
SEMI-ANNUAL STATUS REPORT

NASA Grant NAG5-557

Bandwidth Efficient CCSDS Coding

Standard Proposals

Daniel J. Costello, Jr. Lance C. Perez Fu-Quan _Vang

Department of Electrical Engineering

Univerisity of Notre Dame

Notre Dame, IN 46556

May, 1992



Contents

Giossary ii

List of Figures iv

1 System Constraints 1

Inner Code Performance 1

2.1 Sequential Decoding ....................... 3
2.1.1 Recommendation l .................... 4

2.2 Viterbi Decoding ......................... 4

"2.2.1 Rocnmmendation 2 ..................... 5

2.2.2 Recommendation 3 .................... 5

Decoder Speed and Complexity 6

3.1 Sequential Decoding with the Modified Fano Algorithm . . . 6

3.2 Parallel Viterbi Decoding .................... 7

Alternative Inner Codes

4.1 Alternatives for 8PSK with Viterbi Decoding .........

4.1.1 Recommendation 4 ....................

4.2

7

7

8

4.1.2 Recommendation 5 .................... 8

4.1.3 Recommendation 6 .................... 9

4.1.4 The Implemented Code ................. 9

IIigher Spectral Efficiency Codes ................ 9

4.2.1 Recommendation 7: lxl6PSK with Sequential Decoding 9

.1.2.2 Recommendation 8: 2xl6PSK with Viterbi Decoding . 10

4.2.3 Recommendation 9: lx16QAM with Sequential De-

coding ...........................

Recommendation 10: 1x16QAM with Viterbi Decoding

10

4.2.4 10

4.3 The Shannon Graph for the Inner Codes ............ 11

5 Compatiblity with the Outer Code 11

5.1 Sequential Decoding ....................... 12

5.2 Viterbi Decoding ......................... 12

5.3 Shannon Graphs for tile Concatenated System ........ 13

6 Conclusion 14

A Recommendation Summaries A-1

B The Shannon Graph B-1



Glossary

signal set Tlle set ofsi_nals that are actnally transmitted over the channel,

e.g., _PSK. An element of the signal set is called a ._ignal point or

simply a ,_i.qnaL

modulation interval Tile amount of time required to transmit one signal.

Denoted bv T.

signal constellation The set of signals to which the encoder output is

mapped, e.g., LxgPSK. An element of the constellation is called a

con.¢tellalion point. (The signal constellation is the same as the signal

set when I,=1.) If tile constellation is LxSPSK, then tile signal set is

gPSK and it requires LxT seconds to transmit a single constellation

point.

symbol An element in the Galois field over which a Reed-Solomon code is

constructed. If the Reed-Solomon code is constructed over GF(2S),

then a symbol is a block of 8 bits.

spectral efficiency The average number of information bits transmitted

per signal ill a coded or uncoded system. Denoted by r/with units of

bits/signal.

rotational invariance The minimum rotation, in degrees, of the received

signal set for which the decoder can still decode correctly /with the

help of differential encoding). Note that the smaller the rotational in-

variance of a code the better. By definition, if a code is -15° rotationally

invariant it is also 90 ° and 180 ° rotationally invariant.

constraint length Tlle total number of memory elements in an encoder.

Denoted bv u. Note that a trellis code with constraint length u has 2"

states.

uncoded bits For trellis codes, uncoded bits are information bits that are

not coded bv the convolutional encoder contained in the trellis encoder.

rate The ratio of the number of inputs bits to the number of output bits of

a code. For trellis codes, uncoded bits are included. Denoted bv R.

minimum squared Euclidean distance The minimum distance between

any twn codewords in a trellis code calculated using the squared Eu-

lidean distance metric. The Minimum Squared Eulidean Distance

(MSED) is often called the free Euclidean distance. For trellis codes

with certain svmmetrv properties, the MSED may be found by con-

sidering distances only from the all zero codeword.

distance spectrum A complete enumeration of the squared Euclidean dis-

tance between any two possible codewords in a treItis code. For trellis



codeswith certainsymmetryproperties,tim distancespectrummay
be found by considerin_only distancesbetweennonzerocodewords
and the all zero codeword.

coding gain The reduction in signal to noise ratio for a coded system to

achieve the same performance as an uncoded svstem of the same spec-

tral efficiency.

signal to noise ratio The ratio of the average transmitted signal energy

per information bit. Et,, to the one sided power spectral density of an

additive white Gaussian noise channel, No.

asymptotic coding gain Tile coding gain of a code as the signal to noise

ratio approaches infinitv. This is a function only of the minimum

squared Euclidean distance of tile code.

real coding gain Tile coding gain of a code at a particular bit error rate.

Usually determined bv computer simulation. The real coding gain is

less than or equal to tile asymptotic coding gain and is a function of

the distance spectrum of the code.
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1 System Constraints

The basic concatenated coding system for the space telemetry channel con-

sists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver,

and a bandwidth efficient trellis inner code. A block diagram of this config-

uration is shown ill Figure 1. The system may operate with or without the

outer code and interleaver.

In this recommendation, the outer code remains the (255. 223) RS code

over GF(2 s) with an error correcting capability of t = 16 eight bit svmbols.

This code's excellent performance and the existence of fast, cost effective,

decoders justify its continued use.

The purpose of the inter[eaver/deinterleaver is to distribute burst errors

out of the inner decoder over multiple codewords of the outer code. This

utilizes the error correcting capability of the outer code more efficiently and

reduces the probability of an RS decoder failure. Since the space telemetry

channel is not considered bursty, the required interleaving depth is primarily

a function of the inner decoding method. A diagram of an interleaver with

depth 4 that is compatible with the (255,223) RS code is shown ill Fig-

ure 2. Specific interleaver requirements are discussed after the inner code

recommendations.

Previous coding standards [1] have utilized the optimal, R = 1/2, con-

straint length v = 6, binary convolutional code with QPSK modulation and

Viterbi decoding for the inner code. Bandwidth constraints and the desire

for increased data transmission rates motivate the consideration of band-

width efficient trellis codes for the inner code. A reasonable set of system

constraints affecting the choice of the inner code is listed below.

1. Spetral efficiency 7? >__2.0 bits/signal.

'2. Compatibilty with the RS outer code.

3. Viterbi decoding complexity _< 64 states (parallel implementation).

4. tIigh speed decoding.

5. Constant envelope modulation (for compatiblity with traveling wave

tube amplifiers (TWTA's)).

6. Invariance of the trellis code to rotations of the signal set.

Ill the following sections, recommendations for the inner code are discussed.

Brief summaries of all the recommended inner codes are included as an

appendix to this report.

2 Inner Code Performance

The svstem constraints given in Section l limit the choice of tile inner code to

trellis codes with LxMPSK constellations and either suboptimal sequential

decoding or optimal Viterbi decoding. Of these, four possibilities stand out:



• Periodically Time Varying Trellis Codes (PTVTC's)[2].

• Multi-Level MPSK Trellis Codes (MLTC's) [3].

• Tile Viterbi Pragmatic Trellis Code [4].

• Ungerboeck [5] and Pietrobon, et. al. [6] MPSK Trellis Codes.

In the remainder of this section, the performance of these four classes of

codes is discussed. The performance measure used to compare codes is the

signal to noise ratio (SNR) required for an information bit error rate (BER)
of 10 .5 on the additive white Gaussian noise channel (AWGN). The real

coding gain of a particular code is the reduction in SNR required to achieve

a BER of 10-s compared to all uncoded system with tile same spectral

efficiency.

Periodically time varying trellis codes were introduced ill [2] as a means

of achieving fractional spectral efficiencies, r/, defined as the average num-

ber of information bits transmitted with each 2-dimensional signal. This

is accomplished bv using a time varying convolutional code in the trellis

encoder. Figure 3 shows simulation results of two PTVTC's and two com-

parable multidimensional 3x8PSK Pietrobon codes (labeled SSP in this and

subsequent figures). In both cases, the PTVTC's lose _ 0.5dB in real coding

gain at 10 -s. In addition, the PTVTC's are only 180 ° rotationally invariant

compared to 90 ° and 4,5° invariance for the 7/= 2.67 and 71= 2.33 3x8PSK
Pietrobon codes.

In certain instances, multi-level trellis codes using multi-stage decoding

(MSD) have a performance/complexity advantage over single level trellis

codes with Viterbi decoding. Figure 4 shows simulation results for a 3-

level 8PSK code constructed by Wu, et. al. [3] with MSD. This code has

a spectral efficiency of 77 = 1.997 bits/signal and the MSD uses 18 states.

Compared to the Ungerboeck 16 state, 8PSK code with r/= 2.0 bits/signal,

the MLTC loses _ 0.2dB at 10 -s. In addition, the MSD requires buffering of

data, between levels and the rotational invariance properties of these MLTC's

are unknown.

Viterbi. et. al. [.1] suggested using the standard (2, 1,6) binary convolu-

tionai code as the basis of a set of "pragmatic" 2-dimensional trellis codes.

With 8PSK modulation, this results in a suboptimal 64 state trellis code

with 77= 2.0 bits/signal. The pragmatic trellis code has a practical advan-

tage in that a large number of single chip Viterbi decoders already exist

for the binarv (2, 1,6) code. Presumably, these existing chips can easily be

modified to decode the pragmatic trellis codes. A union bound on the per-

formance of this code is shown in Figure 5 compared to simulation results

for a 64 state. 2xSPSK, Pietrobon code with the same rate. The pragmatic

code has _ 0.32dB less coding gain at 10-s and loses more coding gain as

the SNI1 is increased. Also, the pragmatic code is only 180 ° rotationally

invariant compared to 90 ° invariance for the 2x8PSK code.
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Fromthe discussionof the four typesof codes using Viterbi decoding, it

appears that the Irngerboeck [.5] and Pietrobon et. al. [6] .XIPSK codes are

the most promising as inner codes in a concatenated coding system. In the

next section, sequential decoding of the inner code is discussed.

2.1 Sequential Decoding

It has been shown that sequential decoding [7] is a good alternative to Viterbi

decoding for trellis codes [g]. Sequential decoding performs almost as well as

Viterbi decoding and the computational complexity is essentially indepen-

dent of the code constraint length. Thus. larger coding gains are possible

when larger constraint length codes are used with sequential decoding. How-

ever, the Ungerboeck and Pietrobon et. at. MPSK codes are constructed

by exhaustive search and thus onlv small constraint length codes have been

found. These codes can be used as the inner code with Viterbi decoding, but

to take full advantage of sequential decoding large constraint length codes
must be constructed.

In [9], a new approach to constructing good large constraint length trel-

lis codes for use with sequential decoding was proposed. The procedure

begins by randomly choosing a relatively small set of codes. The error per-

formance of each of these codes is evaluated using sequential decoding and

the code with the best performance among the chosen set is retained. The

performance of many of the randomly chosen codes is quite good and of-

ten approaches the perfromance of the best known codes. This approach

can be justified bv the well known fact that a randomly chosen code is very

likely to be a good code. All of the recommendations for sequential decoding

discussed in this report use codes that were constructed using this approach.

The cut-off rate. Re, defined as the maximum rate at which the average

number of computations for sequential decoding is bounded, is a fundamen-

tal performance limit for sequential decoding. Re is also regarded as the
maximum rate for which reliable communication can be achieved with rea-

sonable complexity regardless of the specific method of decoding being used.

Practically. sequential decoding has been shown to be capable of approach-

ing R0 [8].[9], i.e.. good performance can be achieved at the SNR for which

R0 = rl.

Encoders with some uncoded information bits simplify code construc-

tion and decoding complexity, but limit the achievable free distance, which

is the predominant parameter determining the code performance of large

constraint length codes, llence, all the information bits in large constraint

length trellis codes should be encoded. For some short constraint length

codes, however, encoders with uncoded bits may give optimum free distance

codes, even though they introduce parallel transitions in the code trellis.

For a trellis code with only one coded bit, the parallel transitions limit the

potential asymptotic coding gain to 3.0 dB, while for codes with 2 and .3

coded bits the potential asymptotic coding gains are limited to 6.0 dB and



9.0dB, respectively.To approachR0, the maximum asymptotic coding gain

is required, so all tile information bits should be encoded when searching for

good trellis codes for use with sequential decoding.

2.1.1 Recommendation 1

For sequential decoding, a v = 17, lxSPSK code with a spectral efficiency

of 2.0 bits/signal is proposed. This code was specifically constructed for use

with sequential decoding [9]. Following the notation of [5], the parity check
coefficients of the code in octal form are h ° = 674241, h I = 174116. and

h 2 = 041642.

A modified version of the Fano Algorithm (FA) [7] is used to decode

the inner code. Since tile computational effort of sequential decoding is
a random variable with a Pareto distribution, a buffer must be used to

store the incoming data. A finite buffer may overflow, however, resulting in

data loss (erasures). The Modified Fano Algorithm (MFA)[8] proposed here

guarantees erasurefree decoding.

This constraint length 17, lx8PSK trellis code with a decoder speed

factor of p = 4 and a buffer size of 32K signals achieves a real coding gain of

4.86gdB. This code is 180 ° rotationally invariant. The performance of this

code is shown is shown in Figure 6 compared to uncoded QPSK.

2.2 Viterbi Decoding

The Ungerboeck [5] and Pietrobon, et. al. [6], MPSK codes appear to be

the most promising option for the inner code with Viterbi decoding. To

select a code. it is necessary to specify the following parameters:

1. v. the constraint length of the code.

2. r/, the spectral efficiency of the code.

3. M. the size of the 2-dimensional signal set.

4. L. the number of 2-dimensional signal sets in the LxMPSK constella-
tion.

Each of these parameters affects the performance and complexity of the
code.

When Viterbi decoding is used, the constraint length, u, is the predomi-

nant factor in code performance and decoder complexity for a given spectral

efficiency. For example, with 7/ = 2.0 bits/signal and a lxSPSK constella-

tion. increasing the constraint length by 1 increases the asymptotic coding

gain by approximately 0.hdB and doubles the number of states in the de-

coder. With current technology, the best tradeoffbetween code performance

and implementation complexity of a fully parallel Viterbi decoder appears

to be with v = 6.



Changing tile spectral eificiency of a code with a fixed constraint length

allows a tradeoffbetween coding gain and information rate. Increasing q

decreases the coding gain and increases the information rate. Conversely,

decreasing 7/ increases the coding gain and decreases tile information rate.

The system constraints suggest spectral efficiencies from 2 to 3 bits/signal

with 2.0 bits/signal being the best choice.

The size. M. of the 2-dimensional signal set is essentially determined by

the desired spectral efficiency and the practical difficulty of detecting the

phase in large MPSK signal sets. In order to achieve a spectral efficiency of

2.0 or more information bits per 2-dimensional signal in a coded system, M

must be at least _. Similarly. a spectral efficiency of 3.0 or more information

bits per 2-dimensional signal requires .M to be at least 16. However, it is

generally considered too difficult to reliably detect a 16PSK signal and thus

M--.R is stressed in this recommendation. Spectral efficiencies of 3.0 or more

bits will require either that the detection of 16PSK signals be made feasible

or that nonconstant envelope QAM signal sets be used and the associated

TWTA problem be solved.

The primary effect of the choice of L is on the decoder speed and com-

plexity and the rotational invariance properties of the code. For Lx8PSK,

at least L=2 is required for the code to be better than 180 ° rotationally

invariant. The rotational invariance is also affected by the constraint length

and spectral efficiency. As L increases, the speed, in bits per second, of

the decoder also increases, since Lx_/information bits are decoded on each

branch of the trellis. The importance of decoder speed suggests that L=4

be used if at all possible. Decoder complexity is discussed in detail in a later

section.

2.2.1 Recommendation 2

In light of the previous discussion, the best code to use in conjunction with

Viterbi decoding is the u = 6, 4x8PSK Pietrobon code with a spectral

efficiency of 71 = 2.0 bits/signal. Following the notation of [5], the parity

check coefficients of this code in octal form are h ° = 107. h 1 = 036. h 2 = 016,

h3 = 044. and h4 = 034.

This code achieves a real coding gain of 3.85dB and is 45 ° (fully) ro-

tationally invariant. For this spectral efficiency and constraint length, full

rotational ]nvariance cannot be achieved with L less than 4. The perfor-

mance of this code is shown in Figure 7 compared to Viterbi's pragmatic

code and uncoded QPSK.

2.2.2 Recommendation 3

If a higher spectral efficiency is desired and the increased power requirement

is _olerable. the u = 6. 4xSPSK Pietrobon code with 7/ = 2.5 bits/signal

could be used. Following the notation of [5], the parity check coefficients of

this code in octal form are h ° = 103. h t = 012. h 2 = 024. and h 3 = 014.



This code achieves a real coding gain of 3.76dB and is -15° (fully) re-

rationally invariant. The-lxSPSK performance is slightly better than the

2x8PSK code with the same spectral efficiency and constraint length, and

offers increased decoding speed with only a modest increase in complexity.

The performance of lhis code is shown in Figure g compared to an uncoded

system with the same spectral efficiency.

3 Decoder Speed and Complexity

3.1 Sequential Decoding with the Modified Fano Algorithm

The complexity of the MFA is about the same as the well known FA. If a 32

K signal buffer is used with an g-bit quantization scheme, then the buffer

must store 256Kbits. This is the main storage requirement for a sequential

decoder. Also. a ROM with gx'256 entries (for an g-bit quantization scheme)

is needed to store the metric table.

In Viterbi decoders, a survivor must be selected at each state. The

add-compare-select (ACS) operation needed to perform such a selection is

defined as a computation. Thus, 2" computations are needed to decode

one branch. Similarly, a forward look in the MFA may be defined as a

computation of comparable complexity to the ACS operation. A typical

computation in the MFA involves regenerating code branches, finding the

branch metrics, computing the path metrics, and choosing the path with

the best metric. The number of computations that a sequential decoder can

perform during a modulation interval (T. the time needed to transmit one

signal) is defined as the decoder speed factor #. The decoding speed that can

be achieved depends on p. Generally, p sequential decoders in parallel are

required to achieve the same decoding speed as a parallel implementation

of a Viterbi decoder, a_ssuming that identical logic is used in both decoders.

When p < 2_. the hardware complexity needed to implement p sequential

decoders in parallel, however, is less than the hardware complexity needed

in a parallel iml)lementation of a Viterbi decoder.

Assuming that a 300 MIIz channel capable of transmitting 2-dimensional

R-PSK signals at a baud rate of 300 M signals/second is available, the inner

decoder must process 8-PSK signals at the same 300 M signals/second rate.

In practice, this is achieved bv using several decoders, each operating at a

lower rate. in parallel. A Viterbi decoder implemented in parallel using cur-

rent technology can achieve a decoding speed of 25 million ACS opereations

per second. Thus. 12 parallel Viterbi decoders are needed to achieve a de-

coding speed of 300 M signals/second. If p = 4. then approximately -lg

parallel sequential decoders would be required to achieve the same decoding

speed. However. the hardware complexity of each sequential decoder would

be much less than that of one of the parallel Viterbi decoders with 64 states.



3.2 Parallel Viterbi Decoding

As notedabove,a fully parallelimplementationof a singleViterbi decoder
canperform25million add-compare-select(ACS)operationspersecondper
state.Thus. tile u = 6. Ix,_PSK. Ungerboeck code would require twelve 64

state Viterbi decoders each operating at 25MHz to fully utilize the 300MIlz

channel.

The PTVTC's, MLTC's, and the pragmatic trellis codes also require

twelve decoders each operating at 25MHz to achieve 300MHz. The multidi-

mensional Lx8PSK codes, however, would require 12 decoders each operat-

ing at 25/L MHz. since each ACS operation chooses L 8PSK signals. The

decrease in ACS speed comes at the expense of increased parallel transi-

tion decoding; complexity. For example, the lxSPSK code requires a 25MtIz

ACS. but has no parallel transitions. The 2xSPSK code requires a 1"2.5 Mttz

ACS and has 2 parallel transitions, and the 4xSPSK code requires only a

6.25Mllz ACS but has 16 parallel transitions. Alternatively, an LxSPSK

code could use a 25MHz ACS and reduce the number of decoders needed

to use the full 300MtIz channel by a factor of L. In this case, the 2xSPSK
code would need 6 decoders with a 25MHz ACS, and the 4xSPSK code only

3 decoders with a 25MHz ACS. If a faster channel of 600MHz is available.

then 24 lx8PSK decoders with a 25MHz ACS are needed, versus 12 2x8PSK

decoders or 6 4xSPSK decoders with a 25MHz ACS.

The problem of increasing numbers of parallel transitions can be sub-

stantially mitigated by using ROM's to do table lookup decoding of the

parallel transitions. If each received 2-dimensional 8PSK signaJ is quantized

to b bits. then each Lx8PSK signal requires bL bits. This translates into

a ROM with 2 bL entries or. equivalently, bL address bits. One ROM is re-

quired for each of the 2_" possible sets of parallel transitions. Each ROM

entry would store the k -/) bits of the decoded parallel transition and the

corresponding branch metric.

Using this method, the u = 6, 4x8PSK code with k = 8, k" = 4, and

b = 5-bit quantization would require 2/¢ = 16 ROM's each with 2bL = 220

1Mbyte of storage. Since each byte must store k - _" = 4 information bits

for the decoded parallel transition, a ROM with 8-bit bytes would have only
4 bits left over for the branch metric.

4 Alternative Inner Codes

The codes presented in section 2 of this report are the primary recommen-

dations for the new ('CSDS inner code. In this section, several alternative

inner codes are discussed.

4.1 Alternatives for 8PSK with Viterbi Decoding

The codes discussed in Recommendations 2 and 3 are the most desirable

(:odes for Viterbi decoding from a pure performance perspective. That is.



they achieve the largest coding gains and hichest decoding speeds and are

fully rotational invariant. However, it may be that they are considered too

complex to implement with current technology.
Recommendations 2 and 3 dealt with p = 6, .Ix8PSK trellis codes wittl

Viterbi decoding and spectral efficiencies of 2.0 and 2.5 bits/signal, respec-

tively. These codes may be considered too complex for a high speed parallel

implementation of a Viterbi decoder because of the constraint length or the

large ROM's required for the parallel transition decoding due to the large

4x8PSK constellation. These problems can be addressed by using smaller

constraint length codes with less coding gain or smaller constellations with

slower decoder speeds. Recommendations 4 through 6 are alternatives to

Recommendation 2. ,.\ similar set of alternatives also exist for Recommen-

dation 3 and can be found ill [6].

4.1.1 Recommendation 4

If a constraint length of 6 is prohibitive, the v = 4, 4x8PSK Pietrobon code

with a spectral efficiency of 2.0 bits/signal is a suitable replacement for Rec-

ommendation 2. Following the notation of [5], the parity check coefficients

of this code in octal form are h ° = 21, h 1 = 03, h 2 = 02, h 3 = 04, and

h 4 = 10.

This code has a real coding gain of 3.02dB and is 45 ° (fully) rotationally

invariant. Assuming a 25MHz ACS, this code achieves the same 200Mbps

decoding speed as the 64 state code of Recommendation 2. but with 0.8dB

less coding gain. The performance of this code is shown in Figure 9 compared

to the code of Recommendation 2 and uncoded QPSK.

4.1.2 Recommendation 5

If a 4x,qPSK constellation is prohibitive, the v = 6, 2x8PSK Pietrobon code

with a spectral efficiency of 2.0 bits/signal is a suitable replacement for Rec-

ommendation 2. Following the notation of [5], the parity check coefficients

of this code in octal form are h,° = 125, h 1 -- 004, h 2 = 050, and h 3 = 012.

This code has a real coding gain of 3.8dB. but is only 90 ° rotationally in-

variant. Thus. though it achieves the same real coding gain as the 4x8PSK

code of Recommendation 2. it has a decoding speed of only 100.Mbps as-

suming a 25MHz ACS. However. if it becomes practical to use a 4xSPSK

constellation at a later date, the 2x8PSK code may be converted to a sub-

optimal -Ix8PSK code. This can be done bv simply changing the parallel

transition ROM's of the decoder from 1Kbyte bv _-bits to [Mbyte by 12

or 16-bits. (This assumes that the original decoder is built with enough

address lines to address the larger ROM.) The converted 4xSPSK code loses

0.67dB compared to the optimal 4xSPSK code at 10 -'_. The performance of

this code is shown in Figure 10 compared to the code of Recommendation

2 and uncoded QPSK.



4.1.3 Recommendation 6

If a constraint len_;th of 6 and a 4x8PSK constellation are prohil)itive, the

u = 4, 3xSPSK Pietrobon code with a spectral efficiency of 2.0 bits/signal

is the best replacement for Recommendation 2. For u = 4 and r/ = 2.0

bits/signal, reducing the size of the constellation any further would involve

changing the rotational invariance properties to at least 90 °. Following the

notation of [5], the parity check coefficients of this code in octal form are
h°=27,h 1 =04, and h _ = 12.

This code has fewer states, lower trellis branch complexity, and smaller

parallel transition ROM's than Recommendation 2 in return for reduced

coding gain and slower decoding speeds. It has a real coding gain of 2.94dB

and is 45 ° (fully) rotationally invariant. Assuming a 25MHz ACS, it can

achieve a decoding speed of 150Mbps. Ttle performance of this code is

shown in Figure l 1 compared to the code of Recommendation 2 and uncoded

QPSK.

4.1.4 The Implemented Code

One alternative to Recommendation 3 is the u = 4, 2x8PSK code with

a spectral efficiency of 2.5 bits/signal. Following the notation of [5], the

parity check coefficients of this code in octal form are h ° = 23, h I = 12, and
h2 = 16.

This code has a real coding gain of 3.31dB and is 45 ° rotationaily invari-

ant. A prototype of a fully parallel implementation of a Viterbi decoder for

this code has been built and will be tested at the White Sands Missile Range

in New Mexico in 1992. The performance of this code is shown in Figure 12

compared to the code of Recommendation 3 and an uncoded system with

the same spectral efficiency.

4.2 Higher Spectral Efficiency Codes

It was mentioned in section 2 that to get spectral efficiencies of 3.0 to 4.0

bits/signal it is necessary to use either Lxl6PSK or Lxl6QAM constella-

tions. These constellations are not yet feasible on existing satellite links.

However. good codes for these constellations have been found [9], [I0]. and

[ll]. In the remainder of this section, recommendations for Lxl6PSK and

Lxl6QAM codes with sequential decoding and Viterbi decoding are pre-
sented.

4.2.1 Recommendation 7: lxl6PSK with Sequential Decoding

The u = 16, lxl6PSK trellis code with a spectral efficiency of 3.0 bits/signal

in this recommendation is constructed for use with sequential decoding [9].

Following the notation of [5], the parity check polynomials of this code in
octal form are h ° = 255005, h x = 106076. and h 2 = 161140.

9



This constraint length 16, lxl6PSK trellis code with a decoder speed

factor of It = 4 and a buffer size of 32K signals achieves a real coding gain

of 4.55dB and is 90 ° rotationally invariant. Tlle performance of this code is

shown is shown in Figure 13 compared to uncoded 8PSK.

4.2.2 Recommendation 8: 2xl6PSK with Viterbi Decoding

For Viterbi decoding, a _ = 6, 2xl6PSK trellis code with a spectral efficiency

of 3.0 bits/signal is recommended. Following the notation of [5], the parity

check polynomials of this code in octal form are h ° = 107, h I = 016, and
h 2 = 044.

This code achieves a real coding gain of 3.52dB and is 45 ° rotationally

invariant. For this spectral efficiency and constraint length, full rotational

invariance (22.5 °) requires a 3xl6PSK or 4xl6PSK constellation and a code

with increased trellis branch complexity and reduced minimum squared Eu-

clidean distance! The performance of this code is shown in Figure 14 com-

pared to uncoded gPSK.

4.2.3 Recommendation 9: lxl6QAM with Sequential Decoding

The v = 16, lxl6PSK trellis code with a spectral efficiency of 3.0 bits/signal

in this recommendation is constructed for use with sequential decoding [9].

Following the notation of [5], the parity check coefficients of this code in
octal form are h° = 242123, h I = 165172, and h 2 = 064140.

This constraint length 16, lx16QAM trellis code with a decoder speed

factor of IL= 4 and a bufer size of 32K signals achieves a real coding gain of

5.44dB and is 180 ° rotationally invariant. The performance of this code is

shown is shown ill Figure 15 compared to an uncoded 16QAM system with

the same spectral efficiency.

4.2.4 Recommendation 10: lx16QAM with Viterbi Decoding

For Viterbi decoding, a nonlinear _, = 6. lxl6QAM trellis code with a

spectral efficiency of 3.0 bits/signal is recommended. Following the notation

of [5], the parity check polynomials of this code in octal form are h ° = 103,

h I = 014, and h 2 = 020. :\ detailed encoder diagram for this code showing

the nonlinear element is given in Figure 16.

This codes achieves a real coding gain of 4.15dB and is 90 ° rotationally

invariant. The use of a nonlinear code allows full rotationally invariance

to be achieved with reduced branch complexity and a smaller constellation

without sacrificing coding gain. The performance of this code is shown in

Figure 17 compared to an uncoded 16QAM system with the same spectral

efficiency and the optimal linear tz = 6, lxl6QAM trellis code.
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4.3 Tile Shannon Graph for tile Inner Codes

The hit error rate performance of the codes discussed in sections 2 through

4 is summarized ill the Shannon graph of Figure 1,_. This figure is a plot

of the SNR (in E_/No) required to achieve a BER of 10 -5 versus spectral

efficiency, 7/. A detailed explanation of Shannon graphs can be found ill

Appendix B.

Each point on tile graph represents the performance of a single code and

has a label of the form (n,k.u), where n is the total number of bits out

of the encoder, /," is the total number of information bits input to the en-

coder including uncoded hits (see the Glossary), and u is the code constraint

length, followed by the constellation and any other relevant information. For

example, tile point lahelled "(3.2, 17) 8PSK" in Figure 18 is the code of Rec-

ommendation I and it requires Eb/No = 4.94dB to achieve a BER of 10-s.

The real coding gain at a BER of 10 -s of any code in the figure is

also easily determined by comparing its SNR value to the SNR vahe of

the uncoded system with the same spectral efficiency. For example, from

Figure 18 it is seen that uncoded QPSK requires a SNR of Eb/No = 9.80dB

(simulation) to achieve a BER of 10 -s and thus the real coding gain at 10 -s

of the (3,2, 17) £PSK code is 4.86dB.

The four curves shown in Figure 18 represent the theoretical performance

limits on ally communications system. A point on a curve represents the

minimum required SNR for reliable communication at a particular spectral

efficiency regardless of complexity. Thus, from the curve labelled "8PSK

Bound", a minimum of 2.8dB is required to achieve reliable communication

using ,£PSK with 7/= 2.0. The code of Recommendation 1 requires 2.14dB
more SNR than the theoretical minimum.

5 Compatiblity with the Outer Code

In this section, the interleaver requirements and performance of the rec-

ommended inner codes with the NASA standard (255,223)Reed-Solomon

outer code are discussed. For the concatenated coding system of Figure 1

using a t-error correcting (N,K) RS code over GF(2b), the overall BER

performance is well approximated by

Pb -- _r i Ps( 1 -- p, )N-i,
i=t+l

(1)

where p_ is the b-bit symbol error rate (SER) out of the inner decoder and

ideal interleaving is assumed. The standard method for determining the

performance of a concatenated coding system of this type is to find p_ for a

particular inner code bv computer simulation and then to evaluate (1).
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5.1 Sequential Decoding

Recommendation 1 employs a v = 17, lx8PSK trellis code with a spectral

efficiency of 2 bits/signal as the inner code and the (255,223) Reed-Solomon
code as the outer code. Simulation results for the 8-bit SER of this inner

code are shown in Figure 19. Under normal channel conditions, the inner

code operates at a BER of l0 -'s with Es/No = 4.94dB. At this SNR, the

8-1)it SER is p._ = 5.0 x 10 -'S and, using (1), the BER of the concatenated

coding system is pb = 6.48 x 10-49!

For this code, the bits between the inner and outer code are interleaved

as follows. First. a block of 223 x 8 information bits is divided into 223

symbols of 8 bits each, and each 8-bit symbol is regarded as an element

of the Galois field GF(2S). Tlle 223 svmbols are the input to the outer RS

encoder and the output is a 255 symbol codeword. The 255 symbols are then

temporarily stored in an S x 255 interleaver array as shown ill Figure 20.

The array of Figure 20 is called an interleaver of depth 8. After 8 codewords

have been stored in the interleaver, the bits are then read out column by

column and encoded by the inner trellis encoder.

For sequential decoding with the modified Fano algorithm, the input to

the inner trellis encoder is divided into a sequence of finite blocks called

frames. With a frame size of 2 x 255 bits, each interleaver array consists of

32 frames with 255 8PSK signals per frame. The output of the inner trellis

encoder is transmitted over the channel and decoded frame by frame. Tile

output of the inner decoder is then reloaded into an interleaver array at the

receiver.

The receiver interleaver array is then read row by row by the Reed-

Solomon decoder with each row corresponding to a 255 symbol RS codeword.

If one or two of the 32 frames in a single interleaver array fail, at most 16

symbols in any single RS codeword will be in error. Since the (255.223)

outer RS code can correct up to 16 symbol errors in a single codeword, the

output of the outer decoder will be correct in this case.

5.2 Viterbi Decoding

In recommendation 2. a u = 6, 4xSPSK trellis code with a spectral efficiency

of 2 bits/signal is the inner code and the (255,223) Reed-Solomon code is the
outer code. Simulation results for the 8-bit SER of this inner code are shown

in Figure 21. Tile inner code achieves a BER of 10-s with Eb/No = 5.95dB.

At this SNR, the S-bit SER is p, = 2.38 × 10 -5 and, using (1)_ the BER of

tile concatenated coding system is Pb = 2.16 x 10-s4!

The required interleaving depth for Viterbi decoding of tile inner code

can be estimated as follows. For a trellis code with constraint length v, the

shortest path with minimum distance is typically of length u + 1 branches.

or 1 branch if the minimum distance occurs along a parallel transition. The

longest path with minimum distance is typically on the order of 5v branches.

For high SNR's. where the minimum distance path is the most likely error

12



event,the inner decoder will output bursts of errors of length 1 branch to

5v branches.

For the proposed u = 6, 4x8PSK code, this would result in bursts of

errors up to 30 branches long. Since each branch is labelled with 8 informa-

tion bits, this results in a maximum burst of length 240 bits. For the depth

4 interleaver of Figure 22, this would result in a burst of at most 31 8-bit RS

symbols in error with a maximum of 8 symbols per RS code block. Fp to

two such bursts could occur in a single interteaver array without exceeding

the error correcting capability of the (255,223) RS code. Assuming that 50

percent of the 240 bits in a burst are actually in error, 3 bursts occurring

in a single interteaver array would correspond to a bit error rate of approxi-

mately 4.41 x 10-2 out of the inner decoder. In practice, the inner decoder is

operated at a much lower BER and an interleaving depth of 4 should suffice.

5.3 Shannon Graphs for the Concatenated System

Under normal channel conditions, the inner code is expected to operate at

a BER of 10 -'_ without the outer code. The outer code is then used to

provide virtually error free performance, i.e., Pb "_ 10-5°- This indeed is the
situation with the codes of Recommendations 1 and 2.

In addition, under adverse channel conditions the inner codes by them-

selves may fall short of the desired BER performance. In this case, the outer

(255,223) RS code is used to bolster the performance of the inner code. The

performance of the concatenated coding system in this mode of operation is

examined bv determining the required Ps out of the inner code to achieve a

particular overall Pb using equation (1). The various inner codes can then be

compared based on the SNR necessary for each code to reach the required

Ps.

With the (255.223) RS outer code, the inner code must operate with a

SER of p_ = 1.00675 x 10 -2 for the overall BER to be Pb = 10-1°. The

performance of the l0 recommended inner codes is shown in the Shannon

graph of Figure 23. In this graph, the x-axis is in terms of Eb/No, where

Eb is the average energy per information bit for the inner encoder. (Since

the input to the inner encoder has already been encoded by the outer RS

encoder, this Eh is lightly less than the overall average energy per informa-

tion bit. ) Similarly, the y-axis is the spectral efficiency of the inner code and

does not reflect the reduction in spectral efficiency due to the RS encoder.

For example, the _, = 17, lxSPSK code of Recommendation 1 with 7? = 2.0

bits/signal achieves Ps = 1.00675 x 10 -2 with Eb/No = 4.0dB and hence is

plotted at (2.0.4.0) ill Figure 23.
Shannon graphs for an overall pb = 10-20 and pb = 10-a° are shown in

Figure 24 and Figure 25, respectively. With the (255.223) RS outer code,

the inner code must operate with p, = 2.34575x 10-a for the overall BER to

be Pb = 10-2° and p_ = 5.9152 x 10-4 for the overall BER to be Pb = 10-a°-

The points in these figures are plotted in the same manner as those in Figure

13



23.

Close examination of Figures 23 to 25 reveals an interesting aspect to

those inner codes that use sequential decoding, namely recommendations

l. 3, and 9. The performance of these large constraint length codes is not

affected bv the outer code to the same degree as the short constraint length

codes with Viterbi decoding. This is consistent with the earlier observation

that the performance of large constraint codes with sequential decoding

approaches Ro, a fundamental performance limit of digital communications

systems. Since there is little margin for improvement, it is not surprising

that the outer RS code contributes less in this case. If it were practical to

implement Viterbi decoders for large constraint length codes, a similar effect

would be observed.

6 Conclusion

The codes discussed in this report represent state of the art consstruction of

bandwidth efficient trellis codes for use with sequential and Viterbi decoding.

All of the recommendations offer increased spectral efficiency and better

performance compared to the current CCSDS inner code standard.
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A Recommendation Summaries

This appendix contains 2 to 3 page summaries of the 10 recommendations
for the inner code discussed in the main body of this report. The summaries

appear in the following order:

1. u = 17, r1=2.0 bits/signal lx8PSK with sequential decoding.

2. u = 6, 7/=2.0 bits/signal 4xSPSK with Viterbi decoding.

3. u = 6, 71=2.5 bits/signal 4x8PSK with Viterbi decoding.

4. u = 4.71=2.0 bits/signal 4x8PSK with Viterbi decoding.

5. u = 6. T1=2.0 bits/signal 2x8PSK with Viterbi decoding.

6. u =-1. rl=2.0 bits/signal 3xSPSK with Viterbi decoding.

7. u = 16, 0=3.0 bits/signal lxl6PSK with sequential decoding.

8. u = 6. q=3.0 bits/signal 2xl6PSK with Viterbi decoding.

9. u = 16. r/=3.0 lilts/signal lxl6QAM with sequential decoding.

10. u = 6.71=3.0 bits/signal lxl6QAM, nonlinear with Viterbi decoding.
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Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 1

Spectral Efficiency:
Constellation:

2.0 bits/signal
lx8PSK

Complexity

Constraint Length:

Tree Branch Complexity:
Parallel Transitions:

Decoder Speed Factor:

Buffer Size:
Decoder:

17

2k=4

N/A
4

32k signals

Modified Fano Alg., soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

180 °

Unknown (_ 8.686)
4.86 dB at a BER of 10 -_

12.5 Mbits with 25Mhz computation

*Compared to an uncoded svstem of the same spectral efficiency.
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Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 2

Spectral Efficiency:
Constellation:

2.0 bits/signal
4x8PSK

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

64

2_ - 16

2k-_ = 16

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

45 ° (Full)
6.686

3.85 dB at a BER of 10 -_

200 Mbits with 25Mhz ACS

*C()ml)ared to an unco(le(l system of tlle same spectrM efficiency.
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CCSDS Recommendaion No. 2

8PSK, q=2.0 bits/signal

-- Uncoded QPSK

# -# v=6, 1x8PSK, Pragmatic Bound

v=6.4x8PSK. SSP

\

\

\

The 4x8PSK code has 0.37 dB more coding gain than Viterbi'_

pragmatic code at a BER of 10 -.5 and is 45 ° rotationally in-

variant compared to 180 ° for the pragmatic code.

The 4x8PSK code also has 4 times the decoded bit rate

the pragmatic code, assuming a 25Mhz ACS operation.

O:

A°.'%



Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 3

Spectral Efficiency:
Constellation:

2.5 bits/signal
4x8PSK

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

64

2i-=8

2k-_: = 128

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*"

Decoder Speed:

45° (Fun)
4.0
3.76 dB at a BER of 10 -5

250 Mbits with 25Mhz ACS

*Compared to an uncoded system of the same spectral efficiency.
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CCSDS Recommendation No. 3

10:

]0 3

I._ -4,
o I0

. g,,,q

IO s

10 .6

8PSK, q=2.5 bits/signal

EJN o (dB)

• High rate two level multilevel trellis codes (MLTC's) do no1

have a significant performance/complexity advantage over mt
tidimensional trellis codes.

• The MLTC shown above has a rate of 2.48 bits/T and a de-

coder complexity of 18 states, but only performs a few tenth_

of dB better than a 2x8PSK code with a spectral efficienc_

of 2.5 bits/signal and sixteen states.

• The 16 state 2x8PSK code has been implemented in hardwan

and is being tested at White Sands Missile Range in Nev
Mexico in 1992.
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Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 4

Spectral Efficiency:
Constellation:

2.0 bits/signal
4x8PSK

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

16

2_= 16

2k-_ = 16

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

45 ° (Full)
4.686

3.02 dB at a BER of 10 -_

200 Mbits with 25Mhz ACS

*Compared to an uncoded system of the same spectrM efficiency.
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10 .2

CCSDS Recommendation No. 4

8PSK, rl=2.0 bits/signal
1

-- Uncoded QPSK

_, -* v=6, lx8PSK. Pragmatic Bound

v-,C, 4x8PSK, SSP

EjN o (dB)

• The 16 state, 4x8PSK code has only 0.46 dB less coding gaff

than Viterbi's pragmatic code at a BER of 10 -_ and is 45 ° ro

tationally invariant compared to 180 ° for the pragmatic code

• The 16 state, 4xSPSK code also has 4 times the decoded bi

rate of the pragmatic code, assuming a 25Mhz ACS operation
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Bandwidth Efficient CCSDS Coding Standard
Recommendation No. 5

Spectral Efficiency:
Constellation:

2.0 bits/signal
2x8PSK

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

64

2 i_= 8

2 k-_ - 2

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

90 °

6.343

3.8 dB at a BER of 10 -5

i00 Mbits with 25Mhz ACS

*Compare,l to an uncoded system of the same spectral efficiency.
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CCSDS Recommendation No.

8PSK, rl=2.0 bits/signal

5

-- Uncoded QPSK
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• The 2x8PSK code has 0.32 dB more coding gain than Viterbi's

pragmatic code at a BER of 10 .5 and is 90 ° rotationally in-

variant compared to 180 ° for the pragmatic code.

• The 2x8PSK code also has twice the decoded bit rate of the

pragmatic code, assuming a 25Mhz ACS operation.
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10 .3
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o lO

¢fl

10 .5

CCSDS Recommendation No.

8PSK, q=2.0 bits/signal

-- Uncoded QPSK

v=6, optimal 4x8PSK. SSP

v=6, converted to 4x8PSK, SSP

\

\

10. 6 lid
4.o 5.0 6.0 7.0 8.0 9.0

EJN o (dB)

5

10.0

• The 2x8PSK code may be converted into a suboptimal 4x8PS

code when larger ROM's are available by simply changing th,

parallel transition ROM's.

• The converted code loses 0.67 dB compared to the optima

4xSPSK code (which may be considered too complex to im

plement at this time) at a BER of 10 -5, but would be capabl,

of operating at up to 200 Mbits.
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Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 6

Spectral Efficiency:
Constellation:

2.0 bits/signal
3x8PSK

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

16

2_ - 4

2k-_ - 16

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

45 ° (Full)
4.0

2.94 dB at a BER of 10 -5

150 Mbits with 25Mhz ACS

*C()mpared to an uncoded svstem of the same spectrM efficiency.
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O

10 .2

-3
10

10 .4

10 .5

10 .6

CCSDS Recommendation

8PSK, rl=2.0 bits/signal

Uncoded QPSK

v=6, 4xSPSK, SSP

v---4, 3x8PSK, SSP

4.0 5.0 6.0 7.0 8.0

E_,I o (dB)

9.0

6

10.0
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Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 7

Spectral Efficiency:
Constellation:

3.0 bits/signal
lxl6PSK

Complexity

Constraint Length:

Tree Branch Complexity:

Parallel Transitions:

Decoder Speed Factor:

Buffer Size:
Decoder:

16

2k=4

2k-_ = 2

4

32k signals

Modified Fano Alg., soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

Unknown, possible 180 °

Unknown (_ 2.5)
4.55 dB at a BER of 10 -5

18.75 Mbits with 25Mhz computatio_

*Compared to an uncoded svstem of the same spectral efficiency.

A-15



t_,

O

10 .2

10 .3

10 .4

10 .5

CCSDS Recommendation No. 7

16PSK, 1"!=3.0 bits/signal

-- Uncoded 8PSK

o--o v=16, modified Fano

10 .6 ......... lllll ..... I ......... I ......... 1 ......... I .........

8.0 9.0 10.0 11.0 12.0 13.0 14.0

E_XI o (dB)
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Bandwidth Efficient CCSDS Coding Standard
Recommendation No. 8

Spectral Efficiency:
Constellation:

3.0 bits/signal
2xl6PSK

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

64

2_ - 4

2k-_ = 16

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

45 °

2.0
3.52 dB at a BER of 10 -5

300 Mbits with 25Mhz ACS

*Compared to an uncoded system of the same spectral efficiency.
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102

-3
!0

-4
o 10

,_..q

10 .5

10.6

CCSDS Recommendation No. 8

16PSK, rl=3.0 bits/signal

-- Uncoded 8PSK

o--o v=6, 2xl 6PSK, SSP

......... t ......... I ......... I ......... 1 ......... t .........

8.0 9.0 10.0 ll.0 12.0 13.0 14.0

EffN o (dB)

• The 2xl6PSK code has the same real coding gain as the

1x16PSK code and allows a higher decoded bit rate.

• To get full rotationally invariance, 22.5 °, with a linear code

requires a 3xI6PSK or 4xI6PSK signal set, increased trel-

lis branch complexity, and a reduction in free Euclidean dis-
tance!

• Full rotational invariance can be achieved with a nonlinear

IxI6PSK code, but the free Euclidean distance is reduced to

1.781.
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Bandwidth Efficient CCSDS Coding Standard

Recommendation No. 9

Spectral Efficiency:
Constellation:

3.0 bits/signal

lxl6QAM

Complexity

Constraint Length:

Tree Branch Complexity:

Parallel Transitions:

Decoder Speed Factor:

Buffer Size:
Decoder:

16

2_=4

2k-_ = 2

4

32k signals

Modified Fano Alg., soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*"

Decoder Speed:

Unknown, possible 180 °

Unknown (_ 8.0)
5.44 dB at a BER of 10 -5

18.75 Mbits with 25Mhz computatior

*Compared to an uncoded svstem of the same spectral efficiency.

A- 19



CCSDS Recommendation No. 9

16QAM, rl=3.0 bits/signal

10 .2 ......... 1"_' l ......... l ......... I ......... I ......... I .........

-- Uncoded 16QAM, q=l
o

]0 .3

g_

10.4

10 .5

10 .6 ........ I ......... _ ......... I ......... z ......... J ......... 1.........

6.0 7.0 8.0 9.0 10.0 1 1.0 12.0 13.0

EJN o (dB)
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Bandwidth Efficient CCSDS Coding Standard
Recommendation No. 10

Spectral Efficiency:
Constellation:

3.0 bits/signal

lxl6QAM, nonlinear code

Complexity

States:

Trellis Branch Complexity:

Parallel Transitions:

Decoder:

64

2_ = 4

2k-_ - 2

Parallel Viterbi, soft decisions

Performance

Rotational Invariance:

Free Euclidean Distance:

Real Coding Gain*:

Decoder Speed:

90 ° (Full)
7.0

4.15 dB at a BER of I0 -5

75 Mbits with 25Mhz ACS

*Compared to an unco(le(1 system of the same spectrM efficiencv.
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I-_ -4
o 10
t_

CCSDS Recommendation No. 10

16QAM, q=3.0 bits/signal

I0 "z _ ......... , ,-.._, . , ......... I ......... , ......... , ......... , .........

-- Uncoded 16QAM, q=l

4--4, v=6, lxI6QAM linear, SSP
P

10 .3

10 .5

10 .6
6.0 7.0 8.0 9.0 I0.0 I I.0 12.0 13.0

Et/N o (dB)

• The optimum linear IxI6QAM code with 64 states has the
same free Euclidean distance, but is only 180 ° rotationally

invariant.

• The linear code has 0.07 dB more real coding gain due to a

slightly smaller number of nearest neighbors.

• To get a 90 ° rotationally invariant linear code requires a

4xl6QAM signal set.

• The optimum linear 4x16QAM code with 64 states has a free

Euclidean distance of 8.0, but has a trellis branch complexity

of 32 and 142 nearest neighbors!
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B The Shannon Graph

With his 1948 paper "' The Mathematical Theory of Communication," Claude

E. Shannon stimulated a body of research that has evolved into the two

modern fields of Information Theory and Communication Theory. That

one paper should spawn two active research areas is extraordinary and. as

will become apparent, a direct consequence of the nature of the results.

The fundamental philosophical contribution of this seminal treatise was the

formal application of probability theory to the study and analysis of com-
munication systems. The theoretical contribution of Shannon's work was

a useful definition of "information" and several "channel coding theorems"

which gave explicit upper bounds, called the channel capacity, on the rate

at which "information" could be transmitted reliably on a given communi-

cations channel.

Ill the context of current research in coded modulation, the result of pri-

mary interest is the "'noisy channel coding theorem for continuous channels

with average power limitations." This theorem states that the capacity,

C, of a continuous additive white Gaussian noise (AWGN) channel with

bandwidth B is given by

C= Blog2 (1 + E_0) (B1)

where E, is tile average signal energy in each signalling interval, T, and

N0/2 is the two sided noise power spectral density. This theorem is both

profound ill its implications and, fortunately so for communication engineers,

frustrating in its ambiguity.

It is profound, because it states unequivocally that for any transmission

rate, R, less than or equal to the channel capacity, C, there exists a coding

scheme that achieves an arbitrarily small probability of error: conversely, if

R is greater than C. no coding scheme can achieve reliable communication.

The field of Information Theory is, in a strict sense, an effort to apply

Shannon's definition of information and methods of analysis to different

channels and problems, such as cyptography. It is frustrating, because like

most existence theorems it gives no hint as to how to find the appropriate

coding scheme or how complex it must be. Communication engineers and

coding theorists make their living trying to create schemes that achieve the

levels of performance promised by Shannon's results. The following figure

is both a measure of how close they have come and how much better they

can possibly do.
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Tim boundof equation(B1) can be put into a form moreuseful for
the presentdiscussionby introducingthe parameter77calledthe spectral
efficiencyThat is, r/representtheaveragenumberof informationbits trans-
mitted persignallinginterval. Assuming perfect Nyquist signalling, then

and

E,/No =  EdSo,

where Eb is the average energy per information bit. Substituting the above

relations into equation (B 1 } and performing some minor manipulations yields

2 n- 1
Eb/No > _ (B2)

which relates tile spectral efficiency, 7/, to the signal-to-noise ratio (SNR),

Es/No. This bound, labelled Shannon's Bound, is plotted in the figure

and represents the absolute best performance possible for a communications

system on the AWGN channel.

In this form, Shannon's bound gives the minimum signal-to-noise ra-

tio required to achieve a specific bandwidth efficiency with an arbitrarily

small probability of error. For example, if one wants to transmit r/ = 1

information bits per channel signal, then there exists a coding scheme that

operates reliably with an SNR of 0dB. Conversely, any coding scheme, no

matter how complex, sending r/ = 1 information bits per signal with an

SNR less than 0dB will be unreliable. The bound of equation (B2) also --

manifests the fundamental tradeoff between bandwidth efficiency and SNR.

That is, increased bandwidth efficiency can be reliably achieved only with a

corresponding increase in minimum SNR. At this point, it is important to

reiterate that Shannon's results do not suggest what code or what type of

signalling is necessary to achieve this bound, and consequently it can be a

discouraging measure of a system's performance.

In real communication systems, there are many practical considerations

that take precedence over Shannon's bound in design decisions. For ex-

ample, satellite communication systems that use nonlinear travelling wave

tube amplifiers (TWTA's) require constant envelope signalling such as M-

ary phase shift keying (MPSK}. Thus, even if Shannon's results firmly stated

that capacity at a spectral efficiency of r/= 3 bits per signal can be achieved

with a rate 3/4. constraint length u = 8, convolutional code using 16 quadra-

ture amplitude modulation (QAM), it would not be feasible to do so on the
TWTA satellite link.

It therefore seems reasonable to ask what the minimum SNR required to

achieve reliable communication is given a modulation scheme and a band-

width efficiency, r/. For the discrete input, continous output, memoryless

AWGN channel with M-ary one dimensional, e.g., amplitude modulation
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(AM), or twodimensional(PSK.QAM) modulationandassumingequiprob-
ablesignalling, the capacity bound becomes

E log 2 _ exp , (B3)
q" = log 2 (M)- _ i=0 j=0 No

where a is tile channel signal, n is a Gaussian distributed noise random

variable with mean 0 and variance No/2, and E is the expectation operator.

The bound of equation (B3) is plotted in the figure for BPSK, QPSK, and
8PSK modulation.

For a specified signalling method and spectral efficiency, this bound rep-

resents the minimum SNR required to achieve reliable communication. For

example, to send rt = l information bits per signalling interval using QPSK

modulation requires a minimum SNR of E_/No = 0.5dB. Any system using

QPSK modulation with r/= 1 and operating with a SNR lower than 0.5dB

will not be reliable, regardless of complexity.

Also depicted on the figure is the performance of a number of real coded

communications systems with a variety of bandwidth efficiencies. These

points are plotted by determining, either analytically or by simulation, the

SNR required for tile system to achieve a information bit error rate (BER) of

10 -s. (Thus. a BER of 10 -s is chosen as the "arbitrarily small probability

of error.") By comparing these points to the corresponding bound with

the same bandwidth efficiency and modulation, it can be seen how close to

the ultimate performance a system is. For example, the well known rate

R = 1/2, v = 6, convolutional code sends r/= 1 information bits per QPSK

signal with a BER of 10-5 at an SNR of Eb/No = 4.4dB. This is 3.9dB away

from the QPSK bound and 4.4dB from Shannon's bound. The performance

of a number of recent TCM schemes are also shown on the figure. For a

spectral efficiency of 2 bits per signal, the Ungerboeck R = 2/3, u = 6.

8PSK trellis code is 3.0dB from the bound and performs 0.4dB better than

the R = 2/3. v = 6, 8PSK pragmatic trellis code suggested by Viterbi.

It should be noted that tile previous comment reflects performance at a

BER of 10-s: tile Ungerboeck code has an asymptotic coding gain of 5.0dB

compared to 3.0dB for the pragmatic code. To achieve a spectral efficiency

of 3 bits per signal with constant envelope signalling, 16PSK can be used.

The best known R = 3/4, u = 6. 16PSK trellis code achieves a BER of

10 -'_ with a $NR of Es/No = 9.6dB and, as shown, is about 6.0dB from the
Shannon Bound.

If constant onvelope signalling is not required, then quadrature ampli-

tude modulation (QAM) offers improved performance at high spectral ef-

ficiencies, i.e. more bits per signal. The performance of three R = 3/4,

16QAM. trellis codes are shown in tile figure. The u = 4. 16QAM convolu-

tional code proposed by TRW performs 0.,SdB better than the 16PSK code

even though it has fewer states. Further improvement is available if 16QAM

TCM is l_sed..-\ linear, u = 4, 16QAM trellis code is 1.1dB better than the
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16PSKcodeand the nonlinear,v = 6, 16QAM code is 1.8dB better. Tile

latter code also has the advantage of being fully rotationally invariant.

Recent advances in coding theory, including coded modulation and con-

stellation shaping, and the technological feasibility of increasingly complex

coding schemes have brought the bounds of Shannon and other information

theorists within sight. In fact, it has been suggested that with sophisticated

shaping techniques, complex codes and large lattice theoretic constellations

capacity may be achieved in some specialized systems in the near future.

This figure illustrates the progress made toward that goal.
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