sources external to these, within 

the ionosphere and magnetosphere. These fields have historically been 

measured at or near the Earth's surface by observatories, repeat 

stations, land, marine, and aeromagnetic surveys. Such measurements lack 

uniform global coverage, a shortcoming resolved by satellite data. The 

resulting data have been used to derive the most accurate descriptions 

of the main field and, for the first time, have permitted global mapping 

of crustal fields of wavelength greater than 400 km. 

With data only below the ionosphere, it is not possible to map the 

locations and characteristics of ionospheric and field aligned currents. 

To a large degree, satellites have succeeded in carrying out such a 

mapping. 

In this article we are concerned only with the volume within an 

altitude of about 2000 km, because it is measurements from this region 

which are pertinent to the study of the solid Earth. 

The quality of satellite data is contingent upon the nature of the 

instrumentation, the accuracy of its position and time determination, 

the attention paid to spacecraft magnetic cleanliness and to the ability 

to acquire continuous data. For use in main field modeling it is also 

important to be able to select data for periods of magnetic quiet. 



Acquisition of magnetic field data by satellite commenced 

beginning with Sputnik 3 in May of 1958. The latest such are being 

acquired with the US Navy's Polar Orbiting Geomagnetic Survey (POGS). 

We will begin by reviewing aspects of magnetic field measurement either 

peculiar to, or crucial to, the satellite platform. Then the various 

error sources will be discussed and the error estimates for relevant 

missions summarized. A summary of characteristics of the various 

satellite missions is given and potential future missions are noted. 

2.0 FEATURES PARTICULAR TO SATELLITE DATA 

2.1 Effects of Orbit Parameters: Geographic and Local time 

Coverage. Before specifically discussing magnetic field measurements it 

is useful to understand something about the nature of satellite orbits. 

Referring to Figure 1, an Earth orbiting satellite traverses an 

elliptical path with the center of mass of the Earth located at one 

focus of the ellipse. As the satellite traverses this path, its 

altitude above the Earth's surface varies due to the orbital ellipticity 

(or eccentricity); the closest and farthest points from the Earth are 

called perigee and apogee, respectively. At near-earth altitudes, at 200 

to 2000 km, the time for one full orbit, the orbital period, varies from 

about 90 to 200 minutes. The plane of the satellite path is called the 

orbital plane. Its angle, with respect to the Earth's equatorial plane, 

is the inclination, i, and the intersection of the orbital plane and the 



e q u a t o r i a l  p lane ,  a t  t h e  p o i n t  where t h e  s a t e l l i t e  i s  going n o r t h ,  i s  

t h e  ascending node. To a f i r s t  approximation, t h e  o r b i t  geometry 

remains f i x e d  i n  i n e r t i a l  space,  whi le  t he  e a r t h  r o t a t e s  beneath. The 

p r o j e c t i o n  o f - t h e  s a t e l l i t e  p o s i t i o n  onto t h e  su r f ace  of t h e  Ear th  i s  

c a l l e d  t h e  ground t r a c k ,  o r  s u b s a t e l l i t e  t r a c k ,  and t h i s  pa th  over  a  

per iod  of time i s  a  measure of t h e  amount of coverage o r  amount of t h e  

globe from which d a t a  may be acquired.  

Figure 1 i l l u s t r a t e s  t h a t  da t a  a r e  only acqui red  a t  l a t i t u d e s  up t o  

t h e  va lue  of t h e  i n c l i n a t i o n .  The l a t i t u d e  coverage i s  100% a t  i = 900. 

The dependence of coverage on i n c l i n a t i o n  i s  i l l u s t r a t e d  i n  Figure 2 ,  

which shows ground t r a c k s  from the  Magsat s a t e l l i t e  w i th  an i n c l i n a t i o n  

of 97.150, and Figure 3 ,  from the  OSTA-1 mission wi th  an i n c l i n a t i o n  of 

380. Magsat gave nea r  g loba l  coverage, whereas OSTA-1 only acqui red  

d a t a  below 380 l a t i t u d e .  (An i n c l i n a t i o n  g r e a t e r  than  900 means t h a t  

t he  r o t a t i o n a l  component of t he  s a t e l l i t e  d i r e c t i o n  i s  oppos i te  t h e  

Ea r th ' s  d i r e c t i o n  of r o t a t i o n ,  c a l l e d  a  re t rograde  o r b i t ;  o r b i t s  which 

a r e  no t  r e t rog rade  a r e  c a l l e d  prograde.)  

Two o t h e r  a spec t s  of da t a  coverage a r e  important bes ides  t h e  

l a t i t u d e  range of t he  s a t e l l i t e .  These a r e  da t a  spacing i n  longi tude  

and i n  l o c a l  time. Data spacing i n  longi tude  depends upon the  way t h e  

s u b s a t e l l i t e  t r a c k s  move i n  longi tude .  For example, it i s  p o s s i b l e  t o  

choose t h e  o r b i t a l  parameters so t h a t  t he  t r a c k s  r epea t  a f t e r  a  f i x e d  

number of o r b i t s ,  l eav ing  l a r g e  gaps i n  longi tude  coverage, o r  so t h a t  

t h e  t r a c k s  never  r epea t .  Data spacing i n  longi tude  i s  a  complicated 

func t ion  of s a t e l l i t e  a l t i t u d e ,  o r b f t  e l l i p t i c i t y ,  and i n c l i n a t i o n .  



Figure 4 shows the longitude change between ascending nodes for a 

circular orbit at inclination 900 as a function of satellite altitude. 

For example, at an altitude of about 380 km the longitude of successive 

equator crossings changes by 230. As long as an integral multiple of 

this change does not equal an integral multiple of 3600, the tracks will 

not exactly repeat from day to day and the coverage in longitude will 

become denser as time goes on. 

Another factor in spacecraft surveys is that due to the fact that 

the Earth is aspherical, or nonsyxmnetric, the plane of a satellite orbit 

precesses very slowly in inertial space. The rate of this precession 

depends on the orbital geometry, i.e. apogee, perigee, inclination, 

ellipticity. Since the Earth's rotation brings each longitude under the 

orbit plane, the data are globally well distributed. However, all 

observations at one latitude may have nearly the same local time for an 

extended period of time. In fact, the orbital parameters may be chosen 

so that the orbital plane remains fixed in its relation to the sun and 

hence fixed in local time. Such an orbit is called sun-synchronous. 

The Magsat spacecraft was in sun-synchronous orbit in the dawn-dusk 

meridian plane of the Earth. Figure 5 shows the daily change in local 

time of the ascending node of the orbital plane as a function of 

inclination and of altitude. For prograde orbits the local time is 

decreasing with time; the rate of decrease becomes smaller as the 

satellite altitude increases and as the inclination increases. The 

local time of a satellite in a 900 inclination orbit changes between 3 

and 5 minutes a day. 



To illustrate some facets of satellite orbits it is convenient to 

plot the location of perigee in local time-latitude coordinates as a 

function of time. Figures 6 and 7 show such a plot for the OGO-2 and 

Magsat spacecraft. Given the location of perigee at a particular date 

and knowledge of the satellite inclination, which can be inferred from 

the poleward extent of the points on figures such as 6 and 7, one can 

draw a line through the perigee location and tangent to the circle at 

900 - i; the satellite track will lie on such a line. From Figure 6 one 

can see that the perigee of OGO-2 varied through all local times in 

about 3 months whereas, from Figure 7, Magsat only acquired data near 

dawn and dusk local times. 

2.1 Data Recovery. Of major importance to achieving optimal 

coverage is the capability to store and transmit data. In the absence 

of onboard data storage, data acquisition can only occur at those times 

when the satellite transmits data directly to a ground receiving 

station, called "real time" data acquisition. The total time available 

for data acquisition at near-earth altitudes, as a satellite passes by a 

ground receiving station, is generally from 3 to 15 minutes. Relying on 

real time data acquisition severely limits the actual coverage 

capability. Usually a storage device, e.g. a tape recorder, is flown 

onboard the spacecraft. Data is then recorded and, at a convenient 

time, is played back at accelerated speed to a receiving station. 



2.2 Satellite Data Peculiarities. Sources ofthe near-Earth 

magnetic field include currents in the ionosphere between 100-130 km. 

At the Earth's surface, ionospheric fields reveal themselves through 

daily variations in magnetograms at permanent observatories. However, 

from surface measurements alone it is only possible to determine that 

such fields originate external to the Earth; their location in the 

ionosphere is inferred from other measurements, e.g. satellite or 

rocket, or from theoretical considerations. Similarly, satellite data 

alone can only determine that such fields are internal to the volume in 

which the data are acquired but cannot distinguish sources in the 

ionosphere from sources within the Earth. However, surface and 

satellite data together can, in principle, determine which portion of 

the field originates in the Earth, which in the ionosphere, and which 

external to the ionosphere. For main field modeling purposes, fields of 

ionospheric origin constitute noise so the ability to separate them from 

fields of origin within the Earth is important. 

Fields from the crust are also a noise source when attempting to 

model the main field. These are difficult to distinguish from the main 

field when data are acquired at only fixed locations on the Earth's 

surface. The global mapping capability of satellite measurements makes 

it possible to at least make a good start at distinguishing such fields 

on a spectral basis (see, e.g., Langel and Estes, 1982). 



When acquiring data from a fixed location at the Earth's surface, 

it is relatively easy to distinguish the long term secular variation 

from the shorter term variations due to ionospheric and magnetospheric 

sources. Satellite data do not acquire time series at a fixed location. 

Since the satellite does not continually acquire data at a fixed 

location, temporal changes must be modeled globally or must be inferred 

from simultaneous observatory data. 

A related problem with satellite data is that it, alone, cannot 

distinguish between temporal variations and variations due to the 

satellite motion through a spatially changing field. 

As with any observation, accurate time and position information is 

essential for quality data. For vector data, attitude determination is 

also a primary concern. Although these considerations are present also 

for surface data, they are particularly acute for a satellite which does 

not occupy a fixed stable location and cannot be routinely serviced. 

These will be discussed further in the section on data errors. 

3.0 ERROR SOURCES 

The error sources in satellite data are of three sorts. First are 

the usual, traditional, errors that affect any magnetic field 

measurement whether in space or on Earth. These include: instrument 

error, contaminating fields, and digitization error or resolution. The 

second sort are those errors that are satellite peculiar but which are 



present for every satellite mission. These include errors due to 

imprecise knowledge of time and position, imprecise knowledge of the 

magnetometer attitude or pointing (and the stability of that knowledge). 

Finally, there are those errors which are experiment peculiar. 

3.1 Instrument Error. Scalar instruments are usually absolute 

instruments in that their basic accuracy depends only upon knowing the 

value of some atomic constant. These include the Proton Precession 

magnetometer and the various Alkali Vapor (Helium, Rubidium, Cesium) 

magnetometers. In practice the accuracy achieved is about 1 to 2 nT, 

although in principle it ought to be possible to do better than this. 

Vector magnetometers, on the other hand, have, to date, been 

relative instruments, subject to drift as electronic components age, as 

the ambient temperature changes and causes expansion and/or contraction 

of parts or variation in value of resistors or capacitors. Mechanical 

alignments of the axes are particularly susceptible to mechanical and 

thermal change. The most common type of vector magnetometer is the 

three-axis fluxgate. Such an instrument may drift anywhere from zero to 

several hundred nT per year. However, these instruments can be 

calibrated by use of a co-located absolute scalar instrument. By 

intercomparison between the scalar and vector magnetometers, the error 

due to drift can be reduced to nearly the accuracy of the scalar 

measurement, if the vector and scalar instruments are experiencing the 

same field to within about 0.1 nT (Lancaster et al.. 1980; Langel et 

al., 1981). Alternately, it is sufficient to know the magnitude and 

direction of any difference in field between the vector and scalar 



instruments to within this tolerance by knowledge of the gradient of the 

contaminating fields. 

3.2 Digitization Error or Resolution. Digitization of a frequency 

in general has an ambiguity of * one count either of the signal being 
digitized or of a reference frequency. This is the resolution of the 

signal. Similarly, there is a finite resolution when digitizing an 

analogue voltage. In principle, the resolution limit is imposed by the 

quality of the analogue to digital converter. These have steadily 

improved over the years so that today a magnetometer signal in the 

Earth's field can easily be resolved to a tenth of a nT. On the other 

hand, some measurements are limited by the number of bits available to 

store the signal onboard the spacecraft or to telemeter the digitized 

measurement to the ground. 

3.3 Position and Time Error. Position (ephemerides) and time error 

can also be factors in magnetic field measurements. In practice, a time 

error translates into a position error. For example, the velocity of 

the satellite is about 7.5 kmlsecond, so a time error of one second is 

equivalent to a position error of 7.5 km, along track. If the time is 

known to a millisecond or better, the equivalent orbit error is 7.5 m 

along track, which should be negligible. 

Estimating the field error due to position error is done by 

coflputing the field difference between the actual position and the 

estimated position. By far the largest differences are due to the 

gradients in the main geomagnetic field. Table 1 summarizes the global 

maxima of the various field gradients and Tables 2 and 3 show the 



equivalent magnetic field error for various time accuracies and for a 

position error of 100 meters. Table 4  summarizes the probable position 

errors for several satellites. 

3 . 4  Contaminating Fields. Any field at the magnetometer which 

originates in the spacecraft or instrument is a source of inaccuracy. 

Such fields are usually minimized by placing the magnetometers on a boom 

of sufficient length to reduce the spacecraft fields to less than 1 nT. 

The necessary length of such a boom depends upon the strength and 

geometry of the spacecraft fields. 

An alternative technique is to configure the measurement in such a 

way that the spacecraft field can be determined. From Magsat, we know 

that if the spacecraft field is constant and not too large (< 50 nT, 

say), it can be determined as part of the field modeling process. For 

ARISTOTELES large spacecraft fields which change with time are 

anticipated. This problem is approached by planning to sufficiently 

characterize the contaminating fields such that they can be modeled on 

the basis of ground measurements and on-orbit data such as torquer bar 

currents. 

3 . 5  Attitude Error. Instrument error is not the only source of 

inaccuracy. For vector measurements, the major source of inaccuracy is 

the ability to measure the attitude, or pointing direction, of the 

instrument. The Earth's field is about 60,000 nT in the polar region. 

This means that an attitude error of 5 arc seconds will result in a 1.5 

nT error in a direction normal to the Earth's field (See Figure 8). 

For high accuracy missions the spacecraft attitude is typically 



determined by star sensors (or "cameras"). These have accuracies in the 

range of 5 - 10 arc seconds. Early star sensors were themselves highly 

magnetic and had to be located away from the magnetometers, at the 

spacecraft end of the isolating boom. In this case an optical system, 

called an "attitude transfer system" is used to measure the angular 

transformation between the star sensors and the vector magnetometer. 

Also useful are high precision sun-sensors, which can be made non- 

magnetic and located near the vector magnetometer. Techniques are now 

being developed to manufacture star sensors with extremely low magnetic 

fields. If successful, such sensors could be located at the end of the 

boom eliminating the need for the attitude transfer system. 

Besides the accuracy of measurement of the star sensors, sun 

sensor, and attitude transfer system, the accuracy to which the relative 

positions of these instruments, and of their position relative to the 

magnetometer, is known also contributes to the overall attitude 

accuracy. 

Experience from Magsat suggests that, given negligible or small but 

stable variation (less than 2nT in an orbit) of the spacecraft fields at 

the magnetometer location, and given stable attitude determination 

system position (variation less than 2 arc seconds in a day) relative to 

the magnetometer, both the stable spacecraft field and any change in 

relative location between the star camera and magnetometer can be solved 

for as part of our solution for the Earth's main field. The notation 

used is 



{g,h) are parameters in a spherical harmonic analysis 

(f, e, #I are the usual spherical coordinates 

{E) are transformation angles from magnetometer 

to spacecraft coordinates 

{p} are transformation angles from spacecraft 

to geocentric coordinates 

Bs is the vector spacecraft field, 

in spacecraft coordinates. 

If, then, it is assumed that {p) are known but that {E) and Bs are 

different than expected, but do not vary appreciably during the 

analysis, then the measurements can be modeled by Bc, where: 

and where the solution parameters include {g,h}, {e), and Bs. The 

accuracy of such a solution is about 5-8 arc seconds. 

This procedure was followed for the Magsat mission. In particular 

corrections were made to the pitch, roll, yaw attitude determinations 

(Langel et al., 1981). These corrections are shown in Figure 9 which 

shows that the roll angle (filled in circles) was essentially constant 

for the first 80 days after which it changed linearly; the yaw angle ( x  

symbols) varies linearly at first until about day 100 when it becomes 

nearly constant; and the pitch angle (open circles) remains essentially 

constant. 



For Magsat the spacecraft field found by this method was 

negligible. On the other hand the DMSP spacecraft field was so large 

and variable that the method failed (Ridgway et al., 1989). 

3.6 Error budget summary by satellite. Table 5 summarizes our 

estimates of the accuracies achieved by the various satellites 

contributing, or possibly contributing in the future, to modeling the 

main magnetic field. The position errors attributed to Vanguard 3 and 

to Cosmos 49 are estimated maximum errors. In both cases the usual 

position error is likely smaller, much smaller in the case of Vanguard 

3. In both of these cases the error is probably less than 50 nT in most 

circumstances. Note that the spacecraft field for Cosmos 49 was 

compensated by onboard magnets. The success of such a technique 

requires that neither the compensated nor the compensating field change 

with time, i.e. both magnetizations are "hard". This is generally true 

of the compansating field but cannot, in general, be guaranteed for the 

spacecraft field being compensated, which means the practice carries 

some risk. 

Vanguard 3 had two instrument particular error sources. The 

spacecraft was spinning which introduces a shift into the field measured 

by the proton precession magnetometer. The maximum shift was 6.7 nT; on 

average, the shift was about 2 nT. The other source was the result of 

signal noise. The Larmor frequency from the proton precession 

instrument was transmitted directly to ground, recorded, and then 

digitized. The resulting signal had a noise level which introduced an 

error of up to 4 nT. 



The accuracy figure for the Magsat vector magnetometer, 3.0 nT, is 

the rss (root sum square) after calibration using the scalar 

magnetometer. 

DE-1 is included in the table although this data has not yet been 

tested in main field modeling. We are currently in the process of 

collecting data from locations near perigee which will be processed and 

used in modeling attempts. 

Two sets of statistics are compiled in the Table. The first are 

the mean and o about that mean of the data from each satellite to a 

field model derived from that data alone. The o from such models gives 

a good idea of the scatter, or internal consistency, in that data set. 

Note that the numbers for POGS are very preliminary since the universal 

time of that data has not yet been established with adequate accuracy. 

The second set of statistics are the mean and o about that mean 

from the relevant IGRF. In most cases this was a DGRF. Note that the 

higher means and o's for these models may, in some cases, reflect the 

truncation level of the model, which is degree 10 for the IGRF. 

4.0 MAGNETIC SATELLITE HISTORY 

4.1 General Summary. Spacecraft which have made significant 

contributions to our understanding of the near-earth geomagnetic field 

are listed in Table 6 (see also Potemra, 1987). The very first satellite 

magnztic field measurement was accomplished by a fluxgate magnetometer 

onboard Sputnik 3. The instrument was mounted in a gimballed fashion so 



that it could be reoriented in flight. One axis was maintained along the 

ambient field by reorienting the instrument until the fields measured by 

the other axes were zero. The axis parallel to the field gave the field 

magnitude; the position of the gimbal gave the orientation of the 

spacecraft relative to the field; i.e. the magnetometer was used to 

measure the spacecraft attitude; a common practice on many spacecraft. 

Spacecraft fields were high on Sputnik 3 and the coverage was limited to 

the Soviet Union. 

The US Navy satellite 1963-38C was magnetically stabilized to 

within about 60 of the ambient magnetic field by a large permanent 

magnet. Its fluxgate magnetometers gave useful data only on the field 

transverse to the permanent magnet. These data provided the first 

evidence for the presence of transverse magnetic fields due to field- 

aligned currents in the auroral belt (see, e.g., Potemra, 1982 for a 

review). The Navy Triad satellite, operative from late 1972 to early 

1984, carried a triaxial fluxgate which obtained higher quality data 

than 1963-38C and thoroughly mapped the characteristics of the fields 

due to the field-aligned currents. 

Measurement of the magnetic field alone is not sufficient for a 

thorough study of ionosphere-magnetosphere coupling. The latest 

generation of satellites have been designed to carry out a complement of 

measurements, often including not only magnetic field measurements but 

also measurements of particle precipitation, auroral imaging and 

electric fields. Missions of this nature include, DE-2 (Hoffman, et 

al., 1981; Farthing et al., 1981), ICB-1300 (Serafimov et al., 1982; 

Stanev et al., 1983; and Arshinkov et al., 1986), AUREOL-3 (Khmyrov et 



al., 1982 Berthelier et al., 1982). HILAT (Fremouw et al., 1983). DMSP 

F-7 (Rich et al., 1985), and Polar Bear (Bythrow et al., 1987). ICB- 

1300, or "Intercosmos-Bulgaria 1300n, was a joint U.S.S.R.-Bulgarian 

satellite; AUREOL-3 was a joint U.S.S.R.-French satellite flown as part 

of a larger joint project called ARCAD-3. Hilat and Polar Bear were 

flown by the Johns Hopkins Applied Physics Laboratory, in the U.S., as 

follow-on missions to TRIAD. The DMSP F-7 spacecraft was primarily 

intended to provide optical image information for weather monitoring. 

The imager also was useful for mapping auroral activity and plasma 

experiments were included by the Air Force Geophysical Lab, including a 

magnetometer. Unfortunately this magnetometer was located within the 

spacecraft proper where the ambient fields were several thousand nT in 

magnitude and variable. 

Other than mapping field-aligned currents, uses of the data from 

all of these satellites was minimal for several reasons. Except for 

DMSP F-7, none had really adequate attitude determination; none carried 

an absolute magnetometer to calibrate the fluxgate; and except for DE-2, 

had no onboard data storage forextended coverage. ICB-1300 and AUREOL-3 

had limited onboard data storage so that extended periods of data could 

be obtained, but the coverage was not 100%. 

Although the DE-2 spacecraft was intended to measure primarily 

fields from field-aligned and auroral currents, the scalar magnitude of 

the field has been used in studies of the Earth's main field. 



As can be seen from Table 6, until Magsat other surveys suitable 

for main field or crustal field studies were performed with either 

proton-precession or alkali-vapor magnetometers which measured only the 

field magnitude. Lack of onboard recording devices limited the coverage 

of Vanguard 3 and of 1964-83C, whereas the Cosmos, POGO, Magsat and DE- 

2 satellites all carried tape recorders and achieved full orbit 

coverage. Spacecraft fields were well above the noise level for Sputnik 

3, 1963-38C, Cosmos 49, 1964-83C, S3-2, ICB-1300, AUREOL-3, and DMSP F- 

7. An additional error source in the Cosmos 49 data arose because the 

time assigned to the data was uncertain to 20.5 second. 

The first survey to combine near polar inclination, onboard data 

storage, and high measurement accuracy was conducted by the OGO 2, 4 and 

6 (POGO) satellites which operated between 1965 and 1971. Magsat, 

launched in October of 1979, was the first, and to date only, satellite 

to survey the vector components of the field with high accuracy. 

Not included in Table 6 are satellites which observed the effects 

of field-aligned currents deep in the magnetosphere or which had 

substantially eliptical orbits, i.e. satellites which are not considered 

near-Earth, such as ISIS 2 (McDiarmid et al., 1978a,b), S3-3 (Rich et 

al., 1981; Catell et al., 1979), ISEE (Kelly et al., 1986; Frank et al., 

1981) and OGO-5 (Sugiura, 1975). Also not included were some near-Earth 

satellites whose measurements cannot really be considered to be surveys, 

such as AZUR (Theile and Praetorius, 1973) and AE-C (Bythrow et al., 

1980). 



4.2 Satellites for Main Field Modeling. Those satellites which 

have contributed to the GSFC data base for are summarized in Table 7. 

The following paragraphs briefly describe some characteristics of each. 

4.2.1 Vanguard 3. Vanguard 3 made absolute measurements of the 

magnetic field with a proton precession magnetometer from September 18 

to December 11, 1959. Perigee and apogee were 510 km and 3750 km 

respectively. Data were acquired in real time only, i.e. when the 

satellite was in sight of a Minitrack station (Figure 10). These 

stations were located at Ft. Myers, Florida, Woomera, Australia, Quito, 

Equador, Lima, Peru, Antofagasta, Chile, Santiago, Chile, Antigua, 

British West Indies, Chula Vista, California, Blossom Point, Maryland, 

and Johannesburg, Union of South Africa. A description of the experiment 

and a catalog of data are given in Cain et al. (1962). The observations 

were obtained during all magnetic local times as shown in Figure 11. 

4.2.2 Cosmos 49. The following description is taken from "The 

Survey with Cosmos-49" by Benkova (1971). "The satellite was launched 

into an orbit with inclination 49', perigee 260 km, and apogee 490 km. 

The orbit precessed westward at a rate of 4.5' per day." "The 

measurements were made each 32.76 seconds during the interval October 24 

to November 6 in 1964, a magnetically quiet period." The satellite had 

onboard memory so the coverage was global, equatorial of 49'. "Two 

proton precession magnetometers were orthogonally mounted in the 

satellite ... the time of the measurement is uncertain to ' 0 . 5  second. The 

magnetometers are mounted 3.3 meters from the center of the satellite, 



whose magnetic effects are compensated to an accuracy of 2 nT by an 

array of permanent magnets producing a homogeneous compensating field at 

the sensor locations.....In addition to the uncertainty of 20.5 second 

earlier discussed, errors in satellite position existed that could reach 

3 km in the direction of the flight path and 1 krn in altitude as well as 

in the direction of the normal to the satellite orbit. Random errors 

due to unfavorable orientation of one of the magnetometer sensors were 

rejected." "The usable scalar intensity values totaled 18,000 and were 

published in catalogue form." Figures 12 and 13 show the global and 

local time distribution of data for COSMOS 49. 

4.2.3 POGO. The POGO satellites carried rubidium vapor 

magnetometers into a near polar orbit and collected scalar data over a 6 

year time span. 

OGO-2 (10165-9167). with apogee and perigee at 413 and 1510 km 

respectively, collected mostly dawn and dusk scalar observations as a 

result of battery problems which necessitated dayside operations. The 

global distribution of data is reviewed in Figures 14 (a,b,c,d, & e) and 

the local time data distribution is shown in Figure 15. A description 

of the OGO-2 data and its processing may be found in Langel (1967). 

OGO-4 observed the magnetic field from 7/67 to 1/69. A global data 

coverage map (~igure 16) and a local time histogram (Figure 17) 

summarize the spatial and temporal distribution. OGO-4 acquired data at 

all local times in about 5 months. 



The OGO-6 (6169-7171) data are globally distributed as shown in 

Figures 18 (a,b,c,& d) and have local time distribution as shown in 

Figure 19. The local time coverage was completed in approximately 5 

months. 

4.2.4 Magsat. Magsat was launched in November of 1979 into a 97' 

inclination orbit with apogee at 550 km and perigee at 325 km. It 

successfully made scalar (Cesium) and vector (fluxgate) measurements 

over its lifetime. Data used in main field modeling as described by 

Langel and Baldwin (1991) are shown in Figure 20. Local time variations 

(Figure 21) are indicative of a sun-synchronous orbit. A general 

description of data characteristics, calibrations, and corrections may 

be found in Langel et al., 1981. 

4.2.5 DE-2. Data from the DE-2 satellite (Sept. 1981- Jan. 1983) 

has been useful in determining the field during 1982. The DE-2 orbit was 

polar with apogee and perigee of 309 km and 1012 km. Although vector 

data were acquired with DE-2, the attitude accuracy (about 1-20) was not 

adequate for spherical harmonic modeling. Scalar magnitude data from 

the DE-2 satellite were derived from the fluxgate components for use in 

main field modeling. Ridgway (1988) and Langel et al. (1988) give 

details of the mission and data. The data furnished to us after 

processing for quiet intervals are distributed geographically as shown 

in Figure 22 and are mainly from dawn and dusk local times (Figure 23). 

4.2.6 DE-1. The DE-1 satellite launched in September 1981 carried 

a triaxial fluxgate magnetometer at the end of a 6 meter boom. This 

instrument had a resolution of 1.5 nT and a range of * 62000 nT. DE-1 



was in a near polar orbit with a perigee of 600 km and an apogee of 

24800 km (since 1981 the orbit has decayed). Data from near perigee will 

be evaluated as to its usefulness for main field analysis. This is a 

spinning satellite which results in additional uncertainties in attitude 

determination in inertial space due to uncertainties in determining the 

phase of the spacecraft roll angle. 

4.2.7 POGS. POGS (Polar Orbiting Geopyhisical Satellite) was 

launched from Vandenberg Air Force base in April of 1990 into a circular 

polar orbit of approximately 800 km. The US Naval Oceanographic Office 

(NOO) sponsored this DMSP type platform deployed from an Atlas E rocket. 

The satellite was equipped with a vector fluxgate magnetometer mounted 

on an eight foot earth-pointing boom. The instrument has a range of 

k65535 nT with a resolution of 2 nT. There was no absolute instrument 

onboard the spacecraft to correct for instrument drift, and the 

available altitude information was insufficient for useful attitude 

corrections. The instrument drift rate was proposed to be no greater 

than 50 nT/yr (Acuna, personel communication) and the attitude accuracy 

is to within 0.5' to 1.0'. Because of deployment problems, the satellite 

was injected into orbit upside down causing problems with the solar 

panels and telemetry antenna. This resulted in downlink problems at the 

two ground stations. Although this problem has currently been resolved 

by reconfiguring the ground station tracking software, the data used in 

this study suffers from large gaps. At present, the main problem with 

POGS satellite data concerns the magnetometer clock. The clock accuracy 

relative to GMT is in error by as much as 5.5 seconds. An attempt to 

correct this problem is discussed in Langel et al. (1991). 



5 . 0  Missions Under Consideration 

Although the future of some seems bleak, there are several missions 

being considered for future measurement of the geomagnetic field. These 

include the NASA EOS (Polar Platform) experiment, Geomagnetic Observing 

System (GOS); two ESAINASA missions: Advanced Particles and Fields 

Observatory (APAFO) on the ESA Polar Platform and ARISTOTELES; the 

Department of Defence (DOD) follow on missions to DMSP and POGS; and the 

possibility that NOAA would include magnetic field measurements on their 

meterological satellites. 

5.1 EOSIGOS. This is projected for the second, or EOS-B, Polar 

Platform. Included would be a scalar Helium and vector fluxgate 

magnetometer mounted at the end of a long, perhaps 25 m, boom. Non- 

magnetic star sensors would also be included at the end of the boom. A 

second fluxgate would be mounted inboard on the boom to aid in modeling 

the spacecraft field. The overall investigation would also include a 

plasma wave experiment consisting of two sets each of a triaxial search 

coil and triaxial electric field antennas. Figure 24  shows a sketch of 

the configuration of GOS on the platform. 

The status of GOS is in extreme doubt. Reconsideration of EOS 

investigations and of the number and nature of the platforms is 

presently under way in the light of realistic fiscal constraints. 



5.2 APAFO. APAFO is one of two space science investigations 

selected by ESA for their Polar Platform in response to their 

Announcement of Opportunity. The proposed instrumentation is as 

follows : 

SAMPLING 

MEASUREMENT RANGE 1 FOV ACCURACY RATE 

Scalar. Magnetic Field 20-70,000 nT 2.0 nT 21 sec 

VectorMagnetic Field - +64,00OnT 4.0 nT 8-1281 sec 

Ion Velocity (E-Field) 0 - 40 eV 0.10 4-641sec 

400x400 FOV 0.1 mV/m 

Electron Analysis 5 eV - 600 keV .001-.O1 cm2-sr 4-32/sec 

2200x360 FOV 1 - 7.50 

Figure 25 is an artists conception of the ESA Polar Platform 

including APAFO. 

While APAFO has been selected by ESA it is currently not supported 

by NASA's Earth Science and Applications Division. The NASA Space 

Physics Division has APAFO under consideration. 

5.3 ARISTOTELES. ARISTOTELES is an acronym for Applications - and 

Research Involving Space Technologies Observing the Earth's Field from - - 

Low Earth Orbiting Satellite. Figure 26 shows an artists conception of - - - 

the proposed spacecraft. Its mission is to measure the gravity and 

magnetic fields of the Earth. The project is joint between NASA and ESA 

with NASA furnishing the scalar and vector magnetometers, a Global 

Positioning System (GPS) receiver and tracking, and the launch vehicle. 



ESA would furnish the spacecraft, the gravity gradiometer and the 

mission operations. 

There are essentially three phases to the mission profile. 

One: The checkout phase at an altitude of about 400 krn. During this - 

period the spacecraft will be checked out and any calibration procedures 

executed for the gravity and magnetic measurements. 

Two: The Low Altitude phase at an altitude of about 200 km for a - 

duration of about 6-8 months. During this period high spatial 

resolution measurements (about 100 km) will be obtained for both the 

magnetic and gravity fields. 

Three: The High Altitude phase at an altitude of about 500 km for the 

remainder of the mission lifetime, anticipated at about three years. 

The primary measurements during this phase will be of the geomagnetic 

secular variation. 

ARISTOTELES is not an approved program of either ESA or NASA. It 

is under consideration by both for launch in or after 1997. In the NASA 

framework it would come under the Earth Probe program. 

5.4 DMSPIPOGS. The missions under consideration would be follow 

on to previous DMSP and POGS missions, upgraded for main field studies. 

Two DMSP series are involved in these missions and both the Air Force 

and the Navy are involved. Plans in each agency are very similar, but 

apparently not exact. The present discussion is based on information 

received from F. Rich (personal comunication) of the Air Force. 



The current DMSP series is known as BLOCK 5. Subseries 5D-2 

consists of spacecraft F-8 through F-14. This subseries will continue 

to carry the body mounted fluxgate magnetometer which did not prove 

useful for main field studies. Subseries 5D-3 consists of spacecraft S- 

15 through S-20. Current plans are that S-15 will be POGS-11. Figure 

27 is an artists conception of POGS-11. Its magnetometer will be the 

same as for sub-series 5D-2 except that it will be mounted at the end of 

a 5 m boom. Launch is projected for the 1990 to 2000 time frame. At 

present, the status of magnetometers for spacecraft S-16 through S-20 is 

unclear, though the presumption is that if S-15 is indeed approved then 

similar magnetometers will be included on these also. 

The next DMSP series is known as BLOCK 6. For this series an 

improved magnetometer design is planned. The first launch is projected 

at about the year 2005. Like POGS and DMSP the DOD requirements call 

only for a fluxgate magnetometer. NASA participation will be sought to 

provide an upgrade to the experiment to Magsat quality. This would 

include further upgrade of the vector fluxgate magnetometer, addition of 

a scalar magnetometer, and addition of an attitude transfer system. 

Final approval is still pending on all of these missions. 

5.5 NOAA satellites. These are under discussion with no available 

plans. 

5.6 Projected Ideal Launch Schedule. Table 8 shows the currently 

published projected launch dates for the missions discussed above. 
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Table 1: Gradient  of Magnetic F i e ld :  Equivalent  

Measurement E r ro r  f o r  1 km of Orb i t  E r ro r .  

COMPONENT MAXIMUM GRADIENT (nTlkm) 

Along Cross 

V e r t i c a l  Track Track 

Br -28.0 -13.3 6.8 

Table 2: F i e l d  E r ro r  Due t o  Timing Er ro r  

Assuming a S a t e l l i t e  Veloc i ty  of 7 km/sec and a p o l a r  o r b i t .  

POSITION ERROR EQUIVALENT FIELD ERROR (nT) 

TIME ERROR ( s e c )  ALONG TRACK (km) -r B Be B# - B 

0.001 0.007 0.09 0.05 0.014 0.04 



Table 3: TRANSLATION OF POSITION ERROR TO EQUIVALENT FIELD ERROR 

EQUIVALENT MAXIMUM FIELD ERROR (nT) 

POSITION ERROR B r BB B# B 

100 m Vertical 2.8 1.8 0.8 2.8 

100 m Along Track 1.3 0.7 0.2 0.6 

100 m Cross Track 0.6 2.3 2.3 0.5 

Table 4: Estimated Position Error for Various Satellites 

TYPICAL POSITION ERROR (m) 

TRACKING ALONG CROSS 
SATELLITE SYSTEM VERTICAL TRACK TRACK 

POGO [1965-19711 Range and 250 1000 1000 
Range Rate 

Magsat [I9801 Doppler 30 - 60 60 - 200 20 - 60 

ARISTOTELES [I997 ?I GPS Nominal 0.1-0.2 0.1-0.2 0.1-0.2 
Best 0.01 0.01 0.01 



Table 5 .  

ERROR BUDGET SUMMARY BY SATELLITE 
SATELLITE VANGUARD 3 COSMOS 49 POGO MAGSAT DE-2 DE-1 POGS 

INSTRUMENT (nT) 

DlGlTlZATlON 
RESOLUTION (nT) 

INSTRUMENT 
PARTICULAR (nT) 

TIME: MS 
: nT 

SPACECRAFT 
FIELD 

POSITION: 

VERTICAL. KM 
: nT 

HORlZ : KM 
: nT 

ATTITUDE: ASEC 
: nT 

-2 

0.9 

0.44 

30-70 
1.3-3 

<1.0 

0.25 
7 

1 
6 

0.3 
5.2 

1.4 
14.0 

c 1 

NEGLIGIBLE 

(PERIGEE) 

? 

1.5 

5(?) 
0.21 

c 1.0 

0.12 
3.4 

0.6 
16.8 

2.0 

? 

STATISTICS FROM MODEL FIT TO THE DATA 

? 

2.0 

22.5 
1.1 

C5.0 

0.06 
1.7 

0.2 
5.6 

-0.05 
60.0 

-4 

0.9 

0.44 

30-70 
1.3-3 

<1.0 

0.25 
7 

1 
6 

0.1 
6.8 

-1.1 
18.2 

MEAN 
cr 

STATISTICS FROM 
MEAN 
o 

SPIN FREQ I 

-6 

0.9 

0.6 

10 
0.43 

c1.0 

0.25 
7 

1 
6 

-0.6 
6.3 

-4.6 
17.6 

SHIFT 6.7 nT [2 

SIGNAL 
NOISE: 4 nT 

100 
4.3 

c1.0 

4(?) 
1 12(?) 

9(?) 
207(?) 

1.2 
12.0 

IGRF MODEL 
-1.1 
12.1 

nT AVG.) 

500 
21.4 

2 
(COMPENSATED) 

1 
28 

3 
69 

? 
22.0 

-7.8 
69.3 

SCALAR VECTOR 

1.5 3.0 ? 
(bAuBRATE\) 

I I 

1.5 

5(?1 
0.21 

c1.0 

0.12 
3.4 

0.6 
16.8 

-3.5 
23.0 

-8.0 
31.7 

0.6 1 0.5 

I 
I 

1 1 
0.04 1 0.04 

<lr 1 <laO 

I 
0.06 I 0.06 
1.7 

0.2 
5.6 

1 2!.8 

0.5-1.0 
7.0 

1.0-2.0 
6-8.2 

-5.1 I -7.8 
15.6 12.0 



Table 6. 

SPACECRAFT OBTAINING NEAR-EARTH MAGNETIC FIELD MEASUREMENTS 
ALTITUDE APPROXIMATE 

SATELLITE INCLINATION RANGE (km) DATES INSTRUMENTS ACCURACY (nT) COVERAGE 

Sputnik 3 
Vanguard 3 

1963-38C 

Cosmos 26 
Cosmos 49 
1964-83C 

OGO-2 
OGO-4 
OGO-6 
Cosmos 321 
Triad 

S3-2 
Magsat 

DE-2 

DE-1 
ICB-1300 
AUREOL-3 
Hilat 

DMSP F-7 
Polar Bear 

POGS 

65" 
33" 

Polar 

49" 
50" 
90" 

87" 
86" 
82 
72" 

Polar 

97" 
97" 

89.97 

89.91 
81" 

82.5" 
82" 

Polar 
Polar 

Polar 

Fluxgates 
Proton 

Fluxgate 

Proton 
Proton 

Rubidium 

Rubidium 
Rubidium 
Rubidium 
Cesium 
Fluxgate 

Fluxgate 
Fluxgate 

and 
Cesium 
Fluxgate 

Fluxgate 
Fluxgate 
Fluxgate 
Fluxgate 

Fluxgate 
Fluxgate 

Fluxgate 

unknown 

unknown 
22 
22 

6 
6 
6 

unknown 
about 200 

3 
about 100 per axis 

28 for scalar 

----------- 
>75 

>I50 
about 200 

> 1000 
about 200 

TBD 

USSR 
near ground 

station 
near ground 

station 
whole orbit 
whole orbit 

near ground 
station 

whole orbit 
whole orbit 
whole orbit 
whole orbit 
near ground 

station 
whole orbit 
whole orbit 

whole orbit 

whole orbit 
part orbit 
part orbit 

near ground 
station 

whole orbit 
near ground 

station 
whole orbit (?) 



TABLE 7: GSFC SATELLITE DATA BASE FOR MAIN FIELD MODELING 

Satellite 

Vanguard 3 

Cosmos 49 

POGO 

OGO-2 

OGO-4 

OGO-6 

Magsat 

DE-2 

POGS 

Altitude Local Time Number of 

Inclination Range (km) Dates Coverage Data Points 

500 261- 488 10164-11/64 All 17,429 scalar 

8 70 413-1510 10165-9167 Concentrated at dawn & dusk 12,773 

8 60 412-908 7/67-1169 All in about 5 months 18,431 

8 20 397-1098 6/69-7171 All in about 5 months 16,196 

9 70 325-550 11179-5/80 Dawn and Dusk 48679 vector 

(below 500 lat) 

25016 scalar 

Concentrated at dawn & dusk 5100 scalar 

All 



Table 8: PROJECTED LAUNCH SCHEDULE 

ARISTOTELES 

APAFO 

GO S 

DMSPIPOGS 

S-15 

BLOCK 6 

MID 1997 

LATE 1999 

MID 2001 
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FIGURES 

Figure 1: I l l u s t r a t i o n  of t he  pa th  of a  spacec ra f t  a t  i n c l i n a t i o n ,  i, 
i n  o r b i t  around t h e  r o t a t i n g  Earth.  

Figure 2: Ground t r a c k  of t h e  Magsat spacec ra f t  f o r  24 hours .  Apogee 
was 550 km, pe r igee  325 km and i n c l i n a t i o n  970 15' .  

Figure 3: Ground t r a c k  of s h u t t l e  on OSTA-1 mission;  c i r c u l a r  o r b i t  
w i th  380 i n c l i n a t i o n  and 262 km average a l t i t u d e  ( cour t e sy  of  P.D. 
Lowman, Goddard Space F l i g h t  Cen te r ) .  

Figure 4: Change of t he  longi tude between success ive  ascending nodes 
( i . e .  n o r t h  going equator  c ros s ings )  a s  a  func t ion  of s a t e l l i t e  a l t i t u d e  
f o r  a  c i r c u l a r  o r b i t  (cour tesy  of K.A. Vance, Goddard Space F l i g h t  
Center ) .  

Figure 5: Daily change of t he  l o c a l  time of t he  ascending node of an 
Ear th  o r b i t i n g  s a t e l l i t e  a s  a  func t ion  of a l t i t u d e  and i n c l i n a t i o n .  
C i r c u l a r  o r b i t  i s  assumed (cour tesy  of K.A. Vance, Goddard Space F l i g h t  
Center ) .  

Figure 6: Locat ion of t he  per igee  of OGO-2 i n  l o c a l  time and l a t i t u d e  a s  
a  func t ion  of d a t e .  

Figure 7: Locat ion of t h e  per igee  of Magsat i n  l o c a l  time and l a t i t u d e  
a s  a  func t ion  of da t e .  

Figure 8: I l l u s t r a t i o n  of t h e  geometry a s soc i a t ed  wi th  an e r r o r  i n  
a t t i t u d e  when measuring a  vec to r  f i e l d .  

Figure 9: I n  f l i g h t  c a l i b r a t i o n  r e s u l t s  f o r  Magsat a t t i t u d e  alignment.  

Figure 10: Geographic d i s t r i b u t i o n  of da t a  from t h e  Vanguard I11 
s a t e l l i t e .  

Figure 11: D i s t r i b u t i o n  of Vanguard I11 da ta  i n  l o c a l  t ime. 

Figure 12: Geographic d i s t r i b u t i o n  of da t a  from t h e  Cosmos 49 s a t e l l i t e .  

Figure 13: D i s t r i b u t i o n  of Cosmos 49 da t a  i n  l o c a l  t ime. 

Figure 14: Geographic d i s t r i b u t i o n  of d a t a  from the  OGO-2 s a t e l l i t e .  

Figure 15: D i s t r i b u t i o n  of OGO-2 da ta  i n  l o c a l  t ime. 

Figure 16: Geographic d i s t r i b u t i o n  of d a t a  from the  OGO-4 s a t e l l i t e .  

Figure 17: D i s t r i b u t i o n  of OGO-4 da t a  i n  l o c a l  t ime. 

Figure 18: Geographic d i s t r i b u t i o n  of d a t a  from the  OGO-6 s a t e l l i t e .  



Figure 19: Distribution of OGO-6 data in local time. 

Figure 20: Geographic distribution of data from the Magsat satellite. 

Figure 21: Distribution of Magsat data in local-time. 

Figure 22: Geographic distribution of data from the DE-2 satellite. 

Figure 231 Distribution of DE-2 data in local time. 

Figu;e 24: sketch of the magnetometer experiment configuration on 
EOS/GOS. 

- >  . -  
Figure 25: Sketch of the APAFO experiment configuration on the European 
Polar Platform. 

Figure 26: Sketch of the configuration of the ARISTOTELES spacecraft. 

Figure 27: Artists conception of the POGS-I1 spacecraft. 
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Marine Magnetic Data Holdings 
o f  

World Data Center A 
for Marine Geology and Geophysics 

George F. Sharman 
Dan Metzger 

Marine Geology and Geophysics Division 
National Geophysical Data Center 

Boulder, CO 80303 

The World Data Center-A for Marine Geology and Geophysics is co- 
located with the Marine Geology & Geophysics Division of NOAA's 
National Geophysical Data Center, Boulder, CO. Fifteen million digital 
marine magnetic trackline measurements are managed within the 
GEOphysical DAta System (GEODAS). The bulk of these data were 
collected with proton precession magnetometers under Transit Satellite 
navigational control. Along-track sampling averages about 1 sample per 
kilometer, while spatial density, a function of ship's track and survey 
pattern, range from 4 to 0.02 data points / sq.krn. In the near future, the 
entire geophysical data set will be available on CD-ROM. 

Introduction 

The Marine Geology and Geophysics Division (World Data Center-A for MGG), 
of the National Geophysical Data Center, handles a broad spectrum of marine geophysical 
data, including measurements of bathymetry, magnetics, gravity, seismic reflection sub- 
bottom profiles, and side-scan images acquired by ships throughout the world's oceans. 
Digital data encompass the first three, while the latter two are in analog form, recorded on 
35 mm microfilm. The marine geophysical digital trackline data are contained in the 
GEOphysical DAta System (GEODAS) data base which includes 11.6 million nautical 
miles of cruise trackline coverage contributed by more than 70 organizations worldwide. 
The inventory includes data from 3206 cruises with 33 million digital records and 
indexing to 5.3 million track miles of analog data on microfilm. 

Data Management Philosophies 

At NGDC, two fundamental philosophies drive the practices of data management, 
archiving, and distribution. The first is that the data should be self-documenting, that is 
the initial information a user extracts should be a complete description of content, formats, 
and access methodology. The second .is that the data should be intimately linked with 
abundant metadata: data describing the primary data in terms of who collected it, how it 
was processed, necessary supporting information that went into that processing, 
intermediate stages through which the data has been taken, etc. These metadata not only 
provide some degree of quality assurance to the data, but make them accessible to 
purposes not necessarily envisioned at the time of the original collection and processing. 
This linking of both documentation and metadata to the data set is designed to ensure the 
integrity of the data and to facilitate access to the data by users of the future. 



At present the distribution and exchange format of the data is the MGD77 data 
exchange format for magnetic tape. This format is fully described in a separate document 
available from NGDC, Hittleman, et al., (1977) "The Marine Geophysical Data Exchange 
Format - MGD77," Key to Geophysical Records Documentation No. lo., Revised 1989. 
The self-documenting aspect of this format is contained in the first physical record of the 
magnetic tape (and of each data file), referred to as "header records." Those records are 
structured, ASCII listings of metadata, including a description of the FORTRAN format 
of the following data records, as well as information on the source institution, 
geographical location of the data, instrumentation, interpolation schemes, reference fields 
used, methods of deriving residual field, 10" geographical area identifiers, and a 560- 
character field for additional, free-form, documentation. This documentation (i .e. 
metadata) is linked, by means of this initial, "header," record to the data to which it 
applies. This linkage assures that these details of collection and processing will always be 
available to users of the data. 

Data Management 

Data management at NGDC begins with receipt, from institutions and agencies, of 
incoming data on 9-track magnetic tape, by direct file transfer using various networks, on 
floppy diskettes, or on special, agreed-upon, transfer media. Contributors are responsible 
for providing adequate metadata, a standard for which is the "header information" of the 
MGD77 format. Data provided in other formats are accepted when accompanied by 
sufficient metadata and documentation of format. 

Upon arrival, the data are copied for archival security, scanned to confirm the 
format, and transferred to a high-end PC. On the PC, a quality control program is run to 
reformat the data into complete MGD77 format and to check for obvious problems in the 
data set. Such checks include data values outside expected ranges and improbable 
navigational patterns (see Table 1). In addition to these checks, plots of the navigation are 
reviewed. Questionable data are further reviewed by staff personnel and, if deemed 
necessary, contributors are consulted. The operational philosophy regarding quality 
assurance of data is: the prime responsibility for quality of data rests with the collector or 
custodian of the raw data. Most often it is the collector, alone, who has the only reliable 
information by which adjustments can be made. NGDC, in it's quality assurance 
function, can only act as a filter, to screen out erroneous data. It has neither the resources, 
nor the requisite information to edit and correct data submitted from outside sources. 

  able 1. Expected ranges for Geophysical Data Parameters: 

-900 5 Latitude 5 +90° 
-180" I Longitude I +180° 

0 seconds c Two-Way Travel Time < 15 seconds 
0 meters I Comted Depth I 11,000 meters 

22,000 nannoTeslas I Total Magnetic Field I 72,000 nannoTeslas 
977,000 mgals I Gravity 5 985,000 mgals 

Ship's Speed < 20 knots 
0 < Incremental time 



Two additional checks are done at this point in the assimilation process. First, the 
header record is reviewed for possible data entry errors. Second, randomly selected data 
values are compared against published values as a check for possible errors such as 
misplaced decimal points, incorrect units, erroneous conversions, or positioning. 

Following these quality assurance checks, the data are inventoried, using software 
developed in-house, to create an abstract (inventory) of the MGD77 data which becomes 
the basis for providing information to the user about data location. This inventory file 
includes just enough data to define the trackline of the original cruise, usually about 2% of 
the total, along with various quantitative information about the data, as well as the 
MGD77 Header. The inventory trackline is displayed on a computer screen, where it is 
once again reviewed for obvious errors such as ship travel across a land mass, gaps in the 
cruise track, or unusual navigational deviations. This completes the quality assurance 
process. 

The final assimilation steps are data management and archival functions. All 
assimilated cruises are added to a master inventory, available to NGDC and its clients. 
The master data file for each cruise is archived both on- and off-site for security. The 
inventory file, used as part of the data request system, is also duplicated and stored in two 
locations. As a final point of quality validation, the results of the quality control checks 
are offered to the contributor of the data along with a copy of the assimilated data set. 

The GEODAS system software has been cloned for the management of 
aeromagnetic data in a companion, NGDC data management system, known as ARODAS. 
While the bulk of the aeromagnetic data are over land, this extremely large database 
contains approximately a million flightline kilometers of data over water. The indexing 
functions of GEODAS will include ARODAS in the CD-ROM version of GEODAS to 
permit identifying marine aeromagnetic data. 

Along similar lines, GEODAS will provide the indexing function for the 
approximately 6 Gigabytes of multibeam, bathymetry the MGG division is in the process 
of assimilating into a new, multibeam bathymetry database. This indexing function will 
supply the necessary information for access and retrieval of data from this new database. 

Data Characteristics 

The character of the digital marine magnetic data available from NGDC is largely 
shaped by the storage and exchange format, MGD77. All magnetic field values are stored 
with a resolution of one tenth of a nannotesla (gamma). Five fields and a flag are available 
for magnetic data. The five fields are: one each for two, different, leading and trailing, 
sensors of total magnetic intensity; one field for residual magnetic intensity (total field with 
reference field removed); a field specifying magnetic diurnal correction; and a final field 
specifying depth or altitude of lead magnetic sensor. The flag specifies which sensor was 
used to calculate residual field. Metadata contained in the header and specific to marine 
magnetics are: the digitizing rate, the sampling rate, the sensor tow distance and depth, 
horizontal sensor separation for dual sensor systems, and the reference field and method 
used to determine residual magnetic intensity. 

The quantity of current data holdings within the GEODAS system is summarized 
in Table 2. Navigation refers to total ship's track, independent of the functioning status of 
various data coIlection systems. The various categories of geophysical data reflect the 



extent of actual data collected and available from within GEODAS. Note that magnetic 
data are the second most abundant; collection of these data became an automatic operation 
with onboard digital computers and proton precession magnetometers. Magnetic data are 
more easily logged and processed than bathymetric data. 

Table 2. Current NGDC Digital Marine Geophysical Data Holdings 

Data Type Quantity of Trackline data 
naut.ml. k m .  r& 

Navigation 1 1,598,690 2 1,480,774 33,213,960 
Bathymetry 10,968,980 19,314,551 22,103,42 1 
Magnetics 7,998,936 14,8 14,029 15,372,2 15 
Gravity 5,200,607 9,63 1,524 9,708,165 
Seismics* 45,05 3 83,438 24 1,549 
Sidescan & other* 19,749 36,575 145,97 1 

* Navigational control for corresponding analog records on microfilm 

The time-history of marine magnetic data collection and entry into GEODAS, in 
terms of cumulative surveys (cruises) and in terms of cumulative records (individual data) 
is shown in Figure 2. Given the significant points in the history of marine geophysical 
data collection, these curves can be used to estimate the quantity and quality of data. For 
example the sharp rise in data collection in the mid-1960's corresponds to the introduction 
of the proton-precession magnetometer and it's commercial availability. 

Records 
(millions) 

Cruises, 
(thousands) 

- Collected 
<:w::sy:y::e~wcd Entered 

Figure 1 Cumulative time-histories of magnetic data collection (dark) and entry 
(light) into GEODAS 



Independent of the pattern of collection, but important in terms of quality 
assessment, three intervals of time demarcate varying levels of navigational quality. 
Between 1965 and 1970, the introduction of Transit Satellite navigation marks the increase 
in positional accuracy from celestial to satellite navigation. The next major improvement 
in global navigation, Global Positioning Systems, was coming on line in a 1990 time 
frame. The three periods are then: pre-1968, with predominantly celestial navigation; 
1968-1990, with predominantly Transit (doppler) satellite navigation; and post-1990, with 
predominantly GPS (hyperbolic) satellite navigation. The inference to be drawn is that the 
bulk of the 16 million marine magnetic data in GEODAS (about 14 million) were collected 
under Transit Satellite navigational control. 

Several other inferences can be drawn from the two graphs. The roll-over of the 
cruise collection curve suggests that collection effort for marine magnetics has passed it's 
peak. In fact, the peak in collection rate, i.e. the steepest part of the curve, corresponds to 
the early 1970's and the burst of research effort in plate tectonics, for which the mapping 
of marine, magnetic, anomaly patterns was crucial to understanding the formation and 
evolution of the large, oceanic, lithospheric plates. This period of intense interest was 
characterized by a demand-driven collection peak, enabled by the introduction and 
commercial availability of the proton-precession magnetometer and brought to a close by 
mapping sufficient to the problem and changing research priorities. The relatively ragged 
character of the curve of data entered into GEODAS, compared to that of data collected, 
reflects the "bunching" effects of data processing and transfer. GEODAS was intitiated in 
1977, hence the initial, steep curve represents a certain amount of catching up, while the 
later irregularities represent the clustering of data due to proprietary holds placed on the 
data, gathering of data onto magnetic tape, and periodic transfer of data from collecting 
institutions. The leveling off of the data collection curve in later years may also be, in 
part, a sampling problem, since the collection of data cannot be confirmed until it is 
entered into the system; a constraint of these plots is that the two curves must intersect at 
the present. 

The spatial dismbution of digital magnetic track line data is shown in Figures 2, a 
through e. These plots were chosen for time intervals of roughly equal data collection, the 
ten-year period of 1960-69 in Figure. 2a, and subsequent five-year intervals in Figure 2b 
(1970-74), Figure 2c (1975-79), Figure 2d (1980-84), and and the final period, 1985 to 
present in Figure 2e. Trends in spatial patterns of magnetic data collection are evident 
from this series of plots. The 1960's and early 70's produced broad, regional surveys, 
such as the SEAMAP data between Hawaii and Alaska and the PIONEER survey off the 
west coast of the United States, and traverse tracklines across broad reaches of ocean. 
The late 1970's and early 1980's show smaller survey patterns with transit to and from 
those surveys. The most recent plot shows both the lower collection rate and the 
persistence of smaller, regional surveys. 

Mean spatial sampling interval, along track, is 1.1 39.6 kilometers, derived from a 
sample of 19 random, 5" squares of latitude and longitude. These numbers reflect the 
sampling and digitizing intervals and nominal ship's speeds. The density of coverage 
understandably has a much wider variation, depending on the nature of the ship tracks and 
survey patterns. Mean values are 1.0 2 1.2 magnetic data per square kilometer, based on 
a sample of 15, random 5" squares. More importantly, the values for individual 5' squares 
range from dense 4.6 data / km2 along the Reykjanes Ridge in the North Atlantic, to a 
sparse 0.03 data / km2 in the Southcentral Pacific. 



2a. Marine Magnetic Data, 1960- 1969 



2b. Marine Magnetics Data, 1970-1974 



2c. Marine Magnetics Data, 1975- 1979 
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2d. Marine Magnetics Data, 1980-1984 



2e. Marine Magnetics Data, 1985-present 



Users of NGDC Marine Geophysical Data 

The marine geophysical data from NGDC is available to the general public, either 
by purchase or on an exchange basis with contributing institutions. An analysis of users 
of the GEODAS system during the last fiscal year shows that 57% of underway, marine, 
geophysical data acquired from NGDC was on just such an exchange basis; the balance of 
data were purchased. Of the total data supplied, 50% was to domestic users, another 22% 
was to other branches of the U.S. Government, and the balance of 28% was to 
international users of the data. The breakdown of these various users of the data is shown 
in figure 3. Since these data are supplied in the MGD77 format, there is no separation of 
data types contained within the format and, thus, no indication of the specific applications 
to which the data were put. 

Figure 3. Various partitions of total FY91 data users of NGDC MGG GEODAS 
data 

Near-Future Developments for GEODAS 

GEODAS developments in the immediate future center around placing the entire 
database on two CD-ROM's and making it available with access software for IBM 
compatible PC's. This will permit direct access by users to the entire data set at a cost 
which will be less than that of only several cruises retrieved and supplied on magnetic tape 
under the present system. The data on disk will be compressed by simple removal of 
unused fields for each data file but the access software will make this compression 



transparent to the user. That access software will also permit browsing and searching of 
the data by source, time, or geographic area, and will permit retrieval and decompression 
of the data onto disk in standard MGD77 format. While initial design of access software 
was for MS-DOS machines (IBM-compatibles) to accommodate the largest population of 
users, continued development of software for similar access by Macintosh, Sun UNIX, 
and other users is underway. 
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T h e  marine magnetic data set archived a t  the National Geophysical Dala Center (NGDC) consists o f  

shipborne surveys conducted by various institutes worldwide. This data set spans four decades (1953. 1958. 

1960L1987), and contains almost 13 million total intensity observations. These observations a re  often less 

than 1 km apart. They typically measure seafloor spreading anomalies with amplitudes of several hundred 

nanotesla (nT) which, since they originate in the crust, interfere with main field modeling. T h e  sources for 

these short wavelength features are  confined within the magnetic crust (i.e., sources above the Curie isotherm). 

T h c  main field, o n  the other hand, is of much longer wavelengths and originates within the earth's core. 11 

is desirable to extract the long wavelength information from the marine data set  for use in modeling the main 

field. This can be accomplished by averaging the data along track. In addition, those data which are  nieasured 

during periods of magnetic disturbance can be identified and eliminated. Thus  it should be possible t o  crcalc 

a data set which has worldwide data distribution, spans several decades, is not contaminated with short 

wavelengths of the crustal field o r  with magnetic storm noise, and which is limited enough in size to  be 

manageable for main field modeling. 

Marine Dala Set 

The  raw data used in the preparation of the marine magnetic data set for main field modeling was extracted 

from the data holdings of NGDC's Marine Geophysics and Geology Division using a data base-managemcnl 

system known as  GEODAS.  (For a detailed description of this software system see  Hittlcman and Metzgcr 

1983. and Hittleman e t  al., 1977). In brief, G E O D A S  was employed to  retrieve all the total intensity magnclic 

field observations which reside in digital lorm in NGDC's central tape depository in Asheville, NC, for each 

of the years 1953, 1958, and 1960-1987. The  format of the marine data follows that which is discussed by 

Talwani e t  al., 1972. In addition t o  recovering the  desired data sets, the software produced listings of the 

cruise idcntifiers, M G G  numbers (Marine Geology and Geophysics; a n  N G D C  assigned cruise number), the 

contributing institutions, the length of the ship tracks, and the number of selected records. Table 1 

summarizes some of this information for all years for each contributing institution. 

Additional listings which briefly describe the navigational systems employed, the magnetic instrumenlalion. 

the sampling interval, the project scientist, and ancillary information a re  also generated for each cruise. This 

information is too  voluminous t o  present for each of the 1850 cruises processed but is available upon rcqt~csl  

at NGDC. T h e  vast majority of the data collected were measured with a proton precession magnelomeler and 

were located by using dead-reckoning between the more  precise fixes provided by satellite navigation systems 



(e.g., SATNAV) o r  LORAN radio-beacons. Typically, magnetic measurement positions were determined hy 

linearly interpolating between these navigation determinations. The magnetic field sampling rates varied from 

continuous recording o n  strip charts to 15 minutes in many digital systems. Most of these data were digitiycd 

o r  resampled to 15 minutes. A t  normal cruise speeds, these sample rates translate into measurcmcnl 

separations of about 114 of a kilometer. 

In  he course of the data selection, a small number of erroneous data were encountered. These included 

cruises where the total field measurements were replaced with residual field values and where the times of the 

observed data were not defined. Since the total field measurements were not reproducible with any surety and 

the dates of the measurements were not sufficient to  define the  state of the external magnetic field (i.c.. Kp 

o r  Dst index) these data were excluded. In addition, about eight cruises in the 1982 selection proved to he 

unanalyzable for reasons which have yet to  be  determined. These data will be processed when the prohlcm 

is resolved. 

Marine Data Processing 

Isolation of a viable data set for main field modeling from the total marine data set is accomplished by a lons  

track filtering. The  filtering is achieved by taking an  unweighted average of the data along the shiptrack. The 

first s tep  is to remove the field computed frcm a n  International Geomagnetic Reference Field ( I C R F )  o r  

Definitive Geomagnetic Reference Field (DGRF)  [see e.g., h n g c l ,  1987; Barraclough, 19881 from the ohscrr'cd 

total intensity measured along each shiptrack. Table 2 lists the field models used fur each of the lime 

intervals. The  models were linearly interpolated between the times of their epoch. Each track is then 

segmented into 220 km segments in which every other point is sampled. Point samples must meet spatial and 

amplitude constraints s o  that the computer averages are  not influenced by spurious o r  redundant dal;~. 

Residuals from the appropriate LGRF o r  D G R F  a re  calculated within each segment. These are  flagged and 

rejected if they a re  greater than 500 n T  o r  less than -500 nT. Data point locations must be at  least 40 m apart. 

o r  they a re  rejected, and 45 acceptable observations are  required for each segment before an  average value 

is calculated. After selection based o n  the above criterion, the data a re  processed by computing the mean and 

standard deviation of the  residual scalar anomalies for each 220 km segment. These values are  assigned thc 

average of the latitude and longitude coordinates from the data points within the segment. 

To ensure data coverage only during periods of magnetic quiet, the average of the global Kp index is calcul;~lcd 

for each segment. If this value exceeds 2+, then the mean total intensity for the segment is rejected. External 

field effects are  also accounted for by calculating an  average Dst value for each segment. Dst is a hourly 



measure of the degree to which the magnetic field is influenced by external sources and is a parameter which 

is sometimes utilized in deriving main field models; it is not associated with any rejection criterion. A value 

of -10 n T  was used for years before 1957 and after 1985 where digital Dst values are not available. When 

possible, these values will be replaced by the true Dst. 

The effect of daily magnetic variations (i.e., Sq currents) on the marine data set was not dealt with in the 

filtering process. These fluctuations will be briefly discussed later in this report. 

The weight assigned to an average marine data value is the inverse of the standard error of the mean for that 

segment. (Within each segment, the accuracy of each measured point is assumed to be the standard deviation 

for the segment. Since all measurements contribute to the average value, the weight o f  the average value is 

taken as the inverse of the standard error of the mean.) This is computed by dividing the standard deviation 

by the square root of the number of measurements in each segment. 

The marine data set for main field modeling was processed with computer programs developed and utilized 

at  Goddard Space Flight Center (GSFC) and the NGDC at Boulder, CO. This processing has been fully 

documented in four volumes entitled "Marine Magnetic Data: 1950-1969, 1970-1974, 1975-1979, and 

1980-1987" located at  GSFC, Code 622. These manuscripts contain a description of source code, listing of 

surveys conducted by institute, world distribution maps, comments o n  shiptracks, and profiles of each 

shiptrack. 

An overview of the averaging process for a single shiptrack can be found in Table 3 and Figure 1. Cruise 

CRCSOlSB has been assigned an M G G  identification number of 15060039 by NGDC. This cruise was 

conducted in 1963 in the Pacific Ocean by Scripps Institute of Oceanography. The magnetic field profile from 

the cruise (Figure 1) shows the large amplitude high frequency signature associated with sea-floor spreading 

anomalies. The averaged points from the filtering process are depicted as asterisks. The averaging noticeably 

smooths out the short wavelength crustal anomalies while retaining long wavelength variation which may 

contain main field information. 

A point at  2100 km down track has been selected in thc profile ro show rhc mcan (p ) .  standard error (a,). 

and Kp. Points near the end of the profile have been discarded hecause they exceed thc Kp limit. The mean 

and standard deviation (0,) for the entire shiptrack is shown at the end of the profile. Table .7 describes 

the statist ia computed for the entire profile, segment by segment. 



World Data Distriiution and Statistics 

The distribution of  averaged marine data over the world is represented, by year in Figures 2-31. These maps 

show a sparsity of data in the 1950's, early 1960's, and the mid 1980's, and they show an abundance o f  

observations in the late-1960's and 1970's. Overall, the data distribution is good as seen in Figure 32 where 

all the averaged data locations have been plotted. 

A tabulation o f  various statistics by year is found in Table 4. This includes for each the number of averaged 

points, the mean deviation of the entire years data from the IGRF or  DGRF, the standard deviation relative 

to the mean, the mean of the standard errors, and the standard deviation of the standard errors. A histogram 

of the number of averaged points per year, shown in Figure 33, indicates the years of sparse and abundant data 

mentioned above. For each year, the mean deviation from the D G R F  and IGRF and its standard deviation 

were calculated from the averaged residuals computed along each shiptrack. Histograms of these quantities 

are shown in Figures 34 and 35. Similarly, a mean and standard deviation was compuled for each year from 

the standard errors compiled from each segment; histograms are shown in Figures 36 and 37. These 

histograms (Figures 34-37) reveal the degree from which the marine data deviates from the IGRF or  D G R F  

models and the extent of weighting necessary for improved main field modeling. Note that the mean deviation 

is generally negative indicating an overestimate of the main field and that the standard error decreases with 

time, reflecting improvement in the accuracy of marine measurements. 

Finally, the extent to which the marine data set was affected by daily magnetic variations can be measured by 

estimating the amount of Sq currents produced based on the sun spot number at  each local time. When the 

marine data set was compiled, there were no routines operational which could make such a correction. 

However, the number of averaged observations per local time interval is shown in Figure 38 for each year. 

This reveals an estimate of the number of observations adversely affected by periods of high Sq currents and 

shows that the distribution of data with respect to time is approximately equal. Figure 39 shows the worldwide 

data distribution at  noon local time for 1953, 1958, 190-1987. The largest discrepancy (though small) will 

be during the peak Sq periods (i.e., 0900-1500 local time). Thc distribution or data ; I I  olhcr local limes is 

comparable to Figure 39. An account of the total nunlhcr 01' local linic o h \ c n a t i o n  IOr cach !.car and li)r 

the entire data set is shown in Table 4. Sq currents influence the maye t ic  I'icld on the awrage hy aboul 70 

nT. An accurate Sq current model is needed before the marine data set can be corrected. . . 



There are certain points of concern which arise from an analysis of marine magnetic profiles. Occasionally, 

the average of the o b s e ~ a t i o n s  within a segment result in a spurious value. This may he a result of instrument 

malfunction o r  drift for a particular section. These stray values are of concern because they may fall within 

the -e 500 n T  error bounds. In addition, the signal observed along shiptrack may sometimes repeat itself 

indicating that the ship may be backtracking or  is in close proximity to sections of the same track. This results 

in average points being calculated less than 220 km apart which violates spatial constraints. Areas with dense 

data coverage bias solutions which are derived from main field modeling. In order to ensure the adequacy of 

the marine magnetic data, i t  was necessary to deal with the above inconsistencies on a case by case basis. 

Points found to be lacking were deleted from the data set. 

Conclusion 

The along track filtering process described above has proved to be an effective means of condensing large 

numbers of shipborne magnetic data into a manageable and meaningful data set for main field modeling. Its 

simplicity and ability to adequately handle varying spatial and sampling constraints has outweighed 

considerations of more sophisticated approaches. This filtering technique also provides the benefits of 

smoothing out short wavelength crustal anomalies, discarding data recorded during magnetically noisy periods, 

and assigning reasonable error estimates to be used in the least squares modeling. A useful data set now exists 

which spans 195.3-1987. 
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FIGURE 1. PROFILE OF CRUISE CRCSOISB CONDUCTED BY SCRlPPS OF OCEANOGRAPHY IN 1963 



M R R I N E  1953 

FIGURE 2 WORLD DATA DISIRIBUnON FOR 1953 



M A R I N E  1958 

FIGURE 3. WORLD DATA DISIRIBUTION FOR 1958 



M A R I N E  1960 

FIGURE 4. WORLD DATA DISIRIBVllON FOR 1%0 



MFIRINE 1961 

FIGURE 5. WORLD DATA DISIRIBVllON FOR 1961 



FIGURE 6. W O W  DATA DiSlRlBVTION FOR 1%2 



M A R I N E  1963 

FIGURE 7. WORLD DATA DISIREBUTION FOR 1%3 



M R R I N E  1964 

FIGURE 8. WORLD DATA DlSlRIBVnON FOR 1%4 



M A R I N E  1965 

FIGURE 9. WORLD DATA DWWBUIION FOR 193 



M A R I N E  1966 

FIGURE 10. WORLD DATA DlSl'RlBUIION FOR 1% 



M A R I N E  1967 

FIGURE 11. WORLD DATA DISntIBUTION FOR 1%7 



M A R I N E  1968 

FIGURE 12 WORLD DATA DISIRIBClTION FOR 1%8 



M A R I N E  1969 

FIGURE 13. WORLD DATA DISIRIBUTION FOR 1%9 



M A R I N E  1970 

FIGURE 14. WORLD DATA DISIRLBUIION FOR 1970 



M A R I N E  1971 

FIGURE 15. WORLD DATA DISIlUBVITON FOR 1971 



M A R I N E  1.972 

FIGURE 16 WORLD DATA DISIRIBUTION FOR 1972 



M A R I N E  1973 

FIGURE 17. WORLD DATA DISlRIBUllON FOR 1973 



M A R I N E  1974 

FIGURE 18. WORLD DATA DISlRIBUTION FOR 1974 



MFIR INE 1975 

FIGURE 19. WORLD DATA DISIRIBUI"I0N FOR 1975 



M A R I N E  1976 

FIGURE 20. WORLD DATA DISTRLBUTION FOR 1976 



an,  I 

FIGURE 21. WORLD DATA DISlRlBUTION FOR 1977 



M A R I N E  1978 

FIGURE 22 WORLD DATA DISlRIBUTION FOR 1978 



M R R I N E  1979 

FIGURE 23. WORLD DATA DISTRIBVllON FOR 1979 



M A R I N E  1980 

FIGURE 24. WORLD DATA DISIRIBUTION FOR 1980 



M A R I N E  1981 

an, 1 

F I G W  25. WORLD DATA DISIlUBUTION FOR 1%1 



M R R I N E  1982 

FIGURE 26. WORLD DATA DISIRIBUIlON FOR 1982 



M A R I N E  1983 



M A R I N E  1984 

FIGURE 28. WORLD DATA DISIRIBWON FOR 1W 



M R R I N E  1985 

FIGURE 29. WORLD DATA DISIRIBVIlON FOR 1985 



M R R I N E  1986 

FIGURE 30. WORLD DATA DISPRIBUTION FOR 1986 



M A R I N E  1987 

FIGURE 31. WORLD DATA DElIUl3-N FOR 1987 



M A R I N E  D R T A  SET 

FIGURE 32 WORLD DATA DISTRIBUTION FOR ALL AVERAGED VALUES 



M R R I N E  DRTR SET 

2500 r 

FIGURE 33. HISIDGRAM OF THE NUMBER OF AVERAGE VALUES PER YEAR IN THE MARINE DATA SET 



M R R I N E  D A T R  SET 

FIGURE 34. HISIDGRAM OF THE MEAN DEVIATION FROM THE lGW OR DGRF PER YEAR FOR THE MARINE DATA 







M R R I N E  D A T A  SET 

6 1  65 73 77 81 85 
Y E A R S  

FIGURE 37. HISrOGRAM OF THE STANDARD DEVIATION OF THE STANDARD ERROR FOR EACH YEAR 
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FlGURE 38. NUMBER OF AVERAGED VALUES OBSERVED 
PER LOCAL TIME FOR EACH YEAR 





TABLE I. m m o N s  WHICH HAVE CONTRIBUTED TO THE 
MARINE DATA SET AT NGDC 

Marine Magnetics Data Summary 

Institution Cruises Nautical Miles Digital 
of Shiptrack Records 

Australian Bureau of Mineral Resources 5 
Canadian Geological Survey 6 
Institut Francais de Recherche pour 23 
1'Exploitation de la Mer (IFREMER) 

Deutsches Hydrographisches Institut 1 
Hawaii Institute of Geophysics 9 3 
Japan Oceanographic Data Center 111 
Lamont-Doherty Geological Observatory 471 
Royal New Zealand Navy 4 0 
NOAA National Ocean Service 7 8 
Oregon State University, Department 46 
of Geology (CONMAR) 
Institut Francais de Recherche Scientific 14 
pur le Development en Cooperation 
Laboratoire de Geophysique (ORSTOM) 
Scripps Institution of Oceanography 430 
Republic of South Africa, National 16 
Hydrographic Office 
Ocean Drilling Program, Texas A&M 10 
University 
university of Rhode Island, Graduate 2 
School of Oceanography 

United Kingdom, Marine Information and 3 4 
Advisory Service (MIAS) 
University of Texas, Institute for 19 
Geophysics 
United States Geological Survey 105 
U. S. Navy, Naval Ocean Research and 109 
Development Activity and the Naval 
Research Lab 
Woods Hole Oceanographic Institute 102 

Totals 1815 6313164.0 12902563 



TABLE 2 THE GEOMAGNETIC MODELS USED AND THE TIME JNTERVALS 
WHERE THE SECULAR VARLATION TERMS WERE APPLICABLE FOR 

EACH YEAR OF THE MARINE DATA SET 

Model Time 

DGRF 1950 
DGRF 1955 
DGRF 1960 
DGRF 1965 
DGRF 1970 
DGRF 1975 
DGRF 1980 
IGRF 1985 



TABLE 3. SUMMARY OF PROCESSING STA'I'ISTICS CALCULATED FOR CRUISE CRCSOlSB 

MGG C r u i s e  I d =  1 5 0 6 0 0 3 9  P r o c e s s i n g  c o m p l e t e .  
3 3 1 3  M e a s u r e m e n t s  i n  c r u i s e  

DATA SUMMARY1 CRUISE MEAN= 1 8 . 2  STANDARD D E V I A T I O N = 1 1 7 . 4 7  BAD PTS- 0  TOTAL POINTS-  3 3 1 3  

SECTION START(KM) END(KI.1) PTS AV. D IST  M E A N T F  MEAN DF SIGMA KP MEAN GAP COElMENTS ------- --------- ------- --- --- ---- ---- -- ---- -- - ---- -- ---- --- -------- 
GOOD POINT 
GOOD POINT 
GOOD POINT 
GOOD POINT 
I N T E R I O R  GAP 
GAP . L T .  2 0  KM. PROCESS 
GOOD POINT 
GOOD P o i i i i  
GOOD P O I N T  
GOOD POINT 
GOOD P O I N T  
GOOD P n I l l r  
GOOD rD-1Nr 
GOOD P O I N T  
KP TO0 H I G H  
K P  TO0 H l G H  
GOOD POINT 
GOOD P O I N T  
GOOD P O I N T  
GOOD P O I N T  

GOOD POINT 
GOOD P O I N T  
I N T E R I O R  GAP 
GAP . L T .  2 0  KM. PROCESS 
GOOD POINT 
GOOD POI:IT 
MORE THAN ONE GAP 
KP TO0 H I G H  
KP TO0 H I G H  
KP  TO0 H I G H  

KP TOO H I G H .  I IEXT CRUISE 



TABLE 4. STATlSllCS COMPUTED BY YEAR OF THE NUMBER OF AVERAGED POINTS, THE 
MEAN DEVIATION, THE STANDARD DEVlATION RELATIVE TO THE MEAN, THE MEAN OF 
THE STANDARD ERRORS, AND THE STANDARD DEVlATlON OF THE STANDARD ERRORS 

Year Number Mean S.D.of Mean of the S.D. of the 
of points the mean standard standard 

error error 



TABLE 5. NUMBER OF AVERAGED OBSERVATIONS AT LOCAL TIME FOR EACH YEAR AND THE 
TDTAL NUMBER OF LOCAL TlME OBSERVATIONS 

YEAR LOCAL TIME 
1 2 3 4 5 6 7 8 9  10 1 1  12 13 14 15 16 17 18 19 20 21 22 23 24 

TOTALS 1097 1008 1046 927 1019 1018 1007 1054 996 931 1081 1039 972 1066 1022 927 1037 1011 932 1053 1029 927 1038 1W6 



SECULAR VARIATION ACROSS THE OCEANS: A 
RETROSPECIWE STUDY FROM 35 YEARS OF SHIPBOARD 

TOTAL FIELD MEASUREMENTS IN THE NE ATLANTIC 

C. A. Williams1, J. verhoef2, and R. ~ a c n a b ~  

'~ullard Laboratories, University of Cambridge, Cambridge, UK 
2Atlantic Geoscience Centre, Geological Survey of Canada, Dartmouth, Canada 

This is a pilot study to determine whether secular variation information can be 
retrieved from underway shipboard total field measurements with sufficient accuracy to 
complement geomagnetic data from land-based observatories. Applying various new 
techniques described in this report, we extracted values of the total field at 42,677 
crossovers or ship track intersection points contained in data sets collected between 28.N 
and 50 a N in the NE Atlantic, and extending temporally j?om 1955 to 1990. We used 
an edited subset of these total field values to derive the secular variation at.30,140 
different locations in the study area, and compared the results with the DGRF secular 
variation over the stuay area, calculated at 5 year intervals. The derived and DGRF 
values agree well showing that indeed marine data can be a source for secular variations. 
However the analysis demonstrated that due to inherent noise in the marine data, only 
minor improvement on the DGRF values for the secular variation can be achieved. 

Key w o k  Secular variation, NE Atlantic, total field magnetic measurements, crossover 



The study of the time variations of the 
geomagnetic field is of great importance to the 
understanding of the behaviour of the earth's core. The 
usual approach is to monitor the geomagnetic field at 
observatories and to apply a spherical harmonic analysis 
to these data in order to obtain main field models for 
different epochs (e.g. Barraclough, 1976). The best 
known example is the International Geomagnetic 
Reference Field (IAGA, 1988). Several studies have used 
more localized observatory data to obtain regional 
models for the geomagnetic fields (e.g. Haines [I9851 
used a spherical cap model to obtain the geomagnetic 
field over Canada). 

Unfortunately, magnetic observatories are 
irregularly distributed: all are situated on continents or 
islands, so the distribution of data is biased towards land 
areas. More recently, satellite data have been providing 
coverage across the oceans, but these measurements 
cannot yet enhance our knowledge of the secular 
variation over periods of several decades. Moreover, these 
measurements have inherent problems in correlating with 
the crustal field at satellite altitudes (Bloxham & Jackson 
1989). 

Meanwhile there is a potential wealth of 
geomagnetic information available from numerous 
research ships whose track coverage over the years 
continues to accumulate. Marine data sets now reach 
back 30 - 35 years and this is becoming a useful time 
period in terms of secular variation. Therefore, it is 
appropriate to carry out a retrospective study of all 
available magnetic data in a specified region. The 
primary objective of this study was to determine whether 
secular variation information could be retrieved from 
underway shipborne total field measurements with 
sufficient accuracy to complement land-based 
observations in oceanic areas. We also wanted to see 
whether these data could provide better information on 
rates of secular variation across the oceans than currently 
provided by the DGRF. (By DGRF we imply the 
definitive fields for epochs 1955 to 1980 [IAGA Division 
I Working Group I, 19881 and the DGRF 1985 and 
IGRF 1990 adopted by IAGA Working Group 8 of 
Division V during IUGG Vienna 1991). Although similar 
studies have been performed before (e.g. Williams, 1%7; 
Whitmarsh & Jones, 1%9; Hall, 1979 and Verhoef & 
Scholten, 1983), the analyzed data sets were much smaller 
and the timespans shorter. 

A significant problem with shipboard data is that 
measurements are made while the ship is moving, unlike 
observatory data which are collected at a f ~ e d  position. 
It is therefore necessary to separate the time variations of 
the magnetic field from the varying 'background' level. 

One solution is to use only pairs of observations that are 
situated at track crossover points, and which in theory 
should differ only by their time-varying components. 

MATHEMATICAL FORMULATION OF THE 
PROBLEM 

For the purposes of this study, a crossover mint  
is defined as the location of the intersection between two 
straight segments of ships' tracks; each segment is 
bracketed by a pair of data points whose separation, by 
our definition, can be no more than 3 krn. Associated 
with each crossover point is a pair of crossover 
observations located at the intersection, and derived by 
interpolation between the data points at the end of each 
track segment. 

At latitude R and longitude 4, an observation at 
sea level of the total intensity of the magnetic field at 
time t consists. of three components: 

where: C(A,c$,t) is the time dependent component which 
is believed to originate in the core and which varies 
smoothly with the spatial coordinates R and 4 ;  g(A,+) is 
the short wavelength 'geological' component originating 
in the crust with amplitude variations of several hundreds 
of nanotesla, and which can be considered independent of 
time over the interval spanned by our data base; e 
represents 'external' magnetic field variations and other 
non-coherent noise. 

The secular variation is defined as the yearly 
variation of the function C(&$,t). To  determine it, we 
use the difference between two observations F, and F, at 
times t, and t,, taken at locations that are a distance dR 
and d 4  apart. If dR and d 4  are small enough, we can 
eliminate the position-dependent 'geological' component 
g(A,4). In this study, we used observations at the 
intersection points of ship tracks and, therefore, took dR 
and d 4  to be zero, within navigation inaccuracies. We 
have no information on the unknown component c in 
equation (I), so initially we assume that its effect is small 
and that it can be ignored at the crossover point. Thus 
we define the difference between a given pair of crossover 
observations as: 

Next we assume that the time-dependent core component 
can be described by: 



FQ. 1. Distribution of marine magnetic observations along ships' tracks during the period 1955.0 - 1989.9 

where C,(54), a(&$) and b(54) are unknown functions 
of the position, and h.0. indicates that we may need 
higher order powers of the time t to accurately describe 
the time variation of the geomagnetic field. We took our 
time-origin to be in the middle of our data set, at 1970, 
i.e. t denotes the time in years with respect to 1970. Now 
equation (2) can be simplified to: 

This equation contains the unknown functions a(&$) 
and b(54). For any crossover point we know dF and 
(t, - tJ; if we have two or more crossovers at a given 
location, we can solve equation (4) for the unknown 
functions a and b. 

In practice, two or more crossovers rarely occupy 
the same point, but for those located near to each other, 
we can assume that the functions a and b are constant. 
Therefore we group crossovers according to their 
locations into a series of appropriately-sized bins covering 
the entire study area. For each bin, we use all cross 
overs inside that bin to obtain a least squares solution of 
equation (4) for the functions a and b. We used a 
standard error analysis also to obtain the standard 
deviations of the best fitting functions. The secular 
variation and its error bounds over the study area can 
then be calculated by inserting the values of a and b, and 
their standard deviations for each bin into the derivative 
of equation (3): 



THE DATA BASE 

For this investigation we used part of the large marine 
magnetic data base compiled at the Atlantic Geoscience 
Centre of the Geological Survey of Canada (Verhoef & 
Macnab, 1987; Macnab et al, 1990) containing data 
collected between 1956 and 1990. Such a data base is 
ideally suited to relatively short-term retrospective studies 
such as this. We have concentrated upon the region with 
the greatest density of ship tracks in an area of the 
Northeast Atlantic bounded by 28"N and 5O0N, and 0" 
and 32"W. The data here show a good temporal and 

(5) spatial track distribution (Figure I), with just minor gaps 
in the NW corner and near 35"N, 19"W. 

There are of course problems in using shipboard 
total magnetic field measurements: most are uncorrected 
for external field effects e.g. diurnal variation and 
magnetic storms, and also for surface effects such as the 
ship's orientation (Bullard & Mason, 1%1). In addition 
there are navigation errors, especially in the data 
collected prior to the introduction of satellite navigation. 
The latter could be an important consideration in zones 
of high magnetic gradient, e.g. across lineated marine 
magnetic anomalies and magnetised topographic feature. 
(seamounts, etc.). We are very aware of these limitations 
upon our data and have gone to considerable efforts to 

Fg 2 Locations of track intersections (crossover points) in Figure 1. 
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minimise their effects upon our results. 

PROCESSING CROSSOVER POINTS AND 
OBSERVATIONS 

We used a procedure for extracting crossovers 
that had been applied in previous studies (Verhoef & 
Macnab, 1987; Verhoef et al, 1991). Time, position (lat 
& long) and total field value were retrieved for every 
observation in the data base and loaded into a table of 
track segments. The segments were then sorted by 
ascending longitude, and compared against each other to 
detect intersecting pairs. Where intersections occurred, 
times and total field values were interpolated at crossover 
points and stored in a second table; this table also 
contained crossover locations and local gradients 
calculated by using pairs of total field values on either 
side of the crossover observations. 

We extracted 42,677 crossover points with the 
distribution shown in Figure 2. For a variety of reasons 
not all were equally reliable, so we reduced their number 
by various controlled processes of elimination based on 
the following criteria: 

(1) Secular variation in the study area was not 
expected to exceed + 80nT per year (see Figure 
3). 464 crossovers were eliminated because they 
differed by more than this amount. 

(2) We had found previously that crossovers 
spanning an interval of 12 months or less were 
unreliable on account of noise levels that were 
too dominant relative to the short time interval. 
7,460 crossovers were eliminated for this reason. 

(3) It is difficult to locate accurately the crossover 
point between two tracks that intersect at an 
angle of less than 10". 2,232 crossovers were 
eliminated for this reason. 

(4) A small navigation error in a region of high 
magnetic gradient can produce a spurious 
indication of secular variation. After examining 
a contour map of the local gradients in the study 
area (Figure 4) we chose 5OnT/km as the 
gradient cut off value, and eliminated 2,548 
crossovers for this reason. 

(5) At a later stage, bins with fewer than 10 points 
were discarded. This eliminated 35 points. 

Taken altogether, these eliminations reduced the number 
of usable crossovers from 42,677 to 30,140. Figure 5 
shows yearly totals of crossover observations; note that 
each crossover point is counted twice in this histogram as 

"0 40 80 120 160 
SECULAR VARIATION 

Fi 3. Frequency distribution of the 0 b S e ~ e d  secular variations 
obtained at the crossover points shown in Fig. 1. 80 nT was used as a 
cutoff value for eliminating crossovers that indicated unrealistically high 
secular variations. 

there are two observations per intersection. 

We grouped the usable crossovers into 2" x 2" 
bins covering the entire study area. We chose this bin 
size because it was the smallest we could use without 
setting too many bins to zero through lack of data; it was 
also considered to be reasonable for the deep source long 
wavelength information we were expecting to find. Bins 
containing fewer than ten crossovers were not used in 
subsequent manipulations. 

Before fitting second order curves to the 
observations to solve for functions a and b in Equation 
(4), we tested the technique on a series of DGRF values 
calculated at three locations for each year between 1955 
and 1990 (Figure 6). These values served as 
'observations' through which we attempted to achieve the 
best fitting second order curve, using equation (4). In 
Figure 6, the curve representing the DGRF reference 
field is seen to contain some angular changes, resulting 

irom the way the reference fields are defined: main field 
values every 5 years, with linear interpolation for the 
years in between. The degree of angularity varies across 
the study region, and our examples in Figure 6 have been 
specially chosen to demonstrate that a second order 



Fe 4. Average local gradients at crossover points, in n T h .  The regions of highest gradient overlie the Mid-Atlantic Ridge (m) and the Azores 
Ridge (A), where shallow depth of source to the more highly magnetized fresh basalts cause higher amplitudes and gradients. Other regions of high 
gradient correlate with elevated seafloor topography such as the Horseshoe Seamounts (H), and the J-Anomaly Ridge (J). 

polynomial can be fitted adequately through all types of 
curve. Third order polynomials are also shown in Figure 
6, and at some locations the fit is significantly improved. 
However in view of the noise in our observations, we 
expected no significant improvement from a third order 
fit and concentrated on the second order curves. Further 
on, we will show some comparisons between 2nd and 3rd 
order fits through our observations. 

By fitting second order curves to each group of 
binned observations, we solved for functions a and b in 
Equation (4) at a series of points corresponding to the 

centre of each bin. The variation of these functions over 
the study area was found to be much more irregular than 
expected from a field originating deep within the earth. 
Therefore we smoothed these functions by filtering them 
over 4" x 4", in order to obtain functions for 
comparison with DGRF fields. 

With the resulting values for functions a and b, 
we evaluated Equation (5) to determine the observed 
secular variation at the center of each bin and for all 
epochs between 1955 and 1990. We then calculated the 
differences between observed and corresponding DGRF 



Fy. 5. Frequency of crossover observations per year (note that there are two observations per crossover point). 

variations by subtracting the former from the latter. 

ANALYSIS OF RESULTS 

It was not practical to plot comparisons between 
derived and DGRF secular variations for each bin and for 
all epochs, as this would have involved the production 
and analysis of 1050 separate graphs. To illustrate a 
typical comparison, we show in Figure 7 the results that 
correspond to the bin centred at 34"N, 30"W: there is 
reasonable agreement between observed and DGRF 
variations, as evidenced by the close match between the 
second order curve and the DGRF curve. 

In Figure 8 we compare rates of secular variation 
for the same bin by displaying the second order curve 
fitted to the observed values, bracketed by its one sigma 
error bounds. The results can be compared directly with 
the DGRF values and show that there is a reasonable 
agreement. Discontinuities in the 5-year DGRF secular 
variations are also evident in this figure, particularly prior 
to 1975: true secular variation more likely resembles the 
continuous curve of the observed variation. 

1955-60 was omitted since it contained only 2093 data 
points, also, we did not expect the results to be of 
sufficient accuracy due to poor navigation). As shown in 
the first column, the best data coverage occurs between 
1965 and 1980. The second column shows the distinct 
differences in the DGRF secular variation prior to  1975, 
in contrast to more gradual changes between later 
epochs. The third column illustrates the generally close 
agreement between the observed and DGRF variations. 
The fourth column, the difference with the DGRF, 
indicates maximum errors in 1960-65: this could be due 
to typically large positioning errors af the pre-satellite 
navigation era, as errors are in the 0 - 5 nT range during 
subsequent epochs by which time navigation systems were 
much improved. 

With the passage of time, the contours of 
observed variation in the third column change from 
predominantly positive to predominantly negative. This 
conforms with the passage of a cell of negative flux 
moving in a northwesterly direction from the coast of 
NW Africa, and mapped from satellite and observatory 
data between 1948 and 1980 by Bloxham & Jackson 
(1986). 

Also shown in Figure 8 is the secular variation as 
obtained from fitting a third order curve through the A TOTAL PERFORMANCE ANALYSIS 
observations. Since this secular variation curve lies within 
the one sigma error bounds of the second order curve, no For reasons already mentioned, it was impractical 
significant improvement is expected from the fitting of a to compare the derived and DGRF variations for each 
third order curve, and this was not pursued any further. bin as was done in Figures 7 and 8. However it was clear 

that an overall comparison was necessary to evaluate the 
Combining the results for all bins, Figure 9 feasibility of extracting secular variation information from 

displays and compares derived and DGRF variations over marine total field observations. 
the 5-year epochs between 1960.0 and 1989.9 (the epoch 



is expected to be close to zero. We calculated and 
compared the root mean square of these errors at every 
crossover point. We repeated this process several times 
in succession, each time using a diminished data set 
where older crossover observations were progressively 
eliminated for a series of cut-off years beginning in 1955: 
new functions a and b were derived as previously 
described, and used to re-calculate reference fields and 
anomalies. In each cycle, DGRF anomalies were simply 
recalculated from observations dating after the cut-off 
year. 

40°N,100W Figure 10 compares two pairs of root mean 
square errors for derived and DGRF reference fields, as 

FG 6. Second and third order polynomial fits to the DGRF secular 
variation throughout the 35 year period of our study, at three different 
locations in the Northeast Atlantic The different trends of the curves 
indicate that the rate of secular variation is not constant throughout the 
region. 

l o o  - functions of cut-off year. The upper pair was derived 
I- 
C from an analysis of all data points; the lower pair from a 

reduced data set in which statistical outliers beyond 2 x 
3 -100- 
--I sigma were eliminated. Figure 10 also shows the number 
a 
> -200 - of crossovers as a function of cut-off year, to indicate how 
n 

-300 - many points were used in each calculation. Between 
- 
LL 

1955 and 1963, use of the DGRF secular variation 
-400 - 

40°N,200W resulted in rm's errors that were lower by 5 to 10nT; 
between 1963 and 1974, the derived secular variation 
yielded lower errors, by about 5 nT. When the number 
of datapoints began to decrease substantially after 1976, 

We based this evaluation on an analysis of the 
errors represented by the function e in Equation (2). We 
began by correcting our observations at the intersection 
points for the main field values as obtained from our 
observed and DGRF fields. Since the 'geological' 
component at a crossover point cancels out, subtracting 
these corrected observations gives the uncorrelated error 
function e (see equation 1). We obtain for each 
crossover point two values for this function, one when 
using our observed main field and the other one after 
using the DGRF field. The average for all these errors 

O L  

I- 
-400 

V) 
W 
3 
2 -800 
> 

'3 w -1200 
u 

-1600- 

(2) The accuracy of the observed secular variation 
information is comparable to the DGRF 
variation in this particular study area, providing 
it is based upon a statistically substantial data 
base that can compensate for the inherent noise 
in the data. In other regions where the DGRF 
secular variation is not so well controlled, it may 
be feasible to use marine geomagnetic 
measurements to offset inadequacies in the 
theoretical model. 

REFERENCE FIELD 
the DGRF secular variation once again produced the 
smaller error. This confirms that marine total field 

2nd ORDER FIT - - observations can be used to derive reliable secular 
3rd ORDER FIT --- variation information, but that many data points are 

- necessary to produce a statistical improvement over the 
DGRF secular variation. 

- 
CONCLUSIONS 

30' N,30° W 
(1) With the methods described in this study, it is 

(3) Between 1960 and 1990, rates of secular 
variation in the study area have varied between 
-50 and +30 nT per year. This confirms the 
results of previous studies (Williams 1%7, 
Verhoef & Scholten 1983), as well as rates 
calculated from the DGRF. 

1960 1970 1980 
Y E A R  feasible to extract secular variation information 

from undenvay marine total field measurements. 
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Fe. 7. A comparison between observed and DGRF secular variations for the 2' square centred at 34*N, 30'W. The second order fit is a good 
approximation to the observed secular variation values, so is the DGRF curve. 

(4) The ability to extract secular variation 
information over fine time intervals suggests 
possibilities for studies involving phenomena 
with short time constants, such as the effect of 
sunspot cycles on secular variation. 

(5) Secular variation in the study region has changed 
gradually from predominantly positive in 1957.5, 
to predominantly negative by 1987.5. This 
confirms the findings of Bloxham & Jackson 
(1989). who mapped the motion of a cell of 
negative core flux moving in a northwesterly 
direction across the NE Atlantic. By 1987.5 this 
negative cell had encroached upon half the study 
region. 

We acknowledge all organizations who provided 
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indirectly via the National Geophysical Data Center in 
Boulder, Colorado. CW is indebted to the Royal Society, 
who through their Maurice Hill Fund, made possible a 
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Cosgrove of the Technographics Section of the Bedford 
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final figures. In the UK this work was supported by the 
Natural Environment Research Council Grant No 
GR317704. This is Contribution No 2278 of the 
Department of Earth Sciences of the University of 
Cambridge. 
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Fg. 10. Comparison of the root mean square errors of all data for the crossover errors, i.e. the errors left over after correcting the observations for 
the main field as obtained from our  second order curve and from the D G R F  field. The upper pair of curves shows rms errors for the total data set; 
the lower pair shows errors after elimination of statistical outliers beyond 2 standard deviations. Between 1%2 and 1974, the observed data have a 
marginally smaller error than the DGRF. Beneath is a histogram of the total number of crossover points used in calculating the rms errors; data from 
previous years were progressively eliminated as rms errors were calculated annually from 1955 to  1980. 

Fig. 9. Comparison of observed and D G R F  secular variations, by five-year epoch. From left to  right, the columns illustrate: 1) number and distribution 
of crossover points; 2) D G R F  secular variation; 3) observed secular variation averaged to the mid-epoch (shaded) and overlain by the D G R F  secular 
variation contours for comparison; 4) contours of the difference between observed and DGRFsecular variations. The scale at  the bottom defines values 
of the shading in the second and third columns. 



PROJECT MAGNET HIGH-LEVEL VECTOR SURVEY DATA REDUCTION 

Rachel J. Coleman 
U.S. Naval Oceanographic Office 

Geopotential Division 
Stennis Space Center, MS 39522-5001 

ABSTRACT 

Since 1951, the U.S. Navy, under its Project MAGNET program, has 

been continuously collecting vector aeromagnetic survey data to 

support the U.S. Defense Mapping Agency's world magnetic modeling 

and charting program. During this forty-year period, a variety of 

survey platforms and instrumentation configurations have been used. 

The current Project MAGNET survey platform is a Navy Orion RP-3D 

aircraft which has been specially modified and specially equipped 

with a redundant suite of navigational positioning, attitude, and 

magnetic sensors. A review ofthe survey data collection procedures 

and calibration and editingtechniques appliedto the data generated 

by this suite of instrumentation will be presented. Among the 

topics covered will be the phenomenological magnetic compensation 

model and the determination of its parameters from the low-level 

calibration maneuvers flown over geomagnetic observatories. 
215 



Historical Introduction 

Project MAGNET is a U.S. Navy vector aeromagnetic survey program 

which has been ongoing for forty years. The high-level survey 

coverage during this period is presented in figure 1. Early test 

flights began in 1951. Full operational capability was established 

in 1953. Since that time five separate aircrait have been employed 

as the survey platform. Each succeeding aircraft represented a 

significant improvement in range, speed, or altitude. One aircraft, 

an NC-121 Super Constellation, crashed in Antarctica in 1960. The 

flight capabilities and deployment dates of these aircraft are 

summarized in table 1. 

During the period 1953 through 1989, each aircraft has been dedicated 

to global aeromagnetic surveys primarily over ocean areas. However, 

during the period 1990 through 1991, the current Project MAGNET 

aircraft, an Orion RP-3D (figure 2 . ) ,  which is a specially modified 

P-3C aircraft, has undergone an extensive reconfiguration as a 

multipurpose airborne survey platform. Its mission now includes 

gravity surveying, ocean acousticsmonitoring, and ocean temperature 

monitoring, in addition to traditional aeromagnetic surveying. 

Besides the economy introduced by multipurpose platforms, this 

reconfiguration reflects the reduced need for high-level vector 

aeromagnetic surveys due to the successful launch of the Polar 

Orbiting Geomagnetic Survey (POGS) satellite on April 11, 1990 and 

t h e p r o p o s e d D e f e n s e M e t e o r o l o g i c a l S a t e l l i t e P r o g r a m / P o l a r O r b i t i n g  

Geomagnetic Survey (DMSP/POGS) satellite follow-ons to POGS. The 



Figure 1. Project MAGNET Data Distribution (1950 - 1990). 



Table 1. Project MAGNET Aircraft History. 

1953 - P-2V Neptune 
Range: 2200 nm 
Survey Altitude: 9,000 - 13,000 f t  
Speed: N/A 

1955 - NC-54 Skymaster 
Range: Greater than 2350 nm 
Survey Altitude: 9,000 - 13,000 f t  
Speed: 175 k ts  

1958/1962 - NC-121 Super Constellation 
Range: Greater than 4000 nm 
Survey Altitude: 25,000 f t  
Speed: 210 k t s  

1970/Present - RP-3D Orion (modified P-3C) 
Range: 5,000 nm high-level 

2,800 nm low-level 
Survey Altitudes: 25,000 f t  high-level 

500 f t  low-level 
Speed: 340 k ts  high-level 

240 k t s  low-level 
Wing Span: 99 f t  8 in 
Length: 107 f t  10 in 



Figure 2. Current Project MAGNET Aircraft. 



DMSP/POGS effort, initially, will collect scalar data, just as POGS 

itself is doing now. During the period 1995 to about 2005, full 

vector capability from a vector magnetometer calibrated with an 

absolute scalar magnetometer will be available with an attitude 

accuracy of &1 arcminute. 

The DMSP effort itself began in 1967 and is expected to continue 

through the first quarter of the next century and beyond into the 

indefinite future. The reconfigured Project MAGNET aircraft will, 

therefore, in the futurebe mainly restrictedto high-level surveying 

within k20" of the geomagnetic equator. This survey effort will 

supply sufficient vector magnetic data to supplement the scalar 

magnetic satellite data in order to avoid the Backus effect problem 

in world magnetic modeling. These surveys must be repeated 

periodically due to the generally slow, but sometimes sudden and 

erratic, secular changes in the Earth's main magnetic field. The 

reconfigured aircraft will also perform special local and regional 

low-level aeromagnetic surveys. 

The primary purpose of the high-level Project MAGNET aeromagnetic 

surveys is to supply data in support of the World Magnetic Modeling 

(WMM) program, which in turn supports civilian and military global 

navigation needs. Most Global Positioning System (GPS) receivers 

made in the United States incorporate the WMM either as a piece of 

hardware in the form of a computer chip, or as a piece of software. 

The model also is used to control drift rates in inertial navigation 

systems. Other applications of the WMM include its use as a boundary 



condition at the Earth's core-mantle boundary for the 

magnetohydrodynamic fluid flow problem and as an aid for geophysical 

prospecting and resource evaluation. 

Survev Svstems 

During the period 1953 through 1970, the survey aircraft did not 

fly much higher than 15,000 feet and, since most surveys were 

conducted in remote ocean areas, navigation was limited to periodic 

celestialfixes, some Loranand deadreckoning. By today's standards, 

therefore, navigation during this period was rather poor, with' 

accuracies no better than about five nautical miles (k5 nm). The 

data acquisition system consist?dprimarily of strip chart recorders 

and navigation logs. Consequently, the majority of this data was 

hand digitized. All vector magnetic data collected during this 

early period is now summarized in the U.S. Naval Oceanographic 

Office (NAVOCEANO) Special Publication #66 (SP-66) and is also 

digitized on magnetic tape at five minute intervals. Table 2 

summarizes the capabilities of the early magnetic survey system. 

This data set has been sent to the National Geophysical Data Center 

(NGDC) in Boulder, Colorado. 

During the last twenty years, since 1970 and the introduction of 

the Orion aircraft, the high-level vector aeromagnetic surveys are 

considered to be those conducted above 15,000 feet, usually between 

20,000 feet and 25,000 feet. Navigational accuracy during this 

period was generally within k1 nm, although some flights since the 



Table 2. Project MAGNET Survey System 1953- 1970. 

MAGNETOMETERS 

Vector Airborne Magnetometer (VAM-2A) 
TY pe - Self -Orienting Fluxgate 
Measures - D, I, F 
Accurcy - + / -  15 nT (for F) 

Optical ly Pumped Metastable Helium Magnetometer 
Type - Towed 
Measures - F 
Accuracy - + / -  4 nT 

NAVIGATION 

TY pe - Dead Reckoning 
- Celestial Fixes, 
- LORAN (where available) 
- Radar 

Accuracy - + / -  5 nm (at best) 

ALTITUDE 

TY pe - Aneroid Barometic Altimeter 
(Standard Pressure Used) 

Accuracy - + / -  30 m 

TIME 

Type - 24 hr Chronometer 
Accuracy - 0.8 sec/24 hrs 

RECORDING 

Magnetics 
Punched Paper Tape,. Str ip Chart Recorders, and 
Magnetic Tape (late 1960's) 

Navigation 
Paper Charts, Navigation Log 



i n t r o d u c t i o n  o f  GPS r e c e i v e r s  i n  1987 have p o s i t i o n i n g  a c c u r a c i e s  

on t h e  o r d e r  of  30 t o  1 0 0  m e t e r s  whenever t h e r e  was a good GPS 

window. 

The f l u x g a t e  v e c t o r  magnetometer and t h e  e l e c t r i c a l l y  suspended 

gyro  (ESG) a r e  s h o c k m o u n t e d o n a r i g i d a l u m i n u m b e a m i n a m a g n e t i c a l l y  

c l e a n  a r e a  a t  t h e  r e a r  o f  t h e  a i r c r a f t .  The ESG h a s  been t h e  p r imary  

i n e r t i a l  n a v i g a t i o n  and a t t i t u d e  d e t e r m i n a t i o n  i n s t r u m e n t  d u r i n g  

most o f  t h e  p a s t  twen ty  y e a r s .  I t  h a s  been auamented, f i rs t  w i t h  

two ASN-84 i n e r t i a l  systems- and l a t e r  by  two L i t t o n  i n e r t i a l  sys tems  

which were l o c a t e d  on shock mounts toward  t h e  middle o f  t h e  a i r c r a f t .  

The two L i t t o n  i n e r t i a l  sys tems a r e  r e f e r r e d  t o  a ?  INS-1 and INS-2. 

These i n e r t i a l  sys tems  were n o t  mounted on t h e  r i g i d  beam w i t h  t h e  

magnetometer o r  t h e  ESG. T h e r e f o r e ,  due t o  t h e  f l e x u r e  o f  t h e  

f u s e l a g e  of  t h e  a i r c r a f t ,  a t t i t u d e  a s  s p e c i f i e d  by t h e s e  i n s t r u m e n t s  

d id  n o t  a s  a c c u r a t e l y  r e p r e s e n t  t h e  o r i e n t a t i o n  o f  t h e  magnetometer 

i n  s p a c e  a s  d id  t h e  ESG. N e v e r t h e l e s s ,  t h e y  p r o v i d e d  a s u f f i c i e n t l y  

a c c u r a t e  r edundan t  a t t i t u d e  c a p a b i l i t y  t o  b e  used  i n  d a t a  r e d u c t i o n  

i n  t h e  e v e n t  o f  ESG f a i l u r e .  

The s c a l a r  magnetometer used  d u r i n g '  t h e  p a s t  twenty  y e a r s  h a s  been 

t h e  ASQ-81 o p t i c a l l y  pumped m e t a s t a b l e  he l ium magnetometer .  I t s  

purpose  i s  t o  c a l i b r a t e  t h e  v e c t o r  magnet ic  d a t a  c o l l e c t e d  from t h e  

f l u x g a t e  magnetometer,  which h a s  a tendency t o  d r i f t .  The ASQ-81 

magnetometer i s  l o c a t e d  i n  t h e  s t i n g e r  a t  t h e  rear  of  t h e  a i r c r a f t ,  

which can  be s e e n  i n  f i g u r e  2 .  Tab le  3 summarizes t h e  P r o j e c t  

MAGNET s u r v e y  c a p a b i l i t i e s  f o r  t h e  p e r i o d  1971-1990. 



Table 3. Project MAGNET Geomagnetic Airborne Survey System (GASS) 1971-1990. 

MAGNETOMETERS 

Fluxgate Vector Magnetometer 
Measures: X, Y, Z Acc\Res: + / -  40  nT \ + -  5 nT 

Optically Pumped Metastable Helium Magnetometer 
Measures: F Acc\Res: + / -  1 nT \ + -  .O1 nT 

INERTIAL NAVIGATION SYSTEMS 

Electrically Suspended Gyro (ESG) 
Measures: position Accuracy: 0.1 nm/hr 

rol l/pi tc h 3 arc min 
heading 3 arc min 

Two ASN-84's (1971 -1982) 
Measures: position Accuracy: 2 nm/hr 

rolI/pi tch +/-  1 2  arc min 
heading + / -  6 arc min 

Two Li t ton 72's (1982-1990) 
Measures: position Accuracy: 2 nm/hr 

roII/pi tch +/-  10 arc min 
heading + / -  6 arc min 

ALTITUDE 

Type: Barometric Altimeter Accuracy: + / -  30 m 

TIME 

Type: Cesium Standard Accuracy: 1 millisec 

DATA COMPUTERS/LOGGERS 

Two 16K Computers 
Two Tape Drives 



Since mid-1990, the Project MAGNET aircraft has been undergoing 

extensive maintenance and reconfiguration which will be completed 

in late 1991 or early 1992. The old fluxgate magnetometer will be 

replaced with a NAROD, ring-core fluxgate vector magnetometer, while 

the ASG-81 scalar magnetometer will be retained. The ESG and the 

two Litton inertial systems will be replaced with one ring-laser 

gyro (RLG) inertial system which will be shock mounted on a rigid 

beam along with the ring-core fluxgate vector magnetometer in the 

magnetically clean area in-the rear of the aircraft. A spare RLG 

will be carried aboard the aircraft for use in case of failure of 

the other RLG. The RLG will be used primarily for attitude, while 

GPS, which is now becoming globally available, will be the primary 

navigational system. 

Due to the inclusion of aerogravimetric surveying capability on the 

aircraft, more accurate and redundant altitude instrumentation has 

been included. These instruments and their accuracies along with 

other details of the Replacement Geophysical Airborne Survey System 

(RGASS) are given in table 4. Early testing of this system should 

begin in February 1992. The first survey, a gravity survey of 

Greenland, should begin in late May 1992. 

Survev Planning 

Typically, a Project MAGNET survey is planned six to eight months 

in advance of the actual survey. This lead time is required in 

order to arrange for logistic support (e.g., fuel for the aircraft) 

and flight clearances through the U.S. State Department for the 



Table 4. Project MAGNET Replacement Geophysical Airborne Survey System 
(Geomagnetic Equipment) 199 1. 

MAGNETOMETERS 
Ring-Core Fluxgate Vector Magnetometer 

Measures: X,Y,Z Acc\Res: + / -  4 0  nT \ + / -  6 nT 

Optical ly Pumped Metastable Helium Magnetometer 
Measures: F Acc\Res: + / -  1 nT \ + / -  .0 1 nT 

NAVIGATION SYSTEMS 
Ring-Laser Gyro Inert ial  System (RLG) 

Measures: posi t ion Accuracy: 0.8 nm/hr cep* 
rol !/pi tc h 0.05 deg 
heading 0.10 deg 

Global Positioning Satell ite System (GPS) 
Measures: posi t  ion Accuracy: 15  mcep 

ALTITUDE 
GPS Altimeter Accuracy: 2 0 - 2 5  rn 
Radar Altimeter Accuracy: + / - (5 f t  +0.5% al t )  
Precision Baro Altimeter Accuracy: 1 f t  

Time 
GPS Accuracy: 0.2 mi l l isec 

SURVEY CONTROL/DATA ACQUISITION SYSTEMS 

Four 386 Microcomputers 
2 - Sensor Control 
1 - Survey Control 
1 - Survey Analysis 

Two 9 - Track Tape Drives @ 6250  BPI each 
Two 3 3 0  Mbyte Hard Drives 

10 hr f l ight  or less 

cep - circular error probabi l i ty 
mcep - meter circular error probabil i ty 
msep - meter spherical error probabil i ty 



countries that will be visited. A full survey lasts approximately 

two and a half months during which twenty to twenty-five, ten to 

twelve hour flights are scheduled. This group of flights is referred 

to as a "project'! and is assigned a project designation such as 

C32-452. The "C32" is an accounting designation which changes once 

a decade or so. The "452" indicates the project was conducted in 

FY84 using the fifth Project MAGNET aircraft during the second 

quarter of the fiscal year. Each flight of a project is also tagged 

with an identifying number. For example, flight 4061 indicates' 

that this flight took off from an airport in area 4 of a world 

divided into seven areas. This would be the sixty-first flight to 

have taken off in this area during the existence of the Project 

MAGNET program. Flights in the 9000 series are low-level flights 

below 15,000 feet and are usually constrained to a small geographical 

area. These identifiers always accompany the Project MAGNET data 

which is routinely sent to NGDC World Data Center A. There is 

generally a six to twelve month delay between the completion of a 

survey deployment and the final distribution of the processed data 

to NGDC. 

Calibration 

A typical project begins with a low-level (approximately 1,000 feet) 

calibration flight, called an airswing, over a geomagnetic 

observatory as indicated in figure 3. Usually the observatory in 

Fredericksburg, Virginia, which is nearest to the Patuxent River 

Naval Air Station where the Project MAGNET aircraft is based, is 
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Figure 3. Concept of Compensation and Rotation Terms via Aircraft Maneuvers over a Geomagnetic 
0 bservatory. 



used for airswing purposes at the beginning and at the end of a 

project. Other airswings are flown during the course of a project, 

as observatory proximities permit. Usually, three to four airswings 

are performed during each project. It is particularly important 

to fly airswings in both the North and South geomagnetic hemispheres 

if surveying covers both hemispheres. A calibration flight consists 

of, performing over the observatory, a roll maneuver in each of the 

four cardinal directions, North, South, East, West, a pitch maneuver 

in all four cardinal directions, and a yaw maneuver in all four 

cardinal directions. Additionally, straight and level passes over 

the observatory in all four cardinal and intercardinal directions 

are performed. The straight and level passes are sometimes flown 

at a somewhat higher altitude than the maneuvers. The yaw, pitch, 

and roll maneuvers are automatically controlled at +5" fluctuations 

about the mean aircraft orientation. An example of an airswing 

track pattern over Fredericksburg is given in figure 4, while figure 

5 illustrates the aircraft attitude for one pitch maneuver in the 

South direction. The purpose of these maneuvers is to provide data 

to compute the coefficients of a phenomenological magnetic 

compensation model which characterizes the contaminating magnetic 

fields associated with the permanently magnetized portion of the 

aircraft, the magnetic fields induced in the aircraftf s metal parts 

by the Earthf s main (core generated) field, and the magnetic fields 

generated by eddy-currents that are driven by the changes in the 

Earthf s main and crustal field as the aircraft travels through them. 



Figure 4. Airswing Navigation Plot. 
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Figure 5. Aircraft Attitude Plots - South Pitch Maneuver. 



Of c o u r s e ,  t h e r e  i s  a l s o  a  c e r t a i n  amount of  f eedback  and c o u p l i n g  

among t h e s e  f i e l d s  which a l s o  i n t e r f e r e  w i t h  t h e  magne t i c  f i e l d  a s  

s e e n  i n  t h e  absence  of t h e  a i r c r a f t .  The a i r c r a f t  i s  p r i m a r i l y  

made of aluminum. However, many o t h e r  m e t a l s  s u c h  a s  copper  and 

i r o n  may be found i n  and around t h e  a i r c r a f t .  The a i r s w i n g  d a t a  

f low i s  i l l u s t r a t e d  i n  f i g u r e  6.  

The compensat ion  model used  by t h e  P r o j e c t  MAGNET a i r c r a f t  program 

i s  a  m o d i f i e d  v e r s i o n  of t h a t  developed by L e l i a k  ( 1 9 6 1 ) .  I n  

a i r c r a f t  c o o r d i n a t e s ,  t h e  m.athematica1 e x p r e s s i o n  f o r  t h e  c o r r e c t e d  

(compensated)  magnet ic  f i e l d  o b s e r v a t i o n  i s :  

OBSERVED P E W E N T  INDUCED EDDY-CURRENT 
F I E L D  F I E L D  F I E L D  F I E L D  

where t h e  unknown compensation c o e f f i c i e n t s  a r e  more e x p l i c i t l y  

g i v e n  i n  t h e  f o l l o w i n g  form: 

PERM COEFFICIENTS 

INDUCED COEFFICIENTS 

EDDY-CURRENT COEFFICIENTS 
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The s u b s c r i p t s  L ,  T I  and  V r e f e r  t o  t h e  l o n g i t u d i n a l ,  t r a n s v e r s e ,  

and  v e r t i c a l  a x e s  o f  t h e  a i r c r a f t f s  c o o r d i n a t e  s y s t e m .  

Bc i s  t h e  E a r t h f  s m a g n e t i c  f i e l d  a s  s e e n  i n  a i r c r a f t  c o o r d i n a t e s  

a f t e r  c o r r e c t i n g  f o r  t h e  p r e s e n c e  o f  t h e  a i r c r a f t .  BMA i s  t h e  

m a g n e t i c  f i e l d  a s  s e e n  by t h e  a i r c r a f t ' s  v e c t o r  magnetometer  a f t e r  

r o t a t i o n  f rom magnetometer  c o o r d i n a t e s  t o  a i r c r a f t  c o o r d i n a t e s .  

G e n e r a l l y ,  t h e  magnetometer  i s  i n s t a l l e d  i n  t h e  a i r c r a f t  s o  t h a t  

i t s  c o o r d i n a t e  a x e s  a r e  p a r a l l e l  t o  t h e  a i r c r a f t  c o o r d i n a t e  a x e s .  

However, i n  p r a c t i c e ,  t h i s  i s  n e v e r  done  e x a c t l y .  Consequen t ly ,  

a  g e n e r a l  t h r e e  d i m e n s i o n a l  r o t a t i o n  t h r o u g h  t h r e e  s m a l l  b i a s  a n g l e s  

i s  r e q u i r e d  t o  p u t  t h e  o b s e r v e d  m a g n e t i c  f i e l d  i n t o  a i r c r a f t  

c o o r d i n a t e s .  Each b i a s  a n g l e  i s  on t h e  o r d e r  o f  j u s t  a  few t e n t h s  

o f  a  d e g r e e .  The b i a s  a n g l e s  t e n d  t o  change  when t h e  magnetometer  

i s  r e m o v e d f o r m a i n t e n a n c e ,  sometimes d u r i n g a  f l i g h t  due  t o v i b r a t i o n  

f rom t u r b u l e n c e  and  a l s o  sometimes d u e  t o  t h e  sudden  impac t  o f  

l a n d i n g .  S i m i l a r  comments p e r t a i n  t o  t h e  i n e r t i a l  

n a v i g a t i o n / a t t i t u d e  s y s t e m s ,  which have  t h e i r  own sets  o f  t h r e e  

b i a s  a n g l e s .  The ESG i s  t h e  i n e r t i a l  s y s t e m  of  p r e f e r e n c e  f o r  d a t a  

r e d u c t i o n  d u e  t o  i t s  p r o x i m i t y  t o  t h e  v e c t o r  magnetometer .  I n  

p r a c t i c e ,  a s  p a r t  o f  t h e  compensa t ion  model ,  w e  s o l v e  f o r  t h e  

r e l a t i v e  d i f f e r e n c e  b i a s  a n g l e s  be tween  t h e  magnetometer  and  t h e  

i n e r t i a l  s y s t e m ,  s i n c e  t h e r e  i s  no  a b s o l u t e  d e f i n i t i o n  o f  t h e  

a i r c r a f t  c o o r d i n a t e  sys t em.  C o n s e q u e n t l y ,  t h e r e  i s  a  c e r t a i n  

i n d e t e r m i n a c y  i n  t h e s e  b i a s  a n g l e s  which f o r c e s  u s  t o  s o l v e  f o r  t h e  



d i f f e r e n c e  a n g l e s  r a t h e r  t h a n  t h e  b i a s e s  t h e m s e l v e s .  An e q u i v a l e n t  

a l t e r n a t i v e  view i s  t o  s imply say  t h a t  t h e  magnetometer a n g l e s  a r e  

z e r o ,  i n  which c a s e  t h e  a i r c r a f t  c o o r d i n a t e s  c o i n c i d e  w i t h  t h e  

magnetometer sys tem c o o r d i n a t e s ,  which j u s t  l e a v e s  t h e  i n e r t i a l  

sys tem b i a s  a n g l e s  t o  be  s o l v e d  f o r  a s  p a r t  o f  t h e  compensat ion 

model.  W e  u s e  t h i s  view. 

B, i n  e q u a t i o n  (1) is  t h e  permanent f i e l d  due  t o  t h e  a i r c r a f t ' s  

m e t a l  p a r t s .  I t  h a s  t h r e e  c o n s t a n t  b u t  unknown c o e f f i c i e n t s .  

i s  a  3x3 m a t r i x  of  c o n s t a n t  c o e f f i c i e n t s  c h a r a c t e r i z i n g  t h e  induced 

f i e l d .  These c o e f f i c i e n t s  a r e  a l s o  unknowns o f  t h e  compensat ion 

model.  F i n a l l y ,  % i s  a n o t h e r  3x3 m a t r i x  o f  unknown c o n s t a n t  

c o e f f i c i e n t s  which c h a r a c t e r i z e s  t h e  effect  o f  t h e  f i e l d s  g e n e r a t e d  

by t h e  eddy-cur ren t s  on t h e  m e t a l  s u r f a c e s  of  t h e  a i r c r a f t .  The 

compensat ion  model, t h e r e f o r e ,  c o n s i s t s  of  2 1  c o e f f i c i e n t s  p l u s  3 

b i a s  a n g l e s .  Var ious  o t h e r  s o u r c e s  of  magne t i c  f i e l d s  a s s o c i a t e d ,  

f o r  i n s t a n c e ,  w i t h  e l e c t r i c a l  sys tems i n  t h e  a i r c r a f t  and t h e  runn ing  

o f  t h e  f o u r  e n g i n e s ,  n o t  a l l  o f  which a r e  n e c e s s a r i l y  runn ing  

s i m u l t a n e o u s l y  a s  t h e  p i l o t  may s w i t c h  from one set  of  e n g i n e s  t o  

a n o t h e r ,  may a l s o  have some i n f l u e n c e  on t h e  compensat ion 

c o e f f i c i e n t s .  

The c o r r e c t e d  magnet ic  f i e l d ,  Bc, i s  a l s o  e q u a l  t o  t h e  magnet ic  

f i e l d  o f  t h e  o b s e r v a t o r y  a f t e r  it i s  upward c o n t i n u e d  t o  t h e  a i r c r a f t  

a l t i t u d e  and r o t a t e d  f r o m g e o d e t i c  i n t o  a i r c r a f t c o o r d i n a t e s .  During 

t h e  a i r s w i n g ,  a  l e g  of  which l a s t s  o n l y  a  f e w  minu tes ,  t h e  o b s e r v a t o r y  



field is essentially constant. Upward continuation is accomplished 

by assuming that the direction of the Earth's field is the same at 

ground level as it is at aircraft altitude (1,000 feet). 

Consequently, the observatory magnetic declination (D) and 

inclination (I) are combined with the total intensity (TI) of the 

aircraftf s scalar magnetometer i . e , the ASQ-81) to obtain the 
complete upward continued magnetic field vector, Bo, which is then 

rotated into aircraft. coordinates yielding BOA. This rotation from 

geodetic to aircraft coordinates is accomplished using the roll, 

pitch, and heading information from the ESG. Therefore, we have: 

Consequently, the 21 compensation coefficients can be solved for 

by a least-squares process which minimizes the total intensity 

differences: 

with respect to these coefficients. The sum is overthe measurements 

taken over all the maneuvers. This is a nonlinear algebra problem 

even though the compensation model is linear in the compensation 

coefficients. Therefore, the problem is solved iteratively, 

initially assuming that the three inertial bias angles are zero and 
U +. 

using the initial guess that B, =Of 6 = 0, and 6 =O (i.e., 



Given an initial least squares estimate of the compensation 

coefficients, we then solve a second least-squares problem for the 

inertial system bias angles. The upward continued components of 

the observatory field are given by the following relations: 

Bx = B cos I. cos Do 

Bz = B sin I, 

where B is the ASQ-81 total intensity and I. and Do are the observatory 

inclination and declination respectively. Rotating into aircraft 

coordinates yields: 

cos H cos P sin H cos P - sin P 
cos H sin R - sin H cos R sinHsinPsinR+cosHcosR c o s P s i n R ] l )  

cos H sin P cosR + sin H sinR sin H sin P cos R - sinR cos H cos P cos R Bz 

where the roll ( R ) ,  pitch (P), and heading ( H )  are the observed 

inertial system values plus bias angle corrections: 

R = RI+6R 

Using the estimated compensation coefficients from the previous 

least-squares problem to obtain Bc, we now minimize the quantity 



with respect to R, P ,  and H ,  or equivalently, 6R, 6P, and 8H. Here 

again, the summation is taken over the data collected from all of 

the aircraft maneuvers flown over the observatory. The straight 

and levels are reserved as a check on the final solution for the 

compensation coefficients after these two least-squares problems 

are repeated for several iterations until convergence is achieved. 

Both least-square problems are unweighted. 

Once the coefficients and bias angle, (compensation model) are 

determined, they are then applied to the straight and level passes 

over the observatory as well as the maneuvers. The corrected 

aircraft field observations after rotatioli into geodetic coordinates 

are examined to see that for each magnetic component for each pass 

of each maneuver yields the same value. The vector total intensity 

is also compared to the total intensity from the ASQ-81. The total 

intensity RMS error is usually in the neighborhood of 35 nT. These 

comparisons for an airswing over the College, Alaska Geomagnetic 

Observatory are given in figure 7. 

As was mentioned earlier, the compensation model is a 

phenomenological model and as such is not complete. The model can 

break down as the survey moves away from the location of the airswing 

or be poorly determined due to a lack of robustness in maneuver 

frequency and amplitude. In particular, the compensation 

coefficients have been taken to be constants. A more detailed 

compensation model should include frequency dependence and 

geomagnetic latitude dependence. Project MAGNET has, over many 
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y e a r s ,  performed numerous r e p e a t  a i r s w i n g s  a t  o b s e r v a t o r i e s  a l l  

o v e r t h e  wor ld .  The c o e f f i c i e n t s  ave raged  f r o m t h e s e  r e p e a t  a i r s w i n g s  

form a  d a t a  b a s e  which can  b e  u s e d  t o  examine how t h e  c o e f f i c i e n t s  

change w i t h  l a t i t u d e .  P l o t s  of  some of  t h e s e  averaged  c o e f f i c i e n t s  

a s  a  f u n c t i o n  of  geograph ic  l a t i t u d e  a r e  g i v e n  i n  f i g u r e s  8, 9 ,  and 

1 0 .  A t  low l a t i t u d e s  e q u a t o r i a l e l e c t r o j e t  e f f e c t s  have s i g n i f i c a n t  

i n f l u e n c e  on t h e  kTv c o e f f i c i e n t s  w h i l e  hL a p p e a r s  t o  have some 

p e r i o d i c  l a t i t u d e  dependence which i s  symmetric  abou t  t h e  a e ~ m a g n e t i c  

e q u a t o r .  The c o e f f i c i e n t  6vL a l s o  h a s  a  s t r o n g  l a t i t u d e  dependence 

which a p p e a r s  t o  be asymmetric  abou t  t h e .  geomagnetic  e q u a t o r .  

F u r t h e r d e t a i l e d s t u d i e s  o f t h e  c o e f f i c i e n t  dependenc ies  on f requency  

and l a t i t u d e  a r e  r e q u i r e d  i n  o r d e r  t o  improve t h e  g e n e r a l  

a p p l i c a b i l i t y  of  t h e  compensat ion  model.  I n  l i e u  of  such  

improvements, it h a s  been cus tomary t h a t  s e v e r a l  a i r s w i n g s  b e  

conducted  d u r i n g  t h e  c o u r s e  o f  a  P r o j e c t  MAGNET deployment and t h e n  

t o  u s e  t h a t  set of  compensat ion c o e f f i c i e n t s  which w e r e  derived 

from t h e  o b s e r v a t o r y  c l o s e s t  t o  t h e  a r e a  where a  p a r t i c u l a r  s u r v e y  

f l i g h t  o c c u r r e d .  

The d a t a  f l o w  f o r  a  t y p i c a l  s u r v e y  f l i g h t  i s  g i v e n  i n  f i g u r e  11. 

An example o f  t h e  p r o c e s s e d  d a t a  f o r  F l i g h t  Number 5048 of  P r o j e c t  

C32-352 f o r  day 155 o f  1983 which went from P e r t h ,  A u s t r a l i a  t o  

Hobar t ,  Tasmania v i a  an  i n d i r e c t  r o u t e  i s  g i v e n  i n  f i g u r e s  12a,  

12b, and  12c .  F i g u r e  12a  shows a i r c r a f t  a l t i t u d e  and magnet ic  

i n c l i n a t i o n  and d e c l i n a t i o n  f o r  t h e  f l i g h t .  F i g u r e  12b shows t h e  

A S Q - 8 1 t o t ' a l i n t e n s i t y ,  t h e  t o t a l  i n t e n s i t y  d e r i v e d  f r o m t h e  f l u x g a t e  



Figure 8. Eddy-Current (TV) Mean Latitude Dependence. 
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Figure 9. Induced (TL) Mean Latitude Dependence. 
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Figure 11. Project MAGNET Data Flow. 
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magnetometer, and the vertical magnetic component. Figure 12c shows 

the east magnetic component, the north magnetic component, and the 

horizontal intensity. Figure 12b is of particular interest since 

the total intensity from the vector and scalar instruments can be 

compared. They should be identical. However, about two-thirds of 

the way into this flight a significant deviation occurs, the beginning 

of which corresponds to a heading change. This difference is on 

the order of 50 nT, which is still considered good even though, in 

this case, the Litton INS-2 inertial system was used for attitude 

and navigation rather than the ESG. 

Prior to the days when GPS was widely available (i-e., most of the 

last forty years) other navigation errors such as Schulering were 

present in the data and were never removed. Figure 13 illustrates 

the magnitude of this problem when the Litton INS-2 was used. GPS 

navigation eliminates this problem. 



1 2 

TIME (hrs) 

Figure 13. Inertial Schuler Error (GPS - INS2). 
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Abstract 

Since aeromagnetic surveying started immediately after World War 11 a 

considerable area of the earth's surface both onshore and offshore (in excess of 25 million 

sq. krn) has been magnetically surveyed. For about the first 15 years or so fluxgate 

magnetometers were employed in aeromagnetic surveys but the introduction of proton 

free-precession magnetometers resulted in absolute readings being recorded. Proton 

precession magnetometers have now been replaced to a large extent by the more 

sensitive optical absorption magnetometers. Some care has to be taken to calibrate 

aeromagnetic survey systems and this is best done using a calibration range tied to a 

magnetic observatory so that accuracies of 10 nT or better are achieved for the total field 

values recorded. 

Survey navigation has always posed a problem for aeromagnetic surveys 

especially offshore. Over land, vertically pointing 35 mm cameras were initially used 

to recover the aircraft track using a combination of aerial photos and topographic maps. 

Over featureless areas it was necessary to utilize existing electronic positioning systems 

such as Loran C or set up special navigation systems. The advent of the satellite-based 

Global Positioning System (GPS) has to a large extent solved the navigational problem 

because there is now almost continuous worldwide coverage to 10 m accuracy in the 

differential mode. The resultant aeromagnetic data is normally compiled into contour 

maps in which the diurnal variation and aircraft heading effects are removed. The 

resultant digital data are normally made publicly available both in gridded and profile 

form along with the published contour maps. 

Most aeromagnetic coverage has been obtained in the developed western 

countries but elsewhere a considerable amount of surveying has been carried out and 

as an example some 80% of Africa has been surveyed mostly as a result of aid programs. 

The data is usually held by the national geological survey or equivalent organization but 

in a number of cases the data e.g. for the Magnetic Anomaly Map of North America, is 

also held by the World Data Centres. 



Introduction 

The purpose of low-level aeromagnetic surveys is to map the small 

variations of the earth's magnetic field essentially in a horizontal plane above the 

surface that are produced by the differing magnetizations of the underlying 

igneous rocks, i.e. the crustal field. The magnetic field produced by the igneous 

rocks of the earth's crust is about 2000 nanoteslas in amplitude. This is 

superimposed on the main earth's field which derives from the earth's core. In 

addition, there is a small time-varying field due to polarized charges that emanate 

from the sun and impinge on the earth's atmosphere. Over the course of a day, 

this diurnal variation usually amounts to less than 100 nanoteslas in amplitude 

except in the so-called auroral zones which extend in a circle around the 

geomagnetic poles and are 750 km or so wide. 

It should be appreciated that for geomagnetic modelling purposes, the 

short wavelength variations due to near-surface geology can be as short as one 

kilometre depending on the distance between the survey aircraft and igneous 

basement, and will essentially be a form of noise to be removed from the data by 

filtering or some other suitable technique such as upward continuation. 

2. Aeromagnetic Survey Practice 

Aeromagnetic surveying activity commenced shortly after the end of World 

War I1 and the aircraft utilized were mostly the military transport and 

reconnaissance aircraft of that period, particularly the Douglas DC-3 aircraft 

(Balsley, 1952). This type of aircraft was utilized for more than a decade with the 

magnetometer being trailed in a towed bird so that the magnetic effects of the 

ferrous portions of the aircraft, such as the engines, were minimized. However 

towed birds are greatly affected by the air turbulence at low altitudes because of 

their small mass. In Canada, trailing a towed bird in icy conditions often led to 

dangerous flying conditions and the consequent loss of the magnetometer. To 

improve this situation inboard installations were then developed in which the 



Figure 1. Aerocommander aircraft equipped for aeromagnetic and VLF electromagnetic 
surveys. 



magnetometer was installed in a boom which extended from the tail of the 

aircraft to remove the magnetometer as far from the magnetic field-producing 

components of the aircraft e.g. the engines as possible (see Fig. I). It was found 

that these magnetic components would produce a noticeable signal hash on the 

chart record that was more pronounced with aircraft manoeuvres. It was realized 

that these magnetic effects could be minimized by suitable compensation 

techniques that nullified to a large extent the magnetic fields produced by the 

survey aircraft itself. As skill in these compensation techniques improved, it 

became feasible starting about 1960 to use light twin-engined aircraft (Fig. I) in 

which the magnetometer-engine distance was much shorter. Their use resulted 

in acceptable quality data being produced at lower line mileage costs. 

2.1 Aeromagnetic Survey Instrumentation 

Aeromagnetic survey systems have advanced considerably in recent years 

and state-of-the-art systems usually incorporate a microcomputer that is built into 

the data-acquisition system to control the various functions such as sampling 

interval, the conversion of the magnetometer output frequency to total field 

values etc. The other essential components of an aeromagnetic survey system are 

the magnetometer with the necessary compensation system, and the navigation 

system plus altimeter. A brief description of each of the typical aeromagnetic 

survey system components is given in the following narrative. 

2.1.1 Types of Magnetometers 

Three varieties of airborne magnetometers have mostly been utilized in 

aeromagnetic surveying (Hood and Ward, 1969; Hood and Lefebvre, 1990, 

namely 

(1) Fluxgate 

(2) Proton precession-free and spin-precession 

(3) Optical absorption 



All measure the total field value of the earth's magnetic field whose background 

value varies from about 23,500 (in Brazil) to about 67,700 nanoteslas (offshore 

from Antarctica) at the earth's surface. 

2.1.1.1 Fluxgate Magnetometers 

These were the first practical airborne geophysical instruments utilized and 

were developed immediately after the end of World War I1 from the airborne 

magnetometers used in antisubmarine warfare (Fromm, 1952; Jensen, 1961). 

The sensitive element of a saturable-core or fluxgate magnetometer consists 

of a short length of high-permeability ferromagnetic material having a narrow 

hysteresis loop which acts as a core for one or more windings connected to AC 

exciting and indicating circuits. The field component along the axis of the 

fluxgate element is measured and so it is necessary to keep the axis accurately 

aligned in the direction of the earth's magnetic field to measure the total field. 

This is accomplished by the use of a three-axis moveable platform in which two 

additional orthogonal fluxgate elements are mounted. The platform is kept 

oriented so that the orthogonal elements have zero output. 

For the device to work most of the ambient field is bucked out by the use 

of an additional winding through which is passed on accurately controlled DC 

current. Thus the fluxgate magnetometer is a vector variometer in which the 

variations of the earth's magnetic field from a fixed datum are measured. The 

output of a fluxgate magnetometer may be recorded as a continuous trace i.e. 

without steps, on an analog record. When first introduced fluxgate 

magnetometers were considered to have a sensitivity of one nanotesla but with 

improved compensation the latter models could achieve sensitivities approaching 

0.1 nanotesla. Fluxgate magnetometers were utilized for some 15 years or so and 

starting in the late 50's were progressively replaced by proton precession 



magnetometers. Fluxgate sensors are however still utilized in active 

compensation systems. 

2.1.1.2 Proton Free-Precession Magnetometers 

The proton free-precession magnetometer as been the most commonly 

utilized airborne magnetometer during the past 35 years and was developed 

during the middle 1950's (Packard and Varian, 1954). The sensor is much simpler 

in design than the mechanically complicated fluxgate magnetometer consisting 

essentially of a bottle of hydrogen-rich liquid, such as water or kerosene, around 

which is wound a coil of copper wire. The principle of operation depends upon 

the fact that hydrogen(but not the oxygen) protons have a magnetic moment due 

to their spin. First an external field is applied to the bottle of hydrogen protons 

by passing a DC current through the coil for a short period of time, typically one 

half-second or so. Then the field is switched off allowing only the earth's 

magnetic field to act. The effect is somewhat like kicking a child's spinning top, 

and the spinning hydrogen protons begin to wobble i.e. precess. The frequency 

of precession (f) is directly proportional to the ambient earth's field (T) and is 

related to it by the following formula T=Kf where K=2n/gyromagnetic ratio of 

the proton = 23.4874 (Driscoll and Bender, 1958). Consequently the proton 

precession magnetometer is an absolute scalar instrument. 

The hydrogen protons which are precessing in unison will induce an audio 

signal into the surrounding copper coil. This audio signal decays exponentially 

to zero within several seconds. The audio signal is amplified and in so-called 

direct-reading instruments multiplied in frequency to increase the sensitivity of 

the reading before being counted for a set period of time to yield the earth's 

magnetic field value directly in gammas (Hood, 1970). The sensitivity of direct- 

reading proton free-precession magnetometers ranges from 0.1 to 1.0 nanotesla; 

the sampling rate is usually 1 second, and their range is typically 20,000 to 

100,000 nano teslas to permit their use worldwide. 



Perhaps the most serious drawback of proton free-precession 

magnetometers is that the output is not continuous because of the necessity to 

polarize the sensor each time before measuring the frequency of precession. This 

puts a limitation on the rate at which measurements can be recorded and also the 

instrument sensitivity. For instance for the popular Geometrics G803 proton 

magnetometer, sensitivities of 0.5 nanotesla for a 0.8 second sampling, 1 nanotesla 

for a 0.5 second rate and 2 nanoteslas for a 0.33 second sampling rate are 

achievable. 

2.1.1.3 Spin-Precession or Overhauser Magnetometers 

Spin-precession magnetometers are somewhat similar to the proton free- 

precession type in that the sensor consists of a coil system enclosing a liquid 

sample containing hydrogen protons. However a parametric salt is dissolved in 

the liquid sample which has the special property that the spin energy of the 

orbital electrons can be transferred to the protons to keep them precessing by the 

use of high-frequency fields. This is called the Overhauser (1953) effect after the 

discoverer. The result ant audio frequency is measured utilizing similar 

techniques as for the proton free-precession magnetometer since the constant of 

proportionality (23.4874) is the same between the measured field and the output 

frequency. Because the output is continuous, the sensitivity can be made to 

exceed 0.1 nanotesla, so they are well suited to medium sensitivity surveys. 

Overhauser magnetometers have not however been much utilized in aeromagnetic 

surveying except by French organizations. 

2.1.1.4 Optical Absorption Magnetometers 

Optical absorption magnetometers were developed during the 1960's 

(Bloom, 1960; Giret, 1965; Hood, 1970; Jensen, 1965) and have an order of 

magnitude better sensitivity than the proton precession magnetometer that is 

around 0.01 nanotesla. They were not greatly utilized in aeromagnetic surveying 



up to the late 1980's for a number of reasons although that situation has changed. 

The first reason is that their use has been restricted by worldwide patents (in 

Canada up to September 10, 1987 when the important Dehmelt (1968) patent 

expired) so that only a few contractors were licensed to provide surveys using 

such magnetometers. The second reason is that for regional aeromagnetic 

surveys, the sensitivity of the proton precession magnetometer is adequate for the 

purpose. However the use of optical absorption magnetometers has increased 

considerably by their being utilized in aeromagnetic gradiometer systems 

consisting of two optical absorption magnetometers vertically separated by a short 

(2 metre or so) distance. Such short-baseline aeromagnetic gradiometers require 

the higher sensitivity that optical absorption magnetometers possess. Optical 

absorption magnetometers can also sample the magnetic field at a much higher 

rate than proton precession magnetometers at high sensitivity - up to 10 times per 

second which is useful for mineral exploration surveys at 100 m or so elevation. 

An optical absorption magnetometer sensor consists of a glass cell 

containing an alkali vapour that is irradiated by radio frequency light 

corresponding to a specific line in the alkali vapour spectrum. The effect of the 

irradiation is to pump alkali vapour electrons to higher energy orbits from which 

they will fall spontaneously to a lower energy state. When they absorb light 

energy the glass cell becomes opaque to the incident light and when the electrons 

fall back to the lower energy state they actually emit light and the cell is 

transparent. Thus the light passing through the cell flickers at the Larmor 

precession frequency of the electron which depends on the ambient field. Initially 

rubidium metal vapour was utilized in the cells but this was subsequently 

replaced by cesium because of the improved operating characteristics of the 

resultant magnetometer. For cesium the Larmor frequency is 3.498 hertz per 

nanotesla. Thus the resultant output frequency is much higher than that 

produced by the proton precession magnetometer for the same magnetic field and 

falls in the range 80-250 KHz depending upon location on the earth's surface. 



Cesium magnetometers have a number of drawbacks. The first of these is 

that there are actually eight spin states for Cesium 133 that gives rise to eight 

closely spaced Larmor frequencies of varying amplitudes producing a composite 

output frequency. The relative amplitudes of the eight Larmor frequencies 

change as the angle of the optical axis of the magnetometer changes with respect 

to the ambient field. This orientation error ranges up to about 8 nanoteslas for 

a single cell instrument. The orientation error is reduced considerably (to less 

than 1 nT) by the use of split beam instruments in which the circular polarization 

of the light passing through one half of the cell is made to be in the opposite 

sense to that passing through the other half of the cell. After passing through the 

cesium cell, the split beams are focussed on a photoelectric cell producing an 

averaged frequency and giving a flatter response for the combined effect of the 

eight Larmor frequencies mentioned earlier. 

The second drawback is that the instrument has an active zone of 

orientation of about 65" in which it will operate, and polar dead zones of 30" and 

210" from magnetic north in which the magnetometer will not work. For 

optimum operation, the cesium magnetometer is set at an angle of 45" from the 

total field vector. 

To avoid the heading error and dead zone problems the Canadian NRC 

National Aeronautical Establishment developed a two-axis orienting instrument 

,based on the minimization of a small audio frequency signal superimposed on the 

ambient field. The technique was utilized in the military ASQ-501 and ASQ-502 

magnetometers built by Canadian Aviation Electronics Ltd. and adopted by the 

Geological Survey of Canada in magnetometers built for its Beechcraft B-80 

Queenair survey aircraft. Such two-axis orienting magnetometers have a minimal 

orientation error and there are no dead zone problems. 



A second technique for minimizing the orientation error is by the use of 

a so-called strap down magnetometer which employs a non-oriented split-beam 

cesium magnetometer. The orientation errors are minimized by incorporating the 

necessary corrections into the algorithm of the active magnetic compensation 

system used in the magnetometer installation. In such microprocessor-based 

compensators, aircraft manoeuvres are sensed using a t~iaxial fluxgate sensor. 

Helium magnetometers neither have an orientation error nor do they have 

polar dead zones although there are 30" equatorial dead zones. Furthermore the 

higher Larmor frequency ratio (28.02468 Hz/nT) of the He magnetometer as 

compared to the lower (3.498 Hz/nT) of the cesium vapour magnetometer, 

provides significantly higher resolution at a higher field sampling rate. However 

helium magnetometers have been utilized far less than cesium magnetometers for 

aeromagnetic survey work up to the present time in part because of their 

commercial availability although Geornetrics is now marketing a helium 

magnetometer, the G833 whose sensor was developed by the Ministry of Geology 

and Mineral Resources in China (Hood, 1991b). 

For the reasons described earlier, optical absorption magnetometers have 

over the past four years gradually been replacing proton precession 

magnetometers for aeromagnetic surveys. The reasons include their higher 

sensitivity and sampling rate but especially the fact that the use of optical 

absorption magnetometers is now royalty free. 

2.1.2 Compensation Systems 

As stated earlier, inboard installations of airborne magnetometers were 

made possible by improvements in the magnetic compensation of aircraft. There 

are three different sources of interference produced by the aircraft itself. The first 

is the permanent magnetism of the various components made of steel, such as the 

engines, whose direction remains fixed with respect to the aircraft. The second 



source is the induced field due to the magnetic susceptibility of these same 

ferrous components and the earth's field. Its polarity and magnitude depend 

upon the orientation of the aircraft with respect to the earth's magnetic field. The 

third source of interference is that caused by the magnetic effect of eddy currents 

generated in the skin and other conducting parts of the aircraft by their motion 

in the earth's magnetic field. 

In earlier passive compensation systems, the permanent magnetism was 

eliminated by the use of a set of three-orthogonal compensating coils mounted 

together near the magnetometer head and on the roll axis of the aircraft and 

through which the appropriate DC currents were passed. The induced 

components were eliminated by the use of strategically placed permalloy strips, 

and the eddy currents were compensated for by the use of coils of wire mounted 

in close proximity to the sensor. It was necessary to carry out a set of aircraft 

manoeuvres consisting of rolls, pitches and yaws of the aircraft in low gradient 

areas in order to separate the effects of the three sources of interference. The 

excellence of magnetic compensation of a given survey aircraft is measured by its 

"figure of merit" (FOM) as originally defined by the US Navy. This index is 

obtained by summing, without regard to sign, the peak-to-peak amplitudes in 

nanoteslas of the 12 magnetic signatures recorded when the aircraft carries out -e 

10" rolls, -e 5" pitches, k 5" yaws on north, east, south, and west headings over 

periods of 4 to 5 seconds. 

Active 9-term aircraft magnetic compensation systems have been 

commercially available for more than 20 years (see for instance Hood, 1970,1986a, 

1991b). The use of these active compensation systems improve the "figure of 

merit" of a given aircraft considerably, and drastically reduces the time required 

for aircraft compensation. They are in fact mandatory for high resolution 

aeromagnetic survey work. 



Data Acquisition Systems 

Data acquisition systems normally consist of both digital and analog 

recording systems. The digital acquisition system records the digital data on a 

suitable medium that has traditionally been magnetic tape on reels but data 

cassettes and discs are becoming more common. It is desirable that the digital 

recorder has a read-after-write capability so that the recorded data can also be 

displayed in analog form on a chart recorder (or scrolled on a CRT display) so the 

instrument operator can ensure that the data is being properly recorded 

throughout the survey flight. The parameters that are digitally recorded include 

the magnetic field readings, radar and barometric altitudes, time, fiducial 

numbers and navigational information. Information such as aircraft registration, 

date, line number, line segment number, direction, flight number, start time of 

line and any relevant scale factors or datum levels should be included in a header 

record which precedes the relevant data. Such pertinent information should also 

be included on the analog records and noted on the flight log to be maintained 

by the instrument operator. 

2.1.4 Airborne Positioning Systems 

Positioning systems used for aeromagnetic surveys can be divided into two 

main categories: 

(1) those which are self-contained within the aircraft; these include tracking 

cameras, Doppler and inertial navigation systems. 

(2) those which require external references normally fixed radio transmitters 

on the ground. The ground-based navigation systems which have been 

most utilized up to the present time have been Decca and Loran C 

navigation systems. For the aeromagnetic surveys of extensive bodies of 

water, the use of an electronic positioning system is mandatory. 



The most widely-used method of recovering the aircraft track up to the 

present time has been by the use of vertically-mounted 35 mm cameras, either 

continuous strip or the more usual single frame variety, or by the use of video 

cameras. Doppler navigation systems have been quite commonly utilized in 

airborne geophysical survey systems not only to aid in the flying of straight 

parallel flight lines but also to assist the subsequent flight path recovery process. 

The cumulative errors on most Doppler systems are usually between 1 and 2% 

of distance traversed. Inertial navigation systems (INS) that employ 

accelerometers whose output is doubly integrated with respect to time have also 

been extensively utilized to assist in recovering the aircraft track but like Doppler 

systems, the errors are cumulative. 

After a long gestation period, the US Air Force Global Positioning System 

(GPS) has now reached the stage where it will provide accurate positions during 

daylight hours in most parts of the world and so it can be utilized as the prime 

navigation technique along with Doppler or INS (and with video flight path 

camera backup) in aeromagnetic surveys i.e. it is now an operational reality. As 

of August 1,1991, sixteen satellites were operational in orbit with additional GPS 

satellites being launched approximately every two months or so. 

The present plan of the US Air Force is to have a total of 21 GPS satellites 

plus 3 spares that will be equally distributed in six orbital planes around the 

earth. The full constellation should be in place by 1993. A similar 24-satellite 

system in 3 orbital planes called Glonass is also planned by the USSR and may 

be fully deployed about the same time as GPS. Both Trimble Navigation Ltd. and 

Ashtech Inc. both of Sunnyvale, California are building combined GPS/Glonass 

receivers. 

GPS can provide positional fixes with an accuracy of about 10 metres that 

is more than adequate for airborne geophysical surveying. Unfortunately the 



most recent series of satellites launched, the so-called Block I1 GPS satellites have 

a built-in capability of degrading the accuracy to civilian users by a combination 

of dithering the satellite clock and data manipulation of the ephemeris. This 

degradation is euphemistically referred to as Selective Availability and reduces 

accuracy to civilian users to no better than about 100 metres. Full accuracy can 

be restored by employing a second fixed ground receiver to record the dithering 

to that it can be nullified by a subtraction (or differential) process. 

The use of GPS has already had a number of beneficial effects to the 

practice of aeromagnetic surveying. Firstly surveys can be carried out in any part 

of the world to the same navigational accuracy whatever the terrain. Secondly, 

a much more even network of traverse and control lines can be flown because the 

pilot does not have to navigate visually by map reading. He can simply utilize 

the GPS left-right indicator mounted in the cockpit to guide him along the survey 

lines. Indeed pilots are flying without the benefit of topographic maps; they only 

need to input the latitudes and longitudes of the waypoints along the lines into 

the GPS receiver. Thirdly the flight path recovery process can be automated 

because the GPS positions are digitally recorded and a minimum of visual point 

picking is then required to verify the position of the flight lines. This has reduced 

the overall cost of aeromagnetic surveys especially for offshore surveys and for 

surveying areas of featureless terrain where no existing electronic navigation 

chain is in place. It should be mentioned that GPS is normally utilized in 

combination with INS or with Doppler so that if there are short periods of GPS 

dropouts or reductions in the number of satellites in view, the INS or Doppler 

will fill in for short periods and otherwise reduce any scatter in the GPS fixes. 

Most airborne geophysical contractors are now utilizing GPS in their survey 

operations and its use should improve considerably the overall quality of the 

resultant survey data and maps. 



2.1.5 Ground Diurnal Stations 

In order to monitor the daily (diurnal) variation of the earth's magnetic 

field, it is imperative that a ground station be continuously operated at the base 

of operations. Because the resultant data should be free of interference from 

vehicular traffic etc., the sensor itself has to be located in a magnetically quiet 

location. The resultant data is normally digitally recorded at a one-second 

interval during survey operations but an analog recording is required on a 

continuous basis so that the general state of the diurnal activity can be ascertained 

over the previous few hours by the flight crew prior to the start of flying. Clearly 

if a magnetic storm is in progress or if the activity is unusual, there is no point 

in flying. Control lines are also best flown on quiet days. The diurnal data is 

normally a deliverable in most aeromagnetic surveys to the client organization. 

2.2 Aeromagne tic Survey Specifics tions 

Airborne magnetometer surveys for mining exploration are usually carried 

out at a mean terrain clearance of 150 metres and a line spacing of 400 metres or 

less. In Canada, where over 10,000,000 line kilometres of aeromagnetic survey 

have been flown by government agencies since 1947, a line spacing of 800 metres 

and a survey altitude of 300 metres has been used to obtain regional aeromagnetic 

coverage. Aeromagnetic surveys flown for mineral exploration purposes are 

usually flown at a constant mean terrain clearance to obtain the greatest detail in 

the field variations whereas those flown for petroleum exploration purposes are 

ysually flown at a constant barometric altitude to permit the greatest accuracy in 

determining the sedimentary thickness by forward or inverse depth determination 

methods. The choice of survey altitude and line spacing are interrelated because, 

in contouring an aeromagnetic map, features have to be followed across the flight 

lines. Lower flight elevations will produce more detailed profiles i.e. greater 

resolution of the anomalies, and it is therefore necessary to reduce the distance 

between the flight lines in order for the contour map to accurately map the field. 

For optimum results, the flight line spacing should be about twice the distance 



of the aircraft above the magnetic basement. For adequate sampling along the 

flight line,.the sample interval should not be more than one-quarter of the vertical 

distance from the survey aircraft to the magnetic basement i.e. 75 metres for 

aeromagnetic surveys flown at 300 metres over Precambrian shield terrain. 

The flight line direction should normally be oriented to cross the geological 

strike of the basement rocks approximately at right angles. However at low 

magnetic latitudes (inclination less than 20") because the magnetic anomalies are 

mostly produced by susceptibility changes across east-west striking rock contacts 

(and not by susceptibility changes across N-S striking rock contacts), it is 

mandatory to orient the flight lines approximately in a north-south direction 

regardless of the geological strike. 

Because the aeromagnetic surveys carried out in the two decades following 

World War I1 were mostly flown with one-nanotesla sensitivity magnetometers 

and the superimposed noise level was relatively high, the contour interval of the 

resultant maps was commonly 10 nanoteslas. Such surveys are now referred to 

as standard-sensitivity aeromagnetic surveys, whereas those that utilize more 

.recently developed airborne magnetometers having a sensitivity of 0.1 nT or 

better with much improved compensation are designated high sensitivity (or high 

resolution) aeromagnetic surveys. Medium sensitivity surveys are those using 

magnetometers with sensitivities between 0.1 and 1 nT. Table 1 summarizes the 

principal specifications for, aeromagnetic surveys. 



Table 1 

PRINCIPAL SPECIFICATIONS FOR 
AEROMAGNETIC SURVEYS 

Tvpical Specification 

1. Magnetometer type and sensitivity Proton Precession/O.l nT 

2. Compensation Figure of Merit of 
aircraft and noise level for magnetic 
recording 

3. Sampling interval for magnetic field 0.5 sec. 

4. Navigation GPS + Video 

5. Digitally recorded parameters - total 
field, fourth difference of total field, 
time, altitude, navigation 

6.  Flying height - Mean Terrain 
Clearance or Barometric 

7. Flight and control line spacing l x 1 4 k m  

8. Diurnal variation allowable < 5 nT excursion between 
control lines 

9. Final maps - levelling adjustment, grid 1 nT/km 125 m for 1:50,000 
size, contour interval, scale (0.1 inch at map scale); 5 nT CI 

10. Digital data format - line profile and 
gridded data 

The above information is normally contained in the project report written by the 
airborne geophysical contractor who carried out the survey. The important parameters 
can usually be ascertained from the printed maps published by government agencies. 



Compilation of Aeromagnetic Survey Data 

There are five end products available at the completion of an aeromagnetic 

survey operation: digital magnetic tapes, cassettes or discs containing the total 

field, terrain clearance, time, and position co-ordinates, video camera tapes, the 

aircraft operators log, analog monitoring records of the recorded digital data and 

the diurnal ground station data. 

Figure 2 summarizes the various processes involved in compiling 

aeromagnetic data into contour map form. The compilation process proceeds in 

two parallel activities. The flight paths of the survey aircraft are first plotted and 

inspected to see that no gaps in the coverage exists. It is usual for a speed check 

to be made at this stage to identify along-track errors in the flight path recovery 

process. The speed check consists essentially of computing the average speed of 

the aircraft between the picked fiducial points along the profile. Since the average 

speed along a given flight line (for a fixed-wing aircraft) remains constant within 

a few percent, a wrongly positioned fiducial point will result in adjacent high and 

low calculated speeds with respect to the average. 

The second parallel activity consists firstly of editing the total field data 

and removing spikes etc. This can be done automatically utilizing the fourth 

difference technique (see Fig. 3) because individual spikes are amplified by a 

factor of ten in the fourth difference, whereas the geological signal is removed 

(Hood et al., 1979). 

The next step is the levelling process which utilizes the differences at the 

intersections of a set of control lines flown at right angles to the main series of 

traverse lines and the traverse lines themselves. In the levelling process, the 

errors in the differences are minimized. Because subjective decisions must be 

made in the process, it is usually best to adjust the levelling in a series of 

iterations by printing out or plotting the differences for guidance. 



Figure 2 Flow chart for aeromagnetic data reduction 
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The data is then gridded using a suitable interpolation process such as the 

Akima technique (1960). A common grid size is 2.5 x 2.5 mm at the publication 

scale. In general, the gridding method involves fitting smooth, continuous 

interpolation functions along parallel lines normal to the flight line direction. 

Each function has values equal to the magnetic measurements on the flight lines 

at the points where the two sets of lines intersect. The interpolation function lines 

are spaced apart at an interval equal to the ultimately desired fine grid interval 

and the functions are evaluated along these lines at points separated by the same 

interval, thus producing the fine grid directly. By this method the contours when 

traced pass within 0.01 cm of their true flight line intercept position and all fine 

detail is preserved. The resultant contoured data is then inspected for noticeable 

aberrations since the compilation process itself is a rather stringent check on the 

quality of the data used in making the contour map. 

The most common scale used by government agencies for the compilation 

of standard sensitivity aeromagnetic maps is 1:50,000 because it is the same scale 

used for the national geological map series and/or the national topographic map 

series. The resultant printed aeromagnetic maps normally have the flight line 

information shown in a different colour from the aeromagnetic contours so that 

users can assess how well a given anomaly has been defined. Thus for a I km 

flight line spacing, the flight lines appear at 2 cm intervals on 1:50,000 scale maps 

which is an appropriate presentation interval for airborne surveys. It is also usual 

to have the planimetry and drainage from the concomitant topographic maps 

appearing as a subdued background on the aeromagnetic maps so that the 

anomalies can be located with respect to geographic features to facilitate the 

ground follow-up of anomalies of interest. 

It is also standard practice to produce aeromagnetic composite maps at a 

smaller scale of one-quarter to one-fifth that of the detailed contour maps. Thus 

to accompany 1:50,000 aeromagnetic maps, 1:250,000 maps are often prepared by 



photographic reduction of the 1:50,000 maps. The flight lines are generally 

omitted from these composite maps because their resultant closer spacing usually 

distracts from the ready identification of regional geological trends. Upon the 

release of the published aeromagnetic maps, it is common practice for agencies 

to also make available both the gridded and line profile digital data. 

4. Quality of Aeromagnetic Data 

The overall quality of a particular aeromagnetic survey and the resultant 

data depends on the cumulative effects of a series of factors the most important 

of which may be summarized as follows: 

(1) the accuracy and sensitivity of the magnetometer employed. 

(2) the bias offset and noise level imposed on the data by the moving survey 

platform i.e. aircraft (see Fig. 3). 

(3) the positioning accuracy of the navigation system employed. 

(4) the overall suitability of the survey specifications utilized such as the flight 

line spacing/depth to magnetic basement ratio and direction with respect 

to the major geological strike (see Table 1). 

(5) the suitability of the data reduction procedures employed in compiling the 

aeromagnetic data and the quality control procedures used in detecting 

and removing aberrations in the resultant data set (see Fig. 2). 



4.1 Calibration and Compensation of Aeromagnetic Survey Instrumentation (Hood, 

1991a) 

In considering the influence of the survey aircraft itself on the magnetic 

field recorded by an inboard magnetometer, the interference can be divided into 

static and dynamic effects as follows: 

(1) the static effect is due to the permanent and induced magnetic fields 

produced by the ferrous components of the aircraft, by eddy currents 

induced in the skin of the aircraft and by DC current loops in the electrical 

system which slightly change the base level of the magnetic readings. The 

amplitude of the static effect will depend on the heading of the aircraft 

with respect to magnetic north because the orientation of the induced 

magnetization of the various ferrous components will change as the earth's 

magnetic field vector changes with respect to the aircraft flight direction. 

(2) the dynamic effects are produced by the various oscillatory movements 

that all aircraft experience as they fly and by electrical interference from 

within the aircraft. These dynamic effects show up as noise on the 

resultant recorded data. 

Thus the total field value recorded at any instant by an inboard 

magnetometer will differ somewhat from the true value due to the magnetic field 

produced by the aeromagnetic survey aircraft itself. In any discussion of whether 

the measured total field values correspond to the actual total field values, there 

is also the question of the accuracy of the basic magnetometer circuitry utilized 

in measuring the frequency. Frequency measuring devices invariably require an 

accurate internal clock or timing device whatever the actual technique that is 

utilized. Consequently it follows that some form of calibration check is desirable 

in using airborne magnetometer system. 



4.1.1 Noise on Aeromagnetic Survey Data 

The different types of noise that are recorded in aeromagnetic survey 

operations may be divided into two main categories - continuous and 

discontinuous noise. Discontinuous noise occurs as isolated spikes or a series of 

closely-spaced spikes forming a wave train in the magnetic field data usually as 

a result of some action of the flight crew although there can be external causes. 

These external causes would include close lightning bursts, the presence of a DC 

train, street car (tram) or power line system in the survey area, and in the case of 

optical absorption magnetometers, the passing of the aircraft through a radar or 

TV repeater beam. The actions of the crew that would cause discontinuous noise 

include 

(1) radio transmissions particularly HF, 

(2) the switching of equipment drawing DC current, e.g. auto pilots, 

(3) relocation of ferrous objects in the cabin of the aircraft such as tool boxes. 

Continuous noise for inboard installations is produced both by the flexing 

of the aircraft during turbulence and by its overall manoeuvre pattern relating to 

the attitude of the aircraft as it flies. The flexing of the aircraft will produce a 

(high frequency) noise swath on the magnetic field signal while the overall 

manoeuvre pattern (rolls, pitches and yaws) will tend to modulate the magnetic 

field signal at a somewhat lower frequency. A lower frequency modulation can 

also be produced by bird swing if the magnetometer is towed such as in 

helicopter-borne vertical gradiometer systems. The period of oscillation depends 

on the length of the tow cable and is usually of the order of 10 seconds. In high 

sensitivity survey installations, the use of a flight path camera that has a DC 

motor can produce a small spike every time the shutter is activated. One of the 



most effective ways of measuring the noise swath is by computing the fourth 

difference of the digital data (Hood et al., 1979). The noise at value AT, 

where AT,, AT.,, AT,, and AT, are respectively the four recorded values located 

symmetrically with respect to the central value AT,. Thus by calculating the 

fourth difference of the recorded data in flight using in turn five adjacent values, 

the noise level at the sampling frequency can be monitored by the instrument 

operator continuously using an analog chart recorder. Any spikes or changes in 

the datum level of the data will also be readily apparent to the operator, because 

these appear as a distinctive wave train on the fourth difference trace (see Fig. 3). 

4.1.2 Acceptable FOM Levels 

Under normal turbulence conditions, the noise level appears to be linearly 

dependent on the figure of merit (FOM) of the survey aircraft (see Section 2.1.2 

for definition). In fact as a rough guide in average turbulence conditions over 

land areas, the empirical relationship appears to be 

Noise Level = - FOM ( H o d ,  19860) 
15 

which is slightly less than the average for the FOM manoeuvres as would be 

expected. But in very calm air, the noise level would be somewhat less. 



Thus for the 1 nanotesla regional surveys of the 1970's in Canada, the FOM 

specified was 12 nanoteslas. With improved compensation the specified FOM has 

been reduced to 4 nanoteslas for a concomitant 0.25 nanotesla noise level. 

4.1.3 Calibration of Aeromagnetic Survey Systems 

General 

The calibration of aeromagnetic survey systems should preferably be 

carried out immediately before and at the close of survey operations. In addition, 

if there are major repairs or changes to aircraft instrumentation during the coiuse 

of a survey, then the calibration should be repeated to check that the units of the 

geophysical parameters recorded are accurate. If several aircraft are being 

utilized to survey adjacent areas then the calibration of each will avoid the 

possibility of level shifts in the measured geophysical parameter across the 

common boundary between the survey areas flown by the different aircraft. 

Aeromagnetic Calibration Ranges 

The first step in the calibration procedure is to compensate the survey 

aircraft as described earlier to obtain the lowest figure of merit possible. A check 

should then be made that the background noise of the data acquisition system 

itself has also been reduced to an acceptable level using the fourth difference 

technique. 

The main purpose of the calibration check is however to establish that the 

measured total field values recorded by an aeromagnetic survey system 

correspond accurately to those actually existing at the magnetometer sensor. In 

Canada, for government aeromagnetic surveys utilizing proton precession or 

optical absorption magnetometers, an aeromagnetic calibration range has been set 

up in a low gradient area at a crossroads near Bourget, Ontario which is 

approximately 45 km east of Ottawa and easily recognizable from the air (Hood 

& Sawatzky, 1983) and a second calibration range is located in Meanook Alberta, 



north of Edmonton. The values at the ground level at the respective calibration 

crossroads have been tied respectively to the Blackburn or Meanook Magnetic 

Observatories using calibrated proton precession magnetometers. The values at 

150 m and 300 m elevation above the calibration crossroads have been measured 

by flying a survey aircraft at various heights across the crossroads to ascertain the 

vertical change which is about 12 nanoteslas in 300 m positively upwards. Thus 

the total field values at the two levels above the crossroads have been tied to 

within a few nanoteslas to the continuously recording magnetometer at the 

Blackburn or Meanook Magnetic Observatories. Because the diurnal variation at 

each of the calibration crossroads can be expected .to follow closely the diurnal 

variation at the respective observatory, the value can be calculated at any instant 

of time by subtracting a constant difference value from the Blackburn or Meanook 

Observatory values. 

Aeromagnetic survey aircraft are normally flown along the four cardinal 

headings across the calibration crossroads with their flight path cameras operating 

and the field values for each cardinal heading are ascertained at the point above 

the crossroads. The difference value is subtracted from 'the Observatory reading 

at the exact time that the survey aircraft crossed the calibration crossroads to get 

the true reading. The heading errors for the survey aircraft are also calculated as 

part of the same calibration procedure. 

In general the calibration errors should not exceed 10 nT and the heading 

errors should be within 5 nT in an acceptable aeromagnetic survey system. For 

fluxgate magnetometers which measure the total field above an arbitrary datum, 

Helmholtz coils can be utilized to check the sensitivity of the aeromagnetic survey 

system in a similar way that ground systems are calibrated. 

Some trimming of the compensation will be necessary when the dip and 

strength of the magnetic field in the survey area differs somewhat from that 



where the survey area is normally based. For recently developed active 

compensation systems, a complete recompensation is easily carried out in a short 

survey flight. 

4.1.4 Lag Tests 

It is usually found that there is a difference in time between the instant that 

a flight path photo or image is registered and the magnetic value is recorded. 

This results from inertia in the camera motor, non-vertically of the camera, the 

fact that the magnetic reading is actually an average over a short period of time, 

etc. In order to ascertain this time difference, usually referred to as lag, it is 

necessary to fly over a sharp anomaly such as a bridge in both directions and plot 

the location of the peak of the anomaly with respect to its position on the ground 

from the imagery. The resultant displacement in the position of the peak of the 

anomaly will give twice the lag that is normally expressed in seconds. A typical 

value might be 0.5 seconds. Some care should be taken in the resultant 

compilation process that the lag is removed in the correct sense. If this is not 

done correctly, it will appear as so-called "herring boning" in the contouring 

across adjacent lines flown in the opposite direction. 

Worldwide Aeromagnetic Survey Coverage 

After the start of aeromagnetic surveying in 1946, the rate of coverage was 

initially slow because it took some years of surveys to demonstrate the efficacy 

of the technique in both petroleum and mineral exploration applications. The 

earliest airborne geophysical survey contractors were formed in the late 1940's 

initially to carry out work in North America. Since that time the numbers of such 

contractors have increased and presently there are some fifteen companies 

worldwide that carry out the vast majority of the survey work (Hood, 1986b). 

The principal clients of such contractors in order of importance are government 

agencies usually the geological surveys or the equivalent government 



organization, petroleum and mining companies. Some government agencies of 

large countries have also equipped themselves to carry out aeromagnetic surveys. 

Certain areas of the world have now been completely covered by low-level 

aeromagnetic surveys; by low-level we mean less than 1000 m terrain clearance 

with most regional surveys being flown at 300 m. The areas surveyed include 

most of the countries of Europe. Figure 4 shows the aeromagnetic coverage of 

North America and it can be seen that there has been almost complete coverage 

of the USA itself and about 75% coverage of Canada. The data was utilized in 

the compilation of the Magnetic Anomaly Map of North America published in 

1987 by the Geological Society of America. The digital data set for the map 

(along with other aeromagnetic digital data) is available from the National 

Geophysical Data Center in Boulder, Colorado. However both the USGS and the 

Geological Survey of Canada have been carrying aeromagnetic surveys for many 

years so much of the original data is also available in digital form from those 

organizations. 

Figure 5 shows the aeromagnetic survey coverage of Africa using 

information gathered from various sources including Reeves (1991). Much of the 

work has been carried out by or for the relevant government geological surveys. 

In particular, the Canadian International Development Agency, has funded 

aeromagnetic surveys in Botswana, Cameroon, Ivory Coast, Kenya, Lesotho, Mali, 

Niger, Rwanda, Upper Volta (Burkina Faso), Zambia and Zimbabwe (Morin et al., 

1989). Most of these were carried out under the technical supervision of the 

Geological Survey of Canada. It can be seen that there has been approximately 

80% aeromagnetic coverage of the African continent and that a number of the 

countries have essentially 100% coverage. About 90% of this data was not 

digitally recorded in the original survey but will be digitized as part of the 

African Magnetic Mapping Project (Reeves, 1991) that will produce a magnetic 

anomaly map of the continent. 



LOW-LEVEL AEROMAGNETIC 

Figure 4 Aeromagnetic Coverage of North America 



Figure 5 Aeromagnetic coverage of Africa 



Figure 6 shows the known aeromagnetic coverage of South America where 

there appears to be about 50% coverage. Most aeromagnetic survey work appears 

to have been carried out in Brazil (Berbert, 1989). 

Elsewhere in the world, the USSR has complete regional coverage at a 2 

km line spacing or so (Makarova, 1974). The resultant 18 maps at a 1:2,500,000 

scale were digitized by the US Naval Oceanographic Office and is available from 

the National Geophysical Data Center in Boulder, Colorado (Hittelman et al., 

1991). 

China has about 87% coverage that includes all of eastern China (Zou, 

1989). Approximately 1:200,000 sq. km of the Yellow, East and South China Seas 

have also been covered by the Ministry of Geology and Mineral Resources. 

A contracted aeromagnetic survey of the whole of Thailand was carried out 

during the period July 1984 to December 1989 by the Thailand Department of 

Mineral Resources (DMR). The data are available in both 1:50,000, 1:250,000 

contour and 1:1,000,000 colour pixel map form as well as digital profile and 

gridded form on magnetic tape from DMR (DMR Technical Bulletin 4, 1989). 

In Australia, aeromagnetic surveys covering about 80% of the Australian 

continent have been carried out since 1951 using a flight line spacing of 1.5 km 

and a terrain clearance of 150 m. About 75% of this data was obtained using 

fluxgate magnetometers and the remainder was obtained using proton precession 

magnetometers (Milligan and Tarlowski, 1991). The earlier data has been 

digitized for a magnetic anomaly map of Australia. 



LOW-LEVEL AEROMAGNETIC SURVEY 
COVERAGE OF SOUTH AMERICA 

Figure 6 Aeromagnetic coverage of South America 
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Magnetic Repeat Station Data 

C.E. Barton. BMR Geology & Geophysics. PO Box 378, Canberra ACT 2601. Australia. 

Abstract 
The nature, purpose, availability and distribution of magnetic repeat station data are reviewed. 
Aftention is paid lo how repeat station dala are obtained, sources of errors and limitations on 
accuracy. Repeat station results cannot achieve the accuracy of magnetic observatory 
estimates of the secular variation, but are, nevertheless, essential for improving the limited 
spatial coverage provided by observatories. The lack of appropriate standards and reporting 
procedures have meant that most global field modelers have made little, or no, use of repeat 
dam. Partly lo rectify this problem, /AGA Working Group V-4 has insligated a scheme for 
systematic reporting and classification of magnetic repeat station data. The scheme will help 
to ensure that proper use is made of the wealth of repeat data that is available, and will also 
promote better observational practices. 

Int reduction 

From a practical point of view a knowledge of the secular variation of the Earth's magnetic field is important 

for up-dating magnetic survey data and forward-extrapolation of the field. Indeed, most regional and global 

models of the geomagnetic field (notably the International Geomagnetic Reference Field, IGRF) rely heavily 

on secular variation information. 

The most accurate information we have about the secular variation is obtained from the global 

network of permanent magnetic observatories. The secular variation is usually derived from the difference 

bctween observatory annual means, the latter being calculated either for all days (the traditional approach) or 

for some particular selection thereof. Unfortunately the distribution of magnetic observatories is very 

irregular, with a large number of observatories in Europe and very few in many other parts of the world, 

particularly in the southern hemisphere and the oceans. The purpose of repeat station measurements is to 

determine the secular variation for land areas where observatory coverage is inadequate (Figure 1). 

Repeat station data have bcen used widely for regional field modelling, but are rarely used for global 

field modelling, other than as ordinary vector survey data. The main reason for this is the large variation in 

quality of repeat data, and the inadequacy of international reporting procedures. 

For detailed practical information about repeat station practices, the reader is referred to the new guide 

being prepared by Working Group V-4, Magnetic Surveys and Charts of the International Association of 

Geomagnetism and Aeronomy, IAGA (Newitt et a]., due for completion in 1992). 



Figure 1. Repeat stations provide secular variation information where observatory coverage is inadequate. 

Magnetic repeat stations and magnetic survey stations 

A magnetic repeat station is a fixed point on the Earth surface marked either by a permanent nonmagnetic 

marker at ground level (for example, a brass plaque set in concrete slab), or by a pier. The station is visited 

at regular intervals to make accurate absolute measurements of three or four components of the magnetic 

field. 

In principle there is a fundamental difference between ordinary magnetic survey stations and repeat 

stations. The former are used for mapping the main (core) field plus crustal field. Because the crustal field 

contains short wavelength information, a high density of survey stations is necessary. Furthermore, the 

amplitude of field variations on a local scale is large compared to the secular variation, so there is no necd 

either to locate magnetic survey stations accurately, or to make accurate corrections for external field effects. 

At repeat stations both these factors must be given careful attention. Vector measurements at ordinary 
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survey stations can take as little as half and hour (or only a few minutes if total field alone is measured), 

whereas repeat station observations usually span several days. Consequently it is only possible to occupy a 

limited number of repeat stations. 

The distinction between ordinary magnetic survey data and repeat station data is often blurred, with the 

tag "repeat data" being used to describe any vector observations of the field made at a fixed point. This 

confusion affects some of the data held by the World Data Centers and has limited the usefulness of repeat 

data. IAGA has recently adopted a reporting scheme designed to overcome such problems (Appendix). If no 

correction is made for external field effects, and/or relocation of the station is not exact, "repeat" data can only 

be used to estimate the average secular change over a long interval of time. Under such circumstances there 

is no point in making frequent repeat observations. 

Repeat station spacing requirements 

Despite the many years of effort that have gone into observatory geomagnetism, it has never been possible 

to determine the surface station spacing required to sample the secular variation properly on a global scale. 

This is simply because no surface data set has ever had sufficient spatial resolution to over-sample the secular 

variation signal at the Earth's surface (although there is the expectation that long-duration low-altitude 

satellite missions will solve this problem in the future). 

The International Union of Geodesy and Geophysics (IUGG) recommends that, for the purposes of 

main-field mapping, surface measurements of the magnetic elements should be made at a spacing of about 

200 km (Vestine, 1961). A similar spacing is generally accepted as desirable for observing the secular 

variation. Given that main field sources lie in the core, more than 2800 km below the surface, a purely 

geometrical argument would suggest that a station spacing of 200 km should be more than adequate to 

sample the secular variation. However, in Europe, where the observatory spacing is typically of this order, 

many countries still operate repeat station .surveys with considerably higher densities of stations. Results 

from such surveys do indeed indicate that they recover additional detailed information about the secular 

variation. This may well include a contribution from crustal sources, e.g. piezomagnetic effects in 

tectonically active regions, or seasonally-varying induction effects, particularly near the oceans. 

Re-occupation interval 

With the limited resources available to most survey agencies, it is usually necessary to strike a balance 

between the number of stations occupied, the frequency of occupation and the accuracy of data obtained ftom 

each station. With this in mind it is necessary to focus on the main purpose for making repeat station 

measurements. For example, for updating regional magnetic field charts every 5 years (say), repeat 

observations are needed only every five years (provided the observations are made near the 5-year epoch 

boundaries). Determination of the character of secular variation impulses (jerks) places the most stringent 

requirements on observations. In this context, even observatory data are barely adequate to decide whether 
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jerks are world-wide in character and of internal or external origin (Courtillot and Le Mouel. 1978). Repeat 

station occupation intervals suggested by Newitt et al. (in preparation) are: 

5 years for updating regional magnetic charts 

2 years for producing secular variation models 

1 year for detecting secular variation impulses (geomagnetic jerks) 

The two-year re-occupation interval is recommended by IAGA. 

Location of repeat stations 

Repeat stations must be positioned where there is no change in the local magnetic environment between 

successive reoccupations. Localities with high magnetic gradients, or anomalous sub-surface electrical 

conductivity properties, should also be avoided. However, the former is not always possible, and the latter is 

usually unknown and therefore neglected. Induction-related problems (see below) can be ameliorated to some 

extent by conducting surveys under identical daily, seasonal and magnetic conditions. 

External field corrections 

Corrections must be applied to the absolute observations made at a repeat station to remove external effects 

and derive the main field plus static crustal field. (Herein the external field contribution is deemed to include 

fields produced by internal currents induced by transient external fields). The two approaches to this problem 

both require reference to records from permanent magnetic observatories. 

By far the most convenient and elegant approach is to reference all observations made at the repeat 

station directly to one (or more) permanent magnetic observatories, and hence derive a pseudo annual mean 

value for the repeat station. It is assumed that transient (including diurnal) variations of the magnetic field 

are identical at both the repeat station and the chosen reference observatory during the interval of 

observations. Thus, the difference between the instantaneous value of an element, E(t), and its annual mean 

value, E, at the repeat station is the same as the difference between the corresponding values, Eo(t) and Eo, 

at the reference observatory: 

E(t) - E = Eo(t) - Eo 
hence E = Eo + (E(t) - Eo(t)) 

For this to be strictly true the secular variation must be the same at the two locations during the interval 

between the repeat station occupation and the epoch of the annual mean. 

The fist  assumption is clearly crucial. Proximity of the nearest reference observatory (as reported on 

the IAGA record sheets - see Appendix 3) is not necessarily a good guide to the validity of this assumption. 

Depending on the nature and morphology of external field sources, it is possible to find stations as little as a 

few tens of kilometres apart at which the time-dependent field differences are unacceptably large. This is 

particularly common in polar latitudes where external field sources show the greatest variability. At the 

other extreme, Daniel Gilbert (personal communication) cites an example of a repeat station in the Indian 
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Ocean where very accurate results have been obtained by using reference observatories thousands of 

kilometres away. The marked difference between the latitude and longitude dependence of the daily variation 

is also an important factor to be considered when choosing a reference observatory. Some survey agencies 

(e.g. in South Africa and Britain) use more than one reference observatory and a weighted interpolation 

scheme that reflects their relative importance. 

The second approach is to deploy a three (or four) component variometer on-site. Absolute 

measurements made at the repeat station are used to calibrate the variometer record. Results are processed in 

the same way as observatory data so as to derive the night-time value of the field (when disturbance levels are 

at a minimum, though rarely zero). Even when obsefiations are made under fairly quiet conditions, the 

night-time value of the field will usually include a small external field contribution (typically up to a few 

nanotesla). A correction for this contribution has to be estimated from records from one or more 

observatories in the region. The correction can be applied either directly to get a final result for the internal 

field at the date of station occupation, or via the observatory record to get a pseudo annual mean value for the 

repeat station. In the latter case the secular variation assumption mentioned above is made. 

Accuracy 

Repat  station measurements are prone to several gross errors, such as mis-location of the repeat station, 

incorrect setting of instrument height above the station ground marker, introduction of magnetic 

contamination between station occupations, and inadequate procedures for correcting for external field effects. 

In the absence of such errors, some figures quoted for typical accuracies achieved during repeat station surveys 

are given in Table 1. The figures in the table do not take into account errors arising from weaknesses in the 

assumptions made when correcting for external field effects. 

Table 1. Typical accuracies of repeat station resultst 

D(') 
Australia 1 - 2  

France 1 

Italy 2 

Germany 1 
Switzerland 1 - 2  

South Africa 2-4 

U.K. 1 . 5  

H(n T) Z(n T) F(n T) 

4 - 1 0  5 - 1 0  5 McEwin (pers .comm.) 
4 3.5 4 Bitterly and Gilbert, 1988 

8 8 8 Molina et al., 1985 

3 - 4 3-4 Mundt, 1980 

1 0  Fischer et al., 1979 

1 2 - 2 4  Scheepers, 1969 
6 6 5 Barraclough (pers. comm.) 

f After correcting for external field effects 
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Figure 2. Differences in the annual change in Z for 1990.0 between repeat station estimates and 
IGRF90 (units of nT yr-l). Boxed values are (observatory - IGRF90) differences. The region covers 
Australia. Papua New Guinea, Islands in the SW Pacific and New Zealand (inset, expanded to double 
scale). Observatory codes are: CNB = Canberra. CTA = Charters Towers, EYR = Eyrewell, GNA = 

Gnangara. LRM = Learmonth. PMG = Port Moresby, TNG = Tangerang. (Data provided by Andrew 
McEwin and Don McKnight). 

An indication of the scatter in repeat station determinations of the secular variation is given by Figure 2. 

The posted numbers are differences between repeat stations determinations of the annual change in Z and the 

corresponding values given by IGRF90 (nT yr-l). The area shown covers Australia, Papua New Guinea, 

some SW Pacific Islands and New Zealand (inset, enlarged by a factor two). This happens to be a good 

region to choose because the secular variation is quite small, and the data set is among the better ones 

available. Stations were occupied for a minimum of three days with on-site variometer control, and detailed 

corrections applied for external field effects. Values posted on the figure are estimates of the annual change 

of vertical field (Z) for 1990 in nT yr-l; figures in boxes are for permanent magnetic observatories. The 

repeat station results are derived from a subjective fit to a time series of observations at each station, made at 

intervals of approximately 5 years. For many SW Pacific Island stations only two successive observations 

are available. There is overall consistency between the repeat and observatory data, and the repeat data are 

clearly providing additional information about the secular variation despite the scatter in the results. A 

noticeable anomaly occurs in the region of Leannonth (LRM) in Western Australia, where the observatory 

and surrounding repeat data are clearly at odds. Part of the reason for this is that the most recent repeat 
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observations in that region were made nearly 3 years prior to 1990, whereas the m o n t h  value is for epoch 

1990.0. However the discrepancy is still surprisingly large and suggests that there may be induction 

problems in the region. Over such a large region there are many stations where the distance to the nearest 

reference observatory is 1000 km or more; thus it is often difficult to get an accurate correction for the 

displacement of the night-time value of the field. This certainly contributes to the scatter in the 

observations. 

The above discussion raises the question of whether good repeat data are adequate for modelling the 

secular variation over 2-year or 5-year time intervals? Figure 3 shows the present-day distribution over the 

Earth's surface of the secular variation in total field (F), given by IGRF1990 (IAGA Working Group V-8, in 

press). The histogram (Figure 3a) shows the percentage of the Earth's surface that experiences secular 

variation in class intervals of 5 nT/yr from -130 nT/yr to +75 nT/yr. The strong negative bias in the 

distribution reflects the decay of the Earth's dipole moment. It can be seen that over a significant part of the 

Earth's surface the annual changes in F are less than the uncertainties quoted in Table 1. This is shown 

more clearly in a cumulative distribution plot for the absolute value of the secular variation in F (Figure 3b). 

Some figures for the area of the Earth's surface over which the annual change in F lies within various bounds 

are listed in Table 2. 

Table 2. Distribution of secular variation in F over the Earth's surface 

given by IGRF1990. 

% Area of Earth (%) Bounds for SV in F (nT/yr) 
5 f 1 

10 f 2.5 
15  f 4.7 
20 f 7 
25  f 9 

3 0  f 12 

Suppose that the error in a repeat station result for F is f 5 nT (i.e. at the low end of the range quoted in 

Table l ) ,  and we determine the secular variation by subtracting results from successive station occupations 

two years apart. The uncertainly in the secular variation obtained ( f 5 nT/yr) will therefore exceeds the 

actual secular variation over about 15% of the Earth's surface. If the repeat station errors were twice as large, 

then over almost one-third of the Earth's surface the secular variation would be less than the observational 

uncertainty. The problem is less serious if only the average secular variation is required from observations 5 

years apart (or longer). Although these are only generalized figures, they do demonstrate that very careful 

measurements are required, with accurate corrections for external field effects, in order to obtain results that 

are useful for developing present-day and predictive secular variation models. 



-127.5 -112.5 -97.5 -82.5 -67.5 -52.5 -37.5 -22.5 -7.5 7.5 22.5 37.5 52.5 67.5 

Secular change In F (class Intervals of 5 nTlyr) 

0 2 0 4 0 6 0  8 0  100 120 

Absolute value of secular change in  F (nTlyr) 

Figure 3. (a) Histogram showing the distribution over the Earth's surface of the secular change 

in F given by IGRF1990; (b) cumulative area plot of the same distribution. 
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Induction effects 

Fields produced by internal electric currents induced by transient external sources are commonly treated as part 

of the external field and otherwise ignored. The problem with this simplification is that, whereas external 

sources are likely to provide a homogeneous signal over a large region (particularly for magnetospheric 

sources), the inductive response of the crust can be highly localized. This is illustrated by Figure 4, which 

shows X and Z magnetograms from an array of magnetometers deployed in the Canning Basin, northwestern 

Australia (Chamalaun and Cunneen, 1990). The spacing between stations varies between 100 km and 200 

krn. A sub-surface electrical conductor appears to run through the basin, causing a vertical field anomaly 

affecting the stations on one side of the conductor (FIT, BRO, FRO, LKT, RUS) in the opposite sense to 

those on the other side (MCL, PAR, etc.). Station FRO lies almost above the conductor and hence shows 

only a small Z-anomaly. Differences between signals from nearby stations thus differ by more than 50 nT. 

Although repeat station observations should not be made under such disturbed conditions, we can conclude 

that inductive problems may exert an important influence on the range over which reference observatories 
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can be used for reducing repeat data. The fact that most observatories lie within the range of oceanic 

induction effects does nothing to improve the situation. Furthermore, because external sources and ocean 

current systems are subject to seasonal variation, it cannot be assumed that induction effects will average out 

unless averages are taken over time intervals of several years. For example, Winch (personal 

communication) has identified a one cycle per year signal of amplitude 2 nT to 10 nT (peaking in March) in 

observatory annual mean values that he attributes to oceanic dynamo effects. 

Early repeat station observations 

Repeat station surveys were commenced during the latter part of the 19th century and early part of this 

century, largely through the efforts of the Carnegie Institution of Washington. External field corrections 

were generally ignored during these early surveys (Figure 5). The seriousness of this omission depends on 

the size of the secular variation signal and the time interval between successive station reoccupations. For 

example, suppose that 0bse~ations were made during magnetically undisturbed conditions at mid-latitude, 

where the typical amplitude of the quiet daily variation is about 50 nT. Assuming that the error in the 

observations arising from external fields is, say, half this figure (25 nT) and that the observations are repeated 

every 10 years, then the secular variation would have to exceed 5 nT y-l  in order to equal the error in the 

observations. The spatial distribution of secular variation today (Figure 3 and Table 2) indicates that this 

would be the case over about 85% of the Earth's surface. Thus uncorrected observations are still valuable for 

determining secular variation, provided that only an average is required over a sufficiently long interval of 

time. Bloxham, Gubbins and Jackson (1989) have been able to make good use of historical data for this 

Same reason. 

Figure 5. Influence of external field effects on repeat station observations. 
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World Data Center data holdings 

The two principal World Data Centers holding data classified as repeat station data are WDC-A, Boulder, 

Colorado and WDC-C3, Edinburgh, Scotland. The holdings at these two centers are broadly similar, but by 

no means identical. The distribution through time of repeat data held by WDC-C3 is shown in Figure 6. 

Prior to World War-11, repeat station survey work was confined largely to the U.S.A. and Finland. Thereafter 

many other countries started to undertake repeat station surveys, the main regions of activity being in 

Europe, Central and South America, Japan, Australia, West Africa, and South Africa. The large peak in 

1981 is caused by a large-scale survey in Europe canied out to produce a special declination model 

(Barraclough, personal communication) and a major new survey in China. Since 1960 the average level of 

repeat station activity has declined slowly. Some of the decline in recent years may be due to delays in 

reporting data to the World Data Centers. Figure 7 shows the geographical distribution of the repeat data 

held by WDC-C3 for five year intervals from 1900 onwards. 

Only recent data are useful for present-day and predictive modelling of the secular variation. Data 

received by WDC-A since 1980, and classified as repeat data, are summarized in Table 3. Data that have 

been submitted according to the new IAGA specifications are listed in Table 4. 

Table 3. Repeat station data held at WDC-A, Colorado submitted 

between 1980 and 1990. 

Country 

Angola 
Botswana 
Brazil 
Canada 
France 
Guatemala 
Japan 
New Zealand 
Peru 
Senegal 
South Africa 
South Africa 
United States 

Number of repeat 
stations 

1 
5 - 600 - 2000 

3 3 
290 

2 4 
1 0  
10 
2 2  

- 60 
1 3  
60  

Date received 
by WDC-A 
Nov 1980 
Aug 1982 

Jan 1983 
Jan 1987 
May 1982 

1980 
Dec 1 981 
Jan 1983 

Aug 1984 

TOTAL 3 128 



0 Repeat station data 

Year 

Figure 6. Distribution through time of repeat station data held by WDC-C3, Edinburgh. Scotland. 
Columns at 5-year intervals are shaded black. (Plot provided by D. Barraclough). 

IAGA scheme for reporting and classifying repeat station data 

A scheme for classifying and reporting magnetic repeat station data, developed by IAGA Working Group V- 

4, was formally adopted at the IAGA General Assembly in Exeter, July 1989. The scheme is designed to 

ensure regular reporting of repeat data in a standardized form. One of the principal aims is to improve quality 

control and provide sufficient information for the data to be used properly for global field modelling. It is 

hoped ha t  the scheme will also encourage better observational procedures. 

A description of the scheme is given in the Appendix. Each agency conducting repeat station surveys 

is asked to submit: (i) a regional magnetic repeat station network description giving general information 

about the network, observational methods and data reduction procedures, (ii) a record sheet for each 

occupation of a station, giving the main results, information about accuracy and an alpha-numeric 

classification code, and (iii) a computer file summarizing the results of a particular survey and/or a 

compilation of results from many surveys. Agencies are requested to lodge this information at WDC-A. 

IAGA Working Group V-4 maintains a catalog of the "Regional Magnetic Repcat Station Network 



Descriptions" (IAGA Working Group V-4, 1991). 

Countries that have lodged repeat station network descriptions under the IAGA scheme are listed in 

Table 4, together with the number of repeat stations operated and dates when data were sent to WDC-A. 

Table 4. Countries participating in the new IAGA reporting scheme. 

Country Number of repeat Date received 
stations by WDC-A 

Albania 3 4 
Australia 6 8 1990+ 

+ Papua New Guinea 6 1990+ 
+ SW Pacific Is. 9 1990+ 
+ Antarctica -50  

Brazil 105 

Britain 1 6  
Canada 5 9  

China 9 8 
Finland 2 5  
France 38  

+ Polynesia 
+ West ~ f r i c a t  5 0  
+ Antarctica 1 

Indonesia 5 9  
I taly 110 
Japan 105 
Mexico 5 0  
Mo~ambique 24 1 (single occupation) 
New Zealand 2 0  

+ SW Pacific Is. 5 

+ Sub-Antarctic Is. 3 

+ Antarctica 3 

South Africa 3 9  
+ Namibia 1 9  
+ Botswana 6 

+ Zimbabwe 9 
+ Antarctic Is. 2 

Sweden 1 0  

U.S.A. -1 10  current 
incl. Pacific Is. 

U.S.S.R. 130 

TOTAL 1 4 8 0  

t Burkino-Faso, Guinea, Ivory Coast. Mali, Niger. Senegal and Togo. 



Repeat 1900.0-07.5 
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Figure 7(a)-(r). Geographical dismbution of repeat station data held by WDC-C3, Edinburgh 
for 1900 onwards. Each plot covers a five year interval, except for (a) and (r). 
(Plots provided by D. Barraclough). 



Repeat 1912.5-1 7.5 
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Repeot 1922.5-27.5 

Repeat 1927.5-32.5 

Figure 7 continued ... (e) 1922.5 - 1927.5, and (f) 1927.5 - 1932.5. 



Repeat 1932.5-37.5 

I 

Repeat 1937.5-42.5 

Figure 7 continued ... (g) 1932.5 - 1937.5, and ( h )  1937.5 - 1942.5 



Repent 1942.5-47.5 
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Figure 7 continued ... ( i )  1942.5 - 1947.5, and (j) 1947.5 - 1952.5 



Repeat 1952.5-57.5 
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Repeot 1957.5-62.5 
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Figure 7 continued ... (k) 1952.5 - 1957.5, and (1) 1957.5 - 1962.5 



Repeat 1962.5-67.5 



Repeat1972.5-77.5
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I I I 1 I I 1 1 I I I I
I
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Repeat 1977.5-82.5
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Figure 7 continued... (o) 1972.5 - 1977.5, and (p) 1977.5 - 1982.5
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Repeat 1982.5-87.5 
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30 
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- 30 

- 60 

-90 
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Repeat 1987.5 onwards 

Figure 7 continued ... (q) 1982.5 - 1987.5, and (r) 1987.5 + 
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Conclusion 

Repeat station data are a valuable supplement to secular variation information provided by permanent 

magnetic observatories. The most difficult problem is to make an adequate correction for external field 

effects, particularly long-term transient effects on the night-time value of the field. We must rely on 

neighbouring permanent magnetic observatories to complete the corrections, even when a variometer is 

deployed on-site. Consequently repeat data are never truly independent. 

To date, repeat station information has been used almost exclusively for regional field modelling. 

When good observational procedures are employed, and appropriate corrections are made for external field 

effects, then repeat data are sufficiently accurate to be used for global models of the secular variation (e.g. 

IGRF). No doubt we will see this happen as more countries use the new IAGA scheme for reporting and 

classifying repeat station data. 

The distinction between magnetic survey stations and magnetic repeat stations has become blurred. In 

several regions the initial surveys have not been followed by reoccupations of the stations, for example in 

Iran,Afghanistan and Pakistan - Figure 71, and in China - Figure 7p). Also, several of the repeat station data 

holdings in the WDC's are too large to be credible for repeat stations that could be reoccupied on a regular 5- 
yearly, or even 10-yearly basis. It is both unfortunate and incfficicnt when this happens because the value of 

the repeat data is then little greater than for ordinary magnetic survey measurements (yet the time and effort 

involved in making a proper repeat station measurement is 2 orders of magnitude greater). 

It is important to strike a balance between the number of stations that are occupied, the frequency of 

occupation and the accuracy of the data that can be obtained from each station. The appropriate balance will 

depend on local conditions (e.g. the availability of reference observatories, the nature of inductive problems, 

and the magnetic latitude) and the magnitude of the secular variation signal being measured. However, there 

is often a tendency to occupy a large number of stations in order to get "good coverage" of a region at the 

expense of accuracy. Provided good observational practices are used, and appropriate steps are taken to correct 

for external field effects, then there is not much to be gained by increasing the duration of each station 

occupation. The best way to improve accuracy is to increase the frequency of station occupations. This was 

the rationale behind IAGA's recommendation that the interval between repeat station occupations should be 2 

years. Observations should always be made under the most quiet magnetic conditions possible, even when 

the daily variation of the field is accurately known. 

A question we should now ask is, if we arc interested only in determining the secular variation, what 

are the minimum observational requirements at a station in order to achieve an accuracy that is comparable to 

that obtained from permanent observatories? The question is pertinent (i) when a restricted observatory 

schcdule is necessary to save money, (ii) at polar stations that can be manned only during the summer, and 

(iii) for ocean-bottom observalories with limited data handling capabilities. 
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IAGA reporting and station classification scheme - explanatory notes 

Each agency conducting repeat station surveys is asked to submit to WDC-A, Colorado a 
Regional Magnetic Repeat Station Network Description giving general details about the 
network, a Regional Magnetic Repeat Station Record sheet for each occupation of a station 
giving an alpha-numeric classification code and a summary of the main results and a 
Computer File listing the main results of one or more surveys. 

Magnet ic repeat s ta t ion  network descr ip t ion  

This is short document summarizing the characteristics of a regional network of magnetic 
repeat stations, the instruments and observational procedures employed, the data reduction ' 

methods used, and a list of the models and charts produced. A diagram showing the locations 
of the stations, and a list of related publications may also be included. An example of regional 
magnetic repeat station network description is given in Appendix 2. One copy should be sent 
to WDC-A and another copy to the Chairman of Working Group V-4. An example from Japan is 
given in Appendix 2. Network descriptions are all prepared in a similar format and should be 
updated as necessary. 

Magnetic repeat stat ion record sheets 

A blank record sheet is shown in Appendix-3. In many cases it may not be possible to fill in 

all the information specified - please complete as much as possible on every record sheet, 
including details (such as country) that will be repeated on a set of sheets. Record sheets 
should be prepared for old surveys as well as new ones. If possible, a summary of results 
should be provided in the form of an ASCII computer file as specified below. 

Station name 
Do not use the same name for different station markers at the same locality. For example use 
names such as Station-A, Station-B etc. to denote different sub-stations. Ensure that names 

agrees exactlv with those given on previous record sheets and data files. 

Station coordinates should be given in geodetic coordinates, i.e. on a spheroidal Earth. The 
distinction between coordinates on different spheroids is unimportant. However, the 
distinction between geodetic coordinates and geocentric coordinates (on a spherical Earth) is 
important. Coordinates should be in decimal degrees; latitude positive north, negative south; 
longitude positive east of the Greenwich meridian. If the height above mean sea level is not 
known accurately please enter an approximate value (to the nearest few hundred metres), and 
indicate that it is approximate. 

Results 
(Enter "N/AM. if a particular result is not available, or is not applicable). 

Mid-date of station occupation is the date about which the observations are centred, given 
either in decimal years or as year,month,day (yyyy mm dd) - e.g. 1989 06 23 for 23rd 



June 1989. 

Duration of station occupation is the time interval spanned by the run of absolute/variometer 
observations - rounded to the nearest day or hour as appropriate. 

Uncertainty in station relocation - this information Is very Important. Errors in 
relocating the absolute instruments between successive occupations may vary from less 
than 1 cm up to many metres. 

Record the average horizontal gradient of F (e.g. the mean of N-S and E-W values) and the 
vertical gradient of F at the point where the absolute instruments are placed at the repeat 
station. 

Field elements 
(a) List the three field elements observed and enter your best estimate of the 'night- 

time' values of the field. If four elements are observed then enter the three most 
accurate ones. 'Night-time' refers to the time when diurnal effects are at a 
minimum, although the field may still be disturbed. Enter approximate errors for the 
results, e.g. the standard deviation of a set of night-time field determinations (it may 
only be possible to make a guess, taking into consideration the accuracy of the 
instrumental and data reduction corrections applied). Conventions are: +X 
northwards, +Y eastwards, +Z downwards, +D east of north, +I downwards. Enter 
angles (D & I) in decimal degrees, to three decimal places if possible, and field 

strengths in nanotesla. 
(b) Enter values for the three field elements after a correction has been made to get an 

estimate of the truly undisturbed value of the field. This correction is important 

unless it is known that observations were made during extremely quiet conditions. If 
data are reduced to get an equivalent annual mean value for the repeat station, using 
neighbouring observatory records for reference, then give the appropriate epoch in 
decimal years. Enter estimates (guesses if necessary) of the errors in determining 
the undisturbed fieldlannual mean values. 

Annual change estimates: (It is not essential to complete thi; section) 

Enter the values previously determined for the annual change in each field element at the 
last 5-year epoch, e.g. 1990.0, and your new estimates for the next 5-year epoch, e.g. 
1995.0. Record the epochs concerned. Estimates might be based on simple differences 

between corrected observations at successive station occupations, or on the gradient of 
an appropriate curve fitted to a time-series of observations at the repeat station. 

Magnetic disturbance 
Give information from the one or two nearest magnetic observatories (or recording stations, 
possibly the magnetic repeat station itself) to show the typical level of magnetic disturbance 
for the period during which results were obtained. Daily range values are convenient, but any 
commonly used index or indicator of geomagnetic disturbance is acceptable. 

Station' classlficatlon (Please pay special attention to this question) 

Assign a classification letter and number (in the range 1 to 3) to the results for each station. 
If an intermediate classification best describes your results, then assign an appropriate 
decimal value. 



Classification 1 - applies to results when considerable care has been taken to correct fully 
for external fields, and associated induction effects, to get an undisturbed night-time 
value of the field. In most cases this requires that on-site continuous variometer, or 
nearby magnetic observatory, records are available. Unless observations were made 

under very quiet magnetic conditions, a correction for the long-term after-effects of 
magnetic storms and other transients may also be necessary. 

Classification 2 - applies to results when an approximate correction has been made for the 
effects of external fields. For example, if absolute observations have been made 
throughout the day then an approximate diurnal correction can be made. 'Night-time' 

observations made under magnetically quiet conditions would qualify for a "2" 
classification, or possibly "1" if the observer has reason to believe that the completely 
undisturbed field was measured. 

Classification 3 - is appropriate for spot measurements of the vector field made during 
relatively low levels of magnetic disturbance. (Spot observations made under disturbed 
conditions are not suitable for deriving secular variation information). 

The classification number should be prefixed by one of the following classification letters to 

denote the type of diurnal control applied: 

V - an on-site variometer was used 
M - one or more magnetic observatories were used as a reference standard 

A - absolute observations at the repeat station alone were used. 

Examples of classifications 
V 1 Day-time absolutes used to provide baselines to calibrate an on-site variometer; 

observations made on magnetically quiet days only. 
V 1.3 As above, except that observations are made under moderately disturbed conditions 

and only an approximate correction is possible, based on observatory records, to 
obtain the undisturbed night-time value of the field. 

M 1.1 Morning and evening absolutes, corrected by means of a neighbouring reference 
observatory to obtain equivalent annual mean values. The classification number could 
be anywhere between 1 and 2 depending on how accurately the reference observatory 
represents the diurnal variation at the repeat station. 

A 1.2 Sets of absolute measurements made in the middle of the night on a magnetically quiet 

day. 
A 2 A good spread of day-time absolute observations, including early morning and late 

evening. The nearest reference observatory is too far away to provide any 
improvement in diurnal control. 

A 3 Spot measurement of the field made early in the morning on a fairly quiet day. 

Note the important distinction between the "night-time" value, i.e. the field in the middle of 
the night when the diurnal variation and disturbances are at a minimum, and the "undisturbed 
night-time" value which represents only the main core field (including crustal remanence and 
main field-induced contributions) with no external field contributions or associated induction 
effects. It may be necessary to undertake a special study to establish how accurately 

records at the nearest observatory represent the diurnal signal at a repeat station. This is 



particularly important if either site is suspected of being under the influence of crustal or 
coastal induction effects. 

Computer  f i l es  

If possible, provide a computer file summarizing the results of your repeat station surveys. 

This should be done in addition to completing a regional magnetic repeat station record sheet 
for each re-occupation of each station. The computer file can be either a Survey File of the 
results from a particular survey, and/or a Master File containing a compilation of results 
from several re-occupations of the same stations. It will usually be assumed that any new 
revision of a master file replaces earlier versions, unless stated otherwise in the header 
line(s) of the file. 

Files should be written in ASCII and recorded on any commonly used medium (preferably 
IBM diskette). Files should have the following format: 

HEADER 

*STATION LATITUDE LONGITUDE ELEVATION ESTABLISHED 

CLASS DATE/YEAR ELTl ELT2 ELT3 EPOCH dELTl dELT2 dELT3 

CLASS DATE/YEAR ELTl ELT2 ELT3 EPOCH dELTl dELT2 dELT3 

etc.. . . 
*STATION LATITUDE LONGITUDE ELEVATION ESTABLISHED 

CLASS DATE/YEAR ELTl ELT2 ELT3 EPOCH dELTl dELT2 dELT3 

etc.. . . 

where 
HEADER 

'STATION 

LATITUDE 

LONGITUDE 

ELEVATION 

ESTABLISHED 

CLASS 

= descriptive header including the revision date, occupying as many 
lines as you wish 

= name of the repeat station, preceded by an asterisk, spaces are not 
allowed 

= latitude of station in decimal degrees; positive north, negative south 
= longitude of station in decimal degrees; positive east of Greenwich 
= height of station above mean sea level in metres 
= year when station was first used (optional) 
= a 10-character code: R EEE Lm. n (include the spaces) 

R = D if data are reduced to undisturbed values for a particular day 
= Y if data are reduced to an annual mean value 

EEE = any three of X,Y,Z,H,F,D,I to designate the elements reported 
L = V if on-site variometer control was used 

= M if a reference magnetic observatory was used to obtain 
undisturbed night-time or annual means values of the field 
= A if absolute observations alone were used 
= ? if the type of diurnal control is not identified 

m.n = classification number for the results, e.g. 1 .O, 1.5, 2.0, ... 

D A T E ~ Y E A R  = yyyymmdd for data reduced to a particular day (code D above), 
e.g. 1989071 7 for 17 July 1989. 
Enter a pair of 9's if the day or month are unknown 

= yyyy.y for data reduced to an annual mean (code Y above), 
e.g. 1989.5 



E L T I ,  . . . 3  = values of the three field elements, reduced to undisturbed night- 
time or annual mean values. Angles in decimal degrees; fields in nT 

EPOCH= the epoch (i.e. decimal year) for the annual change estimates 
~ E L T ~ ,  . . . 3  = best estimates of the annual change in each element at the epoch 

specified. Angles in decimal degrees per year; field strengths in nT 
per year. 

Notes 
- Upper or lower case lettering is acceptable. 
- There is no restriction on the number of characters per line, or the number of characters 

per data-field, but each field should be the same size throughout the file. 
- Station names must be unique and match exactly those on corresponding record sheets and 

data files. 
- Data-fields should be separated by one or more spaces, or a comma, or a tab character. 
- Enter a string of 9's in the appropriate data-field to denote missing values. 

- Angles (latitude, longitude, D, I) should be in decimal degrees. 
- As a general rule the three elements measured should be entered in the file. However, any 

three elements defining the field vector may be specified, e.g. D,H,Z or X,Y,Z. If a 
combination such as D,H,F is used, which does not specify the sign of 2, then F should be 
give the sign of 2.  

- Comments relating to a result can be appended to the end of the line. 
- For master files it will be assumed that the annual change estimates are the original 

(usually prospective) ones made at the time of each survey. If the annual change values 
in a master file have been recalculated retrospectively, then add a note of explanation to 

the file header, and/or onto the end of the appropriate lines of results. 

Example of a Survey File 

BMR Australia, Repeat station survey 1986-1989 Rev: 17 December 1990  

This file contains data from continental Australia, surrounding islands, Papua 

New Guinea and SW Pacific Islands. No Antarctic data 

'Albany-C -34 .945  1 1 7 . 8 0 5  075 1 9 6 5  

D DHZ V 1 . l  19870413  -3 .083  21433  -56195 1 9 9 0 . 0  0 .042  -13 .4  - 1 . 9  

'AliceSprings-B -23 .807 1 3 3 . 8 9 7  5 0 0  1942 (approx.elevation) 

D DHZ V 1 . l  1 9 8 9 1 2 0 6  5 . 0 7 0  29941  -44697 1 9 9 0 . 0  0 . 0 2 7  - 3 . 0  0 . 1  

*AyersRock-A -25 .348  131 .062  5 6 0  1947 

D DHZ V 1 . l  19891225  4 .322  28877 -46751  1 9 9 0 . 0  0 . 0 2 6  -09.7 0 . 6  

.... etc ..... 

In this example, variometer control was used to make a diurnal correction, and a subsequent 
adjustment for night-time disturbance was applied. However, observations were not made 
strictly under magnetically quiet conditions - hence a classification of Vl.1 has been used 

instead of V1.O. Absolute observations of D,I,F were made, but the results have been 

expressed as D,H,Z throughout to be consistent with earlier results. A comment about the 
approximate elevation for Alice Springs has been added to the station line. 



Example of a Master File 

BMR Aus t ra l i a ,  Repeat s t a t i o n  m a s t e r f i l e  1969-1989 Rev: 25 December 1990 

This f i l e  con ta ins  d a t a  from con t inen ta l  Aus t ra l i a ,  surrounding i s l a n d s ,  Papua 

New Guinea and SW P a c i f i c  I s l ands .  No Anta rc t i c  d a t a .  Annual changes a r e  t h e  

o r i g i n a l  forward e s t ima tes ,  not r eca lcu la t ed .  
............................................................................ 
'Albany-C -34.945 117.805 075 1965 

D DHF A2.0 19780627 -3.015 21722 -60184 1980.0 -0.016 9999.9 3.6 

D D H Z  V1.l 19831002 -3.099 21548 -56231 1985.0 0.022 -15.6 -11.5 

D D H Z  V1.l 19870413 -3.083 21433 -56195 1990.0 0.042 -13.4 -1.9 

*AliceSprings-B -23.807 133.897 590 1942 

D D H Z  V1.5 19690803 4.720 30463 -44232 1970.0 0.008 -21.6 -5.3 

.... etc ..... 

In this example, the Albany 1978 results are specified for D,H,F so the sign of Z has been 
transferred to F. The annual change in H at 1980.0 is missing. 

Arch iva l  A n d  Retr ieval o f  Repeat S ta t ion  In format ion  

World Data Center-A in Boulder, Colorado, U.S.A. acts as the primary center for 
accumulating and disseminating repeat station information. If you send data to any other 
World Data Center then please indicate that copies should be forwarded to WDC-A. Please 

send completed record sheets and computer files to: 
Geomagnetism Services 
WDC-A Solid Earth Geophysics 
325 Broadway 
Boulder, CO 80303-3328 U.S.A. fax: +1-303-4976513 

Up-to-date copies of your repeat station network description should be also be lodged with 
WDC-A, and a copy sent to IAGA Working Group V-4. The responsible officer is currently 
Charles Barton, BMR Geology & Geophysics, PO Box 378, Canberra ACT 2601, Australia. 
(tel: +61-6-2499111; fax: +61-6-2576041). 

IAGA Working Group V-4 can also be contacted through the current chairman: 

Dr Jacques Bitterly, Service des Observatoires Magnetiques, lnstitut de Physique du Globe, 
5 rue Rend Descartes, 67084 Strasbourg Cedex, France. 
(tel: +33-88-416367; fax: +33-88-616747). 

Requests for repeat station data should be addressed to WDC-A. Requests for repeat station 
network descriptions can be addressed to either WDC-A, or to IAGA Working Group V-4. 

Enquiries and comments concerning the IAGA reporting scheme should be addressed to IAGA 
Working Group V-4. 



APPENDIX-2 

Example of a magnetic repeat station network description 

C o u n t r y  JAPAN 

C o  n t a c t Director, Geodetic Department 
Attention Masaru Kaidzu 
Geographical Survey lnstitute 
Ministry of Construction 
Kitasato -1, Tsukuba-Shi 
Ibaraki-Ken 305 

NETWORK CONFIGURATION 

S t a t i o n s  
105 first-order stations 
850 second-order stations 

Revised: 18 December 1990 

Tel: +81-298-64 11 11 ex! 431 
Fax: +81-298-64 1802 

Reoccupation Interval 
2 to 4 years 

O b s e r v a t o r i e s  
Kakioka 36'1 3'45"N, 140°1 1 '23"E (1913 + ) 
Kanoya 31 "25'1 4"N, 1 30°52'56"E (1958 + ) 
Kanozan 35O15'11 "N, 13g057'32"E (1 961 + ) 
Memambetsu 43"54'3ONN, 144'1 1 '35"E (1 952 + ) 
Mizusawa 3g006'32"N, 141 "1 2'25"E (1 970 + ) 

Repeat station surveys were started by the Geographical Survey Institute (GSI) in 1949. 
Station density: one first-order station every 3,600 km2 
First-order stations occupied: 1983 (37 stations) , 1984 (29), 1985 (31), 1986' (29) 

Station markers: a granite pillar of 15 cm square head and 70 cm length is laid upon the 
ground. It's head is about 10 cm above ground level. The precise position of the station is 
marked by a "0" at the centre of the pillar head. 

Aux l l i a ry  s ta t l ons :  nil 

L o g l s t l c s  
Access: most stations are accessible by road 
Fieldwork: approximately 3 to 4 months per year 
Staff:  1 skilled observer plus 1 assistant per party 

OBSERVATIONAL PROCEDURES 

Abso lu te  Ins t ruments  
D, I GSI type precise magnetometer (fluxgate theodolite, 0.1' precision) 
F Geometrics G856 proton precession magnetometer 

Polaris obs. GSI type precise magnetometer 

V a r l o m e t e r  
D , H , Z  triaxial fluxgate magnetometer (MB-162) 



T temperature or tluxgate sensors (coettlclent 0.1 n l/"c;) 
Recording H is recorded continuously on a chart recorder 

D, H & Z are digitized every minute and recorded onto cassette tape. 

Frequency and Duration o f  Observations 

Variometers are operated for 24 hours from oh to 24h UT on a calm day of magnetic activity. 
Absolute observations are performed simultaneously at four times (oh, qh, gh and 24h UT) to 

determine the baseline values of the variometers used. 
At each of these four times 3 sets of observations of F, D, I are made. 
If for any reason the variometer cannot be operated (e.g. topographical constraints) absolute 

observations of D, I, F are conducted at hourly interval from 21h UT to 1 3 ~  UT the next 
day. 

Polaris observations are made to check the azimuths of reference marks. 

C o m m e n t s  
In addition to the above first-order stations, 850 second-order stations have been established. 
Data from these second-order stations are used for preparing magnetic charts. 

DATA REDUCTION PROCEDURES 

The variometer records are digitized at 1-minute intervals; these data are averaged at hourly 
and daily intervals. 

The absolute observations are used to calibrate the digitized variometer data to produce mean 

daily absolute values of D, H, Z and F. 
The station variations are compared with data from a reference station and adjusted to 

eliminate atypical disturbance effects in the field; the reference station is the Kakioka 
Geomagnetic Obse~atory. 

Adjusted station values for D. H. Z and F near local midnight are considered to represent the 
long-term undisturbed field at the station for the epoch of occupation. 

Station values are later updated to a common epoch using appropriate plots or models of the 
secular variation. 

MODELS & CHARTS 

lsomagnetic charts are prepared from geomagnetic survey and reference station data. 
1952+ Charts of D, I, H, Z & F (hand-contoured) 
1985 Charts for 7 components by polynomial least squares 

Geographical Survey Institute: Results of the first order magnetic survey, Bull. G.S.I., vol XXV 
- part 1 (1981). 

Tanaka, M., K. Hiroishi & S. Matsumura (1984), J. Geomag. Geoelectr., 36, 463-470. 
Geomagnetic observations at Mizusawa and Kanozan 1988, First order geomagentic stations 

1979-1988, G.S.I. publication 84 - No.8, March 1990. 



APPENDIX-3 
REGIONAL MAGNETIC REPEAT STATION RECORD SHEET 

(Revised: November 1991 ) 

For information on how to complete record sheets refer to the document "Regional Magnetic Repeat Station Records 
- Explanatory Notes" issued by IAGA Working Group V 4 .  If the information requested below is inappropriate, 
please modify the form to suit your situation. Return record sheets to: Geomagnetism Services. WDC-A Solid Earth 
Geophysics. 325 Broadway. Boulder, CO 80303-3328. U.S.A. Fax: +1-303-4976513 

STATION NAME : COUNTRY : 
Latitude : Is this a new station: NolYes' 

Longitude : Is this an exact re-occupation: YeslNo' 

Height above sea level (m) : Year of previous occupation: 

RESULTS CLASSIFICATION (see notes) 

................................ Mid-date of station occupation: I I 

............. Duration of station occupation: dayslhours' I I 

Total number of sets of absolutes: ............ Sequence of elements per set: ............................ 

Uncertainty in instrument relocation Gradient of total field at station 

m Horizontal: nT/m 

m Vertical : nT/m 

(a) Mean night-time value (b) Undisturbed night-timelannual mean value' 

Element and estimated uncertainty @ epoch?= ................. estimated uncertainty 

Estimated annual change 
Element @ previous epoch = ............. @ new epoch = .............. 

MAGNETIC DISTURBANCE 
Observatory name Distance from Disturbance indicator (state what) 

repeat station 

*circle one t if annual mean is quoted then give mid-year epoch 

NOTES (continue on reverse side if necessary) 





Geomagnetic Data from the U.S. Magnetic 
Observatory Network 

Donald C. Herzog 

U.S. Geological Survey 
Denver Federal Center 

MS 968 Box 25046 
Denver, Colorado 80225-0046 (U.S.A.) 

Abstract. Thc Unitcd States operatcs a network of, at prcscnt, 13 ground-bascd 
magnctic obscrvatorics. Continuous, one-minutc digital vcctor and scalar 
gcomagnctic ficld valucs have been recorded for thc last dccadc, and cxtcnd about 
fivc ycars furthcr back for scvcral stations. Periodic, 3-componcnt absolute 
mcasurcmcnts of the magnetic field arc madc to provide basclinc rcfcrcnce data with 
which to dctcrminc calibrated field valucs at all intervals. Thcsc data arc now bcing 
madc available on CD-ROM. The quality of thc data depends upon a number of 
factors, including the typcs of instrumentation uscd to monitor and mcasurc thc 
ficld, the proccdurcs and equipment used to collcct and proccss thc data, and thc 
quality controls cmploycd to check the data for crroncous valucs. Thcsc various 
factors arc dcscribcd hcrc for thc U.S. digital gcomagnctic obscrvatory data. The 
obscrvatorics havc bccn undergoing an evolution ovcr thc last 15 ycars that will 
continue to significantly improve thc accuracy, precision, and availability of 
gcomagnctic data. 

1. Introduction 

The National Geomagnetic Information 
Center (NGIC), located in Golden, 
Colorado, currently operates a network of 
13 magnetic observatories under the 
auspicies of the United States Geological 
Survey (USGS). At these observatories, 
the Earth's magnetic field is continuously 
monitored, regular measurements of the 
absolute vector values of the field are 
made, and baseline reference data are 
maintained to provide calibration data 
files. Figure 1 shows a map of the 
locations of these observatories 
as indicated by their IAGA 3-letter 
identification (ID) code. Table 1 provides 
additional informa tion about these 
stations. Three of these stations are 
located in Alaska, one each is in Hawaii, 
Guam, and Puerto Rico, and the 
remainder are in the continental United 
States. In the late 1970rs, the USGS began 
converting from analog data collection in 

the form of traces on photographic paper 
(known as magnetograms), to digital 
systems that used saturable-core fluxgate 
magnetometers and data loggers to store 
10-second samples on magnetic tape that 
were then processed into I-minute field 
values. However, only five observatories 
(Barrow, Boulder, College, Sitka, and 
Tucson) were provided with digital 
equipment, and a variety of problems 
prevented the successful collection of a 
great deal of data from these first 
attempts. 

In the early 1980rs, the USGS 
began providing all observatories with 
digital data capabilities, even though 
some stations continue to record data on 
magnetograms. Incidentally, these 
photographic records have continued to 
be a valuable tool in identifying problems 
with data from the digital systems. Each 
observatory is equipped with separate 
vector and scalar magnetometers, and a 
data acquisition system for the collection, 
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Fig. 1. Locations of the U.S. Magnetic Observatories, as identified by thcir 3-lettcr ID code. Scc 
Table 1 for the key to these codes and additional information about the stations. 

storage, and transmission of geomagnetic 
field values. Also provided are an analog 
chart recorder to give an on-site 
indication of the output  of the 
magnetometers, a modem for telephone 
communications, a monitor for on-site 
access to the data acquisition system, a 
printer, and an uninterruptable power 
supply (UPS) to sustain temporary 
operation during power outages. Each 
observatory is queried three times per 
week via telephone to check the status of 

geomagnetic observatory data available to 
the scientific community (Green, 1991). 
This paper describes the types of 
instrumentation used at the U.S. magnetic 
observatories, discusses the methods and 
procedures used in processing the data, 
and indicates some of the quality controls 
employed to eliminate erroneous values in 
the data. 

2. Observatory Instrumentation 

the station and to dump out the data The vector magnetometers at the 
stored in memory. observatories are triaxial, cylindrical core 

The NGIC is currently undergoing saturable fluxgates like those described by 
an upgrade in their magnetic observatory Trigg, et. al. (1971). They have a nominal 
systems that will allow near-real time output of 10 millivolts (mV) per nanotesla 
(every 12 minutes) data acquisition via (nT), and a dynamic range of +/- 1000 nT. 
satellite, and provide preliminary on-line For high latitude stations, the output is 
field values (as opposed to variation data) modified to 2.5 mV/nT with a dynamic 
using a self-biasing ring-core range of + / -  4000 nT. At the NGIC 
magnetometer with quasi-absolute observatories, the orthogonal sensors are 
calibration control. When completed, oriented with the X and Z sensors in the 
the NGIC stations will comprise magnetic meridian plane so that the Y 
the contribution of the United States to sensor is normal to the horizontal north- 
INTERMAGNET, an international, south direction of the Earth's magnetic 
cooperative program designed to field, giving a declination (D), horizontal 
make a global network of real-time intensity (H), and vertical intensity (Z) 
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TABLE 1. Magnetic Observatory Information 

LEGEND 

Barrow, AK 
Boulder, CO 
Bay St. Louis, MS 
College, AK 
Del Rio, TX 
Fresno, CA 
Fredericksburg, VA 
Guam, M.I. 
Honolulu, HI 
Newport, WA 
San Juan, PR 
Sitka, AK 
Tucson, AZ 

A : DCP has not yet been installed 
B : DCP is installed, but satellite transmission is not pern~itted on observatory 

grounds. Data are retrieved by dedicated phone line. 
C : Station was not equipped with digital data capabilities initially. 
D : Station is serviced by personnel from College observatory 
E : Station is operated by personnel at the Pacific Tsunami Warning Center, NOAA 
F : Station has contract person on-site to perform emergency repairs. 
G : Station is serviced by personnel from NGIC in Golden, CO. 

orientation. Bias circuits are used to null provides a description of the procedures 
out most of the H and Z fields, and the fol lowed in s t a n d a r d  observa tory  
fluxgate provides a continuous bipolar practices. 
output (in volts) that is proportional to Al though s o m e  t empera tu re  
the intensity of the ambient field about compensation is built into the electronic 
the zero (nulled) level. circuitry, fluxgate magnetometers are 

Periodic absolute measurements of quite sensitive to temperature variations 
the magnetic field are made to provide a and  tilt. Trigg et .  a]. f o u n d  nominal  
baseline reference (the zero level) to use temperature factors of  about 3 nT/OC 
in determining field values at all times. for the Z component, and less than 
Some s ta t ions  m a k e  scale va lue  1 nT/OC for D and H. The fluxgates at 
measurements ,  bu t  where  this is  not  U.S. observator ies  a r e  in  somewhat  
possible, the nominal scale value is used. thermally controlled environments, and 
The baselines and scale values comprise generally mounted on massive marble 
the  cal ibrat ion da ta  that  a re  used  to  tables, bu t  n o  compensa t ions  for 
convert variation data in electrical units temperature or tilt, per se, are made in 
into magnetic field values. Wienert (1970) processing the da ta .  The f luxgate  
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ID 

BRW 
BOU 
BSL 
CMO 
DLR 
FRN 
FRD 
GUA 
HON 
NEW 

SJG 
SIT 
TUC 

DCP 
(mo/yr) 

A 
B 
A 
A 
A 

11/90 
07/89 

A 

04/91 
09/90 

A 

10/91 
A 

Manned 
Station 

D 
G 

FIG 
Yes 

FIG 
FIG 
Yes 
Yes 
E 

FIG 
Yes 
.FIG 
Yes 

Lat. 
(deg.) 

71.30 
40.14 
30.40 
64.86 
29.49 

37.09 
38.21 
13.58 

21.32 
48.26 
18.11 
57.06 
32.25 

Digital 
(mo/yr) 

05/75 
01/78 

C 
09/75 

C 

C 
C 
C 

C 
C 

C 
01/78 
01/78 

Long. 
(deg.) 

203.38 
254.76 
270.36 

212.16 
259.08 
240.28 
282.63 
144.87 
202.00 
242.88 
293.85 
224.68 
249.17 

OMIS 
(mo/yr) 

06/84 
06/81 
06/86 

06/84 
09/82 
06/82 
11/82 
12/82 
12/82 
10/82 
01 /83 
12/83 
10/82 
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Fig. 2. Block diagram of an OMIS data collection system, with the accompanying pcriphcrals and 
connections to the data processing center. 

sensors are leveled using bubble levels 
mounted on the sensor bases. 

The  scalar  magnetometer  is  a 
proton precession magnetometer that 
outputs the scalar value of the total field 
intensity (F) with a resolution of 0.1 nT. 
This instrument provides an independent 
measuremen t  sys tem wi th  which to  
compare the field values obtained from 
the vector instrument. Also, because it is 
not particularly sensitive to temperature 
o r  or ientat ion,  i t  is used  to  perform 
quality control tests on the vector data. 
However, because of the large polarizing 
current required for operation, and the 
relatively long decay times involved, the 
sampling rate is restricted to 20 second 
intervals. 

The data acquisition equipment, 
termed an Observatory Magnetometer 
Interface System (OMIS), employs  a 
microprocessor-based (Z-80) da ta  
collection, manipulation, a n d  storage 
system. Figure 2 shows a block diagram 
of an OMIS system. Nine analog input 
channels are available with 14-bit analog- 
to-digi ta l  ( A / D )  conversion and  a 
dynamic range of +/- 10 volts. The three 
f luxgate  components  a re  sampled  40 
times per second and averaged into one- 

minute values centered on the minute. 
The on-site software is stored in four 
EPROMs (Erasable Programmable Read 
Only Memory), and 64 kilobytes (Kb) of 
RAM are used to store up to 3 1 /2  days of 
data. A 1600 bpi tape cartridge is also 
used,  and  the  da ta  f rom memory  is  
written to tape every 105 minutes. The 
OMIS also computes and  stores mean 
hourly values (MHVs), temperatures a t  
both the sensor and electronics, flags that 
give error alerts, and reference values that 
are used to check the A/D converter and 
diagnose the status of the on-site system. 
All stations are queried three times per 
week by phone to check their status, and 
the data  are d u m p e d  by phone  from 
memory to serve as a backup for the 
tape  car tr idges that  a r e  changed 
approximately once a month and sent to 
the NGlC data processing center. 

The new NGIC data acquisition 
systems,  te rmed Data Collection 
Platforms (DCPs), have the capability of 
numerical filtering to prevent aliasing of 
the data, and satellite transmission on 12- 
minute intervals, primarily by means of 
the GOES-East and GOES-West satellites. 
It uses a 16-bit CMOS microprocessor 
with 16 A / D  input channels, two serial 
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(RS-232) 1 / 0  ports, and 27 digital inputs. 
Although there are no magnetic tape 
storage capabilities, there are 256 Kb 
of RAM to allow almost two weeks of 
data storage and, in the event of a power 
failure, the system can continue to 
operate for that time on just two car 
batteries. It requires less than three watts 
of power to operate in the wake mode, 
and only 10% of that in the sleep mode. 
The system is also capable of I-second 
and /o r  5-second data collection and 
storage. In addition to the vector and 
scalar data, the DCPs also store 1-hour 
and 3-hour range indices, component 
baseline reference measurements, and 
four environmental parameters. 

The new vector magnetometers are 
triaxial ring-core fluxgates, that are self- 
biasing in increments (bins) of a fixed 
value (usually 327 or 654 nT) with a range 
of +/- 80,000 nT, and a resolution limit of 
0.01 nT in each axis. Once the bin 
constants are known, along with the zero- 
level offsets, magnetic field values can be 
obtained directly using a conversion 
factor of 100 nT/volt. The ring-core 
fluxgates have a much better temperature 
stability, nominally 0.1 nT/OC, and 
require less than 2 watts of power for 
operation. 

A system for obtaining vector 
absolute magnetic field values using a 
proton magnetometer mounted within a 
pair of orthogonal Helmholz coils was 
originally suggested by Bacon (1955), and 
later expanded upon by Alldredge (1960) 
and Alldredge and Saldukas (1964). L.R. 
Wilson (1986, private communication) 
suggested that such systems be used at 
unmanned observatories to obtain 
frequent calibration data. Herzog (1990) 
tested such a system at a mid-latitude 
observatory (Boulder) and obtained very 
encouraging results. These quasi- 
absolute coil systems, now referred to as 
DIDD (Deflected-Inclination-Deflected- 
Declination) systems, will eventually be 

32 

installed at all NGIC observatories. 
Once in place, the new systems 

will provide near-real time calibrated 
magnetic field values from the entire 
network of NGIC observatories. A 
telephone dial-in service is  being 
developed and installed at NGIC that 
will allow users to access these data 
directly over phone lines or through 
electronic mail. 

3. Data Processing 

The processing of observatory data 
requires the assimilation of raw field data 
values from a variety of  sources; the 
adoption of calibration data files to be 
used in the conversion of data from 
electrical units into magnetic units; the 
application of quality control checks to 
identify timeshifts, clean out bad values, 
and cross-check adopted field values; and 
the formatting and archiving of the data 
for dissemination. These procedures 
themselves have undergone an evolution 
in the conversion from the analog 
photographic magnetograms to the 
digital recording systems, but the present 
discussion will be limited to the 
procedures followed in processing the 
OMIS digital data. 

After the first of each month, 
where possible, the OMIS tape cartridge 
is unloaded and sent into the NGIC data 
processing center. For some unmanned 
stations, like Barrow, the delay in 
receiving the tape can be as much as 
several months. When the data is read off 
the tape satisfactorily, the hourly values 
are stripped off and stored in separate 
files from the one-minute data. The one- 
minute variation data are then merged 
into monthly files and stored on 9-track 
magnetic tape. Missing data are filled in 
from the tri-weekly phone dumps. The 
data are then plotted to obtain a hard 
copy to check for timeshifts, spikes, and 
other problems. 
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Calibration files are also 
maintained that contain the absolute 
measurements, scale values, and the 
adopted baseline values. Tests on scale 
value measurements showed that they 
remained quite stable and, except for 
Barrow and College, all stations use the 
nominal scale value of 10  mV/nT. 
Ordinate values are converted from 
electrical units (mVs) into magnetic units 
(nT and minutes of arc) using the scale 
values, and added onto the baselines to 
give magnetic field values for all 3 
components. A computer algorithm is 
used to obtain a running least-squares fit 
of line segments to the adopted baseline 
values. These line segments become the 
baselines used in obtaining the final one- 
minute magnetic field data. Figure 3 
shows an example of the baseline values 
and adopted line segments for D, H, and 
Z at the San Juan observatory for 1986. 

The points mark the computed baseline 
values, and the line segments are the 
adopted baselines themselves. 

Once the data have been cleaned 
and corrected, and converted to magnetic 
field values, several quality control 
checks are performed. First, the field 
values derived with the calibration data 
are compared to the absolutes obtained 
from the actual field observations over 
the interval of the measurements. 
Differences between the computed D, H, 
and Z values, and those obtained during 
absolute measurements of the field 
itself, are output  for each interval of 
observation. The distribution of 
differences should be more or less 
random about a near-zero value. Any 
large or consistently different differences 
are then a sign of a problem between the 
adopted field values and the absolute 
field measurements. 

Fig. 3. Baseline observations and adopted line segments for San Juan observatory about the 
year 1986. The top plot is for horizontal intensity (HI, the center for dcclination(D), and the 
bottom plot is for vertical intensity (Z). Negative declination values indicate West declination. 
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A second  check consists i n  
comparing the mean hourly values of the 
total field intensity (F) computed from 
the  der ived  H a n d  Z values with the 
va lues  obta ined  wi th  the  pro ton  
magnetometer. One  would expect an 
even distribution of these differences 
about some mean value that represents a 
pier difference between the proton and 
fluxga te sensor locations. Departures 
from a normal distribution about this pier 
difference indica te  the  presence of 
systematic influences. 

After the data have passed these 
two quality controls, final plots are made, 
examined, and kept on file. The data are 
then written to magnetic tape as monthly 
files. A new program is now in operation 
whereby the data are re-formatted and 
archived onto a CD-ROM, along with 
hourly, daily, and  monthly means, K- 
Indices, and other geomagnetic data. At 
present, one-minute data is available on 
CD-ROM for the years 1985 thru 1989, 
and for 1990. Each year, a I-year CD- 
ROM will be produced for the previous 
year of data until five years are available, 
and then a separate CD-ROM of those 
five years will be made and distributed. 

With the introduction of the DCPs, 
an  extensive revision of the da ta  
processing procedures  is  underway.  
Incoming data for  each station, in the 
f o r m  of magnet ic  field units,  will be 
upda ted  every  12 minutes  and m a d e  
available immediately as Reported data. 
Multiplexed phone lines will enable users 
to call in and obtain stack plots of the 
field components, output ASCII values to 
their  terminal ,  o r  have  da ta  files 
transferred by phone or electronic mail to 
their location. After plotting the values 
for the previous day, doing any necessary 
cleaning and adjustments, and applying 
the baseline reference measurements  
using the DIDD systen~s,  the corrected 
data will then be made available 1-3 days 
later as  Adj l ls ted data.  Finally, after a 

complete review, making all corrections 
a n d  per forming t h e  qual i ty  control 
checks, the data will be made available as 
Definitive data and  then processed for 
CD-ROM production. 

4. Data Accuracy 

The accuracy of geomagnetic data 
is  dependen t  u p o n  the  qual i ty  a n d  
methods for adopting calibration data, 
the  accuracy of the  moni tor ing  a n d  
recording instruments, and the quality 
controls used  in  ident i fy ing  a n d  
correcting errors in the data. Absolute 
measurements  at  nearly all U.S. 
observator ies  a re  m a d e  wi th  a 
Declination/Inclination Magnetometer 
(DIM), with a resolution of 1 nT. These 
instruments employ essentially the same 
sensors and electronics as the cylindrical- 
core fluxgates used in field monitoring, 
and are restricted in current observatory 
applications by the resolution of the 
theodolite used in measuring the angles 
of rotation. The conversion to DIMS was 
made in the late 1980's. Prior to that, 
absoIutes were generally made  using 
Quar t z  Horizontal  Magnetometers  
(QHMs), proton magnetometers, and a 
Ruska magnetometer for measuring D. 

The  frequency of observat ion 
varies from several times per week at  
some manned stations, to approximately 
once every two  months  a t  Barrow. 
Figure 4 shows a relative plot of the H- 
baselines for 7 observatories. The actual 
base values have been adjusted to allow 
comparison on a s ingle  plot.  The  
standard error of the data points about 
each adopted line segment is computed 
and then averaged together to provide a 
measure of the distribution of baseline 
measurements about the adopted values. 
Table 2 shows the  average  s tandard  
er rors  o f  the  D, H ,  a n d  Z adop ted  
baselines for 7 observatories for 1989. 

Herzog and Wilson (1987) studied 
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Fig. 4. Relative basclincs for a selection of 7 obscrvatorics. Actual basclines for each station havc 
been subtracted to allo\v the plots to be placed on thc same scale. 

the effect of observation frequency at a 
low lat i tude station (San Juan)  on  the 
a d o p t e d  baselines b y  successively 
deleting every other observation from a 
calibration file and comparing the new 
baselines to the original set. They found 
that the frequency of observations on the 
order of a week made surprisingly little 
difference in the resulting baselines, even 
after reducing the original number of 75 
observations to only 9 for the year. It is 
t hough t  that  the weekly observat ion 
frequency, assuming no baseline jumps or 

equ ipmen t  problems,  pr imari ly  
compensates  for only  long-term or  
seasonal influences on the baselines. 

Herzog (1990) compared  the  
baselines a t  Boulder over  a 6-month  
period obtained from using the standard 
weekly procedures, with those from a 
DIDD system that was programmed to 
provide absolutes on a twice-daily basis. 
Figure 5 shows the results of these two 
procedures for the Z-component. At the 
t ime of these tests, weekly absolu te  
measurements were made using a QHM, 

TABLE 2. - Average Standard Errors of Adopted Baselines for 1989 at 7 stations. 
Values are in nT for H and Z, and minutes of arc for D. 

H 

D 

Z 

Barrow 

5.3 

0.8 

3.8 

Boulder 

3.0 

0.3 

3.2 

College 

5.2 

0.95 

3.4 

Guam 

3.2 

0.2 

3.3 

Newport 

2.0 

0.4 

2.0 

San Juan 

2.4 

0.2 

1.1 

Sitka 

2.5 1 
I 
i 
I 

0.3 I 
i 

0.9 1 
! 
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Fig. 5. Comparison of Z-baseline at Boulder between weekly observations (QHM) and twice-daily 
observations using a DIDD systcm. Note the large excursion about day 125 (indicated by the arrow) 
that the DIDD systcm baseline compensated for, but the QHM system did not. 

and is referred to as the QHM system in 
the figure. A fine structure is clearly 
evident in the DIDD observations that 
does not appear in the adopted baseline 
segment s  der ived  from the  weekly 
(QHM) measurements, even though the 
general (longer-term) character of the 
a d o p t e d  basel ines  a re  the  same.  In 
particular, on about day 125 (as noted by 
the arrow), the DIDD system detects a 
clear drop-in the Z-baseline, followed by 
a return to its original level, that the 
baselines from the QHM observations 
interprets as simply an outlying value. 
This  excursion in the  Z-baseline 
represents  a + / -  7 nT  change in  the 
calibration data that could have only been 
detected by the frequent observations 
provided by the DIDD system. While the 
weekly observations are able to account 
for the long-term baseline variations, 
observations on the order of a day or less 
are required to correct for the short-term 
fluctuations, which can be significant. 
The  u s e  of DIDD sys tems a t  the 
observator ies  can obviously he lp  
improve the accuracy and precision of 
magnetic observatory data. 

A comparison of the MHV1s of 
total intensity, computed from H and Z, 
with the proton values, reveals another 
measure (delta-F) of how well the derived 
field components compare with those 
obtained from a separate measurement 
system. Figure 6 shows three observatory- 
month plots of these delta-F differences. 
The horizontal axes are divided into 12- 
hour intervals for the month. The vertical 
axes are in 0.1 nT, and are divided into 
increments corresponding to one-half a 
standard error value of the distribution 
about the mean difference for that station 
and month. Thus, if the standard error 
for a delta-F distribution were 2.0, the 
vertical axis would be separated into 
units of 10 tenth-nT. The numbers along 
the vertical axis indicate one standard 
error value. The numbers  within the 
distribution indicate how many MHV1s 
fell within a given half-standard error 
range for a given 12-hour interval. An 
asterisk (+) indicates that 10 or  more 
values fell within that interval.  The 
columns of numbers to the right of the 
plot gives the number of observed values 
in each s t anda rd  er ror  interval  (left 
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Fig. 6. Three plots of hourly mean differences of total intensity (F) computed from H and Z versus those 
from the proton magnetometer. The top plot (A) is for College in April of 1966, the center plot (B) is for 
Tucson in October of 1986, and the bottom plot (C) is for Barrow in January of 1986. The horizontal axcs are 
in hours of the month, and the vertical axcs arc in tenth-nT increments of one-half standard error for the 
particular distribution of differences. The columns to the right give the actual (left) and expected (right) 
frcqucncy distribution of delta-F differences. Refer to the text for further details. 

columr)), and  the number  o n e  would  throughout the month, a chi-square test 
expect  for a normal  d is t r ibut ion  of indicated that the data were not normally 
differences (right column). distributed at the 5% level of confidence. 

F igure  6A s h o w s  a fair ly  well Very few chi-square tests of these 
distributed set of differences at College differences are ever normally distributed. 
for April, 1986. The mean difference was Figure 6B s h o w s  the  monthly  
-24.6 nT with a standard error of 2.04 nT. distribution at Tucson for October, 1986, 
This mean difference should represent a with a mean difference of -46.9 nT and a 
pier difference d u e  to the d i f fe rent  standard error of 1.69 nT. There is an 
locat ions of the  f luxgate  a n d  pro ton  obvious periodicity in this distribution 
sensors. Although the distribution of that often appears in these delta-F plots. 
differences appears to be spread evenly This one has a period of about 19 days 
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Fig. 7. Plot of total field diffcrcnces (delta-F) versus tcmperaturcs at the sensor and electronics, for 
Barrow during January, 1986. 

(456 hours).  The cause of these showed almost no relationship of delta-F 
periodicities is not well understood, differences to temperature, and some 
although temperature variations are showed an inverse relationship to the one 
suspected since the fluxgates are very shown here. Although it needs further 
temperature sensitive while the proton study, these results were included to 
magnetometers are not. demonstrate how much the accuracy of 

Figure 6C shows a distribution at geomagnetic data can vary, at least on 
Barrow for January, 1986, with a mean some occasions. 
difference of 32.3 nT and a standard error 
of 7.16 nT. Here, we see a combination of 
periodic intervals (of varying length), as 5. Summary and Conclusions 
well as intervals in which the differences 
are fairly constant. Figure 7 shows a plot Geomagnetic data from the U.S. 
of these differences against the magnetic observatory network have been 
temperatures at the sensor and undergoinganevolutioninimprovement 
electronics, and supports the notion that for more than two decades. The 
temperature is largely responsible for the transition from fiber-suspension 
variation in differences. T11e:delta-F variometers that produced analog 
differences are strongly correlated with magnetograms, to fluxgate 
the sensor temperature, while much less magnetometers with digital recording 
so with the temperature at the electronics. and data collection systems, allowed the 
Theslopeofthislineisabout-2.2nT/oC, development of computer data 
which is consistent with the values found processing algorithms and procedures 
for the fluxgate sensors. This result led that, in turn, resulted in a reproducible 
us to test other stations and observatory- methodology for determining baseline 
months to see if the relationship would calibration data, the ability to make 
hold consistently. It did not, though, and quality control checks to detect and 
the more cases we studied, the more eliminate erroneous data values, the 
diverse were the results. Some stations capability of deriving quantitative 
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estimates of the accuracy and precision of 
geomagnetic data, and the opportunity to 
make massive quantities of data available 
to everyone on a low-cost, high-density 
s to rage  med ium.  Five years  of one-  
minute data for four elements (D, H, Z, 
a n d  F) for  13 observatories (over 550 
megabytes) are now available on a single 
CD-ROM. 

We have described here some of 
the  ins t rumenta t ion  current ly in  
operation at those observatories, as well 
as the data processing procedures used to 
r educe  the  r a w  d a t a  a n d  absolu te  
measurements to final geomagnetic field 
values.  The  next generat ion of 
observa tory  opera t ions  promises  to  
further improve the accuracy, precision, 
a n d  avai labi l i ty  of these da ta .  Self- 
biasing ring-core magnetometers, having 
min imum power  requirements ,  wi th  
greater resolution, better stability, and 
better thermal  characteristics,  will 
provide more precision to the recorded 
data and output it directly in calibrated 
magnetic field units. The DIDD coils will 
improve  the  accuracy of the  da ta  b y  
tak ing  more  f requent  absolute  
measurements and thereby compensating 
for the  shor t - te rm inf luences on  the  
calibration da ta .  The da ta  collection 
platforms, that also have very low power 
requirements, will provide numerical 
filtering of the data to reduce aliasing 
effects, allow for I-second, 5-second, and 
I -minu te  da ta  recording modes,  a n d  
transmit the data via satellite every 12 
minu tes  direct ly  to Geomagnet ic  
Information Nodes (GINS) where they 
will be  made immediately available to 
users.  These observator ies  will also 
participate in INTERMAGNET'S program 
to provide a global network of magnetic 
observatory data in near-real time. At the 
time of this writing, the NGIC had five 
observatories (FRN, FRD, HON, NEW, 
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Magnetic and electromagnetic induction effects 
in the annual means of geomagnetic elements 

CRlSAN DEMETRESCU and MARIA ANDKF.:ESCIS 
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T h e  solar-cycle-related (SC) variation in the  annual means  of t he  h o r i / o ~ ~ t a l  and vcrlic;il 

components  of the  geomagnetic field a t  European obscrvatorics is uxxl to infer i r ~ f o r n ~ a t i o ~ i  

o n  the  magnetic and clectric p r o p c r ~ i c \  of  the interior, characlcrislic to thc oh\crv;itory 

location, by idcntilying a n d  analysing thc magnetic induction cornpoilcwl and rc\l>cclively 

the  electromagnetic induction component  of the  SC variation. T h e  ohl;~inc.d rc3ull3 ;I IKI  the 

method can  hc  used to better constrain the anomaly bias in main field nloclcll in~ ; ~ n d  to 

improve t h e  reliability of secular variation modcls beyond the  t ime i n t c ~ x a l  covcr~*tl  by iI:t~a. 

I t  is a well established fact that in the :innuill means of the geoma~nctic elements 
recorded a t  observatories (Chapman and Bartels, 1940; Yukutake. 1965: Alldredge, 1976; 
Courtillot and Le MouEl, 1976; Alldredge et a1.,1979; Yukutake and Cain, 1979: Demetres- 
cu et a1.,1988) as well as in the annual values recorded at repetit stations (Atanasiu et 
a1.,1976; Anghel and Demetrescu,l980; Galdeano et al., 1980; De~netrescu et at.. 1985) a 
solar-cycle-related (SC) variation is present. Since the secular v:lri;ltion models rely on 
observatory and repeat station data, the SC variation might cause difficulties in predicting 
the secular variation beyond the time interval covered by data. On the other hand, main 
field modelswhich include observatory data have to take into :iccount the so-c;rlled anomaly 
bias (Langel and Estes,1985) which is related to the fields from crusti~l :inornalies at 
observatory locations. 

In this report we show, on data sets from the European observatories. how the 
SC variation present in the annual means of geomagnetic e l c m c ~ ~ t s  call he used to better 
describe individual observatories as regards the niagnetic and electric properties of the 
interior, characteristic to the site, with possible consequences in in1l)roving the secular 
variation and main field models. 

2. Data and methtd 

The  input data are the annual means of the horizontt~l i111d vertical components 
at European observatories (Golovkov et at., 1983). Two sets o f  diitil were it nalysed: annual 



means from 22 observatories in the time interval 1952.5 - 1980.5 and annual nleans from 
42 observatories in the time interval 1961.5 - 1977.5. The distribution o f  the observ;rtories 
is shown in Fig.1. 

Data were processed to show the SCvariation by modelling the variation of the 
core field with a sum of sinusoids (see for details Demetrescu et ill., 1988; Demetrescu and 
Andreescu, 1992). The SC variation for the set of data from 22 ohservirtories is presented 
in the upper (Hs) and middle (ZS) plots of Fig.2, together with the sunspot nirmhers (lower 
plot). Curves for individual observatories were superimposed to show, on one hand, the 
coherency of this variation, suggesting a common source, and, on the other hand, differen- 
ces in amplitude and phase, reflecting peculiarities of the site. The t ' i l ~ t  that Hs. ZS. HS, Z; 
are station dependent can be accounted for by the magnetic and clectric structure of the 
subsurface material, as the variable external sc-~lar-cycle-related niagnetic field induces 
variable internal magnetic fields by magnetic and electromagnetic iriduction. 

As in Demetrescu et a1.(1988) and Demetrescu and Andreesc~r (1992). we fit 
HS and ZS data to a model of pure magnetic induction, obtainirig both the magnetic 
induction component, as the calculated values of the model, and the electromagnetic 
induction component, as residuals. in the following we shall briefly review thc principles 
used in the two papers mentioned above. 

In case of pure magnetic induction, the temporal variirtion ol' Hs arid Zs at a 
given observing point is a linear combination of the components 01' the niagnetic force. As 
estimates of the latter, we took the components o f  the field prod~~ced by external sources, 
as calculated from the external spherical harmonic coefficients ot' Yuk~ i ;~ke .  and Cain 
(1979, table 4b) using the following equations (Chapman and B;irtcls, 1940): 

Fig 1. Dislribution of the obscrvatorics used for analysis. Undcrlincd symbol\: .L.I 0 1  7-7 oI~\c1~;11orics wilh 
longer scrics of data. 
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Fig. 2. Solar-cycle-rclatcd variations of thc horizon- Fig. 3. Variation ol'lhc coml)oncnls of ~ h c  external 

tal (upper plot ) and vcrtical ( midlc plot) com- dipole ficld hclwcn 1052.5 and 1050.5. 
poncnts and sunspot numhcrs (lower plot) between 

1052.5 and 1080.5 

Zd = ~ I O C O S  8 + sin 8(g11cos@ + h ~ ~ s i n @ )  

where g l o , g l l ,  h l l  are the external first degree coefficients, 8 the colwtit~~de. and 9 the 
longitude of the given observatory. The time evolution of Xd . Yd and Zd is displiiyed in 
Fig.3. - 

For each observatory and field component, we have at time t 

Hs cf x (1 Y (17. 
A (t) = AXd(t) + A Yd(t) + A Zd(t) 
zs p, P Y  P z  

where A denotes variations about temporal averages for the considered time interval. The 
coefficients a and p depend on the effective magnetic permeability. which in turn depends 
o n  the position of the observing point. They can be calculated by i i  Ieilst sclu;ires procedure. 



Then the calculated AHs and AZS of eq.2 contain the contribution 'of the magnetic 
induction and the residuals, REZ H = AHs - &IS (calc.) and REZ z = hZs - A& 
(calc.), contain the contribution of the electromagnetic induction to the observed field. The 
residuals might also contain internal signals of periods less than 20 years (20 years was the 
smallest period used in modelling the core field with a sum of sinusoids) and /or external 
components, related or not to the solar cycle, but not present in the external field of eq.1. 

3. Results and discussion 

The analysis of the longer series of data (1952.5 - 1980.5, from 22 observatories) 
was extended only to 1973.5, the last epoch with available external first degree coefticients 
(Yukutake and Cain, 1979). The results are displayed in Fig.4, the calculated values, and 
Fig.5, the residuals. 

3.1. Magnetic induction effects 
It appears from Figs.4 and 5 that: (a) the contribution of the magnetic induction 

to the SC variation depends on the site, as would be expected if magnetic properties of 
rocks beneath the observing point were different; and (b) in case of the horizontal 
component the magnetic induction accounts foi the largest part of the SC variation, while 
in case of the vertical component the contribution of the magnetic induction is compara- 
tively weak. 

The lateral variation of the coefficients a and B can be mapped, resulting in 
images of the lateral variation of the magnetic properties of the lithosphere. In Figs.6 and 
7 we give the results for the second set of data (1%1.5 - 1977.5, from 42 observatories). For 
a discussion on the effect the shorter time series and, consequently, the smaller number of 
sinusoids in the core field model have on the calculated coefficients, as well as for a 
discussion on the pattern and resolution of the maps, see Demetrescu et al. (1988) and 
Demetrescu and Andreescu (1992). Here we only point out that the information given by 
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Fig. 4. Induction model. Calculated AHs and A Za. Fig. 5. Induction model. Rcziduals. 



Fig. 6. Distribution of the coefficients a. Fig. 7. Distribution o l  the coefficients p. 

Full circles = magnetic observatories. 



the a and /3 coefficients averages a volume of magnetic material going down to the Curie 
isotherm and that the maps in Figs.6 and 7 display magnetic permeability contrasts rather 
than actual permeabilities. 

3.2. Electromagnetic induction effeccs 
The residuals, Fig.5, should contain the contribution of the electromagnetic 

induction to the observed field. If any, this contribution in the horizontal component is small 
andlor masked by noise or other causes, such as: internal signals of periods less than 20 
years and/or external components, related or not to the solar cycle, but not present in the 
dipole field we have chosen to represent the inductive force (Demetrescu et al., 1988). On 
the contrary, in case of the vertical component the residuals account for a large part of the 
SC variation, being more important than calculated MS. 

The low efficiency of the electromagnetic induction in the case of the horizontal 
component and the more pronounced electromagnetically induced response of the Earth 
in the case of the vertical component might be explained by the layered structure of the 
Earth. In the first case, this structure prevents induced currents c ~ f  enough vertical extent 
to develop, favouring vertical loops of elongated horizontal extent producing small resul- 
tant horizontal magnetic field; in the second case, it favours horizontal induced currents 
producing comparatively larger resultant vertical magnetic fields. The behaviour of the 
magnetically induced components is compatible kith this explanation too. 

That the residuals describe the electromagnetic induction component was 
shown by Demetrescu and Andreescu (1992) for the vertical component. The noise in the 
initial data propagate in Zs, in &(calc.), and residuals, being more important in the latter. 
However, in spite of the rather large noise, the residuals show a systematic behaviour, with 
lows at arround 1955.5 and 1966.5 and highs at  arround 1961.5 and 1970.5. The residuals 
corelate well with - i d  (Fig.8), which should be the case if the residuals were the effect 
of the electromagnetic induction produced by the varying external field Zd, since the 
induction electromotive force is given by the negative time derivative of the magnetic flu 
of the inducing field. 

In terms of loops of current flowing in the more conductive layers (Demetrescu 
and Andreescu, in preparation), having in view that the magnetic field B produced in the 
center of a circular loop of radius a by a current of intensity I is given by 

1 -1 where k = WbA- m , the residuals could be viewed as a measure of the intensity of 
the current in an equivalent circular loop of radius unity surrounding the point of observa- 
tion. This allows us to estimate the inductance L and the resistance R of the equivalent 
circuit, based on the relation between the instantaneous values of tension, u, and intensity, 
i, in a R-L circuit: 

which, with the above established equivalents reads 
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Fig.  8. Correlation o f  the 
residuals in the u s e  of the 
vertical component (full 
line) with -Zi (broken 

line). 

L and R can be evaluated for each observatory for the given time interval by a 
least squares procedure. The lateral distribution of L and R can be mapped, resulting in 
images of the lateral variation of the electric properties of rocks beneath the obsening 
points. Such maps can not be presented for the moment due to the bad geographical 
coverage of the longer set of data (only 22 observatories) and bad temporal coverage of 
the shorter one. 4. 

The study in preparation mentioned above also points out that the variable 
external source of the electromagnetically induced component seems to correlate with the 
solar activity in a way that makes the sunspot number and its first derivative useful indicators 
in attempts to estimate (predict) this component both in H and 2. 

4. Conclusion 

The solar-cycle-related variation presentin the annual means of the horizontal 
and vertical components of the geomagnetic field at European observatories was analysed 
to obtain information on the magnetic and electric properties of the interior, characteristic 
to the observatory location . 

The calculated values of the magnetic induction model fitted to the data 
estimate the contribution of the pure magnetic induction to the observed SC variation, 
while the residuals correspond to the electromagnetic induction component. It appears 
that, on one hand, the magnetic induction accounts for a large part of the observed SC 
variation in H, being comparatively small in Z; on the other hand, the electromagnetically 
induced response of the Earth is well present in the vertical conlponent and weqk or 



masked by noise or other causes in the horizontal component. 
The parameters related to the magnetic permeability of rocks and to the 

inductance and resistance of current loops in the Earth, derived for each observatory, can 
be used to constrain the anomaly bias in main field modelling, as well as to improve the 
secular variation models. 

References 

Alldredge, LR., 1976. Effects of solar activity on annual means of geomagnetic components. J. Geophys. 
Res., 81: 2990-29%. 

Alldredge. L.R.. Steams, C.O. and Sugiura, M., 1979. Solar cycle variation in geomagneticcxternal spherical 
harmonic coefficients. J. Geomagn. Geoelectr., 31: 495-508. 

Anghel, M. and Demetrescu, C., 1980.Theeffect ofsolar activity on thesecular variation of thegeomagnetic 
field in Romania.Phys. Earth Planet. Inter., 22: 53-59. 

Atanasiu, G., Nq!ianu, T., Demetrescu, C. and Anghel, M., 1976. Some aspects of the secular variation of 
the geomagnetic elements H, Z and F between 1958 and 1974 in Romania. Phys. Earth 
Planet.Inter., 12: Pll-P17. 

Chapman, S. and Bartels, J., 1940. Geomagnetism. Clarendon Press Oxford, 1049 pp. 

Courtillot, V. and Le Mouel, J.-L., 1976. On the long period variations of the Earth's magnetic Sicld from 
2 months to 20 years. J.Geophys. Res., 81: 2941-2950. 

Demetrescu. C. and Andreescu, M., 1992. Magnetic and electromagnetic induction cflccts in the annual 
means of the vertical component of the geomagnetic field at European observatories. Submitted to 
Phys. Earth Planet. Inter. 

Demetrescu, C., Andreescu, M. and Nqtianu, T., 1988. Induction model for the secular variation of the 
geomagnetic field in Europe. Phys. Earth Planet. Inter., 50: 261-271. 

Demetrescu, C., Andreescu, M., Nqtianu, T. and Ene, M., 1985.Characteristics of the secular variation of 
the geomagnetic field.between 1964 and 1981 in Romania. Phys. Earth Planet. Inter., 37: 46-51. 

Galdeano, A, Courtillot, V. and Le Mouel, J.-L.. 1980. La cartografie magnetique dc la Francc au ler juillec 
1978.Ann.Geophys., 36: 85-106. 

Golovkov, V.P., Kolomijtzeva. G.I., Konyashchenko, L.P. and Semyonova, G.M., 1983. The summary df 
the annual mean values of magnetic elements at the world magnetic observatories. IZMIRAN, 
Moxow, 35 1 pp. ' 

Langel, R . k  and Estes, R.H., 1985. The near-Earth magnetic field at 1980 determind from Magsat data. 
J.Geophys.Res., 90: 2495 - 2509. 

Yukutake,T., 1965.Thesolar cyclecontribution to thesecular change in the geomagnetic ficld. J. Geomagn. 
Geoelectr., 17: 287-309. 

Yukutake, T. and Cain, J.C., 1979. Solar cyclevariations of the first-degree spherical harmonic components 
of the geomagnetic field. J.Geomagn.Geoelectr., 31: 509-544. 



INDEPENDENT CONSTITUENTS IN OBSERVATORY TIME SERIES 
IN CHARACTERIZING THE SECULAR VARIATION 
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Summary 

By an ansatz of a finite set of N superimposed oscillations, observatory time 
series are fitted. This start model is optimized for the independence of the used 2N- 
dimensional functional system as a criterion. Here, the contributions of each of the 
dimensions to the volume of the corresponding 2N-dimensional parallelepiped of the 
functional space is to be evaluated. Independence and an equal standard for the constitu- 
ents are achieved by the optimizing procedure varying the start values of frequencies in 
the fitting ansatz when quotients of successively constructed Gram-determinants are 
beyond a definite threshold and of nearly the same numerical value. Results for globally 
distributed observatories characterize the secular variation. 

Introduction 

As a reflection of the physical processes in the Earth's body and its surrounding 
space, the time series of the geomagnetic field represent essential subjects of geophysical 
research for different aspects. For the study of numerous geophysical processes, espe- 
cially periodic ones, this seems to be of special importance. Consequently, geophysicists 
try to separate the first of all periodic constituents in the recordings. This is of special 
interest when independent and stable periodic constituents in the time series of the mag- 
netic elements recorded at geomagnetic observatories can be used as global characteris- 
tics of the secular variation. 

The results presented here are based on annual means of the records of some 
observatories. The method used does not contain any restrictions from the data bases or 
from any other source. Therefore, it can be applied without modifications to any other 
kind of data series where oscillating constituents in time or in space are to be determined. 

This method is more general than the Fourier analysis where an internal depen- 
dence as harmonics is supposed. 

On the Method 

In the given time interval, the linearly trend-corrected time series f(t) is modeled deter- 
ministically as a supposed ansatz by a finite set of superimposed oscillations which are 
assumed to be stationary. 

N 2x 2n 

f (t) = g (t) = (a, sin - t + b, cos - t) 

i= 1 Ti Ti 



The coefficients a, and b, of eq. (1) are determined by the method of least squares where 
the used functional system $, j = 1, ..., 2N formed by the sine and cosine terms is to be 
linearly independent. 

2n 
Fj (t) = sin - t 

Ti 

forj  = 2i-1 

27t 
Fj (t) = cos - t f o r j = 2 i  0 )  

Ti 
j = 1, ..., N 

The start tupel of periodicities Ti used in Eq. (1) are taken from spectral analytical 
investigations of the time series f(t) as well as from physical knowledge about possible 
sources of the processes. In general, Ti derived this way are in most cases, roughly 
estimated values being insufficient for a physical theory. As is well known, all the 
spectral analytical methods are of limited efficiency (De Meyer and De Vuyst, 1982; 
Saito, 1978; Kane and Trivedi, 1982; and Webers, 1985). 

For such a set of periodicities Ti (i = 1, ..., N) given in this way, the coefficients a, 
and b, of Eq. (1) determined by the method of least squares result in related amplitudes 
A, and phases cpi calculated by 

bi 
J~ = arc tan - 

ai 

Because of the fact that the used Ti in the start tupel are only roughly estimated 
values and quite possibly, some of them are reIatively doubtful from the spectrum, it is 
becomes necessary to precisely determine them. This refers to the number N of the used 
Ti as well as to their definite value. 

Consequently, the computer program includes an 
-- optimizing procedure for the approximation quality m, of g(t) for f(t) by 
varying the start tupel of Ti, and an 
-- optimizing procedure for the independence of the used 2N-dimensional func- 

tional system of the ansatz (1) as optimizing criterion by varying the start tupel of Ti 
within a given interval ATi (Webers, 1987; 1991). 

Here, the functions Fj (t), j = 1,2, ..., 2N are interpreted as 2N vectors forming a 
2N-dimensional vector space, and their independence is proved by calculating the volume 
of the corresponding parallelepiped given by the 2N coordinate axes with directions of 
these 2N vectors cj = fj (t). 

The quality of independence of the functions F, (t), i.e., of the vectors c,, is given 
by their contribution to the volume of the 2N-dimensional parallelepiped that they build 
up. Consequently, the corresponding contribution of every F., j = 1, ..., 2N can be evalu- 

J 
ated numerically when the related volumina are compared in constructing the 2N-dimen- 
sional space step by step with j = 1, 2, ..., 2N. 
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The volume of the parallelepiped is calculated by the Gram-determinant 

where its elements consist of scalar products of the vectors 5.. The procedure is essen- 
tially simplified when the functions Fj (t) = cpl are orthogonodzed before the method of 
least squares is applied. As a consequence, final amplitudes and phases are calculated 
independently of the number of periodicities Tj used and the Gram-determinant Gj is 
given by the product of its elements in the principal diagonal. 

Furthermore, the onhogonalization of the functional system enables an improve- 
ment to the approximation quality by enlarging the fitting ansatz (1). Every dimension, 
i.e., functional term of an oscillating constituent in the time series f(t) can only give an 
essential contribution in representing the 2N-dimensional space of modelling f(t) when 
the relation of successive Gram-determinants 

is beyond a definite threshold, moreover when they all are nearly of the same value. In 
this sense, the oscillating constituents of the ansatz (1) are of the same quality of indepen- 
dence in modelling the time series f(t). Consequently, this mathematical criterion is 
therefore also of physical importance. 

Evaluating hereby the linear independence and the significance of the functional 
system is not influenced in any way by the different amounts of the corresponding ampli- 
tudes and phases. 

On the other hand, there is a definite value for the relation of successive Gram- 
determinants being a numerical characteristic for the time series under investigation. 
Numerical instability of the fitting ansatz is indicated by 

-- essentially varying amplitudes within the optimizing procedure; and 
-- very different quotients Hj of the Gram determinants. 

Results 

Tables 1 through 6 show the results for the geomagnetic component X of some 
observatories. Figure 1 presents a comparison of Niemegk X time series f(t) (trend 
corrected), and its modelling g(t) where 

Ti: 120; 66; 50; 40; 30; 22; 18.6; 13[yr] and the residual curve 4(t). 

There is a good approximation quality given by mo. The corresponding amplitudes 
and phases are shown in Table 1. Table 2 demonstrates that the approximation quality is 
significantly worse when a long-period constituent of about T = 1201130 years is neglected. 
This holds despite the fact that the time series is not long enough (cf. Webers, 1985). By the 
relation of the Gram determinants Hj, Table 3 shows that a model gives a good approximation 
for f(t) but does not guarantee that the oscillating constituents it uses are of the same quality 
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for the independence from each other. Therefore, they do not have the same significance. 
By optimizing the used start tupel of Ti (Table 3), independence and more significance 
could be achieved (Table 4). Table 4 also shows the way in which the model of the 
ansatz is improved when more significant constituents are added by enlarging Eq. (1) to 
higher N. Table 5 shows the results for the X-component at Chambon-la-Foret observa- 
tory. 

Because of the fact that each of the oscillating constituents is represented in Eq. 
(1) by two terms; i.e., by functions based on a sine and a cosine expression of the same 
Ti, the more interesting sizes H, are those with reference to the same T,. In Tables 2 
through 5, only those H, are given. In general, all the other H, describing the interrelation 
between the relevant functions of different Ti are also of importance as well as of evi- 
dence. 

Table 6 shows a comparison of the optimized models for the X component of the 
following observatories: Oslo (1820-1948), Niemegk (1890-1989), Hartland (1849- 
1984), Chambon-la-Foret (1883-1986), Choimbra (1867-1985), TangerangIBatavia 
(1884-1983, and Alibag (1848-1987). In general, the published observatory data (annual 
means) are used for the presented calculations without detailed evaluation; the data bases 
having been supposed as essentially correct. Only for the Oslo X component between 
1917 and 1919 has an obviously erroneous spike in the data been smoothed (Webers, 
1985). Differences of the models in essential parts seem to be caused by physical effects, 
but on the other hand, there are obvious influences arising from different data quality. 

In general, the analysis of the observatory data series by the presented method 
results in significant and numerically stable constituents that are global characteristics of 
the secular variation. 
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Table 1. Niemegk, X, 1890-1985, linearly trend-corrected annual means, range 450.5 nT. 

Table 2. Niemegk, X, 1890- 1985. 

Ti [YrI Ti [YrI Ti [ Y ~ I  Ti [YrI 



Table 3. Niemegk, X, 1890-1985. 

Table 4. Niemegk X 1890- 1989, range 450.5 nT 



Table 5. Chambon-la-Foret X 1883- 1986, range 3 16.9 nT 



Table 6. Optimized models (cp. Eq. 1) for X component. 
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Ti [PI m, [nTI 

Oslo 127 82 52 30 23 16.6 11 7.9 

Niemegk 138 66 40 29 23 18.6 13 8.8 5.6 

Hartland 129 69 45 34 22 18.6 13 8.8 6.0 

Chambonl 142 67 41 29 23 18.6 12 8.8 3.6 
la-Foret 

Choimbra 120 68 45 33 24 18.6 13 8.8 4.6 

Tangerangl 104 64 40 30 24 18.6 12 8.8 5.6 
Batavia 

Alibag 122 67 43 33 22 18.6 13 8.8 5.6 

22.8 1 

17.04 

20.85 

13.70 

30.35 

45.43 

102.47 
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