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Abstract

The development of a gridless computational fluid dynamics (CFD) method for the solution of the
two-dimensional Euler and Navicr-Stokes equations is described. The method uses only clouds of points
and does not require that the points be connected to form a grid as is necessary in conventional CFD
algorithms. The gridless CFD approach appears to rcsolve the problems and inefficiencies encountered
with structured or unstructurcd grid methods, and conscquently offers the greatest potential for accurately
and efficiently solving viscous flows about complex aircraft configurations. The method is described in
detail and calculations are presented for standard Euler and Navier-Stokes cases to assess the accuracy

and efficiency of the capability.

Introduction

Considerable progress in developing computational fluid dynamics (CFD) methods for acrodynamic
analysis has been made over the past two decades.! The majority of work that has been done in CFD
over the years has been on developing methods for usc on computational grids that have an underlying
geometrical structure and thus the grids are referred to as “structured”. For example, Fig. 1(a) shows
a structured grid for the NACA 0012 airfoil. The grid is of C-type topology, has 159 points in the
wraparound direction, and 49 points in the outward direction. Mcthods developed for structured grids have
been applicd to a wide varicty of geometrical configurations ranging from simple, analytically defined

airfoil sections such as the NACA 0012 airfoil to complex aircraft configurations such as the F-16A



fighter.2 Although applications of structured grid mcthods to complex configurations are indeed possible
they generally require more sophisticated meshing methodologies such as blocked, patched, chimera,
or hybrid-type grids. For cxample, the F-16A fighter calculations reported in Ref. 2, which included
the engine inlet and boundary layer diverter as well as the wing, fusclage, and tail in the geometrical
modeling, used 27 blocks of structurcd cells to make up the grid. These more sophisticated meshing

methodologies, in tum, significandy complicate the solution algorithms of the structured grid methods.

An altemative approach is the use of unstructured grids.>7 In two dimensions, unstructured grids
typically are constructed from trianglcs, and in three dimensions, they consist of tetrahedral cells. The
triangles or tetrahedra may be oriented in an arbitrary way to conform to the geometry, thus making
it possible to easily generate grids about very complicated shapes. Although not a complicated shape,
Fig. 1(b) shows an example of an unstructured grid for the NACA 0012 airfoil. The total grid has
3300 nodes and 6466 triangles. An advantage of methods developed for unstructured grids is that they
may be applied to complex aircraft configurations without having to make changes to the basic solution
algorithm. Numerous calculations for complex configurations performed using various Euler codes have
been reported by several researchers.>~’ However, applications to three-dimensional configurations using
unstructured grid Euler codes have tended to be incfficient because the meshes have an excessively large
number of cells. The excessive number of cells is due, in part, to the current state-of-the-art in generation
of unstructured tetrahedral grids, which produces meshes that are much finer in the spanwise direction (for
a given streamwise density) than is necessary for accurate flow computation. To alleviate the problem,
the cells may be stretched in the spanwise direction when generating the mesh to reduce the number of
cells. However, the stretching can create convergence and accuracy problems for the flow solver. The
basic problem is that the tetrahedron is an inefficient geometrical shape (whereas the triangle tends to
be an efficient shape in two dimensions). A more efficient shape for an isolated wing application is a
prismatic cell defined by a polyhedron with a triangular cross-section. A mesh of this type uses triangles
which form prisms when connected in the spanwise direction to grid the planes of the airfoil sections of
the wing. This approach, though, not only puts structurc back into the mesh it is not generally applicable

to complex three-dimensional configurations.



Another problem with the unstructured-grid methodology is encountered in extending the methods for
solving the Euler equations to the solution of the Navicr-Stokes equations, especially in three dimensions.
For viscous applications, grids generally need to be fine near the body in the outward direction to resolve
the boundary layer but less finc in the direction along the surface of the body. This naturally leads
to cells of high aspect ratio which tends to exacerbate the inefficiency of three-dimensional solution
algorithms based on tetrahedra. Specifically, the use of tetrahedra for viscous flow applications results
in an unreasonably large number of cells. The number of cells is in fact absurdly large in comparison to
grids that are generated for Euler calculations (which are already inefficient because of a large number of
cells as previously discussed) because of the additional requirement that the mesh be fine near the body.
To alleviate this problem, a hybrid approach has been developed recently using prismatic cells for the
solution of the Navier-Stokes cquations.8 In this approach, the surface of the geometry under consideration
and the outer boundaries of the mesh are gridded using triangles, and instead of generating tetrahedra to
fill the interior of the computational domain, the triangles on the inner and outer boundaries of the mesh
arc connected to form prisms. The prisms, of course, require the same number of triangles on the inner
and outer boundaries. While this hybrid approach is a viable solution to alleviate the inefficiency created
by using tetrahedral cells to solve the Navier-Stokes equations, it is not necessarily the best approach,
since it again puts structure back into the mesh and limits some of the advantages of the unstructured
grid methodology, such as spatial adaption.

What is truly required to advance the CFD technology to treat complex configurations in viscous
flows is not to take a step backward toward grid structure, but to take a bold step forward to develop
methods that do not require the use of grids at all. Hence the solution to the above-mentioned problems
with structured and unstructured grids is the devclopment of algorithms for solving the Navier-Stokes
equations based on using only grid points and not on the connectivity information that relates all of the
points to one another. This type of approach, which may be referred to as “gridless” CFD, has distinct
advantages over methods that require grids. Since only points are required, or specifically clouds of
points as suggested by Chakravarthy,? gridless CFD methods offer the greatest potential for accurately

and efficiently solving viscous flows about complex aircraft configurations. It is noted parenthetically,
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that if finally the grid points too were not required by the solution algorithm, then the ultimate flexibility
in methodology could be attained. This type of method might then be referred to as “pointless” CFD.
The purpose of the paper is 1o report the development of a gridless method for the solution of the
two-dimensional Euler and Navier-Stokcs equations. The mcthod uses only clouds of points and does
not require that the points be connected to form a grid as is necessary in conventional CFD algorithms.
The goveming partial differential equations (PDEs) are solved directly, by performing local least-squares
curve fits in each cloud of points, and then analytically differentiating the resulting curve-fit equations to
approximate the derivatives of the PDEs. The method is neither a finite-difference nor a finite-volume
type approach since differcnces, metrics, lengths, areas, or volumes are not computed. The method is
described in further detail and calculations are presented for standard cases to assess the accuracy and

efficiency of the capability.

Governing Equations

In this study the flow is assumed to be govemed by the two-dimensional laminar Navier-Stokes

equations which may be writien in differential form as

0
g, ~F)=0 1)

0Q @
o T F B

where () is the vector of conscrved variables given by

E and F are the inviscid fluxes in the ¢ and y directions, respectively, defined by
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and E, and F, arc the viscous fluxes in the z and y directions, respectively, defined by
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In the viscous fluxes the shear stresses and heat flux terms are defined by
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In these cquations, M, is the freestrcam Mach number, Re is the Reynolds number, Pr is the Prandd

number, and g is the molecular viscosity determined using Sutherland’s law. The Euler equations are

obtained by setting the viscous fluxes equal to zcro.
Spatial Discretization

Derivatives

The spatial derivatives in the goveming cquations (Eq. (1)) are approximated as follows. In each

cloud of points, each term of the fluxes is assumed to vary linearly according to
f(z,9) = a0 + a1z + azy @)

where the coefficicnts ag, @, and g arc detemmined from a lcast-squares curve fit. Performing a least-

squarcs fit in a given cloud results in three equations represented in matrix form by
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where n is the number of points in the cloud and the summations are taken over the n points. The
solution of Egs. (3) requires the inversion of a 3 X 3 matrix which is performed for every cloud in the
computational domain. Having solved these equations for ag, @;, and a;, the spatial derivatives are now

known since by differentiating Eq. (2) it is obvious that
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In addition to approximating the spatial derivatives of the goveming equations by differentiation of
the least-squares curve fits, the shear stresses and heat flux terms are calculated the same way. Since
these terms involve first derivatives of the velocity components or pressure divided by dehsity, the shear
stresses and heat fluxes can be approximated by defining f to be equal to u, v, or p/p, evaluating the
terms of Egs. (3), and inverting the left-hand-side matrix. The resulting values for a; and a; are the

derivatives of the specified quantity with respect to z and y, respectively, within a given cloud of points.
Artificial Dissipation

The unsteady Euler equations are a set of nondissipative hyperbolic conservation laws that require
some form of artificial dissipation to prevent oscillations near shock waves and to damp high-frequency
uncoupled error modes. The unsteady Navicr-Stokes equations also require artificial dissipation for
similar reasons becausc the physical viscosity generally is limited to the boundary layer. Since the
method of the present work is conceptually analogous to a central-difference type approach, the artificial
dissipation must be added cxplicitly to the solution procedure. This is accomplished by adding harmonic
and biharmonic terms to the goveming equations, corresponding to second and fourth differences of the

conserved variables, respectively. These dissipation terms are defined by
D = V(e®3)vQ - v*(9r)v?2Q )

where ) is the local maximum eigenvalue of the goveming equations, and () and €(4) are local dissipation
cocfficients that are formulated similar to those of Jameson.! Furthermore, the above treatment of the
artificial dissipation constitutes an isotropic dissipation model (independent of coordinate direction) which

generally is only applicable to the Eulcr equations. For the Navier-Stokes equations, an anisotropic model



is required due in part to the close spacing of points normal to the surface relative to the tangential
distribution of points (analogous to high aspect ratio cclls in structured or unstructured grid methods).
Thus an anisotropic dissipation model was devcloped for use when solving the Navier-Stokes equations

on clouds of points.

Temporal Discretization
Time Integration
The governing flow equations are integrated numerically in time using an explicit multi-stage Runge-
Kutta time-stepping scheme.! Typically a four-stage scheme is used to solve the Euler equations with

the artificial dissipation evaluated only during the first stage. A five-stage scheme is used to solve the

Navier-Stokes equations with the artificial dissipation evaluated during the first, third, and fifth stages.
Residual Smoothing

The Runge-Kutta timc-integration scheme described in the previous section has a step size that is
limited by the Courant-F ricdricks-Lch (CFL) condition corresponding to CFL numbers of approximately
2.8 and 3.6 for the four-stage and five-stage schemes, respectively. To accelerate convergence 1o steady
state, the CFL number may be increased by averaging the residual R with values at neighboring points.l

This is accomplished by replacing R by the smoothed residual R given by
R-<V'R=R (6)

where ¢ is a constant which controls the amount of smoothing and V? is a harmonic operator similar to that
used in the dissipation model. Also similar to the dissipation model, an anisotropic form of the harmonic
operator is used when solving the Navier-Stokes equations. Equation (6) is solved approximately using
several Jacobi iterations. Convergence to steady state is further accelerated using enthalpy damping (only

for the Euler equations) and local time stepping.

Boundary Conditions

To impose the boundary conditions along the surface of the geomeiry being considered, ghost points

that are located inside of the gecometry are used. The locations of these ghost points are determined by



a simple reflection of the flow field points that are close to the surface about the edges that define the
boundary. A similar procedure is used near the outer boundary to determine the locations of ghost points
at which to impose the far-field boundary conditions.

Along solid surfaces, the velocity components at the ghost points are determined from the values at
the corresponding flow ficld point adjacent to the surface. When solving the Euler equations, the velocity
components at the ghost points are determined by imposing a flow tangency or slip condition which
requires that the velocity normal to the surface vanishes. When solving the Navier-Stokes equations, the
velocity components at the ghost points are determined by imposing a no-slip condition which simply
changes the sign of the values of the components at the adjacent flow field points. In either case (Euler
or Navier-Stokes), pressure and density at the ghost points are set equal to the values at the adjacent
flow field points. Additional conditions are imposed using the ghost points to accurately treat the shear
stresses and heat flux terms, as well as the artificial dissipation terms.

In the far ficld a characteristic analysis based on Riemann invariants is used to determine the values
of the inviscid flow variables at the ghost points that are located outside of the outer boundary. This
analysis correctly accounts for wave propagation in the far field which is important for rapid convergence
to steady state. Values of the viscous flow quantitics at these ghost points are set equal to the values at

the corresponding flow field points adjacent to the outer boundary.
Results and Discussion

Calculations were performed first with the Euler cquations and then with the Navier-Stokes equations,
to assess the feasibility of the gridless CFD concept. The results were obtained for standard cases to
determine the accuracy and efficiency of the methodology. All of the results were obtained on the
Cray-YMP computer (Reynolds) at the Numerical Aerodynamic Simulation Facility located at the NASA

Ames Research Center.

Euler Results

Results were obtained first by solving the Euler equations for flows about the NACA 0012 airfoil.

The field of points that was used to model the flow about the airfoil is plotted in Fig. 2. For convenience,

8



the locations of these points were determined by using the ccll centers from the unstructured grid of
Fig. 1(b), and the cloud of points for each point was taken to be the cell centers of the three triangles
that share edges with a given triangle. To more clearly demonstrate this, Fig. 3(a) shows a close-up view
of the unstructured grid near the airfoil nose, and Fig. 3(b) shows the points determined from the cell
centers. Figure 3(b) also shows ghost points that are located inside of the airfoil in order to impose the
surfacc boundary conditions. The computational domain has a total of 6,500 points, 134 of which are
ghost points. It is emphasized that the unstructured grid of Fig. 1(b) was used to determine the field
of points of Fig. 2 only for convenience. In general, any method to determine the points is acceptable.
Efficient generation procedures to determine clouds of points have yet to be developed.

Euler results were obtained using the points of Fig. 2 for four standard NACA 0012 airfoil
cases corresponding to various combinations of freestream Mach number M, and angle of attack «
including: (1) Mo = 08, @ = 0, (2) M, = 085, a = 1, 3) M, = 0.8, = 1.25°; and
(4) My, = 1.2, a = 7°. All four cases were run using a CFL number of 5.0 with local time-stepping,
residual smoothing, and cnthalpy damping to accelerate convergence to stcady state. Figure 4 shows
the resulting convergence histories plotted as the log of the L;-norm of the density residual versus the
CPU time in minutes. The convergence histories indicate that convergence to steady state is obtained
in only several minutes of CPU time; thus, the method is reasonably efficient in comparison with ac-
cepted runtimes of more conventional Euler methods (without multigrid acceleration). As further shown
in Fig. 4, the slowest convergence is for case 2 (Mo = 0.85, a = 1°), which is because the solution
contains two shock waves (upper and lower surfaces of the airfoil) of moderate strength. Therefore, it
is slightly harder to converge the solution of case 2 in comparison with the solutions of the other cases.
Figure 5 shows the corresponding pressure coefficient distributions C,, versus the fractional chordlength
z/c for the four NACA 0012 airfoil cases. The pressure distributions for cases 1, 2, and 3 indicate that
the shock waves are sharply captured with only onc interior point, which is somewhat surprising for a
method that corresponds essentially to central differencing. The pressures for all four cases indicate that
the gencrally accepted Euler solutions have been obtained, which suggests that the gridless CFD method

is accurate as well as efficient for such applications.



Navier-Stokes Results

Next, results were obtained by solving the Navier-Stokes equations first for a flat plate and then for
the NACA 0012 airfoil. For the flat plate, a solution was obtained initially to assess the gridless Navier-
Stokes capability by making comparisons with the cxact Blasius solution. The field of points used in
these calculations was gencrated from a structured mesh of grid points, that were uniformly distributed
along the flat plate but clustered near the plate in the normal direction to resolve the boundary layer.
The calculations were performed for M, = 0.5 and Re = 10,000. The resulting streamwise velocity
component u (normalized by the freestream value u.), plotted versus the similarity variable (y/ z)VRe,
is shown in Fig. 6 at z/I = 0.233, 0.383, 0.533, 0.683, and 0.833. The gridless results, represented by
the symbols, indicate that the similarity solution for a flat plate boundary layer is correctly obtained and

that the solution agrees well with the Blasius solution.

Navier-Stokes results were also obtained for a standard laminar case for the NACA 0012 airfoil
corresponding to Mo, = 0.5, @ = 0", and Re = 5000. The field of points that was used to model
the flow about the airfoil was again determined for convenience by using the cell centers from an
unstructured grid of triangles. A partial view of the unstructured grid is shown in Fig. 7(a) (generated
from a structured grid of C-type topology), and the corresponding view of points for the gridless method
is shown in Fig. 7(b). Closc-up views near the airfoil nose of the unstructured grid and the gridless
field of points are shown in Figs. 8(a) and 8(b), respectively. The computational domain in the latter
case has a total of 30,720 points, 608 of which arc ghost points. Navier-Stokes results were obtained
using a CFL number of 4.0 with local time-stepping and residual smoothing to accelerate convergence
to steady state. Figure 9(a) shows the resulting convergence history plotted as the log of the L;—nom of
the density residual versus the CPU time in minutes. The convergence history indicates that acceptable
convergence is obtained in less than one hour of CPU time which is reasonable considering that the
method does not currently use multigrid to accelerate convergence to steady state. Figure 9(b) shows the
corresponding pressure distribution which indicates that the generally accepted Navier-Stokes solution

involving separated flow near the trailing edge has been obtained by using the gridless CFD method. To
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more clearly see the flow solution in the trailing-edge region, velocity vectors are presented in Fig. 10.
The flow separates near 82% chord along the upper and lower surfaces of the airfoil, and the velocity
vectors indicate that there are small recirculation bubbles downstream of the trailing edge. This solution
is consistent with the Navier-Stokes solutions reported by other researchers obtained for this case using

structured (Ref. 10) and unstructured (Ref. 11) grids.

Concluding Remarks

The development of a gridless CFD method for the solution of the two-dimensional Euler and Navier-
Stokes equations was described. The method uses only clouds of points and does not require that the
points be connected to form a grid as is necessary in conventional CFD algorithms. The gridless CFD
approach appears to resolve the problems and incfficiencies encountered with structured or unstructured
grid methods and, consequently, offers the greatest potential for accurately and efficiently solving viscous
flows about complex aircraft configurations. The mcthod was described in detail and calculations for
standard cases were presented to assess the accuracy and efficiency of the capability. The capability
was tested for the solution of the Euler equations and for the solution of the laminar Navier-Stokes
equations. These solutions were found 1o be accurate and efficient in comparison with solutions from

conventional CFD mcthods.

Future Work

The three-dimensional version of the gridless algorithm has been developed for the solution of the
Euler and Navier-Stokes cquations and is currently being cvaluated for three-dimensional applications. An
Euler casc that is being considered is a transonic flow about the Boeing 747 transport configuration. For -
convenience, a field of points has been created from an existing unstructured mesh of tetrahedra for the
747, using the cell centers to locate the points for use by the gridless method. The computational domain
contains 109,805 points, 8,330 of which arc ghost points. The ghost points that are being used to model
the surface of the 747 are shown in Fig. 11. These ghost points clearly show that the geometry includes

the fuselage, the wings, horizontal and vertical tails, undcrwing pylons, and flow-through engine nacelles.
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Fig. 11 Ghost points for the Boeing 747 transport configuration.
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