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Abstract: This paper presents a method for interactivety exploring a large set of quantitative multivariate

data, in order to estimate the shape of the underlying density function. It is assumed that the density
function is more or less smooth, but no other specific assumptions are made concerning its structure. The

local structure of the data in a given region may be examined by viewing the data through a "Gaussian
window", whose location and shape are chosen by the user. A Gaussian window is defined by giving each
data point a weight based on a multivariate Gaussian function. The weighted sample mean and sample

covariance matrix are then computed, using the weights attached to the data points. These quantities are
used to compute an estimate of the shape of the density function in the window region. The local structure

of the data is described by a method similar to the method of principal components. By taking many such
local views of the data, we can form an idea of the structure of the data set. The method is applicable in

any number of dimensions. The method can be used to find and describe simple structural features such as

peaks, valleys, and saddle points in the density function, and also extended structures in higher dimensions.
With some practice, we can apply our geometrical intuition to these structural features in an)' number of
dimensions, so that we can think about and describe the structure of the data. Since the computations

involved are relatively simple, the method can easily be implemented on a small computer.
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CA_SIAN WINDOWS: A TOOL FOR EXPLORING ICOLTIVARIATE DATA

INTRODUCTION

Suppose that we have a large set of quantitative data

consisting of N points x i in a p-dimensional space, and that

we want to explore the structure of this data set, without making

many assumptions in advance concerning its structure. By

"structure" I mean the shape of the underlying density function,

as evidenced by the locations and shapes of concentrations of

data points. I will generally think of the data set as a random

sample drawn from some probability distribution or from some

larger population. This assumption may not always be warranted,

and I will not rely heavily on it. I will, however, assume that

the density function is more or less smooth, so that if we want

to learn about the structure of the distribution in a given

region in the space, we can draw inferences about the structure

based on the nearby data points. Note that without any knowledge

or assumptions about theiarge-scale structure of the data, we

cannot learn much, if anything, about the structure in a given

region by looking at data points that are far away.

The method proposed here consists of repeatedly examining

the local structure of the data by viewing the data through

windows, each having a location and shape as defined below. By



taking many such local views of the data, that is, by

interactively exploring or searching through the space in which

the data points lie, we may be able to find and describe

structural features such as peaks, valleys, and saddle points in

the density function. For example, a cluster of data points is

evidence of a peak in the density function. We may also find

extended structures such as ridges, and analogous structures in

higher dimensions. We can then put together what we have found

in order to build up a general description of the structure of

the data set.

In multivariate statistical analysis, the simplest and

best-understood quantities to compute are the sample mean vector

and the sample covariance matrix. These statistics describe the

overall structure of the data, while at the same time obscuring

or smearing out any fine detail that may be present. If we do

not make specific assumptions about the data, the only way to

discover any such small-scale structure is to look for it on a

local level. In two or three dimensions we can do this by

looking at a scatter plot or other graphical representation of

the data, but in higher dimensions we cannot do this directly.

So I will use a window to look at the data in a local region, and

compute quantities such as the sample mean and covariance matrix

of the data as seen through the window. If the part of the data

that is in the window region happens to be a cluster with

approximately a Ganssian shape, then the local mean and

covariance matrix will give us a good description of the cluster.

In practice, however, the data that we see in a window may have
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only a part of a Gaussian shape, or the data may consist of parts

of more than one cluster. Since we do not know in advance where

the clusters are, or even whether there are clusters in the data,

any window we might try could contain parts of one or more

clusters, or parts of more complex structures.

If we use a window with sharp boundaries (for example a

rectangular or an ellipsoidal window), such that each data point

is either inside or outside of the window, then what is seen

through the window may be overly sensitive to the exact placement

and shape of the window. More importantly, if we use such a

window, and if we assume that the data in the window form part of

a Gaussian shape, it will be very difficult computationally to

estimate the parameters of such a truncated Ganssian

distribution, especially if the dimension of the space is large.

(The usual way to do this would be to estimate the parameters of

the Gaussian shape by the method of maximum likelihood.)

Moreover, the data in a local region may not look like a cluster

at all; a concentration of data points aay appear more like a

ridge or a valley or a saddle point. A method for exploring the

data should be able to deal with such structural features. If we

can choose the shape of the window so that the computational

effort is reduced, then a user with a small computer will be able

to try many windows with different locations and shapes quickly,

and will thus be able to explore the data interactively.

Instead of a window with sharp boundaries, I will use a

"shaded" window, which may be thought of as a window whose

transparency is greatest at the center and which becomes
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progressively more opaque as we move away from the center. The

window shape I will use is defined by a multivariate Gaussian

function. A Gaussia, wi,dow is defined by choosing a

p-dimensional vector a to be its center point, and a

non-negative definite symmetric matrix V to describe its size

and shape. For any p-dimensional vector x, let w(x) be the

value of the Ganssian function

-½(x - a)'V(x - a)
w(x)= e

This function may be thought of as the relative transparency of

the window at the point x. Note that w(a) = I and w(x) < I

for all other x, with w(x) non-increasing as x moves away

from a. Each data point xi is given the weight wi = w(xi).

The weighted (or "windowed") sample means, variances, and

covariances are then computed from the weighted sums, sums of

squares, and sums of products of the coordinates of the data

points. The quantity _i is used as the windowed equivalent of

the sample size.

Suppose that the data in the region of the window (that is,

in the region where w(x) is not very small) happen to form a

cluster with approximately a multivariate Gaussian shape. Then

the "windowed" data, that is, the data points with the weights

wi attached to them, will also have a Gaussian shape, but

because of the weighting of the data points, the parameters of

this Ganssian shape will be different from the actual parameters

of the cluster of data points without the weights. Since the

window parameters are known, we can compute the biasing effect of

.



the window, and we can easily work backwards and "degauss" the

windowed data; that is, we can remove the effect of the Ganssian

window on the shape of the cluster and recover estimates of the

actual parameters of the cluster. Because the windowed data in

this case have a multivariate Gaussian shape, we will, by analogy

with classical statistical theory, estimate the parameters of the

windowed flaussian shape by the weighted sample mean vector and

sample covariance matrix. _e will then degauss these estimated

parameters.

In general, however, data sets will not consist of

relatively isolated clusters with flaussian shapes. In addition

to peaks in the density function, we may also have valleys,

ridges, saddle points, and similar but more complex features in

higher dimensions, and we must be able to recognize such

structural features so that we can include them in an ultimate

understanding or description of the structure of the data. We

will see that these local structural elements can be

approximated, at least locally, by a function in the form of the

exponential of a polynomial of degree at most two in the p

coordinates of x. This family of functions includes the

multivariate Ganssian density functions. The second-degree terms

in the exponent may be expressed as a quadratic for_ based on a

symmetric matrix that is analogous to the inverse of a covariance

matrix, except that it does not have to be positive definite. If

in the region of a Gaussian window the density function can be

approximated by such a function, then the windowed data will have

approximately a proper multivariate flaussian shape, just as it



would if the data in the window region formed a Gaussian-shaped

cluster. So we can compute the windowed sample mean and

covariance matrix based on the weighted data as before, and we

can then degauss the results to estimate the local shape of the

density function. The difference in this case is that the

degaussing process may lead to a symmetric matrix to describe the

estimated shape of the density that is not positive definite.

Whether it is or not, we will use the eigenvectors and

eigenvalues of this matrix to describe the local structure of the

data, by a method analogous to the method of principal

components. Thus, Gaussian windows may be applied in situations

where the data in the window region have shapes other than a

Gaussian cluster, and we can use this technique to discover a

variety of structural features in the data. _e will have to be

careful, however, about how we do the computations, so that we

avoid tr_ing to compute quantities that are numerically unstable.

The computations done for a window are the following: In

the first stage we compute the weights wi and the weighted

sample means, variances, and covariances. The effort involved in

this stage is proportional to Np_ . _e then do standard matrix

operations on pxp matrices, including inverting the windowed

covariance matrix, degaussing that matrix by subtracting V from

it, and then extracting the eigenvectors and eigenvalues of this

degaussed symmetric matrix. I wrote a simple program in BASIC so

that I could perform some experiments on artificial data sets. I

also compute a variety of statistical quantities that may be

useful in interpreting the results. These computations can be
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done quickly on a small computer if N and p are not too

large. The matrix operations can be done by whatever algorithms

the user prefers; much standard software is available for this

purpose. The only new software required is a program to control

the process, accept the data and the user's chosen window

parameters, compute the weights, weighted sums, and related

quantities, and display the results. If a computer capable of

parallel processing is available, the first stage of the

computations can be done partly in parallel, with substantial

savings in time if N and p are very large.

One of the guiding principles in this work is that the

method should be applicable, at least in principle, in any number

of dimensions. We must therefore develop some simple ways of

thinking about geometric structures in a p-dimensional space. We

can do this by making analogies with shapes that we can visualize

in two or three dimensions, such as ellipsoids and hyperboloids.

The shape of an analogous object in p dimensions can be

described by giving its principal axes (a set of mutually

orthogonal vectors) and a scale factor for each axis. These

quantities are related to the eigenvectors and eigenvalues of the

symmetric matrix that defines the shape of the object. Thus, by

viewing the data through a window, and assuming that the local

structure of the data has a simple form, we have a way of

thinking about and describing what the estimated local structure

looks like in any number of dimensions. Of course, when we make

analogies like this so that we can apply our geometrical

intuition in a space with large p, we must do so carefully so
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that we are not misled.

The philosophy here is different from that in the many

graphical methods which involve projecting the data onto a space

of two or three dimensions, so that we can use the pattern-

recognition capabilities of our own visual systems. See for

example Chambers et al. (1983), Cleveland and McGill (1988), and

Du Toit et al. (1986). There may well be multidimensional

patterns or structures in the data that would be obscured or

lost, or at least very hard to find, in a lower-dimensional

projection of the data. I should emphasize, however, that the

method described here is not intended to replace or compete with

those other methods; instead, it is meant to complement them.

When we have a large, complex data set to study, the more ways we

have to look at the data, the better.

In this paper I discuss the method of Ganssian windows as a

tool to be used for exploring data interactively. It is natural

to ask whether this process can be automated. If it were, we

would then have an example of a process of automatic

"unsupervised learning", in which a machine or an algorithm is

given a set of data and is then supposed to figure out the

structure of the data without the further help of a "teacher".

See for example Pao (1989) and Cheeseman et al. (1988). In order

to automate the process, we must have a clearly defined goal;

that is, we need a clear idea of what sort of ultimate

description of the structure of the data we want the process to

give us. We would also have to specify the strategy it should

use, both in choosing a sequence of windows through which to view



the data, and also in taking the information that it finds in

those views and putting it together into an organized description

of the structure of the data. Since I do not have specific ways

of doing these things, I think of the method primarily as an

interactive one. Perhaps with more experience we can decide on

ways of automating the process, at least partially.

But there are advantages to an interactive method in its own

right, besides as a stepping-stone to constructing an automatic

method. _aen we examine the data interactively, we can proceed

in a more open-ended way, feeling our way along as we go, and we

can bring in any other knowledge, assumptions, or hunches about

the data that we may have, without being constrained by any

specific form that our results must take. With practice, we can

develop skills in exploring data in this way, and in building a

mental picture or description of what we find in the data.

Furthermore, an interactive method can complement an automatic

procedure and could be used in conjunction with it. For example,

after running an automatic clustering algorithm on the data, we

could use Ganssian windows to look at the results of the

algorithm in more detail. We could examine the size and shape of

the clusters found by the algorithm, we could look for structural

features other than clusters, and we could look for fine

structure that the algorithm may have been unable to find.

However, even if we use an interactive method to explore the

data, we cannot avoid the issues of goals and strategies raised

above. We still need soae idea of the kind of description of the

structure of the data that we hope ultimately to find. In other
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words, we need to have some ideas about objectives and strategies

in mind, so that we do not wander aimlessly through the data.

Some of these issues will be discussed below.

In the next section I will work out the mathematics in the

one-dimensional case. I will show the effect on the density

function of attaching Gaussian weights to the data points, and

how we can reverse that effect -- that is, degauss the windowed

data m to estimate the parameters of the density function in the

window region. In the section after that, I will do the same for

the general case of p-dimensional data, and I will use a method

analogous to the method of principal components to describe the

estimated local structure of the data. We will then have the

mathematical tools so that, in the final section, we can consider

some possible structural features that we might find in the data,

and how they would appear when viewed through a Ganssian window.

Some of these features, such as peaks, valleys, and saddle

points, are pivotal points that will help us to develop a

description of the structure of the data. Other structural

features, such as ridges, are extended features which cannot be

viewed in a single window. If such an extended structure passes

through a window, we will see a part of it in the window, and we

will be able to tell that what we see is part of a structure that

extends beyond the window. We can then try to move along the

structure by using windows with different centers, so that we can

map out its extent and shape. Thus we are not restricted to

finding clusters, that is, sets of data points all of which are

near each other. Finally, we can put together the results of our
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exploration of the data set into an overall description of its

structure.

THE ONE-DIMENSIONAL CASE

Many of the basic properties of the Gaussian window can be

illustrated in the case p = I. Ve will consider the general

case in the next section.

Suppose that we have a sample of N data points x i from a

univariate density function f(x). Ve will view the data through

a Gaussian window. If we let a be the window center, and we

let v > 0 be a parameter for the width of the window (if we

were describing a Gaussian density function, its variance would

1
be _ ), then the window is defined by

i v(x-°)2
w(x) = e

The data as seen through the window consist of the x i, with each

x i given a weight wi = w(xi) _ 1, instead of being given full

weight. The "windowed" density function, that is, the effective

density function of the data as viewed through this shaded

window, is w(x)f(x). That is, if we do computations with the

weighted x i, the results will be as if we were working with a

sample from the windowed density function. Note that this

function is not a proper probability density function, because

its integral over x is less than 1. The integral ] w(x)f(x)dx

may be thought of as the expected proportion of the data that is

viewed through the window. Since this integral is the expected
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value of wi for a randomly chosen data point xi, it may be

estimated by _w i.

A simple way to think of the window process is to imagine

that each x i is a small point of light with intensity 1, and

that the window has transparency w(x) at each x. The light

from each x i that passes through the window therefore has

intensity wi, and the total intensity of the light seen through

the window is _w i. Another way to think about the windowed

density w(x)f(x) is to imagine that we take the data set and

randomly throw out some of the points, using the following rule:

Independently for each xi, keep x i with probability wi, and

throw it out with probability 1 - wi. The conditional density

function for the remaining points would be

w(x)f(x)
I w(x) (x) dx "

The integral in the denominator is the expected proportion of the

points remaining. It would of course be wasteful to throw away

data in this way; we can achieve the same effect, and make better

use of the data, by giving each x i the weight wi in our

computations, where wi is the probability that x i would have

survived the throwing-outprocess. The full data set, with

weights attached, may be thought of as the result of averaging

over all possible outcomes of the random throwing-out process.

The reason for using a Gaussian window is a simple

mathematical fact: _ Ca_ssian times a Gaussian is a Gaussian.

Suppose that in the region near the center of a window we have

chosen, the density function has (approximately) a Ganssian
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shape:

-
f(x) = c l-i-- e

where _, o_, and c are all unknown parameters. This part of

f(x) resembles a peak whose center is at _ and whose width is

represented by u. The multiplicative constant c represents

the probabiZit_ mass of this part of the entire probability

distribution; that is, c is the probability that a point chosen

at random comes from this part of the distribution. Suppose

further that the rest of the probability distribution is so far

away from the center of the window that the data points arising

from other parts of the distribution will have only a negligible

effect on the computations. Then, in the region of the window

(that is, the region vaguely defined by "w(x) is not too

small"), we will see that the windowed density w(x)f(x) has a

Gaussian shape whose parameters are related to the parameters of

the Gaussian function above and to the window parameters.

Before going further I will rewrite the Gaussian function

above so that later we can apply the results more generally. Let

b = 1 and let a = c--J--1 . Then, in the window region,

1 b<x-
f(x) = a e

Since we will choose ,, the window center, I will assume for

simplicity that a = O. So the windowed density (the effective

density function for the weighted data) is
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-½[b(x - _)_ + vx2]
w(x)f(x) = a e

The expression in the brackets can be rewritten by completing the

square:

b(x - _)2 + vx2 = (b + v)x 2 - 2b_x + b_2

b_ 2
(b+v)_j

{ b} 2 "2by= (b+ v) x - #+bT_+ " _ •

Therefore the windowed density is

w(x)f(x) - a e"g _' b-_ e- (b + v) x - _+b"_

b
This is a Gaussian function with "windowed mean" #b'_ and

1
"windowed variance" b'_" The windowed mean has been pulled

toward the window center because the data points nearer the

center are given relatively greater weight. Note that the

windowed variance is a function of b and v, but not of _, and

I (the "variance"that it is less than ¢2 and also less than

of the window).

If we write the windowed density as

[1,bv ]_-_ ¢_

then the expression to the right of the brackets is an ordinary

Gaussian (normal) probability density function, whose integral

over x is 1. Therefore the expression in the brackets is the

integral of w(x)f(x) over x. This quantity is the expected
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value of the weight wi = w(xi) to be assigned to a randomly

chosen data point xi; that is, E(wi) = / w(x)f(x)dx. A natural

way to estimate the expression in the brackets, therefore, is by

the average of the weights: _ Zw i.

Since the windowed data have an approximate Gaussian shape,

the simplest and most natural way to estimate the parameters of

this shape is to compute the weighted sample mean and sample

variance, by analogy with standard statistical theory:

and

2 = 1 Zwi(xi _ Ew)2 = 1 Zwixi 2
sw Zwi Zw i - _w 2

b 2 is an
It follows that Ew is an estimate of _+b-_ and sw

I
estimate of +b-;_"

We can now "degauss" the view of the data as seen through

the Gaussian window; that is, we can remove the effect of the

window on the shape of the density f(x) in the window region.

Since v is know, we have

where will be our estimate of b. Then

 -L-v ,
2

Sw

and our estimate of is

k_=l=_

Assume for the moment that the denominator above is positive.
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To estimate we write

b+v

so our estimate of # will be

i}+v 1/s_

= = = •

We can also estimate the constants a and c. Since we have a

natural estimate, _ Ewi, for f w(x)f(x)dx, the expression in

brackets above, we can write

": b+v VT_ I r.wihe =

,
and we have

b+v

We can also estimate c by

Thus we have a method of estimating the three parameters

describing the data in the window region that is both

computationally simple and easy to understand. As we will see in

the next section, the same operations can be done in any number

of dimensions. Bear in mind that since we compute the windowed

sample mean and variance, the method estimates the overall

structure of the data in the window region; any fine structure

that may be present within the region is smeared out. To look

for more detailed structure, we could use a saaller window. The
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windows can be as small as the data will allow; if the amount of

data in the window region is too small, we will not be able to

obtain reliable estimates.

We could do similar computations based on a window of a

different shape. For example, suppose we use a window that is

simply an interval, with w(x) = 1 within the interval and w(x)

= 0 outside it. Then, under the assumptions above, we would see

a truncated Gaussian function in the window, and we could

estimate its parameters by the method of maximum likelihood or by

some other method. However, the computations would be more

difficult -- not so much in one dimension, but in a many-

dimensional space the computational problems would be very

complex.

The data present in the region of a _indo_ may not look like

a single peak, as we assumed above. Since we do not know what we

will find in a window before we look, a chosen window might

contain two or more peaks, or none at all; we might find a valley

between two peaks, or a flat area, or a gradual slope, or

something more complex. Often we may be able to approximate the

shape of the density function in a window region by one of the

following:

or

f(x) = h ,

f(x) = h eTM ,

I b(x - _)2

f(x)= a e
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In all of these cases, f(x) is the exponential of a polynomial

in x of degree at most two. In the third case, if b > 0 we

have the ordinary Gaussian case which we treated above. If b <

O, ve have what I will call a "concave Gaussian" function, which

will be useful in regions where f(x) is concave upward. The

first two cases will be treated below. If we multiply any of

these functions by w(x), as we did for the Ganssian, and then

complete the square in the exponent, we find that the windowed

data have a Gauss/an shape, as before. So we can estimate the

parameters of the windowed density by computing the weighted

sample mean and variance, and then degauss the data to obtain

estimates of the parameters of the local approximation to f(x).

In the third case above, if b < 0 we can find the windowed

density v(x)f(x) by the same algebraic steps that we used

earlier. Assume for the moment that b + v > O, so that

w(x)f(x) is a proper Gaussian shape. We can therefore estimate

the parameters b, _, and a by the same formulas as before.

We will not estimate _ or c in this case because they are

meaningful only when f(x) is an ordinary Gaussian. In this

case the windowed variance

1
of the window, _, whereas

1
is greater than the "variance"

in the ordinary Gaussian case it was

smaller. We can distinguish between the ordinary and the concave

Gaussian cases by looking at the sign of b. However, if b is

near O, we may want to consider one of the cases discussed below.

_nat if b . v _ O? This would be true if f(x) in the

window region were very strongly concave upward, so much so that

the window function w(x) could not pull it down into a Ganssian

o"
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shape. In practice, however, we do not have to worry about this

possibility. Since we are working with a finite data set, the

data cannot continue to follow such a sharply increasing density

function indefinitely as we move farther and farther from the

window center. Eventually the data must taper off, so the shape

of the weighted data would be something like a valley between two

(which must be positive in any case)hills. In such a case, s w

would be very large, so we ,ould have a large, positive estimate

1
of .b-_' and hence a value of b near, but greater than, -v.

The second case above may be thought of as a limiting case

of the third, if we let # = _ and we let b approach O. The

first case is a special case of the second. The paraueter h is

the density at O, the window center. In the second case above,

the windowed density is

1 vx 2
w(x)f(x) = h e + rx

The exponent may be written as

-_ + rx=- v x 2 r

=-gvx2-2_x ÷ +_

= -g v x - +_ .

Therefore,

r2 1

w(x)f(x) = [h e_2_ _"_ ] --_ e-_.,_ -¢_

where the expression in the brackets is the integral over x of

this function. In this case, the mean of the Gaussiau shape seen
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r
through the window is _, and _w is an estimate of _.

Therefore r may be estimated by f = _wv. Since the variance

will be near _, and hence b will beof this shape is _, s w

near O. Thus, a value of b near 0 tells us that we should

probably approximate f(x) in the window region by a constant or

function. Since _ _w i is an estimate of thean exponential

expression in the brackets above, we can estimate h by

I _W 2V

If we are in the first case above, in which f(x) is constant,

_w would be near O. Since this case is like the previous case

with r = O, the only parameter to estimate is h, which we would

estimate by

_e now have a simple tool for exploring the data, based on

the assumption that the shape of the density function in a window

region can be approximated by the exponential of a polynomial in

x of degree at most two. Since in each of the above cases the

windowed density has a Ganssian shape, it is natural to estimate

its parameters as we have done above. Since these estimates give

us the overall shape of the density in the window region, we can

look for finer detail by using smaller windows.

One of the quantities we can estimate is the value of f(x)

for a given x in the window region. To estimate f(x) based

on a given window, we simply take the estimate of the degaussed
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density function, which is defined by the estimated parameters,

and evaluate that function at x. In practice we might do this

by trying several windows of different sizes centered at or near

x, and choosing a window that seems to give a good local picture

of the density. If the window is so small that few data points

fall within it, the estimates will not be very accurate, and if

the window is too large, the view through it might smear out some

important details of the structure, and thus give us a misleading

estimate of f(x). Since there is probably no generally

applicable rule for choosing the best window to use, it is better

to experiment with several windows to get a feeling for the data.

In many situations, however, it will be more important to

study the structure of the data, rather than to estimate f(x)

for particular values of x. To describe the structure of the

data, we want to find and describe features such as peaks and

valleys. In higher dimensions there may also be ridges, saddle

points, and more complex features. The method of Ganssian

windows is intended primarily for this purpose. By exploring the

local structure of the data using windows with many different

centers and sizes, we hope to be able to put together the

information found in the windows and build up an overall

understanding or description of the structure of the data.

It is natural to ask about the range of validity of the

local estimate of the density function based on a window. There

is not a clear-cut answer to this question. Generally the

estimate should be more reliable near the center of the window,

and gradually less so as we move away from the window center.
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How reliable the estimate is depends partly on how many data

points are involved in producing the estimate. (How involved a

data point x i is depends on wi, so even this is a matter of

degree.) The validity also depends on the true shape of f(×)

in the window region. It might seem that if we used a window in

the form of an interval, we would have a more definite idea of

where the estimated shape of f(x) was valid. But this would be

misleading; even in this case the estimate would probably be more

reliable near the window center and less so near the endpoints of

the interval, because near the center the estimate is better

supported by the data. If the density function is not in the

form that we expect, the estimate may not be valid anywhere,

except in a very general, overall sense. On the other hand, if

f(x) is well-behaved, the estimated shape might continue to be

accurate for some distance outside the interval. Thus the

validity of the estimate would be as much a matter of degree and

a function of x here as with a Gaussian window. This question

of validity would be a difficult one for any shape of window, and

I believe that there is no general-purpose answer to it. To give

some sort of answer we would have to L_ke additional assumptions,

such as that the function f(x) satisfy certain mathematical

conditions and that the data comprise a random sample from some

population, questions such as these will not be addressed in

this paper. In practice we can try to get a general sense of the

validity of the estimates by trying several windows with

different centers and sizes, so that we have some idea of the

local structure of the data. For this reason it is important to
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have a window shape for which the computations are simple, and

also to have a way of thinking about what we find in the windows.

I should point out that it is possible to do other kinds of

statistical analyses of the data as seen through a particular

window, k more sophisticated analysis of the windowed data could

give us a more detailed picture of the local structure of the

data in the window region. I have not pursued this approach,

however; instead, I search for finer structural details in the

data simply by using smaller Ganssian windows and computing the

basic quantities defined above. My goal has been to keep the

method simple and to make minimal assumptions about the nature of

the data, and then to see what could be learned by exploring a

data set with this simple tool. Of course, if there is reason to

believe that the data may have some particular structure, then we

should use a statistical method that is specifically designed to

deal with that structure.

Some of the estimates that we might want to compute may be

numerically unstable; that is, a small change in the data or in

the window used might make a big difference in the value of the

estimate. For example, if the shape of the data in the window

region is approximately Ganssian, with a variance much larger

than the window variance -- that is, if the window is located on

a Ganssian hill so wide that only a small part of the hill

appears in the window -- then the estimated parameters _, _,

_, and _ of the degaussed density function may be so unreliable

as to be almost meaningless, at least by themselves. However,

the estimate of f(x) by the exponential of a polynomial in x
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would still be valid within the window region, provided that the

number of data points in the window region is not too small.

Estimates of other quantities, such as the slope or the curvature

of f(x), may also be valid, as long as we stay within the window

region. (In the next section I will give estimates of the first

and second derivatives of log f(x).) Trying to estimate a

quantity that represents a feature of the data far outside the

window region is risky at best and should be avoided. The

quantities that we estimate should be related to the window

region, since we can then hope that they can be reliably

estimated based on the data appearing in the window.

THE IATHF._IATICS 8F GAUSSIAN WINDSWS

In the general case we have a large multivariate data set in

p dimensions. We will examine the local structure of the data

by viewing the data through Gaussian windows. As in the previous

section I will consider several cases, so that we can develop the

mathematics for describing what we see in a window. We saw that

in one dimension the data could have peaks, valleys, and gradual

slopes, and that we could distinguish these cases by looking at

b, which was a function of the weighted sample variance. In

higher dimensions the data can also have structural features such

as saddle points and ridges. A structural feature such as a peak

or a valley may lie entirely within a window, or we could have a

feature such as a ridge that lies partly within a window and

extends beyond it in some directions. Both of these kinds of
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features can be described by a method analogous to the method of

principal components. In the next section we will consider some

examples and some strategies for exploring the data.

Suppose that we have a sample of N data points, or

vectors, xi = (Xil, xi2, ... , Xip )' from a multivariate

density function f(x) defined on a p-dimensional space (or on

some region within the space). I will assume that the density

function is more or less smooth, but I will not make any other

specific assumptions about its structure. I will assume,

however, that the data points do not lie in a linear manifold of

lower dimension. (By liaear manifold I mean the set of all

vectors x satisfying Ax = c for some matrix A and vector

c.) If they do, we could choose a new coordinate system for that

linear manifold so that the data do not lie in a linear manifold

in the new coordinate system. We define a Gaussian window by

choosing a center point a and a non-negative definite symmetric

matrix V to describe its shape. For any p-dimensional vector

x, let w(x) be the value of the Ganssian function

-½(x - a)'V(x - a)
w(x) = e

Note that for p > 1 there is a wide range of possible window

shapes. Again, this function represents the relative

transparency of the window at the point x, and we have w(a) = 1

and w(x) < I for all other x. If V is positive definite,

its inverse may be thought of as the "covariance matrix" of the

window; that is, if we were describing a multivariate Gaussian

density function, V-I would be its covariance matrix. In this
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case we have w(x) < I for all x other than a, and the

contours of w(x) are ellipsoids centered at a.

Each data point xi is given the weight wi = w(xi). As

before, the windowed density function, that is, the effective

density function of the weighted data, is w(x)f(x), which is not

a proper density function because its integral is less than I.

The interpretation of this function is the same as in the

previous section.

Suppose first that in the region of a window we have chosen,

the density has (approximately) a multivariate Gaussian shape:

I -½(x- -
f(x) = C 1/2 e ,

(2f)P/2[E[

where _, Z, and c are all unknown parameters. That is, we

have a single peak (or cluster) in the window region. The vector

is the center of this part of f(x), and the positive definite

symmetric matrix _ is its covariance matrix, which describes

the shape of the peak. (For a discussion of the properties of

the multivariate Gaussian density function and the estimation of

its parameters, see Morrison, 1990.) The constant c represents

the probability mass of this part of the entire probability

distribution. As before, suppose that the rest of the

probability distribution is so far away from the window region

that the data points arising from other parts of the distribution

will have only a negligible effect on the computations. Then, in

the window region, we will see that the windowed density

w(x)f(x) has a multivariate Ganssian shape.
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I will rewrite the Gaussian function above: Let B = Z-1

1 Then, in the window region,
and let a = c (2,)P/2{E{i/2 .

-½(x - _)'B(x - _)
f(x) = a e

As before, I will assume for simplicity that o = O. So the

windowed density is

-½[(x - - + x'Vx]
w(x)f(x) = a e

I will rewrite the expression in the brackets by completing the

square. Let A = B + V. Since B is positive definite and V

is non-negative definite, A is a positive definite symmetric

matrix and is therefore non-singular. So we have

(x - #)'B(x - #) + x'Vx = x'Bx + x'Vx - 2/_'Bx + /_'B/_

= x'Ax - 2/_'BA-IAx + (_'BA-I)A(A-IB_) - /J'BA-1B/_+ /_'B/J

= (x - A-IB#)'A(x - A-IB/_) + B'(B - BA-1B)#

B - BA-IB = BA-IA - BA-IB = BA-I(A - B) =In the last term,

BA-1V. Therefore,

I p,BA-Ivp -½(x - A-IB_)'A(x - A-IBm)

w(x)f(x) = a e e

This is a Gaussian function with "windowed mean" A-IB_ and

"windowed covariance matrix"

on B and V but not on #.

as

a -½ "'BA-1V# 2, p/2 1A]1/2 A-1B#)'A( x - A-1B#)(IA11/2 ] e"½(x-e (2f)p/2

A-I. Note that this matrix depends

If we write the windowed density
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then the expression to the right of the brackets is an ordinary

multivariate Ganssian (normal) density function, whose integral

over the whole space is I. Therefore the expression in the

brackets is the integral of w(x)f(x) over the space. As

before, this quantity is the expected value of the weight _i =

w(xi) to be assigned to a randomly chosen data point xi. We

will therefore estimate the expression in the brackets by the

average of the weights: _ Zwi.

Since the windowed data have an approximate Ganssian shape,

the simplest and most natural way to estimate the parameters of

this shape w especially when p is large m is to compute the

weighted sample mean and sample covariance matrix, by analogy

with standard multivariate analysis. The sample mean vector is

= 1

and the sample covariance matrix is

sw - r i(xi- w)(xi-
Ya i

- _....-_wixix i' - XwX w'

The element in the jth row and the kth column in this pxp

matrix is the covariance of the jth and kth coordinates of

the xi. The matrix Sw is non-singular because I assumed that

the data do not lie in a linear manifold of lower dimension;

therefore it is a positive definite symmetric matrix. So _w is

an estimate of A-IBp and Sw is an estimate of A-I.

We now "degauss" the view of the data as seen through the
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Gaussian window; that is, we remove the effect of the window on

f(x) in the window region. Since V is known, and we can

estimate A by A = Sw-1, we have

Sw-1 =i:_+ V,

so our estimate of B is

We can estimate Z by

= Sw"1 - V .

assuming that Sw-I

we write

t = _-_= (Sw-I - v)-I ,

- V is positive definite. To estimate #

so, assuming that B has an inverse, our estimate of # is

-_-'i_w- (sw-_-v)-_sw-I_w-

We can also estimate the constants a and c. Since _ Zw i

an estimate of the expression in the brackets above, we have

is

and, since

e _ (2f) p/2 1 r.wi
fill/2- _ ,

Sw = 4-1, our estimate of a is

i _'_sv_
I e_ w

= _Z"i 112
(2T)P/21Swl

(The term /]'I]S¥/_ in the exponent can also be written as

_w'V/;.) Finally, we can estimate c by

= (2")p/2

II}IU2 a .
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In this case, where we have a single approximately Ganssian

peak in the window region, we can describe its shape by the

method of principal components (see Morrison, 1990). This method

gives us a simple geometric description of the shape, which we

can understand by analogy with the situation in two or three

dimensions. The principal components are defined by a set of p

mutually orthogonal eigenvectors of _-1 = _, which are imagined

to emanate from _. These eigenvectors define the principal axes

of a family of concentric ellipsoids which form the contours of

the estimated density function. The lengths of these axes are

proportional to the square roots of the corresponding eigenvalues

of _-1. The estimated density function is then the product of

p univariate Ganssian density functions, each lying along a

principal axis. The variance of each of these univariate

densities is the eigenvalue corresponding to the axis for that

density. We will work out the details in the general case below.

Note that the estimates of _, Z, a, and c may be

unreliable or even meaningless by themselves unless the Ganssian

shape we assumed above lies mostly within the window region. In

the fully general case to be discussed below, we will estimate B

as above, where B is the matrix defining the local shape of

f(x), and we will do a more careful analysis, based on the

eigenvalues and eigenvectors of 8, rather than of _-1. (_ and

_-1 have the same eigenvectors, and the corresponding

eigenvalues of H and _-1 are reciprocals of each other.)

To make the above argument more general, suppose that in the

window region f(x) can be approximated by
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t

- - .)
f(x)= a e

where B is symmetric and non-singular but not necessarily

positive definite. That is, each of its eigenvalues may be

positive or negative, but not O. (The fully general case will be

considered next.) If we multiply this function by w(x) and

then complete the square in the exponent, using the same

algebraic steps as before, we find that the windowed density

w(x)f(x) has a Gaussian shape. I will assume here that A =

B + V is positive definite, so that w(x)f(x) does indeed look

like a Gaussian density. In practice, Sw = 4-1 is always

positive definite, since it is computed from a finite set of

data, and so is its inverse, 4. We estimate B, #, and a by

the same formulas as above. We will not estimate _ or c here

because they are meanin_ul only when f(x) is shaped like an

ordinary Gaussian density. As in the ordinary multivariate

Gaussian case above, if the point _ and an appreciable amount

of the curvature of the density function appear in the window

region, the estimates should be reliable, provided that they are

based on a reasonable number of data points. But if the shape

cannot be discerned in the window, the estimates of _ and a

may be unreliable or even meaningless.

Assuming that the shape of the density function can be

discerned in the window, we can describe the shape as we did

above, based on the eigenvectors and eigenvalues of _-1. Again,

the estimated density function is the product of p functions of

one variable each. But in this case these functions are ordinary
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Gaussian densities in the directions of the eigenvectors

corresponding to the positive eigenvalues, and are "concave

Gaussian" functions in the directions corresponding to the

negative eigenvalues. At _, where the estimated first

derivatives of the density function are all O, we could have a

peak, a valley, or a saddle point, depending on the signs of the

eigenvalues.

The reason that the cases considered so far are not general

enough is that there can be extended structural features, part of

which appear in the window region, and which also extend beyond

the window region in some directions. A simple example is the

following: Suppose that p = 2, and that near the origin (say,

within a radius of 4 or 5) the density function is approximately

1
x12

f(x) = a e

This function represents a long, narrow ridge, uhose center line

lies along the X2-axis. The value of f(x) along the center

line, or the crest of the ridge, is a. The cross-section of the

ridge orthogonal to the center line at any point along that line

is proportional to a Ganssian density function with standard

deviation I. If a large random sample is chosen from such a

probability distribution, there will be a concentration of points

in the vicinity of the X2-axis, in accordance with this part of

the density function. If we then view the data through a

Gaussian window centered somewhere near the origin, we will see

part of this concentration of points near the X2-axis, and we

will also see that this feature extends beyond the window in both
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directions. This is much like what we would see if we were

looking at an ordinary bivariate Gaussian shape for which the

standard deviation of x 2 was very large.

The function above cannot be treated by the method given

earlier because we cannot express the exponent as a quadratic

form with a non-singular matrix B. However, if we allow B to

be singular we can write the function as

1
-_ x'Bx

f(x) = a e

where x: (Xl, x2)' and B: [_ _], a matrix of rank 1. This

matrix has an eigenvalue 1, which is related to the width of the

cross-section of the ridge, and an eigenvalue O, which can be

thought of as representing an "infinite" variance along the

X2-axis. Note that there is not a unique center point _ for

this function. If we estimate B by B as we did earlier, we

will probably find that B has an eigenvalue near 1 and an

eigenvalue near O, which might be positive or negative. Since

will probably be non-singular, we can invert it, but we can see

that the resulting _-1 will be very unstable; that is, a small

change in the data or in the window parameters might make a big

difference in _-1. Also, we should not try to estimate _ by

here, because _ depends on _-1. Not only would _ be

unstable, but it would be meaningless in this case. However, we

will be able to estimate the location of the center line of the

ridge.

We now come to the most general case, which I will treat in

a way that the quantities to be estimated will be related to the
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part of the density seen in the window, so that the estimates

will be relatively stable. I will do this by working with

instead of with 13-1. We will be able to deal with structural

features that appear entirely within the window region, and also

with features such as ridges that extend beyond the window

region. The following analysis is the central part of this

paper, and it is the basis for the computations done by a

computer program I wrote to test the method.

Assume that in the window region the density f(x) can be

approximated by the exponential of a polynomial of degree at most

two in the coordinates of x. I mean by this that the

approximation is relatively good near the center of the window,

and that as we move away from the window center, larger

deviations between the true density and the approximation become

more tolerable, in inverse proportion to w(x). The second-

degree terms of such a polynomial can be expressed as a quadratic

form in x with a symmetric matrix, and the linear terms can be

expressed as r'x for some vector r. Any constant term in the

polynomial can be absorbed in the multiplicative constant h

below. So I will approximate the density in the window region by

1

f(x) = h e"_ x'Bx + r'x ,

where the number h, the vector r, and the symmetric matrix B

are unknown parameters. Note that h = f(O), and that I am still

assuming that the window is centered at 0. If B is singular,

there is not a unique center point # for the function, as in

the ridge example above. If B is non-singular, we could

j"
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complete the square and express f(x) in the form given earlier.

However, as a practical matter, if some eigenvalues of B are

near 0 (relative to the window size), that is, if B is close to

singular, then we will not be able to estimate _ reliably, even

though it is uniquely defined. So I will nut assume that we can

reliably invert B or estimate _.

The windowed density is

e-½[x'Bx - 2r'x + x'Vx]
w(x) f (x) h

Let A = B + V. As before, I will make the additional assumption

that A is positive definite. This amounts to assuming that

f(x) in the window region is not too strongly concave upward in

any direction, so that multiplying it by the window function

w(x) will pull it down into a shape roughly like a Gaussian

density function. In practice we do not have to worry about the

A may not be positive definite, because we

by Sw-1, a positive definite matrix. The

possibility that

will estimate A

expression in the brackets above can be rewritten as

So w(x)f(x)

x'Bx - 2r'x + x'Yx = x'(B + V)x - 2r'x

= x'Ax - 2r'A-1Ax + (r'A-1)A(A-lr) - r'A-lr

= (x - A-Ir)'A(x - A-Ir) - r'A-Ir .

is

1 -½(x - A-Ir)'A(x - A-Ir)
h e_ r'A-Ir e

= [h e½r'A-Ir (2T)p/2 ] IA}I/2e'½(x-A-Ir)'A(x- A-Ir)
IA[ll 2 (2r) p/2
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Since A is assumed to be positive definite, this function is a

multivariate Gaussian shape with windowed mean A-lr and

covariance matrix A-1. The expression in the brackets is the

integral of w(x)f(x) over the entire space. Taking these three

quantities to be the parameters of this Gaussian shape, we

estimate them by _w' Sw, and _wi, respectively. These

estimates give us an overall description of the shape of the

weighted data, smearing out any fine structure that may be

present. Since I assumed that the data do not lie in a linear

mauiford of lower dimension, Sw is non-singular; therefore it

is positive definite, as is its inverse.

We now degauss the estimated shape of the windowed

(weighted) data. As before,

B is estimated by B = Sw-1 - V.

r by

A is estimated by A = Sw-1, and

Since xw = 4-1 f' we estimate

What we have done here is that we have avoided estimating /_

explicitly, for which we would have had to invert i_.

also estimate h. Since we have

e
1 Ewi

We can

f,_-If = (_w,Sw-1)Sw(Sw-1 _w) = _w,Sw-1 _w ' we find

1
1 "_ xw'Sw -1 _w

l_ = _ 9 i 1/2 e
(2,)P/2lSwJ

and since

This is the estimated density at the window center, rather than
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the estimated density at _, which we earlier called _.

We can now analyze the estimated shape of f(x) by a method

analogous to the method of principal components. Let 41 , 4 2 ,

• .. , 4p be the eigenvalues of B, and let Zl, z2, ... , Zp be

a set of eigenvectors corresponding to the 4j, chosen so that

they are mutually orthogonal and each of unit length. (The zj

are not uniquely determined by these conditions, but that does

not matter.) Let Z be the matrix whose col_m,s are the zj.

The matrix Z is orthogonal; that is, Z' = Z-I. Then

a diagonal matrix.

z' z- -. -L,

We will now make a change of coordinates so that the zj

form an orthonormal basis for the new coordinate system. A

vector x in the original coordinate system is represented by

y = Z'x in the new coordinate system. That is, the jth

coordinate of the point x in the new coordinate system is yj =

zj'x. We also have x = Zy. The quadratic form x'Bx in the

old system, which is a function of x, becomes

P

x'Bx = y'Z'B Zy = y'Ly = ? _iyi2

j=l

in the new coordinate system. The function f'x becomes

P

_'x = _w'sw-lx = _w'Sw-IZy = t'y = Z tjyj ,

j=l

where t = Z'Sw -1 _w and tj, the jth coordinate of the vector
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is defined by tj = zj'Sw -1t,

We can now write the estimated density function as

I x' x+
?(x) = e

1

= f(Zy) = h e-_ Z/jyj2 + Ztjyj

= h e_ _ ljyj2 + tjyj

J=l

The estimated density is now a product of p functions of one

variable each, where each of these functions is either an

ordinary univariate Gaussian function if lj > O, or a "concave

Gaussian" function if lj < O. If lj = O, the function is an

exponential function or a constant. If lj > 0, then lj-1 is

the variance of the Gaussian shape, a_d _j-I/2 is its standard

deviation. If lj < O, we can interpret (_Ij)-I/2 as a scale

parameter analogous to the standard deviation. In either case,

Aj is related to the curvature of the function.

For any j for which lj # O, we can complete the square

for that j, if we wish:

{1 1 lj yj2 _ 2 yj + +
-_ ljyj2 + tjyj = "i_ lj2]

%.2

t •

If we let yj = _, that is, if we move along the axis vector zj

t.
for a distance of _/, we come to the "center" of the function of

Aj
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yj along that direction. At this point we have either a maximum

or a minimum of the jth function in the product above,

t.

depending on the sign of lj. It follows that the point _j zj

is the nearest point to the origin for which that function is

maximized or minimized. If _j is near O, then instead of

completing the square along the direction of zj, we may want to

assume that we have, approximately, an exponential function or a

constant in that direction. Geometrically, this amounts to

concluding that, along this direction, we are looking at part of

a large structure, such as a ridge or a gradual slope, that

extends beyond the window region.

If none of the lj is O, so that _-1 exists and _ is

t.

defined, then the point _zj is the projection of _ on the
J

t.

line generated by zj. (It is easy to show that _.zj = _j.)

Thus, even if _ does not lie in the window region, and hence is

not a stable quantity, some of its components may be reliable

estimates of aspects of the data structure within the window

region. (Even if _ is not defined at all, we can compute some

of what would be its components, for those _j not too close to

0.) For example, if p = 2 and a long, narrow ridge runs

through the window region, B would have a positive eigenvalue,

say _1' corresponding to an eigenvector z 1 perpendicular to

the ridge, and an eigenvalue _2 near O, corresponding to an

eigenvector z 2 parallel to the ridge. The estimated width of

the ridge would be proportional to _1-1/2, the standard
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deviation of the univariate Gaussian function of Yl' which

describes the cross-section of the ridge. The point on the

estimated crest, or center line, of the ridge nearest to the

t 1

window center would be _1 zl' and the set of points comprising

the crest would be the line parallel to z 2 through this point.

The value of _(x) along the crest of the ridge might be

constant or it might be gradually increasing or decreasing; its

behavior would be described by the function of Y2 in the

product of functions above. These considerations will be useful

in describing what is seen in the window region, and also in

deciding where to place the next window. For example, we might

want to move the window center to the nearest point on the crest

t 1

of the ridge, which would be _1 zl' and try a window there, or,

if the window center is already on or very close to the crest, we

might want to move along the estimated crest of the ridge and try

a window centered somewhere along that line.

Above we estimated h - f(O). If we want, we can also

estimate f(x) for any x in the window region, using the

estimated parameters given above. Of course, as we move away

from the window center the estimated values become less reliable.

However, I believe that often it will be more important to

describe the shape, or structure, of f(x), rather than to

estimate its value at particular points. By expressing f(x) as

a product of functions of one variable, we have a way to describe

and think about the local structure of the data, even if p is

large. I think that computationally, the simplest way to do this
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A

in many dimensions is the method presented here.

It may also be useful to estimate the slope and the

curvature of the density function. It will be easier, however,

to work with the derivatives of log f(x), since this function is

a polynomial of degree at most two. In the new coordinate

system, in which y = Z'x, let

g(y) = log f(x) = log h - ½ FAjyj 2 + Ztjyj

Then, for

and

For j _ k,

j = I, -" , p:

as_= +tj
_yj -AJYJ

-_=0.

_Yj_Yk

Thus, our assumptions as to the form of

that the second derivatives of log _(x)

window region. The above first derivatives, which indicate the

relative rate of change of the density, are linear functions.

There are two special cases worth considering. We could

assume that the density in the window region is approximately

constant:

f(x): h,

or that it is approximately an exponential function:

f(x) = h er'x

f(x) amount to assuming

axe constant over the
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In other words, we let B = O. As before, h = f(O). When the

window region does not contain much data we might want to assume

that the density has one of these forms, since there are fewer

unknown parameters to be estimated. Actually, in the first case

we could just as well use any kind of window, and in the second

case there are some other kinds of windows that could be used. I

will give the estimates of the parameters using flaussian windows,

since in practice I would use a Ganssian window anyway, and then

decide how to interpret the results. In these cases I will have

to assume that V, the window matrix, is non-singular.

In the exponential case the windowed density is

-½[x'Vx - 2r'x]
w(x)f(x)= h e

and the expression in the brackets is

x'Vx - 2r'x = x'Vx - 2r'V-1¥x+ (r'V-l)V(V-lr) - r'V-lr

= (x - V-lr)'V(x - v-lr) - r'V-lr .

So w(x)f(x)is

1 -½(x - v-lr)'V(x - V-Ir)
h e_ r'V-lr e

1 ] 1/2 V-lr)'V(x V-lr)= [h e_ r'V-lr 2")P/2 . IVl e-½(x -(IV]I/2 (2z)P/2

The windowed mean, V-Ir, is estimated by _w" Since the

covariance matrix of w(x)f(x) is V-l, Sw should be close to

V-l, and we do not have to compute Sw unless we want to use it

to check our assunptions, or to decide which functional form to

use. Since _w = v-lf' we can estimate r by
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f= V_ w •

This vector is the estimated gradient of log f(x). The

expression in the brackets above can be estimated as usual by

I Zwi Therefore we can estimate h, since.

I

e_ _'v-_ (2,)p/2 _ r_i
ivll/2 = N •

Since f'v-lf = (_w'V)V-I(V 2w) = _w 'V _w' we have

1_,V_

l_=_Zw i ''/IVl1"2 e-_ w w

(2t) p/2

is assumed constant, we have the previous case with

1

w(x)f(x) = [h (2r)p/2 ] ]v]l/22e'_X'Vx
IVI 1/2 (2t)P/

and we can estimate h by

: _ _i lvl_/2
(2:r)P/2 "

These special cases are useful for checking to see whether an

estimated shape for f(x) based on a large window is valid in

small subregions within that window, or whether there is some

fine structure that was obscured by using the large window.

USING GAUSSIAN WINDOWS

In this section I will give some examples to illustrate the

use of Gaussian windows to explore a set of data. In order to

devise strategies for moving about in the space and choosing
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windows to try, we must have some idea of what kinds of

structural features might be present in the data, and also of how

they would appear in a Gaussian window. I will interpret the

results of using a window by applying the analysis given in the

previous section. I said earlier that I am assuming only that

the density function is more or less smooth. _hat I mean by this

is that the density is smooth in most of the space; it may be

that there are some places where the density changes abruptly.

The intent of this assumption is that if we look at the number

and location of the data points in a limited region, we should be

able to infer something about the population from which the data

were drawn, at least for that region. Since I make no

assumptions about the large-scale structure of the data, what we

can do is study the local structure in small regions, and then

try to put that information together into a description of the

structure on a larger scale. Of course, if we have any more

specific ideas about the possible structure of the data, we may

be able to use statistical methods designed to deal with that

structure, or we may be able to use our ideas about the structure

to help guide us as we move about in the space, probing the data

with Gaussian windows.

First, a few words about the geometry of high-dimensional

spaces. It seems to be more natural to define limited regions in

terms of p-dimensional spheres and ellipsoids, rather than

p-dimensional cubes and rectangular solids. The interior of a

sphere is the set of points within a given distance of the center

point; a cube, on the other hand, contains some points that are
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far away from the center, but not some of the points that are

much closer to the center. For example, if the length of each

edge of a p-dimensional cube is 2, then the distance from the

center of the cube to the nearest point on the surface of the

cube is 1, while the distance from the center to a vertex is 4P.

Thus, if p is large, a cube has a "pointy" shape, compared to a

sphere.

Consider the "spherical" multivariate Ganssian density

function with mean vector _ = 0 and covariance matrix _ = I.

The contours of the density function are spheres about the

origin. Each component xj of the random vector x is a random

variable independent of the others and has a Gaussian

distribution with mean 0 and standard deviation 1. The distance

from the origin to a "typical" point drawn from this probability

distribution is about 4P, since E(_xj 2) = p. Thus, if p is

large, a "typical" point comes from a region where the density is

much smaller than the density near the origin. The reason for

this is that the volume of a region of a certain shape increases

according to the pth power of the region's size, so, if p is

large, the volume of the central region where the density is

large is comparatively small.

The shape of a Ganssian window is defined by the symmetric

matrix V. If V is positive definite, then its inverse would

be the covariance matrix of the multivariate Gaussian density

function that is proportional to the window function w(x). This

gives us a way of thinking about the shape of the window. If we

do a principal components analysis of V-1, we see that the
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window has essentially an ellipsoidal shape with principal axes

defined by the eigenvectors of ¥-I. The square root of an

eigenvalue of V-1 is the standard deviation of the component of

the window function in the direction of the corresponding

eigenvector. I think of the "window region" as being roughly the

region within about two standard deviations of the window center,

at least if p is not very large. For large p, we may have to

think of the window region as being broader than that. As with

the multivariate Oanssian density above, the amount of data

several standard deviations from a, the window center, may be so

great, compared to the amount nearer to a, that the data points

at the greater distance would have a predominant influence on the

weighted sample mean and covariance matrix, even though w(x) at

that distance is small. Nhether or not V has an inverse, we

can decompose w(x) into a product of functions of one variable

each, as in the decomposition in the previous section. If V

does not have an inverse, then V has some 0 eigenvalues, and

the standard deviation of the window in the direction of the

corresponding eigenvectors may be thought of as infinite. If we

choose V = O, then w(x) = I for all x, and we obtain the

ordinary unweighted sample mean and covariance matrix (with

denominator N). I usually use this for my first window.

Suppose that we try a Ganssian window and we find that all

of the _j, the eigenvalues of 13,are positive and not too close

to 0, and that _ is in the window region. This would indicate

a peak in the density, that is, a cluster of data points,

centered at _, and with a shape described by B. Since the
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standard deviations along the principal axes of the peak are the

_j-1/2, a large _j means a small standard deviation, indicating

that if the data points in the window were projected onto the

line generated by the corresponding eigenvector, they would be

highly concentrated. A small _j means a large standard

deviation in the corresponding direction, indicating that the

data points are more spread out. If the standard deviation is

more than one or two times the standard deviation of the window

in that direction, we may be looking at apart of a structure

that extends beyond the window region, or at least extends into

its outer reaches, where w(x) is small. In that case the

estimates of the parameters may not be very reliable, at least in

the directions corresponding to the small _j. (My computer

program converts the _j to standard deviations so that it is

easier to anderstand the results and make judgments about them.)

If we find an apparent peak in the window region, a natural

next step is to try a window centered at /_, in order to obtain

better estimates of the parameters of the peak. (If _ is far

from the current window center, we may want to be more cautious

and move toward it in a series of steps.) We must also choose a

shape for the next window. When changing the window center, I

would often use the same shape _or the next window that I used

for the current window, so that I can think of the results of

using the two windows as being comparable to each other.

Whatever shape we use, the usual result of the next window is

that we find that we are not exactly at the center of the peak.

So we might want to try several more windows to pin down the
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center and shape of the peak more precisely. Since the

computational effort is not too great, unless p and N are

very large, it is not hard to do this. However, in practice, a

cluster of data points will generally not be exactly Gaussian in

shape. Moreover, there will usually be some overlap between this

peak and other parts of the data, and this mixture of points in

the data will affect the estimates of the parameters.

Consequently, each different window we sight try would give

somewhat different results. There is no single "right" window to

use; therefore, there will not be a single right answer for the

estimated parameters of the cluster. Trying different windows to

get better estimates can be like trying to hit a moving target,

and we can end up wasting time chasing after the best view of the

peak and not finding it. Instead, we must content ourselves with

an approximate description of the location, shape, and height of

the peak. The important thing is that we have found a peak, or a

cluster, and that we have an approximate description of it. By

finding a peak, we have identified a structural feature which

will be an element of our ultimate description of the data.

If we do have an approximate Ganssian peak in our sights,

classical statistical theory suggests that the best estimates of

its parameters would be obtained by using the unweighted sample

mean and covariance matrix. But since there are other data

points that are not part of this peak, we do not want to do that,

so the best strategy would be to choose a window that gives as

such weight as possible to the peak, and at the same time gives

as little weight as possible to any nearby data points that are
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not part of the peak. That is, we wantto mask out those other

data points as much as we can. For p > I we can choose among

many possible window shapes. If we look at the peak with several

Gaussian windows covering approximately the same region, and if

the resulting estimates of the parameters are consistent with one

another, we can have some confidence that the estimates are

reliable. Since there is always the danger that we may be misled

by results based on a window region containing few data points,

the best practical safeguard against this is to view the data in

the region with several windows and observe consistent results.

Suppose now that not all of the _j are positive, or that

not all of them are safely away from 0, but that _ is in the

window region. Then, depending on the signs of the Aj, we can

think of _ as the location of a peak, or a valley (a relative

minimum in the density), or a saddle point. In such cases we are

necessarily looking at a part of a structure that extends beyond

the window region. In each of these cases, _ is a point where

the first derivatives of the estimated density function are 0.

Such points, if we can find them, are useful because it is easy

for us to think about them, and we can apply our geometrical

intuition to them in higher dimensions. A simple example is a

saddle point that might appear between two clusters that are near

each other and have some overlap. We would expect to find a sort

of ridge leading from one peak to the other. At the lowest point

(the point of least density) along the ridge, we would probably

find a saddle point with one negative _j and p - I positive

_j. The negative _j would correspond to an eigenvector



5O

parallel to the crest of the ridge at the saddle point, because

the density curve is concave upward along the crest. The other

_j would be positive because moving away from the saddle point

in any direction orthogonal to the crest would mean moving to a

point where the density is less than it is on the crest of the

ridge. As discussed in the previous section, we can interpret

_j-1/2 as a standard deviation for positive _j, and (__j)-l/2

as an analogous scale parameter for negative _j. As we did

above with peaks, we might want to try a windo_ centered at /_

in order to get a better estimate of the local structure. All of

the considerations above apply here. There is no "right" windo_

to use, and therefore no single right answer. The important

thing, again, is that we have found a pivotal point in the space

that will be useful in thinking about and describing the

structure of the data, even if we cannot estimate its parameters

precisely.

Consider the example of a "ridge" in the density function.

An example of such a ridge occurs in the luminosity-temperature

diagram familiar to astronomers. One of the advantages of

exploring the data with Gaussian windows is that we can find

extended structures of this kind. That is, we do not have to

assume that the data points are concentrated in a number of

clusters, each of very limited extent. It might be better to

think of a ridge as a kind of "bar", that is, an essentially

one-dimensional structure, or concentration of data points,

extending for some distance through the p-dimensional space. I

do not mean by this that the data points comprising the bar lie
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in a one-dimensional manifold; what I mean is that there is a

line or a one-dimensional curve that acts as a "center line" for

this subset of the data points, and that these points are

distributed in all directions about that center line. I will

assume that although these points are coLcentrated about a center

line, they do not lie in a linear manifold of dimension less than

p. The center line may be straight or it may curve gradually; it

could twist in any direction as it runs through the p-dimensional

space. For any point along the center line, the density function

has a (p-1)-dimensional cross-section orthogonal to the center

line at that point. The shape of the cross-section could vary as

we move along the center line.

If we try a Ganssian window for which a bar passes through

the window region, we will find one eigenvalue, say Ip, very

near 0 (it could be positive or negative), indicating a structure

extending beyond the window region, with the corresponding

eigenvector, Zp, parallel to the estimated center line of the

bar. The other p - 1 eigenvalues will be positive and not too

close to O, indicating that the data points are more concentrated

in the corresponding directions; they and their eigenvectors will

describe the estimated (p-1)-dimensional cross-section of the

bar, or at least the average cross-section in the window region.

Since we find an eigenvalue near 0, indicating that we are

looking at a structure extending beyond the window region, we

will not try to estimate _. However, we do want to estimate the

point on the center line of the bar closest to the window center

(which I assume is at the origin). To do this we change to the
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coordinate system based on the zj, the eigenvectors of B, so

that f(x) becomes a product of p functions of one variable

each. _e maximize each of the first p - 1 of these functions,

t.

for which _j is positive and not near O, by letting yj = _j,

that is, by moving that distance from the window center in the

direction of zj. It follows that the maximum of _(x) over the

(p-1)-dimensional subspace orthogonal to Zp is attained at

p-I t.

j=l

This is the point on the estimated center line of the bar that is

closest to the window center. The estimated center line is the

line parallel to Zp through this point. Note that this point

may not be the maximum point for _(x) over the entire space;

moving one way or the other along the estimated center line might

increase the value of _(x). The pth function of one variable,

which we did not use above, gives us an estimate of the density

function along the center line.

We can now consider choosing a window to try next. If the

current window center is not on or very near the center line, we

may want to move the window center to the point defined above, so

that we can try a window centered on the estimated center line.

This window should give us a better estiaate of the shape of the

bar. (If the point above is far from the current window center,

we may want to move toward it in steps, for example by including

in the sum above only those terms for which we think the

estimated coefficient of zj is reliable.) {)ace we are on or
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very near the center line of the bar, the natural thing to do is

to move along the center line, that is, to change the window

center by a multiple of Zp. We should move in short hops along

this line, so that the next window has some overlap with the

current window. Since the center line may curve, and since, even

if it does not, our estimate of its direction is only

approximate, the new estimate of the center line, based on the

new window, will probably not go through the center of that

window. So we could then move the window center to the point on

the new estimate of the center line closest to the new window

center, as we did above, and then resume moving along the center

line. In this way ve can follow along the center line as far as

we can in both directions, and map out a description of where the

center line goes and what the cross=section of the bar looks

like. Some experiments with artificial data show that this can

be done. Note that I an not recommending moving along the

gradient. This is because I am not looking for a relative

maximum; instead, I am trying to understand and describe the

shape of the density function by studying the structural features

found in the data.

There could also be similar structures of higher dimension

in the data. For example, the data points in a region could be

concentrated in an essentially two=dimensional structure like a

"pancake". That is, instead of a center line, the center of the

pancake would be a two-dimensional "center sheet", with the data

points distributed in all directions about the sheet. The sheet

could be flat, or it could curve gradually as it runs through the
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space. At any point on the sheet the density function would have

a (p-2)-dimensional orthogonal cross-section, whose shape could

vary from point to point. If we try a Gaussian window with such

a structure passing through it, we would find two eigenvalues

very near 0, indicating a structure extending beyond the window

region; the two corresponding eigenvectors would define a plane

parallel to the estimate of the center sheet in the windo,

region. The other p - 2 eigenvalues would be positive and not

too close to O, indicating that the data points are more

concentrated in the corresponding directions; they and their

eigenvectors would describe the estimated (p-2)-dimensional

cross-section of the pancake, or at least the average cross-

section. If we find such a structure in a window, we can

estimate the nearest point on its center sheet by forming a

linear combination of the p - 2 eigenvectors orthogonal to the

estimated center sheet, just like the estimate above of the

nearest point on the center line of a bar. As before, we can

then try a window centered at that point (or we can move toward

it in steps), in order to get a better estimate of the shape of

the structure. Dnce we have a window centered on or sear the

center sheet, we can move along the sheet by choosing a new

window center somewhere in the estimated plane of the center

sheet, l_ere we have to search in two dimensions, instead of

simply following a curve; that is, we would have to try points in

the plane to the north, south, east, and west, so to speak.

After trying a window at such a point, we would probably find

that the new window center is off of the center sheet, for the
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same reasons as with the bar above, so we would want to move over

to the nearest point on the new estimate of the center sheet, and

then resume moving along the plane of the center sheet. If we

continue this process in all directions, we will eventually map

out a description of the extent and shape of the pancake,

including its center sheet and its cross-section.

Similarly, we might find an essentially k-dimensional

structure, for any k less than p. Such a structure would have

a k-dimensional manifold as a "center", and a (p-k)-dimensional

cross-section. We would recognize such a structure in a window

by observing k eigenvalues near 0, indicating a structure

extending beyond the window region in k dimensions, in the

directions of the corresponding eigenvectors, and p - k

positive eigenvalues not too close to 0, indicating that the

structure is limited in extent in the corresponding directions.

We could then try to follow the structure and map out its extent

and shape, as with the examples above. To do this we would need

a strategy for moving in all directions in a k-dimensional

manifold and keeping track of the results. Note that I have been

vague about how near 0 an eigenvalue has to be to indicate a

structure extending beyond the window region. As a rule of thumb

I consider a standard deviation more than one or two times the

standard deviation of the window in the corresponding direction

to be an indication that the structure extends beyond the window

region. I think that it would be unwise to try to give a

definite cutoff point for the size of _j, since any such rule

would be arbitrary. Consequently, the dimension k of an
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apparent structure in the data would not be specified, at least

not at first. An analogous situation occurs in principal

components analysis, where it is often unclear as to how many of

the principal components to regard as significant. Since we are

exploring the data interactively, and since it is not costly to

try several windows, I think it is better not to commit ourselves

to a specific value of k until the data have been explored

rather thoroughly. Since we are free to move about in the space,

we can move the window center along whichever eigenvectors we

want; that is, we can try different possibilities without

deciding in advance which eigenvectors define the center of the

structure and which define its cross=section. For example, we

can begin by moving along only those eigenvectors for which we

seem to have a good estimate of where the density is maximized in

that direction. Then, as we move toward a region of higher

density, we may obtain better estimates of the shape of the

density function in other directions.

A Gaussian window focusses a spotlight on the data in a

particular region. But the density function in that region may

or may not satisfy the basic assumption that I have been making

D that it can be approximated there by the exponential of a

second-degree polynomial. In other words, there may be some

"fine structure" in the data in that region. In fact, if a

window contains a large amount of data, it is not unlikely that

there will be some fine structure. Or, to put it the other way

around, if a window contains only a small amount of data, we _ill

not be able to tell whether any fine structure is present, and we
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will have to be content with a simple, overall description of the

data in that region. 8he way to look for fine structure would be

to do a more sophisticated analysis of the data seen in a window.

Instead of doing that, however, I will use subwindows; that is, I

will try smaller Gaussian windows within the region of the given

window, and I will compute the usual quantities for those

windows. For a given window, we have an estimate, say _l(x), of

the density in the region of that window, derived from the

estimated overall shape of the weighted data points. For any

point x in the window region, we can try a small window

centered at x, to see whether the estimated density at x based

on the small window agrees with fl(x), the estimate based on the

large window. Since the true density might vary greatly from

fl(X) at any point in the region, there is no way to tell

whether it does so, other than by looking at the data near that

point. So what we can do is to try a series of small windows,

each centered at one of a set of trial points spread out through

the region, and compare the estimated density at those points

with _l(X). These points could be a systematic set of regularly

spaced points, or a random set of points. If p is large,

however, a set of points covering the entire window region might

have to be a very large set. In that case, one way to choose a

set of trial points would be to choose a number of the data

points in the region at random. Since these points would tend to

be where the bulk of the data points are, we would be checking

the density in the places where it is probably most important to

do so. In these small windows, there might be only a small
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amount of data, in which case we might estimate the density at

the windo_ center using one of the siBple special cases treated

at the end of the previous section.

In two or three dimensions we can look for fine structure,

or any other unexpected features in the data, by examining a

scatter plot or other such graphical representation of the data.

]_hen we look at a scatter plot, we can move our eyes around the

diagram and focus on any small part of it; that is how we

discover features on a sBaller scale. Trying subwindows of a

Gaussian window is the analogue of this in higher dimensions. If

p is large we can project the data, or a subset of the data,

onto a space of lower dimension, so that we can then use a

graphical technique for studying the data. See for example

Chambers et al. (1983), Cleveland and HcGill (1988), and Du Toit

et al. (1986). But when we do this we risk obscuring the

structural features we are trying to find, and we nay be limiting

the dimensionality of the features that we can find in this way.

Since Gaussian windows can be used in any nuRber of dinensions, I

prefer using subwindows to search for fine structure when p is

large. Of course, other nethods for searching for fine structure

could be used in conjunction with Ganssian windows.

I usually begin exploring a set of data by computing the

unweighted sample mean and covariance natrix (that is, by using a

window with V = 0). Then I use large windows to find the

overall shape of the data for large regions, and then I work ny

way down to smaller windows. We can try windows as small as the

data will allow. If a window is too small, the window region
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will not contain enough data to give reliable estimates of the

parameters, especially the quantities derived from B. However,

it is not clear how to tell whether a window region contains

enough data to give reliable estimates. I think that in general

the best thing to do is to try several windows with various

centers and shapes covering approximately the same region, to see

whether the results are consistent. If they are, we can be

confident that what we think we see in the data is really there,

at least for the purpose of describing the shape of the data. If

we want to draw broader statistical inferences about the

population from which the data were drawn, we will need to make

additional assumptions about the process by which the data were

generated.

It may be possible to estimate the standard deviations of

the various estimates based on a window. Further work is needed

to devise simple measures of accuracy for those estimates and to

determine whether such measures would be useful. Any such

measures of accuracy, however, would have to be taken with a

grain of salt, since, after the first window used, the choice of

the window parameters will be influenced by what was seen in the

previous windows; that is, the succeeding windows will not be

independent of the data.

After we have explored a set of data, we can put the results

together into a final description of its structure. Such a

description might include a list of the structural features

found, with a description of each one, and of how they are

related to one another. The list could include pivotal points
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such as peaks, valleys, and saddle points, and also extended

structures such as bars and pancakes, and similar structures in

higher dimensions. The description can include as much or as

little detail as is desired. Note that any structural feature

might have a more detailed structure on a smaller scale; what

appears to be a cluster or a bar in a window of a certain size

might turn out, upon closer examination, to be composed of

smaller structures that are not separately visible in a larger

window. There may also be partial structures that merge into one

another. For each feature, we could give its location, size,

shape, and extent. _e might also estimate its _mass', that is,

the proportion of the data points that are part of that feature.

For a cluster of Gaussian shape that can be viewed in a single

window, we can estimate its mass by _. For an extended

structure we might be able to estimate its mass by considering

its extent and its cross=section.

As with any new tool, using Ganssian windows takes some

practice. Since I have kept the assumptions about the data to a

minimum, the method is widely applicable. Since it is

interactive, it is flexible and open=ended, and the user is free

to experiment and to follow a variety of strategies. If we have

some additional knowledge or beliefs about the data, we can use

them to guide us in choosing windows to try and in interpreting

the results. Also, the method can be used in conjunction with

other methods. The method is computationally simple, compared to

many other multivariate methods, and it can be implemented on a

small computer. To implement the method, the user can
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incorporate any standard algorithms for inverting a matrix and

for finding the eigenvalues and eigenvectors of a symmetric

matrix. The other computations are simple to program. Finally,

the method presented here provides a way to apply our geometrical

intuition, so that we can think about and describe the structure

of a set of data in any number of dimensions.

I would like to thank Dr. _ike Raugh of RIACS for providing

me with the opportunity and the freedom to do this work.
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