
NASA Technical Memorandum 104751

Making Intelligent Systems Team
Players: Overview for Designers

Jane T. Malin

Lyndon B. Johnson Space Center

Houston, Texas

Debra L. Schreckenghost

MITRE

Houston, Texas

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, Texas

June 1992





Abstract

This report is a guide and companion to the NASA Technical Memorandum 104738,
"Making Intelligent Systems Team Players", Vols. 1 and 2. The first two volumes of this
Technical Memorandum provide comprehensive guidance to designers of intelligent
systems for real-time fault management of space systems, with the objective of achieving
more effective human interaction with these systems. This report provides an analysis of
the material discussed in the Technical Memorandum. It clarifies what it means for an

intelligent system to be a team player, and how such systems are designed. It identifies
significant intelligent system design problems and their impacts on reliability and usability.
Recommendations are made for situations in which common design practice is not effective
in solving these problems. The main points in the Technical Memorandum are
summarized, with references to that docwnent for further information.

Keywords: human-computer interaction, intelligent systems, real-time space operations,
design guidance, information requirements, user interface

PRECEDING PAGE BLANK NOT FILI_O

o°°

m

_It_tt/_NJU,UL





Table of Contents

Section Pa ge

1.0
1.1
1.2
1.3

Introduction ................................................................................ 1-1

Purpose and Objectives of Report ...................................................... 1-1
Scope and Organization of Report ...................................................... 1-1
Background: Space Fault Management Tasks and Terms ........................... 1-2

2.0
2.1
2.2

2.3
2.4

Intelligent System Design Concepts .................................................... 2-1
Space Operations Constraints on Intelligent System Design ......................... 2-1
The Intelligent System as a Team Player ............................................... 2-3
A Team Player is Reliable ................................................................ 2-4
A Team Player Communicates Effectively with Others .............................. 2-5
A Team Player Coordinates Individual Activities with Others ....................... 2-7
A Team Player is Guided by the Coach ................................................ 2-7
Information Design for Reliability and Usability ...................................... 2-8
The Role of Information in Designing Team Players ................................. 2-12

3.0
3.1

3.2

3.3
3.4

3.5

Guide for Designing Human-Computer Interaction .................................. 3-1
Preparation for Design ................................................................... 3-2
3.1.1 Design Team ................................................................... 3-2
3.1.2 Design Techniques ............................................................ 3-3
3.1.3 Design for Upgrades of Existing Support Systems ....................... 3-4
Analysis of Agent Tasks and Team Architecture ...................................... 3-5
3.2.1 Task Description ............................................................... 3-5
3.2.2 Task Allocation ................................................................ 3-6
3.2.3 Team Architecture ............................................................. 3-8

Evaluation Using Scenarios ............................................................. 3-10
Information Requirements for Process Management ................................. 3-12
3.4.1 Monitoring and Managing Process Alarms ................................. 3-13
3.4.2 Responding to Anomalous Situations in the Monitored Process ......... 3-15
Information Requirements for Intelligent System Management ..................... 3-17
3.5.1 Communicating with the Intelligent System ................................ 3-18
3.5.2 Responding to Intelligent System Error ..................................... 3-20

4.0 Summary .................................................................................. 4-1

References .......................................................................................... R- 1

Glossary ............................................................................................ G-1

PI_E_ED_NG PAGE BLANK NOT I--]L_E_D



List of Figures

Figure Page

3-1 Mapping from Task _ption to Information Requirements ..................... 3-1

vi



Table

2-1

4-1

List of Tables

Page

Summary of Intelligent System Design Problems and Recommended
Solutions to Those Problems ............................................................ 2-11

Intelligent System Design Needs and Problems They Address ..................... 4-3

vii



--1.1



Section 1
Introduction

1.1 Purpose and Objectives of Report

Space operations support provides a challenging domain for applications of advanced
automation technology. The increased availability of workstations equipped with such
technology has resulted in a wave of intelligent system prototype applications in space
operations. Unfortunately, the prototypes do not always live up to the bright expectations
the technology engenders. Common criticisms are that intelligent systems have badly
designed user interfaces and are hard to understand, resulting in user distrust or disregard.

A case study of NASA intelligent system (IS) prototypes for real-time fault management of
space systems has led to the conclusion that the design problems are not located just at the
user interface, but are also in the design of the IS. Intelligent system designers need help to
achieve more effective human interaction. The NASA Technical Memorandum 104739,

Making Intelligent Systems Team Players: Human-Computer Interaction Design (Malin et
al., 1991) was published to provide guidance in designing intelligent systems (ISs). The
goal is intelligent systems that effectively support human operators (flight controllers and
crew) in performing their tasks, making these systems a part of the space operations
support team. The Tech Memo 1 is lengthy and detailed. We have written this report as a
guide and companion to the Tech Memo. It serves two purposes, which are described
below.

First, this report provides an analysis of the material discussed in the Tech Memo. It
clarifies what it means for intelligent systems to be team players, and how such systems are
designed. It identifies the significant intelligent system design problems and their impacts
to reliability and usability, and makes recommendations when common design practice is
not effective in solving these problems. It summarizes and distills this large body of
material into a concise description of the important, new concepts concerning human-
computer interaction (HCI) design for the intelligent systems being built today. It also
points to needed research in artificial intelligence (AI) and human-computer interaction that
will assist designers building the intelligent systems of tomorrow.

Second, this report provides an overview (or "road map") of the material discussed in the
Tech Memo. As a road map, it identifies the important characteristics of the terrain (i.e.,
summarizes the main points in the Tech Memo). It also provides directions to specific
destinations (i.e., provides indices into sections of the Tech Memo). As a written
document, the material in the Tech Memo necessarily has a single, fixed organization. Yet,
there are multiple types of "users" of the Tech Memo (e.g., IS designers, researchers) with
different perspectives on how to use the Tech Memo. We have included a section
describing the material in the Tech Memo from the perspective of the intelligent system
designer (see section 3).

1.2 Scope and Organization of Report

This report was written for use primarily by intelligent system designers as a source of
design guidance, and for HCI and AI researchers as a source of application challenges
requiring additional research. It should also be of interest to users defining requirements
for intelligent software, software engineers interested in incorporating HCI design into

intelligent system design, and managers of intelligent system development projects.

IThe Memorandum (MAIM etal.,1991)willbereferredtoas"theTechMemo" intheremainderofthis

report.

1-1



Section 1 introduces our purpose in writing this report, provides relevant background
material, and describes how to use this report. Our important, new concepts are analyzed
and discussed in section 2. Section 3 is written specifically for the intelligent system
designer. It is organized around the major design and analysis tasks, resembling a guide or
instruction manual for intelligent system design.

1.3 Background: Space Fault Management Tasks and Terms

This section provides a brief description of space fault management, including a summary
of tasks and definitions of terminology, for readers not familiar with this domain. Readers
who are familiar with space operations may skip this section.

Ground-based space operations consist primarily of monitoring and control operations. An
important aspect of these operations is managing faults in the domain system being
monitored and controlled (what we call the monitored process). There are two primary
goals of fault management: (1) to maintain safe operations during anomalies, and (2) to
minimize the impact of anomalies to mission objectives. Safe operations ate operations that
do not pose a threat to either the crew or the vehicle. These primary goals may be
partitioned into four sub-goals: (I) to detect and compensate for anomalies, (2) to identify
the cause of anomalies when possible, (3) to recover the faulty capability when possible,
and (4) to maintain safety and mission objectives consistent with the remaining functional
capability when recovery is not possible. There are additional constraints on fault
management operations. These goals must be achieved with a minimum of disturbance to
ongoing operations unaffected by the anomalous behavior, and must not compromise
baseline safety and capability criteria as outlined in the flight rules. The major fault
management tasks perfomaed to accomplish these goals are listed below:

• behavior monitoring: monitoring the behavior of both the monitored process
and the intelligent system.

• anomaly detection: discovering when anomalous behavior is exhibited by either
the monitored process or intelligent system.

• anomaly compensation: mitigating the effect of an anomaly; compensation can
be temporary while fault diagnosis proceeds, or permanent if fault recovery is

not possible (safmg 2 and reconfiguration 3 are common ways to compensate for
anomalies).

• mission impact assessment:, evaluating how anomalies, and the procedures
executed to manage anomalies, affect mission goals.

• anomaly propagation: predicting the effects of an anomaly over time.

• functional capability assessment:, determining the functional capability affected
by an anomaly, and the functionality remaining to accomplish mission goals.

• fault diagnosis and testing: determining the possible causes of an anomaly, and
testing to minimize this set of possible causes.

• fault identification: uniquely determining the cause of an anomaly.

2 sating: process of identifying the safety impacts resulting from an event and taking appropriate action to

_ut the crew and vehicle into a safe configuration
reconfiguration: process of altering the configuration of the affected system to mirlimizcsafety and

mission impacts

1-2



faultrecoveryor repa/r:modifyingthefaultyitemtocorrectthefaultand repair
anomalous behavior.

mo fic no:m , nplans or objectives: altering mission plans or goals in
response to the impacts of an anomaly.

A few def'mitions are required to understand these m_ic._. A mission corresponds to a set of
tasks associated with a specific set of objectives (e.g., deploy a payload). Procedures are
elements of a plan that specify the sequences of activities performed by the space operations
support team to achieve safety and mission objectives within flight constraints. Activities
are portions of tasks that have been assigned to specific agents, and that employ available
resources (e.g., information, capabilities) to achieve the goals supported by these actions.
Anomalies are irregular system behaviors or conditions that can be caused by a variety of
influences, including faults, environmental factors, operator error, etc. A fault is the cause
of a loss of functionality in a system, subsystem, component, or part. For example, one

anomaly of a Display and Control panel is that a light did not glow when expected. The
associated fault is a burnt-out light bulb.

This section has given a very brief overview of fault management operations for space
systems. Section 3 in the Tech Memo (Malin et al., 1991) contains a more thorough
discussion of this topic.

1-3





Section 2

Intelligent System Design Concepts

The theme of the Tech Memo (and even its title) is "making intelligent systems team
players". This phrase implies a lot about the design of intelligent systems and their user
interfaces. In this section we summarize the imtxaxmit concepts in the Tech Memo,
highlighting what is new and different about our approach to designing intelligent systems
for human interaction. We discuss characteristics of space operations that constrain
intelligent system design and lead to the team player concept. We analyze what it means for
an intelligent system to be a team player, and how to prevent common information
problems that interfere with teamwork. We discuss how to design reliable and usable
intelligent systems, with a focus on def'ming information requirements.

2.1 Space Operations Constraints on Intelligent System Design

Technology advances have enabled the use of intelligent systems during real-time space
operations. Intelligent systems used for space operations are a type of complex interactive
real-time software system. In common with such complex software systems, intelligent
system operations are characterized by (1) large amounts of information provided
continuously from multiple sources, (2) time-constrained processing with deficiencies in
information quality and availability, (3) sophisticated software capability and sophisticated
users, often with multiple tasks being performed concurrently or jointly by human and
computer, and (4) the potential for active information exchange and interaction between
human and computer. Implicit in this characterization of the space operations environment
are assumptions about the domain and how the intelligent system operates within the
domain. In this section, we discuss the characteristics of space operations that affect
intelligent systems design today, and what they imply about IS design needs in the future.

Space operations are continuous and the situation changes frequently. Space systems are
very dynamic and complex. Even under nominal conditions, situations can change
quickly, requiring the space operations support team to continuously monitor the systems
and respond to changes in real-time. When anomalies do occur, space operations cannot be
stopped while the problem is being fixed. The space operations support team must correct
the affected portions of the system while maintaining operational capability in the
unaffected portions of the system. As a result, the space operations support team must be
able to perform multi-tasking and complex sequences of events and operations. The
support team must also be able to respond to unexpected situations with novel operations.
To accommodate these conditions, the IS must execute in real time. The IS design should
include some type performance control (e.g., for the IS being built today, such capability
includes disabling portions of a rule base, or at least bypassing some data sets to "catch up"
to real time). The intelligent system should also be designed for unexpected situations, by
providing alternate ways of performing operations that provide the human operator some
flexibility in responding to such situations. In the long run, the human operator should be
able to "inform" the IS of modified operations and to repair the IS when it is not
performing well.

Space operations involve risk. Errors in performing space operations can risk the safety of
crew and vehicle, and the ability to accomplish mission objectives. When introducing a
new technology into space operations, it is important to understand the potential of that
technology to increase these risks (i.e., the potential of introducing hazards that could lead
to accidents caused by the support system; Leveson, 1991). Intelligent systems can
introduce risk into critical operations directly by taking erroneous action, or indirectly by
causing operator error. To avoid such risks, a variety of precautions can be taken. For
example, a common policy aimed at reducing such risks is to prohibit commanding of the

2-1



vehicle by an IS. Also, the human operator is typically responsible for supervising the IS,
and assessing ff its re.cornn_nded actions are risky. A less obvious but important approach
is to present information from the IS in such a way that it doesn't overload or distract the
operator (e.g., minimize unimportant interruptions of operator tasks). At a minimum,
intelligent systems should be designed to avoid increasing risk. Intelligent systems that
reduce the risk in space operations are a longer term goal requiring additional research.

Measurements will be noisy, unreliable, and will periodically drop out. Measm'cmcnts
from space-based systems are frequently degraded (e.g., noisy or intermittently flawed) or
unavailable (e.g., short duration data dropout, loss of signal while transmitting satellite
unavailable). Yet real-tin_ space operations require continuous, online support. The
intelligent system will be required to operate using such measurements without behaving
anomalously. For example, it should not be necessary to shut down the IS at loss of data,
or to ignore false alarms caused by noisy input. Measurement preprocessing to remove bad
data prior to IS processing is a common approach to minimizing the effect of bad
measurements. The ability for the intelligent system to actively compensate for loss of
information, and to effectively accomplish tasks using partial information, is an important
research issue.

Large quantities of information must be assimilated quickly and accurately by the human
operator. Dynamic, complex space systems generate large quantifies of rapidly changing
data. Operating such systems requires considerable design and domain knowledge as well.
If not managed, this flood of information can confuse and overload the human operator.
Since the intelligent system generates yet more information, it should be designed to assist
the human operator in effectively using its information in conjunction with other
information (e.g., IS conclusions should be presented in conjunction with related data,
instead of making the operator search to find related data). Intelligent systems in use today
should avoid increasing the information load on operators. For example, providing
explanatory infommtion using a retrospective, conversational interaction style can distract
the operator, causing the operator to miss important changes in the current situation. In
future systems, the intelligent system may play a more active role, by integrating and
managing diverse information to reduce operator workload.

Hwnan operators often misunderstand what the intelligent system is capable of doing. Like
many new technologies, intelligent systems are often poorly understood by the human
operators using them. User expectations of technology, often based on state-of-the-art
capabilities, can differ significantly from the operational realization of that technology.
Intelligent systems are often perceived as "magic" (Abbott, 1991) and attributed with
performing tasks significantly different from their actual tasks (and often well outside the
scope of current capability). To avoid the perception of a "magical" system, the human
operator should find it easy to continuously understand what the IS is doing and why it is
doing this (i.e., its goals and the activities performed to achieve them). With such an
understanding the human can assess if IS conclusions are correct, and is better able to
respond to IS errors. For intelligent systems being built today, this means providing the
operator with information about the tasks and current line of reasoning of the IS. For
inteUigent systems of the future, research is needed on building systems whose reasoning
and tasks are evident from their representation and presentation of information about
situations as they develop.

The intelligent system will behave anomalously at some time during operational use. Space
operations consist of difficult, complex activities. Situations can occur that have not been
encountered before, or even anticipated during design. In such an environment, we can
safely assume that the intelligent system will eventually make errors. When the IS behaves
anomalously, it must either be repaired in real time, or its tasks must be performed in

v"

2-2



anotherway. Selfrepairispossibleforsornctypesof IS errors.For example, a self-
repairableIS can correctitselfwhen predictableerrorsoccur (e.g.,retractconclusions

based on bad data).Not allIS errorscan bc so easilyrepaired,however. An approach
suited to the capability of today's intelligent systems is compensating for irreparable IS
errors by providing alternate modes of operation independent of the IS. For example,
when the intelligent system fails, the human operator should be able to access information
and functionality needed to perform tasks normally assigned to the IS. Since repairable
intelligent systems are more complex to build and such capability is limited in the IS being
built today, this represents an important application challenge for the AI research
community.

Human operators in space operations are experts in their domain. A common assumption
in the development of an intelligent system is that the system will be more knowledgeable
than its user. This assumption does not hold for intelligent systems used in space
operations, since the typical user is a flight controller who is also a domain expert.
Intelligent systems for space operations should support and assist their human supervisors
in performing tasks, not tutor them about the domain. For intelligent systems being built
today, this means designing for situations where the IS gives the wrong advice. In the
simplest case, the human operator should be able to ignore the IS advice. A more
sophisticated approach is to permit the human to correct the IS (i.e., the intelligent system
can receive advice as well as give it; Mardn and Firby, 1991). Future intelligent systems
may even be able to "learn" from their human supervisors.

The intelligent system will often be embedded in a larger support system. Intelligent
systems for space operations are usually part of an integrated support system that includes
conventional and display software. The intelligent system should not interfere with the use
of the non-A/software, even when the IS fails. The human operator should be able to
identify the source of the displayed information. When a component of the support system
fails, such as the IS, the human operator should be informed of what information has been
lost and what is unaffected. Alternate ways of accomplishing mission objectives without
the lost information should be also be considered during system design and training. For
example, when the intelligent system fails, the operator should be informed of what
information is no longer available, and should be able to continue viewing information
from the remaining support software. At a minimum, the IS should not interfere with the

human operator's tasks. The integration of diverse information for support of the human
operator's tasks is a longer term research issue related to this.

2.2 The Intelligent System as a Team Player

Real-time space operations are typically performed by teams of humans. These teams have
a common set of goals (safety and mission objectives) that are accomplished by team
members performing tasks both individually and cooperatively. When multiple team
members are assigned to cooperatively perform tasks, they must coordinate their individual
activities and collaborate to exchange necessary information. Team members may have
overlapping areas of expertise (i.e, specialties), and have some capability to back up each
other's specialties.

We have extended this team concept to groups of humans and intelligent systems. The
human and intelligent system are considered as members of a team that manages faults in
the domain system being monitored (the monitored process), what does it mean for an
intelligent system to be a team player in the space operations enviromnent?

A team player is reliable
A team player communicates effectively with others

2-3



A team player coordinates individual activities with others
A team player is guided by the coach

In this section, we describe these traits of a team player, based on the way intelligent
systems are used in space operations (see section 2.1 for a description of the space
operations constraints on intelligent system design).

A Team Player is Reliable

Space operations are characterized by uncertainty (e.g., noisy data), complexity, and risk.
In such an environment, a reliable team member is one who will try to do the right thing,
and, in the worst case, will not cause harmful effects or get in the way. Such a team
member should reliably perform assigned tasks, which requires being capable of alternate
ways of doing things. For an intelligent system, this means designing a system that is both
robust and flexible. Verification and validation techniques are used to determine if the
system is "doing the right thing" in expected situations. But what ff the unexpected occurs?
Robust, flexible intelligent systems will include some provision for continuing operations
in situations where things don't go as expected. Such situations include the IS behaving
anomalously (e.g., drawing a wrong conclusion, pursuing an unproductive path of
investigation), or the human operator altering nominal Or accepted procedures (e.g.,
executing a contingency procedure unknown to the IS, changing task allocation due to
workload problems or unacceptable performance).

When intelligent system behavior or performance is not as planned, a reliable IS will either
support alternate ways of accomplishing its tasks or permit itself to be repaired for
continued operations. To ensure that the IS doesn't obstruct operations, the human should
at least be able to disable the IS and perform all its tasks (i.e., reallocate IS tasks). If the IS
is embedded in a larger support system, it must permit access to information and capabi/ity
necessary for a human to do IS tasks when the IS is disabled, and should clearly identify
the disabled state of the IS on the display. For example, when one IS from the case study
is disabled, it displays the portions of the screen used by the IS in a grey shade. Task
reaUocation can be graded, from a partial re,allocation (e.g., disable a portion of a rule base)
to a complete override of all task responsibilities (e.g., turn off the IS). Providing for task
reallocation is the most likely approach to building reliable intelligent systems today. There
are thorny design problems associated with task reaUocation, however, such as how a
disabled IS can effectively resume its responsibilities at a later time (i.e., what information
is needed to bring the IS back "up to speed" after it has been stopped).

The second approach to building reliable intelligent systems is to provide the ability for the
IS to be repaired. The repair can either be performed by the human or the IS (i.e., self
repair). Repairing intelligent system behavior consists of modifying Or correcting its
activities, reasoning, or the information used by it. To repair the IS, the human must also
be able to understand the IS activities leading up to the error (why the error occurred) and
to monitor the effects of the repair (did the IS recover from its error;, cf., section on Coach).
Although real-time repair of intelligent systems is beyond the capability of most systems
today, a limited form of IS repair can be achieved by designing for the human to provide or
correct data used by the IS (e.g., correct noisy data value causing the IS to make wrong
conclusions). It is also possible for the IS to perform some type of self repair (e.g.,
designate uncertain conclusions provisional/y true, reuact conclusions based on bad dam).
Further in the future is the ability for the human to alter the knowledge and reasoning of the
IS in real time, permitting a form of on-the-job training of the IS by the human.

2-4



A Team Player Communicates Effectively with Others

Effective human-computer communication requires striking a balance. On one hand, the
intelligent system must provide enough information for the human to understand what it is
doing and why (i.e., enough information to prevent the IS being perceived as "magic").
On the other hand, the intelligent system must not provide so much information that it
interrupts or distracts the human from more important tasks. The human operator is
already overloaded with information. The problem of information overload becomes
especially important in real-time environments where complex, high risk tasks are
performed, and where human errors can represent serious risk. Essential to achieving this
balance when designing the IS is identifying when it is important to communicate, and
when to keep quieL Additionally, the IS should be clear about what it is communicating
(i.e., don't bury the important information in a pile of unimportant data).

Most of the intelligent systems in the case study communicate with the human in one or
more of the following ways:

• message list: a chronological list of state and status assessments and/or action
recommendations

• annotated schematic: a graphic representation of the physical structure of the
system, annotated with sensor measurements or state/status assessments from
the IS

• explanan'on: a conversational style of providing additional justification for an IS
conclusion

All of these methods have significant limitations in achieving effective communication in
this environment.

Both message lists and schematics can obscure intelligent system information important to
the human operator (Woods eta/., 1991). Situations develop as patterns of events
indicated by changing state and status. Schematics can only present the latest event (i.e.,
the current state). Additionally, if events are not related to physical structure (e.g.,
functional status), they can be difficult to present clearly using a schematic. Message lists
do capture some event history, but do not represent the relationships between events (e.g.,
events occurring in parallel, the temporal distance between events) necessary to reveal these
patterns. Since chronology is the means of sorting messages, related information can
become dissociated.

Intelligent system designers should consider alternatives to message lists and schematics
that assist the human operator in seeing patterns of events as they occur. For example,
Woods and Potter are investigating fimelines as an alternative to message lists (Potter and
Woods, 1991). Woods (Woods et al., 1991) recommends considering alternatives to the

physical schematics as well. If schematics are deemed appropriate, they recommend
approaches for emphasizing the information important to the task. Woods is also
investigating representation aiding to identify the important changes in situation and to
focus the operator's attention on those changes (Woods, 1991). See section 5 of the Tech
Memo for recommendations concerning message lists and schematics.

The third common approach to communication is explanation. Most explanation systems
operate retrospectively, requiring the operator to wait until after a situation has stabilized
(and the IS has reached a conclusion) before attempting to describe what happened. In
real-time support environments, the operator cannot afford to wait until system behavior
stabilizes, for the safety impacts may be too great. Such event reconstruction is also not
sufficient for team coordination during joint activities (cf., section on Coordination).
Additionally, the conversational style of explanation can be distracting and can contribute to
information overload.

2-5



Even assuming that the human operator has time to hold a conversation with the IS, a
problem remains with traditional approaches to explanation. Affecting the behavior of a
human operator reqfftres that the human both understand the meaning and consequences of
the explanation, and accept them as correct. Most explanation systems assume that failure
to influence human behavior occurs because the human failed to understand the

explanation, and continue to provide more detailed justification directed at improving
understanding. But, contrary to this assumption, acceptance does not necessarily result
from understanding. The human may understand the intended _ing but choose not to
believe it, due to information unknown to the IS or not considered by the IS. Or the human
may believe the information but be unwilling to alter behavior, due to the belief that adverse
side-effects will result from altering behavior or that the consequences of altering behavior
are of no significance. This type of explanation ignores that expert users (such as flight
controllers) usually know MORE about the domain than the IS, and that the purpose of the
explanation is often to clarify what the IS "thinks" is happening so the user can detect IS
anomalies.

For the intelligent systems being designed today, the use of such retrospective explanation
approaches for real-time tasks should be limited. When it is necessary to provide an
ahernative to explanation, it must be custom designed. For example, Martin and Firby
provide an explicit representation of robot tasks (both planned and ongoing tasks) to the
human monitoring the robot (Martin and Firby, 1991). The human can use this task
representation as a means of understanding the robot's strategy for accomplishing goals
and altering those strategies by modifying the planned tasks.

Thus, providing alternatives to explanation is an important research area for real-time
intelligent systems. These alternatives should address both the problem of retrospective
presentation and the deeper problem of clarifying IS reasoning. A promising area for
investigation is using shared representations as a means of human-intelligent system
communication. A representation shared between agents is prevalent as the basis of
communication in many domains, including humans advising robots using a shared task
representation (Martin and Firby, 1991), distributed machine agents planning tasks using
shared goals (Decker et al., 1991), and designers developing shared mental models (Sycara
and Lewis, 1991). Using a shared representation, the human should be able to follow
operational situations and develop assessments consistent with IS assessments (i.e., a
shared view) as part of the normal monitoring and control operations. Additionally, this
approach permits developing common knowledge between the human operator and
intelligent system, requiring the operator to expend less attention (and time) to effectively
supervise the IS (of. section on Coach). The long term goal of such efforts is that
intelligent system conclusions should be represented and presented in such a way as to be
self-evident to the human operator, in effect, such an intelligent system becomes self-
explanatory.

An important task in designing for communication via shared representations is identifying
the information needed to develop such a shared view. Developing a shared view requires
showing how a situation develops, including the ingxxtant events that characterize the
situation. These events include not only failures, but important state transitions and
configuration changes in the monitored process. To share the IS view of a situation, the
operator must also understand the bases of IS conclusions about that situation. We have
seen intelligent systems that clarify their conclusions by presenting plots or tables of data

2-6



supporting these conclusions 1. This is a simple but powerful example of how the human

can share some portion of the world view of the intelligent system, so ,that .both the human
and the intelligent system are acting based on the same "understanding of me situation.
Providing such information results in an inteLLigent system that is used frequently, even
during nominal operations. Such systems are "continuously useful", because users rely on
them frequently. Such continuous use improves user trust and acceptance of these

systems.

A Team Player Coordinates Individual Activities with Others

When teams of humans and intelligent systems operate in multi-tasking environments, it is

necessary for them to coordinate their activities to avoid interfering with each other. A
closer cooperation becomes important when team members jointly perform activities.
Dependencies may exist between these activities that require frequent interaction and
communication among teara members, and that require timely reaction to changes in
situation. When team members fail to coordinate their activities, team perforn'mnce can be

degraded. The effects range from reduced task performance to failure to achieve task

objectives. Thus, degraded team performance can also negatively impact the monitored

process.

These c,oor_ination tasks are performed in addition to fault management tasks and, to be a

team player, the intelligent system must be designed to support them. For the systems
being bnilt today, this often means designing intelligent systems that won't interfere with
the human performing fault management tasks. Team membecs should be able to back each
other up (e.g., the human should be able to perform IS tasks as a contingency). Team
members maintain awareness of each others activities, but focus their attention and efforts

on the job to be done. To assist the operator in monitoring its activities, the IS should
provide information to the operator about what it is doing (its activities), as well as what it
has concluded. Such communication, however, should not overload, distract, or

unnecessarily interrupt the operators activities (cf., Communication). Team members
don't operate in isolation, but are guided and coordinated by the coach. Since the human
operator supervises the intelligent system members of the space operations support team
(i.e., the human is the coach), the IS should permit some sort of human control over its

activities (e.g., reassign tasks, Correct bad data; cf., Coach).

In the future, shared human-inteUigent system tasks will require that the human and the

intelligent system be able to monitor each others activities and exchange information about
the task (e.g, activities, goals, plans, beliefs, intentions). This information exchange
should be based on an understanding common to the team of what is relevant to the current
situation. Research is needed on ways to represent such information to achieve a common

understanding of situation during real-time tasks (cf., Communication).

A Team Player is Guided by the Coach

Typically, intelligent systems are designed to advise humans, as off-line consultants or
advisors m non-expert human problem-solvers. For complex space operations, however,
the human operator is an expert and is more knowledgeable and dependable than the IS.
Thus, the IS should be guided by the human. The human operator assu_ aes a dual role in

the space operations support team. The operaax is both a team member wh:_ performs fault
management activities, and a supervisor, or coach, who manages the act_vities and

1 Two systems that provide data bases for IS co_lusiom as¢ Vista, being developed by Rockwell (Horvitz
et al., 1992), and The Thermal Control System Advanced Automation Project, being developed by
McDonnell Douglas (Hill, 1991).

2-7



perf_ of theteam.As ateammember,thehumanoperatormustbeabletoperform
assignedtaskswhilemaintainingexpertise through on-the-job training. As the coach, the
human operator must be able to monitor what the team is doing, direct individual members
of the team, and coordinate their activities with respect to team goals. To do this, the
human operator must understand what the IS is capable of doing, what it is doing at any
given time (and why), and how its activities affect other members of the team. The
operator must also be able to take some action when the either the team as a whole or an
individual member of the team (such as the IS) is not performing as expected.

To guide an individual intelligent system, the human must be able to monitor and
understand IS activities, and to detect and manage IS anomalies. Monitoring and
understanding IS activities requires providing the human with a view into IS reasoning as a
means of detecting ancxnalous IS behavior. The human should always understand what the
IS is doing (its activities), and if its activities make sense and are having the expected
effects. A representation shared between the human and the IS can make it easier for the
human to understand and advise the intelligent system (cf., section on Communication).

Intelligent system anomalies can be managed by either compensating for them or correcting
them (cf., section on Reliability). To compensate for anomalous IS behavior, the human
coach can reassign its tasks (task reallocation). To correct anomalous IS behavior, the
human coach can alter information used by the IS, such as informing the IS of revised
information when it has been misinformed. Task reallocation is the most common way of
managing IS anomalies.

To supervise the team, the human must coordinate team activities in addition to managing
anomalous behavior in the individual intelligent system (cf., section on Coordination). The
human must monitor the effects of team activities to ensure they are as expected. The
human must replan and _ team activities when these effects are not as expected or
when goals are altered, or to compensate for an overworked or anomalous team member.
At a minimum, the IS should not get in the way of efforts to coordinate the team (i.e.,
permit reassignment of its tasks, avoid interrupting unnecessarily). For a given fault
situation there may be mote than one way for the team to respond (e.g., correct an
anomalous IS versus reassign its tasks). It is necessary for the human to perform a trade-
off between these response options to determine what to do. Part of this trade-off includes
assessing how each option will impact mission and safety goals, and evaluating the
likelihood of unexpected or harmful ouw.omes associated with each option. Once action
has been taken,thebehaviorof the team must be monitored todetermine ifthe actionwas
successful.

2.3 Information Design for Reliability and Usability

A key observation from the case study is that many perceived user interface problems in
intelligent systems are actually information problems. These information problems result
from (1) not providing the right information to support donu_/n ta._ks, and (2) not
recognizing that an intelligent sysmm introduces new gser supervisory tasks that require
new types of infozmafion. These problems are made more difficult by failure to consider
how intelligent systems operate in space environments (e.g., effect of data quality and
availability on IS behavior, cf., section 2.1) and failure m integrate intelligent system
operafi_s with oO_er operations.In this sectionwe characterizetheseintelligentsystem

design problems and recomm nd solutions to them. We describe how these design
problemr impact intelligent syste.n reliability and usability, and delineate the benefits of
solving them.

The first information problem is failure toprovide the right information to support domain
tasks. This problem results from not identifying the information that should be exchanged

2-8



to support the human operator's tasks (i.e., the information requirements). The most
common tasks performed by intelligent systems being built today are fault monitoring and
diagnosis. The information needed to support the operator in these tasks is the important
behaviors, interesting relationships, and significant changes occurring in the monitored
process (Woods et al., 1991). To interpret this information, the operator must also
understand the behavior expected to occur, and the thresholds delimiting significant or
interesting changes (i.e., transition points). For example, many of the human operator's
decisions during fault management require information about functional capability (what
functionality has been lost, what is the mission impact of that loss). Yet the information
typically communicated to the operator by the IS consists of component failures shown on
schematics or listed in message logs. These methods of presenting information do not
support identifying important changes (e.g., lost functionality) and relationships (e.g, how
failures impact mission goals), and considerable effort is required to use this information to
make fault management decisions. Thus, common practice in communicating with the
human operator does not provide the information needed to make fault management
decisions. To solve this design problem, information requirements should be defined
based on a description of domain tasks. New user interface designs are also needed for
effective presentation of information supporting functional assessments.

The second information problem is failure to design for user supervision. New user
supervisory tasks include both monitoring ongoing IS activities with respect to mission
goals and safety, and guiding and correcting the IS when it malfunctions. Intelligent
systems are usually not designed to be managed because it is not well recognized that they
need to be managed. This omission in design arises from two misconceptions: (1) that the
intelligent system is more knowledgeable than its user (i.e., the human operator), and (2)
that the intelligent system can be designed to prevent all errors from occurring. In fact, the
typical space operations user (a flight controller) is also a domain expert. This expert user
is more knowledgeable than the IS and is well qualified to supervise the IS. The
misconception that all IS errors can be prevented results from unrealistic assumptions about
the space operations environment and how intelligent systems operate within that
environment. Due to the complexity of this environment, the behavior of the monitored
process cannot always be accurately predicted, and unexpected situations occur. Because
they are unexpected, the IS knowledge base does not address them and the IS can respond
anomalously. Additionally, data problems (e.g., stale, noisy, biased) are common in space
environments and can cause IS error. The intelligent system should be designed so that the
user (the human operator) can take action to recover from such IS errors. In effect, the
intelligent system can be designed to gracefully degrade outside the boundaries of its
knowledge by providing the ability for the operator to correct or compensate for IS errors.

Typically, however, the intelligent system provides no means for the human operator to
respond to IS errors, apart from turning off the IS. Thus, IS errors due to unanticipated
anomalies or data deficiencies may require the operator to assume all IS responsibilities
(i.e., take over from the IS). The IS must be designed for such dynamic reallocation of its
tasks to the human operator. When tasks are reallocated from the IS to the operator, critical
operational information and commanding capability used to manage the monitored process
must be accessible independent from the IS. Note that for such task allocation, the human

remains "in the loop" for all activities, contrary to the notion of the IS completely
automating human tasks. Another way to design the IS for recovery from errors is to
provide for repair or correction of the IS. This requires that the operator understand the
capabilities and reasoning strategies of the IS well enough to ma_rtipulate them by altering
information. It also requires that the IS be designed to accept such information changes.

2-9



Since part of managing the IS is minimizing the risks associated with supervisory activities,
the IS should be designed to assist the operator in assessing these risks 2.

If not designed for user supervision, the intelligent system can also be difficult to
understand (what we called a "magical" IS in section 2.1) because it doesn't provide the
user with necessary information about IS processing. The user (the human operator) must
understand what the IS can do (its capabilities), what it is cmxendy doing (its activities),
and why (its reasoning strategies). Without such an understanding, the human operator
cannot hope to guide and correct the IS. Providing this additional information to supervise
the IS can overload the operator, however, if it is not effectively managed. To manage
information overload, it is imIxxlant to identify what is relevant to the current task and
emphasize that information on the user interface. Explanation is the traditional approach to
clarifying and justifying IS conclusions. Explanation is not effective in real-time situations,
however. Instead of retrospectively describing what occurred, it is necessary to provide a
view of a situation as it develops, including the intelligent system's involvement in the
situation. Additionally, explanation makes wrong assumptions about what information is
needed by human operator. Instead of a tutorial, the expert user needs clarification of the
IS reasoning strategies and the information used by the IS to come to conclusions, to
supervise the IS by independently checking its conclusions.

A common design problem is failure to integrate intelligent system operations with other
operations. Usually the intelligent system does not operate as a stand-alone system, but is
instead embedded in a larger support system. The intelligent system must be integrated
with the sources of operational data. Intelligent system integration can require significant
non-AI software for managing data problems and displaying data. Data problems may
require developing data preprocessing software to minimize bad data processed by the IS
and providing self-correction within the IS. Often, the interface to the IS is developed in
conjunction with a general user interface upgrade, since expert system tools can be the first
opportunity to use a graphical user interface in the space operations support environment.
The intelligent system displays must be integrated with other displays. Failure to design
the IS for coordination with the human operator is another design problem affecting its
integration into operations. Designing for coordination requires avoiding unnecessary
interruptions or interference in operator activities. Task handover and task dependencies
(including required information exchange) should also be considered during design.

We have summarized the comnxm intelligent system design problems observed during the
case study. These problems can significantly impact IS reliability and usability. In table 2-

1, we categorize IS design problems by their impact to reliability and usability, and .provide
recommendations for solving these problems. Reliability is a critical design issue, since an
unreliable and uncontrollable intelligent system can impact the safety of space systems.
Intelligent systems that do not perform reliably cannot successfully provide real-time
decision support. Thus, solving those problems affecting reliability should be of first
priority to the IS designer. The second impact is related to IS usability. Intelligent systems
that are difficult to use have an increased risk of user rejection and user errors. Solving

problems affecting usability should improve the chances of intelligent system success.

2 The risks of correction include causing irrevocable changes, making errorsduring correction, and
introducing unexpected effects. The risks of reallocation arise from users not sufficiently aware of situation
to respond correctly, not adequately trained, and overworked or distracted by assuming IS responsibilities.

2-10



Table 2-1. Summary of Intelligent System Design Problems and
Recommended Solutions to Those Problems

I
DESIGN PROBLEMS [ RECOMMENDATIONS

Problems Affecting Reliabilit 7

1. IS not designed to support human
operator in supervising IS activities
and recovering from IS _rors

2. Unrealistic assumptions about space
operations
• bad or unavailable data
• unexpected situations

3. IS activities, reasoning strategies, and
capabilities misunderstood and often
ove_restimatedby humanoperator
(i.e., a magical IS)

• Assess risks of correcting of compensating for IS error
• Provide user correction of compensation fof IS error
• Support managing monitored process independent of IS
• Support dynamic task allocation (human backs up the IS)

• h_acess data
• Design IS for self correction
• l_._gn IS for supervised recovery (see 1 above)

• Provide dynamic information and feedback about ongoing
IS activities and swategies

• Provide acx.e,ss to static information about IS capabilities
• Emphasize information relevant to managing the IS
• Show situation as it develops, including IS activities

Problems Affecting Usabilitj,

!. Common practice in user interface
design increases user workloadandfails
to provide the most usable information
• message lists and schematics
• explanation

2. IS not integrated with SUplXa'tsystem

3. IS not designed for coordination

• Identify information requirements to support domain tasks
• To avoid overload, present what is relevant to ongoing

task
• Present situation as it develops, including IS activities
• Replace explanation with shared understanding of situation

• Integrate with operational data sources
• Integrate with other suplxm displays

• Avoid interrupting user or interfering with user tasks
• Coordinate changes in task allocation
• Identify dependencies between tasks
• Provide feedback about ongoing IS activities

2-11



Using this design guidance should improve safety and reduce cost. Building reliable
intelligent systems reduces safety threats due to IS errors. Building usable intelligent

systems reduces the potential for o .perator error and improves user acc ep.tance. Th_s
reduces the chance of the IS not being used, and minimizes costly reaeslgn oI me___. The
results are safer operations using the IS and reduced cost of building the IS.

2.4 The Role of Information in Designing Team Players

Now that we have described what it means for an intelligent system to be a team player and
characterized the infonmtion problems that can prevent it from being a team player, we will
describe how to design systems that are team players. Let us start with an example of a bad

design, an intelligent system that is not a team player.

Example: Suppose that a user's task is to detect event Y, which occurs when sensor
A is bad and switch B is off. The intelligent system displays the current status of
sensor A and state of switch B. If noisy data causes a change in the displayed value
from either sensor A or switch B before the user looks at the display, the user can
miss event Y.

On the surface, the problem with this system appears to be caused by "bad" user interface
design (e.g., overwrite the display of data from sensor A and switch B before event Y can
be detected). A closer look, however, reveals that the so-called bad user interface is merely
a symptom of an underlying information problem (e.g, the information of interest is Y, but
the IS does not detect and display Y). Specifically, the intelligent system is not providing
the right information at the right time. These information problems can affect the ability to
perform both domain tasks related to the monitored process and user supervisory tasks for
the intelligent system. An understanding of both of these types of tasks is necessary to
determine what the"right" information is and when it should be provided. We have defined
information requirements as describing the information that must be exchanged between the
human and computer when they interact to perform both of these types of tasks.

Information requirements are identified by considering how the user will interact with the
support system, including the intelligent system, to perform tasks (i.e., based on a
specification of expected operations using the intelligent system). Thus, information
requirements include operational considerations early in system design, a common
recommendation in the design of space support systems that is rarely applied.

Representative scenarios are defined that specify the expe:c,ted operations usin.g the
intelligent system. These scenarios are then evaluated to identify the mformanon mat must
be exchanged between the human and the intelligent system. Techniques for evaluating
operational scenarios include exercising prototypes or storyboards.

Why does defining information requirements result in an intelligent system that is a team
player? Because these requirements are based on a specification of the user's tasks during
operations with the IS (both domain and user supervisory tasks). A task-based approach to
requirements definition ensures that the monitored process can be managed, and that the
resulting IS can be managed (i.e., it is reliable, and directable by the human coach) and
that its activities are coordinated with those of the operator. Information requirements

provide an informed means of selecting what should be represented and presented, as well
as when it should be represented and presented. This guarantees that all the needed _
information, and only the needed information, is provided, which solves the issue of
effective communication (and the associated concerns of a magical IS and information

overload). Additionally, information requirements provide a more rigorous and obj.ecti.ve
means of evaluating the design than the usual evaluation approach in which the design is

2-12



good if the usezs like the way it looks (sometimes called design by "Mikey likes it"; Abbott,
1992).

Information requirements affect the design of both the intelligent system (i.e., what
information to represent) and its user interface (i.e., what information to present). Thus,
user interface design and intelligent system design are not independent efforts, but aspects
of a single development process. Considering human-computer interaction as part of
system development integrates user interface design into overall system design. It also
necessarily involves users early in system design to describe the task and assist in
identifying information requirements.

We make .a strong, distinction between HCI design and user interface design. Human-
computer mteracuon design focuses on the information exchanged between the user and the
computer when performing the task that the software system is intended to support. In
other words, the representation of information (i.e., the information message or meaning)
is the product of HCI design. The user interface design, on the other hand, focuses on the
display and control software and hardware (i.e., the information media) that mediate
information presentation and dialog with the user. One of the dangers of confusing HCI
design with user interface design is the tendency to overlook task-level information needs
(e.g., information needed to make a good decision), while focusing on physical interface
characteristics and low-level interface functions. Based on this distinction, HCI expertise
is needed early in system development to define the information required to perform tasks.
The more traditional user interface expertise is needed to design for information
presentation and dialog with the user, which may include early development of user
interface design concepts, in the form of prototypes or storyboards.

In the next section (section 3), the activities performed to define information requirements
are discussed. Section 3.4 addresses information requirements for managing the monitored
process, and section 3.5 addresses information requirements for managing the intelligent
system.

2-13





Section 3
Guide for Designing Human-Computer Interaction

D_g _ ease shy _ in the Tech _ _ et al., 1_1), we _uen.fly.
_L_ked intelligent sys_m _i_ ff they _ _ any _gn _es wben _l_g

intelligent sy_m. _ answers ran_ _ _ _ but I oo_'t _ w_t I
n_" _ "I j_t _'t have _". _e _rn_ _ they ex_en_ _ n_
uncommon, and arise from _ in lw.afing design guidance relevant to the
design.s needs. What the designe= needs can be exlav.ssed in a variety of ways, such as
good design examples, solutions to typical problems, or. assistance in performing design
tasks. Thus, multiple indices into guidance are needed. But a paper document inherently

has a single, fixed organization.

This section provides an al_ organization for the material in _ Tech Memo, _g the
major in,gent s_tem _s and d_gn activities _ed in section 6.1 of the Tech
Memo (see fi_ 3-1). _ the d_ can use current _fies (e.g., _g
__n_) as an index into _ H_ design _. We are not attempting m _
the analy_ and _gn _ in any _ or m recouuneM a _ed ordering of these
_fi_ but m _ _t H_ oo_ns relevant to each _W- _ has
res_ is a _ for _g human-oo_u_ in--on in _ _gn of intelli_nt

systems.

u

M

._
/

, _llP..ID_f

I
!

m

l

I

/

,m
m

Fibre &l. _pping from T_ _pfion to Information Requiremen_
_in e# _, _1)

/

This section is written for develola_ of an intelligent system and its user interfaoe. This
may include personnel _th widely _g expertise, including knowledge en_
intellig_ system programmers, human _ ex_ domain _ and intelligent
system users. The topics covered in _i_ _on are _ _w:

_ for _gn
__ _ Agent Tasks and Team __
Ev_on Using Scenarios

3-1



Information Req_ts for Process Management
Information Requirements for Intelligent System Management

Notice that this section only addresses the early phases of analysis and design, with the
goal of developing infcmmtim requirements for use during design. Thus, specific user
interface design gnidetin_ are not discuss_

To assist the resder in relating the topics covered in this report to tbe appropriate sections in
the Tech Memo, we open the description of each topic with a table listing the sections of the

Tech Memo that are covered. We have also included a list of the ]problems addressed in
these sections. The reader should refer to the Tech Memo for design examples illustrating
these problems and their solutions.

3.1 Preparation for Design

We have identified a number of considerations when _g for design. Tbe_
considerations ere concerned with the _ of a design team and the selection of
design techniques. Design l_'pamfim should be made with an awareness of how the
intelligent system design will be integrated with the overall support environment. In this
section we discuss the design team. We describe some conanon design techniques and

when they are useful We describe an intelligent system design perspective that is
integrated with the target support environment and that eccommodates both system upgrade
and evolution.

3.1.1 Design Team

Reference to the Tech Memo

Ef_eluL._im
6.2 Design Team

Problems
Commtmication within Design Team (6.2.1)

_..'." Memben of the "
C0emmnkafion __esign Team Members

User Participation in Design (6.2.2)

* Involving the Users in Design

Just as there is a need to coordinate the spece cperatiom suplxm team for effeetive
interaction, there is also a need to ccmrdinate tbe design team (typic, ally all human) to
achieve integrated, cmsism_t design pmdactL _ between memben of the
design team is centnti to comdinated desisn, lnfonmtion requirements _-present a single
v_-pceit0ry of design infmmafion useful to both the intelligent system designer and the user
interface designer. As such, they can provide an effective mechanism for communication
within the design team.

The comtimen_ of the design team shoeki be nmlti-di_i.'p"_. Expertise about the
space system and its operations (e.g., user or design engineer), software implementation
and integration (e.g, intelligent system andmet interface technologists, knowledge
engineers, compute_" hardware and software enf_inesrs), hunum-c_, ut_. interaction, and
hunmn factors/user m_ are all required. This _ can be provided in a variety

* A._eriskindicm=especianyimponm pmbtum.

3-2



of ways, depending upon the nature of the development project. For example, when
upgrading an existing system (such as adding an intelligent system to Space Shuttle
operations), an _ nser may also be the space system domain _ For some of

the Real Tune Data System (RTDS) prototypes I, the users also implemented the software,
with the support of computer hardware and software engineers. Conversely, when
developing a new system (such as intelligent software for Space Station) domain
knowledge is likely to reside with design engineer, who may eventually become the
software implcm_s as well Opcs_ons _erk_nce can also be more _ to identify
for a new system. It may be necessary to rely on related operational experience (such as
provided by a Space Shuttle flight controller for a Space Station project) or an CXlxn'icnced

design engineer who is familiar with space operations.

It is important to distinguish between HCI expertise and user interface expertise. HCI
expertise is concerned with the infozmalion me_a&e (or content), while user interface
expertise is concerned with the infom3afion media (or presentation). HCI e_ is

especially important during the analysis and early design phases, to assist in defining
information requirements on which the design will be based. Both types of expertise are
necessary to design for effective information exchange and hmmn-computer interaction.

Design participation by a user, or other relncsentalive of operational expertise, is necessary
to ensure that the designed system will suppm't user tasks. User participation can be both
direct and indirect. Direct usa" analysis and design activities include describing the tasks,
defining operational scenarios, and, in some cases, development of pmtotyI_s for
req_nts definition. Indirect user design activities are primarily forms of design
product evaluation and review, including demonstration and hands-on testing (both side-
by-side and off-line, stand-alone). The user's role in the design team should be clearly
defined and should focus valuable, and often limited, user resotnces on aspects of analysis
and design that are best addressed by them (i.e., user task description, operational
scenarios).

3.1.2 Design Techniques

Reference to the Tech Memo

RtlamL,qtmim
6.1.2 Techniques

Problems
Prototypes (6.1.2)

Testing die HCI Design
* Testing the Design under Realist_ Conditions
Story_ (6.1.2)
* Providing Techniques to Identify Information Requirements

Prototyping is by far the most common technique used for intelligent system analysis,
design, and development, including HCI design, lterative prototyping is used for a variety
of designtasks,hingingfnzn full-scaledenxmuafions of system capabih'tyintegrated into
an environment to small, sland-alone prototypes for testing specific design concepts. A
second technique, storyboarding, is less comsnonly used but can be effective for

I The Real Time Data System (RTDS) pmaxy_ wa_ developed for use by flight commU_ m _ S_
Shuttle Mission CAmtmlCeata.

3-3



identifying and testing HCI design concurs. The two techniques can be combined .by
generating storyboards using ele_roni¢ prototyping tools. The products of both techniques
can include req_ts, usable design fragments and concepts, of even occasionnlly
reusable code.

These techniques have a number of _ in cce_nm. Both techniques can be
used to generate infm'nmtion requirements, although derivation of req_nts from
prototypes and storyboax_ is _urrenfly a manual lask. The products of both te¢Imiques are
amenable to evaluation and refinanent using opaatkma/scenarios (see section 3.3 of this
v_gxgt for mlditional information). Note that use of pmtotyping tools may introduce design
constraints peculiar to the tool. Since such tool-redated constraints should not become part
of the system design, it is important that constraints be doctm_nted, including the source of
constraints.

3.1.3 Design for Upgrades of Existing Support Systems

Reference to the Tech Memo

6.3 Integration into the Support Environment
Problems
* Integrating Intelligent System Design into Design of Support System

Avoiding Negative hnpa_ Caused by System Upgrade
* Integrating a New or Diffe_rent Technology into an Existing Environment

Considering System Evolution during Design
Mau:hing the System Design to the User's Task

Intelligent systems developed for prooess monitoring and control, such as space operations

or nuclear operations, are often elements of a much larger support system, c_. nsi.".sting of
both intelligent and coavendonal, nm-antomated software. A recommended philosophy of
design for such complex, multi-pen systems is to embed individual element design into the
design of tbe entire support system. When the individual element is an upgrade to an
existing _fi-part system, its design should be influenced by operations within the
existing suplzm frmnework. Since applying new technology often changes the nauu_ of
human tasks, it may be necessary to significantly alter, or redesign, operations. Some
typical changes in operations include the following:

• hunch supervises the intelligent system performing a task instead of directly
performingthetask

• antmmfion of wrium logs and manual mmp_

• electronic manipulation of graph/cal fonm

Upgrading elements of.a multi-part system poses some unique challenges. Human rusks
can be compncmd by i2mdv.menfl.y removinguseful tools andmethods,or byincreasing

humanwo oa the.h. an.taskcan inlost.oppornmi toOe ,elop
m"maintain cxpa'tise while pedcmnin8 the job. Gradual integration of new technical
capability with the old appears to be an effective way of azco_lishing element upgrades
and meeting some of these chalkng_ Multiple, small, _ changes were
frequently used to upgmle systems in the case study. Also, gngluM replacement of the old

provides time to evaluate the new capability thoroughly, which reduces technical risk and
tm_es us_ acceptance. Such an approach can include periods of operating both the old
and the new capability side-by-side.

3-4



Existing manual operations and off-line support tools are an important source of HCI
design ideas when upgrading an existing system. Such derived designs are familiar to
users and often represent considerable design refinement when developed and used by
multiple users over a period of time. Such designs can also be, however, useless artifacts
of the previous design (an outmoded technology). To assist in making this trade-off
between the useful and the artifactual, the design should be evaluated for consistency with
the planned use of the information represented by the design.

It is important to design support systems to ease future upgrades. Designing for system
evolution includes such considerations as accommodating transitions to alternate
information/data sources or automation of manual functions.

3.2 Analysis of Agent Tasks and Team Architecture

An early phase in developing intelligent systems should be analyzing what tasks need to be
done and how the human-intelligent system team will do these tasks. Such an analysis of
the tasks and the structure of the team is important in designing for effective human-
computer interaction. Few of the systems we have studied, however, performed such an
analysis 2. One of the difficulties is that an intelligent system developrnent methodology for
such an analysis doesn't exist. We are currently investigating such a methodology and the
related analysis methods.

We have partitioned the analysis of agent tasks and team architecture into three parts. First,
the tasks to be performed are described (task description). Next, these tasks are allocated
to either the human, the intelligent system, or both (task allocation). Finally, the way that
the human and the intelligent system interact based on these allocations is determined and
evaluated (team architecture). In this section we describe our work to date on each of these

parts of the analysis. Considerable work remains to be done and, when possible, we have
pointed out areas of needed research.

3.2.1 Task Description

Reference to the Tech Memo

Related Section_
3.1 Fault Management Task Description
3.3.1 Types of Agent Activities
3.5 Fault Management Activities and Information
6.1.1 Task Description

A task description is defined as a specification of the team's (human and intelligent system)
tasks in terms of goals and the actions required to achieve those goals. Each task consists
of one goal and all the actions required to achieve the goal. Thus, a task description can be
represented as a goal hierarchy, in which top-level goals are typically subdivided into sub-
goals. We distinguish a task description from familiar forms of task analysis, such as the
GOMS task analysis (Card, Moran and NeweR, 1983). The task description is derived
much earlier in system development (during system analysis prior to design) and is, thus,
at a much higher level than the keyboard-level description of a GOMS analysis.

2 The one exception is the Extended Real-time FEAT (ERF), an advaneed automation system for use in the
Space Station Control Center (SSOL-')(Clark et al., 1992). The ERF developers did an early evaluation of
tasks, although they did not do a complete analysis as described in this section. ERF is one of the cases we
are investigating at this time.

3-5



A task description looks different because it is used for different things. Specifically, a

task description is used to describe the tasks to be alloc .ated. and tO spec.ify the goals.to .be
achieved by the space operations support team - not to design the user interface. It _s also
used in designing the team architecture, since the activities in this architecture are derived
from the goals and actions of the task description. Additionally, shared tasks (i.e., a task
where multiple agents work to accomplish a single goal) and task dependencies
(represented in the levels of the goal hierarchy) are used to locate points where agents must
coordinate their activities.

In the Tech Memo we characterized the top-level fault management goals and tasks
(summarized in section 1.3), and described the kinds of activities and information

occurring in fault management 3 (see appendix D of the Tech Memo). A task description for
a specific intelligent system would address some subset of these activities and information
(e.g., most systems in the case study only perfonne.d monitoring and assessment
activities). Defining typical, expected operational scenarios using the intelligent system can
be useful in both describing the task and evaluating its completeness (see also section 3.3).

3.2.2 Task Allocation

Reference to the Tech Memo

3.2.1 Characteristics of Aerospace Operations
3.2.2 Characteristics of Agents and Teams
4.1.1 Multi-tasking and Dynamic Task Assignment

Problems

Task Allocation(4.I.I)
Task AllocationwithTask Sharing

* Maintaining Operator Control of Monitored Process
(RequL,'es Dynamic Task Allocation)

Dynamic Task Assignment (4.1.1)
* Specifying the Architecture of Agents and Activities

Handling Alteration of Planned Activity Sequences

After specifying a task description, it is necessary to allocate these tasks to human
operators, intelligent systems, or both. Task sharing describes situations where a task is
allocated to both the human and the intelligent system. Task sharing is accomplished by
providing a nominal allocation with an alternate, backup allocation (i.e., a form of
redundancy, in which one agent backs up the other agent). Changes from the nominal to
thebackup allocationrequires that theIS be designed for dynamic taskallocation. Such

dynamic allocation is necessary to ensure that critical _ can be performed by the human
when IS errors occur. In general, human operators are considered more reliable than
intelligent systems in the space operations environment (see section 2.2). Thus, the human
operator should share IS responsibility for critical tasks, and the human should be the final
decision maker in such _ (consistent with the human role of coach described in section
2.2). It may be necessary to dynamically alter task allocations during operations to

3 There are three types of fault manageme_nt aflivities: (1) monitoring and assessment, (2) planning and
dynamic replmming, and (3) intervention and controL A fourth type, coordination activities, is necessary
for effective team interaction. Types of information supptring fault management activities include (1)

dynamic data, (2) mission specific information, (3) baseline operations information, and (4) design
knowledge.

3-6



accommodate workload imbalance, performance problems, or unanticipated situations.
Alternative task allocations should be provided to accommodate these situations, including
a means for the human to reassign tasks. See section 3.2.3 for a related discussion on
specifying dynamic task allocation as a team architecture.

The tasks specified in the task description should be allocated based on the available
resources and the design constraints. Resources include support hardware and software,
agents (humans and intelligent system), and information. The support software and
hardware in which an IS is to be embedded can also be a design constraint on task
allocations to the IS (e.g., limited CPU or mea_ry can constrain what the IS is able to do
in real time). Policies can constrain allocations as well (e.g., intelligent systems will not
issue commands). The way intelligent systems are used for space operations constrains
how tasks are allocated to the IS (see also section 2.1).

In addition to the constraints that the task allocation must satisfy, there are a number of
suggestions for improving allocations. The developer should allocate tasks based on an
understanding of the strengths and weaknesses of both humans and intelligent systems. A
good rule of thumb is to allocate IS tasks to amplify human strengths or compensate for
human weakness. Humans are good at recognizing constant patterns in varying situations,
unless the patterns form at rates outside the limits of human perception (either too fast or
too slow). Thus, an IS can be used to compensate for human perceptual limitations by
detecting patterns that vary outside these limitations (e.g., slowly developing trends).
Humans tend to reason using cases or analogies from their experience (Andriole and
Adelman, 1991). They perform reasonably well at the boundaries of their knowledge,
unlike intelligent systems which tend to make errors outside the boundaries of their
knowledge. Intelligent systems are also subject to performance limitations caused by CPU
loading or memory limitations.

When making decisions and solving problems, humans have a propensity to focus on a
subset of the available information. They selectively attend to information consistent with
their current hypothesis, ignoring information not considered relevant to the situation
(confirmation bias; Andriole and Adelman, 1991). They tend to focus on one hypothesis
quickly and do not give equal consideration to all alternatives (Arkes and Hammond,
1988). They can even forget evidence to the contrary of a favored hypothesis (favorable
memory error, Arkes and Hammond, 1988). Tasks should be allocated to compensate for
human propensities (e.g., the IS can remind the operator of evidence against a favored
hypothesis or evidence supporting other hypotheses).

Finally, tasks should be allocated so that human operators receive adequate on-the-job
training to ensure their continued ability to perform fault management tasks as well as
supervise the IS. This expertise includes understanding task goals and the corresponding
procedures for accomplishing them, developing mental models of relevant space systems
and processes, and acquiring skills for interpreting data and responding to fault situations
(Bloom, 1991).

We have described the constraints on task allocation and made a number of suggestions for
improving these allocations. It will not usually be possible to satisfy all of these
considerations. Performing task allocation is essentially making a trade-off between
competing considerations. When performing thi_, trade-off, we recommend selecting
allocations that minimize risk and maximize IS reliability. Significant task sharing is
required to maintain human operator control of the monitored process and the intelligent
system, and to guarantee adequate on-the-job training. Additional research is needed to
determine appropriate task allocations for intelligent systems and humans working in
teams.

3-7



3.2.3 Team Architecture

Reference to the Tech Memo

3.3.2 Interaction Between Agents
4.1.1 Multi-tasking and Dynamic Task Assignment

Problc_
Dynamic Task Assigmnent (4.1.1)
* Specifying the Architecture of Agents and Activities

Handling Alteration of Planned Activity Sequences
Distinguishing Active Mode of Operation

Handover (4.1.1)
Orienting In-coming Operator at Handovcr

Interruption of Operator (4.1.1)
* Handling Interruptions and Suspended Activity

An important aspect of building reliable systems is providing alternative ways of achieving
goals when planned activities are not effective (e.g., human backing up the IS when it
malfunctions; see section 2.2). The need to find alternative ways of accomplishing goals

can ariseforavarietyofreasons,including(I)degraded agentperformance due to
workload or error, (2) failure of the space operations support team to coordinate their
activities, (3) goal or plan changes due to failures in the domain system being monitored
(the monitored process) or environmental perturbations or accidents, or (4) unexpected
eventsorcontingencies.Designing theIS toaccommodate alternativesmeans providing

the ability to dynamically alter the normal sequence of activities, modify activities
(including add and delete them), and reassign activities. The approach most compatible
with current IS capability is dynamically reassigning activities.

Handover is the space operations term for changing the allocation of a task from one
member of the space operations support team to another. Typically, handovers between
human operators occur at shift changes. They may also occur during busy periods to
redistribute workload among team members. Handover also plays a part in coordinating

human-intelligent system teams. For supervised tasks, the human must be prepared to take
over from the IS if a problem occurs. For sequential tasks, task responsibility alternates
between the human and the IS to accomnx_te task dependencies or to prevent task
interference. To respond effectively to handover, the team member assuming responsibility
must understand the current situation, including the events leading up to that situation, and

what responsibility is being handed over (i.e., what goals are to be achieved).

Coordinating human and intelligent system activities during multi-tasking, dynamic task
assignment, and task sharing requires consideration of task dependencies (timing, events,
behavior, and resource) and interference points. Task dependencies are accounted for by

ordering the activities 4 performed to accomplish the task and by handing over task
responsibility between agents. It is not tractable to completely specify all possible activity

sequences in a complex domain. Instead, the developer must specify a range of allowable
task allocations for each agent and identify activities within these allocauons where agents

4 An activity is an action that has been assigned to a specif_ agent. A task will consist of a sequence of
activities performed by one or more agents. Types of activity ordering can include sequential, parallel and
independent, simultaneous and degendent, Ixeferred bat not required, and non-intedering.

3-8



V

must interact (e.g., information is required from the IS before the task can continue) or
where agents must not interfere (e.g., don't interrupt a critical operation with trivia). We
call this specification a team architecture. The team architectme should include both human
and IS agents, their activities, and the information that they exchange. This architecture
should support nominal and off-nominal domain tasks for managing the monitored
process, and user supervisory tasks for managing the intelligent system. It should also
include provision for contingency situations 5.

A team architecture can be used by the developer for many purposes. First, the team
architecture defines alternative ways to accomplish tasks. These alternatives identify where
(and to whom) tasks can be reassigned, and are especially important in specifying modes of
operation and in locating handovers of responsibility between agents. Second, the team
architecture defines points of coordination between the human and the intelligent system.
Coordination points include both activities where dependencies must be accommodated and
activities where interference must be avoided (e.g., unnecessary interruptions). These
points of coordination represent regions of tightly constrained activity which require close
attention from the developer to ensure that effective operation is possible. The explicit
identification of coordination points is also necessary to specify information requirements
for coordination activities. These requirements can not be identified by looking at the
domain task. Finally, the team architecture can be useful in evaluating task allocations for
both task loading and feasibility of candidate allocations. Note that to perform such an
evaluation, the developer must consider information about all activities performed by both
the human and the intelligent system, including those independent of the user interface
(e.g., human manual tasks). Additional work is needed in specifying the structure of a
team architecture and methods for determining the team architecture.

A comn_n way of implementing dynamic task assignment is providing alternative task
allocations in the form of multiple modes of operation s. For example, an IS may have
different control modes that vary its level of autonomy in executing activities. Modes
enforce task reassignment by constraining what the IS can do in a particular mode. Modes
can also provide a context for the presentation of information. Intelligent system capability,
information, and style of interaction can all vary by mode.

When the intelligent system has multiple modes of operation, the operator should be trained
to know the range of possible modes (task assignments), when they are used, and how to
change them. When using a multi-mode IS, the operator must know what mode is
currently active and what the user can (and cannot) do in that mode. If the IS modes are
not well understood by the operator and clearly distinguished during operations, the IS can
be perceived as having mysterious behavior (e.g., the operator is disoriented by "missing"
information when information available in one mode is not available in another mode), or

its actions can be completely misinterpreted (e.g., a hypothetical failure being evaluated in a
what-if scenario is misperceived as an actual failure; see section 2.1 for a discussion of
magical intelligent systems).

Interruptions are a common way that intelligent systems interfere with human activities.
Such interruptions can be routine (e.g., notifying the operator that a background task is
complete) or can indicate that a problem has occurred (e.g., alerting the operator about a
failure in the monitored process). When an activity is interrupted, it must be suspended
while the human decides how to respond (which activity to pursue, the new or the

5 Contingencies are situations in which the unexpected (and thus not planned or designed for) occurs and
which introduce the potential for harmful impacts to safety or missioe objectives.
6 Modes of operation are sets of possible activities for each agent, not all of which are performed under
normal circumstances (Malin et a/., 1991).

3-9



ongoing). If the human pursues the new activity, the ongoing activity may be suspended
temporarily (e.g., while the human does a more important task), handed over to another
team member (i.e., task reassignment), or aborted. If the suspended task will be resumed
later, it is desirable to retain the work in progress.

Intelligent systems used during space operations should avoid unnecessarily interrupting
the human operator. When interruptions are necessary, the IS should assist the human in
responding to the interruption. There are a number of strategies for assisting the human in
responding to interruptions. If interruptions are expected to be infrequent, or ongoing
activities are not critical, the IS can take no additional action, merely providing the human
with all the information all the time (i.e., interrupt and let the human decide). Alternately
the IS can limit interruptions. Message priority is a common way of limiting interruptions
of the operator by new information. Priorities are assigned based on the importance of the
message to safety and mission objectives. The operator can delay handling all but the high
priority messages (typically safety related). Another way to limit interruptions is to queue
aLl new requests or messages, and merely alert the operator that new requests have been
made or information provided. There is a need for better ways to manage the presentation
of new information and activity requests that minimize interruptions to the operator.

3.3 Evaluation Using Scenarios

v

Reference to the Tech Memo

3.4 Fault Management Scenarios
6.1.2 Techniques
6.2.2 User Participation in Design

Problems

Prototypes (6.1.2)

TestingtheHCI Design
* Testing the Design under Realistic Conditions
Storyboards (6.1.2)

Providing Techniques to Identify Information Reqttirernents
User Participation in Design (6.2.2)

Involving the Users in Design

Evaluation of analysis and design products using operational scenarios representative of
typical or expected operations is an important and recurring activity in the intelligent system
design and analysis phase. Many products of these activities can be evaluated, including
task descriptions, task allocations and team architectures, requirements, and design
concepts. These products may be in the form of documents, diagrams, storyboards, or
prototypes. Such an evaluation is done to determine how well the concepts embodied in
the product supports the user performing tasks (e.g., system correctness, usability). In
this section we discuss the definition of typical fault management operational scenarios,
including factors that can complicate operations. We also discuss the evaluation of analysis
and designproductsusingoperationalscenarios.

In section 3.4 of the Tech Memo, we describe a generic fault scenario. This scenario is
simplified to clarify the activity sequence. This description consists of the steps required to
manage the monitored process from the time that a failure is detected until the failure is
repaired. These steps are listed below:

3-10



• detection of failure

• .sang
• nnsslon impact assessment and accommodation

• dia.gnosis
• tesung
• _very

Within each step, the activities required to complete the step are hstexL To see how these
steps relate to fault management tasks, see sections 2 and 3.2 of this report.

Different types of scenarios are needed at each point in the analysis and design process,
because the purpose of the evaluation is different at each point in the process. Scenarios
can represent a wide variety of operational "views" (i.e., emphasize different aspects of
operations, such as whether the scenario assumes that sensors always provide perfect
data). Typically, higher fidelity scenarios (i.e., scenarios that more accurately represent
operations) are needed later in the process.

Higher fidelity scenarios include complicating factors in addition to the fault being
managed. Anomalous behavior of the monitored process is not always caused by a failure
in that system. Apparent failures may actually be caused by bad input data (e.g., sensor
failure or data transmission error) or by a misconfigured system. Anomalous behavior of
the space operations support team can also cause anomalies in the monitored process.
Team anomalies include human errors or omissions, intelligent system failures, or failure to
coordinate the activities of multiple team members (human or intelligent system). Loss of
data, due to unavailable or failed data transmission/acquisition systems, can result in data
ambiguity and the inability to monitor the impacts of fault management activities onboard
the space vehicle (e.g., system response to fault management activities or crew execution of
fault management procedures).

There are additional factors occurring in the space operations environment that can
complicate the ideal fault management scenario. Operations unaffected by the failure
continue in parallel with fault management activities. Activities related to these nominal
operations can interrupt fault management activities. The cause of the anomaly may be
intermittent, resulting in erratic anomalous behavior. The anomaly may also be due to
combinations of causes (e.g., multiple failures), which can difficult to recognize and
disentangle. For complex systems, it is difficult to anticipate all system failures, and
unanticipated failure situations can occur for which there are no predefined fault
management procedures. Fault management activities will also vary based on the criticality
of the lost functional capability or hardware item, and the availability of redundant
capability.

The designer should use scenarios that adequately represent the operational aspects of
interest in the evaluation. Some considerations when selecting (or designing) a scenario for
use at different points in the analysis and design process are listed below:

Task Description
Simple scenarios are needed that outline typical operations (i.e., nominal
operations and some representative off-nominal situations). These scenarios are
used to evaluate the task description for accuracy, consistency, and
thoroughness.

Task Allocation and Team Architecture

Scenarios should emphasize situations where the human and intelligent system
interact closely, including examples of task sharing, tasks with dependencies,

3-11



and dynamic task allocation. These scenarios are used to evaluate the task
allocation for _mtinated interaction and balanced workload.

Early Prototypes
Scenarios should reflect more complexity in the operational environment and
include sm:h complicating factors as imperfect sensors and data problems that
distort the operator's view of the situation (as discussed previously). Early
prototypes are evaluated for information deficiencies (i.e., missing or
misrepresented information) and interaction difficulties that affect both the
intelligent system and user interface specification.

Mature Prototypes
High fidelity scenarios (based on accurate simulations or real data) are needed
that include very specific anomaly situations (i.e., case testing), but do not
represent the breadth of operations (i.e., focus on anomalies result in partial
scenarios where much is implicit). Mature prototypes are evaluated for
accuracy, completeness, and robustness of the intelligent system, as well as
ease of use and appropriateness of representation for the user interface.
Integration with other specific elements of the support system can also be tested
at this point.

Common practice in evaluating prototypes is to perform two types of testing: (1) off-line
testing, and (2) in-line, side-by-side testing with an existing support system (e.g., RTDS
parallel operations). Both types of testing emphasize evaluating specific anomaly
situations, but they vary by the degree of f'utelity and integration. Often focused,. stand-
alone tests are conducted early in design on products defining small portions of capability
(e.g, proof-of-concept prototype, user interface design concepts). Integrated, in-line testing
of larger portions of capability tends to occur later in design. The data used for testing vary
with respect to the purpose of the test (e.g, rough simulation for early definition, high
fidelity simulated or real data to test functional accuracy or integration). See section 3.1
for a discussion of user roles in evaluation using scenarios (e.g., hands-on tests, reviewing
design products).

3.4 Information Requirements for Process Management

The raison d'etre of the space operations support team is to ensure that the monitored

process ? is performing as expected. This includes monitoring and controlling the execution
of procedures as well as responding to behavior anomalies. In this section we discuss the
information required to manage the monitored process. In section 3.4.1, we address
monitoring and controlling the monitored process, especially the information needed to
manage alarms. In section 3.4.2, we describe how the space operations support team
responds to anomalies and what infommion they need to do this task.

? The monitored process is the domain system being monitored and controlled; see section 1.3 for further
information about this term.

3-12



3.4.1 Monitoring and Managing Process Alarms

Reference to the Tech Memo

4.2.1 Alarm Managen_nt
4.3.1 Interpretation of Information

Proble 
Interpretation of Alarms (4.2.1)

Indicating Alarm Accuracy
Distinguishing Severity of Alarms

* ReLieving Operator Overload due to Multiple Alarms
False Alarms (4.2.1)

Managing False Alarms due to Bad Data
Managing False Alarms due to Transient or Intermittent Behavior

* Differentiating Misconfigumtion from Failure
Redundant Alarms (4.2.1)

ReLieving Operator Overload due to Redundant Alarms

_v

A significant portion of the operator's time is spent monitoring the behavior of the
monitored process. In fact, most intelligent systems in the case study were built to alleviate
some of the human's monitoring and vigilance responsibiLities. To monitor for anomalies
in the monitored process, the operator must have some expectation of what its behavior
should be (based on both plans and operator experience). Typically, an a/arm is

annunciated when behavior is not within the envelope of nominal behavior a. Multiple
alarms may be issued shortly after the initial alarm due to failure propagation into other
systems and redundant alarms. Additionally, anomalies can have serious implications for
safety and mission objectives, and can impose hard timing constraints. Thus, managing
information from multiple alarms increases operator workload just at the time when the
operator can least afford it.

The space operations support system, including the intelligent system, should be designed
to provide the right information to the operator for managing alarm information and
understanding the monitored process situation. Presenting alarm information to improve
understanding of situation requires focusing operator attention on what is diagnostically
important, and quickly and clearly indicating the diagnostic content and relationships
among alarms. It may be necessary to illustrate events and activities leading up to the
anomaly as context for interpreting an anomaly.

The complexity and uncertainty of space operations makes handling false alarms (i.e.,
inaccurate indications of anomaly) an inevitable and important part of managing the
monitored process. Handling false alarms is also important in designing a reliable
intelligent system, since false alarms can cause IS errors. Managing false alarms shifts the
operator's attention from managing the monitored process to managing the view of the
monitored process (i.e., how accurately does the operator's view into the monitored
process via data represent what is actually happening). Noisy, unreliable data and transient
information at state wansitions can cause false alarms. Failed sensors can be difficult to

detect, leading to false alarms. Complex operations requiring configuration changes can
result in misconfigurations erroneously detected as alarm conditions. Operating

8 The envelope of nominal behavior is usually expressed as parameter limits, or sets of limits specific to an
operatingmode orconf'_,ta-alkm

3-13



characteristics can differ from the designed characteristics (e.g., differ among similar
devices, change with use and passage of time for one device), resulting in false alarms.

It is important to minimize false alarms and, when they do occur, to provide the operator
with the means to handle them. Noisy data can be filtered prior to issuing alarms, or
alternate data sources can be provided. Alternate data sources are also effective in detecting
failed sensors. Transients may be separated from slowly developing anomalies by waiting
for them to settle before issuing an alarm. To assist in separating transients from quickly
developing anomalies, the operator can be alerted when in a time period where transients
are likely to occur (e.g., state changes). To avoid false alarms due to configuration,
configuration can be confirmed prior to issuing alarm. It is also possible to modify
operating characteristics in real-time (e.g., loosen limits) to accommodate drift in these
characteristics over time. A note of caution - ff any of these alterations to nominal
configuration are perfonm, d, the operator must maintain awareness of the changes and
incoming operators must be informed at shift handover.

The risks associated with space operations increase the potential impact of mishandling
alarms. Redundant alarms are often provided to reduce the risk of a false alarm and to
provide alternate alarms when a failed sensor effectively disarms an alarm. If redundant
alarms agree, the operator's confidence that an anomaly has occurred is increased.
Redundancy can complicate operations, however. More alarms mean more information for
the operator to process. And if alarms disagree, additional effort is required to resolve and
interpret inconsistencies. Redundant alarms can also cause an intelligent system to issue
duplicative messages.

Techniques for assisting operators in managing alarms include suppressing redundant,
false, or irrelevant alarms, assessing confidence in alarm accuracy (e.g, reliability of source
of alarm; consistency among related alarms), and synthesizing or combining alarms (both
algorithmic and visual composites). The source, quality, and validity of the data triggering
the alarm are also useful in assessing u'ust in alarm accuracy.

The intelligent system can both be a source of false alarms and can be led astray by false
alarms. An incomplete or incorrect knowledge base can cause the IS to erroneously detect
an anomaly. Processing false alarms in data can cause IS error. The effect of false alarms
on IS behavior can be minimized by designing for reliability (i.e., providing the operator
with the capability to either redirect the IS or to disable the IS; see also section 2.2).

3-14



3.4.2 Responding to Anomalous Situations in the Monitored Process

Reference to the Tech Memo

4.2.2 Critical Diagnostic Information
4.2.3 Unanticipated Situations and Workaround

Problems
VisibiLity into Monitored Process (4.2.2)

Maintaining Awareness of Monitored Process Situation
Evaluation of Consequences (4.2.2)
* Support for Evaluating Consequences of Events & Team Activities
Mission Impacts and Procedures (4.2.2)
* Support for Evaluating Impacts of Procedure Execution
Functional Capability Assessment (4.2.2)
* Support for Determining Remaining Functionality after Failure
Unanticipated Situations and Workaround (4.2.3)

Support for Developing Workaround Procedures
Minimizing Risk Introduced by Workaround Procedures

Responding to anomalies in space systems is a complex decision-making process, often
with high stakes (e.g., potential loss of crew, failure of costly experiment). The operator
must make the following decisions when an anomaly occurs:

Determine if any action is required in response to anomaly
Distinguish failures from false alarms
If more than one response is possible, select one
When action is taken, evaluate if it is effective

It is important for systems to provide the right information to support the operator in
making these decisions.

What tasks are performed in response to anomalies in the monitored process? After safmg
the vehicle, the first task is to identify the cause of the anomaly (or a set of possible
causes). Next, the impacts of the anomaly are determined, including the immediate
consequences to mission objectives and the potential for future consequences to both safety
and mission objectives. Finally, response options are delineated and the "best" response is
enacted. The execution of response procedures must be monitored to verify that they have
the desired effect and to detect adverse side-effects. In the remainder of this section, we

describe the decisions made by the space operations support team when performing these
tasks and the information they need to respond effectively.

When an alarm is annunciated, the operator initially determines if a critical failure has
occurred (i.e., an emergency). In an emergency, immediate action is taken to safe the crew
and vehicle. If not an emergency, the operator proceeds to identify a cause for the
anomaly. Further diagnosis is made to eliminate false alarms and to resolve redundant
alarms. To interpret an alarm, the operator must understand the situation leading up to the
alarm (e.g., relevant events and activities). This includes any changes to the normal state
of the monitored process that have preceded this situation and that could affect the situation
(e.g., changes to system configuration, state transitions, and existing failure conditions).
Thus, understanding of situation is developed by providing the operator with visibility into
how the monitored process has been behaving. Providing such visibility is necessary in

3-15



buildingcontinuouslyusefulintelligentsystems(i.e.,systems thattheoperatorreliesupon,

even duringnominal operations;seealsosection2.2).Such visibilityisaffectedby what
information is available to the operator and how much confidence the operator has in it
(i.e., quality of infom3ation and believability of the source of information, including the
sourceof alarms).When dealingwithmultiplealarms,thetimingand sequence inwhich

theywere issuedisusefulinunderstandinghow the situationdeveloped (e.g.,power fail

causeslossof fan and overheatingofdevice).

The immediate consequences of an anomaly are manifested as loss of functional capability.
Functionality can be lost in both the monitored process and related systems. The impact of
functionallossisdetermined by thecriticalityof thelosstosafety(i.e.,does theloss

threatencrew orvehiclesafety7)and operations(i.e.,does thelosssignificantly9alter

ongoing or futm'e operations). Redundant capability can reduce the criticality of the loss by
providingalternateways toachievemissiongoals. The abilitytorecoverthelost

functionality (e.g, repair) also reduces the criticality of the loss.

The consequences of taking no action are predicted to evaluate how the anomaly might
affect other systems (or parts of systems). This assessment is called the failure propagation
potential and is based on the functional dependencies among systems. The goal of this
prediction is to identify when (and under what circumstances) unacceptable impacts could
occur. Unacceptable impacts for space operations include violation of flight rules and
irreversible or adverse effects on operations t°. Propagation potential is used in evaluating
anomaly response options. If the potential effects are severe or if the effects will happen
soon, more drastic response options may be needed. This assessment also defines the time
span for adverse effects to develop, thus bounding the available response time and setting
expectationsforthenextlikelyfailure.

The consequences of taking action must also be evaluated (i.e., determine the response
options). This includes determining the available response strategies and evaluating how

these strategies would impact safety and o.perations. Similar to the assessment of failure
propagation potential, the effects of all opuons being considered must be predicted and
evaluated for unacceptable impacts (e.g., don't have time to recover the lost system). A

strategy is selected to minimize the risks associated with anomaly res .1.aonse (the discussion
of reLiable intelligent systems in section 2.2 is relevant to response opuons including the
IS). There are two types of response options - repair or recovery of the anomalous system
and compensation for lost capability.Compensation options includeusing alternative
capabilityormodifying missionplansand objectivesinLightoftheremainingcapability.

In cases of contingency, response options may have to be developed in real time. Since
contingencies are unfamiliar situations, the problem must first be understood before a
response can be determined. Workaround procedures are often formed in response to
contingencies by modifying planned procedures. Like all response options, these
procedures should be evaluated for compliance with flight rules, risks, and negative
impacts (e.g., changing configuration can complicate fault management by overwriting
needed data). Note that contingency response can include reallocation of intelligent system
tasks. As described in section 3.2, it is necessary to design the intelligent system for such
situations (e.g., permit the human to inform the intelligent system of new procedures, or
takeover responsibility from the intelligent system).

9 Slight changes to operations are distinguished from severe changes.
10These effects are only considered adverse if they impact planned operations or safety (i.e., if failed system
is not planned for use, no impact).

3-16



We have described the decisions that must be made by the space o.perations support team
when responding to an anomaly. A significant amount of informanon must be provided to
the team to support this decision-making. Conmaon practice in presenting information for
managing the monitored process (i.e., message lists and schematics) do not represent the
right information (e.g., schematics illustrate failed components, not lost functionality).
Methods for designing effective representations and presentations of this critical diagnostic
information remains a research issue. A related issue is the need to manage information
overload.

3.5 Information Requirements for Intelligent System Management

Possibly the most significant problem in intelligent system design is failure to recognize
that an intelligent system poses new tasks for the operator (cf. also section 2.3). In
addition to managing the monitored process, the operator must now manage the IS,
including monitoring and coordinating its activities, and responding to its errors. But
intelligent system are rarely designed to be managed. The traditional means of
communicating with the IS (message lists, schematics, and explanation) do not support the
operator in monitoring IS activities and understanding IS reasoning strategies. And, when
IS errors occur, the operator has few options for responding to them (usually the restart
button or the power plug).

This omission in intelligent system design arises from misconceptions about how intelligent
systems are used in space operations. In reality, the intelligent system is embedded in a
larger support system. Intelligent system activities need to be coordinated with the
operator's other activities, and information from the IS needs to be integrated with other
displays and data sources. Data are often noisy or unavailable. In all likelihood, the IS
designer will have to provide some capability to handle data problems. Even with this
precaution, unanticipated situations will occur. Then, the intelligent system will make
errors. The operator, who is a highly trained expert and more knowledgeable than the IS,
is responsible to detect and respond to IS errors.

This situation requires that the intelligent system be designed to support such response, and
that it provide adequate information for the operator to understand what it is doing and
know how to respond. Instead of an explanatory tutorial, the operator needs support in
understanding situations as they develop, including the activities and strategies of the IS
and the critical information characterizing the situation (e.g., evidence of fault in data).
There is a risk of overloading the operator if the IS is not designed to assist the operator in
performing these new tasks and managing the new information needed for these tasks. See
section 2.1 for more information about how intelligent systems are used in space
operations.

In section 3.5 we discuss the information that must be exchanged to manage the intelligent
system. In section 3.5.1, we describe how the human communicates and collaborates with
the IS to develop a shared view of situation that includes IS activities. In section 3.5.2, we
describe how the human guides and corrects the IS in response to errors.

3-17



3.5.1 Communicating with the Intelligent System

Reference to the Tech Memo

4.1.2 Collaboration between Agents
4.3 Workspace Design
5.3 Message Lists and Timeline DispLays

Problems
Visibility into Intelligent System Activities and Reasoning (4.1.2)

Providing Visibility into Intelligent System Reasoning
Distinguishing Hypotheses from Facts
Understanding Intelligent System Reasoning Strategy

Explanation (4.1.2)
Responding to Questions in Context
Making Abstract Entities Concrete

* Promoting Shared Understanding of Situation
* Improving Explanation for Agent ColLaboration
Review (4.1.2)

Providing Access to Event History
Recording Information for Review

To manage the intelligent system, the operator must be able to exchange information with
the intelligent system. Such communication is necessary for coordinating the activities of
the space operations support team (see section 3.2 for a discussion of coordination) and for
guiding and correcting the IS (see section 3.5.2 for a discussion on responding to IS
errors). Yet the traditional approaches to IS communication are inadequate (i.e.,
schematics, message lists, explanation) because they don't represent the right type of
information and they don't present it in an effective way (see also section 2.2). The goal of
communication is to establish a shared understanding of events or situations affecting both

the operator and the IS. This includes understanding what the IS is capable of doing (its
capabilities), and what it is currently doing (its ongoing activities). We call this having
some visibility into the inteUigent system.

Providing visibility is providing an unobstructed view to the operator. To be unobstructedl
nothing should get in the way of sight (i.e., information is clearly presented, with the
important messages highlighted and the meaning obvious). A view includes a perspective.
The perspective of the operator must be supported by providing information in terms that
are expected and easily understood. Information for visibility into the monitored process is
represented from the perspective of managing failures in the monitored process (see section
3.4.2). Information for visibility into the intelligent system is represented from the
perspective of coordinating with and managing errors in the IS. Different information is
needed for each perspective. Providing visibility into the intelligent system means

clarifying IS conclusions and reasoning strategies 11 as a situation develops (i.e., what the
IS concludes is going on in the monitored process, and what the IS is doing about it). It
means showing IS activities in progress and how well these activities arc achieving goals.
It also means providing the operator with the information used to draw a conclusion
(including critical evidence and operating assumptions). This information should be
presented in a way that reinforces the operator's understanding of IS reasoning strategy

11 Information about IS conclusions and reasoning swategies can include intermediate conclusions, interim
states, hypolhcse.s, and alternative solutions and swategies.

3-18



(Chandrasekaranet al., 1989). Providing such visibility into the intelligent system is an
important aspect of building a continuously useful system (see section 2.2).

Thus, managing the intelligent system means providing a lot of new information to the
operator. To do this effectively, the designer must identify what information it is important
to communicate and when to communicate it (i.e., the information exchange requirements,
see section 2.4). Without such an analysis, the designer runs the risk of either providing
insufficient information for the task (and risks developing a "magical" intelligent system,
described in section 2.1), or overloading the operator with too much informanon. Other
design issues related to providing visibility into the intelligent systems include displaying
the confidence in information (distinguishing between hypotheses and conclusions),
representation and presentation of IS reasoning strategy, and managing complexity of
information presentation (e.g., use of overlays to manage complexity on large diagrams).
See also the discussion of modes in section 3.2 as a means of implementing alternate IS
strategies.

Explanation is the common approach to communicating with the intelligent system and is
usually the only means of providing visibility into the intelligent system. We define
explanation as the iterative process of identifying, organizing, and presenting information
to satisfy the operator's inquiry about some situation or event. To understand the situation,
the operator must understand both the environmental evidence and the information and
reasoning strategies used by the IS used to draw conclusions about that evidence. Thus,
explanation includes both asking for information about the monitored process, and for
information about the IS decision-making process.

As described in section 2.2, explanation has some serious limitations for real-time
operational use. Alternatives to explanation are needed that assist in developing a shared
view of situation. Central to developing a shared view is the requirement that both the
operator and the intelligent system monitor the same information. To come to the same
conclusion, they must be looking at the same information. Thus, the operator doesn't have
to understand the details of the IS reasoning mechanism, but must understand the bases of
IS conclusions (i.e., critical environmental evidence; IS knowledge, activities, and
strategies). To achieve this, it may be necessary to make implicit information explicit in the
intelligent system (e.g., an explicit representation of robot tasks can enable the human to
give task advice to a robot, Martin and Firby, 1991). Other considerations when designing
a shared view include the following:

Present information describing the situation as it develops, including both the
situation with the monitored process, and the intelligent system activities
associated with that situation.

Establish expectations about what might happen next (can include reviewing
information from predictions, or annotating operational data with predictions).

Identify critical transitions and regimes of behavior (both current and pending;
e.g., information about physical processes [and task] can be used to annotate
displays, Forbus, 1991).

Notice that such information both supports the operator's tasks and provides some on-the-
job training by reinforcing the operator's mental model of both the monitored process and
the intelligent system.

A good first step towards developing a shared understanding of situation is to clarify the
intelligent system reasoning strategies by showing the critical information used by the IS to

3-19



draw conclusions (i.e., the evidence supporting the conclusion). In the near term, we
suggest that plots or tables showing a recent history of such "evidence" accompany the IS
conclusions. Alternatives to messages lists, such as timclines (Potter and Woods, 1991),
should also be considered for reviewing information (cf., section 5 of Tcch Memo). In the

long term, research into shared representations (e.g., Martin and Firby, 1991) may be a
promising approach to designing alternatives to explanation.

There are some design issues associated with information review. Recording information
for review can be memory intensive, thus imposing a design limitation on how review can
be used. The designer must carefully identify what parameters to log, how often to log
parameters, and when to log parameters to meet this limitation. It is also important to
present information for review in a manner that distinguishes the ongoing situation from the
past situation being reviewed. This is especially necessary if the same display formats are
used for real-time monitoring and review.

3.5.2 Responding to Intelligent System Error

Reference to the Tech Memo
Re,lalcd.fim_al

4.1.3 Managing the Intelligent System
4.3.1 Interpretation of Information

Problems
Detection of Intelligent System Errors (4.1.3)

Identifying Intelligent System Errors
Intervention by Altering Information (4.1.3)

Altering Information to be Used by Intelligent System
Intervention into Reasoning Process (4.1.3)
* Redirecting Intelligent System Reasoning
Restart of the Intelligent System (4.1.3)

Support for Intelligent System Restart
Recording Input Data for Replay

Override of the Intelligent System (4.1.3)
* Support for Selective Override of Intelligent System Processing
* Support for Complete Override of Intelligent System
Risks of Intervention in Intelligent System Processing (4.1.3)

Avoiding Negative Impacts from Operator Intervention

The common approach to managing intelligent system error is preventive -- the software
developer prevents intelligent system error from occurring by verification, validation, and
testing to find the bugs. This approach is certainly necessary, but it is not sufficient for
systems being used in complex and uncertain suplxa't environments like space o.perations.
No matter how thorough the testing, the intelligent system can still make errors m
unanticipated situations (i.e., situations that weren't tested). And, if not designed properly,
there is nothing the operator can do to recover from the malfunction.

The concept of intelligent system error correction is usually expressed as designing an
intelligent system that "gracefully degrades" near the boundaries of its knowledge or the
limits of its performance. The notion of graceful degradation usually encompasses some
limited form of self knowledge, in which the IS recognizes that it has gone beyond its
limits and alerts the operator of the potential for error. We feel that graceful degradation
can be achieved by providing the operator with the ability to take some action to

3-20



compensate or correct IS errors. In this section we discuss different approaches to
designing intelligent systems that provide the operator with some options for responding to
errors.

The first step in managing intelligent system errors is to understand how the IS can
malfunction and to assist the operator in detecting malfunctions. Intelligent system errors
can be caused by problems in the intelLigent software (software bugs), by problems in input

data (noisy or unavailable data), and by unanticipated behavior of the monitored process.
As stated above, verification and validation techniques are the traditional way to eliminate
software bugs. Data problems pose a different kind of design issue. The goal is to prevent
(or at least minimize) the bad data processed by the intelligent system. This usually
requires some data preprocessing or alarm management software to "filter out" the
problematic data 12. Although managing data problems may seem outside the scope of an
intelligent software development project, such capability is necessary to build a reliable
intelligent system. Since data preprocessing or alarm management software is usually not
available elsewhere, the IS developer often has to develop such software as part of the
intelligent system development project. See section 3.4.1 for a related discussion on false
alarms and alarm management for the monitored process.

The intelligent system can malfunction in two ways: it can draw an incorrect conclusion or
it can be unable to draw any conclusion. Incorrect conclusions result from data problems,

or from an inaccurate or incomplete IS knowledge base. The inability to draw a conclusion
can also indicate performance problems. Thus, to detect IS errors the operator must
monitor both the accuracy of conclusions and the system's ability to produce conclusions in
timely fashion. This requires that the operator understand the ongoing activities and the
reasoning strategies of the IS (what we have defined as visibility into the intelligent
system). For example, a sensor failure can effectively disable a portion of the knowledge
base conditioned on data from the failed sensor. In such a case, the IS may be unable to
reach a conclusion (i.e., cannot detect problems requiring data from the failed sensor). In
effect, the IS will "just sit there", waiting for data that can never be received. The IS
should provide intermediate information to illustrate what it is doing, and where its
activities stopped. See section 3.5.1 for a related discussion on providing visibility into
intelligent system activities and strategies.

The intelligent system should be designed to allow the operator to respond to its errors
online. Most intelligent system are designed for off-line repair (i.e., when an error occurs,
turn off the IS and debug it later). It is possible to provide some capability for on-line
correction or compensation. The operator can correct or repair the malfunction by altering
information used by the IS or by influencing the IS reasoning process. The operator can
compensate for error by re.allocating some or all of the intelligent system's responsibilities.
It is also possible for the IS to include some self-correcting capability, particularly for
errors resulting from bad data. For example, the Payload Deployment and Retrieval
System (PDRS) Decision Support System (DESSY) t3 has self-correcting rules that retract
erroneous assertions due to inconsistent data. It is likely that some combination of
techniques from all of these approaches will be needed to build a reliable intelligent system.

The simplest form of intelligent system repair (and typically the only ability to intervene in
IS processing) is the brute force approach of restarting the IS. Restarting the IS is a
destructive approach, and is predicated on the assumption that the integrity of the IS

12 Assessments of information source, quality, and validity can be used in detecting and managing
information problems by indicating how trustworthy and reliable information is (see also section 4.3.1 in
the Tech Memo).

13 PDRS DESSY is being jointly developed by NASA/ER2 and Rockwell (Land et al., 1992).

3-21



knowledge base is lost. Essentially, restarting the system is "starting anew". The
knowledge base is restored, but at the cost of all the understanding of situation developed
up to the time of the restart (i.e., reset all IS conclusions based on data). Restarting the IS
from a checkl_int file (a file containing IS internal state information stored at a given time)
can be used to minimize the information lost at a restart. Checkpoints can be made at
operator request, periodically at some fixed rate, or event-triggered. Making checkpoint
files, however, can be an additional processing load on the IS, and storing checkpoint files
can be memory intensive.

A less common but mere selective (and less destructive) approach to intelligent system
repair is to intervene in IS processing. This can be accomplished by altering the
information used by the IS or by modifying the IS reasoning strategy. Either data about the
monitored process or information internal to the IS can be altered. For example, the
operator can change a bad data value or fill in data unavailable from the monitored process.
Alternately, the operator can modify an IS hypothesis or suggest an alternate solution (e.g,
a new procedure). The operator can also alter the way information is processed by the IS,
such as setting processing priorities of the IS (e.g., dynamically alter rule salience). If the
IS has missed important data during the repair, or if the repair has inadvertently caused
adverse or unexpected effects, it may be possible to recover by restarting the IS from a
checkpoint taken prior to repair.

Reallocating intelligent system tasks is an alternative to repairing the intelligent system.
The simplest form of re.allocation is turning off the IS. Even this may be impossible,
however, if the IS is not designed properly (i.e., when the IS is turned off, it may be
impossible to access other needed information). Since IS software often provides the first
opportunity to use graphics in the support environment, it is common to see a display
upgrade for the entire support system as part of the IS development. In such cases, the
designer must be especially careful not to make access to all data dependent upon access to
the intelligent system.

It is possible to take a graded approach to task reallocation, by providing a range of
possible allocations for the intelligent system from which the operator can select (what we
call selectively overriding portions of IS responsibility). A common example of such
selective override is providing operating modes that correspond to levels of responsibility
(e.g, five levels of control over the IS [notification, confirmation, execution, partial
takeover, complete takeover], Johns, 1990). Another way to provide selective override is
to partition the knowledge base such that portions of it can be disabled by the operator
(e.g., permit the operator to selectively disable rules). The ability to disable portions of the
knowledge base can also be useful for handling errors due to performance problems. See
the related discussion of alternate task allocations in section 3.2.

For some intelligent system errors, it may be necessary for the operator to completely
override the IS (i.e., take over all IS responsibilities). To assume these responsibilities, the
operator must be able to access critical operational information and control the monitored
process independent of the IS. Operators should be trained in using the available override
options, so these activities become familiar. Although a complete takeover effectively
"turns off" the IS, it can be useful to continue running in background to log results for off-
line debugging.

There are risks in intervening in intelligent system processing just as there are risks in
intervening in the monitored process (see section 3.4.2). Unintentional or unexpected
impacts of intervention can complicate or worsen the situation, and make it even more
difficult to correct. Operator errors during intervention can also worsen the situation. If
intervention requires the human to assume IS tasks, there is a risk that human will be

3-22



unabletodo thetask(orwillmake errors)due toinsufficientunderstandingof situation,

inadequate training, or overwork or distraction resulting from the additional task
responsibilities. If intervention involves reconfiguring or commamting systems, the effects
of those changes can be difficult to reverse.

The potential for making the situation worse means that the operator should be supported in
exercising caution when intervening. The operator may need additional tools to evaluate
the consequences of intervening into intelligent system processing. This support should
assist the operator in understanding the situation and, as much as possible, evaluating the
impacts of intervention prior to action. As a means of protecting against drastic impacts, it
is possible to take a system checkpoint prior to intervention, so that the intelligent system
can be returned to its former state should something go wrong. This technique is only
partially effective, since the effects of intervention are not always reversible.

3-23





Section 4

Summary

This report provides an overview of the HCI design guidance for intelligent system
designers documented in the NASA Technical Memorandum 104738 "Making Intelligent
Systems Team Players" (Malin eta/., 1991). This overview report was written to
summarize the important concepts contained in this Tech Memo, and to describe how this
guidance can be used to design intelligent systems.

In section 2, we summarize the important, new concepts for inteUigent system design. We
characterize how space operations constrain intelligent system design. We clarify what is
means for an intelligent system to be a team player, and describe the information
requirements approach to designing team players. We define the important design
problems and show how they affect intelligent system reliability and usability.

In section 3, we describe the HCI design guidance from the perspective of the intelligent
system designer. We organize the recommendations into sections corresponding to the
analysis and design activities described in the Tech Memo (see section 6.1). These activities
produce information requirements for both the intelligent system and user interface design.

We have not discussed specific user interface designs in this report. User interface design
examples and suggestions for information management are described in sections 4.3 and 5
of the Tech Memo. Particular topics addressed are workspace design and the use of
schematics and message lists.

In this report, we identify many unresolved design issues requiring further investigation.
These issues can be summarized as the following intelligent system design needs:

Design Methods
Design methods axe needed that specify human and intelligent system interaction
based on a task description. This task description should integrate intelligent system
operations with other human tasks. The specification of human-intelligent system
interaction should highlight changes in task allocation and tasks requiting close agent
coordination (such as task sharing).

Information Requirements
New types of information are needed that support the operator in making important
domain decisions (e.g., critical diagnostic information), and that assist the operator in
supervising and coordinating with the intelligent system.

Intelligent System Design
New approaches to intelligent system design are needed that permit the operator to
repair IS errors. Improved designs are also needed that accommodate the constraints
of the space operations environment, including robustness to data problems and
flexibility in unexpected situations.

User Interface Design
Alternatives are needed to common practice in user interface design for intelligent
systems. These alternatives should support developing a shared human-intelligent
system view of the situation. This requires new types of information, increasing the
potential for information overload of the operator. New user interface designs are
needed that integrate diverse sources of information by focusing on information
relevant to the task. Designs are also needed for managing interruptions in
multitasking situations.

4-I



In table 4-1, we show how thcs¢ addxcssing these needs will solve the design problems
affccting intelligent system reliability and usability (see table 2-1). We invite researchers
from both the artificial intelligence and human factors communities to consider thcsc needs
in their research.

4-2



Table 4-1. Intelligent System Design Needs and Problems They Address

DESIGN PROBLEMS l ,s DESIGN NEEDS
I

Problems Affecting Reliability

1. IS not designed to suplxrt human
operator in supervising IS activities
and recovering from IS errors

2. Unrealistic assumptions about space
operations
• bad or unavailable data
• unexpected situations

3. IS activities, reasoning strategies, and
capabilities misunderstood and often
overestimated by human operator
(i.e., a magical IS)

• New design methods specifying user supervisory tasks as
a team architecture with dynamic task allocation

• Improved designs for repairable IS
- Inform and guide IS, and assess impacts of intervention

Self repair
• Longer term, IS that "learn" from humans in real time

• IS designs that are robust to data problems
Consider data "trustw_d_iness" (source, quality)
Operate effectively with incomplete information

• IS designs that are flexible in unexpected situations
New information & capability for contingency response
Repairable IS (see 1 above)

• New information and designs supporting shared human
intelligent system view
- Monitor IS activities, and success of activities

- Clarify IS reasoning and capabilities
• Longer term, self-explanatory IS

Problems Affecting Usabilit],

Common practice in user interface (UI)
design increases user workload and fails
to provide the most usable information
• message lists and schematics
• explanation

2. IS not integrated with support system

3 IS not designed for coordination

• New types of information and UI designs supporting
operator domain decisions (eg, functional assessments)

• New UI design methods for managing information
overload by identifying task relevant information

• Alternatives to message lists and schematics that better
suPlXrt operator tasks (cf Woods)

• Alternatives to explanation based on shared understanding
of situation

• New design methods that specify operation of IS as part
of overall operator tasks

• New UI designs that integrate diverse sources of
information based on task

• New design methods that specify agent coordination, task
sharing, and dynamic task allocation

• New types of information supporting agent coordination
and task sharing

• New UI designs for managing interruption of operator in
multitasking situations

4-3





References

Abbott, K. Nov 1991. Internal memo. Human Automation Integration Branch. Langley
Research Center, NASA.

Abbott, K. 1992. Personal communication.

Andriole, S., and Adelman, L 1991. Prospects for cognitive systems engineering. In
Proceedings of lEEE International Conference on Systems, Man, and Cybernetics,
Charlottesville. VA.

Arkes, H.R., and K.R. Hammond. 1988. Judgement and decision making." An
interdisciplinary reader. Cambridge University Press.

Bloom, Charles P. 1991. Discussion at CHI "91 Workshop on Advances in Computer-
Human Interaction in Complex Systems, Human Factors in Computing Systems
Conference, New Orleans, LA.

Card, S., Moran, T., and Newell, A. 1983. The psychology of human-computer
interaction. Hillsdale, NJ: Erlbaum.

Chandrasekaran, B., Tanner, M., and Josephson, J. 1989. Explaining control strategies in
problem solving. IEEE Expert, 4(1), 9-24.

Clark, C., Jowers, S., McNenny, R., Culbert, C., Kirby, S., and Lauritsen, J. 1992.
Fault Management for the Space Station Freedom Control Center. In the Proceedings of
the American Institute of Aeronautics and Astronautics 30th Aerospace Sciences Meeting &
Exhibit, Reno, NV.

Decker, K. Garvey, A., Humphrey, M., and Lesser, V. 1991. Effects of parallelism on
blackboard system scheduling. In Proceedings oflJCAl, Australia. 15-21.

Forbus, K. 1991. Qualitative Physics as a Tool for Human-Computer Interaction. The
Institute for the Learning Sciences, Northwestern University. Evanston, IL.

Hill, T. 1991. Thermal Control System Automation Project (TCSAP ): Introduction and
Overview. Briefing on 11 December 1991, Houston, TX.: McDonnell Douglas.

Hollnagel, E. 1991. A Goals-Means Task Analysis Method. Draft, Version 1. Computer
Resources International. Denmark.

Horvitz, E., Ruokangas, C., Srinivas, S., and Barry, M. 1992. Project Vista: Display of
Information for Time-Critical Decisions. In Proceedings of the Fourth Rockwell
International Conference on Control and Signal Processing, Anaheim, CA.

Johns, G. L. 1990. Graphic Interfaces to Intelligent Fault Management Systems: Issues
and Guidelines. MTR-90W00103. The MITRE Corporation, Houston, TX.

Land, S. Culp, D., and Malin, J. 1992. A Decision Support System for RMS Flight
Controllers. Presented at the Joint Applications in Instrumentation Process and Computer
Control Symposium, Houston, TX.

Leveson, N. G. 1991. Software safety in embedded computer systems. Communications
of the ACM, 34 (2), 34-46.

R-1



Malin, J., Schreckenghost, D., Woods, D., Potter, S., Johannesen, L., Holloway, M.,
and Forbus, K. 1991. Making intelligent systems team players: Case studies and design
issues. Vol.l : Human-Computer Interaction Design; Vo12 : Fault Management System
Cases. NASA Technical Report 104738, Johnson Space Center, Houston, TX.

Martin, C. E., and Firby, R. J. 1991. An integrated architecture for planning and learning.
ACM SIGART Bulletin, 2(4), 125-129.

Potter, S. and Woods, D. 1991. Event driven timeline displays: beyond message lists in
human-intelligent system interaction. In Proceedings of lEEE International Conference on
Systems, Man, and Cybernetics, Charlottesville, VA.

Sycara, K. P., and Lewis, C. M. 1991. Cooperation of heterogeneous agents through the
formation of shared mental models. In Proceedings of AAAI Workshop on Cooperation

Among Heterogeneous Intelligent Agents, Anaheim, CA.

Woods, D. D. 1991. Representation aiding: A ten year rearospective. In Proceedings of
IEEE International Conference on Systems, Man, and Cybernetics, Charlottesville. VA.

Woods, D., Potter, S., Johannesen, L., and Holloway, M. 1991. Human Interaction with
Intelligent Systems: Volume i -- Trends, Problems, New Directions. CSEL Report 1991-
001. Cognitive Systems Engineering Lab, Ohio State University, Columbus, OH.

R-2



Glossary

AI
DESSY
ERF
HCI
IS
ISs
MP
PDRS
PRS
RCS
RTDS
SSCC
TCSAP
UI

artificial intelligence
decision support system

extended real-time failure effects and analysis tool
human-computer interaction
intelligent system
intelligent systems
monitored process

payload deployment and retrieval system
procedural reasoning system
reaction control system
real time data system
space station control center

thermal control system advanced automation project
user interface

G-I



I Form ApprovedREPORT DOCUMENTATION PAGE OMBNo0Z0_0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathermg and

maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, t215 Jefferson Daws Highway, Suite 1204, ArlingTon, VA

22202-a302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-018B), Washington, DC 20503.

1 AGENCY USE ONLY (Leave blank) I 2 REPORTDATE

I June 1992

4. TITLE AND SUBTITLE

Making Intelligent Systems Team Players:
Designers

6. AUTHOR(S)

Jane T. Malin

Debra L. Schreckenghost*

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)
Lyndon B. Johnson Space Center
Automation and Robotics Division

Houston, Texas 77058

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)
National Aeronautics and Space Administration

Washington, D.C. 20546

I 3.REPORTTYPEANDDATESCOVEREDTechnical Memorandum

Overview for
5 FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

TM 104751

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

S-680

11. SUPPLEMENTARYNOTES

*The MITRE Corporation
Houston, Texas

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Subject Category 59

12b. DISTRIBUTION CODE

13 ABSTRACT (Maximum 200 words)

This report is a guide and companion to the NASA Technical Memorandum 104738, "Making
Intelligent Systems Team Players," Volumes 1 and 2. The first two volumes of this
Technical Memorandum provide comprehensive guidance to designers of intelligent systems
for real-time fault management of space systems, with the objective of achieving more
effective human interaction. This report provides an analysis of the material discussed
in the Technical Memorandum. It clarifies what it means for an intelligent system to be
a team player, and how such systems are designed. It identifies significant intelligent
system design problems and their impacts on reliability and usability. Where common
design practice is not effective in solving these problems, we make recommendations for
these situations. In this report, we summarize the main points in the Technical
Memorandum and identify where to look for further information.

14. SUBJECTTERMS

Human-computer interaction, user interface, intelligent system,
design guidance, development methodolgy, real-time fault

management

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19 SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15 NUMBER OF PAGES

51

16 PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

V

Sttn<_ard Fore 298 iRev 2-E19)

Prescribed by ANS_ SId 239.18 NA,_'JSc

29B-102


