""May 1992 UILU-ENG-92-2214
CRHC-92-08

Center for Reliable and High-Performance Computing

DESIGN AND SCHEDULING

FOR PERIODIC

CONCURRENT ERROR DETECTION
AND RECOVERY

IN PROCESSOR ARRAYS

Yi-Min Wang, Pi-Yu Chung, and W. Kent Fuchs

(NASA-LR-190571) OFSIGN AND SCHEDULING FNOR NI2-29695

PEFRIICIC CUONCURRENT ERRNOR DETECTINN AND

RECPVFRY TN PROCESSOR ARRAYS (11linois

univ.) 33 p unclas
G3/61 0109244

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

Design and Scheduling for Periodic Concurrent Error Detection
and Recovery in Processor Arrays

Yi-Min Wang, Pi-Yu Chung and W. Kent Fuchs

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Correspondent: Yi-Min Wang

Coordinated Science Laboratory
1101 W. Springfield Ave.
University of Illinois
Urbana, IL 61801

E-mail: ymwang@crhc.uiuc.edu
Phone: (217) 244-7161
FAX: (217) 244-5686

Abstract

Periodic application of time-redundant error checking provides the trade-off between error
detection latency and performance degradation. The goal is to achieve high error coverage while
satisfying performance requirements. In this paper, we derive the optimal scheduling of check-
ing patterns in order to uniformly distribute the available checking capability and maximize the
error coverage. Synchronous buffering designs using data forwarding and dynamic
reconfiguration are described. Efficient single-cycle diagnosis is implemented by error pattern
analysis and direct-mapped recovery cache. A rollback recovery scheme using start-up control
for local recovery is also presented.

Aclcnowledéement: This research was supported in part by the National Aeronautics and Space Administration
ASA) under Grant NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace

ystems and Software (ICLASS), and in Fan by the Joint Services Electronics Program (U.S. Army, U. S. Navy
and U. S. Air Force) under Contract N00014-90-J-1270.

1. INTRODUCTION

A variety of processor arrays have been proposed for signal and image processing and
scientific computation applications [1]. In order to detect errors produced by faults in these ar-
rays a variety of off-line testing procedures have been developed for detecting permanent faults
and concurrent error detection (CED) techniques have been developed for transient and intermit-
tent failures [2]. The focus of this paper is on processor arrays for systolic algorithms and the
use of time redundancy techniques for concurrent detection of errors [3,17].

Traditionally, CED is applied continuously to each computation activity so that an error
resulting from a fault in the processing element (PE) can be detected immediately. However,
when time redundancy techniques are used for error detection this continuous checking scheme
may greatly degrade the array performance, ¢.g., by a factor of two for RESO [4] or alternating
logic [5]. For some applications where high processing speed is crucial and error detection la-
tency is tolerable, it may be possible to maintain the desired throughput while keeping a reason-
ably high error coverage by turning the CED mechanism on and off periodically. Periodic Appli-
cation of CED (PACED) offers such a trade-off in error latency and probability of error detec-
tion versus performance degradation.

Several techniques regarding the utilization of idle processor cycles for CED have been
proposed [6-12]. For general-purpose machines with processor-level parallelism, a technique
called saturation has been introduced for utilizing the idle processors to execute replicated ver-
sions of tasks and employing majority voting to determine the output [6]. For processors with
multiple pipelined functional units, like the Cray-1, RESO has been applied to the idle function
units and was shown to equip the scalar unit with error checking capability at the cost of minor
performance degradation [7]. Another recently proposed technique, called Available-Resource

Control-flow monitoring (ARC) [8], is aimed at the resource parallelism of instruction-level

parallel processors such as superscalar and Very Long Instruction Word (VLIW) processors. The
idle resources in these processors were utilized to detect the control-flow errors.

In the area of systolic architectures, one approach has been developed to take advantage of
the existing bypassing links in a reconfigurable array to pass the same input data to two adjacent
PEs and then compare the outputs to do the error detection [9]. A control bit, called zest roken,
was inserted periodically from outside and passed along the array to determine when a particular
PE should invoke a duplicated operation on its neighbor. Related results using error checking
code to achieve algorithm-based fault tolerance for a systolic sorter have also been developed
[10].

The incorporation of CED capability in systolic arrays for band matrix multiplication has
been developed with design parameters such as throughput latency, per-cycle PE utilization rate
and I/O bandwidth [11]. The arrays were required to have a per-cycle PE utilization rate less
than 50% in order to leave room for the RESO-based CED technique. Flexible designs were pro-
posed [12] which allow the user to either employ the full throughput rate capability of the system
or trade off the throughput rate for greater reliability.

In the initial description of the general concept of periodic application of CED (PACED)
(3] by Chen et al., error pattern analysis was performed only for a specific set of PACED param-
eters and the actual implementation was not discussed. The major contribution of this current pa-
per is that we start from a general formulation by defining a set of PACED parameters which are
optimized to achieve the maximum error coverage and reduce the hardware cost.

The PACED implementation considered utilizes the following properties:

(1) Each PE is capable of performing time-redundant computation checking for itself as well as

input code checking for the possibly erroneous output data produced and propagated b};

previous PEs.

(2) A single fault is present between the time of the initial fault occurrence and error detection.

The processor arrays considered in this study are unidirectional linear processor arrays con-
sisting of Q processing elements with inputs entering from the top and left [1,13,14]. A PACED
array driven by the original clock and equipped with the capability of concurrent error detection
and automatic error recovery is shown in Fig. 1. The control logic consists of circuitry to per-
form buffering, diagnosis, rollback and start-up control.

The outline of the paper is as follows: Section 2 establishes the system parameters; Section
3 gives the optimization of system parameters with respect to various metrics; Section 4 pro-
poses the required design changes for data buffering, error diagnosis and recovery; Section 5

concludes the paper.

2. SYSTEM PARAMETERS

For two PEs in our processor array, PE; is upstream of PE; and PE; is downstream from

PE,; if i <j. PEs may not be identical, however each has approximately the same processing time

recovery
cache
i X code
buffers checker
PRy {TTTH—=E: {IIIH—="2 - - =P~

l l Hj l

control
logic

Figure 1. Block diagram of the PACED array with buffering and recovery caches.

so that, without PACED, the array forms a balanced pipeline with clock cycle time equal to @
time units. When CED is applied, each PE needs another b time units to perform error checking.
For the purpose of preserving the synchronous nature of the original processor array, b is
rounded off to multiples of @, b = ka. Therefore, for example, k = 1 corresponds to 100% time
overhead. The entire activity applied to a certain set of data at each PE is called a computation
cycle with or without checking, as opposed to the physical clock cycle which always take a time
units. At the beginning of a clock cycle, each PE reads from its local counter or a global counter
the checking bit to determine whether it should perform the checking (1) or not (0). Checking

patterns are the plots of checking bits as a function of computation cycle number as shown in

Fig. 2.
- M >
(\7)1 e N > computation
A [— e e ———— -] > with checki
PE, @, @,), 60 1[2),3), @),),) © WD, 6),6),__ xmpcu mcio:g
\ - = Oy only
L] . ™ —
PEI 1 i 1 1 \ \ ' , . . .

T T
PE,Z L1 1 \1 1 [S N B l

PE3 —_ 1 1 1 \ 1 1 1 1 |
T T T
PE4 JE— 1 1 1 1 \ 1 1 1 1 1]

Computation cycles

| Corresponding
Computation Task path
Cycles (CCCs)

Figure 2. Checking pattern as a function of computation cycle number.

The basic idea of PACED is to schedule the checking patterns with the same checking fre-
quency among PEs. Therefore, while some PEs are executing computation cycles with checking,
some are not. The Corresponding Computation Cycles (CCCs) are defined to be all those cycles
on different PEs which were originally executed at the same time in the array without CED. A
task is defined to consist of all the activities applied to each input data by the processor array to
obtain the corresponding output. The task path consists of all those cycles on different PEs at
which a certain task is processed as it travels across the array. Each set of checking patterns is
characterized by the following four parameters all in terms of computation cycles :

(1) M : length of one period;

(2) N :length of one checking burst;

(3) Oy : offset between checking patterns for adjacent PEs;

(4) Oy : initial offset (with respect to computation cycle 0) of the checking pattern for the first

PE. The numbering of the computation cycles is shown in Fig. 2.

While the checking pattern plot in terms of computation cycle as in Fig. 2 is used to illus-
trate the idea of PACED, it is more convenient to use the Task/PE diagram shown in Fig. 3 for
our analysis. In such a diagram, the checking patterns are adjusted so that each column
corresponds to a single task path. The offset between adjacent patterns, J, becomes Owm plus one.
The Task/PE diagram will be used to analyze problems related to computation cycle such as Er-
ror Detection Latency (EDL) analysis and diagnosis.

It can be shown that the choice of Oy does not affect the analysis. Moreover, we will con-
sider N and —Ila- as two of the parameters instead of M and N. Therefore, the three parameters in-

volved in the the optimization problem will be N, _lléf and Oy

J=0y +1
— e
01 2 3 45 6 7 8 91011 12 13 14 15 16 Task number
Y, Y /'//
Py T
e [| | || 77 1
w, [0. | || 7| ||| | 77
s | || | D% 77
PE, %% %%%
\
CCCs Task path

Figure 3. Task/PE diagram of the same array as in Fig. 2 with shaded squares
representing computation cycles with checking.

3. OPTIMIZATION OF SYSTEM PARAMETERS

3.1. Performance Analysis
It is intuitive that -II\S'I— is a measure of the checking frequency and, therefore, a measure of

time overhead. However, because of the imbalance introduced by PACED, the wait time
between the output of the upstream PE and the input of the downstream PE of each adjacent pair
constitutes another time overhead in addition to the checking time. The total execution time of a
certain task is then given as
Total execution time = computation time + checking time + wait time

Fig. 4(a) shows the task wﬁiting pattern with each arrow starting from the time the
upstream PE outputs the data and pointing to the time the downstream PE reads in the data. The
wait time after computation cycle j, Wait(j), in terms of number of clock cycles has the follow-

ing dependence on Oy as well as on N and M and is shown in Fig. 4(b).

Oy x k 0SjSN-Oy -1
wait = ¢ N=j=Dxk N-Oy SjsSN-1
0 N<SjSM-0Oy-1
Om-M+j+1)xk M-Opy SjSM-1

Therefore, fixing —;— does not necessarily fix the time overhead. However, the most impor-

tant performance measure for a processor array is the throughput instead of the total execution

time of each single task. As shown in Fig. 4(a), although the data has to wait for the downstream

Clock cycles
(a)
Wait time
A
OMka - p P peesessesssensery .
(Om-1)ka-
2ka -
ka 4
0 I I _
............ M_OM........... M‘l 0 1 2 ceseesecsecstecucrescnaconensaee N_OM....N_I N N+1....

computation cycle number

®)

Figure 4. (a) Task waiting pattern between adjacent PEs (b) wait time as a function of
computation cycle number.

PE to become free, the PEs are always kept busy. Therefore, the processor array will produce M

outputs for every (M+Nxk) clock cycles and the throughput can be calculated as

M 1
throughput = =
(M+Nxk)a a +i k)
M
which is independent of Oy. \

For N = 0, the PACED array reduces to the original array without CED which has the

highest throughput 1 but no error detection capability. For N =M, PACED reduces to continu-
a

ous checking which has the lowest throughput -(—1-_:—1(); but can detect errors without latency.

The problem of optimal scheduling for PACED is then formulated as: given a throughput re-

quirement —1——, how to choose Oy to minimize the error detection latency and maxim-

N
1+—xk
(M)a

ize the error coverage.

3.2. Potentially Infinite Error Detection Latency

There are two cases in which transient faults occurring at certain cycles will have infinite
error detection latency (EDL), which means that the errors will escape with 100% probability.
Case 1 : Improper choice of the values for M, N and Oy.

According to the task/PE diagram in Fig. 3, as a task travels through the array, it can be
viewed as advancing in the checking pattern with a speed of J computation cycles per PE where
J =0y + 1. If we can make sure that at least one cycle with checking, i.e., 0 Sj < N-1, is on the
path of each task, we can prevent the infinite EDL. from occurring under the assumption that er-
rors can not be masked during the propagation. (Error masking is considered in Section 3.5.) The

following Lemma 1 for proving Fermat’s Little Theorem [15] is used to prove Theorem 1.

10

LEMMA 1. The M numbers OmodM, Jmod M, 2Jmod M,.., (M=-1)J mod M con-
sist of precisely d copies of the M/d numbers 0, d, 2d, ... , (M/d - 1)d where d = gcd(M,]J)
(ged stands for greatest common divisor.)

LEMMA 2. With the same notation in Lemma 1, define the remainder set Ry =
{V+nd|0 < n < M/d-1} for 0 < V < d-1, then
(1) (+ixJ) mod M € R;modd for 0 <j < M-1 and all non-negative integer i.

(2) {(G+ix)) mod M |0 S i< M—1 } = Rjmod d» Where d = gcd(M, J). More precisely, (j + i x J)
mod M, 0 <i <M - 1 contain d copies of each of the elements in R; 1,04 4-

Proof. See Appendix.

THEOREM 1. Except for some faults occurring in the last (M-1) PEs of the array, all
transient faults have finite EDL (less than M) if and only if gcd(M,J) =d <N.

Proof. By the task/PE diagram in Fig 3, a task entering PEO at cycle j will be processed by
PEi at cycle (j +ixJ) mod M. By Lemma 2(1), (j +ixJ) mod M € Rjmoqq. If N <d, for any
j such that N < j < d, every integer in Rj moq 4 is greater than N - 1, hence for all non-negative in-
tegers i, (j +ixJ) mod M > N - 1, which means a task enters PE 0 at such cycle j will never be
checked, resulting in infinite EDL if it is affected by some transient fault.

Conversely, if d SN, (jmod d) <N - 1. By Lemma 2(2), we have { (j+ixJ)mod M|0<i
* £M- 1} =Rjmodd, Wwhich means that an erroneous task produced at any cycle j will be checked
at least once at cycle (j mod d) by the faulty PE itself or one of its (M-1) immediate downstream
PEs. Therefore, as long as the faulty PE is not one of the last (M-1) PEs of the array, the error
will be detected. [

Case 2 : Faults occurring near the end of the array.

11

As long as the CED is not applied continuously, EDL must exist. When a transient fault oc-
curs at some PE in a computation cycle with EDL larger than the number of the downstream PEs
from it, the error will escape. This phenomenon exists no matter how we schedule the checking
patterns (only the severity varies). One possible solution is to add a code checker with lower
complexity and higher reliability at the end of the array to perform continuous code checking in

order to intercept the escaping errors if desired.

3.3. Uniform Distribution of Checking Capability

When the checking frequency is set to %, it is just an average over all tasks and does not

necessarily guarantee that each task will be processed with checking % of the time along its

path. Since all tasks have equal significance, it is desirable to schedule the checking patterns
such that each task is treated as uniformly as possible. Theorem 2 gives the condition for this
purpose.

THEOREM 2. Except for the difference due to the fact that array length Q might not
be a multiple of M, the checking capability is uniformly distributed among all tasks if
ged(M,J) = d divides N.

Proof. If N = m d, where m is a positive integer, for every Ry, 0 <V <d - 1, the first m ele-
ments V+nd,0<n<m- 1, are less than N and others are not. By Lemma 2, (j +1i xJ) mod M,
0 <i<M - 1 contain d copies of each of the elements in R; n04 4, Which implies that a task enter-

ing PEg at any cycle j will be checked m x d times among M computation cycles. Therefore, all

tasks are fairly treated and checked with the same frequency med

N
=M a

12

3.4. Minimization of Maximum Error Detection Latency

The EDL(j) of both permanent and transient faults occurring at computation cycle j with
checking (0 < j < N-1) are defined to be zero in terms of number of computation cycles because
they are detected immediately. The EDL(j) of other non-checking cycles under the constraint
that 1 ST <N are given by Lemma 3 with superscript "C" indicating the error is detected as a
computation error and "I" stands for input error. We can prove the optimal solution under this
constraint actually achieves the optimality for general values of J. For the rest of this paper, we
will assume the duration of a transient fault is much less than the clock cycle time so that it can
only affect the result of one computation’.

LEMMA 3. For1€J<NandN<jsSM-l,

(1) under transient faults :

EDL(j) = [M—J’l] ; EDLC(j) =0,

(2) under permanent faults :
I = | M=i|. gpLCq :
EDL'(G) =] ; EDL*(G)=M-j.
Proof. (1) Because we can view a task traveling across the processor array as advancing on

the checking pattern with J cycles per step, we have the following formula for the EDL of a tran-

sient fault for general J:

EDLI(j) = (’M—J'J-] where r= mm{[a?il%‘l J |0 < (+xJ) mod M £ N-1, i > o}.

To our knowledge, there is no closed-form solution for this general problem. The constraint

1 £J<N will make sure that an error caused by a fault occurring at a non-checking cycle be

Most of the results will still be valid without this assumption except for more complicated error pattern analysis described

13

captured by the next checking burst (r = 1) of some downstream PE. Therefore,

EDLI(j) = {—Ni]:ll

Under the assumption about the length of the transient faults, a PE can not detect such faults oc-
curring at non-checking cycles, so the EDLC(j) is infinity.

(2) A permanent fault can be considered as consisting of a large number of transient faults
occurring at consecutive computation cycles. Using the above formula, we have, for permanent

fault,

L e] M=G+9)
v 53]

By manipulating the expression inside the bracket,

[_ML(}Eﬂ)_] +q= M_j"?_l)q‘l p [N;_‘\ forJ2 1;
hence
o= 1]

For a permanent fault starting at a non-checking cycle, the faulty PE will detect it as a computa-
tion error as soon as it enters next checking burst. Therefore, EDL()=M-j. O
LEMMA 4. For 1 €£J<N and N £ j < M-1, if we define EDL(j) to be the latency until

the first error indication (computation or input error), then for both permanent and tran-
sient faults : EDL(j) = [%’—l]

Proof. This follows immediately from Lemma 3, because [%_J-] < oo and [ﬁl_l] <M,

where equality holds for J =1 or M - j = 1. Hence,

14

] . 3

EDL(j) = mi EDLIG),EDLCG)} =EDLI(j) = [-M—'l

Next we give some definitions for proving the optimal scheduling.

DEFINITION 1. Given a sequence of n numbers S = (sy, 53, ... ,8y), II(S) is defined to
be a nondecreasing permutation of S, i.e., II(S) = (n,(8), %2(S), ... , %, (S)) is a permutation
of S where %, (S) S (S) S - S &, (S).

DEFINITION 2. Given two sequences of n numbers S and T, we define S<T if s;<t; for
1<isn.

LEMMA 5. Define E; = (ey5, €235 . » €M—Ny) = (EDLj(M~1), EDL;(M-2), ... , EDLj(N))
for 0<I<M-—1, then
(1) TI(E;)=E; for1<J<N
(2) Eyj2Ej,; for1<J<N-1
(3) TII(EyN) < II(Ey) for all integer J.

Proof. (1) By Lemma 4,

eu=EDL,m-i)={£:3@Li)]={ﬂ for 1SJ<Nand1Si<M-N;)

hence
eg<ey forlSisjsSM-N
[1(E;) = E;
(2) By Eq. (1) we also have ejj 2 €;¢541) for 1 <i < M-N; hence
Ej 2Ey,; for1 £J<N-1
(3) By (1) and (2), we have proved II(Eyx) < II(E;) for 1 £J < N. For general values of J, the
proof is by contradiction. Suppose there exists J such that II(Ey) <TI(Ej) is not true. This

means there exists i, 1 £i £ M—N such that x;(En)>w; (Ep) and

15

GEN-12mE)D2 - 2mE) 21 (2)

and % +1> [ﬁl by definition, we have é- +1>m;(EyN) and

Because m;(En) =¢€iN = ’-;T

—1—.>N.
(En>1
Hence, by Egs. (2) and (3), there must exist m, 1 < m < m;(Ex)-1 such that more than N ele-

3

ments of (7;(Ej), -+ +,m(Ej) } are equal to m. However, for a checking burst of length N, the
maximum number of non-checking cycles with the same EDL is N for any of the EDL values.
Therefore, we have reached a contradiction and II(Ey) < TI(Ej) forallJ. O

THEOREM 3. The maximum EDL, EDLT*, is minimized by setting J = N and the

M-N

minimum value is

Proof. By (3) of Lemma 5, EDL™ = nty N (Ey) 2 tp-N(En) = EDLRE™ for all integer J.

Hence J = N minimizes the maximum EDL and

M-N

N | O

N

M.j] _

3.5. Minimization of Error Escape Probability

The price paid by PACED to maintain the desired throughput is lower error coverage. The
longer the error detection latency, the larger the possibility that an error will be masked during
the propagation and escapes. Assume the probability that an error will be masked at any compu-
tation cycle is py. The error escape probability, P (j), for a transient fault occurring at compu-
tation cycle j is then given by Peee () = 1 = (1 — pr)E2'?, 0 < j < M-1.

THEOREM 4. The average error escape probability is minimized by setting J = N.

16

Proof. Assume a transient fault occurs at each cycle j, 0 <j <M~-1, with equal probability.

The average error escape probability is

LM)il[l p)™9) = % [1-1-p™®]

[1—(1 ~Pm)EDL"(’):] for all integer J.

Hence, setting J = N minimizes the average error escape probability. O

By Theorems 3 and 4, we conclude that for a given %, J should be set equal to the length

of the checking burst N, i.e., the pattern offset between adjacent PEs should be Oy =N - 1, in
order to minimize the maximum EDL and maximize the error coverage. This optimality is in-

dependent of the choice of N.

3.6. Summary of Optimization Results
Given a fixed checking frequency %, we choose M and N to be relatively prime in order

to minimize both M and N. Minimizing M allows Theorem 2 to more accurately state the condi-
tion for uniform distribution of checking capability. We will show in the next section that
minimizing N can minimize the hardware overhead for data buffering. Since J should be equal

to N for optimal error detection, we have gcd(M,J) = gcd(M,N) = 1 which satisfies both condi-

17

tions in Theorems 1 and 2. Therefore, the possibility of infinite error detection latency is elim-

inated and the checking capability is uniformly distributed among all tasks.

4. DESIGN CHANGES

4.1. Synchronous Buffering Design
By scheduling checking patterns among PEs, resource (PE) conflict may occur when a PE
is still checking old data but new data has been produced by its upstream PEs. It was shown in

Fig. 4(b) that the maximum wait time is equal to Oy xk clock cycles. Hence, it is adequate to in-

sert Opxk buffers between each adjacent PE pair, driven by the original clock®. Since Oy
should be equal to N-1 for optimal scheduling, the number of buffers will decrease as N de-
creases. Therefore, choosing M and N to be relatively prime also minimizes the hardware over-
head for data buffering.

However as also shown in Section 3.1, the wait time, which determines the number of
needed buffers, is not a constant but a function of computation cycle number. It becomes clear at
this point that some kind of dynamic buffering technique has to be used to make the pipeline
flow smoothly and correctly. We propose two such approaches, namely, data forwarding and
dynamic reconfiguration.

The data forwarding approach to buffering is described as follows. When a PE is ready to
output the processed data, the wait time logic shown in Fig. 5, which monitors the checking bit
sequence, has determined the wait time, Wait(j), of current cycle and connected the PE output to

the buffer which is Wait(j) stages away from the downstream PE. Once the data is placed into

Omxk
k+1

. However, more complicated

4t can be shown that the minimum number of required buffers is equal to

control circuits are needed to reuse the buffers.

18

- Wait time
! logic
recent
checking |
bits |
@ { o—-—l e»—l)
H Y Y
s i hd
PEI PE2

Figure 5. Buffering by data forwarding
the appropriate buffer, the synchronous buffering design will ensure the data arrives at the down-
stream PE at the correct clock cycle.

As an alternative, since the number of buffers needed varies with time, we can treat the ex-
tra buffers at each clock cycle as being "faulty" and use the Diogenes approach [16] to dynami-
cally reconfigure the "buffer arrays” by bypassing the "faulty" ones. A shifter clocked by the fal-
ling edge of the clock (assume the PEs are clocked by the rising edge) is used to set up the
proper configuration of the buffers for the next data movement. The basic rule is :

checking bit of PE,;
C Cq

Co

Q

|
—1.Q <"|1 —1°Q <—ll —-Q _ll
from PE, — == ' ’(j_r-gechecking bit of PE,
m — — —_—
L }%-;3{ I o [
l
PE, D Q RC Q"’I 5 Q

il e

Figure 6. Dynamic reconfiguration circuit for buffering using Diogenes approach

——to PE;

PE;

CLOCK

19

(1) Include one more buffer if the downstream PE is in a computation cycle with checking
while the upstream one is not;

(2) Bypass one more buffer if the upstream PE is in a computation cycle with checking while
the downstream one is not;

(3) Maintain the current configuration (by disabling the clock input of the shifter) if the two
PEs are both checking or non-checking.
Because of the regular pattern of wait time variation (Fig. 4(b)), the reconfiguration circuit

is very simple, as shown in Fig. 6. An example showing the correct buffering at each clock cycle

by using the reconfiguration approach is given in Fig. 7.

4.2. Diagnosis

Because permanent and transient faults occurring at different computation cycles will result
in different combinations of computation and input error indications after various length of la-
tency, it is important for diagnosis to analyze all possible error patterns and classify the faults
into several categories according to their resultant error patterns.

Since the error escape probability is related to EDL in terms of computation cycles, and in
order to make the diagnosis procedure independent of the checking overhead k, we will use the
task/PE diagram (Fig. 3) and the error indications from CCCs for error pattern analysis. How-
ever, for a PACED array, the CCCs do not happen at the same clock cycle. It would be unac-
ceptable if we have to wait for all the CCCs to finish before the analysis because that will delay
the diagnosis and rollback by a considerable number of clock cycles. The following proof gives
the upper bound for the number of error indications by any set of CCCs for 2 < J < N. (The case
when J = 1 will result in peculiar error patterns which can not share the same diagnosis and roll-

back procedures with other choices of J. Since J = 1 also results in large EDL, it will be excluded

i+1

i+2

i+3

i+4

i+5

20

T T 1 1 1 ¥
1 2 3|4 4 5 5 6 6 7
PE1 L il | |
') \\ e \ v
PED | 112 2 3 3|4.56, .
1 1 i 1 1] 1 { 1 L | L 1]
i-2 i i+2 i+4 i+6 i+8 i+10
(4] C1 C2 Co C1
PEl1 1 1 1 PE2 PE1 0 0 PE2
|] | 11]
1 i+6 | 3 4 3
1 1 0 0 0
] L L1 L1 |
2 1 w7 | 6 5 3
1 0 0 0 0
| 1 | | 11 L1]
3 2 1 g | 6 5 4
0 0 0 0 0
{ L1]] 11 1
4 3 2 1 wo | 7 6 5
0 0 0 0 1
I 1 [11] 1]
4 3 2 i+10 7 6
0 0 0 1 1
| | L1]]]
5 4 3 2 11| 8 7

Figure 7. Example of dynamic reconfiguration for buffering. The parameters are N = 4,
Opm =3 and k = 1. When C; is 1, the corresponding "faulty" buffer is bypassed.

21

from future discussion.)

THEOREM 5. For 2 < J < N, at most two PEs will have the earliest error indications
among all the CCCs for a single fault, and they must be adjacent.

Proof. Since a transient fault can only create one erroneous task, only one PE will detect it.
For a permanent fault occurring at cycle j, N < j <M, the faulty PE itself will detect a computa-

tion error after M—j cycles and the erroneous task produced at cycle j + q, 0 <q <M—j will be

detected [M—j]m)—]ﬂ cycles after the fault occurrence as an input error by [M:%Ml] th

downstream PE from the faulty PE. For J 22 and q 2 2, we have

Mo, Lol= M|y
I 2 J

Mg]+q) { M—j+§J—1)q} N

which is larger than the EDL() = MJ:J-] Hence, the only erroneous tasks which will possibly

be detected as the earliest input error indications are the ones produced at cycle j and j+1.
If M—j = 1, the two earliest error indications with EDL(M-1) = 1 are the computation error

detected by the faulty PE and the input error detected by the immediate downstream PE. If

M—j 22, M-j) > {&;l] for J 2 2, the two possible earliest error indications are both input er-

rors detected by two adjacent PEs executing at CCCs (l‘ Mj_i] - {M?+l) l =0or 1 for J22).

a

Therefore, in order to design a diagnosis procedure, we will always keep the pipeline flow-
ing until the immediate downstream PE finishes the CCC once the first error indication is raised
by some PE (called the derective PE). The number of clock cycles that the detective PE has to

wait is equal to the wait time of the current cycle because when the downstream PE is ready to

22

process the data corresponding to the task resulting in the first error indication, it must have
finished processing the previous task at the CCC and setup the error flags.

The next step is to classify all the faults according to their resultant error patterns. The no-
tation is defined as: Class a.b where a = 1 means transient, a = 2 means permanent and b is the
further classification within each category. The corresponding error patterns are shown in Fig. 8.
"P" stands for permanent fault, "T" for transient fault and "F" can be either "P" or "T". "I" indi-
cates an input error and "C" represents a computation error.

(1) Class 1.1 and 2.1: For both permanent and transient faults, Fig. 8(a) represents the case

where a computation error indication occurs at computation cycle j, 1 <j < N-1. The fault

VA’ va P 4 /A
Gt A
| % %%,
(@) @
Y, P [P %,
(b) (e
T 7 PP [P %
WZ% | A7
%% 187
% %
©) ®

Figure 8. Error pattern analysis. (The thick line passes through all CCCs which are
related to the detection of the present fault.)

()

3)

4

&)

23

must have just occurred at the detective PE; otherwise, it should have been detected at ear-
lier cycle with checking. In order to distinguish between permanent and transient faults, the
faulty PE is given a second chance to do the recomputation. If the recomputation still sets
an error flag, the fault is permanent under the assumption that a transient fault never affects
more than one computation; otherwise, it is transient.

A more complicated situation occurs when the computation error flag is raised at cycle 0
because it is possible that the fault is a permanent one which occurred during previous
non-checking cycles. However, the proof of Lemma 4 shows that the input error will be
detected no later than the computation error for such faults and the two kinds of error will
be in the CCCs if and only if such faults occurred at cycle M-1. Therefore, if there is no in-
put error indication in the immediate downstream PE, as in Fig. 8(b), the fault must have
just occurred and the faulty PE is given a second chance.

Class 1.2: A transient fault occurring at cycle j with N < j £ M~-1 will be detected as an in-
put error by the downstream PE which is EDL(j) stages away from the error source PE (Fig.
8(c)).

Class 2.2: A computation error detected at cycle 0 and an input error detected by the im-
mediate downstream PE at CCC indicates the fault is permanent and occurred at cycle (M-
1) in the upstream PE (Fig. 8(d)).

Class 2.3: A permanent fault at cycle j with EDL(j) = EDL(j+1), N<j<M-2 will be
detected by a single downstream PE as an input error (Fig. 8(e)).

Class 2.4: A permanent fault at cycle j with EDL(j) = EDL(j+1) + 1, N £j < M-2 will be

detected by two downstream PEs as input errors (Fig. 8(f)).

24

Among the classes of faults defined in the previous paragraph, Class 1.1, 2.1 and 2.2 are
successfully identified by the error pattern analysis and Class 1.2, 2.3 and 2.4 need further diag-
nosis. The basic idea is to design a recovery cache for each PE for storing recent input data.
When an input error is detected by some PE, each upstream PE suspected of producing the error
reads from its recovery cache the input corresponding to the erroneous task and uses it as test in-
put to perform recomputation with checking. The computation and input error flags resulting
from these recomputations are used as syndromes and will uniquely identify the faulty PE and
cycle under the assumption of a single fault. Therefore, the diagnosis takes only one computation
cycle with checking. Again, for the regularity and simplicity of the diagnosis, the following rules
are adopted:

(1) Although it is possible to calculate the exact number of suspects which is less than or equal
to the maximum EDL, for each input error detected we will always use maximum EDL as
the number of suspects. Because the diagnosis procedure for each PE is done in parallel,
this does not increase the time overhead and allows regular hardware connection.

(2) For the faults in Class 2.4, we will ignore the first input error and only use the second error
indication for further diagnosis because the second one corresponds to the erroneous task
produced earlier.

The success of the above simple diagnosis procedure depends on the capability of each PE
to retrieve the correct data from the recovery cache. Because the CCCs are skewed in a PACED
array, it is very difficult to determine in which location of the cache the required data resides.
The design of the direct-mapped recovery cache is aimed at simplifying the searching procedure.
Similar to the direct-mapped cache design in the memory hierarchy for general-purpose comput-
ers, where each position of the cache can only hold data from certain addresses with identical

least significant bits, each position i of our direct-mapped recovery cache can only hold data for

25

those tasks with id number # such that n mod (cache size) = i. Consequently, as long as we have
a recovery cache of sufficient size, i.e. larger than the maximum EDL, so that each data will not
have been overwritten by the data from later tasks when it is needed for diagnosis, every
suspected PE only has to read the test input from the same position as that in the detective PE
and the hardware connection is simplified.

Start-up control is a mechanism to setup the cache correctly once and for all when the pipe-
line starts flowing, so that whenever new data has to be placed into the cache, it is put into the
next position or, when reaching the end, the first position. Fig. 9 shows how the start-up control
works. The start-up delay for each PE is computed by accumulating the wait times. Each PE can
only start reading in the data after the start-up delay. Therefore, the first data each PE places in
the recovery cache will be for task 0 and later data can simply follow on top. The start-up control

is also utilized for rollback which is discussed next.

PE, 0123 3 4 4|5 6 7
—» e—

SD1. ol 1 1 2 2|3 4 5 6
—»{ SD2 |=—

PE 0 0/1 2 3 4 5
je— SD3 —»|

PE4_ 0 1 2 3| 4

p— Sp4 —=

Clock cycles

Figure 9. Start-up control (SD: start-up delay)

26

4.3. Rollback

Once the faulty PE and faulty cycle are identified, if the fault is permanent, a spare PE is

brought in to replace the faulty one, and then rollback recovery starts after the reconfiguration; if

the fault is transient, rollback directly follows diagnosis, or actually, overlaps with it because the

recomputation in diagnosis can be used as the first step in rollback.

The rollback procedure can be divided into two steps: flushing and local recovery. Similar

to the simplification in diagnosis, since the rollback is done in parallel for each PE, we will use

the same procedure for the recovery of both permanent and transient faults even if the latter

results in fewer number of erroneous data.

ey

2

Flushing: First, we define the erroneous block to consist of all the following data : (1) data
inside the PEs and buffers between error source PE and detective PE; (2) data inside the
recovery cache between these two PEs, from the position containing the data corresponding
to the erroneous task up to the most recent position. The region enclosed by dash lines in
Fig. 10(a) shows the erroneous block for the case where a transient fault occurred in PE1
when task number 7 was being processed and is detected by PE4 as an input error. The first

step of rollback is to flush all the data in the erroneous block as shown in Fig. 10.(b).

Local recovery: Since the fault only affects the PEs between the error source PE and the
detective PE inclusive (called the local recovery set), the portion of the pipeline containing
all the other PEs are frozen during the rollback. The local recovery line is defined to consist
of all the PEs in the local recovery set with the erroneous task number. The local recovery
scheme is to apply the start-up control to the local recovery line by viewing the local
recovery set as a short pipeline, the erroneous task as the first task and the data in the
recovery cache of the error source PE, which is correct and thus not flushed, as the input

data. The erroneous block is rebuilt as shown in Fig. 10(c)-(h) after which all PEs proceed

27

PE, 7 8 8|9 10111213 7 7 8 8| 10111213 77 8 § 910111213
PE, 6 6|‘;i"s' 910 11]12'. 6
5

56 8 . 566789101
PE, 4|5 67 8 9[1010: 4 4| '!7 ' 245678910

2| 3 |

12 !

6

PE; 2|3456:78809,; 456 7134567838
PE, |1 23 45/6671& 34566 _ 12345667
PEs 012 3[44535]6 0123445356 012344556

(a) clock cycle i (d) clock cycle i+3 (g) clock cycle i+6

PEO 7788|910111213 7 8'910111213 7788]910111213

PE, 566 5 E""9""| ' 566{.789101112.

PE, 4 4[5 6 44567891010'

445678 |
PE; 2|3 4 5 6 2 6 7 2134567889
PE, |12345/66__ 1 56 6___ 1123456671
PEc 012344556 012344556 0123445356

(b) clock cycle i+1 (e) clock cycle i+4 (h) clock cycle i+7

PE; 7 7 8 8|9 10111213 7 8910111213 7 7 8 § 91011121314
- - F!_1 - ==
PE; 5 6 67 [780910 | » 5667891011212

7

6
PE, 4 45 6 445678 9101011
PE, [1 234566 __ |1 234566__1 12345667 78
Pssm 012344536 012944353567

(c) clock cycle i+2 (f) clock cycle i+5 (i) clock cycle i+8

:

Lt

Eil

JW

Figure 10. Local recovery procedure (a) fault occurrence and error detection; (b) data
flushing; (c)-(h) local recovery using start-up control; (i) resumption of normal
processing.

as before (Fig. 10(i)).

4.4. Summary of Design Changes
A PACED array equipped with the proposed design changes was shown in Fig. 1. Error
checking circuits are built into each PE for time-redundant computation checking and input code

checking. A code checker is added at the end of the array as discussed in Section 3.2. With op-

28

timal scheduling of checking patterns and 100% overhead time-redundant checking (k=1), N-1

buffers are inserted between each adjacent PE pair and a recovery cache of size ZX[M;N] is at-

tached to each PE for storing incoming data from the top and the left. The control logic is
responsible for correct data buffering, start-up control, error diagnosis and local recovery. The
techniques described in this paper have been simulated on an Alliant multiprocessors with eight

processors to show their correct operations.

5. CONCLUSIONS

It was shown that, for a PACED array with the period of checking pattern equal to M com-

putation cycles, the length of checking burst equal to N computation cycles and fixed throughput
(determined by the checking frequency %—), the optimal scheduling in terms of minimizing the

maximum error detection latency and error escape probability is achieved by setting the check-
ing pattern offset Oy to N - 1. Also, by choosing M and N to be relatively prime, the hardware
overhead for data buffering is minimized and the checking capability is uniformly distributed
among the tasks.

Dynamic buffering techniques to preserve the systolic nature and the implementation for
rollback recovery under faults were presented. It was shown that the complexity in the diagnosis
and recovery process, resulting from the error latency as a trade-off for performance, can be re-
duced through the use of direct-mapped recovery cache and start-up control. The design flexibil-

ity can be further improved by using a programmable control unit.

29

APPENDIX
Proof of Lemma 2.

(G+ixJ)ymod M= (j+ (i xJ) mod M) mod M
= (j + (i mod M x J) mod M) mod M

e{(j +nd)mod M|0<n SM/d—l} by Lemma 1.

Also, {(j+ixJ) mod M|0<i<M-1 } = {(j+nd) mod M |0sn<M/d~1 }, and (j+ixJ) mod M,
0 S i < M-1 contain d copies of each element in the set on the right hand side.

ForO<snsM/d- |jd] -1,

=0 <j+nd<M+jmodd-d<M

=(j+nd)mod M=j+nd=jmodd+ (n+ |j/d))d=jmodd +md , [Jd] <m <M/d-1.
ForM/d- |j/d] Sn<M/d -1,

=>M+jmodd<j+ndSM+j—d<2M
=({+nd)mod M=j+nd—M=jmodd+ (n+ |j/d]-M/d)d=j modd+md, 0 <m< [j/d] - 1.

Therefore,
{(j+nd) mod M|0<n SM/d—1}={(i modd +md)|0<m< M/d-l}

Finally, we have (j +ix J) modM € Rjmoq ¢ and {(j+>)J) mod M|0SisM-1 } =Rjmogd. O

REFERENCES

[1] 'W. Moore, A. McCabe and R. Urquhart, (eds.) Systolic Arrays, Adam Hilger, 1987.

[2] J. A. Abraham, P. Banerjee, C.-Y. Chen, W. K. Fuchs, S. Y. Kuo, A.L. N. Reddy, "Fault
tolerance techniques for systolic arrays,” IEEE Computer, vol. 20, no. 7, July 1987, pp. 65-
75.

30

[3] P.P. Chen, A. N. Mourad and W. K. Fuchs, "Confidence in processor array outputs under
periodic application of concurrent error detection,” IEEE Workshop on Defect and Fault
Tolerance in VLSI Systems, Nov. 1990.

[4] W.T. Cheng and J. H. Patel, "Concurrent error detection in iterative logic arrays", Proc.
14th IEEE International Conference on Fault-Tolerant Computing, 1984, pp. 286-291.

[5] D. A. Reynolds and G. Metze, "Fault detection capabilities of alternating logic", IEEE
Trans. Computers, Vol. C-27, No. 12, pp. 1093-1098, Dec. 1978.

(6] J-C Fabre, Y. Deswarte, J-C Laprie and D. Powell, "Saturation: reduced idleness for im-
proved fault-tolerance", Proc. 18th IEEE Fault Tol. Comp. Symp., 1988, pp. 200-205.

[7] G.S. Sohi, M. Franklin and K. K. Saluja, "A study of time-redundant fault tolerance tech-
niques for high-performance pipelined computers”, Proc. 19th IEEE Fault Tol. Comp.
Symp., 1989, pp. 436-443.

[8] M. A. Schuette and J. P. Shen, "Exploiting instruction-level resource parallelism for tran-
sparent control-flow monitoring”, Research Report No. CMUCAD-90-42, Dec. 1990,
Camnegie-Mellon University.

[9]1 Y. H. Choi, S. H. Han and M. Malek, "Fault diagnosis of reconfigurable systolic arrays",
Proc. IEEE International Conference on Computer Design, Port Chester, NY, Oct. 1984,
pp. 451-455.

[10] Y. H. Choi and M. Malek, "A fault-tolerant systolic sorter", I[EEE Trans. on Computers,
Vol. 37, No. 5, May 1988, pp. 621-624.

{11] S. W. Chan and C. L. Wey, "The design of concurrent error diagnosable systolic arrays for
band matrix multiplications", IEEE Trans. on Computer-Aided Design, Vol. 7, No. 1, Jan.
1988, pp. 21-37.

[12] R. J. Cosentino, "Concurrent error correction in systolic architectures”, IEEE Trans. on
Computer-Aided Design, Vol. 7, No. 1, Jan. 1988, pp. 117-125.

[13] H. T. Kung and M. S. Lam, "Wafer-scale integration and two-level pipelined implementa-
tions of systolic arrays”, J. of Parallel and Distributed Computing, Vol. 1, 1984, pp. 32-63.

[14] S. Y. Kung, VLSI Array Processors, Prentice Hall, Englewood Cliffs, 1988.

[15] R. L. Graham, D. E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley Pub-
lishing, New York, 1989.

[16] A. L. Rosenberg, "The Diogenes approach to testable fault-tolerant arrays of processors".,
IEEE Trans. on Computers, Vol. C-32, No. 10, Oct. 1983, pp. 902-910.

31

[17] E. S. Manolakos, "Transient fault recovery techniques for the VLSI processor arrays”,
Ph.D. Dissertation, University of Southern California, May 1989.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASS1FIED

uriTyY CLASSIFI ION OF THIS PA

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-92-2214 CRHC-92-08

5. MONITORING QRGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
National Aeronautics Space Administration
IL Comput. Lab, Aerospace Sys

6¢c. ADDRESS (Gity, State, and ZIP Code)

1101 W. Springfield Avenue
Urbana, IL 61801

76 AODRESS Sy, T $tarhC and ZWiCoe) LLOSTams
Langley VA

Chicago, IL
Washington, DC

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION 7a

8b. OFFICE SYMBOL
(If applicabie)

9. PROC#K%AAE%TA&MSIE%'{SNT IDENTIFICATION NUMBER
N00014-90-J-1270

8c. ADDRESS (City, State, and ZIP Code)

7b

10. SOURCE OF FUNDING NUMBERS

—

TASK
NO.

WORK UNIT

PROGRAM PROJECT
NO. ACCESSION NO.

ELEMENT NO.

—

11. TITLE (Include Security Classification)

Design and Scheduling for Periodic Concurrent Error Detection and Recovery in Processor Arrays

12. PERSONAL AUTHOR(S)

WANG, Yi-Min, Pi-Yu Chun§, W. Kent Fuchs

—

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Ye , Month, Da 15. PAGE COUNT
[y Sy 2o " 32

scheduling,

performance degradation
diagnosis, error pattern analysis

Technical FROM T0 —_—
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if Recessary and identify by block number)

FIELD GROUP SUB-GROUP error detection latency

'9. ABSTRACT (Continue on reverse if necessary and identify by block number)

Periodic application of time-redundant error checking provides

the trade-off between error detection latency and performance degradation. The goal is to
achieve high error coverage while satisfying performance requirements. In this paper, we derive
the optimal scheduling of checking patterns in order to uniformly distribute the available check-
ing capability and maximize the error coverage. Synchronous buffering designs using data for-
warding and dynamic reconfiguration are described. Efficient single-cycle diagnosis is imple-
mented by error pattern analysis and direct-mapped recovery cache. A rollback recovery
scheme using start-up control for local recovery is also presented.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

E]uncmssmso/uuumrso O saMe As RpT. CJ OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

223 NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL

DO FORM 1473, 8a MaR

8] APR editton may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

1™I/Y A CcCTTNY MMy

