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Preface

This report contains the 1989 annual progress reports of the Research Fellows
of the Center for Turbulence Research. It is intended primarily as a year-end
report to the National Aeronautics and Space Administration, Ames Research
Center which supports CTR through core funding and by making available its
physical and intellectual resources.

The Center for Turbulence Research is devoted to the fundamental study of
turbulent flows; its objectives are to stimulate advances in the physical under-
standing of turbulence, in turbulence modeling and simulation, and in turbulence
control. Last year was CTR’s third year in operation. CTR now has about fif-
teen Postdoctoral Fellows, and supports five doctoral students and several short
term visitors annually. Several other doctoral students who are supported by
grants from the Air Force Office of Scientific Research, the Office of Naval Re-
search, and the National Science Foundation also conduct their research at the
CTR. The CTR staff study a wide range of turbulence problems in collaboration
with NASA-Ames scientists and Stanford faculty members. The CTR roster for
1989 is provided in the Appendix. Also listed are the members of the Advi-
sory Committee which meets annually to review the Center’s program, and the
Steering Committee which acts on Fellowship applications.

This year, publication of the CTR Manuscript series was initiated. These are

"manuscripts prepared for submission to journals that are made available for early
dissemination of completed research results by the CTR staff. The reports ap-
pearing in the following pages are a brief account of the accomplishments of the
CTR Fellows in 1989. They are grouped in the general areas of modeling, exper-
imental research, theory, simulation and numerical methods, and compressible
and reacting flows.

Special thanks are due to Debra Spinks, the Center’s Administrative Assistant,
for her skillful compilation and organization of this report.

Parviz Moin
William C. Reynolds
John Kim
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Modeling of compressible turbulence
By O. Zeman

1. Objectives

The work is directed toward understanding and modeling compressibility ef-
fects in turbulent flows. The primary objective is to investigate how compress-
ibility influences the basic turbulence processes such as turbulence production
and dissipation, length scale modification, spectral energy transfer, etc. The sec-
ond objective is to develop parameterization schemes and models to incorporate
compressibility into one-point closure models and into the subgrid scale models
for LES techniques.

The ultimate purpose of this research is to develop compressible turbulence
models which are capable of handling the hypersonic regime. Specifically, the
emphasis will be on the model capability of predicting a) heat and momentum
transfer in hypersonic boundary layers, and b) mixing and growth of high Mach
number shear layers, jets and wakes.

2. Accomplishments

The work described in the following section (2.1) is an abbreviated version of
the paper Zeman (1989). Section 2.2 is a part of a paper in preparation.

2.1. Dilatation dissipation: the theory and applications in modeling compressible
turbulent flows

2.1.1. Abstract

The concept of dilatation dissipation ¢4 is predicated on the existence of shock-
like structures embedded within energetic turbulent eddies. On this assumption
a parametric expression for g is found ¢; = (¢3/L) F(M,, K) containing calcula-
ble parameters of a turbulent field: Favre-averaged turbulence energy ¢* = u;4; ,
length scale L, and r.m.s. (turbulent) Mach number M;. The function F(M,, K)
is a measure of the probability of ¢4 with respect to the solenoidal dissipation
(¢3/L), and involves integration over the p.d.f. of fluctuating velocity. K is the
kurtosis, or intermittency factor, of the fluctuating field. The dilatation dissi-
pation is incorporated in a second-order closure model for compressible mixing
layers and the model predictions of mean and turbulence quantities are com-
pared with experiments. The model is capable of predicting the reduction of
layer growth rates as a function of the convective Mach number M, in exper-
iments. The Mach number effect on the turbulence structure is demonstrated
by comparing the computed centerline turbulence intensities with the measure-
ments of Samimy and Elliott (1989) and Samimy et al. (1989) for M, between
0.51 and 0.86.
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FIGURE 1. (a) Sketch of shock-like structure in a turbulent eddy; (b) normal
shock relations.

2.1.2 Theoretical model for dilatation dissipation

The compressible, homogenous, turbulence field can be described in terms of
solenoidal and dilatational components of velocity, i.e., u; = u,; + uq4:, where
u, and uq satisfy the constraints V-u, = 0, and V x uy = 0. Then, in high
Reynolds number approximation, the Favre-averaged second-order equations for
(decaying) homogeneous turbulence can be written as (Zeman, 1989)

Bq

1/275 = —v@RwE — 4/3v8% + p~'pé (1)
3T dq?

oy = 125, (2)

p=PRT | (3

The viscous term vwgwy (labeled ¢, for future reference) is the traditional
solenoidal dissipation due to the energy cascade to small scales and depends
only on u,; the second viscous term in (1) is proportional to the square of
fluctuating divergence 8 = u; ;, and we shall call it the dilatation dissipation €.
In the energy equation (2), T is the Favre-averaged (mean) temperature and the
sum of (1) and (2) yields the enthalpy conservation law ¢,T + 30 = T, =
const. By dimensional analysis, it is then expected that the decay of compress1ble
turbulence be described by

8¢ ¢

T - (M)
where f is a function of the turbulent Mach number M, = ¢/a based on the sonic
velocity @ = +/YRT, and L is a turbulence length scale so that the solenoidal
dissipation €, o< ¢* /L.
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In direct numerical simulation of compressible 2D turbulence, Passot and Pou-
quet (1987) found that for sufficiently large initial density fluctuation levels p'/p
and turbulent Mach number M, > 1 the computed field of initially solenoidal
turbulence evolved into a shock-like structure as sketched in Figure 1. Thin
regions of steep density gradients (shock-like structures) are embedded in large
scale vortices (of length scale L). The shock-like structure may be considered
quasi-stationary with the instantaneous dissipation rate ¥6? = v(Au/A)? where
Awu is a normal velocity difference across the steep density interface which has a
thickness A. This thickness is determined by the Reynolds number relationship
AAu/v = O(1) and velocities upstream and downstream of the normal shock
are related by the Prandtl-Meyer relation:

UjUy = a*z = ‘)’RT‘ =. uf(l — Au/ul ) (4)

where a* is the sonic velocity at the “sonic” temperature T* = 2T/(vy + 1),
(with respect to the turbulence frame of reference moving with the local mean
flow velocity). The volume fraction occupied by the shocklet structure is A\/L
regardless of the flow dimension, thus an instantaneous dilatation dissipation

rate (per unit mass) is
,ax® m?—1 3
€g X —— (5)

where m; = u;/a® is the instantaneous Mach number on the low pressure side of
the shock which must be larger than one. We note that the expression (5) does
not contain viscosity explicitly and resembles a parametric expression for the
solenoidal dissipation at low speeds (except that (5) is applicable only when m,
is supersonic). Since the model assumes isotropic orientation of the shocklets, u,
must be proportional to the instantaneous total turbulent velocity u(t) = NI
In order to obtain an average value ¢4, (5) has to be ensemble-averaged with the
aid of probability density function for m;,.

There exists experimental evidence that in mixing layers the streamwise fluc-
tuations are highly intermittent with the kurtosis K = 'LT‘/(QF)2 ranging from 4
up to about 20 at the edges of the layer (Spencer and Jones 1971, Samimy et al.
1989). A convenient expression for non-gaussian p.d.f. p(u) is a Gram-Charlier
expansion

2

p(u,K) = {\/1§1r + (K4_! 3) (3 -6 (2)2 + (;)4)}exp{—;7 (6)

With the approximation that (6) is the p.d.f. of m;, i.e. p(z) ~ p(m;) (with
o = g/ax = M,), we obtain

3 0o 73 3
q 1 m; —1
€4 X 1—[ F/} ( :731 ) p(my)dm,], or, (7)
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€q (i;-) F(M, K). (8)
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FIGURE 2. Dilatation dissipation function F(M,, K) for various values of K in
the p.d.f. equation (6).

The function F(M,, K) represents the expression in square brackets above;
its values obtained by numerical integration are plotted in Figure 2 for various
values of the kurtosis K (in the p.d.f. equation (6). According to (8), € is
proportional to the solenoidal dissipation since €, g¢*/L. Hence, in a second-
order closure model which usually contains an equation for ¢, (or for L), ¢4 is
determined merely by the function F(M,, K), and the total dissipation in (1)
and (2) is then

€10t = €5(1 + ca F(M,, K))

as suggested by dimensional analysis mentioned earlier. Apart from the model
constant ¢g and K (to be estimated from measurements), the total compressible
turbulence dissipation is thus determined by (7) and a (standard) model equation
for ¢, .

2.1.3. Comparison with shear layer experiments

A comparison of the dilatation dissipation model with homogenous turbulence
data at sufficiently high Reynolds and Mach numbers is not possible at present.
Instead, the model is compared with the experimental data in compressible free
shear layers which are the least contaminated by low Reynolds number effects.
For this purpose, a computer program for compressible, high Reynolds number
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FIGURE 4. Turbulent Mach number M, and maximum temperature excess as
functions of M, with T} = T5;.

shear flows was formulated (Zeman, 1989) to solve transport equations for all
non-zero Favre-averaged Reynolds stresses and for the vertical enthalpy flux.

The numerical scheme utilizes the von Mises transformation from (z,y) to
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(z,%) coordinate system and all transport equations are solved by forward inte-
gration in streamwise direction = along streamlines ¥ = const.

The crucial test of the dilation dissipation model is the prediction of the nor-
malized growth rate §'/6) as a function of the so-called convective Mach number
M, ( 8! is the growth rate in the incompressible limit M. = 0). The con-
cept of convective Mach number has been described in Bogdanoff (1983) and
Papamoschou and Roshko (1987). With air as the (perfect) fluid, the values
of §'/6! were computed for three cases: a) uniform (freestream) temperature
Ty = T, (density ratio s = p2/p1), and the kurtosis K = 7; b) uniform total
temperature T,, and K = 7; and c¢) uniform temperature as in case a) but with
low kurtosis K = 4. The predicted and experimental growth rates §'/é; are
compared in Figure 3. The comparison shows that the model yields realistic
reduction of the shear layer growth rate as a function of the convective Mach
number M, even for small kurtosis. Figure 4 demonstrates how turbulence fluc-
tuations are controlled by the dilatational dissipation: as M. increases beyond
one, the r.m.s. Mach number M, appears to approach a saturation limit of about
0.5; this is observed in experiments (Samimy 1989). Figures 5, 6, and 7 display
model comparisons of mean velocity, and turbulent intensities with experiments
of Samimy and Elliott (1989) and Samimy et al. (1989).

Figure 5 compares the computed and experimental mean velocity profiles at
two values of M. The profiles are shown to be universal functions of the trans-
verse distance (y — y.) scaled by the vorticity thickness as suggested by Samimy
and Elliott.

The streamwise intensity profiles are compared in Figure 6. Considering the
uncertainties associated with measurements and modeling of high Mach num-
ber flows the model-experiment agreement is relatively good. Note that the
measured intensities exterior to the mixing layer are due to the unavoidable
background noise levels in supersonic wind tunnels.

Figure 7 compares equilibrium turbulence intensities (at the layer centerline
y = y.); although the model overestimates the absolute values of the intensities,
the attenuation of velocity fluctuations with increasing M. is predicted. This
comparison corroborates our hypothesis that the reduction in growth rates of
high speed mixing layer is a consequence of additional (dilatational) dissipation
which arises due to the formation of steep density gradients, or shocklets.

2.1.4. Conclusions

We conclude with the following observations:

(1) As evident from Figure 4, the dilatation dissipation provides the con-
trolling mechanism that suppresses excessive supersonic fluctuations and thus
maintains the maximum level of the r.m.s. Mach number M, below a certain
(subsonmic) level of about 0.5. This is observed in experiments. Apparently, the
local intermittent shock events provide the needed dissipation to maintain, on
average, turbulent velocities subsonic.
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(2) The mechanism of shock formation and dilatation dissipation bypasses the
Kolmogorov energy cascade, and the process of spectral energy transfer to small
scales is expected to remain unaffected by the formation of shock structures.
Hence, the model equation for the solenoidal dissipation is assumed to retain its
standard form independent of the dilatation dissipation.

(3) The decomposition of velocities into dilatational and solenoidal compo-
nents is unique only in a strictly homogeneous turbulence field. In a bounded
turbulent flow, the decomposition is not unique because of the boundary condi-
tions. Nevertheless, the concept of the dilatation dissipation is valid, in general.
The dilatation dissipation model is Galilean invariant and, therefore, applicable
in any high Mach number flows such as wakes, jets, and boundary layers.

2.2 Decay of 2D compressible turbulence
In 2D turbulence the solenoidal dissipation ¢, is proportional to (¢*/L)R! ,
where the Reynolds number R, = ¢L/v. Hence, according to equations (1), (2),
and (8) in Section 2.1, the governing second-moment equations in 2D compress-

ible decaying turbulence are
8¢’ 3 -1
= (¢°/L) {c. R + caF(My, K)}, (9)

e
¢, T + 5= const. (10)
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Now, (9) and (10) can be combined into a single equation for M?; if, in
addition, R, is assumed to be large, the resulting equation for M? is

oM}
or

= -2ch3F(_Mt,K){1 + M} (—1;—1)} (11)

where 7 = tq/L is a nondimensional time. The above equation can be considered
as a decay law for 2D compressible turbulence. The equation can be used to verify
the dilatation dissipation model when eddy shocklets are limited to 2D motion.

According to (11), for a given value of the kurtosis K, M, decays as long as
F(M,) remains sufficiently large. Since the homogeneous turbulence p.d.f.’s are
gaussian, K = 3 and according to Figure 2 F(M,, K = 3) is negligibly small for
M; < 0.4 . In Figure 8 the evolution of M,(7) according to (11) is tentatively
compared with the DNS of 2D turbulence in molecular clouds (where R, >> 1)
reported by Passot et al. (1988). For comparison, we used two different initial
values for M;. It is seen that the decay law (11) yields qualitatively the same
behavior as the DNS computations. In particular, the asymptotic leveling off of
M, for 7 > 8 is well reproduced by (11). Note that the final (asymptotic) value
of M; computed from (11) is independent of the initial conditions. This suggests
that in 2D turbulence at high R., the dissipation is solely due to the presence
of shock-like structures whose formation ceases as M, drops below certain level.
This is in agreement with the proposed theory of dilatation dissipation.
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3. Current and future work

Currently, a model is being developed to simulate a hypersonic turbulent
boundary layer (TBL) on a flat plate. The major concern here is to formulate a
realistic model for the viscous sublayer which, in a hypersonic regime, occupies
a significant portion of the total TBL thickness. Furthermore, in the hyper-
sonic regime at freestream Mach numbers, say, Ma, > 15, it is anticipated that
pressure and density fluctuations, and shocklet dissipation will play a significant
role in the TBL momentum and heat transfer; these issues are presently studied
theoretically. Among problems to be addressed in the future are:

1) inclusion of density fluctuation equation in models of compressible and variable

density turbulence. A

2) Turbulence oblique shock interactions in the compression corner TBL flow.
3) parameterization of shocklet dissipation in subgrid scale models for large eddy
simulations of compressible turbulence.
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Turbulence modeling: near-wall turbulence
and effects of rotation on turbulence

By T. -H. Shih

1. Motivation and objectives

Many Reynolds averaged Navier-Stokes solvers use closure models (including
two-equation models and second-order closure models) in conjunction with “the
law of the wall”, rather than deal with a thin, viscous sublayer near the wall.
However, law of the wall functions are based on assumptions of local equilibrium
which are not always valid. For example, flows with separation, reattachment,
body forces, strong secondary flows, or streamwise pressure gradient can cause
the behavior of the near-wall sublayer to depart from the law of the wall. To
solve these problems, the modeled turbulence equations must be carried out
in the sublayer in order to capture the non-equilibrium characteristics of the
near wall region. Non-equilibrium turbulence models of the two equation type
include Jones and Launder (1973), Chien (1982), and Lam and Bremhorst(1981).
Second order closure models include Hanjalic and Launder (1976) and Launder
and Shima (1989). However, as Patel et al. (1985) pointed out, the damping
functions used in the existing k-¢ models need further modification in order to
improve their performance. In addition, analysis of the near-wall behavior of
the current second order closure models shows that they do not have the proper
asymptotic behavior. Predictions of the normal stresses near the wall are quite
poor. This work is motivated by the need for better models to compute near-
wall turbulent flows. We will use direct numerical simulation of fully developed
channel flow and one of three dimensional turbulent boundary layer flow (Kim
et al. (1987), Marnsour et al. (1988), and Moin et al. (1989)) to develop new
models. These direct numerical simulations provide us with detailed data that
experimentalists have not been able to measure directly.

Another objective of this work is to examine analytically the effects of rotation
on turbulence, using Rapid Distortion Theory (RDT). This work is motivated by
the observation (Reynolds, 1989) that the pressure-strain models in all current
second order closure models are unable to predict the effects of rotation on
turbulence. All current rapid pressure-strain models in the equation for the
invariants of anisotropy tensor are insensitive to pure rotation.

One of the objectives of this work is to develop better models (for both two-
equation model and full-Reynolds stress type models) for the near-wall turbu-
lence, using direct numerical simulation data and existing methodologies. The
models will be tested using data from direct simulations, experiments and anal-
ysis. Another objective of this work is to use RDT to obtain an analytical
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solution for pure rotational turbulence, which will hopefully bring us some new
understanding of turbulence physics and provide improved turbulence models
for rotational flows. Specifically, the objectives of this work can be summarized
as follows:

1. Examine the performance of existing two-equation eddy viscosity models
and develop better models for the near-wall turbulence using direct numerical
simulations of plane channel flow.

2. Use the asymptotic behavior of turbulence near a wall to examine the
problems of current second-order closure models and develop new models with
the correct near-wall behavior of these models.

3. Use Rapid Distortion Theory to analytically study the effects of mean
deformation (especially due to pure rotation) on turbulence. Obtain analytical
solutions for the spectrum tensor, Reynolds stress tensor, Anisotropy tensor,
and its invariants. Use these results to develop second order closure models.

2. Work accomplished
2.1 k-e model

The k-¢ model is still the most widely used model for computing engineering
flows. In this work, we first examined the near-wall behavior of various eddy
viscosity models proposed by different researchers; we then studied the near-wall
behavior of terms in the k-equation budget. We found that the modeled eddy
viscosity in many existing k-¢ models does not have correct near-wall behavior,
and the pressure transport term in the k-equation is not appropriately modeled.
Based on the near-wall asymptotic behavior of the eddy viscosity and the pres-
sure transport term in the k-equation, we proposed a set of new models for them.
In addition, a new model for the dissipation rate is derived more rationally. See
Shih (1989) for more details.
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Near-wall turbulence and effects of rotation on turbulence
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The proposed k-e¢ model for the near-wall turbulence has been tested against
direct numerical simulations of Kim et al. and compared with other k-¢ models.
The results show that the new model produces significant improvements over
existing models, see figures 1 — 5. The modeled equations are given as follows:

ki+Ujk; = [((1 + C):—lk + V) lc,j] . +vpS;;8i;— €

W]

€€
et + Uje; = [(V—T + V) f‘j] + 0y %VTS:'J'S-'J' = Caofer +vvrUimUijm

o g
o, =13
o = 1.3
Ci=145
Cz= 2.0
E =e—¢
b = vk, /(2k)
vp = C“fukz/é
C,=0.09

fu=1- exp(—a y" — agy+2 —77a3y+3 — a4y+4)
a3 =6x1073,a;, =4x10"%,a; = -25x107%,a, =4x107°

0.4 k2 \?
=1 —— (2=
f 1.8 *P ( (sue) )
o 05

full = exp(—y™)]
yt = u,y/v

2.2 Second order modeling of near-wall turbulence

Using the near-wall asymptotic behavior of turbulence (Mansour et al. (1988))
as model constraints, we formed a set of modeled transport equations for the
Reynolds-stress tensor and the dissipation rate of turbulent kinetic energy. The
main emphasis was on developing a model for the “slow term” in the Reynolds-
stress equation. A modeled dissipation rate equation is derived more rationally.
Near the wall, a reduction in velocity fluctuations normal to the wall become
significant. Because of this wall effect, the viscous diffusion term in the Reynolds-
stress equations becomes the leading term, and it must be properly balanced by
the slow term. We will use this as a model constraint for developing a model
for the slow terms. The proposed models in this work do not contain the wall
distance; therefore, they are generally suitable for an arbitrary surface. The
proposed models also satisfy realizibility which ensures no unphysical behavior
will occur. Here, we briefly describe and list the proposed models.
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The exact equatxon for the Reynolds stress tensor is:

D

b—t(ui"j> Pij +Ti; + D(y) + 105 — &5

where ( ) stands for an ensemble average, D/Dt = 8/8t + U 8/0z. The terms
P;;, Tij, DEJ), II;; and ¢;; represent the production, turbulent diffusion, viscous
diffusion, velocity pressure-gradient correlation, and dissipation tensor and are
identified as follows:

—(uiur)Ujn — (ujue)Uin
( '"'Juk)

DE;) = v{uiu;)
1

IL;; = ;(“11’1 +"th)

= 2v(u;kUjk)

The velocity pressure-gradient correlation II;; is split into the rapid part HE;-)
and the slow part I'I(2).
2
I0;; = HS}) + ng)

The proposed model for the return term, Hg) — g5 is:

26)(1— 1)

[2{uiu;) + 4({uiwe)njne + (wjue)ning) + 2{ugur)nenn;n;)

2
I} — &5 = — €(Bbi; +
€
— f —
¥ {q?)
where n; is a unit vector normal to the surface, and

777

B=2+ { 1/2+8011n[1+624( —IT + 2.3111)]} exp(— —77)

t

F=1 4+ 27IIT + 911

1
II = —Eb,'jbjg
1
III = '—b,'jbjkbk,'

3
bij = (uiu;)/{q®) — 6:5/3
fo = exp(—(R:/C1)?)
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and B, = £, ¢, = 1.358R%*, R., = u,.6/v. u, is the friction velocity, §
is the thickness of the boundary layer or the half width of the channel.
The rapid part of velocity pressure-gradient, I'I( ) is modeled as follows (Shih

and Lumley (1985, 1986)):

1 2 2
ny = (g + 2a5)(q2)(Ui,,' +Usi) = 5(1 = as)(Pi; — 3P8y;)
2 6
+( 1 as)(D.J P6,~j) + 75 (Pij = Dij) + £bi P

. 55,) (e Vg + (508U i) — (st} (55 (U + Usp)]

where,
Py = —(usup)Uj e — (wjur)Us
D = - (uauk)Uk,: (ujue)Uk,i
1
P =-P;
2

1
=——(14+C,F'/?
as 10( + O3 )
Cz = 0.8[1 — exp(—(R./40)*)]
Finally the model for the third moments is modeled as:

(¢*)

(wiujup) = ——.07—6—[(ukup)(u,-uj),p + (wjup) (uiug) p + (winp){ujur) pl

Dissipation rate equation
The modeled dissipation rate equation derived in this work is:

€1+ Uie; = (ve; — (eu;)) i — 1/}0(—62—)-
€ v{q?

- @) Soluiu;)Us 5 — 2 ><ukul)(Ui,jl — U1,ij Ui jx

where 14
$o = — + 0.98[1 — 0.331n(1 — 55IT)] exp(—2.83R; */?)
’11}1 =~ 2.1
¥y = —.15(1 — F)
2\ 7.2\ .
f—e— v{q ).:(q ).t

4q*)
The turbulent flux term (eu,)} is modeled as:
(g*)

(euy) = —.07—56—(11;, Up)ep
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To test the models developed in this work, we chose a fully developed channel
flow as the test flow. The Reynolds number based on friction velocity and chan-
nel half widih Re, is 180, for which direct numerical simulation (Kim et al., 1987)
and experimental data (Nishino and Kasagi, 1989) are available for comparison.
The modeled Reynolds stress equations for this flow are one-dimensional and
steady; therefore, model testing is easy and accurate. The results of the present
model compared with direct numerical simulation and other models are shown
in figures 6 — 10. As the figures indicate, the proposed models capture the near-
wall behavior of the turbulence and show significant improvement over previous
second order models and k-¢ models.

2.3 Second order modeling of a three-dimensional boundary layer

A study of three-dimensional effects on turbulent boundary layer was achieved
by direct numerical simulation of a fully developed turbulent channel flow sub-
jected to transverse pressure gradient. The time evolution of the flow was stud-
ied. Fourteen realizations, each starting with a different initial turbulence field,
were computed and ensemble averaged. The results show that, in agreement
with experimental data, the Reynolds stresses are reduced with increasing three-
dimensionality and that, near the wall, a lag develops between the stress and
the strain rate. In addition, we found that the turbulent kinetic energy also
decreased.

To model these three-dimensional effects on the turbulence, we have tried dif-
ferent second order closure models. None of the current second order closure
models can predict the reductions in the shear stress and turbulent kinetic en-
ergy observed using direct numerical simulations. However, we found that the
proposed second order closure models developed in the previous section do at
least qualitatively capture these three-dimensional effects, see figures 11 — 14,
Detailed studies of the Reynolds-stresses budgets were carried out. One of the
preliminary conclusions from these budget studies is that the velocity pressure-
gradient term in the normal stress equation (v?) plays a dominant role in the
reduction of shear stress and kinetic energy. These budgets will be used to guide
the development of better models for three dimensional turbulent boundary layer
flows.

2.4 The effect of rotation on turbulence

In addition to the above studies of second order closure models, we have car-
ried out some RDT analysis on simple homogeneous turbulent flows. An order
of magnitude analysis shows that under the condition of S{¢?)/¢ > VR., the
equations for turbulent velocity fluctuations can be approximated by a linear set
of equations, and if S{¢®)/e¢ > R:“, then the turbulent velocity equations can
be further approximated by an inviscid linear equation. Therefore, RDT can be

used to analytically study some very basic turbulent flows such as homogeneous
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shear flows, irrotational strain flows, and pure rotational flows. RDT analy-
sis will hopefully bring out some new ideas in turbulence physics and modeling.
Reynolds (1989) recently pointed out that all current rapid pressure-strain mod-
els are unable to predict the effects of rapid rotation on the turbulence. RDT is
certainly an ideal tool to study this kind of basic turbulent flow. It can provide
analytical solutions for the details of the flow field, and hence can be used to
guide the development of turbulence models.

This work focuses on the effect of rapid rotation on turbulence using RDT.
We obtained analytical expressions for velocity, the spectrum tensor, Reynolds-
stress, the anisotropy tensor and its invariants. The solutions show that the
turbulence is strongly affected by the rapid rotation. A typical case is shown
in figure 15. Using RDT, we are calculating the rapid pressure-stain term ex-
actly and we are obtaining very useful information for developing corresponding
turbulence models.

3. Future plans

1. Using direct numerical simulation data (Moin et al.,, 1989 and Spalart,
1989), we are planning to improve the second-order closure models proposed in
this work for three dimensional boundary layers.

2. Extend second order closure models to near-wall turbulent heat fluxes.

3. Use the information obtained from RDT to model the effects of rapid
rotation on the turbulence. It appears that at least the quadratic terms of mean
velocity gradient are necessary in the rapid pressure-stain model.

4. Modeling the effects of buoyancy on the turbulence.

5. Third order modeling of shearless turbulent mixing layer — using moment
generating function method. This type of model will be needed when third order
moments play a dominant role in transferring of momentum and energy, such as
in a convective planetary boundary. ‘

6. Explore the potential of the RNG method in one-point turbulence closure
models.
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An experimental study of scalar
mixing in curved shear layers

By P. S. Karasso AND M. G. Mungal

This report describes the work being undertaken to study the scalar mixing
in curved shear layers. First, the motivation for this work and its objectives are
described. Second, a description of the ‘experimental rig that has been built is
given. Third, some preliminary results (flow visualizations) are discussed, and
finally, future steps that will be taken to complete the study are outlined.

1. Introduction

Straight mixing layers have been the object of considerable study over the
last twenty years. Curved mixing layers have seen less investigation. Here,
we will provide a brief description of the aspects that are important to this
work. The characterization of a curved shear layer depends upon the sense of
the curvature: if the high speed stream is on the inside of the curvature, it is
referred to as the unstable case; the reverse is referred to as the stable case (Fig.
1). For such shear layers, with equal density fluids, two kinds of instability modes
are encountered. First, the Kelvin-Helmholtz (K-H) instability which is due to
the shear per se and manifests itself with spanwise vortical structures. Second,
the Taylor-Gortler (T-G) instability, associated with the centripetal forces due
to the streamlines’ curvature, which creates streamwise vortical structures. The
Taylor-G értler instability is enhanced in the unstable case and suppressed in the
stable one. Plesniak & Johnston (1989) have provided detailed measurements
of the turbulence properties of curved mixing layers.

Wang (1984) studied a curved shear layer to determine the flow structure
for the stable and the unstable case. He used spatially averaged shadowgraph
pictures which can easily mask the real physics of the flow. He found evidence
of organized motion for the stable case but more 3-dimensionality and loss of
the large-scale (K-H) motion for the unstable case.

Koochesfahani (1984) made concentration field measurements in a plane shear
(mixing) layer, where the K-H instability is dominant, producing a non-marching
probability density function (pdf) of mixture fraction; a similar result was ob-
tained earlier by Konrad (1976). A new, more plausible model for mixing by
Broadwell & Breidenthal (1982) based on the large-scale structures was thus
supported.

The existence of streamwise vortical structures in a lower Reynolds number
plane shear layer was investigated by Bernal (1981). Image reconstruction by
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unstable stable

FIGURE 1. Definition of stable vs. unstable curvature

Jimenez, Cogollos and Bernal (1985) revealed the flow structure and suggested
possible growth mechanisms.

It is the purpose of this study to understand the flow physics, the molecular
mixing and growth rate in curved shear layers at high Reynolds numbers past
the mixing transition (up to 80,000 based on velocity difference and visual thick-
ness). The curvature offers a way to “dissociate” the effect of the two instability
modes: in the unstable case both K-H and T-G are present and strong whereas
in the stable the K-H is strong and the T-G is weak. A detailed quantitative
description of the composition field in the fully developed region is sought via
pdf measurements. The flow physics is investigated via detailed image recon-
struction approaches.

Instantaneous, spatially resolved pictures of high Reynolds numbers curved
shear layers do not exist in the literature, so we have chosen to begin there in
order to address the question of organized motion. Volume rendering in the
y—z —t space has proven to be a most powerful tool to investigate the evolution
of structures in flows (Cruyningen, Lozano, Mungal, Hanson, 1989) and will
be attempted in the curved layer. It is again noted that Schlieren pictures or
shadowgraphs are incompatible with the above ideas and that only instantaneous
planar cuts of the layer can reveal the real mechanisms of mixing.

2. Experimental facility & technique

A schematic of the facility that was built for this study is shown in Fig 2. It
is a blow-down water tunnel made entirely out of plexiglass which allows full

1N



An ezperimental study of scalar mizing in curved shear layers 29

o

I

honeycomb l

0]

I ‘ lto drain

FIGURE 2. Layout of Rig

optical access. The overhead tank is partitioned so that one side (usually the
low-speed) can be totally dyed. The velocity ratio of the two streams and the
flow rates can be controlled by means of a draining valve and air-admittance
valves. The facility is operated at a velocity ratio of 4:1. A speed of 2 m/s can
be achieved on the high speed side, which gives a Reynolds number of about
80,000 towards the end of the test section. The test section size is 16 cm (span)
x 10 cm (height) x 30 cm (length). The facility has been mounted over a recently
refurbished floor and underground sump tank. ,

The test section (curved walls, shown in the unstable configuration in Fig. 2)
was modelled after Wang’s facility and it is considered to be of mild curvature.
The run-time of the tunnel ranges from 15 to 30 seconds, depending on the
velocity magnitudes.

Flow visualizations are effected with planar laser induced fluorescence (PLIF).
A fluorescent dye (sodium fluorescein) is diluted in the low-speed side and the
layer is excited with a laser sheet from a 2-Watt Argon-ion laser. The sheet can
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be directed in the z — y plane (side view), the z — z plane (plan view), and the
y — z plane (end view) to give the whole flow field. Fast photography (exposure
time 1/1000 sec) with 3200 ASA film was then used, minimizing smearing of the
flow field.

3. Present results

Some high Reynolds number flow visualizations are shown below, using the
techniques described earlier. The high and low speed streams are at 2 and 0.5
m/s respectively.

Figure 3 shows side views for the stable and the unstable case (flow is from
left to right). The K-H rolls are very well defined throughout the whole test
section for both cases. The two fiducial marks on each picture are at 15 and
25 cm downstream from the splitter plate (corresponding to Reynolds numbers
of approximately 35,000 and 60,000). The large-scale organized motion of the
flow prevails into the fully developed region of the shear layer. This photo
immediately shows the advantage over spatially integrated measures such as
shadowgraphy when compared to Wang’s results. The growth of the structures
was in general found to be larger for the unstable case. To clarify the overall
growth rates, time-averaged pictures are shown in Fig.4 (flow here is from top
to bottom). The dots are put there to help the reader follow the mixing layer.
It can be seen that the layer grows about 50% more for the unstable case than
for the stable one.

In order to investigate the 2-D aspect of the K-H vortices, plan views of both
cases are presented. Bands of mixed and unmixed fluid are observed (Fig. 5).
Bands were found to be much more defined in the stable case, whereas much more
streakiness was evidenced in the unstable case. We believe that this is due to the
enhanced T-G instability which creates streamwise structures. Another rather
striking event is the fact that the spanwise rolls are seen to occur tilted with
respect to the flow direction. This, to our knowledge, has never been reported
before and would again show the difficulties in shadow techniques. Various runs
were performed to further investigate this fact for a case of a plane 2-D layer at
the same high Reynolds number (straight walls can also be easily mounted in
the experimental rig). The skewness of the structures was again evidenced.

End views of the layers are not presented here. The reason has to do with
the fact that single pictures of this view cannot easily reveal any structures.
This view, however, will be heavily emphasized during our upcoming image
reconstruction which is addressed in the next section. :

We have emphasized here the importance of instantaneous cuts, especially
for such high speed flows, in order to understand the real physics underlying
the evolution of the structures. Also it is crucial to see that all three views are
needed and are complementary to each other. For instance, a side view capturing
a tilted object may look very ambiguous, whereas a plan view might reveal it.
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stable

unstable

FIGURE 3. Side views of mixing layer, using PLIF. Time exp. 1/1000 sec.
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unstable

FIGURE 4.
0.5 sec.

Time averaged side views of mixing layer, using PLIF. Time exp.
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stable

unstable

FIGURE 5. Plan views of mixing layer, using PLIF. Time exp. 1/1000 sec.
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Similarly a plan view of K-H structures captured while pairing would not show
any organization of motion.

4. Future work

The future work has two main objectives: i) Perform image reconstruction of
the layer for both curved cases and for a straight case in order to compare the
changes in the flow structures and ii) Perform detailed quantitative measure-
ments of the concentration field.

The end view of the mixing layers will be used to get a y — 2 — t space re-
construction of the flow field. This will be done by using the Pixar computer
available at the High Temperature Gasdynamics Laboratory at Stanford Uni-
versity. Sequential digitized images will come from video recording of the flow.
It is important that each frame comnsist of a truly instantaneous cut; therefore, a
pulsed 20-Watt Copper-vapor laser will be used. The framing rate must also be
sufficient to have sufficient cut planes through a structure. To this end, video
framing rates will first be used, followed possibly by the higher framing rate of
a Spin Physics recording system, should it be necessary. First reconstructions
should occur in the Spring.

The final task is generating the concentration field pdf. For this, the imaging
system will consist of a self-scanning linear array camera. The laser source will
either be the Copper-vapor laser or the Argon-ion laser. The frame grabber in
this case is not a trivial issue because of the extremely high framing rates needed
to resolve the flow and the amount of data generated. At this point the hardware
problem seems to be resolved and the various components’ interfacing problems
are being tackled. Once components are bought (computer, A/D board and
optics), first results will occur within 3 to 6 months.

5. Summary

Instantaneous planar visualizations of high Reynolds number curved mixing
layers were presented. These cuts revealed that the K-H structures are existent
and well defined in the fully developed region. Additional views suggest that
these structures may occur tilted with respect to the flow. More streakiness in
the unstable case suggests a strong T-G instability. The growth rate was found
to be about 50% larger for the unstable case. Image reconstruction of the flow
field and detailed concentration measurements of the layer will constitute the
bulk of our future work.
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An experimental investigation of a low
Reynolds number turbulent boundary layer
subject to an adverse pressure gradient

By J. H. Watmuff

The evolution of a low Reg turbulent boundary layer in an adverse pressure
gradient (APG) is being studied for comparison with direct numerical simula-
tions by Spalart. A short region of favorable pressure gradient (FPG) is applied
first to establish a self-preserving layer with Reg ~ 600, which is a suitable initial
condition for the simulations. The APG is then applied rapidly such that 8 ~ 2
at Rep =~ 1500. The streamwise extent of the measurements exceeds the current
capabilities of direct simulations so that the results should also serve as a useful
data base for Reynolds-averaged boundary layer prediction methods and in the
future for direct simulation schemes as computer technology evolves.

1. Relationship between the experiment and CFD simulations

An important feature of the numerical method of Spalart (1988) is that there
is no turbulence modelling. A high non-dimensional grid density is needed which
restricts the simulations to low Reynolds numbers, i.e. Rg < 1500 at present.
The key assumptions in Spalart’s 1988 method are that the streamwise evolution
of the flow is slow and that the straining of the turbulence by the mean-flow can
be neglected. These assumptions will inevitably cause the method to breakdown
in a large APG. Spalart has developed a new technique that should overcome
these difficulties, and preliminary results are coming to hand. One of the objec-
tives of this experiment is to obtain accurate measurements for comparison with
the simulations.

There are three requirements in the relationship between the experiment and
the simulation. Firstly, the Reynolds number must be matched precisely. Sec-
ondly, the experiment and simulation must have closely matched initial condi-
tions. Following a suggestion by Inman and Bradshaw (1981), a mildly favorable
pressure gradient is used to very closely approximate a self-preserving layer, i.e.
by careful experimental design the boundary layer is maintained at almost con-
stant thickness over some streamwise distance before being subjected to the
APG. The FPG region allows the simulated layer and the experimental layer
to approach each other without incurring a large increase in Rey which would
reduce the streamwise extent of the simulations in the APG. In the experiment
the additional development length has the added advantage of allowing upstream
trip effects to decay before the region of interest. Finally, accurate experimental
pressure coefficient (C},) measurements with high spatial resolution are required
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as an input for the simulation. A suitable flow configuration for the computa-
tions would be one in which the boundary layer experienced a non-dimensional
pressure gradient § = %‘;—’:— ~ 2 at a maximum Ry =~ 1500. This design goal
has been achieved.

2. Apparatus and methods

2.1. Tunnel and traverse

The layer develops on a 1m wide aluminium plate forming the test-section
floor of a small open-return wind tunnel. The plate is supported above an optics
table which also serves as an extremely flat and rigid mounting platform for a
high-speed computer controlled 3D probe traverse. A flexible ceiling is contoured
to produce the pressure distribution and two plexiglass sidewalls complete the
test-section.

Selection of a transition device was performed in the absence of the PG. The
incoming layers are laminar and closely follow the Blasius profile over an entrance
velocity range from 6 to 12m/s. Various transition devices were tried, including
3D roughness, but a d=2.4mm wire located at X=0.15m was best, producing
a “normal” turbulent boundary by X=0.35m. The Reynolds number per unit
length based on the entrance velocity to the test section is 4.28 x 10° 1/m giving
a nominal entrance velocity of around 6.5 m/s. The Reynolds number was
maintained constant to within 1% during all measurements. The free-stream
turbulence intensity in the test-section near the exit of the contraction is 0.25%.

The Y-axis (normal to the wall) of the traverse is carried by the (spanwise)
Z-axis which is supported within the test-section by a gantry constructed of
carbon-fiber composite. The Y- and Z- axes use linear stepping motors for
positioning. Rubber strips are used to seal the gaps between the edges of the
plate and the sidewalls. These gaps provide access for mounting the gantry to
carriages underneath the plate. A brushless linear d.c. motor is attached to one
of these carriages for positioning of the (streamwise) X-axis. The coordinate
origin is on the wall at the centerline of the contraction exit. The size and
repeatability of the measurement volume and the maximum traversing speeds
are 2100 £ 0.1 mm at 2.0 m/s in the X-direction, 95 + 0.05mm at 1m/s in the Y-
direction and 500 + 0.05mm at 1m/s in the Z-direction. These traversing speeds
are sufficient for “flying hot-wire” measurements in regions of high turbulence
intensity (see Watmuff, Perry and Chong 1983), but this capability has not been
exploited yet.

2.2. Probes

Three round Pitot tubes with o.d. ranging from 1mm to 2mm are used to
measure the mean velocity (U), and nine different Preston tubes with diame-
ters ranging from 1.5mm to 7.9mm are used for skin friction coefficient (Cy)
measurements.

[
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Modified Dantec normal and cross-wire probes are used for the turbulence
measurements. The distance between the prongs is reduced, and the prongs are
stiffened with the addition of a small web. Platinum filaments 2.5 um diam-
eter and 0.5mm long are used. Perry, Lim, Henbest and Chong (1983) found
substantial differences between profiles of uv measured in a rough-wall bound-
ary layer where large turbulence intensities exist. The differences in uv were
found to depend on the included angle between the cross-wire filaments and on
whether the probe was stationary or “flying” upstream. The differences between
the stationary and flying results were substantial only for conventional probes
where the included angle is nominally 90°. Only small differences were observed
when the included angle was increased to 120°. By tilting the probes in a uni-
form stream, Perry et al. found that a flow angle of 45° could be imposed on
the probe with the 120° included angle without appreciable error, but that the
probe with a 90° included angle started to show errors at flow angles as low as
20°.

Since relatively high turbulence intensities are also experienced in the APG re-
gion in this experiment, the included angle between the cross-wire filaments was
increased to 110° which is about the maximum possible angle considering the
probe geometry. Estimates of the Probability Density Function of the instanta-
neous flow angle (9) relative to V have been measured at various positions in the
layer and Pr[—20° < 6 < 20°] > 0.995 in the most strongly turbulent regions.
Thus, the errors described by Perry et al. should be small in this experiment.

Wall distances are set using the electrical contact of a needle with the test
plate. This distance is calibrated by focussing a telescope on the filament and
its image in the wall.

2.3. Methods

The small pressure differences in the test section (0.100 inches of water maxi-
mum) are measured using a high accuracy commercially available pressure trans-
ducer with an advertised accuracy of better than 0.001 inches of water and a
range of 0.5 inches of water. The 44 static wall taps, pitot tube and reference
total and static pressures are connected to the transducer via a 48 port Scani-
valve under computer control. A pause of 5 seconds is used after the connection
before reading the transducer, and all averages are obtained over at least 90
seconds.

The C, variation is shown in figure 1, and it acts as a simple data base for
inferring the local static wall pressure for all pressure probe measurements. The
Cp data base was created by simply averaging the results of a number of runs
performed several months apart. There is no discernible trend in the data taken
at the different times. Averaging periods of up to 15 minutes were found to be
necessary to achieve smooth data.

When the pressure probes are on the wall, the pressure difference between the
probe and the local static pressure can be very small owing to the low velocities
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FIGURE 1. Variation of pressure coefficient C, with X.

in the test-section. Further, the pressure difference is obtained by subtraction
of two relatively large numbers. For the Preston tube Cy measurements, long
time averaging periods were also necessary for smooth results.

Hot-wire probes must be calibrated frequently in a uniform stream. Using a
conventional single-axis traversing system in this experiment would require the
removal and reinstallation of fragile and expensive probes from the measurement
region for the purpose of calibration. This would be time consuming and risk
probe breakage. One advantage of the computer-controlled 3D traverse is that
this operation occurs in a matter of seconds while minimizing the chances of
probe damage. The system also acts as a shaker for imposing accurately known
velocity perturbations on the cross-wire probes for calibration purposes.

A high-speed 15 bit Tustin A/D converter and a microVAX II computer are
used for double-buffered data acquisition. A 32K hardware buffer is located
between the Tustin and the computer and high speed DMA data transfers need
only occur when the buffer is nearly full. While waiting for the new data the CPU
is free to process data obtained during the previous data acquisition cycle using
newly developed high-speed algorithms for reducing hot-wire data to Reynolds
stresses, i.e. there is a high degree of parallelism between data acquisition and
data processing. A system throughput of 25K/s for single wires and 10K /s for
cross wires can be sustained indefinitely despite the fact that the calculations
are performed in double-precision.

Total computer control of tunnel speed, probe traversal, and data acquisi-
tion allows all procedures to be automated. Sophisticated software enables long
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duration experiments to be performed continuously over many days without
manual intervention. This mode of operation required several significant new
developments. For example, large and complex 3D measurement grids can be
programmed and viewed ahead of time. Hot-wire calibration drift is monitored
and new calibrations are performed (automatically) if the drift exceeds some
tolerance. Other features that have proved vital for long duration unattended
experimental runs include automatic error detection/recovery schemes and the
provision of “emergency” asynchronous manually initiated software interrupts
for hardware checkouts and to provide access to approximately 125 menu set-
table control variables.

Automation of the experiment allows massive quantities of data to be pro-
cessed on-line over a relatively short period. Spatially dense mean-flow and
Reynolds stress profiles are measured along the tunnel centerline at 50mm inter-
vals from X=0.2m to X=2.0m, i.e. 37 profiles. The close spacing of the profiles
is needed in the region of FPG to examine the recovery from upstream trip ef-
fects and the approach to self-similarity and in the region of APG where there is
rapid growth with streamwise distance. The spacing of the profiles also provides
a sensitive means for detecting anomalous data.

The greatest obstacle in obtaining high quality data has been hot-wire calibra-
tion drift caused by extremely large changes in ambient temperature. Variations
of up to 40°F are typical over a 24 hour period while changes of up to 10°F
have been observed over a period as short as 5 minutes. Automation of the
experiment has provided a “brute force” solution to this frustrating problem,
i.e. hot-wire profiles are repeated until the drift check obtained after measuring
a profile is within a certain tolerance of a drift reference taken immediately af-
ter the wires have been calibrated. Setting the drift tolerance at 0.5% (larger
tolerances introduce too much scatter in the data) has meant that on average a
profile must be measured 5 times before it is acceptable. At the time of writing
over 600 normal- and cross-wire profiles have been measured.

3. Results
3.1. Skin friction

The streamwise distribution of Cy at 37 streamwise locations along the tunnel
centerline has been measured with 9 different diameter Preston tubes ranging in
diameter from 1.5mm to 7.9mm In the FPG the larger diameter tubes protrude
into the region where the mean flow deviates from the law of the wall. Down-
stream towards the end of the APG region the pressure difference AP between
the smallest diameter probes and the local static pressure inferred from the C,
data base can be as small as 0.006 inches of water. Therefore, errors of 1% in
the reference total head (= 0.1 inches of water) or in the C, data base lead to
errors of ~ 15% in AP. Consequently, the estimates from the 9 tubes have been
averaged using the criteria that the nondimensional diameter d* < 100 and that
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FIGURE 2. Skin friction coefficient Cy with X. Average of 9 different Preston
tubes.

AP > 0.01 inches of water. The averaged data are shown in figure 2. High val-
ues of C¢(> 5.5 x 107%) are maintained in the FPG region. With application of
the APG the Cy falls rapidly at first but for X>1.5m Cy approaches a constant
value.

The accuracy of the Cy measurements needs to be considered since the pres-
sure gradients in both the FPG and APG regions exceed the limits suggested by
Patel (1965). Hirt and Thomann (1986) compared the wall shear stress 7,, mea-
sured directly with a floating element to values inferred from Preston tubes in
axisymmetric boundary layers subject to sudden application and removal of ad-
verse pressure gradients, i.e. the layers were far from equilibrium. Preston tube
errors of up to 10% were observed. They found that the Preston tube readings
indicated velocities below the law of the wall in decreasingly adverse pressure
gradients, However, no parameters could be found to correlate the errors, so it
is difficult to apply their results to this flow.

McDonald (1968) used empirical information combined with similarity argu-
ments based on mixing length concepts to examine the effect of pressure gradi-
ent on the law of the wall. Deviations from the law of the wall were expressed
as a function of a stress gradient oy = (v/pU2)dP/dX. In this experiment
—0.009 < ap < 0.02 and his results indicate that the deviations from the law of
the wall may be as high as 8%. However, for a sink-flow the predictions indicate
a negative deviation while the experiment of Jones and Launder (1972) and the
numerical study by Spalart (1986) both indicate positive deviations from the law
of the wall. Therefore, the accuracy of McDonald’s predictions is questionable.
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In this experiment, the results from the 9 Preston tubes satisfying the av-
eraging criteria described above cover the range 20 > d* > 100 and the Cy
estimates agree to within + 3%. Moreover, the mean velocity profiles in the
APG region shown in figure 3(b) (where Y.}, =~ 3) fairly closely follow both
the sublayer profile and the logarithmic law. The most significant anomalies
appear in the FPG region, figure 3(a), where there are deviations from both the

sublayer profile and the logarithmic law.

3.2. Mean velocity

It is well known that Pitot tubes suffer from wall proximity effects and a va-
riety of correction schemes exist. However, it is uncertain which is the most
appropriate for boundary layer data. Local static pressures have not been mea-
sured, and the Pitot tube data is reduced using the static pressure at the wall.
The local static pressure throughout the layer could differ substantially from the
wall static pressure owing to mean streamline curvature. Also, the Pitot tube
mean flow data shows some scatter, especially in the near wall region, owing to
the small pressure differences. For these reasons the normal hot-wire mean flow
data are presented here.

The mean-velocity profiles in the FPG region are shown in figure 3(a). The
first profile at X=0.2m (50mm downstream of the trip wire) is strongly contam-
inated by the trip. At X=0.25m the pressure gradient is small and the profile
here has the appearance of a typical low Rey zero pressure gradient layer. Note
the wake component. Also, this profile follows both the sublayer profile and the
logarithmic law more closely than the other profiles. From X=0.3m onwards the
profiles are essentially identical for about 208 in the streamwise direction. The
layer thicknesses § ~ 12.0mm, §* =~ 1.75mm and # ~ 1.2mm 1emain very nearly
constant. At the end of the FPG the Cy is uniform to within +1 ’;% over a span
of 406. These results provide strong evidence that the design goal of producing
a highly 2D self-similar sink-like flow condition for compatibility with the initial
conditions of Spalart’s CFD simulations has been closely achieved. The small
value of Rey_., = 650 at the end of the FPG increases the size of the APG
region which can be treated by the simulations.

Application of the APG increases the growth rate and the profiles become less
full, resulting in large values of the strength of the wake component as shown in
figure 3(b). The profiles appear to follow the law of the wall, but the region of
logarithmic velocity variation remains small (Y + < 100). The layer thicknesses
§, 8" and 8 (not shown) increase almost linearly with streamwise distance and the
profile shape factor H (not shown) is a weak indicator of the change. At the end
of the region corresponding to Spalart’s simulations (X=1m) § ~ 28mm. The
spanwise variation in C; is within +3% over 12§, and the momentum balance is
within 5%. These results indicate that the layer is acceptably two-dimensional.
The flow will provide an excellent test case for Spalart’s new method since at
X=1m, Reg ~ 1500 and 8 = £-2¢E ~ 2,

Ty dz
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Further downstream, in the region beyond the current capabilities of direct
CFD simulations, there is evidence to suggest that the layer finally reaches a
new self-preserving condition. Near the wall, the data follow the law of the wall,
and in the outer region profiles of the velocity defect collapse. 8 approaches a
constant value which is a necessary condition for self-preserving layers. Also,
the strength of the wake component asymptotes to a constant value of around
14. Unfortunately, the two-dimensionality of the mean-flow is poorer in this
region since the spanwise variation in Cy increases to +£6% and the momentum
imbalance rises to about 9%.

3.3. Reynolds stress

The normal hot-wire measurements in the FPG region shown in figure 4 in-
dicate that the trip effects decay rapidly in the near wall and outer regions but
that a longer development length is requu‘ed for recovery in the central region of

the layer. However, the profiles have a ma.rked similarity over the last 206 of the

FPG reglon The same behaviour is observed for the cross-wire data U“,", 11,’723

and 3 —,— but these results are not shown here. The observations provide further
evidence that the layer is in a state of equilibrium before application of the APG.

Profiles of turbulence quantities in the APG region are shown with wall scaling
in figures 6(a) to (d). The close spacing of the profiles provides a sensitive
means of detecting inconsistencies in the data (assuming that the profiles should
develop smoothly and monotonically with X) Large values of all the fluctuating

quantities emerge in the central region of the layer with increasing streamwise
distance. Note that ", in the central region of the layer is larger than the peak

value near the wall for z > 1. 5m, in sharp contrast with channel flow and zero
PG boundary layers.

Profiles of ‘/? are plotted against Y/é in figure 5. Note that in the outer
half of the layer the profiles are essentially identical for X > 1.1m. Similar
observations apply for cross-wire data but these are not shown. It appears that
the turbulent fluid in the outer region of the layer is convecting downstream
almost without change. The peak values of the Reynolds stresses possess a locus

which is linear with X, being inclined to the wall. The locus of maximum g

can be clearly seen in the contour plot shown in figure 7(2). Contours of %;_é are
shown in figure 7(b). The disparity between the two sets of contours illustrates
that the relationship between the turbulence structure at the wall and the outer

flow varies widely in response to the pressure gradient. This is one of the most
interesting aspects of this boundary layer.
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An experimental study of the effects
of rapid rotation on turbulence

By S. V. Veeravalli

1. Introduction

Experiments (Traugott, 1958, Wigeland & Nagib, 1978 and Jacquin et al.,
1988), large eddy simulations (Bardina et al., 1985) and direct numerical sim-
ulations (Bardina et al., 1985 and Speziale et al., 1987) all show that rapid
rotation (i.e. the rotation time scale (1/2) << the turbulence time scale) has
a striking effect on homogeneous nearly isotropic turbulence. The cascade pro-
cess is effectively inhibited by rotation, and thus dissipation is greatly reduced.
Some attempts have been made to incorporate this effect in turbulence models
(Bardina et al., 1985 and Speziale et al., 1987). Numerical simulations further
showed the somewhat surprising result that anisotropic homogeneous turbulence
subjected to rotation tended towards an isotropic state; however, the residual
anisotropy was not zero. Reynolds (1989) performed a detailed analysis using
Rapid Distortion Theory (RDT) and showed that a reduction in the anisotropy
is indeed expected and if the anisotropy is produced by irrotational strain then
the anisotropy tensor b;; is asymptotically driven to half its initial value.

Our objective is to extend the work of the experiments mentioned above to
lower turbulent Rossby numbers (R,y = (;—qz)}/(/\ﬂ) ~ 0.07 to match those
used in the numerical simulations — X is the Taylor microscale and ¢? is twice
the turbulent kinetic energy) and to confirm some of the results obtained by
Reynolds (1989) for anisotropic turbulence.

2. Previous work

Experimental studies of rotating turbulence can be broadly classified into two
groups: a) rotating tank experiments and ) wind tunnel experiments.

The work of Ibbetson & Tritton (1975) and Hopfinger et al. (1982) belong
to category a . Ibbetson & Tritton dropped a grid into a rotating tank and
found that the turbulence behind the grid decayed much faster in the presence
of rotation. Hopfinger et al. (1982) used a shaking grid to generate turbulence
and found that away from the grid the flow exhibited a strong tendency towards
2-dimensionality and essentially consisted of columnar vortices aligned with the
axis of rotation.

Traugott (1958), Wigeland & Nagib (1978) and Jacquin et al. (1988), on the
other hand, imposed solid body rotation on grid turbulence in a wind tunnel
and thus these experiments approximate homogeneous turbulence better. The
smallest value of R,y achieved in the Wigeland & Nagib (1978) experiment
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was approximately 0.4 while Jacquin et al. (1988) obtained a value of 0.3.
These experiments showed that the mildly anisotropic grid turbulence tended
towards isotropy and that the kinetic energy decay was greatly reduced due
to an inhibition of the cascade process. The flows did not exhibit a strong
tendency towards 2-dimensionality; however, the length scales along the axis
of rotation grew at a much faster rate compared to the non-rotating case and
showed departures from the behaviour expected in isotropic flow (the direct
numerical simulation results of Bardina et al., 1985 show a similar behaviour for
the length scales).

Large eddy simulations and direct numerical simulations (Bardina et al., 1985
and Speziale et al., 1987) also showed the dramatic suppression of the spectral
transfer term observed in experiments. In particular, Speziale et al. (1987)
found that the development of the energy spectrum E(x,t) agreed extremely
well with,

E(k,t) = E(g,t,) exp[-2vk*(t — t,)] (1)
which is what is expected for purely viscous decay with the spectral transfer
term equal to zero. (v is the kinematic viscosity, & the wave number vector
and the development is for ¢ > t,.) Speziale et al. (1987) also showed that
homogeneous (unbounded) turbulence does not undergo Taylor-Proudman reor-
ganization — the analysis is outlined below. The results of Reynolds (1989) are
also summarized below.

3. Theory

In the equations to follow, the mean velocity is constant, u, represents the
instantaneous velocity, @ the rotation vector, p the instantaneous pressure, and
p the density. The Navier-Stokes equations in a frame rotating with the mean
rotation 2 and moving with the mean speed are,

Ou; Ouju;  13p 0% u;
ot 8zj pax; (2(1)

(the centrifugal acceleration term has been included in the pressure) and the
continuity equation is

Ou;

dz;
If the Rossby number €/(2¢%) is << 1 (where 2 = || ) and the Ekman number
v/(QL?) is also << 1 ( where L is a typical length scale) and the flow is nearly
steady, then we have,

= 0. (2b)

a
a:: = —26,-J-kﬂ,-uk (3)
The curl of equation (3) then yields the Taylor-Proudman theorem
Q2% _ o, (4

Jaz_,-
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indicating that velocity gradients along the axis of rotation are suppressed.
However, for unbounded flows, the inviscid linearized equations (RDT equa-
tions),

uy _ 19

Bt p Bz;
admit travelling wave solutions of the form (Greenspan, 1968 and Phillips, 1963),

— 2¢€;% Q2 up, (5)

u; = A;expli(e.z — a(k) R 1)]. (6)

Thus,
Ou;

ot
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always. Hence, equation (3) is not applicable and no Taylor-Proudman reor-
ganization occurs for homogeneous turbulent flows undergoing rapid rotation.
Equation (7) indicates that the time scale of the velocity fluctuations is O(1/9);
however, the non-linear term in equation (2a) is still negligible as ¢/(Q2¢?) is
<< 1.

Reynolds (1989) showed, using the inviscid RDT equations (5), that for iso-
tropic homogeneous turbulence, the spectrum tensor E;;(x) is unchanged under
rotation. He also studied the effect of rotation on anisotropic turbulence by
defining the following ‘structure’ tensor,

KiK;
Vo= [ 25 (s)ds, (52)

(98)

(Note that if the turbulence is independent of z; then ¥;; = 0 and %1, = — 15) It
can then be shown (Reynolds, 1989) that Y;; and consequently y;; is unaffected
by rotation. Further,

bi; — —?% as t — oo. (10)

Reynolds (1989) also showed that 2-D 1-C (two-dimensional one-component) tur-
bulence and 2-D 2-C turbulence tended to 2-D 3-C turbulence with the asymp-
totic state given by equation (10).
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The turbulence generated in the laboratory is necessarily bounded and not
strictly homogeneous due to the presence of the tunnel walls. It is unclear
whether relations (8) and (10) would be strictly valid in such a case. If the
turbulence does tend towards 2-dimensionality, then there are two regimes of
interest:

a) = <<1but R

= >1
Nq? T Qy

where n and v are the Kolmogorov length and velocity scales respectively and

b) Q—;;<<1and ;—n<<1.
(Jacquin et al., (1988) observed that when v/(2n) = O(1), then the turbulence
decay rate changes sharply from ¢* ~ z~ ! to ¢* ~ z7!, indicating that a
third regime could exist between ‘a’ and ‘b’.) If the dissipation scales do be-
come axisymmetric for very small R,,, then one would expect different decay
rates for the axial and transverse velocity components (Batchelor, 1946) and the
turbulence could then become anisotropic.

4. Experiments

The experiments will be carried out in three stages. Preliminary measure-
ments will be done in a 15.2cm diameter tunnel operated at a maximum speed
of 10 m/s and capable of rotation rates up to 200 rad/s. The second series of
experiments would be conducted in a 76 cm diameter facility capable of a peak
speed of 30 m/s and a peak rotation rate of 80rad/s. Finally, the 76 cmn facility
would be placed in a pressure vessel and operated at a pressure of approximately
16 atmospheres (and at approximately 8 m/s) in order to significantly increase
the turbulent Reynolds number.

The design of the 15.2 cm rotating rig is complete and a schematic diagram is
shown in Figure 1. The design is similar to the one used by Wigeland & Nagib
(1978). The flow is provided by a centrifugal blower; it is then passed through
a settling chamber and a contraction before entering the rotating section. The
rotating section consists of a honeycomb of sufficient pressure drop to induce
solid body rotation in the flow and a turbulence generating grid. The rotating
turbulent flow is then studied in the stationary test section. The in-house con-
stant temperature anemometers (Microscale HWM-100) were thoroughly tested
and were found to be adequate for the initial measurements, The software nec-
essary for data acquisition and analysis is being developed. A calibration set-up
for x-wires will be fabricated. We are also currently working on the design of
the larger (76 cm) facility.

The types of the experiments and the measurements of interest are described
below.
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Detailed measurements of decaying nearly isotropic grid generated turbulence
will be made in the rotating rig and compared with the non-rotating case. The
quantities of interest would be the Reynolds stresses, dissipation rates and length
scales. Two point correlation functions Ryq(r,0,0) and Ryq(0,7,0), (no sum on
a) could be measured to compare the growth rates of the length scales obtained
from axial and transverse separations (the axis of rotation has been assumed
to be along x, see figure 1) — none of the previous measurements shows a
comparison of the type; R3;3(r,0,0) vs. R33(0,7,0). In addition the spectral
transfer term could be measured, both directly and from the decay of the energy
spectrum (c.f. Yeh & Van Atta, 1973).

The Rossby number used in the numerical simulations (R, = 0.07) was cho-
sen as the principal design parameter for the 15.2 cm facility; however, it should
be capable of operating in regime ‘b’ discussed above. The expression for R,,

when ¢* =~ AU?(z/M)~! is given by

_(Aimivd
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(Here, M is the mesh size, U is the mean axial velocity and z is the downstream
distance). Thus, with a judicious choice of M, U, § it should be possible to
obtain R,, ~ 0.2 within the test section (approximately 0.75 m long). (Note that
one can’t simply increase { to decrease R,, because when Q/(RU) = 1, where
R is the radius of the tunnel, the vortex exiting the tunnel could breakdown
(Dellenback et al., 1988), creating disturbances in the test section.)

A second set of experiments will be conducted to study the effect of rotation
on anisotropic turbulence. It would not be possible to verify all the results pre-
sented in Reynolds (1989), especially those pertaining to 1C and 2C turbulence,
in the laboratory; however, one could examine the validity of equation (10).
The intensity of the axial velocity fluctuations could be reduced with respect to
the transverse components by passing the flow through a contraction and the
behaviour of b;; downstream of the contraction could be studied. Additionally,
a small difference in the intensities of the transverse fluctuations could be intro-
duced by using a parallel bar array instead of a bi-planar grid to generate the
turbulence (Veeravalli & Warhaft, 1989).

Finally, it would interesting to study the dispersion of a passive scalar in this
flow with a view to examining the difference in mixing rates along the axis and
in the transverse plane.
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An experimental study of secondary
vortex structure in mixing layers

By J. H. Bell

1. Introduction

This report covers the first eight months of an experimental research project
on the secondary vortex structure in plane mixing layers. The aim of the project
is to obtain quantitative data on the behavior of the secondary structure in a
turbulent mixing layer at reasonable Reynolds numbers (Res, ~ 50,000. In
particular, we hope to resolve the questions of how the scale of the secondary
vortex structure changes with the scale of the mixing layer, and whether the
structures are fixed in space, or whether they “meander” in the spanwise direc-
tion. Co-investigator for this project is Rabi Mehta, a JTAA research associate.

2. Background

It is well known that the development of plane mixing layers is largely influ-
enced by the formation and interaction of large-scale spanwise vortices (Brown
& Roshko 1974). Many of the earlier studies which first determined the impor-
tant role played by the spanwise vortices also showed the existence of a second
organized and persistent vortex structure in the mixing layer. Initial experi-
ments showed that this vortex structure was oriented mostly in the streamwise
direction, and suggested that its appearance might be related to the appearance
of small scales within the flow (Konrad 1977, Breidenthal 1981).

A fairly clear picture of the streamwise vortex structure was produced by
subsequent flow visualization experiments (Bernal 1981, Jimenez et al. 1985,
Lasheras et al. 1986, Bernal & Roshko 1986, and Lasheras & Choi 1988), and
this is described below. The structure is sketched in figure 1, which is taken from
Lasheras et al. (1986). It appears that the streamwise vortex structure arises in
the braid region of the mixing layer, between the spanwise structures. Residual
spanwise vorticity in this region is stretched by the strain field produced by the
spanwise structures. The extensional principle axis of the strain field is along
a line perpendicular to the spanwise direction and is oriented at an angle to
the streamwise direction. The result is the formation of a vortex tube which
winds back and forth between adjacent spanwise rollers. When viewed from
above, this structure appears to be a row of alternating-sign streamwise vortices
embedded in the mixing layer. This picture of the structure has been confirmed
by the results of numerical simulations using both the Biot-Savart law (Ashurst
& Meiberg, 1988) and the direct Navier-Stokes method (Metcalfe et al. 1987).

Despite these results, many features of the streamwise vortex structure are
not well understood. This is mostly due to a lack of quantitative information
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FIGURE 1. Sketch of vortex structure in mixing layers. Thick lines outline
the spanwise structures, and the thin lines looping between them represent the
streamwise vortex structure. (Taken from Lasheras et al. 1986.)

on the development of this structure, which in the past has usually been studied
through flow-visualization. Fortunately, the streamwise vortex structure is suf-
ficiently stable that it shows up in the mean flow and can be examined through
measurements of mean streamwise vorticity in the mixing layer. This approach
was used by the authors in a recent study, which investigated the presence and
role of “naturally occurring” streamwise structures in a mixing layer (Bell &
Mehta 1989a). A plane, two-stream mixing layer was generated, with a fixed
velocity ratio of 0.6 and both initial boundary layers laminar and nominally
two-dimensional. Measurements indicated that small spanwise disturbances in
the upstream boundary layer on the high speed side of the splitter plate were
amplified prior to the roll-up of the spanwise vortex sheet. Actual streamwise
vortices were first observed slightly farther downstream, prior to the estimated
location of the spanwise vortex roll-up. The streamwise vortices first appeared in
widely spaced clusters of 3-4 vortices of both signs, but further downstream, the
vortices re-organized to form counter-rotating pairs. The spacing between indi-
vidual streamwise vortices was found to grow in a stepwise fashion as the mixing
layer developed, with the location of the steps corresponding to the estimated
locations of pairing of the spanwise vortices. Overall, the streamwise vortex
structure scaled approximately with the mixing layer vorticity thickness. The
streamwise vortex structures appeared to weaken with streamwise distance, with
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the maximum mean vorticity diffusing as approximately 1/X!®*. The stream-
wise vorticity was found to be strongly correlated in position, strength, and
scale with the secondary shear stress (u'w'). The ww' data suggested that the
streamwise structures persisted through to the self-similar region, although they
were very weak by this point and the mixing layer appeared to be nominally
two-dimensional.

The present study is an extension of Bell & Mehta (1989a), using more sophis-
ticated instrumentation to examine the role of the streamwise vortex structure
in mixing layer development. One particularly interesting question raised by the
experimental results relates to the observed decay of the mean streamwise vortex
strength with X. This finding is in conflict with the results of direct Navier-
Stokes simulations, which show no sign of streamwise vorticity decay (Rogers
& Moser 1989). It has been suggested that the discrepancy occurs because the
vortices tend to wiggle, or “meander” from side to side in the spanwise direc-
tion with increasingly greater amplitude as the flow moves downstream. The
increasing amplitude of the meander would presumably reflect the transition of
the mixing layer to an increasing turbulent state as the local Reynolds number
increased. Once the amplitude of the meander became greater than the spacing
between adjacent vortices, the structure would essentially average itself out of
the mean flow. However, the streamwise vortex structure should still be de-
tectable by more sophisticated means, such as spatial or temporal correlations.
In the present study, it is proposed to apply these techniques to examine the
behavior of the secondary vortex structure.

3. Experimental apparatus and techniques

3.1. Pre-ezisting experimental apparatus

The Mizing Layer Wind Tunnel located in the Fluid Mechanics Laboratory
at the NASA Ames Research Center was used for all of the work described in
this progress report (Fig. 2). The wind tunnel consists of two separate legs
which are driven individually by centrifugal blowers connected to variable speed
motors. The two blower/motor combinations are sized such that one has three
times the flow capacity of the other, although the components downstream of the
wide-angle diffusers are identical on the two legs. The two streams are allowed
to merge at the sharp edge of the tapered splitter plate. The included angle
at the splitter plate edge, which extends 15 cm into the test section, is about
1°, and the edge thickness is approximately 0.25 mm. The test section is 36
cm in the cross-stream direction, 91 c¢cm in the spanwise direction and 366 cm in
length. One side-wall is slotted for probe access and flexible for pressure gradient
control.

The free-stream velocities within the test section are typically found to remain
constant to within 1% of the set value. The measured streamwise turbulence
level (u'/U,) is about 0.15% and the transverse levels (v'/U, and w'/U,.) are
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FIGURE 2. Mixing Layer Wind Tunnel.

about 0.05%. The mean core-flow is found to be uniform to within 0.5%, and
cross-flow angles are less than 0.25°. Further details of the mixing layer wind
tunnel design and calibration are given by Bell & Mehta (1989b).

In the studies described in section 4, measurements were made using a single
rotatable cross-wire probe held on a 3-D traverse and linked to a fully automated
data acquisition and reduction system controlled by a MicroVax II computer.
The cross-wire probe had two 5 um diameter tungsten sensing elements, each
about 1 mm long and positioned about 1 mm apart. The probe was calibrated
statically in the potential core of the flow assuming a ‘cosine-law’ response to
yaw, with the effective angle determined by calibration. The analog signals were
filtered (low pass at 30 Khz), DC offset, and amplified (x10) before being fed
into a NASA-built computer interface. The interface contained a fast sample-
and-hold A/D converter with 12 bit resolution and a multiplexer for connection
to the computer. Individual statistics were averaged over 5,000 samples obtained
at a rate of 400 samples per second.

3.2. New experimental apparatus

As indicated in section 2, single-point, time-averaged measurements are insuf-
ficient to fully address the question of how secondary vortex structure develops
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FIGURE 3. Sketch showing new probe holders made for spatial correlation
measurements.

in the mixing layer. Accordingly, considerable time has been spent on the con-
struction of new equipment and software for measuring spatial and temporal
correlations. The new equipment consists of a pair of new hot-wire probe hold-
ers, a second, independent, 2-D traverse system, and a new traverse table. New
software has been written to acquire two-point data and compute the correla-
tions, as well as to increase the degree of automation in the data acquisition
process.

The two new hot-wire probe holders are sketched in figure 3. Both probe
holders allow the crossed hot-wire probes to be yawed at 2.5° intervals for precise
angle calibrations. The larger “movable” probe can be rolled at 45° intervals,
allowing measurements of all six independent components of the Reynolds stress
tensor, as well as the three components of mean velocity. The smaller “fixed”
probe can be rolled at 90° intervals. Both probe holders will be capable of moving
independently on separate traversing systems. In practice, however, the “fixed”
probe holder will be left at one point in the flow, while the “movable” probe
holder is traversed automatically around it, to obtain correlation measurements.
The movable probe holder is designed primarily for ease of use, and is mounted on
the original computer-controlled 3-D traverse system. The fixed probe holder is
designed with an angled head, so that the two hot-wire probes can be brought as
close together as possible. The minimum probe separation is 6 mm, which, in the
region under investigation, is approximately 1/10th the mixing layer thickness,
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and 1/5th the radius of the streamwise vortices. The fixed probe is mounted
on a 2-D traverse system, which rests within the 3-D traverse for the movable
probe.

A new table for the combined probe traversing mechanism has been con-
structed. The old traverse table, made from wood, had to be laboriously shifted
and re-leveled at each new measurement station. Careful leveling is necessary
because the angle the probe makes with the flow must be carefully maintained
from one station to the next in order to make consistent measurements of the
secondary velocities, which are comparatively small. The new traverse table is
more stable than the old one, and has a more effective leveling system. This al-
lows the probes to be shifted between measurement stations much more quickly
and accurately, increasing both the overall rate at which data is acquired and
its repeatability.

Under the old system, velocity data from the crossed hot-wire was reduced
on-line. Raw data was not stored. The greater volume of data produced by
the dual probes makes real-time data reduction impractical, while the recent
acquisition by the Fluid Mechanics Lab of an Exabyte EXB-8200 8mm helical
scan tape drive makes it considerably easier to store large quantities of raw
data. As a result, new software has been written to allow the raw data to be
stored and transferred to tape with extensive off-line data reduction. The stored
raw data will form a database from which any temporal or spatial correlation
implicit in the original measurements can be retrieved. Another major aim of the
software upgrade has been to further automate the data acquisition procedure.
The new probe holder design allows the crossed hot-wire calibration procedure
to be partially automated. As a result, the calibrations can be automatically
checked at periodic intervals during a run. This will result in longer running
times, a lower level of operator intervention, and lower errors due to hot-wire

drift.

3.3. New measurement techniques: application to the problem

A simple relationship between spatial correlation data and the actual coherent
structures in a turbulent flow can rarely be established. Considerable care must
be exercised in postulating the form of a turbulent structure from the correla-
tion data, and in fact some controversy has arisen in the past concerning the
interpretation of correlation measurements in mixing layers (Chandrsuda et al.
1978, Wygnanski et al. 1979, Wood 1980). In the present case, the task is con-
siderably easier. The general shape of the coherent structures has already been
discovered through flow visualization, and it is only necessary to determine their
scale and strength. Thus, it is reasonable to search for the particular correlation
which is most likely to give unambiguous data concerning the behavior of the
structures.
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To address the question of spanwise meander of the streamwise vortex struc-
tures, the best quantity to examine appears to be the variation of the cross-
stream velocity correlation in the spanwise direction, i.e., Ry,(0,0,r). Imagine
that the shear layer contains a row of alternating-sign streamwise vortices, as
diagrammed in figure 4a. A distinctive pattern of cross-stream velocity is pro-
duced. This is demonstrated in figure 4b, which shows the variation of V with
Z along a line drawn through the vortex centers. The cross-stream velocity
rapidly changes sign across the core of a streamwise vortex. If correlation mea-
surements are made along a line passing through the streamwise vortex cores
in the spanwise direction, there will be a zero-crossing at a separation corre-
sponding to the radius of the vortices. This correlation will be observed even
if spanwise meander has reduced the mean streamwise vorticity to zero. The
amplitude of the meander can also be determined from the variation of R,, with
both the spanwise location of the fixed probe (z) and the spanwise separation
of the probes (r). If the streamwise vortex structure is fixed in the spanwise
direction, the variation of R,, with z and r can be easily calculated from the V
vs z curve shown in figure 4b. The resulting contour plot is shown in figure 4c. If
the structure meanders over a distance larger than the radius of the streamwise
vortices, the very different correlation shown in figure 4d will be obtained. In
this case, while there is no dependence on the location of the fixed probe (i.e. z)
and no detectable mean vorticity, the variation with probe separation r suffices
to establish the presence and radius of the streamwise structures.

4. Effect of initial conditions on mixing layer structure

As an interim study while the new instrumentation was designed and built, it
was decided to examine the effects of initial conditions on streamwise vorticity
in mixing layers. The results of Bell & Mehta (1989a), for a mixing layer origi-
nating from a splitter plate with laminar initial boundary layers, were used as a
base case for comparison. Hereinafter, this case is referred to as the undisturbed
case. The second case was that of a mixing layer originating from turbulent
initial boundary layers, but with the same operating conditions as Bell & Mehta
(1989a). This case is referred to as the tripped case. No mean streamwise vortic-
ity was found in the tripped mixing layer, and a difference between the far-field
growth rates of the tripped and undisturbed cases was noted. It was specu-
lated that the difference in growth rates, which has been observed by previous
researchers (Browand & Latigo 1979, and Mehta & Westphal 1986) was related
to the absence of mean streamwise vorticity in the tripped case. Accordingly,
a third or vortez generator case was studied, in which streamwise vorticity was
injected into the tripped mixing layer by means of a row of vortex generators
mounted on one side of the splitter plate.
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4.1. Ezperimental setup

In all three cases, the free-stream velocities were set at 15 m/s on the high-
speed side and 9 m/s on the low-speed side, thus giving a mixing layer with
velocity ratio U;/U; = 0.6. In the tripped case, the boundary layers on the
splitter plate were perturbed using round wire trips about 0.75 mm diameter on
the high-speed side and 1.2 mm diameter on the low-speed side. The wire trips
were installed 15 cm upstream of the trailing edge to allow the boundary layers
to recover from the perturbation. Well-developed turbulent boundary layers
were produced on both sides of the splitter plate; details of the boundary layers
for the first two cases are summarized below in Table 1.

Table 1. Initial Boundary Layer Properties

Condition U. bog 0 Reo| H | Cy
(m/s) |[(em) | (cm) x103

High-Speed Side, Undisturbed| 15.0 |0.398 |0.0526 | 525(2.52| 0.87
Low-Speed Side, Undisturbed 9.0 |0.441 | 0.0606 | 362|2.24|1.56
High-Speed Side, Tripped 15.0 |0.758 |0.0820 [ 804 ]1.49{5.30
Low-Speed Side, Tripped 9.0 (0.851 [0.0941 | 567{1.50]4.86

In the vortex generator case, streamwise vortices were injected into the mixing
layer by a row of half-delta wing vortex generators placed on the high-speed side
of the splitter plate, 2.54 cm ahead of the trailing edge. Both initial boundary
layers had been tripped with round wires as described in the second case. The
vortex generators were installed at alternating positive and negative angles of
attack with their trailing edges spaced 1.91 cm apart, so as to produce an evenly-
spaced row of counter-rotating streamwise vortices. Each vortex generator had
a 6.4 mm semi-span, a 68° sweep angle, and was placed at an angle of attack of
+17°. The vortex generator spacing was chosen to be comparable to the Kelvin-
Helmholtz wavelength, and the semi-span was chosen to be approximately equal
to the local boundary layer thickness.

Data were obtained in the uv- and uw-planes with a cross-wire probe at nine
streamwise stations for the undisturbed case and at eight stations each for the
two other cases. In each case, measurements were made at corresponding posi-
tions within the test section, located between X ~ 10 to 250 cm downstream of
the splitter plate. In the undisturbed case, the last station is 47608; downstream
of the splitter plate trailing edge, where 8, is the momentum thickness of the
high-speed side splitter plate boundary layer. In the two cases with turbulent
initial boundary layers, the last station is 30508; downstream of the trailing
edge. At each station, data were obtained in a cross-sectional plane which typ-
ically extended over 20 points in the cross-stream direction and 60 points in
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the spanwise direction. The spanwise extent of the data set ranged from three
to ten mixing layer thicknesses, depending on the streamwise location. All the
global properties presented below were spanwise-averaged for all cases. The
measurements of U, W and u'w' were corrected for mean streamwise velocity
gradient (8U/8Y) effects, assuming a linear variation in U between the cross-
wire sensors (Bell & Mehta 1989a). The streamwise component of mean vorticity
(w, = OW/8Y —8V/DZ) was computed using the central difference method. The
overall circulation was defined as the surface integral of the streamwise vorticity
over the cross-flow plane with vorticity levels less than 10% of the maximum
value being set to zero in order to provide immunity from “noise”.

4.2. Results and discussion

Contour plots of mixing layer properties at a representative station show clear
differences in the three cases. Figures 5-7 show selected properties measured at
X = 57.3 cm, which is just downstream of the estimated location of the second
vortex pairing. The mean streamwise vorticity contours show the most marked
difference between the three cases. In the undisturbed case (figure 5a), an irreg-
ular row of 8 — 10 streamwise vortices of varying strengths can be easily made
out. In contrast, the tripped case (figure 5b) has a much lower level of vor-
ticity in an irregular pattern, not at all suggestive of concentrated streamwise
vortices. In the vortex generator case, a single row of 11 round, well-defined
counter-rotating vortices are clearly observed, with the magnitudes of the peak
levels approximately the same. The spacing between the vortices is 2 cm, ap-
proximately the same as the spacing between the vortex generator trailing edges.
In the undisturbed and vortex generator cases, the mean streamwise vorticity is
strongest at the first measurement station (X = 7.8 cm), and its effects on the
other flow quantities are greatest at this location.

The presence of mean streamwise vorticity leads to spanwise variation of the
mixing layer properties. Contours of mean streamwise velocity are shown for the
three cases in figure 6. In the undisturbed case (figure 6a), there is an irregular
distortion of the mean flow, corresponding to the presence of the streamwise
vortices. The tripped case (figure 6b) displays very little spanwise variation
— the flow appears essentially two-dimensional. The contours for the vortex
generator case (figure 6¢) give an idea of the strength of the injected vortices. A
very regular, well-defined spanwise wavelength can be observed in the contours,
the “peaks” and “valleys” of which mark regions of common flow up or down,
in between the vortices. Similar behavior is seen in the turbulence quantities, as
shown in figure 7, which plots contours of twice the turbulent kinetic energy (q_z)
The undisturbed case (figure 7a) displays an irregular variation associated with
the streamwise vortices while the tripped case (figure 7b) turbulence distribution
is essentially two-dimensional. In the vortex generator case (figure 7c), the
pattern is quite well-marked and similar to that of the mean velocity, with the
presence of local peaks of ¢? near the centerline.
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Contours of mean streamwise vorticity 2,/Us (cm™') at X = 57.3
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The differences between the three cases shown in the contour plots reflect
a difference in the global mixing layer properties. Figure 8 shows the mixing
layer thickness §, determined by fitting the mean velocity profile to an error
function, for all three cases. { Mixing layer thickness has been determined by
fitting the normalized mean velocity data to an error function profile shape:
U/(Uy=U;) = [1+erf(¢)]/2, where ( is the normalized cross-stream coordinate:
¢ = (y—0)/6. The values of § and y, are taken to be the mixing layer thickness
and centerline location, respectively.) The three cases have very different growth
rates, especially in the far-field, where linear growth is expected. The tripped
case growth rate in the linear region is d6/dz = 0.023, quite close to the accepted
value for a mixing layer with this velocity ratio. But the far-field growth rate
for the undisturbed case is 20% higher than that for the tripped case. As noted
above, similar differences in growth rate have been reported previously in the
literature. Spanwise averaging of the mixing layer properties, employed for the
first time in this study, shows that the difference in growth rates persists across
the mixing layer span.

Since the undisturbed case contains significant mean streamwise vorticity
while the tripped case does not, it was expected that the injection of streamwise
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vorticity would increase the growth rate. But, although the growth is high ini-
tially in this case (for X < 60 cm), the far-field growth rate is extremely low —
only 61% of the tripped case growth rate. Since the mixing layer growth rate
is so drastically affected by the vorticity injection, the Reynolds stresses would
be expected to show a comparable effect. This is indeed the case as seen in the
streamwise development of the peak turbulent kinetic energy, q_zmu (figure 9).
The tripped and undisturbed cases asymptote to about the same constant level
beyond X ~ 125 cm. The vortex generator case also achieves a constant level by
that streamwise location, but the asymptotic level is significantly lower. This is
not too surprising given the lower cross-stream velocity gradients in this case. At
the last station, a very slight upturn in the ¢%, ., level for the vortex generator
case is noticeable. Measurements at a station some 30 cm farther downstream
(not shown) also show a slightly higher turbulence level, but their accuracy is
suspect due to test section end effects. This behavior may indicate that at some
distance farther downstream, this case will recover to a higher level of Reynolds
stresses, and presumably a higher growth rate as well.

The behavior of the injected streamwise vorticity in vortex generator case is
compared to that of the “naturally occurring” vorticity, measured in the undis-
turbed case, in figure 10. The peak vorticity and circulation data presented in
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figure 10 are left unnormalized. The most appropriate normalizing parameters
— the initial strength and circulation of the spanwise structures — can only be
estimated in the present study. Mean spanwise vorticity, {1, = (%‘:— — %) was

estimated by assuming the % term is negligible. Spanwise vortex circulation
was estimated using an initial streamwise wavelength determined by the convec-
tion velocity and the measured natural frequency of the mixing layer. (For the
undisturbed case, the estimated values at about the location of the first roll-up
are: Q, . =1400s; and ', = 0.11 m?/s. For the vortex generator case, the
estimate is made more uncertain by the highly distorted state of the mixing
layer and the lack of a clearly observable natural frequency. In this case, the
estimated values are: 9, . = 1100s; and I'; = 0.11 m?/s.)

The streamwise development of the peak mean vorticity for two cases is pre-
sented on a log-log scale in Fig. 10a. The decay is roughly linear on this
scale, indicating a power-law decay rate. Although the peak initial levels for
the injected vorticity are considerably higher, the decay rate is also faster; the
naturally occurring vorticity was found to decay as 1/X?-*, whereas the injected
vorticity decays as 1/X!®. Beyond the station at X ~ 100 cm, the peak lev-
els for the two cases are seen to be comparable. As discussed previously, this
apparent reduction in vortex strength may actually be due to the increasingly
large meander of vortices of constant strength; spatial correlation measurements
will be conducted in the future to establish whether or not this is the case. The
vortex circulation (Fig. 10b) shows very different behavior for the two cases.
The naturally occurring vortex circulation shows a very slow decrease, with a
small intermediate peak at X ~ 60 cm — this was associated with the change
in scale of the streamwise vortex structure (described below). However, the in-
jected vortex circulation shows a relatively fast linear decay and by X ~ 125 cm,
the level is comparable to that of the naturally occurring vortices. The mean
spacing of the streamwise vortices can be easily found by counting the num-
ber of vortices present at each station. The vortex spacing in the undisturbed
case increases in a step-wise fashion, scaling approximately as the mixing layer
vorticity thickness (Fig. 10c). On the other hand, the spacing for the injected
vortices is constant within the measurement domain. This may simply be due
to the fact that the injected vortices are of equal strength and spacing, unlike
the naturally occurring structures, and so there is no tendency for self-induced
motion. Another possibility, related to the pairing of the spanwise structures, is
discussed below.

4.8. Conclusions

The original purpose of injecting the streamwise vorticity into the tripped
mixing layer was to try and increase its growth rate to a level more comparable
to that of the undisturbed layer. The initial (X < 60 cm) growth rate is indeed
increased significantly due to the extra entrainment provided by the stream-
wise structures. However, the growth rate further downstream (X > 100 cm) is
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reduced drastically over both the tripped and untripped cases. A possible expla-
nation for this change can be made by postulating that the streamwise vortex
structure affects the pairing of the spanwise vortices. Most of the growth of a
mixing layer occurs due to entrainment during the pairing process of the nomi-
nally two-dimensional spanwise vortical structures (Sandham et al. 1988). If the
spanwise structures were altered so as to reduce the pairing rate, entrainment
by the mixing layer, and thus its growth rate, would be decreased.

The naturally occurring streamwise vorticity in the undisturbed case first ap-
pears in the regions of maximum extensional strain, in the braid region. The two
structures become interlaced in such a way that, in flow-visualizations, it appears
that the only effect of the streamwise structure on the spanwise is to produce
a regular, gentle undulation in the latter (Lasheras et al. 1986). Therefore, the
entrainment due to the spanwise structures proceeds undisturbed; total growth
may in fact be enhanced by the additional entrainment in the braids due to the
streamwise structures. However, the injected vorticity in the vortex generator
case imposes its own pattern on the spanwise structures, as indicated by the
gross distortions in the mean velocity contours. It is possible that this changes
the pairing process, reducing the pairing rate. In the near-field, entrainment by
the streamwise structures more than makes up for this deficit. However, entrain-
ment due to the streamwise vortices decreases much faster than the spanwise
structures recover, so at some point the overall entrainment rate is reduced, and
hence the growth rate of the mixing layer drops. This hypothesis is also con-
sistent with differences noted in the behavior of the streamwise vortices in the
two cases. Previous investigations have suggested that the scale change in the
streamwise vortices occurs during the pairing of the spanwise rollers (Jimenez
et al. 1985, Bell & Mehta 1989a). The fact that a scale change is not observed
in the vortex generator case suggests that the pairing of the spanwise rollers has
been suppressed.

The mixing layer with vorticity injection maintains a lower growth rate and
turbulence levels out to the end of the measurement region in the current study.
Although there is some evidence of an upward trend at the last measurement
station, the data is not sufficiently extensive to determine when, if ever, the
vortex generator case will recover to a higher turbulence level and growth rates.
The absence of such a recovery would, of course, indicate that more than one
asymptotic structure is possible in mixing layers.

5. Future plans

The equipment and software for spatial correlation measurements is currently
in the final test phase. Once the checkout is complete, work will commence on:

o A study of the variation of R,,(0,0,7) in the undisturbed mixing layer. An
examination of this quantity will show the extent of spanwise meander of the
streamwise vortex structure.
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e A similar study of the tripped mixing layer. In this case, the mean streamwise
vortex structure is entirely absent. Correlation measurements will determine
if it is actually present, but masked by a high level of meander.

e A study of the vortex generator case, which will attempt to determine what
sort of turbulence structure is responsible for the lower growth rate. Cor-
relation measurements should be able to determine the extent to which the
streamwise vortex structure influences the development of the spanwise rollers.

In addition to these studies, which are designed to take advantage of the new
instrumentation, two additional cases are being considered:

o A repeat of the vortex generator case, at twice the original free-stream veloc-
ities, but with the same velocity ratio. This would approximately double the
nondimensionalized development distance, as determined by either Reynolds
number or initial mixing layer thickness. Thus, it should be possible to deter-
mine when, if ever, the effect of initial conditions relaxes, and a more “normal”
growth rate is recovered. Requiring no complex measurements, this study can
be accomplished fairly quickly.

e A study of a mixing layer originating from a splitter plate with a corrugated
end. Such a splitter plate would inject cross-stream vorticity into the mixing
layer, in a manner analogous to the way that the vortex generator case injects
streamwise vorticity. Thus, this study would form a natural complement to
the vortex generator case. Although this flow has been previously studied at
low Reynolds numbers through flow-visualization (Lasheras & Choi, 1988),
the unusual behavior of the vortex-generator case suggests that it merits a
second, more intensive look.
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Development of renormalization
group analysis of turbulence

By L. M. Smith

1. Introduction

The renormalization group (RG) procedure for nonlinear, dissipative systems
is by now quite standard (Ma, 1976). The successes of its application to the
problem of hydrodynamic turbulence are also becoming well-known (Forster,
Nelson and Stephen, 1977, Fournier and Frisch, 1983, Yakhot and Orszag, 1986).
Much progress has been made towards an understanding of what is, and what
is not, accessible via RG analysis. In summary, the RG method isolates self-
similar behavior and provides a systematic procedure to describe scale-invariant
dynamics in terms of large scale variables only. The parameterization of the
small scales in a self-consistent manner has important implications for sub-grid
modeling. The limiting forms of such parameterizations are often universal, i.e.
independent of the numerical coefficients in the original model.

Recognizing its limitations, the renormalization group technique is a powerful
tool. RG methods will predict characteristics of the dynamics of a model that
are approximately scale-invariant. Applied to the Navier Stokes equations, RG
provides an expression for the eddy-damping of the large scales by the small
scales. Other scale-dependent dynamics, such as sweeping, are not addressed
(Chen and Kraichnan, 1989).

Skepticism has surrounded the RG predictions for turbulence because the de-
tailed mathematics involved is not yet well understood. The method is justified
mostly by its success: universal scaling laws derived using RG methods are quite
accurate. Observed scaling laws are reproduced for a diverse set of problems,
from population dynamics (Feigenbaum, 1979), to turbulence, to nonlinear spin
dynamics near a ferromagnetic critical point (Wilson, 1974).

The deduction of experimentally known scaling laws gives credibility to the
RG method. The merit of any theory, however, must be based on its predictive
power. To date, the most important predictions from RG analysis of turbu-
lence have been low Reynolds number corrections to traditional high Reynolds
number models. For examples, RG formulas provide smooth transition between
the Smagorinsky eddy viscosity and the molecular viscosity, and deduced mod-
ifications to the traditional x — £ model (Yakhot and Orszag, 1986, hereafter
referred to as I). In the latter case, however, ambiguities remain with respect to
procedure and interpretation. This is not surprising given the pioneering nature
of the mathematics. - :
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The RG model for homogeneous, isotropic turbulence is developed in Section
2. The steps of the RG procedure for nonlinear equations are reviewed. The
meaning and consequences of the e-expansion are addressed in Section 3 using the
work of Fournier and Frisch (1978, 1983). Their results are given in terms of the
expansion parameter e. Inertial range statistics and scaling laws are recovered for
the case of € = 4 (I). Section 4 gives some results of the theory for homogeneous,
weakly anisotropic turbulence (¢ = 4 and no mean flow). Extension of the theory
to include a weak mean flow is discussed in Section 5. In Section 6, errors in the
Yakhot-Orszag RG k — ¢ equations are corrected. Consistency between direct
numerical simulation data for channel flow, the standard x—¢ model and the RG-
based model requires a reinterpretation of the contributions to the e-equation.
Finally, Section 7 proposes application of the RG method to a sequence of model
equations that converges to the Navier Stokes equations. The solutions of these
particular model equations are known to have self-similar solutions.

2. The RG procedure

The renormalization group symmetry transformation consists of two steps
(Ma, 1976). First, course graining is achieved by averaging over small scales.
Second, space is rescaled. New independent variables are defined in the original
domain by the rescaling. In most cases, the dependent variables are also rescaled.

It is not clear how to course-grain a nonlinear system in which the large
scales are coupled to the small scales. This is, of course, the closure problem
of turbulence. The RG technique was developed for the equations of nonlinear
spin dynamics, the time-dependent Ginzburg-Landau equations. It is based
on expansion about an equilibrium basic state whose Gaussian statistics are
known from the theory of statistical mechanics. Although this procedure is
sensible for near-equilibrium dynamics, it is not obviously relevant to turbulence.
Nevertheless, the basic state in the RG analysis of turbulence is also assumed
Gaussian. The meaning of the expansion will be explored using the work of
Fournier and Frisch (1978, 1983) in Section 3.

The RG transformation of a nonlinear system is illustrated with homogeneous,
isotropic turbulence driven by a Gaussian random force. The model equations
in Fourier space are

oo A,
k] = GRIAK - 52 Penalld [ 32 [ itttk -l (1)

(R k) = @my*+20, ToLpslk + K ©

where 9; and f, are the i**-components of the Fourier amplitudes of the velocity

~

and force vectors, k = [k,w] is a four-vector, and Golk] = (—iw + vok?)™!
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with £ = |k| and v, the kinematic viscosity. The tensor P;,,[k] results from
elimination of the pressure using the continuity condition k;®; [f(] =0: Pimnlk] =
Em Pin K] + kn Pim[k] with projection operator P;;[k] = é;; — k;kj/kz, where §;;
is the Kronecker delta function. The cutoff A, is the wavenumber above which
viscosity wipes out all motion, A, = 1 is an ordering parameter and d is the
number of dimensions. The brackets <> denote an ensemble average. The
force, and thus the zeroth-order velocity (in },), is homogeneous and isotropic,
defined by the scalar correlation function F[k].

Course graining is achieved with the following steps:

1. Define 4F = ;[0 < k < k] and 97 = #;[k. < k < A,] (with analogous
definitions for ff and j?) where k. is the low wavenumber cutoff of the band
to be eliminated.

2. In the nonlinear term let #,,[qlon]k — §] = 95[a]oS k — &) + 265k —
alo; [a] + o7, 497 [k — 4).

3. Tteratively substitute for 4 in the equation for d<. Iterate a number of
times equal to the order of the nonlinearity, i.e. keep terms to order Az,

4. Ensemble average over fi> and evaluate all four-dimensional ~-integrals.
These are integrals whose integrand has wavenumber defined in the interval
[k, Ao]. All >-integrals are calculated to lowest order in the distant interaction
limit. This is the limit in which <-wavenumbers are small compared to ~-

wavenumbers.

Steps 1-4 eliminate the wavenumber band k. < k < A,.
In addition to terms obtained by replacing #; by ¥ in the original equations,
correction terms are generated. They are

a. force renormalization terms. These terms are zeroth-order in 4 and rede-
fine the force correlation.

b. viscosity renormalization terms. These are linear in §° and define an eddy
viscosity, vr = v, + bv.

¢. vertex renormalization terms. These are second-order in 'ﬁf and redefine
the vertex, Ar = A, + 6\. These terms must vanish in the infrared limit £k — 0
by Galilean invariance (Forster et. al., 1977).
<

d. higher order terms in 9.
To focus on scale-invariant behavior inherent in the original equations, one jus-
tifies neglect of new terms. Then one proceeds to the second half of the RG
transformation, the rescaling. In this case the scale-invariant behavior is the
balance between forcing and eddy damping and the new terms are higher order
in ﬁf.

One iterates the two-part RG symmetry transformation until the equations
converge to a ‘fixed point’. At a fixed point, the parameters in the model no

longer change; the equations are invariant under the RG transformation and
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describe self-similar physics. The scaling laws at a fixed point are often inde-
pendent of the initial parameter values and capture ‘universal’ physics contained
the original model.

3. The ¢-expansion

Fournier et. al., (1983) examined the general class of force-correlation func-
tions F[k] = 2xk3~¢ for ¢ > 0. (The parameter ¢ here simply defines F[k] and is
not the dissipation rate, traditionally denoted by the same symbol. In this paper
we denote the dissipation rate of the turbulent field by ¢ to avoid confusion.)
They found for the eddy viscosity, after elimination of the wavenumber band
ke <k < A,

[€]Do

4 k¢ —AJC
vrlke] = vo(1 + 321Pe (ke = oD yuss, 3)

where o [e] = (42 — d — €)/(4d(d + 2)7?).
At the fixed point, which is found in the limit A, >> k., k. — k — 0, the
following asymptotic relations hold:

vrl] ~ 22y prrsg-ers ()
€
30, e] 1/3 2/37,1—2¢/3
B[] ~ (ZHE)1 D2k (5)
B \. p/? .
— Dol ~ ~1/2 1/2
A - (V;/zkz/z) (301 [G]) ¢ (6)

where ) is the non-dimensionalized expansion parameter (Reynolds number).
Relations (4)-(6) are universal in the sense that they do not depend on v,.

If ¢ < 0, the fixed point energy spectrum (5) results from force-correlation
function F[k] = 2xk3~2¢/3, The case e = —2/3 was considered by Forster et. al.,
(1977), and reproduces E[k] o« k* for low wavenumbers. This is the power law
predicted by Saffman (1967) for homogeneous, isotropic turbulence. For € < 0,
the dynamics are not universal at the fixed point.

The point € = 0 is called a crossover point: for ¢ < 0, higher-order terms in N
decay exponentially as k. is decreased and statistics are essentially Gaussian; for
¢ > 0, higher-order terms in 3 become important and statistics are no longer
Gaussian (Fournier et. al., 1978, Kraichnan, 1987, 1989). Neglect of the higher-
order terms is rigorously justified only for ¢ < 0. For all ¢ > 0, the higher-
order terms in #° are marginal (neither grow nor decay exponentially) as k. is
decreased.
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For e positive and near zero, the expansion in powers of X is likely, but not
guaranteed, to be asymptotic by relation (6). Unfortunately, € near zero cor-
responds to an energy spectrum near E[k] ~ k, which is not often observed in
nature.

Despite the mathematical uncertainties associated with positive values of €
away from zero, Yakhot et. al., (I), applied the RG procedure to the forced
Navier Stokes equations (1) and (2) with ¢ = 4. This case models the physically
relevant spectrum E[k] ~ k~%/3, Their results are exactly equations (3)-(6) with
€ = 4 everywhere except in the coefficient ;. The value € = 0 is used to evaluate
oy. By relating the parameter D, to the flow-averaged dissipation rate £, they
found the universal scaling law E[k] = 1.61762/2k~3/3 (Leslie, 1973, I, Dannevik,
Yakhot, and Orszag, 1987).

The prediction for Kolmogorov’s constant 1.617 is very close to the observed
values, which are in the range 1.4-1.6. It is found using o,[0] = 1/(10x%). If
o1[4] = 1/(307?) is used, the RG value of Kolmogorov’s constant is 1.11. It is
not apparent why the coeflicient at the fixed point should be evaluated at e = 0
instead of ¢ = 4. Indeed, the general procedure advocated in I is to evaluate all
coeflicients at the fixed point using ¢ = 0. This procedure is supported by most
of the RG results for turbulence. As another example, the Obukhov-Corrsin
constant derived using ¢ = 0 is 1.16, while the value derived using ¢ = 4 is 0.41.
However, we show in Section 6 that evaluating coeflicients in the RG equation
for the dissipation rate at ¢ = 0 leads to results that are inconsistent with direct
numerical simulations and the traditional model. Paper I does not explain why
amplitudes of a k!-spectrum are used for the theory of a k~3/*-spectrum. '

If we are only interested in scale-invariant physics, the RG-expansion is likely
to reflect its essential features, regardless of the value of e. The difference between
¢ from its crossover value gives a rough idea of the importance of the dynamics
that are being neglected and the departure from Gaussian statistics. For high
Reynolds number turbulence, with a well-developed k~%/3-spectrum, the eddy
viscosity (3) with € = 4 may capture the eddy-damping effect of small scales
even though all other effects are ignored in the RG analysis. Numerical tests
will be decisive (Karniadakis, Yakhot, Rakib, Orszag and Yakhot, 1989).

To summarize, the RG-expansion probably provides an accurate description
of self-similar physics. The difference between the expansion parameter and its
crossover value is a measure of the importance of other dynamics and of non-
Gaussianity. It is not clear if and/or why amplitudes should always be evaluated
at the crossover value of the renormalized expansion parameter.

4. Weakly anisotropic turbulence

A model for weakly anisotropic turbulence can be developed by extending the
force correlation to depend linearly on the anisotropy tensor b;;,
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A . A Flk
< fi[klf;[K'] >= (2r)*t16[k + K'|D, 2—1&:—1{213.','[1(]-1-
(binknkj + bjuknki) + bnmknkmkikj+

k? k4

+9{b;; —

bumknkmnbii  bumkn k kik;
+eo( L - )3} (7)

k2
where a, and 1 are constants. The anisotropy tensor is defined as b;; = (<
vi[x, t]vj[x, 1] > —(1/3)k6;;)/x where & = (1/2) < vi[x, t]vi[x,t] >. Relation (7)
is the most general weakly anisotropic correlation (i.e. linear in b;;) that satisfies
continuity and the required symmetry conditions (Reynolds, 1987). Note that
b;; is a matrix of constants because the flow is assumed homogeneous.

In anticipation of an anisotropic eddy viscosity, let

G°lk] = (—iw + vok® 4 Bokmknbmn)™? (8)

in the forced Navier Stokes equations (1), where 8, = 0. The model given by
(1), (7) and (8) has no mean flow.

The RG steps 1-4 result in renormalized equations with correction terms a-
d (Section 2) where the eddy damping is now defined by vr = v, + év and
Br = B, + §B. In addition, a fifth type of term is generated which couples the
equation for %;[k] to the equation for #;[k]:

e. linear coupling terms. In the equatlon for ﬁ, [ﬁ} these are linear in 9;[k]
and have the form (k?b;; — kikmbm ;)95 k] = M;; o; 55 [k].
The linear coupling terms show that the small scales can force 9; through inter-
action with 9;.

One can suppress this forcing by choosing a such that it vanishes at each
iteration of the RG scale elimination. The choice

ﬁ(n)
2p(n)

o™ =1+4¢ (9)

makes the coefficient of the linear coupling terms zero. The superscript n is the
iteration number.

With constraint (9), F[k] = 2mk*~¢ and ¢ = 4 (E[k] ~ k—5/3), one finds

(nt1) _ (m) 1 ("-1)
Vp =Vp + U][ ] ("'))2 (A[nr])‘ 4 (10)

n " Do (n) 4r 1
ﬂ"r g 4 g0 Q) 2(,;") +¢)(A[n,.])4 (e : ) (11)
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where o,[0] = 1/(107%) as above, 0;[0] = 1/(407?) and A[nr] = A,e™ = k..
The cutoff k. is now the last eliminated wavenumber.

The differential equations appropriate for repeated elimination of infinitesimal
bands (r — 0) are

dy(fn[nl = oyvrln)(Aln))? (12)
dﬂ;[n] = o3(Brln] + $wrn)(An])’ (13)

where = nr and X is the renormalized expansion parameter given by (6). The
solution of (12) subject to vr[0] = v, is equation (3) with k. = Ay,e™7; the
solution of (13) subject to condition f7[0] = 0 is

Brlk.] = _(_M.(u[kc] - ugl“’z/"t)u;.’/"‘ (k). (14)

- (1 - 0’2/0’])
As in the isotropic theory given in Sections 2 and 3, the fixed point is at
n — oo, which corresponds to k. — k — 0. According to the theory of Yakhot
et. al., one evaluates the coeflicients o; and o3 at the crossover ¢ = 0. Then

vr(k], E[k] and X are given by (4)-(6), Sr[k] ~ (1/3)¥vr[k] and

13
A —, 15
o 5 (15)

The parameter a defines the turbulent states that are energetically possible in
the model. As a increases, the function space of realizable states decreases (Shih
et. al., to be submitted to J. Fluid Mech.). The value of o for the Reynolds-
stress model of Launder, Reece and Rodi, (1975), is arrr = .527; the value
for the Reynolds stress model that matches Rapid Distortion Theory (RDT)
is appr = 3/2. Both models have small regions of realizability around the
isotropic turbulence point.

If we suppress the linear coupling terms in the RG analysis, a increases from
1 to 13/6 as more and more scales are eliminated from the problem. In view
of the large values of a necessary to prevent linear coupling, turbulence models
based on RG theory which includes this coupling seem more promising. The
extension is relatively simple: the model equations become

. PP .y 1A dq . . . o .

;(k] = G°[k]fi[k]+ O, M;;[k]o; [k] - Tpimn[k] W”m[cﬂvn[k_q] (16)
where M;; is defined above and ©, = 0. Two special cases were treated by
Rubinstein and Barton (1987). This is a possible area of further research. The

equations of a passive scalar are amenable to similar analysis.
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5. Homogeneous turbulence with a weak mean flow

A formulation of the RG theory of turbulence without an artificial external
force would be appealing. One might think that providing an internal produc-
tion mechanism by including a mean flow would alleviate the necessity of an
external force. However, if the zeroth-order turbulent velocity field is sustained
by interaction with the mean, then wavenumbers are changing in time as quickly
as Fourier amplitudes. For the RG analysis to be meaningful, one requires that
wavenumbers stay constant at least in the turnover time of a large eddy.

Thus we continue to assume that the turbulence is sustained by an external
force. The homogeneous mean must be considered weak and corrects the zeroth-
order solution given by the balance of external forcing and viscous diffusion. Our
model equations for the fluctuations o} are

ok = GORIAK] + N5} K - 52 Pemall] [ Srinlalilk—a) (17)
Nij[k] =M nnkm ‘6%5,'1' - Ii,'j + 2kr’:—2ki'nmj (18)

where 3; = U; + 9}, U; =< %; >= Il;;z; and II;; is constant (Leslie, 1973).

For 51mphc1ty, one may first consider isotropic, homogeneous forcing given by
the correlation (2). The RG procedure is carried out as in Section 2, by repeated
substitution of (¢!)> in the equation for (#})<. For consistent asymptotics, terms
of order II};A, and II;;A2 must be retained, while terms of order A3 may be
dropped. One anticipates interesting changes in the RG eddy viscosity.

The RG analysis for homogeneous shear should reproduce the universal scalar
spectrum of the Reynolds stress in the inertial range. For shear in the z, direc-
tion, U; = Ué;; 2, RG should predict 47k? < 9] [f(]ﬁ; [l‘(] > k7778,

One immediately notices the similarity between the model equations with a
mean flow (17) and the renormalized model equations due to anisotropic external
forcing (16). This similarity can be exploited to reduce the amount of work in
the problem with a weak mean flow. It is a straightforward extension to flow
with a homogeneous mean driven by a weakly anisotropic external forcing.

6. The RG « — ¢ model

The most important RG contribution to turbulence modeling has thus far
been low Reynolds number corrections to previously established high Reynolds
number equations. The RG corrections are derived, unlike their ad-hoc prede-
cessors.

Unfortunately, there remain unresolved issues in the high Reynolds number
RG & — € model. These should be reconciléd before study of the low Reynolds
number corrections. For better understanding of the RG x — ¢ equations, the
traditional model is reviewed. The Yakhot-Orszag RG model is then discussed.
We give a corrections to, and a reinterpretation of, the results cited in I.
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6.1. The traditional x — € model

The dissipation rate of fluctuations in homogeneous turbulence is € = v, <
(V;v!)?> > where v[x,t] are the zero-averaged fluctuations from the mean. As
in Section 5, v; = U; + v}, U; =< v; >= II;jz; where II;; is constant. The time
rate of change of ¢ is

1 2

%% = —éuz <(V;Vnol)? ;—auo < (V;9))(Vmvi) > VjU,,:—

3 4

— 2w, < (V30)(V00) > VUi — 205 < (V;00)(Vi05 ) (Vo)) >.  (19)

In the standard, high Reynolds number model of equation (19), the total
dissipation of ¢ is represented by the combination of the dissipation term 1 and
the turbulent transport term 4,

2
—2113 < (VjV.,,{UZ)z > =2u, < (V,v:)(V,v:n)(va() > —03% (20)

where C? is an adjustable constant. A typical value of C? is 1.8. The total
production is traditionally modeled by the sum of the two remaining terms, 2
and 3,

20, < (V0 (V) > VU — 20, < (V;01)(V;04) > VUi

~ ~C! ’—i-VjU,- < vv; > . (21)

The constant C} is also adjustable. A typical value for C! is 1.4.
The simplest model of ¢ for inhomogeneous turbulence simply restores diffu-
sion and advection by the mean,

e 1€ €2

5 +U;V;e =C, ;Px - C; - + V;xrVje (22)
where xr is an eddy diffusivity and P = —V;U; < v;v; >. The Reynolds stress
< vjv} > is usually modeled by — < vjv} >= vrV;U; + 26;;/3.

Though the parameterizations in (22) are for high Reynolds number turbu-
lence, their signs and general trends are supported by direct numerical simula-
tions of turbulent channel flow (Mansour, Kim, and Moin, 1988). The simula-
tions are necessarily at low Reynolds numbers. In section 6.3, consistency with
the simulation data is used to reinterpret the RG-based e-equation.
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6.2. The Yakhot-Orszag RG e-equation

The goal is to calculate the effect of the small scale velocity field on the large
scale variations of e. The strategy is to assume that the high wavenumber
velocity field obeys forced Navier Stokes equations, for examples (1) or (18).
The model worked out in I assumes that the high wavenumbers are governed by
(1) with homogeneous, isotropic forcing given by (2).

The steps used in I to derive the RG e-equation are given in CTR Manuscript
106 (Smith, 1989). Many assumptions of the procedure are not explicitly ad-
dressed by the authors of I. A large amount of second guessing is required to
understand their interpretation of the results. Due to the complexity and vague-
ness of their method, the steps will not be presented here.

Here we simply state the results reported in I and give corrections. The
corrections are to purely mechanical errors and do not address assumptions or
interpretation. These more important issues are discussed in section 6.3.

The Yakhot-Orszag high Reynolds number, RG ¢-equation is

O £ e?
ot + U;Vje = —1.063;P,c - 1.7215: + V;x7V;e (23)
where P, = -V;U; < vSv;- > as above. The Reynolds stress is again modeled by
— < vjv} >= vpV;U; + 2x6;;/3. The RG theory gives vy and xr as functions
of € and k.

The corrected model, based on the same method, assumptions and interpre-
tation, is
2

Oe ‘ €

Et_ + UJ'VJ'E = 1.5946(0,00 + Eboo) + 0.9: + ijTVjE (24)
where the coefficient of the production term is identically zero (CTR Manuscript
102, 1989). The constants a., and by, are defined by integrals,

Qoo = —2/0 dn vr[n]A[n]

*° 1

where vp[n] is given by (3) with k. = A[g] = A,e™". The term 1.594¢(aoo +€boo )
has the same scaling as the term 10.5¢% /k, but is of the opposite sign and larger
in magnitude. All coefficients in models (23) and (24) are evaluated at the
crossover value of the renormalized expansion parameter, ¢ = 0. Models (23)

and (24) should be compared with the standard model (22).
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6.3. Corrected results reinterpreted

In paper I, the starting point to derive the RG ¢-equation is the equation for
¢ = vo(V;vi[x,])?2. The average of ¢ is the dissipation rate in homogeneous
turbulence. The exact equation for ¢ is

?9_? = —0;V;$ + 1.V;Vid — 20,(Vm V0:)" -
—2 "f(v,-v,-)(v,.v,-P) — 206(V ;0 )(V 0m ) (Vi 0;) (26)

The origin in (26) of the terms in model (24) suggests a reinterpretation con-
sistent with the standard model (22) and direct numerical simulation data for
turbulent channel flow. The RG analysis is actually performed on the transform
of equation (26) with #; = 95 + 7, ¢ = < + ¢> and P = P< 4+ P>. The fol-
lowing list gives the origin, Fourier integral and final contribution in real space
in the format

*). origin in equation (27)

Fourier integral

—  final contribution to RG model

a.) a renormalized diffusion term, generated by the —v;V ;¢ term:
. dq .5 a5 .
~ik; / Wi’f [a]¢” [k — 4]
- VixrV;i¢<. (27)
b.) a contribution from —2v,(V,, V;v;)%:
2wy [ S mas(k = Ol — 0);7 )87k - &)
(27l')d+l J 7% i

— Bae(as + 3vrA}). (28)
c.) contributions from —2v,(V ;9;)(Vjvm )(Vmvi):

) dadrdp _ . . . ., .s:. e ral. AL s
2iv, (27‘.)T+25[k — § - # — plg; 97 [Qlpm 97 [Blr; o [F]  +

[ dadRdp o . . . st s acpe
t v | o Sk -4 F- Plg; 7 [lr; o7, [Flpm 67 [B)

-2
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3(d+d+e—6) 1 )
2 2d(d+2) WEALT

— ﬁdEVT(V'vf)z(bw + 29)
J

In b.) and c.), Ay is the integral scale. The relationships between A¢, v, € and
K are

3 €
vrA} = ECK')’[f];

vy = ¢, [e]g (30)

where Ay = (d* — d — €)/(2d(d + 2)), By = 1.54,/.1904, v[¢] = (344B4/8)'/3,
c,[e] = (47[€])/(9C% [e]) and Ckle] is the RG prediction for Kolmogorov’s con-
stant.

In the corrected Yakhot-Orszag model described by (24) and (25), the con-
stants were evaluated at the crossover value of the renormalized expansion pa-
rameter ¢, Here the e-dependence is shown explicitly. The definition of b, as a
function of € is

(*+d+e—6) [ 1
T2+ 9) [ e AT ] (1)

The expression (3) for vr[n] and Aln] = A,e™" may still be used to evaluate an
and b.,. The coefficient defining a., is not a function of e. The renormalized
diffusivity xr is a function of €.

The division into > and < functions identifies the sub-equation in (26) that
generates the renormalized e-equation. The derivation in I associates v with’
v!, v< with U; and € = v, < (V;v)? >= vr < (V;v])? >. The contributing
sub-equation is then

boo =

O¢
"a—t' = —UjVjE + VjXTVJjE - 21/: < (Vijv§)2 > —
—2v, < (V,v:)(va:) > VjU.m — 2, < (VJ‘U:)(V]’U:n) >V, U;. (32)

Equation (32) is the exact equation (19) for ¢ without the turbulent transport
term and with advection and diffusion restored.

The simulation data for channel flow indicates that the contribution c.) should
be a production term. If the Reynolds stress is modeled by — < v; v;- >=vpV;U;,
then P, = VT(VJ-U,-)2 =vr < (V’,-‘of)2 >= €. Thus, in the context of RG and
traditional modeling, we may label vy < (V;vS)? > either P, or ¢, depending
on the sign of its coefficient.
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The sign of contribution c.) is positive, in accord with the numerical simula-
tion data. Thus we should identify c.) as

1.594¢ P, (boo [0] — %), (33)

where by, is larger in magnitude than the 1/x term and has the opposite sign.
The interpretation (33) is consistent with standard model (22) and the simu-
lation data for channel flow, and gives

g_i +U;V e = 1.594¢(a00[0] + £boo [0])+

2
5.7 — 485 P, + V;xrV;e. (34)
K K

In equations (33) and (34) all coefficients have been evaluated at ¢ = 0.

7. RG analysis of optimal equations

The Euler-Lagrange (EL) equations governing the optimization of a mean field
moment, subject to constraints derived from the Navier Stokes equations, have
smooth, ordered solutions. The EL solutions better approximate the ordered
features of turbulent flow with each additional constraint. A particular class of
EL equations that approximates the equations of shear turbulence has solutions
of self-similar, downstream rolls (Busse, 1970). This scale-invariant structure
suggests that RG analysis of EL equations may be fruitful.

Well chosen EL equations may adequately capture ‘order within disorder’ and
predict the organized motions observed in real turbulent flows. For example,
the size of the smallest downstream roll in the above mentioned solutions is a
prediction for the spacing of the streaks near the wall in shear flows. The fact
that these EL equations capture self-similar physics indicates that optimal theory
and RG theory are different approaches that may sometimes isolate the same
phenomena. Perhaps they are complimentary when applied to the turbulence
problem.

Optimal theory has until now been restricted to semi-analytically tractable EL
equations. Thus, the constraints have been limited to the boundary conditions,
continuity and the integral statement of energy balance. A joint project with
F. Waleffe is an upper bound formulation based on additional constraints which
impose the balance of vorticity. Such a formulation requires numerical solution,
but will unquestionably provide better and more accurate information about the .
ordered structures in turbulent shear flows. (See the CTR 1989 Annual Report
by F. Waleffe.)

The optimal equations constrained by the boundary conditions, continuity
and the integral statement of energy have the same linear terms as the Navier
Stokes equations and different nonlinear terms. Only the nonlinear terms are
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affected by the addition of more constraints. The existence of nonlinear terms
which represent only the ordered, self-similar physics inherent in the Navier
Stokes nonlinear terms would be intriguing. The RG method is not limited by
nonlinearity, however complicated. Features such as the streak spacing and the
slope of the logarithmic layer should be products of RG analysis.

8. Conclusions

There remain unanswered questions about the Yakhot-Orszag theory of tur-
bulence based on renormalization group techniques. Among them are ‘What
is the meaning of evaluating coefficients at the crossover value of the nondi-
mensionalized expansion parameter?’ and ‘What is the correct procedure for
deriving a model equation for the dissipation rate?’. Extension of the theory to
weakly anisotropic flow, and to flow with a mean, may help answer these ques-
tions as well as improve eddy viscosity/diffusivity models. Finally, RG analysis
of optimal equations may help isolate the ordered features of turbulent flows.
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Short-time Lyapunov exponent analysis
By J. A. Vastano

A new technique for analyzing complicated fluid flows in numerical simulations
has been successfully tested. The analysis uses short-time Lyapunov exponent
contributions and the associated Lyapunov perturbation fields. A direct simula-
tion of Taylor-Couette flow just past the onset of chaos demonstrated that this
new technique marks important times during the system evolution and identi-
fies the important flow features at those times. This new technique will now be
applied to a “minimal” turbulent channel.

1. Introduction

Numerical simulations of turbulence are increasing in number and quality each
year. These simulations provide a wealth of information about the structure of
turbulent flows. The analysis of these flows must start, therefore, by discovering
when and where to look at the system in order to see the important events in the
flow evolution. Short-time Lyapunov exponent analysis is a new technique that
shows promise for finding these events. Research at the Center for Turbulence
Research over the past year has shown that this technique can successfully locate
the times during a flow evolution when important chaos-producing mechanisms
are operating. At these times, the structure of the perturbation fields associated
with the Lyapunov exponent computation give a picture of those flow features
in which the exponential growth of perturbations is occurring. This report will
define the Lyapunov exponent spectrum, describe the short-time contributions
and fields used in the analysis, and discuss the numerical tests that have been
performed.

2. Lyapunov exponent analysis

The asymptotic motion of a bounded, dissipative system is on some attracting
set in its phase space (Eckmann and Ruelle 1985). Attractors range from simple
fixed points to chaotic strange attractors. The Lyapunov exponent spectrum
provides a fundamental description of the geometric and dynamical properties of
an attractor. Lyapunov exponents measure the long-term average exponential
growth rate of perturbations to the system trajectory in phase space. More
precisely, if the time evolution of the system z is given by

&t = F(z),
then a perturbation éz evolves according to

bz = J(z)éz;
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where J(z) is the linearized form of F(z), J(z) = dF/dz. For a given initial
condition z(0) on the attractor and an initial perturbation éz(0),

sz(t) = M(t,z(0))éz(0),

where
M=/0 J(z(s))ds

The long-time evolution of perturbations will be governed by the eigenvalues
of M*M. The eigenmodes specify perturbation fields §z;(0) that will grow at
the rates given by the eigenvalues. We define the Lyapunov exponents A; by

A = Jim 7 log(162:(2)/18=4(0))).

The exponents are ordered so that )\, is largest. There are an infinite number
of Lyapunov exponents for a spatially-extended system. Each exponent cor-
responds, roughly, to a separate direction in phase space. The Kaplan-Yorke
conjecture (Frederickson et al. 1983) gives a simple formula that relates the
Lyapunov exponents of an attractor to its dimension. Initial perturbations in
almost any direction will grow at the rate A;, but there exist subspaces of the
initial tangent space for which perturbations grow at the rates given by the
other Lyapunov exponents as well. In computing the exponents, one follows N
perturbations to estimate N Lyapunov exponents. A standard technique ex-
ists for evolving the perturbations for long times and obtaining estimates of all
N exponents (Benettin et al. 1980) The basic procedure is the Gram-Schmidt
reorthogonalization, which removes from the ¢-th perturbation field those com-
ponents corresponding to growth at rates A; through A;_;.

The greatest difficulty in computing Lyapunov exponent spectra for model
systems is that the convergence of the running estimates to the long-time average
exponents is slow (like 1/t ) and cannot be accelerated. On the other hand, it has
been argued (Goldhirsch et al. 1987, Greene and Kim 1987) that the evolving
perturbation fields éz;(t) decay exponentially fast to the eigenmodes of M(t,0)
and, furthermore, that these functions are themselves a smooth field over the
attractor. In other words, the Lyapunov perturbation fields are local properties
on the attractor. If this is the case, then the short-time contributions to the
long-time average exponent,

1
AXi(t) = 7 log(|8z:(t + At)[/|8z:(2)])
are also local properties on the attractor.

The growth of perturbations to the system at any time can be measured by
projecting the perturbation onto the local Lyapunov perturbation fields and
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checking the short-time expansion rates. Clearly, when these short-time rates
are much smaller or larger than average, perturbation will either be damped or
expand at large rates. In addition, if the perturbation fields themselves have
structure, they indicate where in physical space the mechanisms driving the
instability are located, and the form of the instability.

3. A test case

To test the utility of the short-time exponent analysis, numerical simulations
were performed on Taylor-Couette flow just past the onset of chaos in that
system. This system was chosen because there is experimental evidence that
the flow is low-dimensionally chaotic at computationally accessible Reynolds
numbers. A code for computing the base flow already existed (Moser et al. 1985)
and could be easily extended to the computation of N Lyapunov exponents.
Although there had been a great deal of previous experimental, theoretical, and
numerical work on this system, the transition to chaos was not understood. In
particular, no physical mechanism or instability underlying the transition from
quasiperiodic to chaotic flow had been determined.

The particular Taylor-Couette flow studied was chosen to match the most com-
plete experiment to date on the transition to chaos in this system (Brandstater
et al. 1985, Brandstater and Swinney 1987). For this case, the outer cylinder
is fixed and the inner rotates at a constant frequency. At Reynolds numbers R
near zero, the flow state is Couette flow, axially and azimuthally homogeneous.
At a critical Reynolds number R., a bifurcation to another steady flow occurs.
This is Taylor vortex flow, consisting of an axial stack of ring vortices, still az-
imuthally homogeneous. Neighboring vortices rotate in the opposite sense, so
that vortices are separated by alternating inflow and outflow boundaries. The
axial wavelength is defined by a pair of Taylor vortices. In the experiment of
Brandstater and Swinney, the average axial wavelength was 2.5 times the gap
between cylinders. The numerical simulation assumes axial periodicity; the axial
period is set to 2.5 gaps.

At higher Reynolds numbers, first one and then a second azimuthal travelling
wave appear on the vortices. Each travelling wave introduces an independent
frequency of motion to the flow. The waves have integer azimuthal wavenum-
ber: in the experiment of Brandstater and Swinney, both travelling waves had
wavenumber four. This is convenient for the simulations, since the state is four-
fold symmetric in the azimuthal direction and it is only necessary to simulate a
quarter of the azimuthal extent. In the experiment, the onset of quasiperiodic
(two-frequency) flow occurred at R/R. = 10.0, and a chaotic flow was observed
at R/R. = 11.7. The dimension of chaotic attractors can be determined from
time series data. Experimental time series yielded dimension estimates between
two and three for Reynolds numbers as high as R/R. = 15.
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FIGURE 1. Contours of azimuthal velocity at a midplane in 7 for R/R. =
12.0. The horizontal axis is the azimuthal direction and the vertical axis is the
axial direction. One-quarter of the cylinder is shown azimuthally, and two axial
wavelengths (twice the computational grid) are shown axially.

4. Results

To convert the code of Moser et al. to estimate N, Lyapunov exponents
required following N + 1 times as many fields. The linear part of the time
evolution operator is identical for the base flow and the perturbations. The
nonlinear term of the evolution operator for the base flow is u x w. For the
perturbations, this term becomes §u X w +u X §w. The only other addition to the
code was the Gram-Schmidt reorthogonalization procedure, which is done every
few time steps, primarily to give smooth short-time contribution curves. Since
computing N Lyapunov exponents requires (N +1) times as many grid points as
does the base simulation, it was essential to use the lowest resolution possible.
The resolution used in the simulations was 16 Chebyshev modes radially by
32 Fourier modes in the axial and azimuthal directions. This resolution was
sufficient to capture the flow in the quasiperiodic regime immediately prior to
the onset of chaos with good accuracy. The travelling wave frequencies were
predicted to within 2% of the values seen in experiment at R/R. = 11. Increasing
the number of radial modes to 32 dropped the discrepancy to less than a percent,
but did not otherwise alter the flow.

A sample flow visualization, at R/R. = 12, is shown in Figure 1. This is a
picture at an instant of time of a chaotic flow. The quantity shown is the az-
imuthal velocity component of the flow at a radial midplane. The more focused,
higher velocity jet is the radial outflow boundary jet, while the more diffuse
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FIGURE 2. Convergence of the Lyapunov exponents at R/R. = 11.32 for (a)
the first five exponents, (b) exponents six through fourteen.

jet is the radial inflow boundary jet. The jets are labelled by their radial com-
ponents, but the dominant velocity component in both jets is azimuthal, not
radial. Chaos appeared in the simulations at about R/R. = 11.1, earlier than
had been observed in experiments. A power spectral analysis of a numerically
computed time series showed that the travelling wave peaks in the spectrum
corresponding to the travelling wave frequencies were about 8 decades above
the broadband noise component at R/R. = 11.3. The experiments had only
six decades of signal-to-noise separation; thus, it is probable that the chaos was
already present in the experiment at this Reynolds number, but was masked by
the instrumental noise.
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Fi1GURE 3. Short-time contributions to the first nonzero Lyapunov exponent
for (a) R/R. = 9.71 (quasiperiodic), and (b) R/R. = 11.32 (chaotic).

The convergence of the Lyapunov exponents in the simulation is shown in
Figure 2. The first five exponents were computed for almost 600 cylinder rev-
olutions, but clearly from the figure they are just converging. The next nine
exponents were followed for a much shorter time, and there is still a large un-
certainty in their estimates. The trend in the exponents is clear, however, and
the Kaplan-Yorke formula gives an attractor dimension of about nine. This is
higher than the values between 2 and 3 determined from experimental data. It
would appear that low amplitude structure unresolved in the experiments adds
significantly to the dimension of the chaos.

Computation of well-converged Lyapunov exponent spectra is expensive: the
runs described above used more than 500 hours of CPU time on a Cray-YMP
computer. This is in contrast to the short-time Lyapunov exponent contribu-
tions, shown in Figure 3 for a quasiperiodic and a chaotic case. The perturba-
tion fields, started from random initial conditions, evolved very rapidly towards
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FIGURE 4. The chaotic flow at R/R. = 11.32. Shown are the azimuthal velocity
contours at a midplane in r for (a) a minimum in the short-time contributions
to Ay, and (b) a maximum.

asymptotic forms that are displayed at selected times for the chaotic case in Fig-
ure 5. The short-time contributions settled down somewhat more slowly than
the gross form of the perturbation fields, but were qualitatively similar to the
time traces shown in Figure 3 within 40 cylinder revolutions.

The first thing to notice about the short-time contributions is the enormous
variation of the contributions compared to the long-time average exponents. For
the quasiperiodic case, the contributions are to the first negative exponent, which
has a value of -0.4 bits/T;, where T} is the period of the primary travelling wave.
For the chaotic case, the contributions shown are for the first exponent, which
has a value of 0.35 bits/T}. The short-time contributions can be forty times or
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FIGURE 5. The perturbation field corresponding to A; for the flow of Fig. 4.
Shown are the azimuthal velocity contours at a midplane in r for (a) a minimum
in the short-time contributions to A;, and (b) a maximum.

more the size of the long-time average, and of either sign. There are fairly rapid,
small oscillations in the contributions that are not yet understood; they may be
related to the evolution of structures in the perturbation fields. The large scale
oscillations on a time scale of two cylinder periods are the important features for
understanding the flow. At minima, perturbations to the flow are crushed, while
at maxima they can expand at an enormous rate (for a short time). Figure 4
shows the chaotic flow at times corresponding to a minimum and the succeeding
maximum of the short-time contributions to A\;. The large-scale change in the
wave-forms is the quasiperiodic part of the flow. The separation of the outflow
and inflow jets at closest approach is much smaller at the maximum time than at
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the minimum time. This seems to be what triggers the instability of the flow that
causes the chaos. The jet profiles have been followed as they evolve, and there
does not appear to be any change in the jets other than their separation. The
nature of the instability that is triggered can be seen in Figure 5, which displays
the perturbation field at the same times. All of the energy in the perturbation
is concentrated on the outflow boundary jet at both times, and it has the same
general form: the outflow jet is rolling up. Examination of the perturbation
field at other radial locations shows no important radial effects, so while the
jet is not two-dimensional, the instability is very much a Kelvin-Helmholtz type
phenomenon.

The instability scenario gleaned from the short-time analysis is this: as the
quasiperiodic evolution of the flow proceeds, the outflow jet is destabilized by
the close approach of the inflow boundary jet. For some part of the overall
evolution, a perturbation of the outflow jet in the form of a roll-up of the jet
can grow. This produces the chaos in the system. Examination of Figure 1
shows that at higher Reynolds numbers, the roll-up becomes more apparent in
the base flow itself. The same type of perturbation field is also observed for the
quasiperiodic case, indicating that prior to the instability, the same mechanism
is present as a damped mode,.

5. Future plans

The test case has shown that short-time Lyapunov exponent analysis can be
a useful tool for examining chaotic flows. The next step will be to apply this
tool to a fully turbulent flow. The plane channel case studied by Keefe (1987)
has an extremely high dimension, requiring the evolution of many hundreds of
perturbation fields. This will not be possible in an economical way. A better
alternative is the “minimal” channel studied by Jiménez (1989): not only will
the dimension and thus the number of requisite perturbations be lower, but
the number of structures in the flow will be reduced, simplifying the task of
identifying which of them are important to the turbulence evolution
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Organized motions underlying
turbulent shear flows

By F. Waleffe

1. Introduction

The objective of this project is to determine the nature and significance of
the organized motions underlying turbulent shear flows. There is considerable
experimental evidence for the existence of such motions. In particular, one
consistently observes longitudinal streaks with a spacing of about 100 in wall
units in the near-wall region of wall-bounded shear flows. Recently, an analysis
based on the direct resonance mechanism has predicted the appearance of streaks
with precisely such a spacing. Also, the minimum channelsimulations of Jimenez
and Moin have given a strong dynamical significance to that spanwise length
scale. They have shown that turbulent-like flows can not be maintained when
the spanwise wavelength of the motion is constrained to be less than about that
critical number.

A critical review of the direct resonance ideas and the non-linear theory of
Benney and Gustavsson is presented first. It is shown how this leads to the later
mean flow-first harmonic theory of Benney. Finally, we note that a different
type of analysis has led to the prediction of streaks with a similar spacing. This
latter approach consists of looking for optimum fields and directly provides deep
insights into why a particular structure or a particular scale should be preferred.
Extension of past work is proposed.

2. The Direct resonance concept

The full velocity field is separated into a mean #(y) and a perturbation. The
equation for the mean is obtained by averaging the incompressible Navier-Stokes
equations over z, z, t:

1 d2 7] d
—P+ —uv 1
R dy ~ oz dy (1)
The equations for the perturbations are then derived by subtracting the av-
eraged equations from full Navier-Stokes. Eliminating the pressure and using
continuity leads to a set of equations for the remaining 2 degrees of freedom,
which correspond to the vertical velocity » and the vertical vorticity 7. One

finds:

3] 0 1 nw 0
(5+aa—z—ﬁv2)vzv—a 5;v=NL,, (2)
a _0 1 0
(a ua—z~—-EV2)17+u Ez-‘l):NL,, (3)



108 F. Waleffe

where the non-linear terms, NL,, NL,, are given in Jang, et al. (1986). The
boundary conditions are v = 5‘2—'0 =71 = 0 at the walls (y = 1 say), together
with some periodicity conditions in the z and z directions.

In the linear case, one looks for normal mode solutions of the form:

E— {’(y)ei(az+ﬂz—wt) (4)

n = f(y)eastPemwd (5)

The equation for the vertical velocity v, which decouples from the vertical
vorticity, is known as the Orr-Sommerfeld (OS) equation. It constitutes an
eigenvalue problem. The vertical vorticity is then obtained as the solution of a
forced ODE. This can be done by expanding 7 in a series based on the eigenmodes
of the homogeneous problem (also known as the Squire equation). Each term
in the expansion is proportional to (w — w;)”!, where w is an eigenvalue of
the OS equation and w; an eigenvalue of the Squire equation associated to an
eigenmode 7;(y). Of course, this procedure breaks down if any eigenvalue of the
Squire equation is identical to the OS eigenvalue. This situation corresponds
to a direct resonance. The free modes of the vertical vorticity equation are
always damped (that equation is simply advection-diffusion with zero boundary
conditions and no forcing). In consequence, a direct resonance can only occur for
damped modes. But even in the case of near-resonance, there is the possibility
that the vertical vorticity attains high amplitudes before the final viscous decay.

The general solution of the time dependent problem for a vertical vorticity of
the form n(y, t)e(*=+52) is given by:

e—iwt _ p—iwgt
7(y,t) = BAe ——— no(y) + R(y, ?) (6)
W — Wy
where ,
Judns dy
M = —/—m—— 7
" [nonidy M

The function R(y, t) contains terms of the same form for other eigenmodes 7; plus
homogeneous solutions so as to satisfy the initial conditions. We are interested
in the amplitude of the forced response:

e—:wt . e—twot

A(t) = Ao ———— (8)

W — Wy

For a direct resonance one gets A(t) = B te”*“*. After a time ¢, = |Im(w)|™!,
the amplitude reaches its maximum value given by :

Bl |

Al =
maz|4| e |Tm(w)]

(9)
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where the vertical bars denote an absolute value or the norm of a complex
number and Im(w) is the imaginary part of w. For near-resonance, a good
estimate of the maximum amplitude is given by

Bl |
e maz{|Im(w)|,[Im(wo)[} + |Re(w) — Re(wo)|/2

(10)

maz|A| ~

After reaching this maximum, the amplitude decays viscously. The most am-
plified modes are those for which the phase velocities are nearly equal and both
damping rates are small.

The interest in this mechanism is that if the gain in amplitude is significant
non-linear effects will start to play a role. The direct resonance mechanism
might then bridge the gap between linear theory and the observed 3-D non-
linear instability in shear flows. This is especially relevant to Couette flow for
which there is no known 2-D instability while direct resonances are present for
any wavenumber (and correspond to modes moving with the average velocity).

2.1. Non-linear effects

Whether direct resonance is an important mechanism or not depends on the
nature of the non-linear interactions which can be triggered. Non-linearity must
act quickly enough to prevent the linear viscous decay. One must realize that
only the vertical vorticity is amplified by the direct resonance and this limits
the possible non-linear effects. The non-linear implications of direct resonances
have been investigated by Benney and Gustavsson (1981). The situation is quite
different depending on whether one has a single 3-D wave or several.

For a single wave, the vertical velocity remains decoupled from the vertical
vorticity. The only non-linear terms in the vertical vorticity equation have the
form of an interaction between the vertical velocity and vorticity, but there is
no self-interaction of the vertical vorticity. This imposes strong limitations on
the non-linear effects. Benney and Gustavsson conclude that if € is a measure
of the amplitude of the vertical velocity perturbation, the time scale for the
non-linear interactions is ¢ 2, exactly as in classical weakly non-linear analy-
ses of OS waves. This time scale must be shorter than the viscous and phase
decorrelation time scales for the finite amplitude effects to act (i.e. one needs
[Im(w)], |Im(wp )|, |Re(w) — Re(wo)| < €2, a strong restriction). However, their
deduction ignores the interaction between the vertical velocity and vorticity
through the mean flow. That interaction occurs on a time scale of O(e™?),
much faster than O(e™?). That process is well illustrated by the following ex-
act viscous non-linear solution in an unbounded domain. Consider the flow:
v = wy(t)z — w,(t)y, v = —-1/2 w.(t)z, w = 1/2 w,(t)y, which is a lin-
ear flow with time-dependent vorticity. The u-velocity is given by the su-
perposition of two Couette flows. The v and w velocities are that of a rigid
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body rotation around the z-axis at a rate 1/2w,. The full vorticity equation,
D& = 3.V9 + vV23, becomes:

w,=0
. 1
Wy = "W (11)
) 1
W, = szwy
which implies that w.(t) = w.(0) stays constant. Then if initially the flow is a
Couette flow, w,(0) = —a, w,(0) = 0, on which a small downstream vortex is

introduced, w,(0) = 2¢, the solution is:

wy(t) = a sin(w.(0)t/2)
w.(t) = — a cos(w,(0)t/2)

For small times, one has:

wy(t) ~ a (et — (1) /6)
wa(t) ~ — a (1 - (et)?/2)

The time scale is indeed of order ¢~!. In a domain bounded by two infinite

horizontal planes the rigid rotation given by w, would be replaced by a periodic
array of downstream rolls. These downstream rolls would decay on a slow viscous
time scale due to the presence of the walls. The initial Couette flow would be
maintained by viscous action at the same walls. As a result, one would observe
a very “turbulent-looking” mean profile together with some associated streaks.

If there is a direct resonance for (a, 8), there is also one for (a, —3). It is then
necessary to consider the evolution when both waves are present. When several
modes are present simultaneously, there is the possibility of a non-linear feedback
on the vertical velocity. In that case, Benney and Gustavsson reason that the
time scale for the non-linear processes is € /%, which is very fast. On that
time scale the vertical vorticity and the associated horizontal motions reach an
amplitude of order €!/2, Benney and Gustavsson rescale the equations assuming
that the horizontal motions are of order ¢!/? while the vertical vorticity is of order
€. At lowest order, the resulting system consists of the homogeneous vorticity
equation and a non-homogeneous equation for the vertical velocity. Although
the derivation of these scalings is not available in their paper, one suspects
that they proceeded as follows. Starting with a vertical velocity e v(a, £83), the
vertical vorticity is “directly forced” and behaves initially as etn(a,+3). The
non-linear distortions are at least of order €2¢2. These distortions might interact
with n(a,+p) to induce a feedback on v(a,+8) of order e*t*, which introduces
an €t modification of n(a, +8). Schematically, one gets:

v(a, £f) = € (1 + 2t 4 .. )eilosEhz—wD)
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e, £8) = et(1 + E€t* + .. )eilezTPz—wt)

However, due to the necessary requirement of small damping for the direct res-
onance to lead to significant amplification, one can expect more resonances to
appear. In the worst case, the vertical vorticity could resonantly force a v(0,243)
mode (downstream roll with half spanwise wavelength), which then induces a
7(0,28) mode (streaks). The non-linear feedback on v(a, £8) could be as high as
order ¢*t®. This cascade of interactions is represented in the following diagram.

co(a, £8) —» etn(a, %)
et gn* — 22 v(0,28)
et v(0,28) — 1 7(0,28)
€ n(a, £8)1(0,28) — €'1° v(a, +p)

The first and third interactions are linear and correspond to “near direct res-
onances”. The second interaction was observed by Jang, Benney and Gran, it
is further discussed below. The fourth interaction has not yet been explicitly
established. If this scenario takes place, the correct expansion would rather be:

v(a,+8) = € (1 + 218 + .. .)ei(azEhz—w))

n(a, £6) = et(1 + 248 + .. )el(azEhz-w1)

implying a non-linear time scale of order ¢~1/3,

3. Applications

Gustavsson has looked for and found direct resonances for laminar Couette,
plane, and pipe Poiseuille flows. No exact resonances were found for laminar
boundary layer profiles; however, Jang, Benney and Gran (1986) found one for a
turbulent boundary layer profile. The use of the theory for a turbulent profile is
more delicate to justify, as in that case finite perturbations must exist to maintain
the turbulent mean. Yet, considering the linear perturbation equations around
a turbulent mean can be seen as an effort to determine a “proper eigenmodal
decomposition” of the fluctuating field. Kim has located several near-resonances
in the case of a turbulent channel flow profile. We are now confronted with a
selection problem. Which of these near resonances, if any, is the relevant one?

The first, and only, resonance found by Jang, Benney and Gran corresponds
to a wavenumber intriguingly close from the peak of experimentally measured
power spectral distributions. In addition, the vertical velocity motion induced
by the non-linear interaction of the vertical vorticity with itself corresponds to a
downstream roll with a spacing of 90 in wall units. This is a very interesting non-
linear process which gives a mechanism to generate streamwise vorticity from
vertical vorticity. Longitudinal streaks are then introduced by the interaction
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of this streamwise vortex with the mean profile. Physically, the large horizontal

motions coming from the large vertical vorticity induced by the direct resonance

create downstream and spanwise vorticity (%w and -é%—u) as a consequence of

the no-slip condition at the walls. These vorticity components are stretched
8, 8

(%w —o%u) and rotated ("E"’E“)' respectively, as can be deduced from the

equation for the z-vorticity:

D
Dt

W, = W, —u—!—wy%u +w,—u+ Vi,

Oz 0z
neglecting 5“’;-0 and a%v in the expressions for w, and w,, one finds:

' B—w o~ iwz—u— i1.0—(2-‘u+vV"’w
Dt °7 8y Oz 0z 0Oy ‘

Mathematically this process translates into the non-linear forcing of a v(0,24)
vertical velocity mode. This mechanism is particularly relevant to the studies of
John Kim (1983). One emphasizes that according to the mechanism explained
above, the downstream vorticity is generated from the vertical vorticity rather
than from a “splatting” effect (Kim, 1983).

From the nature of the non-linear interactions, the streamwise vortex always
has twice the spanwise wavenumber of the 3-D vertical vorticity which generated
it. Thus double pairs of counter-rotating vortices should be observed if this
process is relevant. The “minimum channel” simulations of Jimenez and Moin,
show that “turbulence” can be maintained with only one pair of counter-rotating
streamwise vortices. This would imply that the mechanism for their generation
can not come from the non-linear interaction of the vertical vorticity with itself
as proposed by Jang, Benney and Gran. More cautiously, there must be another
mechanism for their creation.

4, Mean flow-first harmonic model

The appearance of the new resonances discussed above imposes some signif-
icant modifications to the non-linear theory of Benney and Gustavsson. It is
necessary to reformulate the problem in order to account for the intrinsic span-
wise modulation of the mean flow. Steps in that direction have been taken by
Benney and Chow (1989). These authors have formulated a mean flow-first har-
monic theory where the mean varies in both the vertical and spanwise direction
and the perturbation is composed of only one downstream fourier mode. No
extensive analysis of the solutions of these equations have yet been made. This
self-contained theory is still in a primitive state. It seems that some careful nu-
merical simulations could test the validity of this approach. This mean flow-first
harmonic theory is in some sense based on an idea of triad resonances between
modes of the form (a,+A) and (0,28), but it could also describe interaction
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between (o, £28), (0,428) and (@,0). In other words, in the case of a mean
+ a spanwise mode (0,23), one might find both fundamental and subkarmonic
instabilities (just as for a mean + a 2-D Tollmien-Schlichting (,0) wave). The
fundamental instability could be relevant to the minimum channel simulations.
Such instabilities of a spanwise periodic basic state might be the other side of the
3-D instability of a downstream periodic basic flow. The question is which basic
state should be studied? Laminar Couette flow modified by its slowest decaying
downstream roll eigenmode is a good candidate. The same basic state could be
chosen for channel flow, or, alternatively, a state generated from the computed
turbulent profiles could be used. This state would be obtained by averaging the
full-field over the downstream z direction and time.

In the mean flow-first harmonic theory, one hopes that the waves developing
on a spanwise varying basic state are such that their non-linear interactions
maintain the mean and especially the downstream rolls. It seems more likely to
the present author that the downstream structures would rather be formed by
a 3-D instability of the developing wave (i.e. the 3-D instability of a mean + a
downstream mode (a,0); the elliptical instability).

5. Optimum fields

A related investigation is to determine optimum perturbation fields main-
taining the mean and being chosen so as to maximize various mean moments
(e.g. production) under some critical constraints derived from Navier-Stokes. In
this approach as in the mean field-first harmonic theory, the mean flow equa-
tions are exact while approximations are made on the fluctuation equations.
Busse (1978), for instance, showed that the field which maximizes the averaged
Reynolds stresses, while maintaining the mean and satisfying the boundary con-
ditions, the incompressibility constraint and an energy constraint, corresponds
to a downstream roll-streak structure with a spacing of about 50 in wall units.
Without a doubt, a numerical investigation including additional constraints will
improve this value. The advantages of this approach is that it is mathematically
rigorous and gives some definite physical insights such as what are the important
constraints on the real motions, and why a particular structure is observed. It
is an excellent way of getting the organized motions in a turbulent field. Once a
solution is found, it can then serve as the basis for a new expansion or analysis.
Busse’s solution, for instance, could serve as the basic state in the 3-D stability
calculations referred to above.

The following question could be quite relevant to the minimum channel simula-
tions. Given the computed turbulent velocity profile, what is the most “efficient”
way of maintaining it? By “efficient” we mean, for example, that the ratio of the
total average turbulent energy production to the total average kinetic energy of
the fluctuations is maximized. Of course, one could look for other optima (such
as max average Reynolds stresses over rms fluctuations). Mathematically, the
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problem is that of determining the maximum of:

—<arla>
2 (12)
<ut4vi4w?>

where the brackets < . > stand for an average over all variables z,y,z,t. The
overbar, as before, is an average over z,z,!. We request that this optimum
fluctuating field maintains the mean, that is :

v (13)

&

.

S

>
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The optimum field should satisfy the incompressibility constraint: V.i =0, and
the boundary conditions. Finally, we impose that it also satisfies the energy
constraint that, for a statistically steady state, the turbulent energy production
is equal to the dissipation rate. This reads:

-< 'ﬁ%ﬁ. >= % < (Vu)? + (Vov)? + (Vw)? > (14)

As the turbulent profile and the Reynolds number are imposed, this last con-
straint implies that we are maximizing the functional:

< (Vu)? + (Vv)? + (Vw)? >
<u? 40?4 w?>

(15)

For this type of problem, one knows from Busse’s work that the optimum field
corresponds to z-independent structures, thus we are really maximizing the span-
wise wavenumber. The question has thus become: what is the smallest spanwise
wavelength which could maintain the turbulent mean? The equations for the
optimum fluctuating field are obtained from variational calculus, after some ma-
nipulations they read:

= 35 — ] (g7 = #7) 8(0) = Fha(0)i) 16)
P - 5 — )] ) = X )i(w) (a7

with the boundary conditions: o = dd/dy = %4 = 0 at y = £1. The Lagrange
multipliers X and );(y) are determined from the constraints that < (\'711')2 >
and uv have fixed values. This is a fairly simple numerical problem. One will
note the strong similarity between this system and the OS and vertical vorticity
equations. The most important difference is that we now have a production
term for the downstream roll (v). This term models some optimum process
maintaining the rolls. ’



Organized motions underlying turbulent shear flows 115

5.1. Improvements

The most efficient way of subtracting energy from the mean flow corresponds
to z-independent structures. Conservation of energy was insured but no further
constraint was imposed on how this energy should be spread among the 2 degrees
of freedom v and u, i.e. among downstream rolls and streaks. However, we know
that there are strong constraints on such a process. Indeed, if one introduces
downstream rolls into the flow they are very efficient at taking energy out of the
mean, but all that energy goes into the streaks. These streaks are themselves
precisely determined by the mean profile and the rolls.

One way of improving the results is to proceed as in the mean field-first har-
monic theory and recognize that the mean should have an intrinsic spanwise
variation (u(y, z)), with associated downstream rolls ( v, w motions). The prob-
lem is then to determine what optimum fluctuations could maintain such a
mean. The fluctuations will now be z-dependent. This problem will predict a
mean profile, streak spacing and an optimum z-scale.

A simpler alternative has been proposed by Malkus (1967). Instead of consid-
ering a different mean, the idea is to impose more constraints on the fluctuations.
Malkus’ suggestion is to include the equation for the total streamwise enstrophy.
This should give insight into the mechanism of production of streamwise vortic-
ity. Yet another way is to split a priori the fluctuating field into its 2 degrees
of freedom and impose energetic constraints for both of them simultaneously.
In this way, the repartition of the turbulent energy production among the 2 de-
grees of freedom would be imposed from Navier-Stokes, instead of being freely
determined by the variational problem.

Dr. Leslie Smith has been working on related topics, and these optimum fields
projects will be realized with her collaboration.

REFERENCES

Jang, P. S., BENNEY, D. J. & GrAN, R. L. 1986 J. Fluid Mech., 169, 109.
BENNEY, D. J. & GusTavssoN, L. H. 1981 Studies in Appl. Math., 64, 185,
BENNEY, D. J. & Crow, K. 1989 Studies in Appl. Math.

Busse, F. H. 1978 Advances in Applied Mech., 18, 77.

KM, J. 1983 Phys. Fluids, 26, 2088, and 1985, 28, 52.

MALKUS, W. V. R. 1967 Private Communication






6587

Center for Turbulence Research 117

Annual Research Briefs — 1989 NO2 - 3 6 &75 0

Turbulence dynamics in
the wavelet representation

By C. Meneveau

The phenomenon of small-scale intermittency is shown to motivate the de-
composition of the velocity field into modes that exhibit both localization in
wavenumber and physical space. We review some basic properties of such a
decomposition, called the wavelet transform. The wavelet-transformed Navier-
Stokes equations are derived, and we define a new quantity II(r,Z,t), which is
the flux of kinetic energy to scales smaller than r at position Z (at time t). Then,
the main goals of this research are summarized.

1. Introduction

One of the most important features of a turbulent flow is the transfer of kinetic
energy from large to small scales of motion. For isotropic and homogeneous
turbulence, the three-dimensional energy spectrum E(k,t) obeys

OE(k,t)
ot
where T(k,t) is the net transfer of energy through wavenumbers of magnitude

k. The total spectral flux of energy through wavenumber k to all smaller scales
is given by

= T(k,t) — 2vk® E(k, 1), (1)

o0

M(k,t) = /T(k',t)dk'. (2)
k

Usually the mechanism of energy transfer is visualized by simplified models such
as the successive break-down of ‘eddies’, or as the creation of small scales by the
stretching and folding of vortical elements. One then argues that through scales
of motion of size k™!, there is a net flux of kinetic energy to smaller scales, which
is equal to the time average of II(k,t). Notice that II(k,t) does not depend on
position because of the Fourier representation used to obtain Eq. (2). If one
now wishes to reconcile this definition of a ‘flux’ of energy to smaller scales with
the phenomenological picture of breakdown of eddies, one needs to tacitly make
the assumption that its average value is indeed physically representative of the
underlying physics in any regions of space. In some loose sense, this then cor-
responds to the theory of Kolmogorov (1941), which neglects the phenomenon
of intermittency. Of course, it has been known for a long time that the rate
of dissipation ¢(z, ) is distributed very intermittently (Batchelor and Townsend
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118 C. Meneveau

1949), a behavior which increases with the Reynolds number of the flow. Also,
its moments increase with Reynolds number according to power-laws in the iner-
tial range of turbulence. Among others, this permits a self-consistent statistical
and geometrical representation of € in terms of multifractals (Kolmogorov 1962,
Novikov 1971, Mandelbrot 1974, Frisch and Parisi 1985, Meneveau and Sreeni-
vasan 1987a, 1987b, 1989). The observation of power-law behavior of spatial
moments of the dissipation can be modelled again rather naturally within the
framework of breakdown of eddies, but now assuming that the flux of energy
to smaller scales exhibits spatial fluctuations. These fluctuations accumulate as
the scales of motion become smaller, and can lead to very intermittent distribu-
tions of the dissipation displaying power-law behavior. This suggests the need
for defining a flux of kinetic energy to smaller scales which, as opposed to Eq.
2, should retain some degree of spatial locality.

In a very interesting paper, Kraichnan (1974) proposed to decompose the
velocity field into band-limited contributions according to

2m+1
mi= o4y —-d A T ik-Z g3
ul*(Z,t) = (27) / ;(k, )" *d’k, (3)
[kj=2m
where -
'fl,,'(l;,t) = / ui(f,t)e_i;' 5(1323. (4)

The equation of motion of «*(Z,t) can be deduced from the Navier-Stokes
equations, and multiplying the result by u[*(Z,t) gives the evolution equation
of [u*(Z,t)]> which can be interpreted as the kinetic energy occurring in a
wavenumber band around 2™, at position £. The result is

(2 -0 up @07 =T (@), ()
where
2'm+l
m (- —1 my- N\ ik 2 . . 7
T (:c,t) = mui (:L',t) / P,-_,-k(k)e k /uj((f)uk(k - q_)daquk. (5)
|k]=2m 7

Here P (l:) is the usual divergence-free projection operator. In analogy to Eq.
(2), Kraichnan (1974) then defined a flux of kinetic energy to smaller scales as

n™(z,6) = », T™(3,1), (6)

n=m
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FIGURE 1 (A). Signal u(z) displaying oscillations of a single scale in a confined
spatial region. »

0 100 200 300 400 500

FiGURE 1 (B). High-pass filtered version of the signal u(z). The filtering here
consists of cutting off all discrete Fourier modes of scales larger than 30.

which is now a position-dependent quantity because of the band-pass filtering.
However, filtering using Fourier modes can be dangerous in the following sense.
Take for instance the signal of Fig. (1a), where an oscillation of wavelength
A = 30 is confined to a certain region of space. This could be thought of as an
extreme case of intermittency, where at a given scale A all activity is confined
to a subregion of space only. If we now high-pass filter the signal up to scales
equal to ~ 30, we get the signal of Fig. (1b). It is apparent that the elimination
of modes at scales larger than 30, some of which were needed to cancel the
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oscillations outside the domain of activity, has resulted in spreading the ’activity’
everywhere. This is because of the non-local nature of the Fourier modes.

This motivates the study of bases that retain locality both in wavenumber
and position space. Their use in describing turbulence dynamics is the primary
goal of this research, with special emphasis on the spatial characteristics of the
transfer of energy to smaller scales and the implications on intermittency. The
formalism will then be applied to numerical data bases of turbulent flows.

The theory and applications of the so-called wavelet bases, which are local
in wavenumber and position space, has recently generated much interest (for a
detailed account, see Daubechies 1988). Wavelets are currently used for speech
and image processing (Mallat 1989, Kronland-Martinet et al. 1987), and can
be used to describe affine coherent states in quantum mechanics (Paul 1985).
The work of Siggia (1977) and Nakano (1988) attempt to describe turbulence
using wavepackets, which display several similitudes with wavelets. Explicitly,
the potential use of wavelets in turbulence has been pointed out in the context
of coherent structures (Farge and Rabreau 1988) as well as in studies of its
fractal nature (Argoul et al. 1989), even though their claim that it has proven
the Richardson cascade based on single hot-wire measurements appears to be
premature.

Section 2 defines the (continuous) wavelet transform of a signal, and reviews
several of its properties. Section 3 defines the flux of kinetic energy to smaller
scales using the wavelet representation, and also derives the wavelet-transformed
Navier-Stokes equations. Section 4 contains some practical considerations re-
lated to the implementation of the discrete version of the wavelet transform,
and its generalization to three dimensions. Section 5 summarizes the future
objectives of the present research.

2. The wavelet transform

Given a signal u(z), its wavelet transform is defined as

o0

Wira)u} = 05 4 [ (E T yuta)da, Q

T

— o0

where g(s) is a function called wavelet, satisfying the admissibility condition

C, = /|w|_1|§(w)|2dw < oo. (8)

Here §(w) is the Fourier transform of g(s). g¢(s) is of zero mean, will have
some oscillations and will usually be real. A typical example is the mexican hat
g(s) = (1 - az)e—.’/z’ which can approximately be viewed (Coifman 1989) as
the difference between two exponentials of different sizes centered around s = 0.
Therefore, W(r,z) can be regarded as the relative contribution of scales r to the
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signal at position z. If g(s) obeys the above conditions, the wavelet transform
can be inverted (Grossmann and Morlet 1984). The inversion formula for the
wavelet transform reads

-1 iy _';_ z—z , ,
u(z) = Cy ? 3 g( " YW(r,z'){u}dz'dr. (9)
0 —o0
W(r,z) can also be obtained from i(k), the Fourier transform of u(x) accord-
ing to
W(r,z){u} = C;%(Z‘rr)_lr% / g(rk)* a(k)e*=* dk, (10)

where g(w) is the Fourier transform of g(s). The total energy of the signai is
given by

/u(z')2dz:' = C;l 7 7 7 [W(r, z){u})? drdz. (11)

0 —

One can also compute #(k) from W(r,z){u} using

a(k) = ¢ ¥ (2r)"? / / 1=} §(rk)eE W (r, 2){u}dedr. (12)

The wavelet transform commutes with differentiation in the spatial variable,
namely

3 9
3o (ra){u} = W(r,z){ 5 u(=")} (13)

For vector functions #(z) with components u;(z), the transform is a vector
W(r, z) whose components are the transforms of the components of #(z).

For functions defined in higher dimensions, it is recommendable to use decom-
posable wavelets. In three dimensions we use

9(3) = 9(s1,2,83) = g1(81)92(82)g3(s3)- (14)

One can then prove the following useful relations:

Ve W(r, @)} = W(n&){Ve - 4(&)) (15)

and

VW (r, &){(@(&)} = W(r, e{Vai(&)}. (16)
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3. Wavelet representation of turbulence dynamics
Let us define W;(r,7,t) as the wavelet transform of the velocity field u;(Z, t).

(From here on we simplify the notation by using W;(r, £, t) instead of W;(r, &, t){u;}).
Because of Eq. (15), the incompressibility condition reads

Vs -W(r,Z,t) =0. (17)

Multlplymg the Fourier-transformed Navier-Stokes equations by Cy r 7 (21r) d
xg(rk)* e k, integrating over wavenumber space and using Eq. (12) gives

(55~ ¥WWi(r 2,0)] =

////W(r F OWe(", 2 ) Lk (r, &0 2", & E )dr' dr" P2’ d 2", (18)
.'.' '.J’ El 14

where

S B T A= =1 R
I,;jk(‘l‘,.’L',T,T' 1 T, )-

. 4
ra

20}(2”)3({( P

el f §(rE) Piju(R)eF G+

x / (D" (k — §))eTEF T qd k.
g
(19)

This illustrates that there are now interactions of the W;(r,Z,t) occurring at
different positions as well as different scales. These non-local and inter-scale in-
teractions are dictated by the properties of I;;i(r,Z; 7', 7", &', 2"). Additionally,
one can, of course, apply the wavelet transform in time.

Of more immediate interest is to define a quantity analogous to Eq. (6) in
the wavelet representation. For this we start with Eq. (19) and multiply by
W;(r,,t) and express the right-hand-side as a function of the velocity field. We
obtain

(—" - sz)[Wi(r7 51 t)]z = T(Tri:’t), (20)
where
T(r,z,t) =

ird R . - ig-7 PNar Pve ik
—W[/ §(rp)* ii(p)e” daP]/Pijk(k)g(rk) et ?
7

k
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<[ ax(@n(k - Dol (21)
7

The flux of kinetic energy to all smaller scales can then be defined as

T

I(r,z,t) = /T(r',:i",t)dr'. (22)

0

Therefore, given the Fourier transform of the velocity field, the quantity
II(r,Z,t) can be computed. Other quantities whose spatial distribution is of
interest is the dissipation term
v OW; OW;

+ 2P (23)

—+ t - [t
e(r,:c, ) 2 azj 6:c,-

Assuming constant mean shear, the production term is

P(T’ 57 t) = W,’(‘l', 57 t)Wj(r’ £7t)SiJ'a (24)

where S;; is the mean rate of strain.

4. Wavelet bases and discretization

There are many possible choices for the wavelet g(s). The simplest is the Haar
function g(s) = 2% for 0 < s < 1 and g(s) = —2% for 3 < 8 < 1. Another is
the mexican hat mentioned in section 2. In terms of the discretization of the
transform, assume that one has a signal on a discrete grid consisting of N points.
One possibility is to space r logarithmically and ‘slide’ the spatial variable over
all N points of the signal. In such a case one obtains of the order of NlogN values
of the transform. This is what has generally been used in qualitative studies,
such as by Kronland-Martinet et al. (1987) and Argoul et al. (1989). The fact
that the transform consists of more points than the original signal comes from
the non-orthogonality of the wavelet functions in such a case.

Intuitively, for larger values of r» one could use a coarser spatial grid than for
smaller values of r. This observation has led (see Mallat 1989) to the definition
of basis functions of the form

. m
g™(2) = o(E2 ) = o(ag™z — i), (25)

0
where ay and by are dilation and translation steps. Notice that now the trans-
lation depends on the dilation, both being logarithmically spaced. Choices for
ay and by are not completely arbitrary (Daubechies 1988); here we will use the
simplest case ag = 2 and by = 1. Notice that the Haar basis with such a choice
of ay and by constitutes an orthonormal system, because
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FIGURE 2. Lemarie-Battle wavelet with exponential decay in physical space.
For a method of constructing such a wavelet, see Mallat(1989).

/g""i(z)g"’j(m)dz = bmnbij- (26)

The discrete wavelet coeflicients of a continuous function u(x) are defined as

W = / g™ (2)u(z)dz, (27)

and the (discrete) reconstruction formula is the wavelet series expansion of u(z)
-1 o
wz) = Cy 7Y Y 2T EW™IgM (). (28)
m i

In practice, u(z) itself is discrete and the integration in Eq. (27) needs to
be replaced by a sum. In the formulation to be adopted here, the discrete
samples u(z,,) are viewed (Mallat 1989, Daubechies 1988) as resulting from the
convolution of u(z) with a function ¢¢ ,(z) according to

u(z,) = /u(m)%'n(z)dz. (29)

It turns out that the conditions of orthonormality of the entire wavelet basis
(as well as several other considerations) are related to the properties of ¢o n(z)
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FIGURE 3. Wavelet transform of the signal of Fig. 1(a) using the Lemarie-
Battle wavelet and the fast algorithm of Mallat (1989). The index m denotes
the scale and runs from m = 1 to m = logs N = 9. The index ¢ runs from 0
to 27™N — 1. The spatial resolution thus decreases as m increases. The total
number of values of the transform is N — 1, and for the decomposition to be
complete, one also needs to know, say, the mean of the signal.

(Mallat 1989, Daubechies 1988). For instance, the use of such a formulation
naturally leads to an algorithm to compute fast wavelet transforms (FWT).
Several issues other than orthonormality need to be taken into account when
deciding which wavelets to use. One very important issue is the degree of locality.
The Haar system is very well localized in space (it has compact support in [0, 1]),
but has very poor spectral locality. This is a disadvantage, because we would
like the wavelet coefficients corresponding to a certain scale r to be large only
when the signal actually contains oscillations of that scale. In other words,
one is interested in fast decay both in wavenumber and position space. A very
convenient function complying with the conditions of discrete orthonormality
was discovered by Lemarie and Battle (see Mallat 1989). This function decays
as k~* in wavenumber space and exponentially in physical space, and was used
by Mallat (1989) for image analysis. Figure 2 shows this function. Figure
3 displays the discrete wavelet transform of the signal of Fig. 1la. Notice the
spacing that becomes more coarse-grained as the dilation factor r = 2™ increases.
The transform peaks near m = 5 (corresponding to a scale A = 32) only in the
vicinity of the oscillations of the signal. Inverting the transform for scales up to
32 (m = 0 to 5) gives the signal of Fig. 4. Since the wavelet coefficients away
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FIGURE 4. High-pass filtered version of the signal of Fig. 1(a) using scales
corresponding to m = 1 to 5. Here we have applied the (discrete) inverse-wavelet
transform algorithm of Mallat (1989).
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FIGURE 5. Signal displaying oscillations of different frequencies at different
locations, as well as random numbers (right portion).

from the activity are very small, there is little risk in incurring the problems
that occurred with the Fourier representation (see Fig. 1b).

Figure 5 shows another function consisting of oscillations of different scales
located at different positions. Figure 6 is its discrete wavelet transform. Figures
7 and 8 correspond to high-pass and low-pass filtered versions of the signal. The
wavelet transform is seen to separate events of different scales in a fashion which
respects their location in space.

Even though g(s) of the Lemarie-Battle wavelets has fast decay in space, it
has non-local support (i.e. g™*(z) # 0 even at large | z |). If one were to
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FIGURE 6. Wavelet transform of Fig. 5 using the Lemarie-Battle wavelet and
the fast algorithm of Mallat (1989). Notice the localization in both wavennmber
and physical space of the different events.
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FIGURE 7. Reconstruction of the signal using scales between m = 1 and m = 4
(high-pass filtering).

set it to zero after some value of | = |, then the discrete orthonormality is
not exactly obeyed. In other words, finite domain truncation leads to a loss
of discrete orthonormality. Daubechies (1988) shows that one can construct
orthonormal wavelets of compact support which are different from the Lemarie-
Battle wavelets. However, such wavelets do not possess symmetry (Daubechies
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FIGURE 8. Reconstruction of the signal using scales between m = 5 and m = 9
(low-pass filtering). Since the reconstruction only uses modes down to scales of
size 32, the result is a coarse-grained version of the signal.

(1988) even proves that the Haar basis is the only system with symmetry). It
turns out that non-symmetric bases are a problem in many respects for the
applications envisaged in this work. Essentially, the coefficients corresponding
to some portion of the signal appear shifted from that position. Therefore, in the
present work we will use the Lemarie-Battle wavelets. It is necessary to point out
that the deviations from exact orthonormality due to truncation are negligible
in practice. Also, the fast transform procedure of Mallat (1989) is implemented.
A generalization of the algorithm to three dimensions will be done.

5. Future plans

The main objective of this work is to compute H(r,Z,t) of Eq. (22) from
full numerical solutions of turbulent flows that are available in data bases at
certain times {y. Then the degree of spatial intermittency of II(r, &, ¢,) will be
quantified for different values of ». We will compare the statistics of II(r, Z,¢)
with ¢,, the rate of dissipation averaged over a domain of size 7, which is the
quantity usually used for studies of intermittency. This is a dissipative quantity,
whose integral over domains of sizes pertaining to the ‘inertial range’ is usually
thought to represent statistical features of the inertial range. By comparing the
dynamically relevant quantity II(r,Z,t) with €., we hope to clarify this issue.
Also, the statistics of ‘breakdown’ coefficients defined as

H('I‘] i)

Z,1)
M= 0.3,9 (30)

will be quantified. It will be tested whether a cascade model constructed in such
a way as to display the measured statistics of M is consistent with our present
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knowledge of intermittency of the dissipation. A similar study will be made in
the context of scalar dissipation and flux of scalar variance to smaller scales.
This will lead to a better physical and statistical understanding of the energy
cascade and of intermittency.

Other more long-term objectives are the study of Eq. (18) and in particular
of the quantity I (r,&;7',r",Z',2"). The problem of subgrid modelling in the
present context is to find approximations to the right-hand side of Eq. (18)
whenever there are interactions between the resolved scales (say r > 7o) and
the smaller ones. A guide to such considerations could be given by the work of
Nakano (1988), who applied DIA to the wave-packet representation. Another
line of inquiry could be to attempt a real-space renormalization group analysis
of Eq. (18).

In general, the hope is that models deduced from the behavior of wavelet
coefficients may capture the physics of turbulence in a more natural way than
those based on Fourier modes. However, at this point the manipulations appear
to be much more complicated in the wavelet representation, and so its real
usefulness remains to be proven.
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Direct simulation of turbulent combustion
By Tv. J. Poinsot

Problem background and objectives

Understanding and modeling of turbulent combustion are key-problems in the
computation of numerous practical systems. Because of the lack of analytical
theories in this field and of the difficulty of performing precise experiments, direct
simulation appears to be one of the most attractive tools to use in addressing
this problem.

The present work can be split into two parts:

1. Development and validation of a direct simulation method for turbulent
combustion.

2. Applications of the method to premixed turbulent combustion problems.

The goal of part 1 is to define and to test a numerical method for direct
simulation of reacting flows. A high level of confidence should be attached
to direct simulation results, and this can only be achieved through extensive
validation tests. We have considered two major questions :

1.1. Which equations should be solved? Contrary to cold-flow turbulence, the
choice of equations to solve for turbulent reacting systems is still an open ques-
tion. At the present time, it is not reasonable to compute time-dependant so-
lutions of Navier-Stokes equations with complex chemistry in multi-dimensional
configurations. A reduction in the number of equations to be solved is needed.
This also leads to a loss of information which must be estimated.

1.2. Which configurations should be studied and what boundary conditions
are necessary? A second problem is the choice of the configurations to study
and of the associated boundary conditions. Most direct simulations of cold-
flow turbulence are performed for temporal situations with periodic boundary
conditions. This approach is not convenient for many reacting flows, and spatial
simulations are required. These simulations can not be done without adequate
boundary conditions.

In part 2, direct simulation is used to address some of the many critical prob-
lems related to turbulent combustion. At the present time, I have limited this
work to premixed combustion and considered only four basic issues :

2.1. The effect of pressure waves on flame propagation.

2.2. The interaction between flame fronts and vortices. This is the basic
problem of turbulent combustion. The goal here is to gain more insight into the
fundamental interaction mechanisms between flame fronts and vortices.

2.3. The influence of curvalure on premized flame fronts.

2.4. The validation of flamelet models for premized turbulent combustion.



132 T. J. Poinsot

Questions 2.1 to 2.3 concern fundamental processes in turbulent premixed
combustion which are not well understood at the present time. Part 2.4 is
related to modeling and its goal is to use results obtained in sections 2.2 and 2.3
to construct and validate a flamelet model for turbulent premixed flames.

1. Development and validation of a direct simulation method for
reacting flows

1.1. The equations to solve

The amount of complexity to include in direct simulations of reacting flows
requires difficult compromises. Taking into account the variations of thermody-
namical properties with temperature and chemical compositions as well as solv-
ing for all species present in a reacting compressible flow will typically lead to
codes slower by at least three orders of magnitude than the codes used presently
for cold flows. This is due to the high number of additional equations to solve
(around 30 for a propane flame) but also to the stiffness of the resulting equa-
tions which will need very dense computation grids. On the other hand, using
constant density assumptions, infinitely fast chemistry approximation or over-
simplified equations for species concentrations (like assuming that the Lewis
number is equal to unity, in which case the species concentration may be ob-
tained directly from the temperature) will lead to faster codes but will not tell us
much about real mechanisms. The choice which was made here is the following
(Poinsot and Lele 1989):

- solve the complete Navier-Stokes equations, including variable density and
compressibility effects,

- use an elementary reaction for premixed combustion (Reactants — Products)
and finite rate chemistry (Arrhenius law). The reaction rate wg is expressed as:

TGC
wgp = BpYRr exp (-— T ) (1)

where T,. is the activation temperature and Yg is the local mass fraction of
reactants.

- solve separately for species concentration and temperature (non-unity Lewis
number),

- take into account the variations of species diffusion, viscosity and conduc-
tivity with temperature,

- take into account heat losses.

This choice is accompanied by certain limitations:

- the Schmidt, Prandt! and Lewis numbers are fixed,

- most cases are run in two-dimensional geometries,

- only premixed combustion has been considered.

Extensions to three-dimensional or to diffusion flames are straightforward. At
the present stage, the following mechanisms can be described:
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- dynamic effect of the flame front on the flow (this requires variable density),

- effects of the flow on the inner structure of the flame front (this requires
finite-rate chemistry),

- extinction of the flame by stretch and influence of curvature (this requires
non-unity Lewis numbers and non-zero heat losses),

- influence of pressure waves on combustion, triggering of combustion insta-
bilities (this requires compressibility).

- mixing, ignition, and quenching mechanisms in supersonic combustion (this
requires compressibility, non-unity Lewis number, and finite-rate chemistry).

- flame-generated vorticity and flame/vortex interactions (this requires non-
constant density and viscosity).

All these mechanisms are key-processes in many combustion phenomena and
few of them are well understood in a general sense. Before going to three-
dimensional cases with more complex chemistry, the present approa.ch can lead
to many original and important results.

1.2. Configurations and boundary conditions

A second problem is the choice of the configurations to study and of the asso-
ciated boundary conditions. An extensive study of appropriate boundary condi-
tions for spatial direct simulation has been performed. This effort goes beyond
the scope of reacting flows, and its goal is to provide a satisfactory method to
specify boundary conditions in cases where periodicity can not be assumed. Peri-
odicity has been used in most direct simulations of reacting or non-reacting flows
because it suppresses the need of boundary conditions (The domain is folded on
itself). When more realistic problems are considered (involving inflows and out-
flows, for example) the problem of boundary conditions becomes crucial. On the
basis of methods proposed for the Euler equations (Thompson 1987), a general
formulation for the Navier Stokes equations has been derived (Poinsot and Lele
1989). This method called Navier-Stokes Characteristic Boundary Conditions
(NSCBC) applies for most boundaries (inlet, outlet, adiabatic slip-wall, no-slip
adiabatic, or isothermal wall). It has been implemented in the high-order finite-
difference code of Dr. Lele and tested in the following configurations (all of them
concern spatially evolving flows) :

1/ Non-reacting shear layers (confined by walls or unconfined).

2/ Premixed flames in a shear layer.

3/ Acoustic waves leaving the computation domain (subsonic and supersonic).

4/ Vortices leaving the computation domain (subsonic and supersonic).

5/ Very low Reynolds number flows (Poiseuille flow).

As an example, Figs. 1 and 2 show results obtained from test 4. A vortex
is generated at time ¢ = 0 in a supersonic flow and is convected downstream.
The mean flow is uniform, from left to right at a Mach number of uy/c = 1.1
(c is the sound speed). The maximum velocity induced by the vortex is small
(0.0018u¢). The plots on the left side of Figs. 1 and 2 give the vorticity field
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while the plots on the right side display the longitudinal velocity perturbations
(u — ug)/up- The right boundary is supposed to be ‘non-reflecting’. It should
let the vortex pass through without generating any perturbation. Two methods
were used for the outlet boundary:

e Method 1 is a reference method proposed by Rudy and Strikwerda (1981)
which can be viewed as the prototype of methods used by many other authors
(Yee 1981, Jameson and Baker 1984). It uses extrapolation for the velocities and
the density. The pressure is then obtained by solving for a Riemann invariant
and relaxing the pressure to some value at infinity.

e Method 2 is the ‘non-reflecting’ version of the NSCBC method.

Supersonic outlet boundary conditions are supposed to be easy to implement
because no information can travel upstream towards the inlet. All errors created
at the outlet should be convected outwards. In fact, physical information satis-
fies this assumption but numerical instabilities do not (Vichnevetsky and Pariser
1986). Using extrapolation at the outlet generates numerical waves which travel
upstream much faster than the sound speed and interact with the inlet to gen-
erate other perturbations (Poinsot, Colonius and Lele 1989). This coupling is
very strong with method 1 (Fig. 1). Not only is the vorticity field near the outlet
strongly modified but the inlet field is also affected and additional vorticity is
introduced into the computation. The total vorticity and the maximum vorticity
in the domain do not go to zero after the vortex has left the domain (Fig. 3).
This numerical feedback between outlet and inlet can lead to non-physical in-
stabilities similar to the one described by Buell and Huerre for incompressible
flows (1988) and could make the final results of the simulation dubious.

When the NSCBC method is used, the vortex leaves the domain without any
perturbation. The total vorticity and the maximum vorticity in the computation
box both go to zero (Fig. 3). The improvement over the reference method is clear.

Although the method is based on inviscid characteristic theory, it also works
very well for viscous flows, like the Poiseuille flow. All tests are presented in
Poinsot and Lele (1989).

2. Applications to premixed turbulent flames

2.1. The effect of pressure waves on flame propagation

The effects of pressure waves on combustion and especially the effects of acous-
tic waves on the stability of a reacting flow are not well understood at the present
time although their practical importance is evident in many situations (Yang and
Culick 1986, Poinsot et al 1987, 1988). Some of these effects can be simulated
numerically. One of the most interesting configurations is the premixed flame
in a shear layer (Fig. 4 to 6). This case illustrates also the importance of the
boundary conditions which control the acoustics. Depending on the boundaries,
the flame will behave very differently:
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- if all boundaries are non-reflecting (Fig. 4), acoustic waves will leave the
domain and no coupling may take place between combustion and acoustic waves.
The total reaction rate in the computation box will reach a constant value after
a finite time and a steady state is obtained.

- if the flame is placed in an infinite duct, where no reflection is allowed
at the downstream end but where walls are placed on each side of the shear
layer, no steady state is obtained (Fig. 5). The reaction rate oscillates and the
frequency of oscillation (obtained by a non-linear spectral method (Veynante and
Candel 1988)) is the frequency f; of the second transverse acoustic mode of the
duct. This mode has a pressure antinode near the duct axis, where the flame is
spreading, and this condition, known as the Rayleigh criterion, is necessary to
have coupling between combustion and acoustic waves.

- finally, if the flame is placed in a ‘real’ duct with walls and reflection on
a downstream end of the tube, the reaction rate oscillations are dominated by
the quarter-wave mode of the duct at frequency f,z (Fig. 6). The second trans-
verse mode of the duct (frequency fz;) is also present as indicated by spectral
analysis (Fig. 7Ta). Although the reaction rate and the quarter-wave mode are
directly coupled, the vorticity oscillations are insensitive to the quarter-wave
mode (Fig. 7b). They depend only on the transverse modes fi¢ and fz:. The
flow structure in this case is displayed in Fig. 8. The fuel concentration field
(Fig. 8a) shows that the flame front is wrinkled. (These wrinkles do not appear
when no acoustic wave is present, for example for the case of Fig. 4). Structures
are convected along the flame front at the flow speed. The vertical velocity
contours (Fig. 8b) reveal that they are formed at the duct inlet by the sloshing
motion due to the acoustic transverse oscillations.

This simple example shows that a strong coupling may occur between acoustic
waves and combustion. This interaction is believed to be even stronger when the
flame front reaches a wall. More studies of these mechanisms will be performed
in the coming year.

2.8. The interaction between flame fronts and vortices

The modeling of turbulent premixed combustion is still largely based on em-
piricism because of the complexity of flame/turbulence interactions. The first
step in building a turbulent combustion model is to determine in which com-
bustion regime the reacting flow will be. Diagrams defining combustion regimes
versus length and velocity scales ratios have been proposed by Borghi (1984), Pe-
ters (1986), Bray (1980) and Williams (1985). Knowing the integral turbulence
scale and the turbulent kinetic energy, these diagrams indicate if the flow will
contain flamelets, pockets or distributed reaction zones. Each of these regimes
requires specific modeling.

In the ‘lamelet’ domain, chemical times are small compared to turbulence
times (Bray 1980). Eddies stretch and convolute the flame front, but they do
not destroy its internal structure. The flame front can be described as a laminar
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flame between fresh and burnt gases. The modeling of such a flow is done by
tracking the area of this interface ( Candel et al 1988, Veynante et al 1989).

In distributed reaction regimes, the turbulence is very intense, and the flame
is shred in small elements. No laminar flame front can be identified any more.
Statistical models (Pope and Cheng 1987, Borghi 1984) are likely to be better
adapted.

Therefore, knowing which regime corresponds to the flow to be modelled is a
necessary and important step in turbulent combustion modeling. Unfortunately,
the dimensional analysis which is used to construct these diagrams is rather crude
and neglects important effects such as flame front curvature, transient or viscous
effects. The basic reason for this situation is that these mechanisms are not well
understood and, therefore ,are ignored in this first-order analysis.

It is possible to construct realistic turbulent combustion diagrams. The tech-
nique which was used here is based on a detailed analysis of the physical mech-
anisms controlling turbulent premixed combustion and uses direct numerical
simulation to quantify them (Poinsot, Veynante and Candel 1990). This is done
by constructing a ‘spectral’ diagram describing the interaction between one iso-
lated vortex and a laminar flame front. This information is used afterwards
to infer the behavior of a complete turbulent reacting flow and construct more
quantitative diagrams.

2.2.1. Turbulent combustion diagrams

Classical turbulent combustion diagrams suppose that a reacting flow can be
parameterized using two non-dimensionalized numbers: the ratio of the turbu-
lence integral scale I to the flame front thickness Ir and the ratio of root-mean-
square velocity fluctuations u' to the laminar flame speed s;. Using the nota-
tions and assumptions of Peters (1986), different transitions can be associated
to specific lines in this diagram (Fig. 9a).

o The line u'/s; = 1 indicates the transition between wrinkled flames and
corrugated flames (flames where turbulence can form pockets of fresh gases in
burnt gases).

o The limit between flamelets and distributed reaction zones is reached when
the stretch i’% (A is the flame surface) imposed on the flame becomes larger
than the critical stretch for extinction and creates local quenching. The critical
stretch depends on the flame characteristics but may be estimated by sp/lp
(Peters 1986). Defining the Karlovitz number by:

yrs
Ka = 5 /lp , (2)
we expect local quenching and distributed reaction zones if Ka > 1.
The flame stretch L+ %4 can be expressed as a function of the Taylor scale A

A dt
and of v’ as

1d4A
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Configuration C3: transverse and longitudinal
modes are taken into account
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Using the definitions of the Taylor scale A and of the Kolmogorov scale 7, we
can construct four expressions for Ka:

1/2
(@ /se) _Velv e P ux/n
Kaﬁ( llp ) —3L/1F—(17) T osp/lp’ ®)

where ug is the characteristic speed of Kolmogorov scales.

The Klimov-Williams (K W) criterion is then obtained by considering the third
expression of the Ka number in Eq. (3) and stating that no flamelet should be
observed in a reacting flow if the Kolmogorov scale % is smaller than the flame
thickness lp. According to the KW criterion, no flamelets would exist beyond
Ka = 1 because their internal structure would be destroyed by stretching and
quenching. The Ka =1 limit is a line with a slope 1/3 in the diagram of Fig. 9a
(Eq. (3)). The region below Ka = 1 is the flamelet region. Note from the
last relation in (3) that l% is the strain rate at the Kolmogorov scale: ug /7.
Therefore, the KW criterion is related to only one scale: the Kolmogorov scale.

e Increasing the turbulence intensity beyond the Da = (u'/l)/(sr/lr) = 1
limit leads to cases where all turbulence times are smaller than the chemical
time. This regime, called the well-stirred reactor, is not well understood at the
present time.

2.2.2. A spectral diagram for turbulent combustion regimes

The approach used to build diagrams in the previous section has many defi-
ciencies: it considers only one length scale to describe turbulent combustion, it
neglects all viscous and transient mechanisms as well as curvature effects. These
deficiencies are especially clear when the KW criterion is derived: in Eq. (3),
the KW criterion considers the Kolmogorov scales as the most active because
they generate the highest strains. This approach ignores three important points:

1- Kolmogorov scales might be too small compared to the flame front thickness
to stretch it.

2- Viscous effects might dissipate Kolmogorov scales before they quench the
flame front.

3- Scales smaller than the flame front may induce high local curvature and
thermodiffusive effects which might counteract the effects of strain.

Using direct simulation, we can derive criterions including viscous and curva-
ture effects and take all length scales into account. The first step is to recognize
that turbulent combustion diagrams are obtained through drastic simplifications
and begin our analysis from a more basic point of view.

Let us consider first one flame front interacting with one ‘turbulent’ flow.
Supposing that turbulence and chemistry are fixed, we can define a spectral
diagram which maps the ifiteraction between one of the turbulence scales and
the flame front (Fig. 9b). There is one spectral diagram for each point of the
Peters diagram.
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In this spectral diagram, three classes of vortices can be isolated because
they indicate important transitions: the vortices which can form pockets on the
wrinkled flame front; the vortices which can quench locally the flame front; the
vortices which are too small to interact with the flame zone.

It is important to emphasize that, in the same turbulent reacting flow, all
three types of vortices may be found at the same time. The flow structure is the
superposition of all vortices and describing it by using only one scale can not take
all mechanisms into account. These three effects (pockets formation, quenching,
and vortex decay) can be characterized by three non-dimensionalized numbers
which depend on the length scale 7 (r will vary between the Kolmogorov scale
n and the integral scale I):

1- Vr(r) = u'(r)/sy, is the ratio of the turbulent velocity fluctuations associ-
ated with the length scale r to the laminar flame speed.

2- Ka(r) = ¥(/* s the Karlovitz number for the scale r. It reduces to the

lp/aL

Karlovitz number Ka of Eq. (3) if r = 7.

3- Po(r) = ":—l"r"- = (ﬁ)2 is a measure of the power of the vortex. It is the
ratio of the life-time of the vortex r?/v to the chemical time lg/sz. It can also
be interpreted as the ratio of the penetration length of the vortex into the flame
front (before it gets dissipated by viscous effects) to the flame front thickness.
It is also a good measure of the curvature effects.

In the spectral diagram, a turbulent flow field is represented by a straight

line (called here ‘turbulence line’) bounded by the Kolmogorov and the integral

H
scales.® Kolmogorov scales are located on the line Re, = u'(n)n/v = %l—:’;— =
1.

Each point of the turbulence line corresponds to the interaction of one length
scale with the flame front (Fig. 9). Such an interaction may be computed exactly
and an accurate spectral diagram may be constructed as we will show in the next
section.

2.2.3. Direct simulation of vortez/flame front interactions

Many authors have studied vortex/flame interactions (Cetegen and Sirignano
1988, Ghoniem and Givi 1987, Laverdant and Candel 1988, Ashurst et al 1987).
However, very few have considered all mechanisms which should be taken into
account to determine turbulent combustion regimes. This is done here by solv-
ing the Navier-Stokes equations in a two-dimensional configuration using the
assumptions described in Section 2.1.

The configuration is the following (Fig. 10a): at ¢ = 0, two counter-rotating
vortices are generated upstream of a laminar flame front. The flow is symmetri-
cal along the y = 0 axis and subsequently, only the upper half is calculated and

® We will assume here that the turbulent reference quantities correspond to the fresh gases
and that the turbulent spectrum in this part of the flow can be described by the Kolmogorov
relation: u'('r)3 /1‘ = € where € is the dissipation rate.



148 T. J. Poinsot

i (a) Configuration
y
Periodic conditions [Computation domain
Vortex pair R s R
ax speed u'(r) LN, | Fame tront
Inflow at N A | (Speeds ) | Il
speed s; : / .... Outflow
> r Symmetry axis r
Periodic conditions -
Flame
thickness | .
o (b) Spectral diagram
o 2
'§ 10
@
]
§
< 1
§ 10
S
E »
3 e | Quenching
N O | Pockets
:; 10° @ Wrinkled
2 \ B | Noeffects
8 .| — | Cut-off limit
o .| = | Quench limit
.‘§ 1 L= Ka(r) =1
3 10 £ NN
> 07 10° 10’ 102

Length scale r/ Flame front thickness | ¢

FIGURE 10. (a) Configuration for direct simulation of the interaction between
a flame front and a vortex pair; (b) Spectral diagram based on direct simulation
results.



Direct simulation of turbulent combustion 149

displayed. The inlet flow speed is equal to the laminar flame speed so that the
flame does not move when it is not perturbed. The vortex-pair configuration
allows an accurate measurement of the flame stretch and speed on the axis. It
also generates a high stretch and may be considered as one of the most effi-
cient structures able to interact with the flame front because of its self-induced
velocity. Finally, it is easy to generate in an experiment and some results on
the interaction of a vortex pair with a flame front are available (Jarosinski et al
1988).

Simulations were performed for a flame with a temperature ratio of 4, a flame
speed sz /c = 0.012 and a Lewis number of 1.2 (Poinsot et al 1990). The flame
front thickness Ir is 3.7v/sr. The length scale r used to characterize the vortex
pair is the sum of the vortex diameter D and of the distance between vortex
centers (Fig. 10a). The velocity scale u'(r) is the maximum velocity induced by
the pair. Tests have been performed for 0.81 < r/lp < 11 and 1 < ¥'(r)/sy <
100.

2.2.4. The spectral diagram and the new turbulent combustion

The resulting spectral diagram is displayed in Fig. 10b. Depending on the
scale r and on the vortex pair maximum velocity u'(r), computation shows that
the interaction can lead to different results:

- a local quenching of the front (with or without pocket formation),

- the formation of a pocket of fresh gases in the burnt gases without quenching,

- a wrinkled flame front

- a negligible global effect without noticeable flame wrinkling or thickening.

Two lines have been constructed in this diagram: the quenching limit and the
cut-off limit.

e The quenching limit indicates vortices able to quench the flame front. It
was fitted among our data points for 0.81 < r/lp < 11 and extended for large
scales r/lp > 11 to match the line Ka(r) = 1 (Large vortices stretch the flame
front like in a stagnation point flow: stretch is sustained for long times and
little curvature is induced. Therefore, quenching by these structures is only
determined by the ratio of vortex-induced stretch to critical flame stretch and
occurs when Ka(r) = 1.)

o The cut-off limit corresponds to vortices inducing a modification of the total
reaction rate of less than 5 percent.

From the spectral diagram, it is possible to construct a premixed turbulent
combustion diagram by using the following assumptions:

(1) there are no interactions between vortices of different size,

(2) only one vortex interacts at a given time with the flame front,

(3) any structure located in the quenching zone of the spectral diagram will
quench locally the flame front and induce a distributed reaction regime.

These assumptions are rather simple. The energy spectrum, for example,
certainly plays an important role: scales in the quenching zone will not quench
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the flame front if the energy demsity for these scales is too low. Therefore,
assumption (3) is probably not satisfied. However, these hypothesis lead to a
‘maximal’ interaction diagram. Experimental results would probably lead to
higher limits of «'(r) for the first distributed reaction zones.

An important limitation of the present approach appears for very small and
energetic scales. In this region, the effect of many small vortices on the flame
front is difficult to deduce from the effect of one isolated vortex. Studying well-
stirred combustion would require to take a complete turbulent field into account.

Under the assumptions listed above, the construction of a turbulent combus-
tion diagram is straightforward. A turbulent field of type B (Fig. 11a) will
contain inefficient scales (dashed line) and scales able to have some effect on
the flame front but unable to quench it (solid line). Point B will, therefore,
correspond to a flamelet regime. In the case of field A, even the integral scale
will not be energetic enough to interact with the flame front, and the latter will
remain pseudo-laminar. Turbulent field C contains scales able to quench locally
the flame front (double-width solid line). Note that these scales are larger and
faster than the Kolmogorov scale by orders of magnitude. C will correspond to
a distributed reaction zone. The limit of distributed reaction zones is obtained
by taking the tangent with a slope of 1/3 to the quenching limit of the spectral
diagram. Comparing this diagram (Fig. 11b) with the Peters diagram (Fig. 9a)
reveals that the domain where distributed reaction zones may be expected has
moved at least of an order of magnitude towards more intense fields. The heat
losses used for this computation were quite high (see Fig. 13) and in most prac-
tical cases, with lower heat losses, we expect the flamelet domain to be even
larger than the present one.

Different characteristic scales may be extracted from the spectral diagram.
For example, the cut-off and the quenching scales introduced by Peters (1986)
can be evaluated from the quantitative data of Fig. 13 and are different by orders
of magnitude when compared with the estimates given by Peters. Quenching
criteria can also be derived (see Poinsot et al 1990).

2.2.5. An example of flame quenching by a vortez pair

To illustrate direct simulation results, we will describe a case where the vortex
pair size and speed are high enough to induce quenching of the flame front
(r/lp = 18 and v'(r)/s;, = 28). Figures 12 and 13 display the reaction rate ()
and the temperature () fields at four instants. Time is normalized by the flame
time IF/.SL: t+ = tsL/lp.

The interaction is fast and ends after about two flame times. At ¢+ = 0.65, the
vortex pair has stretched and curved the flame but its inner structure is preserved
and no quenching is observed. The Karlovitz number at this instant on the
symmetry axis is around three. The fact that the flame is still burning despite
such a high Karlovitz illustrates the importance of transients. At t¥ = 1.3,
quenching appears on the downstream side of the pocket of fresh gases formed
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FIGURE 11. Construction of the diagram for pemixed turbulent combustion
using the spectral diagram. Lewis = 1.2, strong heat losses.
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by the vortex pair. These gases are pushed rapidly into regions where the burnt
gases have been cooled due to heat losses (Fig. 13). This effect, combined with
the high stretch generated by the vortices, causes almost complete extinction of
the pocket after it has been separated from the bulk of the fresh gases. At times
t+ = 1.625 and 1.95, the pocket of fresh gases is convected through the burnt
gases without burning except near its tail. In this case, the flame front is not
only quenched locally by the vortex pair, in addition, unburnt mixture is able
to cross the flame. This mechanism may be associated with pollutant formation
(i.e unburned hydrocarbons in automobile exhausts).

To conclude, the direct simulation code used in this work appears to be a
powerful tool to study turbulent combustion. Possible problems to be studied
in the future year include the following :

- the extension of spectral diagrams to Lewis numbers lower than unity,

- the response of the flame front to an ensemble of small energetic vortices,

- the effect of the flame front on the vorticity field.

3. The influence of curvature on premixed flame fronts

The previous section shows that curvature is an important parameter in tur-
bulent combustion. A convenient geometry to isolate the effects of curvature in
a steady reacting flow is the tip of a Bunsen burner. This zone is highly curved
and depending on the chemistry and on the flow speed, the flow speed upstream
of the flame front can be five to fifteen times the laminar flame speed. Many ex-
perimental studies have been performed on flame tips (see for example Mizomoto
et al 1984). In a collaborative work with Dr. Mungal and T. Echeckki, who have
done a flame tip experiment at Stanford, I have started computations of flame
tips for different Lewis numbers and have found interesting results. In partic-
ular, for Lewis numbers lower than unity, the flame tip opening phenomenon,
where the flame is quenched at the flame tip, is correctly captured by the code.
This study will be pursued by writing a one-dimensional code able to predict the
combined effects of stretch and curvature on a flame and comparing its results
with the two-dimensional computation and with measurements.

4. The validation of flamelet models for premixed turbulent
combustion

The validation of flamelet models is an important aspect of the present work.
Two approaches are used.

First, the fundamental information obtained on flame / vortex interactions
are incorporated in the model. The existence of quenching, the dynamics of the
pockets, the effects of transients, and viscous dissipation constitute a valuable
source of guidelines to construct a model. For example, the fact that scales
smaller than the flame front thickness have almost no effect on the flame front (as
evidenced from the spectral diagram of Fig. 11a) allows a much simpler modeling
of the flame front. It also indicates which strain should be used to quantify
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the flame area increase due to turbulence. Clearly the value of \/(¢/v) which
corresponds to the strain at the Kolmogorov scale overestimates the effective
flame stretch. A second obvious result is that the spectral diagram obtained
in Fig. 11a would be completely different if the Lewis number was lower than
unity. In this case, stretch would increase the flame speed while curvature would
promote extinctions. The Lewis number must be a central parameter in any

turbulent combustion model. This conclusion is similar to the one obtained by

Abdel-Gayed and Bradley (1985) from experimental results.

just ‘constants’. This was done in collaboration with Dr. D. Veynante in Septem-
ber 1989. The Coherent Flame Model (Candel et al 1988) and the stochastic
model of Pope and Cheng (1988) were compared to direct simulation results.
Realizability of both models was also considered. This study will be continued
in 1990.
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Transition to turbulence in hypersonic flow
By J. J. W. van der Vegt

An outline of the project and recent progress toward the study of transition in
hypersonic boundary layers is given. Aspects of the numerical method and the
results of test computations are presented. At present the laminar flows over a
flat plate and wedge have been computed for M < 5.

1. Motivation and objective

The prediction of transition to turbulence is of crucial importance in the design
of space vehicles currently planned, such as the trans-atmospheric vehicle (TAV)
and the aeroassisted transfer vehicle (AOTV). The state of the boundary layer,
laminar or turbulent, has a dramatic influence on the heating of the surface
and drag. Surface heating poses a bigger threat for this type of vehicles than
previous ones because they do not have spherical noses and ablative heat shields.
The main tools presently available for predicting transition in hypersonic flow are
experiments and eV -stability theory. Both are of great importance in the design
of space vehicles, but they also suffer serious deficiencies. A serious problem with
wind-tunnel experiments is noise, which causes earlier transition than in free
flight. New results in the quiet Mach 3.5 pilot wind-tunnel at NASA Langley
show a dramatic difference in transition compared with older, noisier tunnels,
(Chen et al. 1989). Another serious problem with wind-tunnel experiments
is that it is impossible to scale the chemistry effects properly. These effects
are important at hypersonic speeds where the temperatures are so high that
real gas effects and chemical changes become important. Therefore, in addition
to wind-tunnel experiments, free flight experiments and theoretical tools are
indispensable.

Among the theoretical tools, eV -stability theory, which uses linear stability
theory together with an experimentally determined N-factor, is by far the most
widely used. Originally an incompressible flow method, it has been extended
to compressible flow by Mack (for a review see Mack, 1984), and applied to
hypersonic flow by Malik (1989) and Gasperas (1987-89). The method has as its
main advantage that, for low disturbance levels and approximately parallel mean
flow, it generally gives reasonable answers when accompanied with a suitable N-
factor obtained by experiments. Using new results from the quiet Mach 3.5 wind-
tunnel, Chen et al. (1989) showed that linear stability results compare more
favorably with experiments on a cone than previous results. There are, however,
problems in using linear stability theory. For instance, it cannot predict the
effects of a shock on transition, which can be important in certain applications.
It also fails when non-linear effects are important. Compared to incompressible



158 J. J. W. van der Vegt

flow, however, non-linear stability theories for hypersonic flow are still in their
infancy and much remains to be accomplished.

‘The purpose of this research is to provide additional information about tran-
sition to turbulence in hypersonic flow by using direct numerical simulation of
hypersonic flows, together with non-linear stability theory. Special attention is
paid to the interaction between a shock and a boundary layer, in the so-called
shock layer. The two cases which will be investigated in more detail are a flat
plate boundary layer and the flow about a wedge. The flat plate boundary layer
is studied because it gives an opportunity to compare results with linear stability
theory. The second case, the flow about a wedge, offers the opportunity to study
the effects of extreme heating and shocks on transition in the shock layer.

2. Accomplishments

The main activity in 1989 has been the development of a numerical method for
the solution of the compressible Navier-Stokes equations and writing and testing
a computer program based on this method. In the next section the numerical
method will be discussed and motivation for the choices made will be given.
Results of test computations will be presented in the subsequent section.

3. Numerical method

Although the main objective of this project is to study hypersonic transition,
it was decided to follow a stepwise approach to code development and test each
component separately. In the design of the program and the choice of numerical
method, however, the ultimate goal, hypersonic flow, was kept in mind, so the
code is not necessarily optimal for intermediate problems. For instance, the
program can handle an arbitrary equation of state, while in memory management
extensions to larger sets of equations are anticipated.

The code must both give accurate steady state solutions with a reasonable effi-
ciency and allow time accurate solutions. These are conflicting requirements, be-
cause for the steady case one can obtain fast convergence by adding dissipation,
while one tries to minimize dissipation in time accurate calculations. Whenever
there is a conflict between these requirements, time accuracy was favoured. The
flow field contains both strong shocks and boundary layers, which present differ-
ent problems. The addition of real gas chemistry makes the problem very stiff
and puts strong limits on the time step for an explicit method, making the use of
an implicit method almost mandatory. For time accurate implicit calculations,
the time step cannot be too large, if all the time scales of fluid motion are to be
resolved, while the faster chemical time scales are ignored by using an implicit
method.

An implicit method is much more complicated than an explicit method. There
are a number of implicit methods available for the compressible Navier-Stokes
equations. One of the first and most widely used methods is that of Beam and
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Warming (1978), which is not well suited for our problem. For time accurate
solutions the approximate factorization used in the Beam and Warming algo-
rithm adds an additional error and the viscous cross-coupling terms cannot be
taken into account implicitly. In addition the method requires artificial viscos-
ity to obtain stable solutions when there are shocks, due to the use of central
differences. The Beam-Warming method is designed for obtaining steady state
solutions efficiently, but is not well suited to time accurate calculations.

An alternative is a method based on splitting the non-linear terms in the
Navier-Stokes equations into components related to the positive and negative
eigenvalues of the operator. The method accounts for the traveling of informa-
tion along the (inviscid) characteristics in the differencing. Although the flow
is viscous, due to the high Reynolds number, this is not a bad approximation
in most areas of the flow. Recently Montagné et al. (1989) compared various
algorithms, such as flux splitting according to Steger and Warming or van Leer,
approximate Riemann solvers and TVD methods for real gas equations and did
not find major differences in their prediction of shock waves. Because we can-
not hope to resolve the details of a shock in our simulation, we are forced to
use one of these methods or central differencing with additional artificial dissi-
pation. The choice was made to use flux splitting for the non-linear terms for
its additional beneficial numerical effects, viz. a diagonally dominant matrix
suited for an iterative method. In the viscous region, however, one has to be
careful, because flux splitting can produce unwanted numerical dissipation, as
was demonstrated by MacCormack et al. (1989). The correction to the Steger-
Warming splitting proposed by MacCormack is used in regions with dominant
viscous effects, whereas in a shock the Steger-Warming splitting, as described in
Steger et al. (1981), is used. The fact that the flux splitting of the non-linear
terms, accompanied by one sided differencing, results in a diagonally dominant
matrix, which can be solved iteratively, was used to incorporate all the viscous
components implicitly in the numerical method. This was impossible in the fac-
tored algorithm of Beam and Warming. It also gives more freedom in the choice
of boundary conditions.

The numerical technique chosen to discretize the equations is a finite volume
method because an integral formulation is better suited to flows with shocks,
and it always satisfies the conservation properties of the equations. The present
algorithm solves the two-dimensional compressible Navier-Stokes equations in
conservation form in an arbitrary coordinate system. These can be written as:
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together with the equation of state: p = %%',,—T

Here p represents the density, u and v the velocity components in a Cartesian
coordinate system, p the pressure, T' temperature and e the total energy. The
variables z and y represent the Cartesian coordinates, whereas { and 7 represent
curvilinear coordinates. The coefficients M and Pr are the Mach and Prandtl
numbers, whereas u, X and x are the two viscosities and the thermal conductivity
respectively. It is important to realize that the shear stress and heat flux compo-
nents in V and I are functions of ¢ and 7. The equations are solved in a general
coordinate system because the wedge does not allow an orthogonal coordinate
system and complicated local flow phenomena, such as shocks, and boundary
layers require local grid refinement. The use of generalized coordinates, however,
greatly increases the complexity of the code.

The basic steps in the development of the numerical scheme will now be sum-
marized. The first step is the choice of a time integration method. The time
integration is formulated as a Padé relation, cf. Beam and Warming (1978):
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with: AU = On+l _(n

Here the coefficients a and 8 allow different time integration schemes to be
obtained. For instance, @ = 1, 3 = 0, give the implicit Euler method, a = .5,
B = 0 give the trapezium rule and a =1, # = 0.5 give a three point backward
scheme. The superscript n in this equation refers to the time t = 2,.

Introducing the compressible Navier-Stokes equations (1) into this relation
yields:

alt
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which is first or second order accurate in time, depending on the choice of a and
B. In order to solve this set of non-linear equations for the implicit case, the flux
vectors must be linearized around their value at time t = ¢,,:
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with similar linearizations for the vectors AG™ and AV™_ . The suffices + and

'l’l'
— on the Jacobian matrices of the inviscid flux vectors refcr to the components

with positive and negative eigenvalues. Introducing the linearizations of the flux
vectors in (8) and integrating over a small volume gives the integral formulation
for the compressible Navier-Stokes equations:
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Here V;; represents a grid cell, §;; a cell surface and n¢ and n, outward normal
vectors at S;;. The final step consists of approximating the fluxes across the cell
surfaces S;;. The positive and negative flux vectors are differenced backward
and forward respectively, while the viscous terms are centrally differenced. In
boundary layer regions the modifications to the differencing of the inviscid flux
vectors presented by MacCormack et al. (1989) are used, whereas in a shock the
Steger-Warming splitting is used, see Steger et al.(1981). After choosing proper
discretizations for the components at the cell surfaces and centers, a system of
linear algebraic equations is obtained:

ALAUY, + BLAUT,,, + CLAUT, , + DEAUY, ; + ELAUL, j+

I":'SAU" +1,j+1 +GnAUn 1,j+1 +H"AU1+1: 1 +I”AU“ 1j-1 7 R

Here Aij, ey ‘,’; represent the Jacobian matrices obtained after linearization
of the flux vectors and R} is the right- hand side. For the compressible Navier-
Stokes equations they are 4 x 4 matrices, but for real gases they are much larger.

The details of these matrices will be published elsewhere.
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The solution of this system is the most time consuming part of the numerical
algorithm. The use of flux splitting for the non-linear terms makes the matri-
ces diagonally dominant and allows the use of iterative methods. Gauss-Seidel
line relaxation is used in all four directions of the fluid domain to reduce the
nona-diagonal block matrix to a tri-diagonal matrix. This system of tri-diagonal
madtrices is usually solved with a direct inversion method because these matrices
do not have a structure suitable for most iterative inversion methods. If the
mean flow quantities are needed, it is not necessary to iterate this Gauss-Seidel
line relaxation to convergence at each time step, but for time accurate solutions
convergence to accuracy better than the truncation error must be obtained each
time step. The inversion may become then prohibitively expensive. So an al-
ternative to the direct inversion must be found. It was suggested by Dexun et
al. (1989) that using the LU decomposition of the abridged matrices, consisting
of only the main diagonals of the tri-diagonal block matrices, as a precondi-
tioner and solving the tri-diagonal block matrices iteratively gives a significant
im