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On the subgrid-scale modeling 0.0

of compressible turbulence

By Kyle Squires' AND Otto Zeman'

A new sub-grid scale model is presented for the large-eddy simulation of com-
pressible turbulence. In the proposed model, compressibility contributions have
been incorporated in the sub-grid scale eddy viscosity which, in the incompressible
limit, reduce to a form originally proposed by Smagorinsky (1963). The model has
been tested against a simple extension of the traditional Smagorinsky eddy viscosity
model using simulations of decaying, compressible homogeneous turbulence. Sim-
ulation results show that the proposed model provides greater dissipation of the
compressive modes of the resolved-scale velocity field than does the Smagorinsky
eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, sim-
ulations performed using the Smagorinsky model become physically unrealizable
(i.e., negative energies) because of the inability of the model to sufficiently dissipate
fluctuations due to resolved scale velocity dilatation. The proposed model is able
to provide the necessary dissipation of this energy and maintain the realizability of
the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate
energy independent of the Kolmogorov energy cascade. A possible parameterization
of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.

1. Introduction
Compressibility effects in turbulent flows depend mainly on the r.m.s. fluctuat-

ing Mach number, Mt , defined as the ratio of the r.m.s. fluctuating velocity to the
mean field sonic velocity. Direct numerical simulations (DNS) of homogeneous tur-
bulence indicate that, in general, the direct compressibility effects on turbulence are
insignificant if Mt = 0(10 — ') in the sense that the solenoidal (rotational) part of
the fluctuating velocity field and the acoustic (irrotational) field are decoupled. The
acoustic field, which is determined mainly by initial conditions, plays only a passive
role in the overall turbulence dynamics (Blaisdell 1990, Zeman and Blaisdell 1990).
Only when Mt exceeds a value of about 0.3 does compressibility begin to noticeably
influence turbulence dynamics and structure. Further increase in Mt may lead to
formation of shock-like structures or turbulent shocklets. Shocklet formation has
been detected in the DNS of decaying turbulence when the initial value of Mt ex-
ceeded 0.5 (Lee, et al. 1990). In the DNS of homogeneous shear turbulence, Blaisdell
(1990) detected shocklets for Mt > 0.7. Zeman (1990) suggested that weak shock-
lets may be responsible for the growth rate attenuation in shear layers and proposed
a physical model for shocklet formation and the associated (dilatation) dissipation.
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On the basis of the DNS results and experimental evidence in mixing layers (e.g.,
Papamoschou and Roshko 1987), compressibility effects may be broadly classified
by the magnitude of Mt . Thus, we shall refer to the range 0.3 < Mt < 0.6 as mod-
erate Mach numbers whereby the compressibility effects are observable but with no
formation of shock-like structures (which signifies interactions between compressive
(acoustic) and solenoidal fields). At larger Mach numbers, Mt > 0.6, a full scope
of compressibility-induced effects may be expected, such as shocklet and baroclinic
vorticity generation and significant solenoidal/compressive field interactions.

In large eddy simulation (LES) techniques, the r.m.s. velocity of subgrid-scale
turbulence is smaller by the order O(Ax/L) 113 than that of the energy containing
eddies of scale L. The lower limit on the mesh size Ax is set by the computer. In
the LES calculations presented later in section 4, L/Ax P: 30, and it follows that
the r.m.s. Mach number associated with subgrid scales is (Mt ),g = Mt(Ax/L)1/3 ,;;
0.3Mt . Thus, for realistic resolved-scale Mach numbers Mt < 1, the subgrid scale
turbulence can be considered as incompressible but acted on by the large-scale
compression and/or expansion and by inhomogeneities in the resolved thermal field
as well. In section 2, we describe a formulation of a Smagorinsky-type SGS model
which incorporates these compressibility contributions.

The possibility of occurrence of shocklets (at larger-than-moderate Mach num-
bers) presents a problem which must be treated separately from the SGS modeling.
We can envisage that in the real flow a shocklet will have formed whose cross-section
is sketched in figure 1. Because the shocklet is formed by the large-scale motions, it
is expected to span an area of several mesh sizes, but since the shock thickness (a,)
scales on viscosity, the gradients and dissipation associated with the shock front
cannot be resolved in LES. It may be shown that the ratio A,/Ax is proportional
to (p/Z^p)(L/Ax)ReL 1 , where Re L is the large scale (turbulent) Reynolds number
and Aplp is a relative density jump across the shock. Because Re L is arbitrar-
ily large, \, will always be a negligible fraction of Ax and, therefore, the actual
shock front will be smeared over several mesh points and the shocklet dissipation
underestimated by the order O(A,/ox) (Zeman 1990). The shocklet dissipation
rate is locally very high and is independent of the Kolmogorov energy cascade and
of the SGS turbulence. Therefore, it cannot be made a part of the SGS mode,
and the only alternative is to represent the shocklet-induced effects by means of
added (virtual) stresses in the resolved-scale governing equations. This approach is
described in section 3. The LES numerical method is described in section 4, and
computational results of LES of decaying compressible turbulence are presented in
section 5. Section 6 concludes the report.

2. Large-scale compressibility effects on SGS energy and viscosity

The set of compressible LES equations obtained by Favre filtering the governing
equations are

aP + aPU i
 — 0	 (1)

at	 axi
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FIGURE 1. Schematic of a shocklet in a computational grid.
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7r; =PU;—PU;;^spu,;	 (6)

Here, Ui , P, T are velocity, pressure, and temperature and E = c„T + Uj Uj 12 is
the total energy per unit mass. The viscous stress tensor is represented as vi; in
equations (2) and (3). The field decomposition is X = X + x, where X = pX/p is
the filtered (resolved) quantity and, as opposed to incompressible flows, is obtained
through Favre filtering. The sub-grid component of the variable X is denoted as x.
The proposed Smagorinsky- type closures to the stress tensor Ti; and heat flux q;
are

r'j = u,u; = —2vTS + 3 g2 bii 	 (7)P

OTu = 
tc	 ui = _ai; 

x	 (8)
„p	 ax;

where

S = 2( Ui,i + U; ,i — 3V • Ubi;) (9)

is the trace-free strain rate tensor, q 2 = uju; is (twice) the Favre - averaged kinetic
energy of SGS turbulence, and VT and ai; are, respectively, eddy viscosity and
(tensor) eddy diffusivity due to SGS turbulence. Now our task is to parameterize
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the effect of the resolved compressive field on the SGS viscosity and diffusivity in a
functional form

VT = vToF(Mt , V • U, VT, VP),	 (10a)

a id = Prt I VTo Hij (Mt ,V • U, VT, VP),	 (10b)

where vTo oc (Ax) 2 JSij J is the (Smagorinsky) viscosity, and Pr t is the turbulent
Prandtl number in the incompressible limit Mt = 0. Also, in this limit F —4 1,
and Hij —* b ij . With the aid of the fluctuating part of the equation of state, the
pressure-flux term Sr i = pit; can be expressed as

Sr i = R(ptui +Tp'u i ).	 (11)

As mentioned already, it is justified to treat the SGS turbulence as incompressible;
therefore, Sr i is negligible compared to either of the terms on the RHS of (11) and
tu i /T .^s —p'u i /p. In order to determine the functions F and Hij in equations (10a)
and (10b), we shall approximate the conservation equations for SGS turbulence en-
ergy q 2 and heat flux tu i as in second-order closure schemes, with the resolved scale
motions acting as the mean (input) field. Neglecting the third-order correlations,
the transport equations for q2 and tu i may be expressed as (e.g., see Zeman 1990)

Dq2 2 2	 OP 1	 q3 2
Dt — 

—2ui V. — 3	
^

q V • U — 
2u.^ Ox — — 2 A + —Puri	 (12)

P	 P

Dtut OT 	 (13)Dt = —uiu.i Ox — tu; 	 Ch
Ox; — 

tu i 
A.

The average of the fluctuating velocity u i is by definition, u i = — p'u i /p and ac-
cording to (11) (with Sri = 0) it is approximated as u i ti tu i /T. The fourth term
in (12) represents the SGS solenoidal dissipation c, = q3 / A ; the dissipation scale A
scales on the mesh size z^x and will be determined later. The constant Ch in the
heat flux equation (13) is the tendency-to-isotropy constant and its value is dictated
by the Prandtl number Prt ; typically, Ch 6.5. Employing the inertial subrange
relations, we find that the convective derivative terms in (12) and (13) are of order
O(Ax/L) 2I3 smaller compared with the principal right-hand-side (RHS) terms and
are neglected. Since the convective derivative terms are small and the sub-grid scale
turbulence Mach number is also small, the last term in equation (12) representing
the pressure dilatation correlation of the sub-grid scales may also be neglected. It
should be remarked, however, that the convective-term discard may not be justified
in the regions containing shock-like structures (see section 3).

In order to obtain expressions in the form (10), we shall recast (12) and (13) in
terms of the SGS viscosity VT and write

VT = ,3Aq	 (14)
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where 3 is presently an undetermined constant. With the aid of (7) and (14),
equations (12) and (13) can now be solved for VT, a te, q2 , and Pr t . To first order

in 0 • U we obtain

q 2 = 2QA2 S I2 + QAz 
OP OT _ -Az 

IS-1 V • U ,	 (15)
pT Prt

and
VT	 VT Aa ir	 Prt b,j	 3 q S^.	 (16)

As mentioned earlier, Pr t is related to the tendency-to-isotropy constant C h ; from
the second-order closure equations we obtain Pr t '; Ch /8.12 = 0.8 (Zeman 1990).
The viscosity constant 3 in (14) must be such that in the incompressible limit
Mt = 0, the SGS viscosity approaches a well-tested Smagorinsky value vTo =
(C,Ox) 2 ^S ^. The obvious choice here is A = Ox and, hence, 3 = C; l3 . An
accepted value for the Smagorinsky constant is C, = 0.2, and this gives 3 = 0.12.
A more accurate analysis, based on the inertial subrange relations (e.g. Tennekes
and Lumley 1972), gives

q3 _ g 3 ( k ) k	 (17)
E,	 A	

(2a)3/2

where k : 7r/Ax is the smallest SGS wavenumber and a 1.5 is the Kolmogorov
constant. From (17), A = (2a) 312 0x17r ti 1.65^x and then 0 = 0.06. Tests of the
SGS model represented by the closure equations (7), (8), and (14)-(16) showed a
reasonable insensitivity to the choice of 3 and, therefore, the results presented in
this paper were obtained using A = Ax.

3. Virtual shocklet stresses
As mentioned earlier, in LES the information on shocklet occurrence is lost due to

a lack of resolution, and the total energy dissipation is likely to be underestimated.
The would-be shock front is numerically diffused and may manifest itself by numer-
ical instability. Here, an approach is suggested to reconstruct the shocklet effects
through inclusion of additional (virtual) stresses in the resolved scale equations.
These virtual stresses depend on the local Mach number m = (Uj Uj ) 112 /a(T), the
density (or pressure) gradients, and possibly on molecular properties. The princi-
pal purpose of this stress reconstruction is to recover some part of the dissipation
associated with the possible shock structures.

The idea of the virtual stress parameterization is based on the model and theory
of shocklet dissipation developed by Zeman (1990) and on the assumption that
although the actual-flow shock structure cannot be resolved in the LES, the actual
and LES fields share statistical properties of energy containing motions. Thus, we
assume that the actual (or DNS) and LES fields have the same pdf p(m) of the
fluctuating Mach number m(x,t) and that the local density (or pressure) gradients
and 0 • U are, in combination with m(x, t), sufficient indicators of an unresolved
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shock event. Then, one of the plausible ways to express the virtual stress divergence
due to an unresolved shocklet (to be added to the RHS of equation (2)) is

z_	 _

(Tii,i)ahk cc —OPa2(m 
m 1 ) 2 P.(m , 0 . U , op),	 (18)

where p,(x, y ) z) is a conditional, shock probability function which is an indicator of
the virtual shock occurrence; the necessary but not sufficient condition for the shock
occurrence is m > 1 and0 • U < 0. According to (18) the shock stress divergence
is in the direction of the density front Vp, and we convince ourselves that equation
(18) gives a correct magnitude of shocklet dissipation by forming the kinetic energy
equation for the resolved scales, K = Uj U;/2. With (rij,j)ehk added to the RHS of
(2), we obtain

DK
Dt	 —((rij ),hkUi),; + ( Tij),hk Ui,j + other terms.	 (19)

The (dilatation) dissipation due to the virtual shocklet is the second term in (19)
and with (18) we obtain

_	 2	 _

DK	 moc +V • Upa2( 
m

1 ) 2 p,(m,U,Op) — —c ,hk•	 (20)

Note that the differential operation is not to be applied to the scalar function in m
and to p„ since these serve only as rescaling and probability measures.

The proposed parameterization of shocklet dissipation in LES will have to be ver-
ified by comparing DNS of shocklet turbulence with a corresponding LES field. The
comparison might be difficult to interpret in nonstationary (decaying) turbulence
simulations. To this end, we shall attempt in the future to generate a stationary
turbulence field at sufficiently high r.m.s. Mach number by random forcing applied
at the largest scales.

As a final point, we should keep in mind that the large-scale shock front may
have a significant effect on the (presently neglected) convective terms in the kinetic
energy budget of SGS turbulence (12). Since the average velocity U, normal to the
shock front must be of the order of the sonic speed a, then the advective derivative
Ujq ^ in (12) could be of order ag2 /Ax and, therefore, larger than the primary terms
such as the dissipation c, a q 3 /Ox. Inclusion of these shock front advection effects
in the SGS models has not so far been considered.

4. Simulation methods and parameters
The Favre-filtered equations for a compressible fluid (equations 1-3) were solved

for the case of temporally evolving homogeneous turbulence. Since homogeneous
turbulence is in principle unbounded, numerical simulation of these flows employ
periodic boundary conditions in a finite computational domain. The application
of periodic boundary conditions typically permits extremely accurate schemes for
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the evaluation of spatial derivatives. In the numerical method used for the present
work, spatial derivatives are evaluated using high-order accurate compact finite
differences. These difference schemes possess spectral-like resolution (see Lele 1990),
and the formal order of accuracy of the scheme used in the present work is sixth
order. The discretized equations were solved using 32 3 grid points and were time
advanced using a third-order Runge Kutta method.

It should be remarked that the filtered momentum and energy equations shown
in section 2 contain terms which may not be greatly simplified following the fil-
tering of the governing equations. For example, no appreciable simplification of
the viscous stresses in the momentum equations or the viscous dissipation terms in
the energy equation is obtained by filtering equations (2) and (3). In fact, since
the energy of the flow is computed using the transport equation for total energy, a
number of additional terms arise following the filtering operation. It is important
to remember, however, that many of these terms, e.g., the viscous dissipation terms
in the energy equation, are negligible at high Reynolds numbers (at least away from
solid boundaries). Other terms are assumed to be represented by the sub-grid scale
model.

The initial conditions for all simulations were identical to those used by Lee, et

al. (1990), i.e., the initial velocity field is constrained to be divergence free, and
there are no initial density or temperature fluctuations. The velocity fluctuations
were also constructed from an initial energy spectrum of the form

E(k) = Ak 4 exp [-2(k/ko)2] .	 (21)

Simulations were performed using the SGS model shown in section 2 and com-
pared to results obtained using an `incompressible' Smagorinsky-type model, i.e.,
a sub-grid scale model neglecting corrections for resolved-scale velocity dilatation.
This model will be referred to as the Smagorinsky model and is summarized below

Ti j	 1 2_ = —2vTS
,^
 ^ + 3 q S,j ,	 (22)

P

qi _	 49T	 (23)

c„P	 axe

where

	

VT =V20-3  A2 1
S=i1	 (24)

VT 	 VT	
( )ate	 b,

Pr 
^ _ _ q 131	 25

t	 4

and

q2 = 20A 2 I S * I 2 .	 (26)

As mentioned in section 2, the value of the constant 3 was determined by consid-
ering an incompressible limit, i.e., the limit which yields the Smagorinsky model
shown above. Following this limit process, the value of the constant 3 used for the
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simulations presented in this paper was 0.12. The reader is referred to section 6 for
further discussion considering determination of the constant. This value of P corre-
sponds to a value of the Smagorinsky constant, C„ of 0.2. It is should be remarked,
however, that a value of C, = 0.2 is larger than the value of 0.092 determined by
Erlebacher, et al. (1990). Erlebacher, et al. determined the constant from direct
numerical simulations of compressible homogeneous turbulence by correlating exact
and modelled stresses.

The remaining parameter for the sub-grid scale model is the value of the turbu-
lent Prandtl number, Pr t . As shown in section 2, Pr t is related to the tendency-
to-isotropy constant, C h . Using the second-order closure equations, a value of
Pr t = 0.8 is then obtained. Alternatively, one can also show that filtering the
pressure-work term in the energy equation gives rise to an additional sub-grid scale
heat flux (i.e., other than that arising from filtering the convective terms). This
additional flux augments the overall SGS heat flux by a factor of y. If the ratio of
the sub-grid scale fluxes of momentum and heat are considered to be the same as
in incompressible turbulence, then the turbulent Prandtl number for compressible
turbulence must then be reduced by a factor of -y. A widely accepted value of Pr t for
simulations of incompressible turbulence is 0.7. Accounting for the reduction of Prt
by the additional sub-grid scale heat flux from the pressure-work term, the value
of the turbulent Prandtl number for compressible turbulence is then Pr t = 0.5. It
is interesting to note that this value is the same as that determined by Erlebacher,
et al. (1990) using their DNS database. No tests were conducted in the present
study to investigate the influence of Pr t on the computed flow fields, and a value
of Pr t = 0.5 was used for the results presented in section 5.

Since the initial density and temperature fields were considered to be uniform
and the initial velocity field was solenoidal, the properties of the initial fields may
be specified by the Taylor-microscale Reynolds number, Rea (= u' A/v), and the
turbulence Mach number, M t . The values of Mt for the three cases investigated in
the present work were 0.61, 0.8, and 1.0. The corresponding values of the Taylor-
microscale Reynolds number were 50, 65, and 83. For each of these Mach numbers,
simulations were performed using both the Smagorinsky eddy viscosity model and
the proposed model that incorporates additional terms representing the effect of
compressibility.

5. Results

Shown in figure 2 is the time development of twice the resolved-scale turbulence
energy for an initial turbulence Mach number of 0.8. The time axis in figure 2,
as well as figure 4, has been made dimensionless by the eddy turnover time, -re , in
the initial field. The two curves shown in figure 2 correspond to the Smagorinsky
eddy viscosity model and the proposed model which incorporates corrections due
to resolved scale compressibility. As is evident from the figure, there is negligible
difference between the resolved-scale energy obtained using either the Smagorinsky
model or the proposed model. This result is consistent with that obtained at the
lower turbulence Mach number, M t = 0.61.
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FIGURE 2. Time development of turbulence kinetic energy for an initial Mt = 0.8.
, Smagorinsky; o , proposed.

Shown in figures 3a and 3b are the radial energy spectra of the velocity and di-
latation fields at t/-re = 1.3 for an initial Mt = 0.8. Consistent with the results
observed in figure 2, it can be seen from figure 3a that there is negligible difference
between the velocity spectrum obtained using either sub-grid scale model. Figure
3b shows, however, that there is greater energy in the resolved-scale dilatation field
at higher wavenumbers from the computation using the Smagorinsky model than
for the proposed model. Figures 3a and 3b clearly show that the model more sig-
nificantly affects the compressive modes of the velocity as opposed to the solenoidal
velocity components.

The time development of the resolved-scale turbulence energy is shown in figure 4
for both the Smagorinsky and proposed models for an initial M t = 1.0. As was also
observed for the lower Mach number cases, this figure shows that at early times,
the resolved scale energy is virtually identical for both cases. It was also found,
however, that the flow field becomes physically unrealizable using the Smagorinsky
model. The solid line in figure 4 has been drawn up to the instant in time in which
the resolved-scale temperature becomes negative.

The radial energy spectra of the resolved scale velocity at the time step immedi-
ately preceding the instant at which the flow field computed using the Smagorinsky
model becomes unrealizable has been shown in figure 5a. It may be observed from
this figure that the spectra of the velocity fields obtained using both the Smagorin-
sky and proposed model are virtually identical. The mean-square energy obtained
by integrating the spectra were found to differ by only 0.06 percent. The spectra of
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FIGURE 5. Radial spectra at t /-re = 0.2 of (a) velocity, and (b) dilatation for an
initial Mt = 1.0.	 , Smagorinsky; ---- , proposed.

the resolved-scale dilatation field is shown in figure 5b. As could also be observed
in the dilatation spectra from the Mt = 0.8 case, the dilatation spectra obtained
using the proposed model is below that of the Smagorinsky model at the higher
wavenumbers. The mean-square, resolved-scale dilatation at this instant in time
differs by approximately 6 percent for simulations performed using the two models.
This excess in the dilatation field obtained using the Smagorinsky model is suffi-
cient to cause the flow field to become physically unrealizable. Locally, dilatation
fluctuations can become extremely large. The proposed model provides sufficient
dissipation in these regions to prevent the resolved-scale temperature from becom-
ing negative. These results also illustrate that the differences in the resolved scales
obtained using the two models occur primarily in the high-wavenumber end of the
spectrum. It is precisely in this region in which resolved-scale compression and
expansion are most significant.

6. Summary and future work
A new sub-grid scale model for the Large-Eddy Simulation of compressible tur-

bulence has been developed and tested using numerical simulations of temporally-
evolving compressible turbulence. The development of the model was guided by
concepts employed in second-order closure modeling of compressible turbulence.
The proposed model reduces to Smagorinsky's (1963) model for the LES of incom-
pressible turbulence in the limit Mt —4 0 and also requires only one adjustable
constant. The constant is determined from the incompressible limit in which case it
must reduce to a value widely used in LES of incompressible turbulence (C, ti 0.2).
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Simulation results obtained using both the proposed model as well as the Smagor-
insky model showed that at turbulence Mach numbers of 0.61 and 0.8 there is neg-
ligible difference between the resolved scale solenoidal velocity fields obtained using
either model. For an initial Mt = 1.0, it was found that the Smagorinsky model
was unable to provide sufficient dissipation in regions of large compression and/or
expansion. This inability to provide the necessary dissipation in these regions in
turn caused the flow to become physically unrealizable (i.e., negative temperature).
The proposed model, which incorporates the effect of large-scale velocity dilatation,
does provide the necessary dissipation in these regions and maintains the physical
realizability of the flow.

While the usefulness of the proposed model over the Smagorinsky model has
been demonstrated at high turbulence Mach numbers, important issues remain to
be resolved. The effect of shocklet dissipation was not incorporated into the sub-grid
scale model for the simulation results presented in this report. Before incorporating
the virtual shocklet stress (see section 3) into the simulations, the parameterization
should first be verified by correlating modelled shocklet dissipation against actual
shocklet dilatational dissipation. As was mentioned in section 3, such a comparison
may be difficult to interpret in simulations of decaying turbulence. To alleviate
this difficulty, one may apply a body force at the largest scales of the flow in order
to obtain a quasi-stationary state. An advantage of applying an external body
force is that it is possible to maintain a reasonably steady value of the turbulence
Mach number. Comparison of the shocklet stress from simulations of compressible
turbulence which has been artificially forced at the largest scales should be more
meaningful than that obtained from decaying turbulence. Such an effort will be
undertaken in the near future.

Another issue to be resolved is the effect of Reynolds number on the simulation
results. All of the results presented in this report were obtained from simulations
which included molecular effects, i.e., finite Reynolds number. Thus, the role of
the eddy viscosity was to primarily provide the extra dissipation needed in regions
of high dilatation. Since the philosophy behind LES is to compute high-Reynolds
number turbulent flow fields the model should be tested in simulations at infinite
Reynolds number, i.e., zero molecular viscosity and thermal conductivity. Such
simulations will provide a more rigorous test of the proposed model as well as
better demonstrate differences between the proposed model and the Smagorinsky
model.

Finally, a new sub-grid scale model has been presented by Germano, Piomelli,
Moin, and Cabot during this summer program which does not require an a priori

choice of the model constant(s) and also allows backscatter from the small to the
large scales. The formulation of the model is based upon an algebraic identity
between the subgrid-scale stresses at two different levels and the resolved filtered
stresses. This formulation is general enough so that it may be applied to the LES
of compressible turbulence. Therefore, another direction of future work will be to
incorporate the proposed model presented in this paper with the dynamic sub-grid
scale model presented by Germano, et al.
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