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SUMMARY

This report presents the implementation of a joint-space adaptive control scheme used to control non-

compliant motion of a Stewart Platfor_n-based Manipulator (SPBM) which is used in a facility called

the Hardware Real-Time Emulator (HRTE} developed at Goddard Space Flight Center to emulate space

operations. The SPBM is comprised of two platforms and six linear actuators driven by dc motors, and

possesses six degrees of freedom. The report briefly reviews the development of the adaptive control scheme
which is composed of proportional-derivative (PD} controllers whose gains are adjusted by an adaptation

law driven by the errors between the desired and actual trajectories of the SPBM actuator lengths. The

derivation of the adaptation law is based on the concept of model reference adaptive control (MRAC) and

Lyapunov direct method under the assumption that SPBM motion is slow as compared to the controller

adaptation rate. An experimental study is conducted to evaluate the performance of the adaptive control

scheme implemented to control the SPBM to track a vertical and circular paths under step changes in

payload. Experimental results show that the adaptive control scheme provides superior tracking capability

as compared to fixed-gain controllers.

1 Introduction

Closed-kinematic chain manipulators that comprise two platforms coupled together by six linear parallel

actuators whose length variations (shortening and extension) produce the motion of one platform relative
to another are classified as Stewart Platform-based (SPB} manipulators. The development of the above

mechanism proposed by Stewart [1] in the design of an aircraft simulator was motivated by disadvantages

suffered by conventional anthropomorphic open-kinematic chain (OKC) manipulators whose joints and

links are actuated in series. OKC manipulators generally have long reach, large workspace and are capable

of entering small spaces because of their compactness. Itowever, they have low stiffness and undesired

dynamic characteristics,, especially at high speed and large payload mainly due to the cantilever-like
structure. In addition, the nonuniform distribution of payload to actuators causes OKC manipulators to

have low strength-to-weight ratios. Finally the serial accumulation of joint errors throughout the OKC
mechanism results in a relatively large position error on the last link of the manipulator. On the other

hand, SPB manipulators whose mechanism are parallel, have been proven to be capable of high precision

positioning due to their high structural rigidity and non-serial accumulation of joint errors.
Since its introduction, the Stewart Platform has attracted tremendous attention from researchers [2]-

[23] involving robot manipulators, robotic end-effectors and robotic devices for high precision robotic tasks

where the requirements of accuracy and sturdiness are more essential than those of large workspace and

maneuverability. Dieudonne et al. [2] obtained an actuator extension transformation for a SPB simulator

built at NASA Langley Research Center to train aircraft operators. Hunt [3] conducted a systematic
study of in-parallel-actuated robot arms and McCallion and Truong [4] considered the mechanism of the

Stewart Platform in the design of an automatic assembly table. Sugimoto and Duffy [5] proposed a general

technique to describe the instantaneous link motion of a single closed-loop mechanism by employing linear

algebra elements to screw systems. Premack and his coworkers [6] built a SPB robot end-effector serving

as a testbed for studying autonomous assembly for space operations and the compliance control problem of
this end-effector was later investigated by Nguyen and others [9]. Yang and Lee [7] and Fichter [8] studied

the kinematic problems and practical construction of SPB manipulators. Sugimoto [10] conducted studies

of kinematics and dynamics of parallel manipulators. Nguyen and Pooran [14] conducted kinematic

analyses and proposed an algorithm determining the reachable workspace of SPB end-effectors used to

perform high and precise motion. Closed-form solutions for forward kinematics were derived by Griffis

and Duffy [12] and by Nanua et al. [16] for a class of Stewart Platforms. Waldron et al [13] discussed
the kinematics of a hybrid series/parallel six-degree-of-freedom manipulator (DOF) system. Nguyen and

Pooran [15] performed a dynamic analysis for a general SPB manipulator. Gosselin and Angeles [17]

provided a general classification of different kinds of singularities encountered in closed-kinematic chain

mechanism. Nguyen and his coworkers [21] developed computationally efficient kinematic equations and



presentedahardwareimplementationfora6DOFroboticwristrecentlybuilt at NASA/GoddardSpace
FlightCenter. In addition, they developed force and kinematic transformations for a force/torque sensor

whose implementation was based on the Stcwart Platform mechanism [23]. Although much of the research
in the literature has devoted extensive effort to the kinematics, dynamics and mechanism design of SPB

manipulators, little attention has been paid to the control problem of this type of manipulators. Rebouiet

and Pigeyre [19] investigated the force/position control of a six DOF SPB micromanipulator. Nguyen,
Pooran and Premack [9] proposed a control scheme providing active compliance to SPB manipulators

and presented computer simulation results of a 2 DOF parallel manipulator. They then developed a

learning control scheme [18] and several trajectory planning schemes [20] for SPB manipulators. In order
to effectively react to uncertainties in dynamic modeling and payload encountered in the control of a

SPB manipulator, adaptive control schemes whose controller gains are regulated by an adaptation law

should be employed in lieu of a fixed-gain control scheme. Numerous adaptive control schemes were

developed for OKC manipulators [24]-[28], and only a few for SPB manipulators [11]. Using the concepts

of model reference adaptive control (MRAC) and Lyapunov direct method, Nguyen et al. developed a

computationally efficient adaptive control scheme for compliant motion control [11] of SPB manipulators
and end-effectors. They later extended the developed adaptive control scheme to motion control of

redundant manipulators [22].

This report deals with adaptive control of a Stewart Platform-based Manipulator (SPBM) which is

an integral part of a facility called the Itardware Real-Time Emulator (HRTE) recently developed at
Goddard Space Flight Center (GSFC) to study and emulate space operations. The organization of the

report is described as follows. First, the main components of the HRTE and the SPBM are described in

the next section. Then, a kinematic analysis is performed for the SPBM to provide a closed-form solution

to the inverse kinematics and a computationally efficient solution to the forward kinematics employing

the Newton-Raphson Method. After that, the development of a joint-space adaptive control scheme based

on the concepts of model reference adaptive control and Lyapunov direct method will be briefly reviewed.

The final part of the report presents results of experinaental study conducted to evaluate the performance

of the adaptive control scheme implemented to control the SPBM to track several test paths.

Matrix and vector notations used in this report are listed below:

• MT: transpose of the matrix M

• 0n: (nxn) matrix whose elements are all zero

• I,: (nxn) identity matrix

• tr[M]: trace of matrix M.

• diag(wi) for i=1,2,... ,6 = diagonal matrix whose diagonal elements are wi, for i=1,2,... ,6.

2 The Stewart Platform-based Manipulator

Figure 1 presents the Hardware Real-Time Enmlator (ItRTE) developed at the Intelligent Robotic Labo-

ratory (IRL) of the Goddard Space Flight Center (GSFC), to enmlate space operations such as berthing

and docking performed by a telerobot or by the Space Shuttle Remote Manipulator System (SSRMS).
The HRTE is basically composed of a Cincinnati Milacron T3 robot possessing six DOFs and a six DOF

Stewart Platform-based Manipulator (SPBM). The SPBM is mounted to the last link of the T3 robot
such that one DOF of the T3 coincides with one of the SPBM, yielding a total of 11 DOFs to the

HRTE. Currently the ttRTE is planned to emulate space hardware docking and berthing performed by
the SSRMS. The T3 robot will be used to emulate SSRMS mechanical vibrations produced by external

disturbances, and the SPBM to emulate the vibration compensation of a mechanism attached between

the SSRMS and tim hardware so that a successful berthing/docking can be carried out. The HRTE is

currently used as a testbed to investigate the feasibility of a series/parallel manipulator system in which



theT3 robotservingasaserialmanipulatorismainlyresponsibleforemulatinggrossmotionwhilethe
SPBMservingasa parallelmanipulatorfor emulatingfineandprecisemotion.Testingof autonomous
assemblyofparts,matingofspace-ratedconnectorsanddockingof spline-locking screws are under way.

Figure 2 shows the main components of the SPBM whose design is based on the Stewart Platform
mechanism. It comprises a payload platform, a base platform, six linear actuators and an end-effector

attached to the payload platform. Six linear actuators, each of which is composed of a ballscrew assembly

mounted axially with a dc motor, link the payload platform and the base platform together. Motion of

the payload platform with respect to the base platform is produced by driving the motors to shorten
or extend the actuator lengths. Proper coordination of the actuator length trajectories enables the

payload platform to perform complex maneuvers. Position sensing is provided by six linear displacement

transducers (LDT) mounted along the linear actuators to measure their lengths. Forces/torques exerted

by the end-effector are measured through a JR 3 Universal Force-Moment Sensor System mounted between

the end-effector base and the payload platform. 2DOF universal joints are used to attach the actuator

links to the platforms. The LDT signals are sent to the IRL Local Area Network (LAN) via an Ethernet
board and a Data Translation input board which reside in a personal computer (PC) 80486. An IRIS

workstation takes the LDT signals off the LAN by means of another Ethernet board, performs necessary
coordinate transformations and forward kinematics and then graphically displays in real-time the payload

platform pose of the SPBM relative to the base platform. Based upon the desired Cartesian path to be

tracked by the SPBM, an Apollo workstation carries out the Cartesian trajectory planning and the
SPBM inverse kinematics and sends the desired actuator length trajectories down to the PC. The PC

then implements a selected control scheme, such as the joint-space adaptive control scheme presented
in the next section, which is driven by tracking errors computed according to the LDT signals and the

desired actuator lengths to produce the actuating signals that are finally sent to the dc motor drives via

a Data Translation output board.

3 SPBM Kinematic Analysis

This section will use vector algebra to attain a closed-form solution for the SPBM inverse kinematics.

Then the Newton Raphson's Method will be applied to the nonlinear kinematic equations to obtain a

computationally efficient solution for the SPBM forward kinematics.

3.1 SPBM Inverse Kinematics

The inverse kinematics of the SPBM can be formulated so as to determine the required actuator lengths

for a given pose 1 of the payload platform with respect to the base platform. Figure 3 shows that two

coordinate frames {P) and {13} are assigned to the payload and base platforms of the SPBM, respectively.

The origin of Frame {P) is located at the centroid P of the payload platform, the zp-axis is pointing
outward and the xp-axis is perpendicular to the line connecting the two attachment points P1 and P6.

The angle between PI and P__ is denoted by OR. A symmetrical distribution of joints on the payload

platform is achieved by setting the angles between PI and P3 and between Pa and P5 to 120 °. Similarly,

Frame {B} has its origin at the centroid B of the base platform. The xB-axis is perpendicular to the

line connecting the two attachment points Bx and B6, the angle between B1 and B_ is denoted by 0B.
Moreover, the angles between Bt and Ba and between Ba and B5 are set to 120 ° in order to symmetrically

distribute the joints on the base platform. The pose of the payload platform is specified by the orientation

of Frame {P} with respect to Frame {B} and the position of the origin of Frame {P} with respect to

Frame {B). Now denoting the angle between PPi and xp by Ai, and the angle between BBi and xB by

Ai for i=1,2,... ,6, we obtain

08 OR fori=l,3,5 (1)
Ai = 60i ° - -_; Ai = 60i ° 2 '

lIn this report, pose implies both Cartesian position and orientation.



and
Ai= Ai-I +OB; hi =Ai-l +Op, fori=2,4,6. (2)

Furthermore, if Vector PPi = (Pix Piy Piz)T describes the position of the attachment point Pi with respect

to Frame {P}, and Vector Bbi = (bix bin biz) T the position of the attachment point Bi with respect to

Frame {B}, then they can be written as

Ppi = [ _peos(_i) _psi.(Ai) 0 ]r (3)

and

"bi = [ rBcos(Ai) rBsin(Ai) 0 ]T (4)

for i=1,2,... ,6 where rp and rB represent the radii of the payload and base platforms, respectively.
We proceed to consider the vector diagram for an ith actuator given in Figure 4. The position of

Frame {P} is represented by Vector ed = [x y z]T which contains the Cartesian coordinates x, y, z of
the origin of Frame {P) with respect to Frame {B}. The length vector Bqi = (qix qiv qiz) T, expressed

with respect to Frame {B} can be computed by

B qi = BXi + Bpi (5)

where
Bxi -- B d -- Bb i

= y biv = y bin = ffi
z biz -z fi

which is a shifted vector of Bd and

(6)

(7)

Bpi = per PPi (8)

= r21 r22 r23 piv = r21Piz + r22piv = vi (9)

r31 r32 r33 Piz r31Pix + r32Piv wi

which is the representation of Bpi in Frame {B} and _R is the Orientation Matrix specifying the

orientation of Frame {P} with respect to Frame {B}.

Thus the length Ii of Vector Bqi can be computed from its components as

li= _/qi_ + q?v + q5" (I0)

or

We obtain from (3)-(4)

li = _/(i_ + _i)-_+ (_ + v_)_+ (e_+ _)_

pL+p,_+ vL= ,'_,
bL+ b_+ bL= ,'_.

and from the properties of orientation matrix

_L+ _, + _, = _ + ,'_+ _-_ =

(II)

(12)

(13)

(14)

and

rllrl2 + r21r22 + r31r32 = 0

rllrl3 + r21r23 + r31r33 "- 0

rllrl3 + r22r23 + r32r32 -" 0. ({5)



Employing (12)-(15), (10) can be rewritten as

li 2 = X2 q_ y2 _1_Z2 _{_r2p q.. r2B"F 2(rllpix -1-r12Piy)( x -- bix)

-F2(r_lpix W r22piy)(Y - biy) -I- 2(r31Pi= -F r32piy)z - 2(xbi= q- ybi_), (16)

for i=1,2,... ,6.

Equation (16) represents the closed-form solution to the inverse kinematic problem in the sense that
required actuator lengths li for i=1,2,... ,6 can be determined using (16) to yield a given pose of Frame

{P} with respect to Frame {B}.
The orientation of Frame {P} with respect to Frame {B} can be described by the orientation matrix

BR as shown in (9) which requires nine variables rq for ij=1,2,3 from which six are redundant because
only three are needed to specify an orientation. There exist several ways to specify an orientation using
three variables, but the most widely used one is the Roll-Pitch-Yaw angles a, 8, and % which represent

the orientation of Frame {P}, obtained after the following sequence of rotations from Frame {B}:

1. First rotate Frame {B} about the xB-axis an angle 7 (Yaw)

2. Then rotate the resulting frame about tile yB-axis an angle fl (Pitch)

3. Finally rotate the resulting frame about the zB-axis an angle cr (Roll).

The orientation represented by the above Roll-Pitch-Yaw angles is given by _

cacti cas_sT-sac7 casflc-r+sc_s7 ]BR = RRpy = Sa Cfl Sa Sfl S7 + ca c7 sa sfl c'f -- ca s7 J .-sfl cfl s7 c_ c7

(17)

3.2 SPBM Forward Kinematics

The forward kinematics of the SPBM deals with tile determination of the pose of the payload platform

with respect to tile base platform based on the actuator lengths I i for i=1,2,...,6 measured by the six

LDTs. In other words, the SPBM forward kinematic problem can be formulated as finding a Cartesian

position specified by x, y, z and an orientation specified by Roll-Pitch-Yaw angles c_, fl, and 7 to satisfy

Equation (16) for a given set of actuator lengths li for i=1,2,... ,6. The fact that Equation (16) represents

a set of six highly nonlinear simultaneous equations with six unknowns results in no closed-form solution
for the forward kinematic problem. Consequently, iterative numerical methods must be employed to solve

the above set of nonlinear equations. In the following, the implementation of Newton-Raphson method

for solving the forward kinematic problem is presented.
In order to apply the Newton-Raphson method, first from (11) we define 6 scalar functions

fi(a) = (a?i + ui) 2 + (ffi + vi) 2 + (7.i + wi) _ - li 2 = 0 (18)

for i=1,2,... ,6, where the vector a is defined as

a = [ al a2 a3 a4 as a6 ]T= [ x

and then employ the following algorithm to solve for a:

y z afl 7 ]T, (19)

SPBM Forward Kinematics Algorithm

Step 1: Select an initial guess a.

Step 2: Compute the elements rij of _R using (17) for ij=1,2,3.

2co _--cosa, and so -- sin c_.



Step 3: Compute £i,y-/, fi, using (7) and ui, vi, wi using (9) for i=1,2,... ,6.

Step 4: Compute f/(a) and Aij - _ using (18) for i, j=1,2,... ,6.

Step 5: Compute Bi --=-fi(a) for i-1,2,... ,6. If _=1 ] Bj ]< toll (tolerance), stop and select a as the
solution.

Step 6: Solve _=1 Aij,Saj = Bi for 6aj for ij=1,2,...,6 using LU decomposition. If _=1 6aj < tola
(tolerance), stop and select a as the solution.

Step 7: Select a '_e_ "" a 4- 6a and repeat Steps 1-7.

It is still unsolved as to how to select an initial guess which ensures convergence of the algorithm.

However according to the experiences gained from computer simulation presented in [21] any nonzero

initial guess within the reachable workspace of the SPBM will make the algorithm converge. This is

probably one of the properties of the Stewart Platform-based mechanisms. Furthermore, the above

algorithm as manifested by numerous experimental studies [22], has worked well in a real-time tracking

problem where it is employed to compute the actual pose of the payload platform with respect to the base

platform based on the actuator lengths. This occurs because the current guess is based on the previous

actual pose which is very close to the correct solution provided that the SPBM is tracking the desired

path very closely.
In order to minimize the computational time of the SPBM Forward Kinematics Algorithm, the ex-

pressions for computing the partial derivatives in Step 4 of the algorithm should be simplified. First

using (9) and (17), the partial derivatives of ul, vi, and wi with respect to the angles a, fl, and 3' can be

computed as follows:
Oui Oui Oui

C_& = --Vi; _ = COtWi; --07 : Ply r13_

Ovi Ovi Ovi

0---_ "- ui; V = SO_Wi; "_ "- Ply r23,

Ow__.2" = Owi Owi
Oa O; _- = -(e3 pi_ + s_ s7 pi_); _ = piy ra3.

From (7), we note that

Oz Oy Oz

Employing (20)-(23), we obtain after intensive simplification

Ofi Of,

Of_
Oa6

of_ oI_ of_
- = 2(_ + ud,

"Oal - Oz O_,i

Of_ Of_ Ofi - 2(_i+ vd,-_=_=o_,

Ofi Ofi Ofi = 2(_ 4- wi),
Oaa- Oz = O-_i

Ofi Ofi -- 2(--iivi 4- yiui),

-- Ofi -- 2piu(iirl3 4- ffir_3 4- Zira3).

07

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)



ConventionallytheManipulatorJacobianMatrix is definedasa matrix relatingjoint velocitiesto
Cartesian velocities composed of translational velocities and rotational velocities. For the robot wrist, .s-

ince actuator lengths are selected as joint variables, the time rates of change of actuator lengths il, l_,..., 16

are joint velocities. However in order to utilize the partial derivatives computed for the forward kinematic

transformation, we define here the velocities of Cartesian positions of the payload platform with Frame

{B}, namely _, _ and k as the translational velocities and the velocities of the Roll-Pitch-Yaw angles &,
fl, and ") as the rotational velocities. The matrix JM which relates the length velocities to translation
velocities and Roll-Pitch-Yaw angle velocities is therefore called The Modified Jacobian Matrix. Denoting

----(_I (22 _I3 a4 (25 a6) T --- (x Y _ (_ _ ,_)T, (30)

and

i= (il is i3 i4 i5 i6) T, (31)

we obtain
= JM i, (32)

or

i-- JM-' ft. (33)

where JM is the Modified Jacobian Matrix. Calling kij = ff_., the ij-element of JM -1, from (33) we

h ave

6 6 Olia
ii = _ kijhj = _ N j' (34)

j=l j=l

Now solving for li 2 in (18) yields

(35)

for i=1,2,... ,6. Recognizing that _ is a function of Xi, Yi, Zi, Ol, fl, and 7, and using (23), we differentiate

both sides of (34) with respect to time to obtain

0ha:

j=l

(36)

from which solving for ]i yields

6 loll

i, =E 21,G ai.
j=l

Now comparing (34) and (37) and noting from (35) and (18) that _ = _a@.,we arrive at

(37)

of, (38)
kiJ -- 21i Oaj

where °°a_. can be obtained from Step 4 of the Newton-Raphson Algorithm using (24)-(29). In other

words, -Jwe just showed that the inverse of the Modified Jacobian Matrix can be computed using the
results of the forward kinematic transformation.



4 The Joint-Space Adaptive Control Scheme

The fact that the SPBM inverse kinematics has a closed-form solution motivates the use of a joint-space

control scheme for the SPBM instead of a Cartesian-space control scheme in order to avoid problems

associated with the use of the SPBM Forward Kinematics Algorithm in converting LDT signals into

actual payload platform pose in the case of a Cartesian-space control scheme. To effectively react to the

nonlinearity of the manipulator dynamics, errors in dynamic modeling, and sudden changes in payloads,

adaptive controllers are selected instead of fixed-gain controllers which work well only when the manip-

ulator stays within the linearized operating region. Figure 5 illustrates the structure of the adaptive
control scheme implemented to control the noncompliant motion of the SPBM. As the figure shows, a

Cartesian trajectory planner converts a desired Cartesian path which is specified by initial and final poses

and pose velocities and to be carried out by the SPBM into six desired Cartesian trajectories. Then the
SPBM inverse kinematics is used to transform the Cartesian trajectories into six desired trajectories of

the SPBM actuator lengths which are then compared with the actual length trajectories measured by

the LDTs to determine the length errors. Based upon the length errors, proportional-derivative (PD)

controllers whose gains are adjusted by an adaptation law to be derived below, control the joint forces of

the SPBM actuators such that the length errors remain zero all the time or existing errors decay to zero

as quickly as possible.
The dynamics of the SPBM can be described by [15]:

r(t) = M(q,/1) _i(t) + N(Q,/1) _l(t) + G(q, _l) q(t) (39)

where q(t) denotes (6xl) actuator length vector of the SPBM, r(t), the (6xl)joint force vector, M(q, el),

the SPBM (6x6) mass matrix which is symmetric positive-definite, N(q, el) and G(q, Cl) are (6x6) matrices

whose elements are highly complex nonlinear functions of q and ¢1.

In the right-hand side of (39), under the assumption that the joint friction is negligible, the second
term represents the centrifugal and Coriolis forces, and the third term the gravity forces.

From Figure 5, we obtain
r(t) = Kp(t) qo(t) + Kd(t) q_(t) (40)

where

q_(t) = qd(t) -- q(t) (41)

represents the error vector between the actual length vector q(t) and the desired length vector qd(t),

Kp(t) and Kd(t) are the matrices of the proportional and derivative terms, respectively, of the adaptive
controller.

Substituting (40) into (39) yields

M/i, + (N + Ka)/le + (G + Kp) q_ = M /id + N /td + G qd (42)

where the dependent variables of the matrices and vectors were dropped for simplicity.

In order to transform (42) into a state space form, we proceed to define a (12xl) state vector z(t)

such that
z(t) = [qT(/) /iT(t)] T , (43)

which converts (42) into

where

and

A, = M-'(G + Kp), A2 = M-I(N + Kd), (45)

Aa=M -1 G, A4=M -1N, (46)



and
u(0= [q_r(t) q_(t) _i_r(0]T. (47)

In the framework of MRAC, Equation (44) represents the adjustable system. The desired performance

of the SPBM motion can be specified by a reference model in terms of the tracking error vector q_(t) =

[qet(t) qe2(t).., q_6(t)] T. Suppose the tracking errors qei(t) for i=1,2,... ,6, are decoupled from each other,

and satisfy
__(t) + 2_i _ _(t) + _ q_(t) = 0 (48)

for i=1,2,... ,6, where (i and wi denote the damping ratio and the natural frequency of q_i, respectively.

Then the dynamics of the reference model can be represented by

_m(t)=Dzr,.(t)= [-D106 -D216 ] zm(t), (49)

where Dx=diag(_) and D2=diag(2_iwi) are constant (6x0) diagonal matrices, and

z._(t) = [qT(t) _l_(t)] T (50)

Solving (49), we obtain

with

qm - (q¢l qe2 ...qe6) T. (51)

zm(t) ----exp(Dt) zm(0). (52)

We note from (52), that if zm(0) = 0, i.e. the initial values of the actual and reference length vectors

are identical, then zm(t) = 0.

Now if e(t), the adaptation error vector is defined as

_(t) = z_(t) - z(t), (53)

then from (44) and (49), we obtain an error system described by

6(t) = [ 06 16 ]e(t)+ [ 06 06 ]z(t)-D1 -D2 A1-D1 A2-D2

[ 06 0_ 06 ]u(t). (54)+ -A3 -A4 -I6

We proceed to select a Lyapunov function candidate v(t) such that

v(t) = eTpe+tr[(A1-D1)THx(A1-D1)]

+tr [(A2 - D2)TT/2(A2 - D2)]

+/r[ATH3A3] +/r[ATH4A4], (55)

where tr[M] isthe traceof matrix M, P and Hi for i=1,2,...,4,are positivedefinitematrices to be

determined later.

Taking the time derivativeof(55) and simplifyingthe resultingexpression,we obtain

b(t) = eT(pD + DTp)e

+2tr [(A,- DI)T(/_q T +/-/1A1)]

+2tr [(A2- D2)T(Oq T + T/2-_2)]

-2it [A3Y(/-tq T -- /-/3A3)]

-2t_ [A_(aq_ - uA_)] (561

l0



where

andP isgivenby

= [P_ P3]e(t)= -[P2 P3]z(t)= -P2q_- P3¢L (57)

P1 P_ ] (58)P = P2 P3

and it is noted that e(t) = -z(t) since zm(0 = 0.

In (48) _i and wi can be selected so that D is a matrix having stable eigenvalues, which is also called
a Hurwitz matrix [24]. Therefore according to Lyapunov Theorem[25], for any given positive-definite

symmetric matrix Q, there exists a positive definite symmetric matrix P that satisfies the Lyapunov

equation
PD + DTp = -Q. (59)

Indeed, if Q is selected to be

2Q1 06 ]Q = 06 2Q2

then the submatrices of Q can be computed as follows [25]:

PI = QID2 -1 + QIDI-ID_ + Q2D2-1D1,

(60)

(61)

Now in (56), if we set

and

then (56) becomes

P2 = QID1-1,

P3 = Q2D2 -I + QIDI-ID2 -I.

nq T -_- /_l/_kl : nq T 2r" /"[2k2 -" 0

nq_r - n_x_ = nq_r - rZ_A_ = 0,

6(t) = -eTQe

which is a negative definite function of e(t). Furthermore, from (64)-(65), we obtain

Al = -l T. A2 = .T-171 _¢I_ , -/'/21_qe ,

(62)

(63)

(64)

(65)

(66)

(67)

and

-4.3 = H3'ftqT; -_4 = n;'nOr . (68)

We already showed that P is a positive definite matrix. Now if we could show that 1I{ for i=l,2,... ,4,

are also positive definite matrices, then the error system described in (54) is asymptotically stable, i.e.,

e(t) --* 0, or z(t) --* Zm as t --* _.
Now assuming that the SPBM performs slowly varying motion, M, N and G are slowly time-varying

matrices which can be considered as nearly constant matrices. Consequently from (45) and (46) we obtain

Aa --- M-'I_p; A2 -_ M-1gd (69)

and

Next substitution of (69)-(70) into (67)-(68) yields

M- 1 i_p -_ T M- lI(d /-/-1 $_ • T=-//l _qe; =- 2 qe,

(70)

(71)

and

(72)
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Now in (71), letting

//1 = 1M; /-/2 = 1M,
QI Ot_

where Crl and a2 are arbitrary positive scalars, and solving for I_p and Kd, we obtain from (71)

(73)

I'£p = -_,nq T, (74)

and
I_d = -_nq_. (75)

In (73), we note that /-I1 and /-/2 are positive definite matrices that can be considered as nearly
constant because the SPBM mass matrix M is positive definite and slowly time-varying. To satisfy (72),

/-/3 and 1-I4 should be chosen such that their determinants approach c_ in addition to the positive definite

property. To achieve this, we can select /I3 and /-/4 such that they are diagonal matrices whose main

diagonal elements assume very large positive values.
Now integrating both sides of (74) and (75) and using (57), results in

Kp(/) = Kp(0) + o_1 (P2qe + Paci_)q_dt (76)

and

//K_(0 = Kd(0) + c_2 (P2qe + P3ile)q_dt (77)

where Kp(0) and Kd(0) are initial conditions of Kp(t) and Kd(t), respectively and can be set arbitrarily.

We observe that (76) and (77) represent the solutions for the controller gain matrices of the joint-
space adaptive control scheme which is as illustrated in Figure 5 mainly based on the errors of the

actuator lengths of the SPBM and the submatrices of P. The computation time required to calculate

the adaptive control law given in (40) is relatively small because P is a constant matrix and q_ can be

easily computed from the desired and actual lengths. From the fact that the adaptive control scheme is

very computationatly efficient, it can be implemented using very high sampling rates. Consequently the

assumption of slowly varying motion of the SPBM stated before is valid since the SPBM dynamics is

considered conslant during each sampling interval. Finally, the implementation of the adaptive control
scheme does not require on-line computation of the SPBM dynamics which is very computationally

intensive.

5 Experimental Verification

This section present results of experiments conducted to evaluate the performance of the joint-space

adaptive control schcme implemented to control the motion of the SPBM payload platform in the case

of sudden change in payload and inertial disturbances. The experiment is arranged so that the payload

platform is tied via a long string to a ciudcr block of about 15 lb. laying on a table. During an upward

movement of the payload platform, sudden transition from no payload to full payload occurs at a vertical

position which lifts the payload off the table. Reversely, during a downward movement, when the payload

platform reaches a vertical position which sets the payload on the table, it creates a transition from full

payload to no payload. Referring to Figure 5, for each of the following two study cases, the desired
Cartesian path are first modeled by a set of desired Cartesian trajectories which are then converted to

a set of desired trajectories of actuator lengths using the SPBM inverse kinematics. Then by trial and

error, the controller gain matrices Kp and Kd are adjusted until the payload motion can be completed
with the least tracking errors possible under no payload. The obtained controller gain matrices are then

used as initial values Kp(0) and Kd(0) in Equations (76)-(77) which regulate the controller gain matrices
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to effectivelyreactto suddenpayloadchangesanddynamiccouplingeffects.Thefixedcontrollergain
matricesusedill thestudycasesareobtainedas

Kv,li=_d= 2.68646I6, Kd,li_ed----80.5I6, (78)

andtheSPBMparametersare:rp -_ 10.441in., ru --- 13.838 in., 0p : 99.20 °, and 0B = 16 °.

Moreover, the desired performance of the payload platform is embodied in the specification of a

reference model with the desired damping ratios and natural frequencies which are selected as

¢oi= 10tad/see; il = 0.7 for i=1,2,... ,6, (79)

which yields DI=100 I6 and D_=14 I6. Selecting Q=2 I12 and applying Equations (62)-(63), P2 and P3

are computed as
P2 = 0.01 I6, P3 -- 0.0721 I6. (80)

Study Case 1: Vertical Motion

The objective of this study case is to evaluate the performance of the joint space adaptive control scheme

in tracking a vertical motion under sudden changes in payload. The desired vertical path is modeled by

at 2 T

z(t)=zo+-_--, for O<:t < _- (81)

vT T 5T (82)
:(0 = vt + -iY + z0, for _- _ t _<T

z(t)=zo+ vT+vt-T for --<t<r (83)

where the travel time T = -_a_-, tile travel distance Az = Iz! - zol, the acceleration a = _. The initial

position zo, the final position zf and the velocity v are specified by the user. All above variables are

expressed with respect to the base platform frame {B}. For this study case we use: z0=19.7 in., z!=14.5

in., and v=0.4 in./sec.

Figure 6-13 present the experimental results obtained for the case in which the payload platform is
controlled to perform the desired vertical motion under two different sudden payload changes, zero to full

payload and full to zero payload. First starting at a vertical position z0=19.7 in., the payload platform

moves upwards and lifts the payload up at a vertical position zm = 17 in. After that, the payload platform

continues to move upwards and stops at a vertical position z! - 14.5 in. Then the platform is controlled

to move down on the table and sets the payload on the table when it reaches zm. Figures 6 and 7 present

the desired and actual trajectories of the vertical position z(t) when the fixed gain controller and adaptive

controller are applied, respectively. Since the fixed-gain controller was by trial and error tailored to zero

payload, it produces a steady-state tracking error of approximately -0.475 in. in the case of full payload,

as clearly shown in Figure 8. On the other hand, as shown in Figure 9, as soon as the adaptive PD
controller senses the change in payload, it adjusts its gains accordingly so that the steady-state tracking

error is reduced down to about -0.056 in. According to experimental data obtained for tracking of the

vertical position, the fixed-gain controller has a maximum absolute error of 0.4990 in., and an average

error of 0.3859 in. For the adaptive controller, the maximum absolute error and average error are 0.1880

in. and 0.0950 in., respectively. The desired and actual trajectories of the length of the first actuator are

presented in Figures l0 and II, respectively. Figures 12 and 13 present their respective tracking errors.

As manifested by Figures 10-13, the adaptive controller provides better performance as compared to the

fixed-gain controller in tracking the desired actuator length trajectory. For this case, experimental data

show that the fixed-gain controller has a maximum absolute error of 0.3593 in., and an average error of

0.2073 in. For the adaptive controller, the maximum absolute error and average error are 0.1796 in. and

0.0361 in., respectively. The experimental results of the above study case are tabulated in Table 1.
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[ Max Errors Avg Errors
III IA  vt ve,,

z[in.] 0.49901 0.1880 0.3859 0.0950 ]]

I_ [in.] 0.3593 I 0.1796 0.2073 0.0361 H

Table 1: Errors for tracking the vertical motion

Study Case 2: Circular Motion

The objective of this study case is to evaluate the performance of the joint space adaptive control scheme

in tracking a circular motion under sudden change in payload. The circular motion consisting of three

segments modeled by

x(t) = Rcos_i; y(t) = Rsin_i for ti-1 <_ t <_ ti for i = 1,2,3 (84)

where the circular path radius R = 3 in., and

with ¢0 = 0 radian;

Z 2 (85)
41(t) : ¢0 + _t ,

_2(t) = ¢1 + ¢o(t - tl), (86)

/3 t (87)
4,3(t) = ¢0 - 3( 3 - t) _

Ca = _l(tl) radlan, angular velocity w = fit1 = 0,350 radian/sec and the angular

acceleration fl = 27r/[t, (t._ -t 1)] radian/sec 2.

For both fixed-gain and adaptive controllers, the payload is first placed on two supporting wooden
blocks and tied to the payload platform by a string having enough slack so that the payload platform

can initially move with zero payload. Then at about 10 seconds after the motion begins, the supporting

wooden blocks are removed to produce a payload step change from zero to full payload.

Figure 14 shows the actual motions in the x-y plane tracked by the fixed-gain and adaptive controllers.
As shown by the figure, during the period of zero payload, both fixed-gain and adaptive controllers track

the desired circle relatively well. Ilowever after the introduction of full payload at about the completion

of 1/4 of the circle, the fixed-gain controller starts degrading its performance and finally gets totally

off-track after it completes half of the circle. On the other hand, the adaptive controller adjusts its gain

to adapt to the full payload and tracks the circle with relatively small deviation from the desired circle
until the end of the motion. Figures 15, 16, and 17 illustrate the tracking errors of coordinates z(t), y(t)

and x(t), respectively of the fixed-gain and the adaptive controllers. Computation of recorded data show
that the maximum errors of z(t), y(t), and x(t) are 0.2710 in., 0.3490 in., and 0.4370 in., respectively

when the fixed-gain controller is applied. Also for the fixed-gain controller, the average errors of z(t), y(t),

and x(t) are 0.1261 in., 0.1391 in., and 0.1724 in., respectively. When the adaptive controller is applied,

the maximum errors of z(t), y(t), and x(t) are 0.1500 in., 0.2530 in., and 0.2930 in., respectively, and

the average errors are 0.0744 in., 0.1060 in., and 0.0941 in., respectively. Figure 18 presents the length

trajectories for the sixth actuator and Figure 19 its error trajectory. Recorded data show that for the case

of fixed-gain controller, the maximum and average errors are 0.6620 in. and 0.1733 in., respectively. For

the case of adaptive controller, the maximum and average errors are 0.1952 in. and 0.0790 in., respectively.
We observe that the maximum and average errors of the adaptive controller are smaller than those of the

fixed-gain controller. The experimental results of the above study case are tabulated in Table 2.
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MaxErrors AvgErrors
Fixed [ Adaptive Fixed [ Adaptive

z [in.] 0.2710I 0.1500 0.1261 0.0744
y [in.] 0.3490] 0.2530 0.1391 0.1060
x [in.] 1,0.4370 0.2930 0.1724 0.0941
16 [in.] l/0.6020 0.1952 0.1733 0.0790

Table 2: Errors for tracking the circular motion

6 Concluding Remarks

This report has dealt with the adaptive control of a Stewart Platform-based manipulator (SPBM) of the

Hardware Real-Time Emulator (IIRTE) developed at Goddard Space Flight Center to study and emulate

space operations. Kinematic analysis of the manipulator resulted in a closed-form solution for the inverse
kinematics whose equations was then applied to develop an iterative solution for the forward kinematics

using the Newton Raphson Method. Then a joint-space adaptive control scheme was developed using the

concept of model reference adaptive control and the Lyapunov theorem under the assumption of slowly

varying motion in the sense that tile manipulator motion is slow compared to the adaptation rate of the
controllers. The gains of the proportional and derivative controllers of the adaptive control scheme are

adjusted by an adaptation law to effectively react to dynamic and static coupling between joints and

sudden change in payloads. Being computationally efficient, the adaptation scheme can be implemented

for real-time applications using personal computers or workstations. Experiments were conducted to

study the performance of the adaptive control scheme in tracking a vertical motion and a circular motion.

Experimental results showed that despite step changes in payload, the adaptive controller could track the

desired motion with negligible tracking errors while the fixed-gain controller suffered from steady-state

error when tracking the vertical motion and got off-lrack when tracking the circular motion. Current

research activity focuses on extending the joint-space adaptive control scheme to a Cartesian-space force

adaptive control scheme which can be used to provide active compliance to the manipulator. The SPBM
is used as an active compliance wrist mounted between the T3 manipulator and a selected mechanism

to emulate docking and berthing in space. Experimental results of the current study will be reported in

future reports.

References

[1] Stewart, D., "A Platform with Six Degrees of Freedom," Proc. Institute o] Mechanical Engineering, Vol.
180, Part l, No. 5, pp. 371-386, 1965-1966.

[2] Dieudonne, J.E. et al, "An Actuator Extension Transformation for a Motion Simulator and an Inverse
Transformation Applying Newtotl-Raphson's Method," NASA Technical Report D-7067, 1972.

[3] Hunt, K.H., Kinematic Geometry of illechanisms, Oxford University, London 1978.

[4] McCallion, H., and Truong, P.D., "The Analysis of a Six-Degree-of-Freedom Work Station for Mecha-
nized Assembly," Proc. The Fifth World Congress for the Theory of Machines and Mechanisms, an ASME

Publication, pp. 611-616, 1979.

[5] Sugimoto, K. and Duffy, J., "Application of Linear Algebra to Screw Systems," Mech. Mach. Theory,
Vol. 17, No. 1, pp. 73-83, 1982.

[6] Premack, T. et al, "Design and Implementation of a Compliant Robot with Force Feedback and Strategy
Planning Software," NASA Technical Memorandum 86111, 1984.

[7] Yang, D.C. and Lee, T.W., "Feasibility Study of a Platform Type of Robotic Manipulators from a
Kinematic Viewpoint," Trans. ASME Journal of Mechanisms, Transmissions, and Automation in Design,
Vol. 106. pp. 191-198, June 1984.

15



[8] Fichter, E.F., "A Stewart Platform-Based Manipulator: General Theory and Practical Construction," Int.

Journal of Robotics Research, pp. 157-182, Summer 1986

[9] Nguyen, C.C., Pooran, F.J,, and Premack, T., "Control of Robot Manipulator Compliance," in

Recent Trends in Robotics: Modeling, Central and Education, edited by M. Jamshidi, J.Y.S. Luh, and M.

Shahinpoor, North Holland, New York, pp. 237-242, 1986.

[10] Sugimoto, K., "Kinematic and Dynamic Analysis of Parallel Manipulators by Means of Motor Algebra,"

ASME Journal of Mechanisms, Transmissions, and Automation in Design, pp. 1-5, Dec. 1986.

[11] Nguyen, C.C., Pooran, F.J., "Adaptive Force/Position Control of Robot Manipulators with Closed-

Kinematic Chain Mechanism," in Robotics and Manufacturing: Recent Trends in Research, Education, and

Application, edited by M. Jamshidi et al, ASME Press, New York, pp. 177-186, 1988.

[12] Gr|ffis, M., Duffy, J., "A Forward Displacement Analysis of a Class of Stewart Platforms," Journal of

Robotic Systems, Vol. 6, pp. 703-720, 1989.

[13] Waldron, K.J., Raghavan, M., and Roth, B., "Kinematics of a Hybrid Series-Parallel Manipulation

System," ASME Journal of Dynamic Systems, Measurement, and Control Vol. 111, pp. 211-221, 1989.

[14] Nguyen, C.C., and Pooran, F.3., "Kinematic Analysis and Workspace Determination ofA 6 DOF CKCM

Robot End-Effector," Journal of Mechanical Working Technology, Vol. 20, pp. 283-294, 1989.

[15] Nguyen, C.C., and Pooran, F.J., "Dynamical Analysis of 6 DOF CKCM Robot End-Effector for Dual-

Arm Telerobot Systems," Journal of Robotics and Autonomous Systems, Vol. 5, pp. 377-394, 1989.

[16] Nanua, P., Waldron, K.3., Murthy, V., "Direct Kinematic Solution of a Stewart Platform," IEEE

Trans. Robotics and Automation, Vol. 6, No. 4, pp. 438-444, 1990.

[17] Gosselln, C. and Angeles, J., "Singularity Analysis of Closed-Loop Kinematic Chains," IEEE Transac-

tions on Robotics and Automation, Vol. 6, No. 3, pp. 281-290, 1990.

[18] Nguyen, C.C., and Pooran, F.J., "Learning-Based Control of a Closed-Kinematic Chain Robot End-

Effector Performing Repetitive Tasks," [nternational Journal of hficrocornputer Applications, Vo]. 9, No. 1,

pp. 9-15, 1990.

[19] Reboulet, C. and Pigeyre, R., "Hybrid Control of a Six-Degree-Of-Freedom In-Parallel Actuated Micro-

Manipulator Mounted on a Scara Robot," Robotics and Manufacturing, Recent Trends in Research, Educa-

tion, and Applications edited by Jamshidi, M. and Sail, M., ASME Press, Vol. 3, pp. 293-298, 1990.

[20] Nguyen, C.C., Zhou, Z-L., Antrazi, S.S., Campbell, C.E., "Experimental Study of Motion Control

and 'I_ajeetory Planning for a Stewart Platform Robot Manipulator," Prec., IEEE International Conference

on Robotics and Automation, pp. 1873-1878, Sacramento, California, April 1991.

[21] Nguyen, C.C., An_razi, S., Zhou, Z-L, and Campbell, C.E., "Analysis and Implementation of a

6 DOF Stewart-Platform-Based Robotic Wrist," Computers and Electrical Engineering: An International

Journal, Vol. 17, Numbcr 3, pp. 191-204, 1991.

[22] Nguyen, C.C., Zhou, Z.L., Mosier, G.E., "Cartesian-Space Control of Redundant Manipulators using

a Computationally Efficient Adaptive Control Scheme," Robotics and Computer-Integrated Manufacturing:

An International Journal, Volume 9_ No. 2, 1992.

[23] Nguyen, C.C., Antrazl, S.S., Park, J-Y., and Z-L. Zhou, "Analysis and Experimentation of a Stewart

Platform-Based Force/Torque Sensor," International Journal of Robotics and Automation, Volume 7, No. 2,
1992.

[24] Landau, Y.D., Adaptive Control: The Model Reference Approach, Marcell Dekker, 1979.

[25] Seraji, H., "A New Approach to Aclaptive Coz_trol of Manipulators," ASME Journal of Dynamic Systems,

Measurement, and Control, Vol. 109, pp. 193-202, 1987.

[26] Pourboghrat, F., "Virtual Adaptive Compliant Control for Robots," International Journal of Robotics and

Automation, Vol. 4, No. 3, pp. 148-157, 1989.

[27] Johansson, R., "Adaptive Control of Robot Manipulator Motion," IEEE Transactions on Robotics and

Automation, Vol. 6, No. 4, pp. 483-490, 1990.

[28] Walker, M.W. and Wee, L-B, "Adaptive Control of Space-Based Robot Manipulators," IEEE Transac-

tions on Robotics and Automation, Vol. 7, No. 6, pp. 828-834, 1991.

16



Figure 1: The Hardware Real-Time
Emulator (HRTE)

Figure 2: The Stewart Plat-
form-based Manipulator (SPBM)
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