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Abstract

A method has been developed for solving two-body relativisti bhound state equations
in momentum space with a confining interaction. A total of six different three dimensional
reductions of the Bethe-Salpeter equation are studied with particular emphasis placed on
the competing roles of relativistic kinematics and retardation. The resulls indicate that

these two effects counteract each other and this sheds some light on why non-relativistic

models of meson spectroscopy have been quite successful.




Many theoretical studies of meson apectroscopy'2 have been performed in a non-
relativintic framework with a confining plun Conlomb-like potential. The confining term
prevents the quarka from escaping to Inrge distances and the Coulomb term simulates
the short range behavior of the one glaon cachange force. Motivated by the studies of

Intlice gange theories®

., most work in thin area nses a linearly rising potential to provide
confinement. Relativity hias also been introduced into the problem by different anthors
with various prescriptiona'®. Although the best way to do meson physics in the two-hody
framework would be to solve the Bethe Salpeter(BS)* equation, it is more practical and
economical to solve a three-dimensional reduction of it. However it is well known that
there exisl, in principle, infinitely many possible three-dimensional reductions of the BS
equation’ and generally speaking there is no reason to prefer one reduction to another,
although in some apecial cases the physical problem itaelfl suggeats the use of a particular
reduction scheme. For example, in the case of a aystem of one heavy quark and one light
quark one migirt prefer the Gross «quation® since tie heavy quark can be put on mass-shell
with some justification. Therefore for the general ¢ problem it would seem useful to carry
out a systematic study of the various reductions of the BS equation. We have developed
a method for solving bound state equations in momentum space with the singular kernel
that arires from the linear confining potential® and in this letter we generalize the nonrel-
ativistic linear potential to the relativistic case, and compare solutions for the acalar and
apinor g system ohtained using s 1 pte sentative thiee dimensional reductions of the BS
equation.

The nontelativistic linear confining potential can be written as
V(r) = lim kre”™ " (n
n—e
In momentum space this hecomex

2
V(q) - tim g ! (2)
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The relntiviatic generalization of this potential has been obtained by replacing 3.vector

2

q=p pbyd-vector g, so that ¢7 — q* g2, This would appear to be the most natural

generalization of the non-relativistic linear potential, and indeed yields the non-relativistic

2

potential exactly when retardation eflects are neglected. One can see that the momentum
space potential has a singularity in the limit of g -+ 0. One way of avoiding this singularity
prohlem ® i to carry out the calculation for a small finite value of eta. However thix does
not produce true confinement. We have previoualy studied how to exiract the eractnp + 0
limit for the nonrelativistic cane®. We have also generalized this limiting procedure to the
relativistic case. Complete mathematical details of this procedure will he communicated
elsewhere. In this letter we descrihe the main idens concentrating rather on a dincussion
of the results and the effecta of retardation and relativistic kinematics.

In the following we study these effects in two model systems, one contnining scalar
particles and the other containing spinors. For scalar “ quarks " we consider the Min-
imal Relativity(MR) equation,the Blankenbecler-Sugar(BBS) equation'® and the Kady-
shevaky equation'' with and without retardation (K and K0). For spinor quarks the
Gross equation®(G) {with retardation) and the Thompson (T) equation'? (without retar.
dation) are studied. These equations are the same set that were considered in the work of
Woloshyn and Jackson” where the scattering of acalar particles was studied.

ANl six equations can he written in the generic form in C.M. frame as

P~ [ Vi et aw e
where the operators D; are listed in Table 1.

The singularity that arises from the non-relativistic confining potential in momentum
space has been handled by a subtraction procedure ® similar in spirit, but very different in
detail, to that developed for the Coulomb potential'®. For the relativistic generalization
of the linear potentinl considered herein, the singularity structure of the relativistic kernel
remains the same as the non-relativistic case. Thus we obtain the extremely useful result
that the relativistic singularily can be handled by subtracting a term propotional to the
nonrelativistic kernel. The n + 0 limit is taken in the same way as the non relativistic

case?, o that we obtain in the case of [ — 0 and for equal mass particles:

D.delp) - "':,P /. " 1Qa5160(p) (f,')’o;(m..(mldﬁ Q)
Here § and y are defined as
g B B (5)
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P denotes the principal value integral, Qs and Q} are the Legendre function of the second
kind and its first derivalive respectively and E, = /m? + pt.

(6)

Using the relativistic generalization of the method developed in reference 9, these
equations are solved for the total energy W for the s-wave and particles of equal mass m.
Only coupling to the positive energy channels is retained. The usefulness of these rela-
tivistic equations depends on the extent to which they reproduce global properties of the
spectrum characterized by the dependence of the energy E. on the principal quantum
number n. This dependence is most easily revealed by studying the ratio E./E,. E, is
related to the total energy W, through E, = W, — 2m. Table (2) contains the results for
the ratio E,,/E, for the equations listed above for a reasonable choice of mass and coupling
parameters.

Consider first the equations which have no retardation effect, (BBS, K0, T). One sees
that in all three cases the energy ratios are significantly smaller than the non-relativistic
result (which is independent of mass) and furthermore that this difference is more impor-
tant for small quark masses which is as one would expect for a purely kinematic effect.
In addition, the higher radial excitations show more pronounced relativistic corrections,
which is consistent with the virial theorem ? for a positive power law potential which
requires larger kinetic encrgies for orbits with greater average radii.

A result of considerable interest is that when retardation is included, as in equations
(MR, K, G), the effect of relativistic kinematice described above is counteracted, in that
the energy ratioa move back towards the non-relativistic values rather than continuing to
become smaller. This provides one possible explanation as to why non-relativistic equations
have been quite successful in describing meson spectroscopy. Notice that the differences
between MR and BBS, K and KO equations is retardation. By comparing the differences
between MR column and BBS columin to the differences between K and K0 coulmn in
table 2 we notice that the effect of retardation is more pronounced in the Kadyshevshky

equation than in the Minimal Relativity equation.

In conclusion we have solved the two-body relativistic bound state problem for a
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relativistic confining interaction which is a generalization of the non-relativistic linear
potential. We have considered six different 3-dimensional relativistic equstions, four for
scalars particles and two for spinor quarks. In all cases we have studied, we have found
that the effects of relativistic kinematics and retardation counteract each other. Future
work will be devoted to including spinors and coupling Lo the negative energy channels in

all six equations so that detailed compatrisons to experiment can be carried out.
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i Name Dy Retardation

MR Minimal AE(E,’ - W?/4)  Yes
Relativity

BBS Blankenbecler same as MR No
Sugar

K Kadyshevsky 2E,(E, - W/2) Yes

Ko Kadyshevsky same as K No

G Gross 2E, - W Yes

T . Thompson same as G No




for the six relativistic equations discussed in the text

G and T equations are for spinor quarks with k = 0.2GeV?

Table 2

Energy ratios —‘i}“

The other four relativistic equations are for scalar quarks with k = 0.2GeV*

MR

1.73
2.31
2.81

1.58
2.00
2.35

1.51
1.87
2.18

The nonrelativistic(NR) equation is with k = 0.2GeV?

BBS

1.71
2.27
2.75

1.50
1.82
2.08

1.41
1.85
1.84

1.74
2.35
2.88

1.68
221
2.65

1.66
2.13
2.52

Ko

1.72
2.30
2.80

1.54
1.89
2.16

1.44
1.69
1.89

179
2.47
3.09

1.90
2.713
3.52

1.98
291
383

1.72
2.30
2.80

1.67
218
2.62

1.63
2.11
2.51

NR

1.75
2.36
2.90

LT3
2.36
2.90

1.75
2.36
2.90

(GeV)

1.5
1.5
1.5

0.5
0.5
0.5

03
0.3
0.3
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